

global environmental solutions

Cranberry Pipeline Corporation Tanner Compressor Station Pineville, West Virginia Rule 13 Permit Application SLR Ref: 116.00400.00130

January 29, 2016

Mr. William F. Durham Director WVDEP, Division of Air Quality 601 – 57th Street Charleston, West Virginia 25304

Re: Rule 13 Permit Application Tanner Compressor Station (109-00106) Cranberry Pipeline Corporation

Dear Mr. Durham,

SLR International Corporation has prepared the attached Rule 13 Permit Application on behalf of Cranberry Pipeline Corporation for the Tanner Compressor Station located in Pineville, West Virginia (plant ID No. 109-00106). The facility is currently permitted by general permit number G35-A105, but would like to receive a Rule 13 Permit to encompass the requested change to emission potential.

An updated wet gas analysis was taken on April 22, 2015 from the Tanner Compressor Station. This sample and GLYCalc emission modeling indicate the need to increase the facility's potential to emit via a Minor Source NSR Permit Modification. The resulting emission increases are reflected in the following table for the facility. These proposed limits do not trigger any additional permit requirements.

	Currently Permitted Emission Limits	Proposed Emission Limits	Difference between Permitted and Proposed
Pollutant	(tpy)	(tpy)	Limits (tpy)
PM/PM10/PM2.5	-	0.80	0.80
SO ₂	-	0.05	0.05
NO _X	48.16	48.20	0.04
CO	84.19	84.26	0.07
VOCs	25.27	59.03	33.76
Benzene	1.62	1.98	0.36
Toluene	2.69	3.26	0.57
Ethylbenzene	3.79	4.55	0.76
Xylene	4.47	5.38	0.91
n-Hexane	0.06	0.27	0.21
Total HAPs	16.81	20.88	4.07

January 29, 2016 William F. Durham Page 2

The public notice was delivered to *The Independent Herald* for publication. The legal advertisement will be forwarded to your office as soon as SLR receives the original affidavit from the newspaper.

If any additional information is needed, please contact me by telephone at (304) 545-8563 or by e-mail at <u>jhanshaw@slrconsulting.com</u>.

Sincerely, SLR International Corporation

Jesse Hanshaw Principal Engineer, P.E.

Cc: Mr. Brody Webster, Cranberry Pipeline Corporation

Tanner Compressor Station Rule 13 Permit Application

Prepared for:

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East, Suite 1500 Charleston, WV 25301

This document has been prepared by SLR International Corporation. The material and data in this permit application were prepared under the supervision and direction of the undersigned.

Chris Boggess

iss

Jesse Hanshaw, P.E. Principal Engineer

APPLICATION FOR PERMIT	
------------------------	--

ATTACHMENT A	BUSINESS CERTIFICATE
ATTACHMENT B	
ATTACHMENT C	INSTALLATION AND START-UP
ATTACHMENT D	REGULATORY DISCUSSION
ATTACHMENT E	PLOT PLAN
ATTACHMENT F	PROCESS FLOW DIAGRAM
ATTACHMENT G	PROCESS DESCRIPTION
ATTACHMENT H	
ATTACHMENT I	EMISSION UNITS TABLE
ATTACHMENT J	EMISSION POINTS DATA SUMMARY SHEET
ATTACHMENT K	FUGITIVE EMISSIONS DATA SHEET
ATTACHMENT L	EMISSION UNIT DATA SHEET
ATTACHMENT M	AIR POLLUTION CONTROL DEVICE SHEET(S) (SEE NOTE)
ATTACHMENT N	SUPPORTING EMISSIONS CALCULATIONS
ATTACHMENT O	MONITORING/RECORDKEEPING/REPORTING/ TESTING PLANS
ATTACHMENT P	
ATTACHMENT Q	BUSINESS CONFIDENTIAL CLAIMS (SEE NOTE)
ATTACHMENT R	AUTHORITY FORMS
ATTACHMENT S	TITLE V REVISION INFORMATION (SEE NOTE)
ATTACHMENT T	PERMIT APPLICATION FEE
FINAL PERMITS	

Notes:

ATTACHMENT M – Not applicable - No air pollution control devices used on equipment at this facility

ATTACHMENT Q – Not applicable - No information contained within this application is claimed confidential

ATTACHMENT S - Not applicable - Not a Title V Permit Revision

APPLICATION FOR PERMIT

Rule 13 Permit Application

Tanner Compressor Station Pineville, West Virginia

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East, Suite 1500 Charleston, West Virginia

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.dep.WV.gov/dag		APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)		
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF K	(NOWN):	PLEASE CHECK	TYPE OF 450	CSR30 (TITLE V) REVISION (IF ANY):
□ CONSTRUCTION ⊠ MODIFICATION □ RELOCATIO	N		TIVE AMENDM	
CLASS I ADMINISTRATIVE UPDATE TEMPORAR	Y			
CLASS II ADMINISTRATIVE UPDATE 🛛 AFTER-THE-	-FACT	IF ANY BOX ABO INFORMATION A	VE IS CHECKE S ATTACHME	ED, INCLUDE TITLE V REVISION NT S TO THIS APPLICATION
FOR TITLE V FACILITIES ONLY: Please refer to "Title (Appendix A, "Title V Permit Revision Flowchart") and	V Revisio d ability to	on Guidance" in or o operate with the	der to determi changes reque	ne your Title V Revision options ested in this Permit Application.
Se	ection l	I. General		
1. Name of applicant (as registered with the WV Secret Cranberry Pipeline Corporation	tary of St	tate's Office):	2. Federal Employer ID No. <i>(FEIN):</i> 042989934	
3. Name of facility (if different from above):			4. The applicant is the:	
Tanner Compressor Station				OPERATOR 🛛 BOTH
5A. Applicant's mailing address:5B. Facility's present physical address:900 Lee Street EastPinnacle Creek Rd.Suite 1500Pineville, WV 24874Charleston, WV 25301Pineville, WV 24874			ddress:	
 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? YES NO If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 				
7. If applicant is a subsidiary corporation, please provide	e the nan	ne of parent corpo	oration:	
8. Does the applicant own, lease, have an option to buy	or other	wise have control	of the propos	ed site? 🛛 YES 🗌 NO
 If YES, please explain: The applicant owns the site. 				
 If NO, you are not eligible for a permit for this source. 				
9. Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary crusher, etc.): Natural Gas Compressor Station with Dehydration Unit10. North American Industry Classification System (NAICS) code for the facility:				
211111			211111	
11A. DAQ Plant ID No. (for existing facilities only): 109-00106	Plant ID No. (for existing facilities only): 11B. List all current 45CSR13 and 45CSR30 (Title V) permit number associated with this process (for existing facilities only): 109-00106 G35-A105		CSR30 (Title V) permit numbers existing facilities only):	
All of the required forms and additional information can be	e found u	nder the Permitting	g Section of DA	AQ's website, or requested by phone.

12A.

- For **Modifications**, **Administrative Updates** or **Temporary permits** at an existing facility, please provide directions to the *present location* of the facility from the nearest state road;
- For Construction or Relocation permits, please provide directions to the *proposed new site location* from the nearest state road. Include a MAP as Attachment B.

Traveling South on WV Rt. 16 from Pineville, turn left onto Pinnacle Creek Rd. (County Route 12/3). Travel approximately 2.7 miles and turn left onto and unmarked gravel road. Travel approximately 3.5 miles along gravel road and the station will be on your right

12B. New site address (if applicable):	12C. Nearest city or town:	12D. County:		
N/A	Pineville	Wyoming		
12.E. UTM Northing (KM): 4,155.989	12F. UTM Easting (KM): 459.406	12G. UTM Zone: 17N		
 Briefly describe the proposed change(s) at the facilit This permit application will account for an increase in analysis 	y: emissions associated to the dehydration	n unit based upon recent wet gas		
14A. Provide the date of anticipated installation or change	ge:	14B. Date of anticipated Start-Up		
 If this is an After-The-Fact permit application, prov change did happen: 5/01/2015 	ide the date upon which the proposed	if a permit is granted:		
14C. Provide a Schedule of the planned Installation of/ application as Attachment C (if more than one uni	Change to and Start-Up of each of the t is involved).	units proposed in this permit		
15. Provide maximum projected Operating Schedule o Hours Per Day 24 Days Per Week 7	f activity/activities outlined in this applica Weeks Per Year 52	ation:		
16. Is demolition or physical renovation at an existing fa	cility involved? YES NO			
17. Risk Management Plans. If this facility is subject to	112(r) of the 1990 CAAA, or will becom	e subject due to proposed		
changes (for applicability help see www.epa.gov/cepp	oo), submit your Risk Management Pla	n (RMP) to U.S. EPA Region III.		
18. Regulatory Discussion. List all Federal and State a	18. Regulatory Discussion. List all Federal and State air pollution control regulations that you believe are applicable to the			
proposed process (if known). A list of possible application	able requirements is also included in Atta	achment S of this application		
(Title V Permit Revision Information). Discuss applica	bility and proposed demonstration(s) of	compliance (if known). Provide this		
information as Attachment D.				
Section II. Additional att	achments and supporting d	ocuments.		
19. Include a check payable to WVDEP – Division of Air	Quality with the appropriate application	fee (per 45CSR22 and		
45CSR13).				
20. Include a Table of Contents as the first page of your application package.				
 Provide a Plot Plan, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as Attachment E (Refer to Plot Plan Guidance). 				
 Indicate the location of the nearest occupied structure (e.g. church, school, business, residence). 				
22. Provide a Detailed Process Flow Diagram(s) showing each proposed or modified emissions unit, emission point and control device as Attachment F.				
23. Provide a Process Description as Attachment G.				
 Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable). 				
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.				

24. Provide Material Safety Data Sheet	ts (MSDS) for all materials proc	essed, used or produced as Attachment H.	
- For chemical processes, provide a MS	SDS for each compound emitted	to the air.	
25. Fill out the Emission Units Table and	nd provide it as Attachment I.		
26. Fill out the Emission Points Data S	ummary Sheet (Table 1 and T	able 2) and provide it as Attachment J.	
27. Fill out the Fugitive Emissions Data	a Summary Sheet and provide	it as Attachment K.	
28. Check all applicable Emissions Uni	t Data Sheets listed below:		
Bulk Liquid Transfer Operations	Haul Road Emissions	Quarry	
Chemical Processes	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage	
Concrete Batch Plant	Incinerator		
Grey Iron and Steel Foundry	Indirect Heat Exchanger	⊠ Storage Lanks	
General Emission Unit, specify: Intern	nal Combustion Engines Data	Sheet, Glycol Dehydration Unit Data Sheet	
Fill out and provide the Emissions Unit	Data Sheet(s) as Attachment I		
29. Check all applicable Air Pollution C	control Device Sheets listed be	low:	
Absorption Systems	Baghouse		
Adsorption Systems		Mechanical Collector	
	Electrostatic Precipit	ator Wet Collecting System	
Other Collectors, specify			
Fill out and provide the Air Pollution Co	ntrol Device Sneet(s) as Attac	nment M.	
 Provide all Supporting Emissions Calculations as Attachment N, or attach the calculations directly to the forms listed in Items 28 through 31. 			
31. Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O .			
Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.			
32. Public Notice. At the time that the application is submitted, place a Class I Legal Advertisement in a newspaper of general			
circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>			
Advertisement for details). Please submit the Affidavit of Publication as Attachment P immediately upon receipt.			
33. Business Confidentiality Claims.	Does this application include co	nfidential information (per 45CSR31)?	
□ YES	⊠ NO		
If YES, identify each segment of information on each page that is submitted as confidential and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's "Precautionary Notice – Claims of Confidentiality" guidance found in the General Instructions as Attachment Q.			
Section III. Certification of Information			
34. Authority/Delegation of Authority. Only required when someone other than the responsible official signs the application. Check applicable Authority Form below:			
Authority of Corporation or Other Bus	iness Entity	Authority of Partnership	
Authority of Governmental Agency	Γ	Authority of Limited Partnership	
Submit completed and signed Authority Form as Attachment R.			
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.			

35A. **Certification of Information.** To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE (Please	DATE: // Z / I lo (Please use blue ink)	
35B. Printed name of signee: Brody Webster,	35C. Title:	
		Manager, Safety & Environment
35D. E-mail: brody.webster@cabotog.com	36E. Phone: 304-347-1642	36F. FAX 304-347-1618
36A. Printed name of contact person (if differe	36B. Title: Principal Engineer, SLR International Corporation	
36C. E-mail: jhanshaw@slrconsulting.com	36D. Phone: 681-205-8949	36E. FAX: 681-205-8969

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDED WITH THIS PERMIT APPLICATION:			
 Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table Attachment J: Emission Points Data Summary Sheet 	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information Application Fee 		
Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section, at the address listed on the first page of this application. Please DO NOT fax permit applications.			

FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:

Forward 1 copy of the application to the Title V Permitting Group and:

☐ For Title V Administrative Amendments:

NSR permit writer should notify Title V permit writer of draft permit,

For Title V Minor Modifications:

Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,

□ NSR permit writer should notify Title V permit writer of draft permit.

- □ For Title V Significant Modifications processed in parallel with NSR Permit revision:
 - □ NSR permit writer should notify a Title V permit writer of draft permit,
 - Device should reference both 45CSR13 and Title V permits,
 - EPA has 45 day review period of a draft permit.

ATTACHMENT A

BUSINESS CERTIFICATE

Rule 13 Permit Application

Tanner Compressor Station Pineville, West Virginia

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East, Suite 1500 Charleston, West Virginia

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

CRANBERRY PIPELINE CORPORATION 900 LEE ST E 1700 CHARLESTON, WV 25301-1741

JSINESS REGISTRATION ACCOUNT NUMBER: 1006-3673 This certificate is issued on: 06/1/2011

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11 Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the tocation for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the pusiness and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v,4 L1111698560

ATTACHMENT B

MAP

Rule 13 Permit Application

Tanner Compressor Station Pineville, West Virginia

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East, Suite 1500 Charleston, West Virginia

ATTACHMENT C

INSTALLATION AND START-UP

Rule 13 Permit Application

Tanner Compressor Station Pineville, West Virginia

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East, Suite 1500 Charleston, West Virginia

This is an after-the-fact permit modification brought about by recent wet gas analysis detailing a change in emissions at the facility. This after the fact modification will more accurately calculate the site's PTE based on site specific measurement and for the first time take into account the addition of emissions sources such as of tanks previously not included in the most recent permit, emissions from truck loading and fugitive emissions.

ATTACHMENT D

REGULATORY DISCUSSION

Rule 13 Permit Application

Tanner Compressor Station Pineville, West Virginia

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East, Suite 1500 Charleston, West Virginia

APPLICABLE REGULATIONS

The equipment at this facility is subject to the following applicable rules and regulations:

Federal and State:

45 CSR 2 – Particulate Matter Standards from Combustion of Fuel in Indirect Heat Exchangers

The indirect heat exchanger consist of the dehydration reboiler burner, which is subject to the visible emission standard of §45-2-3 as follows:

3.1. No person shall cause, suffer, allow or permit emission of smoke and/or particulate matter into the open air from any fuel burning unit which is greater than ten (10) percent opacity based on a six minute block average.

However, in accordance with the exemptions defined with §45-2-11 these sources have limited requirements as follows:

11.1. Any fuel burning unit(s) having a heat input under ten (10) million B.T.U.'s per hour will be exempt from sections 4, 5, 6, 8 and 9. However, failure to attain acceptable air quality in parts of some urban areas may require the mandatory control of these sources at a later date.

45 CSR 4 - No Objectionable Odors

45 CSR 6 - Open Burning Prohibited.

This state rule is geared towards reducing particulate matter emissions from the combustion of refuse and is specific to burning solid waste such as trash as well as combustion of waste gas in flares. The rule sets PM limits and establishes a 20% visible emission limit, both of which shouldn't be any problem for the gas fired flare to meet.

45 CSR 10 - Emission of Sulfur Oxides.

The facility evaluated within this application utilizes a fuel burning unit, but it is less than the exemption threshold of 10 MMBtu/hr as stated in 45CSR§10-10.1 as follows:

10.1 Any fuel burning units having a design heat input under ten (10) million BTU's per hour will be exempt from section 3 and sections 6 through 8. However, failure to attain acceptable air quality in parts of some urban areas may require the mandatory control of these sources at a later date.

45 CSR 11 - Standby Plans for Emergency Episodes.

45 CSR 13 - Permits for Construction, Modification, Relocation, and Operation of Stationary Source of Air Pollutants

The company has applied for a Rule 13 modification permit to incorporate an increase in emissions of regulated air pollutants associated with the dehydration unit.

Additionally, under this modification the storage vessel calculations were updated to include flashing emissions as well as tank truck loading emissions. Although, these emissions were estimated using worst case assumptions they were still found to be relatively low and do not trigger any additional requirements.

45 CSR 17 - Fugitive Particulate Emissions

40 CFR 60 Subpart JJJJ – Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

The natural gas fueled emergency generator is subject to this NSPS. This unit was purchased as a certified emergency unit, operating at a maximum of 500 hours per year

40 CFR 63 Subpart ZZZZ – NESHAP for Stationary Reciprocating Internal Combustion Engines.

This subpart applies to existing, new, and reconstructed stationary reciprocating internal combustion engines at major sources and area sources of HAPs. Therefore, this facility is subject to this subpart.

The three (3) White Superior 6GTLB 825 hp natural gas compressor engines are located in a "remote area" and therefore are subject to the maintenance, recordkeeping, and reporting requirements of 40CFR63.6640(a) and 40CFR63.6655(e)(3).

40 CFR 63 Subpart HH - National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities

The unit is subject to the Area Source Requirements of this Subpart but complies by meeting the 1 TPY Benzene exemption for actual emissions.

NON-APPLICABILITY DETERMINATIONS

The following requirements have been determined "not applicable" due to the following:

45 CSR 21 - To Prevent and Control Air Pollution from the Emission of Volatile Organic Compounds.

Section 28 of 45CSR21 is not applicable because all petroleum liquid storage tanks at this station are below 40,000 gallons in capacity. Section 29 of 45CSR21 is not applicable because this station is not engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both.

45 CSR 27 - To Prevent and Control the Emissions of Toxic Air Pollutants.

This rule is not applicable because natural gas is included as a petroleum product and contains less than 5% benzene by weight. 45CSR § 27-2.4 exempts equipment "used in the production and distribution of petroleum products providing that such equipment does not produce or contact materials containing more than 5% benzene by weight."

40 CFR 60 Subpart Dc – Reboiler

The reboiler at this facility is below 10 million BTU/hr, thus this subpart does not apply per 40 CFR 60.40c.

40 CFR 60 Subpart K, Ka – Standards of Performance for Storage Vessels of Petroleum Liquids

This subpart is not applicable because all tanks at this station are below 40,000 gallons in capacity.

40 CFR 60 Subpart Kb – Standards of Performance for Volatile Organic Liquid Storage Vessels

This subpart is not applicable because all tanks at this station are below 75m³ (19,813 gallons) in capacity.

40 CFR 60 Subpart KKK – Standards of Performance for Equipment Leaks of VOC from Onshore Natural Gas Processing Plant

This subpart is not applicable because this station in not a processing site engaged in extracting natural gas liquids from production gas.

Natural gas processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both.

40 CFR 60 Subpart OOOO - Storage Vessel NSPS

This subpart is not applicable because the storage vessels at this facility were all installed before the NSPS applicability date of 8-23-2011.

40 CFR 63 Subpart HHH – NESHAP from Natural Gas Transmission and Storage Facilities

This subpart is related to Natural Gas Transmission Facilities. Therefore, this subpart does not apply to this facility, because it transports gas prior to custody transfer or prior to a natural gas liquids extraction facility.

40 CFR 63 Subpart DDDDD - Boilers & Process Heaters Located at Major Sources of HAPs.

This subpart is not applicable because this facility is not a major source of HAPs.

ATTACHMENT E

PLOT PLAN

Rule 13 Permit Application

Tanner Compressor Station Pineville, West Virginia

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East, Suite 1500 Charleston, West Virginia

ATTACHMENT F

PROCESS FLOW DIAGRAM

Rule 13 Permit Application

Tanner Compressor Station Pineville, West Virginia

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East, Suite 1500 Charleston, West Virginia

ATTACHMENT G

PROCESS DESCRIPTION

Rule 13 Permit Application

Tanner Compressor Station Pineville, West Virginia

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East, Suite 1500 Charleston, West Virginia

Introduction

The facility currently operates under West Virginia New Source Review (NSR) General Permit G35-A105. On behalf of Cranberry Pipeline Corporation (Cranberry) SLR is requesting this modification in order to update the facility registration to more accurately reflect the most recent site measurements.

Recent wet gas analyses from the Tanner Compressor Station indicate that a modification is required to reflect the facility's adjusted emission levels from the dehydration unit still vent. The source's Potential to Emit (PTE) has been adjusted and new emission limits are proposed so that the facility remains within permitted throughput constraints. The proposed emission limits will not trigger new permitting program requirements (e.g. Title V Major Source).

Proposed Update

This application involves the following:

- Increase of emissions limitations on dehydration unit (RSV-1) set forth by the previous permit due to recent wet gas sampling and analysis
- An update of the PTE for the storage vessels T01 and T02 based on new annual throughputs
- Addition of storage vessels T03, T04 and T05 and associated emissions
- An update of emissions from truck loading and fugitive leaks

The new emission estimates reflect the need to increase the VOC and Hazardous Air Pollutant (HAP) levels. These changes to emissions are a result of the increase to HAP and C8+ gas fractions measured within the wet gas inlet to the contactor column.

All other operating parameters on the dehydration unit were set to its maximum capacity. The lean TEG is recirculated through the unit by a gas-driven Kimray TEG pump, model 21015PV. The pump has a maximum pump rate of 3.5 GPM. The gas throughput was modeled to reflect the station's maximum flow of 13.0 MMscf/d. Additionally, the inlet water content was assumed to be saturated at 693.1 psig and 86.4 F, which is the facility's average operating conditions. The outlet is assumed to be pipeline quality NG at 7 lb H20/MMscf.

Pipeline liquids and produced water are separated at the station's inlet, dehy, and compressor separators. These separation by products are transferred to two different above ground storage tanks (AST) represented in the equipment table as T01 and T02. The flashing emissions in addition to tank working and breathing losses have been included within this application to better represent the storage vessel's PTE. The emission estimates for the tank are based on direct measurement pressurized liquid

testing and E&P Tanks simulation analysis taken at a representative Cranberry Pipeline site. The throughput was based on a maximum of 5 bbls/d.

As a result of this proposed permit revision, the tank flashing potential, loading losses and fugitive equipment leaks will be more accurately accounted for along with the new assessment of dehydration emissions based on updated gas measurement.

ATTACHMENT H

SAFETY DATA SHEETS (SDS)

Rule 13 Permit Application

Tanner Compressor Station Pineville, West Virginia

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East, Suite 1500 Charleston, West Virginia

Health	1
Fire	1
Reactivity	0
Personal Protection	J

Material Safety Data Sheet Triethylene glycol MSDS

Section 1: Chemical Product and Company Identification

Product Name: Triethylene glycol
Catalog Codes: SLT2644
CAS#: 112-27-6
RTECS: YE4550000
TSCA: TSCA 8(b) inventory: Triethylene glycol
Cl#: Not available.
Synonym: 2,2'-[1,2-Ethanediylbis(oxy)]bisethanol
Chemical Formula: C6H14O4

Contact Information:

Sciencelab.com, Inc. 14025 Smith Rd. Houston, Texas 77396

US Sales: 1-800-901-7247 International Sales: 1-281-441-4400

Order Online: ScienceLab.com

CHEMTREC (24HR Emergency Telephone), call: 1-800-424-9300

International CHEMTREC, call: 1-703-527-3887

For non-emergency assistance, call: 1-281-441-4400

Section 2: Composition and Information on Ingredients

Composition:

Name	CAS #	% by Weight
Triethylene glycol	112-27-6	100

Toxicological Data on Ingredients: Triethylene glycol: ORAL (LD50): Acute: 17000 mg/kg [Rat].

Section 3: Hazards Identification

Potential Acute Health Effects:

Very hazardous in case of eye contact (irritant), of ingestion. Slightly hazardous in case of inhalation. Inflammation of the eye is characterized by redness, watering, and itching.

Potential Chronic Health Effects:

Very hazardous in case of eye contact (irritant). Slightly hazardous in case of inhalation. CARCINOGENIC EFFECTS: Not available. MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available. The substance is toxic to kidneys, the nervous system. Repeated or prolonged exposure to the substance can produce target organs damage.

Section 4: First Aid Measures

Eye Contact:

Check for and remove any contact lenses. Immediately flush eyes with running water for at least 15 minutes, keeping eyelids open. Cold water may be used. Do not use an eye ointment. Seek medical attention.

Skin Contact: No known effect on skin contact, rinse with water for a few minutes.

Serious Skin Contact: Not available.

Inhalation: Allow the victim to rest in a well ventilated area. Seek immediate medical attention.

Serious Inhalation: Not available.

Ingestion:

Do not induce vomiting. Loosen tight clothing such as a collar, tie, belt or waistband. If the victim is not breathing, perform mouth-to-mouth resuscitation. Seek immediate medical attention.

Serious Ingestion: Not available.

Section 5: Fire and Explosion Data

Flammability of the Product: May be combustible at high temperature.

Auto-Ignition Temperature: 371°C (699.8°F)

Flash Points: CLOSED CUP: 177°C (350.6°F). OPEN CUP: 165.5°C (329.9°F).

Flammable Limits: LOWER: 0.9% UPPER: 9.2%

Products of Combustion: These products are carbon oxides (CO, CO2).

Fire Hazards in Presence of Various Substances: Not available.

Explosion Hazards in Presence of Various Substances:

Risks of explosion of the product in presence of mechanical impact: Not available. Risks of explosion of the product in presence of static discharge: Not available.

Fire Fighting Media and Instructions:

SMALL FIRE: Use DRY chemical powder. LARGE FIRE: Use water spray, fog or foam. Do not use water jet.

Special Remarks on Fire Hazards: Not available.

Special Remarks on Explosion Hazards: Not available.

Section 6: Accidental Release Measures

Small Spill:

Dilute with water and mop up, or absorb with an inert dry material and place in an appropriate waste disposal container. Finish cleaning by spreading water on the contaminated surface and dispose of according to local and regional authority requirements.

Large Spill:

Absorb with an inert material and put the spilled material in an appropriate waste disposal. Finish cleaning by spreading water on the contaminated surface and allow to evacuate through the sanitary system.

Section 7: Handling and Storage

Precautions:

Keep away from heat. Keep away from sources of ignition. Empty containers pose a fire risk, evaporate the residue under a fume hood. Ground all equipment containing material. Do not ingest. Do not breathe gas/fumes/ vapour/spray. Avoid contact with eyes If ingested, seek medical advice immediately and show the container or the label.

Storage:

Keep container dry. Keep in a cool place. Ground all equipment containing material. Keep container tightly closed. Keep in a cool, well-ventilated place. Combustible materials should be stored away from extreme heat and away from strong oxidizing agents.

Section 8: Exposure Controls/Personal Protection

Engineering Controls:

Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors below their respective threshold limit value. Ensure that eyewash stations and safety showers are proximal to the work-station location.

Personal Protection: Splash goggles. Lab coat.

Personal Protection in Case of a Large Spill:

Splash goggles. Full suit. Boots. Gloves. Suggested protective clothing might not be sufficient; consult a specialist BEFORE handling this product.

Exposure Limits: Not available.

Section 9: Physical and Chemical Properties

Physical state and appearance: Liquid. (Hygroscopic liquid.)

Odor: Not available.

Taste: Not available.

Molecular Weight: 150.18 g/mole

Color: Colorless.

pH (1% soln/water): Not available.

Boiling Point: 285°C (545°F)

Melting Point: -5°C (23°F)

Critical Temperature: Not available.

Specific Gravity: 1.1274 (Water = 1)

Vapor Pressure: Not available.

Vapor Density: 5.17 (Air = 1)

Volatility: Not available.

Odor Threshold: Not available.

Water/Oil Dist. Coeff.: Not available.

lonicity (in Water): Not available.

Dispersion Properties: See solubility in water.

Solubility: Easily soluble in cold water.

Section 10: Stability and Reactivity Data

Stability: The product is stable.

Instability Temperature: Not available.

Conditions of Instability: Not available.

Incompatibility with various substances: Not available.

Corrosivity: Non-corrosive in presence of glass.

Special Remarks on Reactivity: Not available.

Special Remarks on Corrosivity: Not available.

Polymerization: No.

Section 11: Toxicological Information

Routes of Entry: Eye contact. Ingestion.

Toxicity to Animals: Acute oral toxicity (LD50): 17000 mg/kg [Rat].

Chronic Effects on Humans: The substance is toxic to kidneys, the nervous system.

Other Toxic Effects on Humans:

Very hazardous in case of ingestion. Slightly hazardous in case of inhalation.

Special Remarks on Toxicity to Animals: Not available.

Special Remarks on Chronic Effects on Humans: Not available.

Special Remarks on other Toxic Effects on Humans: Not available.

Section 12: Ecological Information

Ecotoxicity: Not available.

BOD5 and COD: Not available.

Products of Biodegradation:

Possibly hazardous short term degradation products are not likely. However, long term degradation products may arise.

Toxicity of the Products of Biodegradation: The products of degradation are more toxic.

Special Remarks on the Products of Biodegradation: Not available.

Section 13: Disposal Considerations

Waste Disposal:

Section 14: Transport Information

DOT Classification: Not a DOT controlled material (United States).

Identification: Not applicable.

Special Provisions for Transport: Not applicable.

Section 15: Other Regulatory Information

Federal and State Regulations:

Pennsylvania RTK: Triethylene glycol TSCA 8(b) inventory: Triethylene glycol

Other Regulations: OSHA: Hazardous by definition of Hazard Communication Standard (29 CFR 1910.1200).

Other Classifications:

WHMIS (Canada): Not controlled under WHMIS (Canada).

DSCL (EEC): R41- Risk of serious damage to eyes.

HMIS (U.S.A.):

Health Hazard: 1

Fire Hazard: 1

Reactivity: 0

Personal Protection: j

National Fire Protection Association (U.S.A.):

Health: 1

Flammability: 1

Reactivity: 0

Specific hazard:

Protective Equipment:

Not applicable. Lab coat. Not applicable. Splash goggles.

Section 16: Other Information

References: Not available.

Other Special Considerations: Not available.

Created: 10/10/2005 08:31 PM

Last Updated: 05/21/2013 12:00 PM

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall ScienceLab.com be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if ScienceLab.com has been advised of the possibility of such damages.

Product Name:Processed Natural GasProduct Code:NonePage 1 of 8

1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

Product Name: Processed Natural Gas Product Code: None Synonyms: Dry Gas Generic Name: Natural Gas Chemical Family: Paraffin hydrocarbon

Responsible Party: Unocal Corporation Union Oil Company of California 14141 Southwest Freeway Sugar Land, Texas 77478

For further information contact MSDS Coordinator 8am - 4pm Central Time, Mon - Fri: 281-287-5310

EMERGENCY OVERVIEW

24 Hour Emergency Telephone Numbers:

For Chemical Emergencies: Spill, Leak, Fire or Accident Call CHEMTREC North America: (800)424-9300 Others: (703)527-3887(collect)

For Health Emergencies: California Poison Control System (800)356-3129

Health Hazards: Use with adequate ventilation.

Physical Hazards: Flammable gas. Can cause flash fire. Gas displaces oxygen available for breathing. Keep away from heat, sparks, flames, or other sources of ignition (e.g., static electricity, pilot lights, mechanical/electrical equipment). Do not enter storage areas or confined space unless adequately ventilated.

- < Physical Form: Gas
- < Appearance: Colorless
- < Odor: Odorless in the absence of H2S or mercaptans

NFPA HAZARD CLASS: Health: 1 (Slight) Flammability: 4 (Extreme) Reactivity: 0 (Least)

Issue Date: 03/18/03 Revised Sections: 1, 3

Status: Final Revised
	UNOCAL	
Product Name:	Processed Natural Gas	
Product Code:	None	Page 2 of 8

2. COMPOSITION/INFORMATION ON INGREDIENTS

HAZARDOUS COMPONENTS	% Weight	EXPO	SURE GUIDE	LINE
		Limits	Agency	Туре
Methane CAS# 74-82-8	98	1000 ppm	MSHA	TWA
Carbon Dioxide CAS# 124-38-9	0-5	5000 ppm 30000 ppm 5000 ppm 5000 ppm 5000 ppm 30000 ppm	ACGIH ACGIH OSHA MSHA Cal.OSHA Cal.OSHA	TWA STEL TWA TWA STEL
Nitrogen CAS# 7727-37-9	0-5	1000 ppm	MSHA	TWA
Ethane CAS# 74-84-0	1	1000 ppm	MSHA	TWA

Note: State, local or other agencies or advisory groups may have established more stringent limits. Consult an industrial hygienist or similar professional, or your local agencies, for further information.

3. HAZARDS IDENTIFICATION

POTENTIAL HEALTH EFFECTS:

Eye: Not expected to be an eye irritant.

Skin: Skin contact is unlikely. Skin absorption is unlikely.

- Inhalation (Breathing): Asphyxiant. High concentrations in confined spaces may limit oxygen available for breathing.
- Signs and Symptoms: Light hydrocarbon gases are simple asphyxiants which, at high enough concentrations, can reduce the amount of oxygen available for breathing. Symptoms of overexposure can include shortness of breath, drowsiness, headaches, confusion,

Issue Date:	03/18,	/03		Status:	Final	Revised
Revised Sect	ions:	1,	3		-	novibou

		UNOCAL	
Product	Name:	Processed Natural Gas	
Product	Code:	None	Page 3 of 8
			3

decreased coordination, visual disturbances and vomiting, and are reversible if exposure is stopped. Continued exposure can lead to hypoxia (inadequate oxygen), cyanosis (bluish discoloration of the skin), numbness of the extremities, unconsciousness and death. High concentrations of carbon dioxide can increase heart rate and blood pressure.

Cancer: No data available.

Target Organs: No data available.

Developmental: Limited data - See Other Comments, below.

Other Comments: High concentrations may reduce the amount of oxygen available for breathing, especially in confined spaces. Hypoxia (inadequate oxygen) and respiratory acidosis (increased carbon dioxide in blood), during pregnancy may have adverse effects on the developing fetus. Exposure during pregnancy to high concentrations of carbon monoxide, which is produced during the combustion of hydrocarbon gases, can also cause harm to the developing fetus.

Pre-Existing Medical Conditions: None known.

4. FIRST AID MEASURES

Eye: If irritation or redness develops, move victim away from exposure and into fresh air. Flush eyes with clean water. If symptoms persist, seek medical attention.

Skin: First aid is not normally required. However, it is good practice to wash any chemical from the skin.

Inhalation (Breathing): If respiratory symptoms develop, move victim away from source of exposure and into fresh air. If symptoms persist, seek medical attention. If victim is not breathing, immediately begin artificial respiration. If breathing difficulties develop, oxygen should be administered by qualified personnel. Seek immediate medical attention.

Issue Date:	03/18	/03		Status:	Final	Revised	
Revised Sect	ions:	1,	3			novibeu	

and being the start while here i have	
UNOCAL	

Product	Name:	Processed	Natural	Gas
Product	Code:	None		

Page 4 of 8

5. FIRE FIGHTING MEASURES

Flammable Properties: Flash Point: Not applicable (gas) OSHA Flammability Class: Flammable gas LEL / UEL: No data Autoignition Temperature: 800-1000°F

- Unusual Fire & Explosion Hazards: This material is flammable and may be ignited by heat, sparks, flames, or other sources of ignition (e.g., static electricity, pilot lights, or mechanical/electrical equipment). Vapors may travel considerable distances to a source of ignition where they can ignite, flashback, or explode. May create vapor/air explosion hazard indoors, outdoors, or in sewers. If container is not properly cooled, it can rupture in the heat of a fire. Closed containers exposed t extreme heat can rupture due to pressure buildup.
- **Extinguishing Media:** Dry chemical or carbon dioxide is recommended. Carbon dioxide can displace oxygen. Use caution when applying carbon dioxide in confined spaces.
- Fire Fighting Instructions: For fires beyond the incipient stage, emergency responders in the immediate hazard area should wear When the potential chemical hazard is unknown, in bunker gear. enclosed or confined spaces, or when explicitly required by DOT, a self-contained breathing apparatus should be worn. In addition, wear other appropriate protective equipment as conditions warrant (see Section 8). Isolate immediate hazard area, keep unauthorized personnel out. Stop spill/release if it can be done with minimal risk. If this cannot be done, allow fire to burn. Move undamaged containers from immediate hazard area if it can be done with minimal risk. Stay away from ends of container. Water spray may be useful in minimizing or dispersing vapors. Cool equipment exposed to fire with water, if it can be done with minimal risk.

6. ACCIDENTAL RELEASE MEASURES

Flammable. Keep all sources of ignition and hot metal surfaces away from spill/release. The use of explosion-proof equipment is recommended. Stay upwind and away from spill/release. Notify persons down wind of spill/release, isolate immediate hazard area and keep unauthorized personnel out. Stop spill/release if it can be done with

Issue Date: 03/18/03 Revised Sections: 1, 3 Status: Final Revised

		UNOCAL				
Product	Name:	Processed Natural Gas				
Product	Code:	None	Page	5	of	8
			0.00 CO 00 CO 0	6.770	STREET, STREET, ST	

minimal risk. Wear appropriate protective equipment including respiratory protection as conditions warrant (see Section 8). Notify fire authorities and appropriate federal, state, and local agencies. Water spray may be useful in minimizing or dispersing vapors (see Section 5).

7. HANDLING AND STORAGE

- Handling: The use of explosion-proof equipment is recommended and may be required (see appropriate fire codes). Do not enter confined spaces such as tanks or pits without following proper entry procedures such as ASTM D-4276 and 29CFR 1910.146. The use of appropriate respiratory protection is advised when concentrations exceed any established exposure limits (see Section 2 and 8). Use good personal hygiene practice.
- Storage: Keep container(s) tightly closed. Use and store this
 material in cool, dry, well-ventilated areas away from heat,
 direct sunlight, hot metal surfaces, and all sources of ignition.
 Post area "No Smoking or Open Flame." Store only in approved
 containers. Keep away from any incompatible material (see
 Section 10). Protect container(s) against physical damage.
 Outdoor or detached storage is preferred.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Engineering controls: If current ventilation practices are not adequate to maintain airborne concentrations below the established exposure limits (see Section 2), additional ventilation or exhaust systems may be required. Where explosive mixtures may be present, electrical systems safe for such locations must be used (see appropriate electrical codes).

Personal Protective Equipment (PPE):

- Respiratory: Wear a positive pressure air supplied respirator in oxygen deficient environments (oxygen content <19.5%). A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements must be followed whenever workplace conditions warrant a respirator's use.
- Skin: Not required based on the hazards of the material. However, it is considered good practice to wear gloves when handling chemicals.

Issue Date:	03/18/03		Status	: Final	Revised
Revised Section	ns: 1,	3			novibed

	UNOCAL	
Product Name:	Processed Natural Gas	
Product Code:	None	Page 6 of 8

Eye/Face: While contact with this material is not expected to cause irritation, the use of approved eye protection to safeguard against potential eye contact is considered good practice.

Other Protective Equipment: A source of clean water should be available in the work area for flushing eyes and skin. Impervious clothing should be worn as needed. Self-contained respirators should be available for non-routine and emergency situations.

9. PHYSICAL AND CHEMICAL PROPERTIES

Note: Unless otherwise stated, values are determined at 20°C (68°F) and 760 mm Hg (1 atm).

Flash Point: Not applicable (gas)
Flammable/Explosive Limits (%): No data
Autoignition Temperature: 800-1000°F
Appearance: Colorless
Physical State: Gas
Odor: Odorless in the absence of H2S or mercaptans
Vapor Pressure (mm Hg): No data
Vapor Density (air=1): <1
Boiling Point: -259°F
Freezing/Melting Point: No data
Solubility in Water: Slight
Specific Gravity: 0.30+ (Air=1)
Percent Volatile: 100 vol.%
Evaporation Rate (nBuAc=1): N/A (Gas)</pre>

10. STABILITY AND REACTIVITY

Chemical Stability: Stable under normal conditions of storage and handling.
Conditions To Avoid: Avoid all possible sources of ignition (see Sections 5 & 7).
Incompatible Materials: Avoid contact with strong oxidizing agents.
Hazardous Decomposition Products: Combustion can yield carbon dioxide and carbon monoxide.
Issue Date: 03/18/03 Status: Final Revised

UNOCAL

Product	Name:	Processed	Natural	Gas
Product	Code:	None		

Page 7 of 8

Hazardous Polymerization: Will not occur.

11. TOXICOLOGICAL INFORMATION

No definitive information available on carcinogenicity, mutagenicity, target organs or developmental toxicity.

12. DISPOSAL CONSIDERATIONS

This material, if discarded as produced, would be a RCRA "characteristic" hazardous waste due to the characteristic(s) of ignitability (D001). If the material is spilled to soil or water, characteristic testing of the contaminated materials is recommended. Further, this material is subject to the land disposal restriction in 40 CFR 268.40 and may require treatment prior to disposal to meet specific standards. Consult state and local regulations to determine whether they are more stringent than the federal requirements.

Container contents should be completely used and containers should be emptied prior to discard. Container rinsate could be considered a RCRA hazardous waste and must be disposed of with care and in full compliance with federal, state and local regulations. Larger empty containers, such as drums, should be returned to the distributor or to a drum reconditioner. To assure proper disposal of smaller empty containers, consult with state and local regulations and disposal authorities.

13. TRANSPORT INFORMATION

DOT Proper Shipping Name / Technical Name: Hydrocarbon Gas, Liquified N.O.S. (Methane) Hazard Class or Division: 2.1 ID #: UN1965

14. REGULATORY INFORMATION

This material contains the following chemicals subject to the reporting requirements of **SARA 313** and 40 CFR 372:

--None--Warning: This material contains the following chemicals which are known to the State of California to cause cancer, birth defects or

Issue Da	ate:	03/1	8/03		
Revised	Sect	ions:	1,	3	

Status: Final Revised

UNOCAL	CAL
--------	-----

Product Name:	Processed Natural Gas	
Product Code:	None	Page 8 of 8

other reproductive harm, and are subject to the requirements of California Proposition 65 (CA Health & Safety Code Section 25249.5):

--None Known--

This material has not been identified as a carcinogen by NTP, IARC, or OSHA.

EPA (CERCLA) Reportable Quantity: -- None--

15. DOCUMENTARY INFORMATION

Issue Date: 03/18/03 Previous Issue Date: 11/29/99 Product Code: None Previous Product Code: None

16. DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES

The information in this document is believed to be correct as of the date issued. HOWEVER, NO WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY OTHER WARRANTY IS EXPRESSED OR IS TO BE IMPLIED REGARDING THE ACCURACY OR COMPLETENESS OF THIS INFORMATION, THE RESULTS TO BE OBTAINED FROM THE USE OF THIS INFORMATION OR THE PRODUCT, THE SAFETY OF THIS PRODUCT, OR THE HAZARDS RELATED TO ITS USE. This information and product are furnished on the condition that the person receiving them shall make his own determination as to the suitability of the product for his particular purpose and on the condition that he assume the risk of his use thereof.

Issue Date: 03/18/03 Revised Sections: 1, 3

Status: Final Revised

Natural Gas Condensate, Sweet or Sour

1. PRODUCT AND COMPANY IDENTIFICATION

Product Name Synonyms	Natural Gas Condensate, Sweet or Sour Sweet Condensate, Sour Condensate, Lease Condensate (Sweet or Sour), Field Condensate (Sweet or Sour), Casing Head Gasoline (Sweet or Sour), Natural Gas Liquids (Sweet or Sour), Gas Drips (Sweet or Sour), Natural Gas Condensate C2-C8 (Sweet or Sour)			
Chemical Family Intended Use	Petroleum Hydrocarbon Feedstock			
MARPOL Annex I Category	Naphthas and Condensates			
Supplier	J.P. Morgan Ventures Energy Corp. 383 Madison Avenue, 10th Floor New York, NY 10017	JP Morgan Commodities Canada Corp. Suite 600, Vintage Towers II, 326 11 th Avenue SW Calgary, Alberta T2R 0C5		
24 Hour Emergency Numbers	Chemtrec: 800-424-9300 JP Morgan Technical Information: 212-8 California Poison Control: 800-356-3219	34-5788 (USA), 403-532-2000 (Canada)		

2. HAZARDS IDENTIFICATION

GHS Classification

H224	Flammable liquid – Category 1	
H304	May be fatal if swallowed and enters airways – Category 1	
H319	Eye damage/irritation – Category 2	
H335	May cause respiratory irritation – Category 3	
H336	Specific target organ toxicity (single exposure) – Category 3	
H350	Carcinogenicity – Category 1B	
H411	Hazardous to the aquatic environment, chronic toxicity – Category 2	
Hazards Not Otherwise Classified		

May contain or release poisonous hydrogen sulfide gas

Label Elements

Signal Words Danger

- **GHS Hazard Statements**
- Extremely flammable liquid and vapor H224
- H350 May cause cancer
- May be fatal if swallowed and enters airways H304
- Causes serious eye irritation H319
- May cause drowsiness or dizziness H336
- H315 Causes skin irritation
- H331 Toxic if inhaled
- H411 Toxic to aquatic life with long lasting effects
- **GHS Precautionary Statements**
- Obtain special instructions before use P201
- Do not handle until all safety precautions have been read and understood P202
- Keep away from heat/sparks/open flames/hot surfaces no smoking P210
- Keep container tightly closed P233
- Ground/bond container and receiving equipment P240

2. HAZARDS IDENTIFICATION

P241	Use explosion-proof electrical/ventilating/lighting equipment
P242	Use only non-sparking tools
P243	Take precautionary measures against static discharge
P261	Avoid breathing dust/fume/gas/mist/vapours/spray
P264	Wash thoroughly after handling
P271	Use only outdoors or in a well-ventilated area
P273	Avoid release to the environment
P280	Wear protective gloves / protective clothing / eye protection / face protection
P361, P352,	IF ON SKIN OR HAIR: Remove/take off immediately all contaminated clothing. Wash
P362	with plenty of soap and water. Take off contaminated clothing and wash before reuse.
P305.P351.P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses,
_	if present and easy to do. Continue rinsing
P313	If eye irritation persists, get medical advice/attention
P301,P310	IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician
P331	Do NOT induce vomiting
P304 P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for
	breathing
P312	Call a POISON CENTER or doctor/physician if you feel unwell
P370,P378	In case of fire: Use dry chemical, carbon dioxide, or foam for extinction
P391	Collect spillage
P405	Store locked up
P403,P233, P235	Store in a well-ventilated place. Keep container tightly closed, Keep cool
P501	Dispose of contents/container to approved facility

3. COMPOSITION / INFORMATION ON INGREDIENTS

Components	CAS Registration No.	Concentration (%)
Natural Gas Condensate C2-C8	68919-39-1	100
Benzene	71-43-2	0.1 - 5
n-Butane	106-97-8	5 - 15
Cyclohexane	110-82-7	< 1 - 5
Ethyl Benzene	100-41-4	< 1 - 3
n-Heptane	142-82-5	10 - 20
n-Hexane	110-54-3	2 - 50
Hexane (all isomers)	mixture	2 - 50
Hydrogen Sulfide	7783-06-4	< 0.1 - 20
Methylcyclohexane	108-87-2	5 - 10
n-Nonane	111-84-2	5 - 15
n-Octane	111-65-9	10 - 20
n-Pentane	109-66-0	5 - 20
n-Propane	74-98-6	<1 - 8
Toluene	108-88-3	< 1 - 15
1,2,4 Trimethyl Benzene	95-63-6	< 1 - 4
Xylene, all isomers	1330-20-7	< 1 – 12

4. FIRST AID MEASURES

Inhalation (Breathing)Move the exposed person to fresh air. If not breathing, clear airways and give artificial respiration. If breathing is difficult, humidified oxygen should be administered by qualified personnel. Seek medical attention if breathing difficulties continue.

4. FIRST AID MEASURES

- Eye Contact Flush eyes with water for at least 15 minutes. Hold eyelids apart to ensure complete irrigation of the eye. Remove contact lenses, if worn, after initial flushing. Do not use eye ointment. Seek medical attention.
- Skin Contact Remove contaminated shoes and clothing, and flush affected areas with large amounts of water. If skin surface is damaged, apply a clean dressing and seek medical attention. If skin surface is not damaged, clean affected area thoroughly with mild soap and water. Seek medical attention if tissue appears damaged or if pain or irritation persists. Launder or discard contaminated clothing.
- Ingestion Aspiration hazard. Do not induce vomiting or give anything by mouth because the (Swallowing) material can enter the lungs and cause severe lung damage. If spontaneous vomiting is about to occur, place victim's head below knees. If victim is drowsy or unconscious, place on the left side with head down. Do not leave victim unattended and observe closely for adequacy of breathing. Seek medical attention
- Most Important Acute: Headache, drowsiness, dizziness, loss of coordination, disorientation and Symptoms and fatique Effects

Delayed: Dry skin and possible irritation with repeated or prolonged exposure

Potential Acute Inhalation: Breathing high concentrations may be harmful. Mist or vapor can irritate **Health Effects** the throat and lungs. Breathing this material may cause central nervous system depression with symptoms including nausea, headache, dizziness, fatigue, drowsiness or unconsciousness. This material may contain or liberate hydrogen sulfide, a poisonous gas with the smell of rotten eggs. Hydrogen sulfide and other hazardous vapors may evolve and collect in the headspace of storage tanks or other enclosed vessels. The smell disappears rapidly because of olfactory fatigue so odor may not be a reliable indicator of exposure. Effects of overexposure include irritation of the eyes, nose, throat and respiratory tract, blurred vision, photophobia (light sensitivity) and pulmonary edema (fluid accumulation in lungs). Severe exposures can result in nausea, vomiting, muscle weakness or convulsions, respiratory failure and death. Eye Contact: This product can cause eye irritation from short-term contact with liquid, mists or vapors. Symptoms include stinging, watering, redness and swelling. Effects may be more serious with repeated or prolonged contact. Hydrogen sulfide vapors may cause moderate to severe eye irritation and photophobia (light sensitivity). **Skin Contact:** This product is a skin irritant. Contact may cause redness, itching, burning and skin damage. **Ingestion:** Ingestion may result in nausea, vomiting, diarrhea and restlessness. Aspiration (inadvertent suction) of liquid into the lungs must be avoided as even small quantities in the lungs can produce chemical pneumonitis, pulmonary edema or

Potential Chronic effects of overexposure are similar to acute effects including central nervous Chronic Health system (CNS) effects and CNS depression. Effects may also include irritation of the Effects digestive tract, irritation of the respiratory tract, nausea, vomiting and skin dermatitis.

hemorrhage and even death.

Notes to This material may contain or liberate hydrogen sulfide. In high doses, hydrogen sulfide Physician may produce pulmonary edema and respiratory depression or paralysis. The first priority in treatment should be providing adequate ventilation and administering 100% oxygen. If unresponsive to supportive care, nitrites (amyl nitrite by inhalation or sodium nitrite by I.V.) may be an effective antidote, if delivered within the first few minutes of exposure. For adults, the dose is 10 ml of a 3NaNO₂ solution (0.5 gm NaNO₂ in 15 ml water) IV over 2 to 4 minutes. The dosage should be adjusted in children or in the

4. FIRST AID MEASURES

presence of anemia and methemoglobin levels, arterial blood gases, and electrolyties should be monitored.

Epinephrine and other sympathomimetic drugs may initiate cardiac arrhythmias in persons exposed to high concentrations of hydrocarbon solvents (e.g., in enclosed spaces or with deliberate abuse). The use of other drugs with less arrhythmogenic potential should be considered. If sympathomimetic drugs are administered, observe for the development of cardiac arrhythmias.

Ingestion of this product or subsequent vomiting may result in aspiration of light hydrocarbon liquid, which may cause pneumonitis. Inhalation overexposure can produce toxic effects, monitor for respiratory distress. If cough or breathing difficulties develop, evaluate for upper respiratory tract inflammation, bronchitis and pneumonitis.

Skin contact may aggravate an existing dermatitis. High pressure injection injuries may cause necrosis of underlying tissue regardless of superficial appearance.

Federal regulations (29 CFR 1910.1028) specify medical surveillance programs for certain exposures to benzene above the action level or PEL (specified in Section (i)(1)(i) of the Standard). In addition, employees exposed in an emergency situation shall, as described in Section (i)(4)(i), provide a urine sample at the end of the shift for measurement of urine phenol.

5. FIRE FIGHTING MEASURES

Flammability Classification	OSHA Classification (29 CFR 1910.1200): Flammable Liquid NFPA Class-1B Flammable Liquid NFPA Ratings: Health: 3, Flammability: 4, Reactivity: 0
Flash Point	< -46°C, < -50°F (ASTM D-56)
Flammable Limits	Lower Limit: <1% Upper Limit: 10%
Autoignition Temperature	232°C, 450°F
Combustion Products	Highly dependent on combustion conditions. Fume, smoke, carbon monoxide, carbon dioxide, sulfur and nitrogen oxides, aldehydes and unburned hydrocarbons.
Fire and Explosion Hazards	This material is extremely flammable and can be ignited by heat, sparks, flames or other sources of ignition (e.g., static electricity, pilot lights, mechanical/electrical equipment and electronic devices such as cell phones, computers, calculators and pagers which have not been certified as intrinsically safe). Vapors are heavier than air and can accumulate in low areas. May create vapor/air explosion hazard indoors, in confined spaces, outdoors or in sewers. Vapors may travel considerable distances to a remote source of ignition where they can ignite, flash back or explode. Product can accumulate a static charge that may cause a fire or explosion. A product container, if not properly cooled, can rupture in the heat of a fire.
Extinguishing Media	Dry chemical, carbon dioxide or foam is recommended. Water spray is recommended to cool or protect exposed materials or structures. Carbon dioxide can displace oxygen. Use caution when applying carbon dioxide in confined spaces. Water may be

5. FIRE FIGHTING MEASURES

ineffective for extinguishment, unless used under favorable conditions by experienced fire fighters.

Fire Fighting Use water spray to cool fire-exposed containers and to protect personnel. Isolate immediate hazard area and keep unauthorized personnel out. Water spray may be useful in minimizing or dispersing vapors and to protect personnel. Cool equipment exposed to fire with water. Avoid spreading burning liquid with water used for cooling. For fires beyond the incipient stage, emergency responders in the immediate hazard area should wear protective clothing. When the potential chemical hazard is unknown, in enclosed or confined spaces, or when explicitly required by regulations, a self-contained breathing apparatus should be worn. Wear other appropriate protective equipment as conditions warrant.

6. ACCIDENTAL RELEASE MEASURES

- **Personal Precautions** Extremely Flammable. Spillage of liquid product will create a fire hazard and may form an explosive atmosphere. Keep all sources of ignition and hot metal surfaces away from spill/release. The use of explosion-proof electrical equipment is recommended. Product may contain or release poisonous hydrogen sulfide gas. If the presence of dangerous amounts of H₂S around the spilled product is suspected, additional or special actions may be warranted including access restrictions and the use of protective equipment. Stay upwind and away from spill/release. Isolate immediate hazard area and keep unauthorized personnel out. Wear appropriate protective equipment as conditions warrant per Exposure Controls/Personal Protection guidelines.
- **Environmental Precautions** Stop the leak if it can be done without risk. Prevent spilled material from entering waterways, sewers, basements or confined areas. Contain release to prevent further contamination of soils, surface water or groundwater. Clean up spill as soon as possible using appropriate techniques such as applying non-combustible absorbent materials or pumping. All equipment used when handling the product must be grounded. A vapor suppressing foam may be used to reduce vapors. Use clean nonsparking tools to collect absorbed material. Where feasible and appropriate, remove contaminated soil.
- Methods for Containment and Clean Up Methods for Containment and Clean Up Methods for Containment and Later recovery or disposal of spilled material. Absorb spill with inert material such as sand or vermiculite and place in suitable container for disposal. If spilled on water, remove with appropriate equipment like skimmers, booms or absorbents. In case of soil contamination, remove contaminated soil for remediation or disposal in accordance with applicable regulations.
- **Reporting** Report spills/releases as required, to appropriate local, state and federal authorities. US Coast Guard and Environmental Protection Agency regulations require immediate reporting of spills/release that could reach any waterway including intermittent dry creeks. Report spill/release to the National Response Center at (800) 424-8802. In case of accident or road spill, notify Chemtrec at (800) 424-9300.

7. HANDLING AND STORAGE

Precautions for Safe Handling Extremely flammable. May vaporize easily at ambient temperatures. The vapor is heavier than air and may create an explosive mixture of vapor and air. Beware of accumulation in confined spaces and low lying areas.

7. HANDLING AND STORAGE

Use non-sparking tools and explosion-proof equipment. Open container slowly to relieve any pressure. Bond and ground all equipment when transferring from one vessel to another. Can accumulate static charge by flow or agitation. Can be ignited by static discharge. Explosion-proof electrical equipment is recommended and may be required by fire codes.

Warning! Use of this material in spaces without adequate ventilation may result in the generation of hazardous levels of combustion products and/or inadequate oxygen levels for breathing. Odor is an inadequate warning for hazardous conditions.

To prevent and minimize fire or explosion risk from static accumulation and discharge, effectively bond and/or ground product transfer system. Do not use electronic devices (such as cellular phones, computers, calculators, pagers, etc.) in or around any fueling operation or storage area unless the devices are certified as intrinsically safe. Electrical equipment and fittings should comply with local fire codes.

Precautions for Safe Storage Use and store this material in cool, dry, well-ventilated areas away from heat, direct sunlight, hot metal surfaces and all sources of ignition. Post area warnings: 'No Smoking or Open Flame'. Keep away from incompatible material. Outdoor or detached storage of portable containers is preferred. Indoor storage should meet OSHA standards and appropriate fire codes.

In a tank, barge or other closed container, the vapor space above materials containing hydrogen sulfide may result in concentrations of H_2S immediately dangerous to life or health. Check atmosphere for oxygen content, H_2S and flammability prior to entry.

Portable containers should never be filled while they are in or on a motor vehicle or marine craft. Static electricity may ignite vapors when filling non-grounded containers or vehicles on trailers. To avoid static buildup, do not use a nozzle lock open device. Use only approved containers. Keep containers tightly closed. Place the container on the ground before filling. Keep the nozzle in contact with the container during filling.

Empty containers retain liquid and vapor residues and can be dangerous. Do NOT pressurize, cut, weld, braze, solder, drill, grind or expose containers to heat, flame, sparks, static electricity or other sources of ignition; they may explode and cause injury or death. Do not attempt to refill or clean containers since residue is difficult to remove. Empty drums should be completely drained, properly closed and returned to the supplier or a qualified drum reconditioner. All containers should be disposed of in an environmentally safe manner in accordance with government regulations.

Component	ACGIH	OSHA	NIOSH
	Exposure Limits	Exposure Limits	Exposure Limits
	300 ppm TWA	300 ppm TWA	450 ppm TWA
Natural Gas	500 ppm STEL	500 ppm STEL	1100 ppm IDLH
Condensate	(as gasoline)	(as petroleum distillate	(as petroleum distillate (naphtha))
			0.5 ppm TWA
Benzene	0.5 ppm TWA	1 ppm IVVA	1 ppm STEL Skin
	2.5 ppm STEL Skin	5 ppm STEL Skin	500 ppm IDLH
n-Butane	800 ppm TWA		800 ppm TWA

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

J.P. Morgan Ventures Energy Corp. JP Morgan Commodities Canada Corp.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Component	ACGIH	OSHA	NIOSH	
	Exposure Limits	Exposure Limits	Exposure Limits	
Cyclobeyane		300 ppm T\\/A	300 ppm TWA	
Cyclonexalle		300 ppm 1 WA	1300 ppm IDLH	
			100 ppm TWA	
Ethyl Benzene	125 ppm STEL	125 npm STEL	125 ppm STEL	
			800 ppm IDLH	
	400 ppm TWA		85 ppm TWA	
n-Heptane	500 ppm STEL	500 ppm TWA	440 ppm Ceiling	
			750 ppm IDLH	
n-Hexane	50 ppm TWA Skin	500 ppm TWA	50 ppm TWA	
ППСханс			1100 ppm IDLH	
Hexane (all	500 ppm TWA		100 ppm TWA	
isomers)	1000 ppm STEL		510 ppm IDLH Ceiling	
Hydrogen Sulfide	10 ppm TWA	20 ppm Ceiling	10 ppm Ceiling	
	15 ppm STEL	50 ppm Peak	100 ppm IDLH	
Methylcyclohexane	400 ppm TWA	500 ppm TWA	400 ppm TWA	
Wearyloyoloniczane			1200 ppm IDLH	
n-Nonane	200 ppm TWA		200 ppm TWA	
			75 ppm TWA	
n-Octane	300 ppm TWA	500 ppm TWA	385 ppm Ceiling	
			1000 ppm IDLH	
			120 ppm TWA	
n-Pentane	600 ppm TWA	1000 ppm TWA	610 ppm Ceiling	
			1500 ppm IDLH	
n-Pronane	2500 ppm T\//A		1000 ppm TWA	
	2300 ppin 100A		2100 ppm IDLH	
	50 ppm TWA Skin	200 ppm TWA	100 ppm TWA	
Toluene		300 ppm Ceiling	150 ppm STEL	
		500 ppm Peak-10 min	500 ppm IDLH	
1,2,4 Trimethyl	25 ppm T\// A	25 ppm TWA	25 ppm T\//A	
Benzene	29 ppm 1 WA	25 ppin 1 WA	23 ppin 100A	
Xylene all isomers	100 ppm TWA	100 ppm TWA	900 ppm IDI H	
	150 ppm STEL	150 ppm STEL		
Note: State, local or other agencies or advisory groups may have established more stringent limits. Consult an industrial hygienist				

ACGIH - American Conference of Government Industrial Hygienists, OSHA - Occupational Safety and Health Administration, NIOSH - National Institute for Industrial Safety and Health, TWA - Time Weighted Average (8 hour average for ACGIH and OSHA, 10 hour average for NIOSH), STEL - 15 Minute Short Term Exposure Level, Skin - indicates potential for cutaneous absorption of liquid or vapor through the eyes or mucous membranes, Ceiling - Ceiling Level, Peak - Acceptable peak over the ceiling concentration for a specified number of minutes, IDLH - Immediately Dangerous to Life and Health

Personal Protective Equipment

- **General Considerations** Considerations Constructions Constr
- Engineering Use process enclosures, local exhaust ventilation or other engineering controls to maintain airborne levels below the recommended exposure limits. An emergency eye wash station and safety shower should be located near the work station.

Natural Gas Condensate, Sweet or Sour

J.P. Morgan Ventures Energy Corp. JP Morgan Commodities Canada Corp.

Personal Protective Equipment

- Personal
Protective
EquipmentIf engineering controls or work practices are not adequate to prevent exposure to
harmful levels of this material, personal protective equipment (PPE) is recommended. A
hazard assessment of the work should be conducted by a qualified professional to
determine what PPE is required.
 - **Respiratory Protection** A respiratory protection program that meets or exceeds OSHA 29 CFR 1910.134 and ANSI Z.88.2 should be followed whenever workplace conditions warrant the use of a respirator. When airborne concentrations are expected to exceed the established exposure limits given in Section 8, use a NIOSH approved air purifying respirator equipped with organic vapor cartridges/canisters. Use a full-face positive-pressure supplied air respirator in circumstances where air-purifying respirators may not provide adequate protection or where there may be the potential for airborne exposure above the exposure limits. If exposure concentration is unknown, IDLH conditions exist or there is a potential for exposure to hydrogen sulfide above exposure limits, use a NIOSH approved self contained breathing apparatus (SCBA) or equivalent operated in a pressure demand or other positive pressure mode.
 - Eye protection that meets or exceeds ANSI Z.87.1 is recommended if there is a potential for liquid contact to the eyes. Safety glasses equipped with side shields are recommended as minimum protection in industrial settings. Chemical goggles should be worn during transfer operations or when there is a likelihood of misting, splashing or spraying of this material. A face shield may be necessary depending on conditions of use.
 - Skin and
Body
ProtectionAvoid skin contact. Wear long-sleeved fire-retardant garments while working with
flammable and combustible liquids. Additional chemical-resistant protective gear may
be required if splashing or spraying conditions exist. This may include an apron, arm
covers, impervious gloves, boots and additional facial protection.
 - Hand Protection Avoid skin contact. Use impervious gloves (e.g., PVC, neoprene, nitrile rubber). Check with glove suppliers to confirm the breakthrough performance of gloves. PVC and neoprene may be suitable for incidental contact. Nitrile rubber should be used for longer term protection when prolonged or frequent contact may occur. Gloves should be worn on clean hands and hands should be washed after removing gloves. Also wash hands with plenty of mild soap and water before eating, drinking, smoking, using toilet facilities or leaving work.
- Special Considerations Workplace monitoring plans should consider the possibility that heavy metals such as mercury may concentrate in process vessels and equipment presenting the possibility of exposure during sampling and maintenance operations. Mercury and other heavy metals may be present in trace quantities in crude oil, raw natural gas and condensates. Storage and processing of these materials can result in these metals, including elemental mercury, accumulating in enclosed vessels and piping, typically at the low point of the processing equipment. Mercury may also concentrate in sludges, sands, scales, waxes and filter media.

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance	Clear to dark brown	Physical Form	Liquid
	liquid		
Odor	Strong hydrocarbon,	Odor Threshold	Not established
	sulfurous odor possible		
рН	Neutral	Vapor Pressure	5 - 15 psi (Reid)
Vapor Density	>1 (air = 1)	Boiling Point/Range	-20-1000°F/-17-538°C

9. PHYSICAL AND CHEMICAL PROPERTIES

Percent Volatile	>50%	Partition Coefficient	Not established
Specific Gravity	0.6 - 0.8 @ 60°F	Density	6.3 lb/gal @ 60°F
Molecular Weight	Not determined	Evaporation Rate	Not established
Flash Point	<100°F/<38°C	Test Method	ASTM D-56
Explosive Limits	< 1% LEL, 10% UEL	Autoignition Temperature	450°F/232°C
Solubility in Water	Slightly soluble in water		

10. STABILITY AND REACTIVITY

Stability	Stable under normal anticipated storage and handling temperatures and pressures. Extremely flammable liquid and vapor. Vapor can cause flash fire.
Conditions to Avoid	Avoid high temperatures and all possible sources of ignition. Prevent vapor accumulation.
Incompatibility (Materials to Avoid)	Avoid contact with strong oxidizing agents such as strong acids, alkalies, chlorine and other halogens, dichromates or permanganates, which can cause fire or explosion.
Hazardous Decomposition Products	Hazardous decomposition products are not expected to form curing normal storage. The use of hydrocarbon fuel in an area without adequate ventilation may result in hazardous levels of combustion products (e.g., oxides of carbon, sulfur and nitrogen, benzene and other hydrocarbons) and/or dangerously low oxygen levels.
Hazardous Polymerization	Not known to occur

11. TOXICOLOGICAL INFORMATION

Overview This product is a clear to dark brown liquid with a strong hydrocarbon odor. It may also have a sulfurous or rotten egg odor. Hydrogen sulfide, an extremely flammable and very toxic gas is expected to be present. This product is a volatile and extremely flammable liquid that may cause flash fires. Keep away from heat, sparks and flames and other sources of ignition. This product contains benzene, which may cause cancer or be toxic to blood forming organs. It contains material that has caused cancer based on animal data. Never siphon this product by mouth. If swallowed, this product may be aspirated into the lungs and cause lung damage or death.

This material may contain benzene and ethyl benzene at concentrations above 0.1%. Benzene is considered to be a known human carcinogen by OSHA, IARC and NTP. IARC has ethyl benzene, gasoline and gasoline engine exhaust as possibly carcinogenic to humans (Group 2B) based on laboratory animal studiesal studies.

Toxicological Information of the Material.

Acute Toxicity Dermal: Low Toxicity: LD50 > 2000 mg/kg (rabbit) Causes mild skin irritation. Repeated exposure may cause skin dryness or cracking that can lead to dermatitis.

Inhalation: Hydrogen Sulfide is Extremely Toxic: LC100 = 600 ppm(v), 30 min (man)

11. TOXICOLOGICAL INFORMATION

	Product expected to have low degree of toxicity by inhalation: LC 50 > 5.2 mg/l
	Effect of overexposure may include irritation of the digestive tract, irritation of the respiratory tract, nausea, vomiting, diarrhea and signs of central nervous system depression (e.g., headache, drowsiness, dizziness, loss of coordination, disorientation and fatigue). Continued inhalation may result in unconsciousness and/or death.
	Ingestion: Product expected to have low degree of toxicity by ingestion: Oral LD50 > 5 g/kg (rat), > 10 g/kg (mice) Aspiration into the lungs when swallowed or vomited may cause chemical pneumonitis which can be fatal.
Eye Damage /	Causes serious eye irritation.
Sensitization	Skin: Not expected to be a skin sensitizer Respiratory: Not expected to be a respiratory sensitizer
Specific Target Organ Toxicity	Single Exposure: High concentrations may cause irritation of the skin, eyes, digestive tract, irritation of the respiratory tract, nausea, vomiting, diarrhea and signs of central nervous system depression (e.g., headache, drowsiness, dizziness, loss of coordination, disorientation and fatigue). Continued inhalation may result in unconsciousness and/or death.
	Repeated Exposure: Two year inhalation studies of wholly vaporized unleaded gasoline and 90 day studies of various petroleum naphthas did not produce significant target organ toxicity in laboratory animals. Nephropathy in male rates, characterized by the accumulation of alpha-2-uglobulin in epithelial cells of the proximal tubules was observed, however follow up studies suggest that these changes are unique to the male rat.
Conditions Aggravated by Overexposure	Disorders of the organs or organ systems that may be aggravated by significant exposure to this material or its components include the skin, respiratory system, liver, kidneys, CNS, cardiovascular system and blood-forming system.
Carcinogenicity	May cause cancer based on component information.
	Two year inhalation studies of vaporized unleaded gasoline produced an increased incidence of kidney tumors in male rats and liver tumors in female mice. Repeated skin application of various petroleum naphthas in mice for two years resulted in an increased incidence of skin tumors but only in the presence of severe skin irritation. Follow up mechanistic studies suggest that the occurrence of these tumors may be the consequence of promotional process and not relevant to human risk assessment. Epidemiology data collected from a study of more than 18,000 petroleum marketing and distribution workers showed no increased risk of leukemia, multiple myeloma or kidney cancer from gasoline exposure.
	Unleaded gasoline has been identified as a possible carcinogen by the International Agency for Research on Cancer.
Germ Cell Mutagenicity	Inadequate information available, not expected to be mutagenic.

11. TOXICOLOGICAL INFORMATION

Reproductive and Developmental Toxicity	Not expected to cause reproductive or developmental toxicity. No evidence of developmental toxicity was found in pregnant laboratory animals (rats and mice) exposed to high vapor concentrations of unleaded gasoline and petroleum naphthas via inhalation. A two generation reproductive toxicity study of vapor recovery gasoline did not adversely affect reproductive function or offspring survival and development.
--	---

Additional Information Hydrogen Sulfide (H₂S). This material may contain or liberate H₂S, a poisonous gas with the smell of rotten eggs. Odor is not a reliable indicator of exposure because olfactory fatigue causes the smell to disappear. H₂S has a broad range of effects depending on the airborne concentration and length of exposure: 10 ppm: eye and respiratory tract irritation

100 ppm: coughing, headache, dizziness, nausea, eye irritation, loss of sense of smell in minutes

200 ppm: potential for pulmonary edema after 20 minutes

500 ppm: loss of consciousness after short exposures, potential for respiratory arrest

1000 ppm: Immediate loss of consciousness may lead rapidely to death, prompt cardiopulmonary resuscitation may be required.

Toxicological Information of Components

Benzene 71-43-2

Acute Data:

Dermal LD50 > 9400 mg/kg (Rabbit), (Guinea Pig)

LC50 = 9980 ppm (Mouse); 10000 ppm/7hr (Rat)

Oral LD50 = 4700 mg/kg (Mouse); 930 mg/kg (Rat); 5700 mg/kg (Mammal)

Carcinogenicity: Benzene is an animal carcinogen and is known to produce acute myelogenous leukemia (a form of cancer) in humans. Benzene has been identified as a human carcinogen by NTP, IARC and OSHA.

Target Organs: Prolonged or repeated exposures to benzene vapors has been linked to bone marrow toxicity which can result in blood disorders such as leukopenia, thrombocytopenia, and aplastic anemia. All of these diseases can be fatal.

Developmental: Exposure to benzene during pregnancy demonstrated limited evidence of developmental toxicity in laboratory animals. The effects seen include decreased body eight and increased skeletal variations in rodents. Alterations in hematopoeisis have been observed in the fetuses and offspring of pregnant mice.

Mutagenicity: Benzene exposure has resulted in chromosomal aberrations in human lymphocytes and animal bone marrow cells, and DNA damage in mammalian cells in vitro

Cyclohexane 110-82-7

Acute Toxicity:

Dermal LD50 => 2 g/kg (Rabbit) LC50 > 4,044 ppm (4-hr, Rat) Oral LD50 > 2 g/kg (Rat)

Target Organs: Cyclohexane can cause eye, skin and mucous membrane irritation, CNS depressant and narcosis at elevated concentrations. In experimental animals exposed to lethal concentrations by inhalation or oral route, generalized vascular damage and degenerative changes in the heart, lungs, liver, kidneys and brain were identified.

Developmental: Cyclohexane has been the focus of substantial testing in laboratory animals. Cyclohexane was not found to be genotoxic in several tests including unscheduled DNA synthesis, bacterial and mammalian cell mutation assays, and in vivo chromosomal aberration. An increase in chromosomal aberrations in bone marrow cells of rats exposed to cyclohexane was reported in the 1980's. However, a careful reevaluation of slides from this study by the laboratory which conducted the study indicates these findings were in error, and that no significant chromosomal effects were

Natural Gas Condensate, Sweet or Sour

11. TOXICOLOGICAL INFORMATION

observed in animals exposed to cyclohexane. Findings indicate long-term exposure to cyclohexane does not promote dermal tumorigenesis.

Ethyl Benzene 100-41-4

Acute Toxicity:

Dermal LD50 = 17800 mg/kg (Rabbit) LC50 = 4000 ppm/4 hr; 13367 ppm (Rat) Oral LD50 = 3500 mg/kg (Rat)

Carcinogenicity: Rats and mice exposed to 0, 75, 250, or 750 ppm ethyl benzene in a two year inhalation study demonstrated limited evidence of kidney, liver, and lung cancer. Ethyl benzene has been listed as a possible human carcinogen by IARC. Ethyl benzene has not been listed as a carcinogen by NTP or OSHA.

Target Organs: In rats and mice exposed to 0, 75, 250, or 750 ppm ethyl benzene in a two year inhalation study there was mild damage to the kidney (tubular hyperplasia), liver (eosinophilio foci,hypertrophy, necrosis), thyroid (hyperplasia) and pituitary (hyperplasia).

n-Hexane 110-54-3

Acute Toxicity:

Dermal LD50 = >2,000 mg/kg (Rabbit) LC50 > 3,367 ppm (4 hr, Rat) Oral LD50 > 5,000 mg/kg (Rat)

Target Organs: Excessive exposure to n-hexane can result in peripheral neuropathies. The initial symptoms are symmetrical sensory numbness and paresthesias of distal portions of the extremities. Motor weakness is typically observed in muscles of the toes and fingers but may also involve muscles of the arms, thighs and forearms. The onset of these symptoms may be delayed for several months to a year after the beginning of exposure. The neurotoxic properties of n-hexane are potentiated by exposure to methyl ethyl ketone and methyl isobutyl ketone. Prolonged exposure to high concentrations of n-hexane (>1,000 ppm) has resulted in decreased sperm count and degenerative changes in the testes of rats but not those of mice.

Hydrogen Sulfide 7783-06-4

Acute Toxicity:

Dermal - No data

LCLo= 600 ppm, 30 min (Human)

Hydrogen sulfide concentrations will vary significantly depending on the source and sulfur content of the product. Sweet natural gas condensate (<0.5% sulfur) may contain toxicologically significant levels of hydrogen sulfide in the vapor spaces of bulk storage tanks and transport compartments. Concentrations of H₂S as low as 10 ppm over an 8 hour workshift may cause eye or throat irritation. Prolonged breathing of 50-100 ppm H₂S vapors can produce significant eye and respiratory irritation. Sour condensates commonly contain extremely high concentrations of H₂S (500-70.000 ppm) in the vapor spaces of bulk storage vessels. Exposure to 250-600 ppm for 15-30 minutes can produce headache, dizziness, nervousness, staggering gait, nausea and pulmonary edema or bronchial pneumonia. Concentrations >1,000 ppm will cause immediate unconsciousness and death through respiratory paralysis. Rats and mice exposed to 80 ppm H₂S, 6 hrs/day, 5 days/week for 10 weeks, did not produce any toxicity except for irritation of nasal passages. H₂S did not affect reproduction and development (birth defects or neurotoxicity) in rats exposed to concentrations of 75-80 ppm or 150 ppm H_2S , respectively. Over the years a number of acute cases of H_2S poisonings have been reported. Complete and rapid recovery is the general rule. However, if the exposure was sufficiently intense and sustained causing cerebral hypoxia (lack of oxygen to the brain), neurologic effects such as amnesia, intention tremors or brain damage are possible.

Toluene 108-88-3

Acute Toxicity: Dermal LD50 = 14 g/kg (Rabbit)

11. TOXICOLOGICAL INFORMATION

LC50 = 8,000 ppm (4-hr, Rat)

Oral LD50 = 2.5 - 7.9 g/kg (Rat)

Target Organs: Epidemiology studies suggest that chronic occupational overexposure to toluene may damage color vision. Subchronic and chronic inhalation studies with toluene produced kidney and liver damage, hearing loss and central nervous system (brain) damage in laboratory animals. Intentional misuse by deliberate inhalation of high concentrations of toluene has been shown to cause liver, kidney, and central nervous system damage, including hearing loss and visual disturbances. **Developmental:** Exposure to toluene during pregnancy has demonstrated limited evidence of developmental toxicity in laboratory animals. The effects seen include decreased fetal body weight and increased skeletal variations in both inhalation and oral studies.

1,2,4 Trimethyl Benzene 95-63-6

Acute Toxicity:

Dermal LD50 = No data available LC50 = 18 gm/m³/4hr (Rat) Oral LD50 = 3-6 g/kg (Rat)

Xylenes 1330-20-7

Acute Toxicity: Dermal LD50 >3.16 ml/kg (Rabbit) LC50= 5000 ppm/4 hr. (Rat) Oral LD50 = 4300 mg/kg (Rat)

Target Organs: A six week inhalation study with xylene produced hearing loss in rats. **Developmental:** Both mixed xylenes and the individual isomers produced limited evidence of developmental toxicity in laboratory animals. Inhalation and oral administration of xylene resulted in decreased fetal weight, increased incidences of delayed ossification, skeletal variations and resorptions.

12. ECOLOGICAL INFORMATION

Toxicity

This material is expected to be toxic to aquatic organisms with the potential to cause long term adverse effects in the aquatic environment. Acute aquatic toxicity studies on samples of gasoline and naphtha streams show acute toxicity values greater than 1 mg/l and mostly in the range of 1 to 100 mg/l. These tests were carried out on water accommodated fractions in closed systems to prevent evaporative loss. Results are consistent with the predicted aquatic toxicity of these substances based on their hydrocarbon composition.

Classification H411, Chronic Category 2

96 hours LC50: 8.3 mg/l (Cyprinodon variegatus)
96 hours LC50: 1.8 mg/l (Mysidopsis bahia)
48 hours LC50: 3.0 mg/l (Daphnia magna)
96 hours LC50: 2.7 mg/l (Oncorhynchus mykiss)

Coating action of oil can kill birds, plankton, aquatic life, algae and fish.

Persistence and Degradability This material is not readily biodegradable. Most of the nonvolatile constituents are inherently biodegradable. Some of the highest molecular weight components are persistent in water. The individual hydrocarbon components of this material are differentially soluble in water with aromatic hydrocarbons tending to be more water soluble than aliphatic hydrocarbons. If spilled, the lighter components will generally

12. ECOLOGICAL INFORMATION

evaporate but depending on local environmental conditions (temperature, wind, soil type, mixing or wave action in water, etc), photo-oxidation and biodegradation, the remainder may become dispersed in the water column or absorbed to soil or sediment. Because of their differential solubility, the occurrence of hydrocarbons in groundwater will be at different proportions than the parent material. Under anaerobic conditions, such as in anoxic sediments, rates of biodegradation are negligible.

Persistence per IOPC Fund Definition	Non-Persistent
Bioaccumulative Potential	Contains components with the potential to bioaccumulate. The octanol water coefficient values measured for the hydrocarbon components of this material range from 3 to greater than 6, and therefore would be considered as having the potential to bioaccumulate.
Mobility	 Air: Contains volatile components. Lighter components will volatilize in the air. In air, the volatile hydrocarbons undergo photodegradation by reaction with hydroxyl radicals with half lives varying from 0.5 days for n-dodecane to 6.5 days for benzene. Water: Spreads on a film on the surface of water. Significant proportion of spill will remain after one day. Lower molecular weight aromatic hydrocarbons and some polar compounds have low but significant water solubility. Some higher molecular weight compounds are removed by emulsification and these also slowly biodegrade while others adsorb to sediment and sink. Heavier fractions agglomerate to form tars, some of which sink. Soil: Some constituents may be mobile and contaminate groundwater.

Other Adverse Films form on water and may affect oxygen transfer and damage organisms. Effects

13. DISPOSAL CONSIDERATIONS

Recover or recycle if possible. It is the responsibility of the generator to determine the toxicity and physical properties of the material generated so as to properly classify the waste and ensure disposal methods comply with applicable regulations.

This material, if discarded as produced, is not a RCRA "listed" hazardous waste. However, it should be fully characterized for ignitability (D001), reactivity (D003) and benzene (D018) prior to disposal (40 CFR 261). Use which results in chemical or physical change or contamination may subject it to regulation as a hazardous waste. Along with properly characterizing all waste materials, consult state and local regulations regarding the proper disposal of this material.

Do not dispose of tank water bottoms by draining onto the ground. This will result in soil and groundwater contamination. Waste arising from spillage or tank cleaning should be disposed of in accordance with applicable regulations.

Container contents should be completely used and containers should be emptied prior to discard. Container rinsate could be considered a RCRA hazardous waste and must be disposed of with care and in full compliance with federal, state and local regulations. Larger empty containers, such as drums, should be returned to the distributor or to a qualified drum reconditioner. To assure proper disposal of smaller empty containers, consult with state and local regulations and disposal authorities. Natural Gas Condensate, Sweet or Sour

14. TRANSPORTATION INFORMATION

United States Department of Transportation (US DOT)	Shipping Description: Petroleum Distillates, n.o.s., 3, UN1268, I or II Shipping Name: Petroleum Distillates, n.o.s (contains natural gas condensate)
Transportation of Dangerous Goods (TDG) Canada	Hazard Class and Division: 3 ID Number: UN1268 Packing Group: 1 or II Label: Flammable Liquid Placard: Flammable Reportable Quantity: None established for this material Emergency Response Guide: 128
International Maritime Dangerous Goods Code (IMDG)	 Shipping Description: Petroleum Distillates, n.o.s., 3, UN1268, I or II Shipping Name: Petroleum Distillates, n.o.s (contains natural gas condensate) Hazard Class and Division: 3 UN Number: 1268 Label: Flammable Liquid EMS Guide: F-E, S-E Not a DOT Marine Pollutant per 49 CFR 71.8
European Agreements Concerning the International Carriage by Rail (RID) and by Road (ADR)	 Shipping Name: Petroleum Distillates, n.o.s (contains natural gas condensate) Hazard Class: 3 Packing Group: I or II Label: Flammable Liquid Danger Number: 33 UN Number: 1268
International Civil Aviation Organization / International Air Transport Association (ICAO/IATA)	Shipping Name: Petroleum Distillates, n.o.s (contains natural gas condensate) or Natural Gasoline UN/ID Number: UN1268 Hazard Class/Division: 3 Packing Group: I or II Labels: Flammable Emergency Response Guide: 3H

15. REGULATORY INFORMATION

United States Federal Regulatory Information

EPA TSCA Inventory	This product and/or its components are listed on the Toxic Substances Control
	Act (TSCA) Inventory

EPA SARA 302/304	This material contains the following chemicals subject to reporting under the
Emergency Planning	Superfund Amendments and Reauthorization Act of 1986 (SARA): Material
and Notification	contains hydrogen sulfide, considered an extremely hazardous substance.
	TPQ– 500 lb, EPCRA RQ – 100 lb
EPA SARA 311/312	Acute Health: Yes
(Title III Hazard	Chronic Health: Yes
Categories)	Fire Hazard: Yes
	Pressure Hazard: No
	Reactive Hazard: No

15. REGULATORY INFORMATION

EPA SARA Toxic	Component	CAS Number	Concentration	RQ
Chemical Notification	Benzene	71-43-2	< 5 %	10 lb
and Release	Cyclohexane	110-82-7	< 5 %	1000 lb
372) and CERCLA	Ethyl Benzene	100-41-4	< 3 %	1000 lb
Reportable Quantities	n-Hexane	110-54-3	< 50 %	5000 lb
(40 CFR 302.4)	Toluene	108-88-3	< 15 %	1000 lb
	1,2,4 Trimethyl Benzene	95-63-6	< 4 %	not listed
	Xylene, all isomers	1330-20-7	< 12 %	100 lb
	CERCLA Section 101(14) hazardous constituents of substances. The petroleu	excludes crude oil petroleum, from the m exclusion applie	and crude oil fraction and definition of hazar and this product.	ons, including dous
EPA CWA and OPA	This product is classified a (CWA) and Oil Pollution A requirements.	as an oil under Sec ct of 1990 (OPA), a	tion 311 of the Clea subject to spill repor	n Water Act ting
Canadian Regulatory Inform	nation			
DSL/NDSL Inventory	This product has been clar Controlled Products Reguinformation required by the	ssified in accordar lations (CPR) and e Regulations	ice with the hazard of the SDS contains al	criteria of the I the
Workplace Hazardous Materials Information System (WHMIS) Hazard Class	B2 - Flammable Liquid D1A – Material Causing In Material D2A: Material Causing Othe D2B - Material Causing Ot	nmediate and Seri er Toxic Effects Ve ther Toxic Effects	ous Toxic Effects - \ ery Toxic - Toxic Material	/ery Toxic
European Union Regulatory Labeling	Information Product is dangerous as d Substances / Preparations Contains: Low Boiling Poi	lefined by the Eurc s Directives int Naphtha	pean Union Danger	ous
Symbol	F+ Extremely FlammableT ToxicN Dangerous for the Env	ironment		
Risk Phrases	R12-45-38-65-67-51/53 Extremely flammable. Ma cause lung damage if swa dizziness. Toxic to aquati the aquatic environment.	y cause cancer. In Ilowed. Vapors m c organisms, may	ritating to skin. Har ay cause drowsines cause long-term adv	mful: may s and verse effects in
Safety Phrases	S16-53-45-2-23-24-29-43- Keep away from sources of special instructions before medical advice immediate reach of children. Do not empty into drains. In case not induce vomiting: seek or label.	-62 of ignition – No sm a use. In case of a ly (show the label breathe vapor. Av e of fire use foam/c medical advice im	oking. Avoid expos ccident or if you feel where possible). Ke oid contact with skir lry powder/CO ₂ . If s mediately and show	ure – obtain unwell, seek eep out of n. Do not wallowed, do v this container

15. REGULATORY INFORMATION

California Proposition 65

This product may contain detectable quantities of the following chemicals, known to the State of California to cause cancer, birth defects, or other reproductive harm and which may be subject to the warning requirements of California Proposition 65. Chemicals known to the State of California to cause cancer, birth defects or other reproductive harm are created by the combustion of this product. **Carcinogens:** Benzene, Ethyl Benzene

Developmental Toxicity: Benzene, Toluene **Male Reproductive Toxicity:** Benzene

Carcinogen Identification by International Agency for Research on Cancer

Group 1	Carcinogenic to	Benzene
	Humans	
Group 2A	Probably Carcinogenic	
	to Humans	
Group 2B	Possibly Carcinogenic	Ethyl Benzene, Gasoline, Gasoline Engine Exhaust
	to Humans	
Group 3	Not Classifiable	Toluene, Xylenes

16. OTHER INFORMATION

Prepared By

J.P. Morgan Ventures Energy Corp. 383 Madison Avenue, 10th Floor New York, NY 10017 JP Morgan Commodities Canada Corp. Suite 600, Vintage Towers II, 326 11th Avenue SW Calgary, Alberta T2R 0C5

The information presented in this Material Safety Data Sheet is based on data believed to be accurate as of the date this Material Safety Data Sheet was prepared. HOWEVER, NO WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY OTHER WARRANTY IS EXPRESSED OR IS TO BE IMPLIED REGARDING THE ACCURACY OR COMPLETENESS OF THE INFORMATION PROVIDED ABOVE, THE RESULTS TO BE OBTAINED FROM THE USE OF THIS INFORMATION OR THE PRODUCT, THE SAFETY OF THIS PRODUCT, OR THE HAZARDS RELATED TO ITS USE. No responsibility is assumed for any damage or injury resulting from abnormal use or from any failure to adhere to recommended practices. The information provided above, and the product, are furnished on the condition that the person receiving them shall make their own determination as to the suitability of the product for their particular purpose and on the condition that they assume the risk of their use. In addition, no authorization is given nor implied to practice any patented invention without a license.

ATTACHMENT I

EMISSION UNITS TABLE

Rule 13 Permit Application

Tanner Compressor Station Pineville, West Virginia

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East, Suite 1500 Charleston, West Virginia

January 2016

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
CE-1	1E	4 Stroke Lean Burn RICE - White Superior 6GTLB	2005	825 hp	-	None
CE-2	2E	4 Stroke Lean Burn RICE - White Superior 6GTLB	2005	825 hp	-	None
CE-3	3E	4 Stroke Lean Burn RICE - White Superior 6GTLB	2005	825 hp	-	None
CE-4	4E	Emergency Generator – Generac CGNXB9992ST	2013	28 hp	-	None
RSV-1	5E	Sivalls Glycol Dehydration Unit Regenerator Still Vent	2005 / 2016	13 MMscf/d	Modification / 2016	None
RBV-1	6E	Sivalls Glycol Dehydration Unit Reboiler Vent	2005	0.75 mmBTU/hr	-	None
T01	7E	Pipeline Liquids Storage Tank	2005	1000 gal	-	None
T02	8E	Pipeline Liquids Storage Tank	2005	1000 gal	-	None
T03	9E	New Oil Storage Tank	2005	2000 gal	New / 2016	None
T04	10E	Used Oil Storage Tank	2005	1000 gal	New / 2016	None
T05	11E	Antifreeze Storage Tank	2005	250 gal	New / 2016	None
TL	12E	Truck Loading Emissions	2005	153,300 gal/yr	New / 2016	None
Fugitives	13E	Fugitive Emissions	2005	-	New / 2016	None

¹ For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³New, modification, removal ⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

ATTACHMENT J

EMISSION POINTS DATA SUMMARY SHEET

Rule 13 Permit Application

Tanner Compressor Station Pineville, West Virginia

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East, Suite 1500 Charleston, West Virginia

January 2016

Attachment J EMISSION POINTS DATA SUMMARY SHEET

						Ë	able 1:	Emissions E	Data						
Emission Point ID No. (Must match Emission	Emission Point Type ¹	Emissi Throt <i>(Must ma</i> Tabi	ion Unit Vented Jgh This Point atch Emission Units le & Plot Plan)	Air Pc Contro (Must Emissi Table	llution I Device <i>* match</i> on Units & Plot an)	Vent for Er U <i>(che</i> <i>proc</i>	Time nission Init enical esses	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maxi Pote Uncon Emiss	mum ential itrolled iions ⁴	Maxi Pote Cont Emiss	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions,	Est. Method Used ⁶	Emission Concentration (ppmv or mg/m ⁴)
Table-& Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	solia, Liquia or Gas/Vapor)		
								DOC CO NO ^X	3.64 6.37 1 37	15.93 27.88 5.98	3.64 6.37 1 37	15.93 27.88 5 98			
н Н	Vertical	СЕ-1	4SLB RICE White Superior	NA	NA	NA	NA	SO ₂	0.01	0.02	0.01	0.02	Gas/	EE	Can Supply
	Stack		6GTLB					CH_2O	0.31	0.20 1.36	0.31	0.20 1.36	Vapor		∪pon kequest
								HAPs CO2e	0.43 690.2	1.88 3023.2	0.43 690.2	1.88 3023.2			
								NOX	3.64 6.37	15.93 27.88	3.64 6 37	15.93 27.88			
								VOC	1.37	5.98	1.37	2.98 5.98	Ċ		
<u>о</u> н	Vertical	CE-2	45LB KICE White Superior	NA	NA	NA	NA	SO_2	0.01	0.02	0.01	0.02	Gas/	EE	Can Supply
717	Stack	7-30	WILLE SUPELIOL					CH_{10}	0.06 0.31	0.26 1.36	0.06 0.31	0.26 1.36	Vapor		Upon Request
								HAPs	0.43	1.88	0.43	1.88			
								CO2e	690.2	3023.2	690.2	3023.2			
								NO _X CO	3.64 6.37	15.93 27.88	3.64 6.37	15.93 27.88			
								VOC	1.37	5.98	1.37	5.98	(;
36	Vertical	с Ц	4SLB KICE	NA	NA	ΝA	NA	SO_2	0.01	0.02	0.01	0.02	Gas/	ЦЦ	Can Supply
30	Stack	CE-30	winte superior 6GTLB					CH_{10}	0.06	0.26 1.36	0.06	0.26 1.36	Vapor		Upon Request
								HAPs	0.43	1.88	0.43	1.88			
								CO2e	690.2	3023.2	690.2	3023.2			
								NOx	0.32	0.08	0.32	0.08			
			ţ					VOC	0.01	0.01	0.01	0.01			
į	Vertical	Ę	Em. Generator	NA	ΝA	Ν	ΝA	\mathbf{SO}_2	0.01	0.01	0.01	0.01	Gas/	ЕE	Can Supply
4E	Stack	CE-4	CGNIX R0007 ST	1			1	PM_{10}	0.01	0.01	0.01	0.01	Vapor		Upon Request
									10.0	10.0	10.0	10.0			
								CO2e	1.38	0.01 6.03	1.38 1.38	0.01 6.03			
								VOC	90.6	39.66	90.6	39.66			
			Sivalls Glycol					Benzene	0.44	1.94	0.44	1.94	(
Ę	Vertical	1 1100	Dehydration Unit	NA	ΝA	ΝA	NA	Toluene	0.74	3.23	0.74	3.23	Gas/	Ц	Can Supply
ЭЕ	Stack	1-7 CX	Regenerator Still					Ethylbenzene	1.04	4.55	1.04	4.55	Vapor	1	Upon Request
			Vent					Xylene n-Hexane	0.04	0.18	0.04	0.18			

page _1_ of _3_

Can Supply Upon Request	Can Supply Upon Request	Can Supply Upon Request	
EE	ΕE	EE	
Gas/ Vapor	Gas/ Vapor	Gas/ Vapor	
0.32 0.27 0.02 0.01 0.02 384.63	0.50	0.50	
0.07 0.06 0.01 0.01 0.01 87.82	0.11	0.11	
0.32 0.27 0.02 0.01 0.01 384.63	0.50	0.50	
0.07 0.06 0.01 0.01 0.01 87.82	0.11	0.11	
NO _X CO SO ₂ FM ₁₀ CO2e	VOC	VOC	
NA	NA	NA	
Sivalls Glycol Dehydration Unit Reboiler Vent	Pipeline Liquids Tank	Pipeline Liquids Tank	
RBV-1	T01	T02	
Vertical Stack	Vented	Vented	
6E	7E	8E	

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases. ⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

O = other (specify). Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; ശ

/ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Table 2: Release Parameter Data	es (km)	Easting	459.406	459.406	459.406	459.406	459.406	459.406
	UTM Coordinate	Northing	4,155.989	4,155.989	4,155.989	4,155.989	4,155.989	4,155.989
	evation (ft)	Stack Height ² (Release height of emissions above ground level)	20 ft	20 ft	20 ft	5 ft	16 ft	20 ft
	Emission Point Ele	Ground Level (Height above mean sea level)	2,048 ft	2,048 fi				
		Velocity (fps)	2.05	2.05	2.05	1.14	8.59	0.54
	Exit Gas	Volumetric Flow ¹ (acfm) at operating conditions	96.4	96.4	96.4	3.37	25.3	25.3
		Temp. (°F)	110	110	110	110	212	212
	Inner Diameter - (ft.)		1.0	1.0	1.0	0.25	0.25	1.0
	Emission	Point ID No. (Must match Emission Units Table)	1E	2E	3E	4E	5E	6E

EMISSION POINTS DATA SUMMARY SHEET

¹Give at operating conditions. Include inerts. ² Release height of emissions above ground level. WVDEP-DAQ Revision 2/11

page _3_ of _3_

ATTACHMENT K

FUGITIVE EMISSIONS DATA SHEET

Rule 13 Permit Application

Tanner Compressor Station Pineville, West Virginia

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East, Suite 1500 Charleston, West Virginia

January 2016

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	□ Yes
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	□ Yes
	If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	Yes No
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	Yes INO
	☐ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
lf yo Sur	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions nmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹	Maximum Uncontrolled	Potential Emissions ²	Maximum Po Controlled Em	otential issions ³	Est. Method
		lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads			ı	ı	ı	Ш
Unpaved Haul Roads		ı	1	ı		Ш
Storage Pile Emissions		ı	ı	ı	,	Ш
Loading/Unloading Operations	VOC	0.064	0.280	0.064	0.280	Ш
Wastewater Treatment Evaporation & Operations			I	I	ı	Ш
Equipment Leaks	VOC CO₂e	0.03 0.83	0.16 3.66	0.03 0.83	0.16 3.66	EE
General Clean-up VOC Emissions		ı	I	I	,	Ш
Other			ı	I	ı	EE
¹ List all requilated air nollutants Sneciate VOCs includ	ing all HADs Follow chemical par	me with Chemical	Abstracts Canvics	(C∆S) nimher	IST Aride C	

VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute ² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch). batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

ATTACHMENT L

EMISSION UNIT DATA SHEET

Rule 13 Permit Application

Tanner Compressor Station Pineville, West Virginia

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East, Suite 1500 Charleston, West Virginia

January 2016

INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

Emission Unit ID# ¹		CE-1		C	F_2	CE-3		
Emission Unit ID#*		White Superior 6GTLB		White Superior 6GTLB		White Superior 6GTLB		
Manufacturers H	nufacturers Rated bhp/rpm 825/900			825	/900	825/900		
Source Status ²		F	S	F			as second	
Date Installed/		L		-		-		
Modified/Remo	Modified/Removed/Relocated ³		05	20)05	20	005	
Engine Manufactured /Reconstruction Date ⁴		Pre-	2006	Pre-	2006	Pre-2006		
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		☐ 40CFR60 S ☐ JJJJ Certifi ☐ 40CFR60 S ☐ IIII Certific ⊠ 40CFR63 S ☐ NESHAP 2 JJJJ Window ⊠ NESHAP 2	ubpart JJJJ ed? ubpart IIII ed? ubpart ZZZZ ZZZZ/ NSPS ZZZZ Remote	□ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote		□ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote		
		Sources		Sources		Sources		
Engine Type ⁶		LB4S		LB4S		LB4S		
APCD Type ⁷		A/F		A	A/F		A/F	
Fuel Type ⁸		PQ		Р	ŶQ	PQ		
H ₂ S (gr/100 scf)		0.25		0.25		0.25		
Operating bhp/rpm		825/900		825/900		825/900		
BSFC (BTU/bhp-hr)		7,150		7,150		7,150		
Hourly Fuel Throughput		5,784 ft ³ /hr gal/hr		5,784 ft ³ /hr gal/hr		5,784 ft ³ /hr gal/hr		
Annual Fuel Throughput (Must use 8,760 hrs/yr unless emergency generator)		50.66 MMft ³ /yr gal/yr		50.66 MMft ³ /yr gal/yr		50.66 MMft ³ /yr gal/yr		
Fuel Usage or Hours of Operation Metered		Yes D No 🛛		Yes 🗆 No 🖾		Yes 🗆 No 🖂		
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	
MD	NO _x	3.64	15.93	3.64	15.93	3.64	15.93	
MD	СО	6.37	27.88	6.37	27.88	6.37	27.88	
MD	VOC	1.37	5.98	1.37	5.98	1.37	5.98	
АР	SO ₂	0.01	0.02	0.01	0.02	0.01	0.02	
АР	PM ₁₀	0.06	0.26	0.06	0.26	0.06	0.26	
AP	Formaldehyde	0.31	1.36	0.31	1.36	0.31	1.36	
AP	Total HAPs 0.43 1.88		1.88	0.43	1.88	0.43	1.88	
АР	GHG (CO ₂ e)	690.2 3023.2		690.2	3023.2	690.2	3023.2	

INTERNAL COMBUSTION ENGINE DATA SHEET Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s)* shall also use this form. Emission Unit ID#1 CE-4 --Engine Manufacturer/Model Generac CGNXB999ST _ _ 2.8 Manufacturers Rated bhp/rpm --ES Source Status² --Date Installed/ 2013 _ _ Modified/Removed/Relocated³ Engine Manufactured 2013 /Reconstruction Date⁴ ⊠40CFR60 Subpart JJJJ □40CFR60 Subpart JJJJ □40CFR60 Subpart JJJJ ⊠JJJJ Certified? □JJJJ Certified? □JJJJ Certified? □40CFR60 Subpart IIII □40CFR60 Subpart IIII □40CFR60 Subpart IIII Check all applicable Federal □IIII Certified? □IIII Certified? □IIII Certified? Rules for the engine (include □40CFR63 Subpart ZZZZ □40CFR63 Subpart ZZZZ □40CFR63 Subpart ZZZZ EPA Certificate of Conformity □ NESHAP ZZZZ/ NSPS □ NESHAP ZZZZ/ NSPS \Box NESHAP ZZZZ/ NSPS if applicable)5 JJJJ Window JJJJ Window JJJJ Window □ NESHAP ZZZZ Remote □ NESHAP ZZZZ Remote □ NESHAP ZZZZ Remote Sources Sources Sources RB4S Engine Type⁶ _ -APCD Type⁷ A/F -_ Fuel Type⁸ PO --0.25 H_2S (gr/100 scf) --Operating bhp/rpm 28 -_ 7,360 BSFC (BTU/bhp-hr) _ _ ft³/hr ft³/hr ft³/hr 202 Hourly Fuel Throughput gal/hr gal/hr gal/hr 1.77 MMft³/yr MMft³/yr MMft³/yr Annual Fuel Throughput (Must use 8,760 hrs/yr unless gal/yr gal/yr gal/yr emergency generator) Fuel Usage or Hours of Yes 🗆 No 🖂 Yes 🗆 No 🗆 Yes 🗆 No 🗆 Operation Metered Hourly Annual Hourly Annual Hourly Annual Calculation PTE PTE PTE PTE PTE PTE Pollutant¹⁰ (lb/hr)¹¹ (tons/year) Methodologv⁹ (lb/hr)¹¹ (lb/hr) 11 (tons/year) (tons/year) MD 0.32 0.08 NO_x ----MD 1.37 0.35 со _ _ _ _ AP VOC 0.01 0.01 -_ _ _ 0.01 AP 0.01 SO_2 _ _ --AP 0.01 0.01 _ _ PM_{10} --AP Formaldehyde 0.01 0.01 _ _ _ _ AP 0.01 0.01 Total HAPs ----1.38 6.03 AP GHG (CO₂e) ----
1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.

5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintained to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6	Enter the	e Engine Type designation(s) using the following cod	es:					
	2SLB 4SLB	Two Stroke Lean Burn Four Stroke Lean Burn	4SRB	Four St	roke Rich Burn			
7	Enter the	e Air Pollution Control Device (APCD) type designat	ion(s) us	ing the fo	llowing codes:			
	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction		IR SIPC LEC OxCat	Ignition Retard Screw-in Preco Low Emission Oxidation Cata	mbustion Char Combustion lyst	mbers	S
8	Enter the	e Fuel Type using the following codes:						
	PQ	Pipeline Quality Natural Gas RG	Ra	w Natural	Gas /Production	n Gas	D	Diesel
9	Enter tl MD	ne Potential Emissions Data Reference designa Manufacturer's Data	tion us Al	ing the f	ollowing codes -42	. Attach all	refer	ence data used.
	GR	GRI-HAPCalc TM	0	Γ Oth	ner	(please list)		

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
RBV-1	6E	Sivalls Glycol Dehydration Unit Reboiler Vent	2005	Exist	0.75	1,020

- ¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- ² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- ³ New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

GLYCOL DEHYDRATION UNIT DATA SHEET								
Complete this and/or Regent input and agg	Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI- GLYCalc TM input and aggregate report. Use extra pages if necessary.							
Manufacturer: Siya		0.00 0.000 puge	Model: RT-1					
Max. Dry Gas Flow	Rate: 13.0 mmscf/d	av	Reboiler Design He	at Input: 0.75 MMB	TU/hr			
Design Type: X TE	\overline{G} \Box DEG	□ FG	Source Status ¹ : MS	at input: 0.75 minib				
Date Installed/Mod	Date Installed/Modified/Removed ² : 2005/2016 Regenerator Still Vent APCD/FRD ³ : NA							
Control Device/ER	$D ID #^3 \cdot NA$,,2010	Fuel HV (BTU/scf)	· 1 020				
H ₂ S Content (gr/10)	0 scf: 0.25		Operation (hours/ve	ear): 8760				
Pump Rate (scfm):	3.5 GPM_TEG							
Water Content (wt	%) in: Wet Gas: Sat	urated D	ry Gas: 7.0 lbs H2O/N	MASCE				
Is the glycol dehydi	ration unit exempt fro	om 40CFR63 Section	764(d)? Xes	No: If Yes, answ	ver the following:			
The actual annual a meters per day, as o The actual average megagram per year	The actual annual average flowrate of natural gas to the glycol dehydration unit is less than 85 thousand standard cubic meters per day, as determined by the procedures specified in $(63.772(b)(1))$ of this subpart. \Box Yes \boxtimes No The actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere are less than 0.90 megagram per year (1 ton per year), as determined by the procedures specified in $(63.772(b)(2))$ of this subpart. \boxtimes Yes							
Is the glycol dehyd	ration unit located wi	thin an Urbanized Ar	ea (UA) or Urban Clu	uster (UC)? \Box Yes	No.			
Is a lean glycol pun	np optimization plan	being utilized? \Box Y	es 🛛 No					
Recycling the glyco	ol dehydration unit ba	ick to the flame zone	of the reboiler.					
\Box Yes \boxtimes NoRecycling the glyco \Box Yes \boxtimes NoWhat happens where \boxtimes Still work emission	ol dehydration unit ba	ick to the flame zone	of the reboiler and m ne reboiler?	ixed with fuel.				
Still vent emissi	ons to glow plug.	e. ve.						
Please indicate if th Flash Tank Burner managen	ne following equipme ment system that conti	nt is present. inuously burns conde	nser or flash tank vap	ors				
		Control Device	Technical Data					
	Pollutants Controlled	1	Manufacturer'	s Guaranteed Control	Efficiency (%)			
		Emissic	ons Data					
Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology ⁵	5 PTE ⁶ Controlled Maximum Hourly Emissions (lb/br) Controlled Maximum Annual Emissions (tpy)					
		AP	NO _x	0.07	0.32			
		AP	СО	0.06	0.27			
		AP	VOC	0.01	0.02			
RBV-1 / 6E	Reboiler Vent	AP	SO ₂	0.01	0.01			
		AP	PM ₁₀	0.01	0.02			
AP GHG (CO ₂ e) 87.82 384.63								

		GRI-GlyCalc TM	VOC	9.06	39.66
		GRI-GlyCalc TM	Benzene	0.44	1.94
DCV 1 / 5E	Glycol	GRI-GlyCalc TM	Toluene	0.74	3.23
KSV-1 / 5E	Still Vent	GRI-GlyCalc TM	Ethylbenzene	1.04	4.55
		GRI-GlyCalc TM	Xylenes	1.23	5.37
		GRI-GlyCalc TM	n-Hexane	0.04	0.18

1 Enter the Source Status using the following codes:

ES **Existing Source**

Construction of New Source MS Modification of Existing Source

2 Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.

3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number: Ν

A	None		CD Condens	er	FL	Flare
		CC	Condenser/Combustion Combination	ТО	Thermal Oxidizer	
	/ 1					

Other (please list)

NS

0

4 Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc. 5

Enter the Potential Emissions Data Reference designation using the following codes:

MD Manufacturer's Data AP AP-42 GR GRI- $GLYCalc^{TM}$ OT Other (please list)

6 Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water . (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- \Box Composition of the representative sample used for the simulation
- □ For each stream that contributes to flashing emissions:
 - \Box Temperature and pressure (inlet and outlet from separator(s))
 - □ Simulation-predicted composition
 - □ Molecular weight
 - \Box Flow rate
- □ Resulting flash emission factor or flashing emissions from simulation
- $\hfill\square$ Working/breathing loss emissions from tanks and/or loading emissions if
- simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION

1. Bulk Storage Area Name	2. Tank Name				
Tanner Compressor Station	Pipeline Liquids Storage Tank				
3. Emission Unit ID number	4. Emission Point ID number				
T01	7E				
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:				
2005	\Box New construction \Box New stored material \boxtimes Other				
Was the tank manufactured after August 23, 2011?	□ Relocation				
\Box Yes \boxtimes No					
7A. Description of Tank Modification (if applicable) Update em	issions from storage vessel				
7B. Will more than one material be stored in this tank? If so, a s	separate form must be completed for each material.				
\Box Yes \boxtimes No					
7C. Was USEPA Tanks simulation software utilized?					
\boxtimes Yes \square No					
If Yes, please provide the appropriate documentation and items 8-42 below are not required.					

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.					
9A. Tank Internal Diameter (ft.)	9B. Tank Internal Height (ft.)				
10A. Maximum Liquid Height (ft.)	10B. Average Liquid Height (ft.)				
11A. Maximum Vapor Space Height (ft.)	11B. Average Vapor Space Height (ft.)				
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume".				
13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)				
14. Number of tank turnovers per year15. Maximum tank fill rate (gal/min)					
16. Tank fill method Submerged Splash Bottom Loading					

17. Is the tank system a variable vapor space system? \Box Yes \Box No							
If yes, (A) What is the volume expansion capacity of the system (gal)?							
(B) What are the number of transfers into the system per year?							
18. Type of tank (check all that apply):							
\Box Fixed Roof \Box vertical \Box horizontal \Box flat roof \Box cone roof \Box dome roof \Box other (describe)							
\Box External Floating Roof \Box pontoon roof \Box double deck roof							
Domed External (or Covered) Floating Roof							
□ Internal Floating Roof □ vertical column support □ self-supporting							
□ Variable Vapor Space □ lifter roof □ diaphragm							
□ Pressurized □ spherical □ cylindrical							
\Box Other (describe)							

PRESSURE/VACUUM CONTROL DATA

	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy]
							Emissio	ns Loss	
Material Name	Flashi	ng Loss	Breathi	ng Loss	Workin	ng Loss	Total		Estimation Method ¹
20. Expected Emission Rat	te (submi	it Test Da	ta or Calcu	ulations he	ere or else	where in t	he applicat	ion).	
¹ Complete appropriate Air	Pollution	n Control	Device Sh	neet					
□ Thief Hatch Weighted	□ Yes □	□ No							
Vacuum Setting		Pressure	Setting						
Emergency Relief Valv	e (psig)								
Vacuum Setting		Pressure	Setting						
□ Conservation Vent (psig	g)			□ Conde	enser ¹				
\Box Vent to Vapor Combust	tion Devi	ice ¹ (vapo	r combust	ors, flares	, thermal o	oxidizers,	enclosed c	ombustors	5)
□ Inert Gas Blanket of				□ Carbo	n Adsorpt	tion ¹			
\Box Does Not Apply				□ Rupture Disc (psig)					
19. Check as many as appl	y:								

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATIO	TANK CONSTRUCTION AND OPERATION INFORMATION					
21. Tank Shell Construction:						
\Box Riveted \Box Gunite lined \Box Epox	y-coated rivets \Box Other (describe)					
21A. Shell Color:	21B. Roof Color:	21C. Year Last Painted:				
22. Shell Condition (if metal and unlined):						
\Box No Rust \Box Light Rust \Box Dense	Rust 🛛 Not applicable					
22A. Is the tank heated? \Box Yes \Box No	22B. If yes, operating temperature:	22C. If yes, how is heat provided to tank?				
23. Operating Pressure Range (psig):						
Must be listed for tanks using VRUs with	th closed vent system.					
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome roof provide radius (ft):	24B. If yes, for cone roof, provide slop (ft/ft):				
\Box Yes \Box No						
25. Complete item 25 for Floating Roof Tanks	\square Does not apply \square					
25A. Year Internal Floaters Installed:						
25B. Primary Seal Type (check one): Metallic (mechanical) shoe seal Liquid mounted resilient seal						
\Box Vapor mounted resilient seal \Box Other (describe):						
25C. Is the Floating Roof equipped with a secondary seal? \Box Yes \Box No						
25D. If yes, how is the secondary seal mounted	? (check one) \Box Shoe \Box Rim \Box Ot	her (describe):				

25E. Is the floating roof equipped with a weat	her shield? 🛛 Yes	\square N	lo				
25F. Describe deck fittings:							
26. Complete the following section for Interr	al Floating Roof Tanks		Does not apply	y			
26A. Deck Type: Deck T	Welded	26B. 1	For bolted decks,	provide decl	k construction:		
26C. Deck seam. Continuous sheet construction:							
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wi	de \Box 5 x 7.5 ft. wide	□ 5 x	12 ft. wide \Box	other (de	scribe)		
26D. Deck seam length (ft.): 26E. Are	ea of deck (ft ²):	26F. I	For column suppo	orted	26G. For column supported		
		tanks,	# of columns:		tanks, diameter of column:		
27. Closed Vent System with VRU? \Box Yes	∐ No						
28. Closed Vent System with Enclosed Comb	ustor? 🗆 Yes 🗆 No						
SITE INFORMATION							
29. Provide the city and state on which the da	a in this section are based						
30. Daily Avg. Ambient Temperature (°F):		31. A	nnual Avg. Maxi	mum Tempe	rature (°F):		
32. Annual Avg. Minimum Temperature (°F)	2	33. Avg. Wind Speed (mph):					
34. Annual Avg. Solar Insulation Factor (BTU	J/ft ² -day):	35. A	tmospheric Press	ure (psia):			
LIQUID INFORMATION							
36. Avg. daily temperature range of bulk	36A. Minimum (°F):	36B. Maximum (°F):			mum (°F):		
11quid (1 ⁻).	37A Minimum (neig)	· 37B Maximum (psis		mum (neig):			
(nsig).	57A. Willindin (psig)	•		57D. Maxi	inum (psig).		
(10.5).							
38A. Minimum liquid surface temperature (°H):	38B.	Corresponding va	apor pressure	(psia):		
39A. Avg. liquid surface temperature (°F):		39B. Corresponding vapor pressure (psia):					
40A. Maximum liquid surface temperature (°	7):	40B.	Corresponding va	apor pressure	(psia):		
41. Provide the following for each liquid or ga	is to be stored in the tank.	Add add	litional pages if r	necessary.			
41A. Material name and composition:							
41B. CAS number:							
41C. Liquid density (lb/gal):							
41D. Liquid molecular weight (lb/lb-mole):							
41E. Vapor molecular weight (lb/lb-mole):							
41F. Maximum true vapor pressure (psia):							
41G. Maximum Reid vapor pressure (psia):							
41H. Months Storage per year.							
42 Final maximum gauge pressure and							
temperature prior to transfer into tank used as							
inputs into flashing emission calculations.							

GENERAL INFORMATION

1. Bulk Storage Area Name	2. Tank Name			
Tanner Compressor Station	Pipeline Liquids Storage Tank			
3. Emission Unit ID number	4. Emission Point ID number			
T02	8E			
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:			
2005	\Box New construction \Box New stored material \boxtimes Other			
Was the tank manufactured after August 23, 2011?	□ Relocation			
□ Yes ⊠ No				
7A. Description of Tank Modification (if applicable) update em	issions from storage vessel			
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.			
\Box Yes \boxtimes No				
7C. Was USEPA Tanks simulation software utilized?				
\boxtimes Yes \square No				
If Yes, please provide the appropriate documentation and items	8-42 below are not required.			

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the inter	nal cross-sectional area multiplied by internal height.			
9A. Tank Internal Diameter (ft.)	9B. Tank Internal Height (ft.)			
10A. Maximum Liquid Height (ft.)	10B. Average Liquid Height (ft.)			
11A. Maximum Vapor Space Height (ft.)	11B. Average Vapor Space Height (ft.)			
12. Nominal Capacity (specify barrels or gallons). This is also	o known as "working volume".			
13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
14. Number of tank turnovers per year	15. Maximum tank fill rate (gal/min)			
16. Tank fill method \Box Submerged \Box Splash	□ Bottom Loading			
17. Is the tank system a variable vapor space system? \Box Ye	s 🗆 No			
If yes, (A) What is the volume expansion capacity of the syste	m (gal)?			
(B) What are the number of transfers into the system pe	r year?			
18. Type of tank (check all that apply):				
\Box Fixed Roof \Box vertical \Box horizontal \Box flat ro	of \Box cone roof \Box dome roof \Box other (describe)			
\Box External Floating Roof \Box pontoon roof \Box double deck roof				
□ Domed External (or Covered) Floating Roof				
\Box Internal Floating Roof \Box vertical column support	□ self-supporting			
□ Variable Vapor Space □ lifter roof □ diaphrag	n			
□ Pressurized □ spherical □ cylindrica	al			
□ Other (describe)				

PRESSURE/VACUUM CONTROL DATA

19. Check as many as apply:	
□ Does Not Apply	\Box Rupture Disc (psig)
□ Inert Gas Blanket of	\Box Carbon Adsorption ¹
\Box Vent to Vapor Combustion Device ¹ (vapor combus	stors, flares, thermal oxidizers, enclosed combustors)
□ Conservation Vent (psig)	\Box Condenser ¹
Vacuum Setting Pressure Setting	
□ Emergency Relief Valve (psig)	
Vacuum Setting Pressure Setting	
\Box Thief Hatch Weighted \Box Yes \Box No	
¹ Complete appropriate Air Pollution Control Device S	Sheet

20. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).									
Material Name	Flashi	ashing Loss Breathing Loss Working Loss Total					Estimation Method ¹		
						Emissions Loss		ns Loss	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATION INFORMATION						
21. Tank Shell Construction:						
\Box Riveted \Box Gunite lined \Box Epox	y-coated rivets \Box O	ther (de	scribe)			
21A. Shell Color:	21B. Roof Color:			21C. Year	Last Painted:	
22. Shell Condition (if metal and unlined):						
\Box No Rust \Box Light Rust \Box Dense	Rust 🛛 Not applic	able				
22A. Is the tank heated? \Box Yes \Box No	22B. If yes, operating t	emperat	ure:	22C. If yes	s, how is heat provided to tank?	
23. Operating Pressure Range (psig):						
Must be listed for tanks using VRUs with	th closed vent system	l.				
24. Is the tank a Vertical Fixed Roof Tank? □ Yes □ No	24A. If yes, for dome	roof prov	vide radius (ft):	24B. If yes	s, for cone roof, provide slop (ft/ft):	
25. Complete item 25 for Floating Roof Tanks	\Box Does not apply					
25A. Year Internal Floaters Installed:						
25B. Primary Seal Type (check one):	allic (mechanical) sho	e seal	□ Liquid mo	unted resili	ent seal	
□ Vap	or mounted resilient s	eal	□ Other (des	scribe):		
25C. Is the Floating Roof equipped with a second	ndary seal? 🛛 Yes	🗆 No				
25D. If yes, how is the secondary seal mounted	? (check one) \Box Sho	e 🗆	Rim 🗌 Otl	her (describ	e):	
25E. Is the floating roof equipped with a weather	er shield? 🗌 Yes	\square N	lo			
25F. Describe deck fittings:						
26. Complete the following section for Interna	l Floating Roof Tanks		Does not apply	y		
26A. Deck Type: Bolted W	/elded	26B. 1	For bolted decks,	, provide dec	k construction:	
26C. Deck seam. Continuous sheet constructio	n:					
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	e \Box 5 x 7.5 ft. wide	□ 5 x	12 ft. wide \Box	other (de	scribe)	
26D. Deck seam length (ft.): 26E. Area	of deck (ft^2):	26F. For column supported tanks, # of columns:		orted	26G. For column supported tanks, diameter of column:	
27. Closed Vent System with VRU? Yes	🗆 No	1				
28. Closed Vent System with Enclosed Combus	stor? 🗆 Yes 🗆 No					
SITE INFORMATION						
29. Provide the city and state on which the data	in this section are based					
30. Daily Avg. Ambient Temperature (°F):		31. A	nnual Avg. Maxi	mum Tempe	rature (°F):	
32. Annual Avg. Minimum Temperature (°F):		33. Avg. Wind Speed (mph):				
34. Annual Avg. Solar Insulation Factor (BTU/	'ft ² -day):	35. A	tmospheric Press	ure (psia):		
LIQUID INFORMATION						
36. Avg. daily temperature range of bulk	36A. Minimum (°F):			36B. Maxi	imum (°F):	
liquid (°F):						
37. Avg. operating pressure range of tank 37A. Minimum (psig): (psig): 37A. Minimum (psig):				37B. Maxi	imum (psig):	
38A. Minimum liquid surface temperature (°F): 38B. Corresponding vapor pressure (psia):				e (psia):		
39A. Avg. liquid surface temperature (°F):		39B.	Corresponding va	apor pressure	e (psia):	
40A. Maximum liquid surface temperature (°F): 40B. Corresponding vapor pressure (psia):				e (psia):		
41. Provide the following for each liquid or gas	to be stored in the tank.	Add add	litional pages if 1	necessary.		
41A. Material name and composition:						

41B. CAS number:		
41C. Liquid density (lb/gal):		
41D. Liquid molecular weight (lb/lb-mole):		
41E. Vapor molecular weight (lb/lb-mole):		
41F. Maximum true vapor pressure (psia):		
41G. Maximum Reid vapor pressure (psia):		
41H. Months Storage per year.		
From: To:		
42. Final maximum gauge pressure and		
temperature prior to transfer into tank used as		
inputs into flashing emission calculations.		

GENERAL INFORMATION

1. Bulk Storage Area Name	2. Tank Name			
Tanner Compressor Station	New Oil Storage Tank			
3. Emission Unit ID number	4. Emission Point ID number			
T03	9E			
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:			
2005	\Box New construction \Box New stored material \boxtimes Other			
Was the tank manufactured after August 23, 2011?	□ Relocation			
\Box Yes \boxtimes No				
7A. Description of Tank Modification (if applicable) addition o	f storage vessel to permit			
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.			
\Box Yes \boxtimes No				
7C. Was USEPA Tanks simulation software utilized?				
\boxtimes Yes \Box No				
If Yes, please provide the appropriate documentation and items 8-42 below are not required.				

TANK INFORMATION

8. Design Capacity (<i>specify barrels or gallons</i>). Use the inte	rnal cross-sectional area multiplied by internal height.			
9A. Tank Internal Diameter (ft.)	9B. Tank Internal Height (ft.)			
10A. Maximum Liquid Height (ft.)	10B. Average Liquid Height (ft.)			
11A. Maximum Vapor Space Height (ft.)	11B. Average Vapor Space Height (ft.)			
12. Nominal Capacity (specify barrels or gallons). This is al	so known as "working volume".			
13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
14. Number of tank turnovers per year	15. Maximum tank fill rate (gal/min)			
16. Tank fill method \Box Submerged \Box Splash	Bottom Loading			
17. Is the tank system a variable vapor space system? \Box Y	es 🗆 No			
If yes, (A) What is the volume expansion capacity of the syste	em (gal)?			
(B) What are the number of transfers into the system p	er year?			
18. Type of tank (check all that apply):				
\Box Fixed Roof \Box vertical \Box horizontal \Box flat roof \Box cone roof \Box dome roof \Box other (describe)				
\Box External Floating Roof \Box pontoon roof \Box doub	ble deck roof			
Domed External (or Covered) Floating Roof				
□ Internal Floating Roof □ vertical column support	\Box self-supporting			
□ Variable Vapor Space □ lifter roof □ diaphrag	m			
□ Pressurized □ spherical □ cylindrical				
□ Other (describe)				

PRESSURE/VACUUM CONTROL DATA

19. Check as many as apply:		
\Box Does Not Apply		□ Rupture Disc (psig)
□ Inert Gas Blanket of		\Box Carbon Adsorption ¹
□ Vent to Vapor Combustion Dev	vice ¹ (vapor combus	stors, flares, thermal oxidizers, enclosed combustors)
□ Conservation Vent (psig)		\Box Condenser ¹
Vacuum Setting	Pressure Setting	
□ Emergency Relief Valve (psig)		
Vacuum Setting	Pressure Setting	
\Box Thief Hatch Weighted \Box Yes	🗆 No	
¹ Complete appropriate Air Pollutio	on Control Device S	Sheet

20. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).									
Material Name	Flashing Loss Breathing Loss Working Loss Total Estimation Method						Estimation Method ¹		
					1		Emissions Loss		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATION INFORMATION							
21. Tank Shell Construction:							
\Box Riveted \Box Gunite lined \Box Epox	□ Riveted □ Gunite lined □ Epoxy-coated rivets □ Other (describe)						
21A. Shell Color:	21B. Roof Color:		21C. Year	r Last Painted:			
22. Shell Condition (if metal and unlined):							
\Box No Rust \Box Light Rust \Box Dense	Rust 🛛 Not applic	able					
22A. Is the tank heated? \Box Yes \Box No	22B. If yes, operating t	emperature:	22C. If ye	es, how is heat provided to tank?			
23. Operating Pressure Range (psig):	•						
Must be listed for tanks using VRUs wi	th closed vent system	1.					
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome	roof provide radius (ft):	24B. If ye	es, for cone roof, provide slop (ft/ft):			
□ Yes □ No							
25. Complete item 25 for Floating Roof Tanks	s \Box Does not apply						
25A. Year Internal Floaters Installed:							
25B. Primary Seal Type (check one):	allic (mechanical) sho	e seal \Box Liquid mo	unted resili	ient seal			
			scribe).				
25C. Is the Floating Root equipped with a seco	ndary seal? \Box Yes			\ \			
25D. If yes, how is the secondary seal mounted	$(check one) \square Sho$		her (descrit	be):			
25E. Is the floating roof equipped with a weath	er shield? 🗌 Yes	⊔ No					
25F. Describe deck fittings:							
26. Complete the following section for Interna	l Floating Roof Tanks	\Box Does not apply	у				
26A. Deck Type: Bolted W	Velded	26B. For bolted decks	, provide dec	ek construction:			
26C. Deck seam. Continuous sheet construction	n:						
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	e \Box 5 x 7.5 ft. wide	\Box 5 x 12 ft. wide \Box	□ other (de	escribe)			
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. For column supported		26G. For column supported			
		tanks, # of columns:		tanks, diameter of column:			
27. Closed Vent System with VRU? \Box Yes	🗆 No						
28. Closed Vent System with Enclosed Combu	stor? 🗆 Yes 🗆 No						
SITE INFORMATION							
29. Provide the city and state on which the data	in this section are based						
30. Daily Avg. Ambient Temperature (°F):		31. Annual Avg. Maxi	imum Tempe	erature (°F):			
32. Annual Avg. Minimum Temperature (°F):		33. Avg. Wind Speed	(mph):				
34. Annual Avg. Solar Insulation Factor (BTU/ft²-day):35. Atmospheric Pressure (psia):							
LIQUID INFORMATION							
36. Avg. daily temperature range of bulk	36. Avg. daily temperature range of bulk36A. Minimum (°F):36B. Maximum (°F):						
liquid (°F):							
37. Avg. operating pressure range of tank	37A. Minimum (psig)		37B. Max	timum (psig):			
(psig):							
38A. Minimum liquid surface temperature (°F)	:	38B. Corresponding v	apor pressure	e (psia):			
39A. Avg. liquid surface temperature (°F): 39B. Corresponding vapor pressure (psia):			e (psia):				
40A. Maximum liquid surface temperature (°F)):	40B. Corresponding v	apor pressure	e (psia):			
41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary.							

41A. Material name and composition:		
41B. CAS number:		
41C. Liquid density (lb/gal):		
41D. Liquid molecular weight (lb/lb-mole):		
41E. Vapor molecular weight (lb/lb-mole):		
41F. Maximum true vapor pressure (psia):		
41G. Maximum Reid vapor pressure (psia):		
41H. Months Storage per year.		
From: To:		
42. Final maximum gauge pressure and		
temperature prior to transfer into tank used as		
inputs into flashing emission calculations.		

GENERAL INFORMATION

1. Bulk Storage Area Name	2. Tank Name				
Tanner Compressor Station	Used Oil Storage Tank				
3. Emission Unit ID number	4. Emission Point ID number				
T04	10E				
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:				
2005	\Box New construction \Box New stored material \boxtimes Other				
Was the tank manufactured after August 23, 2011?	□ Relocation				
□ Yes ⊠ No					
7A. Description of Tank Modification (if applicable) addition o	f storage vessel to permit				
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.				
\Box Yes \boxtimes No					
7C. Was USEPA Tanks simulation software utilized?					
\boxtimes Yes \Box No					
If Yes, please provide the appropriate documentation and items 8-42 below are not required.					

TANK INFORMATION

8. Design Capacity (<i>specify barrels or gallons</i>). Use the inter	nal cross-sectional area multiplied by internal height.		
9A. Tank Internal Diameter (ft.)	9B. Tank Internal Height (ft.)		
10A. Maximum Liquid Height (ft.)	10B. Average Liquid Height (ft.)		
11A. Maximum Vapor Space Height (ft.)	11B. Average Vapor Space Height (ft.)		
12. Nominal Capacity (specify barrels or gallons). This is also	o known as "working volume".		
13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)		
14. Number of tank turnovers per year	15. Maximum tank fill rate (gal/min)		
16. Tank fill method \Box Submerged \Box Splash	□ Bottom Loading		
17. Is the tank system a variable vapor space system? \Box Ye	s 🗆 No		
If yes, (A) What is the volume expansion capacity of the syste	m (gal)?		
(B) What are the number of transfers into the system pe	r year?		
18. Type of tank (check all that apply):			
\Box Fixed Roof \Box vertical \Box horizontal \Box flat roof \Box cone roof \Box dome roof \Box other (describe)			
\Box External Floating Roof \Box pontoon roof \Box double deck roof			
□ Domed External (or Covered) Floating Roof			
\Box Internal Floating Roof \Box vertical column support	□ self-supporting		
□ Variable Vapor Space □ lifter roof □ diaphrag	n		
□ Pressurized □ spherical □ cylindrica	al		
□ Other (describe)			

PRESSURE/VACUUM CONTROL DATA

19. Check as many as apply:	
\Box Does Not Apply	□ Rupture Disc (psig)
□ Inert Gas Blanket of	\Box Carbon Adsorption ¹
\Box Vent to Vapor Combustion Device ¹ (vapor combus	stors, flares, thermal oxidizers, enclosed combustors)
□ Conservation Vent (psig)	\Box Condenser ¹
Vacuum Setting Pressure Setting	
□ Emergency Relief Valve (psig)	
Vacuum Setting Pressure Setting	
\Box Thief Hatch Weighted \Box Yes \Box No	
¹ Complete appropriate Air Pollution Control Device S	Sheet

20. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).									
Material Name	Flashi	ing Loss Breathing Loss Working Loss Total					Estimation Method ¹		
					Er		Emissions Loss		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATIO	N INFORMATION						
21. Tank Shell Construction:							
\Box Riveted \Box Gunite lined \Box Epox	y-coated rivets \Box O	ther (de	scribe)				
21A. Shell Color:	21B. Roof Color:			21C. Year	Last Painted:		
22. Shell Condition (if metal and unlined):							
\Box No Rust \Box Light Rust \Box Dense	Rust 🗌 Not applic	able					
22A. Is the tank heated? \Box Yes \Box No	22B. If yes, operating t	emperat	ure:	22C. If ye	s, how is heat provided to tank?		
23. Operating Pressure Range (psig):							
Must be listed for tanks using VRUs with	th closed vent system	ı .		A 45 - 10			
24. Is the tank a Vertical Fixed Roof Tank? □ Yes □ No	24A. If yes, for dome	roof prov	vide radius (ft):	24B. If ye	s, for cone roof, provide slop (ft/ft):		
25. Complete item 25 for Floating Roof Tanks	\Box Does not apply						
25A. Year Internal Floaters Installed:							
25B. Primary Seal Type (check one): Met	allic (mechanical) sho	e seal	🗆 Liquid mo	unted resili	ent seal		
□ Vap	or mounted resilient s	eal	□ Other (des	scribe):			
25C. Is the Floating Roof equipped with a second	ndary seal? 🗌 Yes	🗆 No					
25D. If yes, how is the secondary seal mounted	? (check one) 🛛 Sho	e 🗆	Rim 🗌 Otl	her (describ	e):		
25E. Is the floating roof equipped with a weath	er shield? 🗌 Yes	🗆 N	lo				
25F. Describe deck fittings:							
26. Complete the following section for Interna	l Floating Roof Tanks		Does not apply	у			
26A. Deck Type: Bolted W	Velded	26B. 1	For bolted decks,	, provide dec	k construction:		
26C. Deck seam. Continuous sheet constructio	n:						
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	e \Box 5 x 7.5 ft. wide	□ 5 x	12 ft. wide \Box	other (de	scribe)		
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. For column supported tanks, # of columns:		orted	26G. For column supported tanks, diameter of column:		
27. Closed Vent System with VRU? \Box Yes	□ No						
28. Closed Vent System with Enclosed Combus	stor? 🗆 Yes 🗆 No						
SITE INFORMATION							
29. Provide the city and state on which the data	in this section are based						
30. Daily Avg. Ambient Temperature (°F):		31. A	nnual Avg. Maxi	mum Tempe	rature (°F):		
32. Annual Avg. Minimum Temperature (°F):		33. Avg. Wind Speed (mph):					
34. Annual Avg. Solar Insulation Factor (BTU/	ft ² -day):	35. A	tmospheric Press	ure (psia):			
LIQUID INFORMATION	LIQUID INFORMATION						
36. Avg. daily temperature range of bulk liquid (°F):	36A. Minimum (°F):			36B. Max	imum (°F):		
37. Avg. operating pressure range of tank	37A. Minimum (psig):		37B Maximum (nsig):		imum (psig):		
(psig):	(psig):						
38A Minimum liquid surface temperature (°F)		38B	Corresponding v	apor pressure	(psia).		
39A. Avg. liquid surface temperature (°F).		39B. Corresponding vapor pressure (psia):					
40A. Maximum liquid surface temperature (°F): 40B. Corresponding vapor p				apor pressure	e (psia):		
41. Provide the following for each liquid or gas	41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary.						
41A. Material name and composition:							

41B. CAS number:		
41C. Liquid density (lb/gal):		
41D. Liquid molecular weight (lb/lb-mole):		
41E. Vapor molecular weight (lb/lb-mole):		
41F. Maximum true vapor pressure (psia):		
41G. Maximum Reid vapor pressure (psia):		
41H. Months Storage per year.		
From: To:		
42. Final maximum gauge pressure and		
temperature prior to transfer into tank used as		
inputs into flashing emission calculations.		

GENERAL INFORMATION

1. Bulk Storage Area Name	2. Tank Name			
Tanner Compressor Station	Antifreeze Tank			
3. Emission Unit ID number	4. Emission Point ID number			
T05	11E			
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:			
2005	\Box New construction \Box New stored material \boxtimes Other			
Was the tank manufactured after August 23, 2011?	□ Relocation			
\Box Yes \boxtimes No				
7A. Description of Tank Modification (if applicable) addition o	f storage vessel to permit			
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.			
\Box Yes \boxtimes No				
7C. Was USEPA Tanks simulation software utilized?				
\boxtimes Yes \Box No				
If Yes, please provide the appropriate documentation and items 8-42 below are not required.				

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the inter	nal cross-sectional area multiplied by internal height.			
9A. Tank Internal Diameter (ft.)	9B. Tank Internal Height (ft.)			
10A. Maximum Liquid Height (ft.)	10B. Average Liquid Height (ft.)			
11A. Maximum Vapor Space Height (ft.)	11B. Average Vapor Space Height (ft.)			
12. Nominal Capacity (specify barrels or gallons). This is also	so known as "working volume".			
13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
14. Number of tank turnovers per year	15. Maximum tank fill rate (gal/min)			
16. Tank fill method \Box Submerged \Box Splash	□ Bottom Loading			
17. Is the tank system a variable vapor space system? \Box Ye	es 🗆 No			
If yes, (A) What is the volume expansion capacity of the syste	rm (gal)?			
(B) What are the number of transfers into the system pe	er year?			
18. Type of tank (check all that apply):				
\Box Fixed Roof \Box vertical \Box horizontal \Box flat roof \Box cone roof \Box dome roof \Box other (describe)				
Evidence Block Inc. I nontoon noof I double dool noof				
Domed External (or Covered) Electing Poof				
Internal Electing Deef Internal Electing Deef	alf supporting			
□ variable vapor Space □ lifter roof □ diaphrag	m			
\square Pressurized \square spherical \square cylindric	al			
\Box Other (describe)				

PRESSURE/VACUUM CONTROL DATA

19. Check as many as apply:		
\Box Does Not Apply		\Box Rupture Disc (psig)
□ Inert Gas Blanket of		\Box Carbon Adsorption ¹
□ Vent to Vapor Combustion Devie	ce ¹ (vapor combus	stors, flares, thermal oxidizers, enclosed combustors)
□ Conservation Vent (psig)		\Box Condenser ¹
Vacuum Setting	Pressure Setting	
□ Emergency Relief Valve (psig)		
Vacuum Setting	Pressure Setting	
\Box Thief Hatch Weighted \Box Yes \Box] No	
¹ Complete appropriate Air Pollution	Control Device S	Sheet

20. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).									
Material Name	Flashing Loss Breathing Loss Working Loss Total Estimation Method					Estimation Method ¹			
							Emissions Loss		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATIO	N INFORMATION					
21. Tank Shell Construction:	21. Tank Shell Construction:					
\Box Riveted \Box Gunite lined \Box Epoxy-coated rivets \Box Other (describe)						
21A. Shell Color:	21B. Roof Color:		21C. Year	r Last Painted:		
22. Shell Condition (if metal and unlined):						
\Box No Rust \Box Light Rust \Box Dense	Rust 🛛 Not applic	able				
22A. Is the tank heated? \Box Yes \Box No	22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank?			es, how is heat provided to tank?		
23. Operating Pressure Range (psig):	•					
Must be listed for tanks using VRUs wi	th closed vent system	1.				
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome	roof provide radius (ft):	24B. If ye	es, for cone roof, provide slop (ft/ft):		
□ Yes □ No						
25. Complete item 25 for Floating Roof Tanks	s \Box Does not apply					
25A. Year Internal Floaters Installed:						
25B. Primary Seal Type (check one):	allic (mechanical) sho	e seal \Box Liquid mo	unted resili	ient seal		
			scribe).			
25C. Is the Floating Root equipped with a seco	ndary seal? \Box Yes			\ \		
25D. If yes, how is the secondary seal mounted	$(check one) \square Sho$		her (descrit	be):		
25E. Is the floating roof equipped with a weath	er shield? 🗌 Yes	⊔ No				
25F. Describe deck fittings:						
26. Complete the following section for Interna	l Floating Roof Tanks	\Box Does not apply	у			
26A. Deck Type: Bolted W	Velded	26B. For bolted decks	, provide dec	ek construction:		
26C. Deck seam. Continuous sheet construction	n:					
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	e \Box 5 x 7.5 ft. wide	\Box 5 x 12 ft. wide \Box	□ other (de	escribe)		
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. For column supported		26G. For column supported		
		tanks, # of columns:		tanks, diameter of column:		
27. Closed Vent System with VRU? \Box Yes	🗆 No					
28. Closed Vent System with Enclosed Combu	stor? 🗆 Yes 🗆 No					
SITE INFORMATION						
29. Provide the city and state on which the data	in this section are based					
30. Daily Avg. Ambient Temperature (°F):		31. Annual Avg. Maxi	imum Tempe	erature (°F):		
32. Annual Avg. Minimum Temperature (°F):		33. Avg. Wind Speed	(mph):			
34. Annual Avg. Solar Insulation Factor (BTU/ft²-day):35. Atmospheric Pressure (psia):						
LIQUID INFORMATION						
36. Avg. daily temperature range of bulk	36A. Minimum (°F):		36B. Max	.imum (°F):		
liquid (°F):						
37. Avg. operating pressure range of tank	ssure range of tank 37A. Minimum (psig):			timum (psig):		
(psig):						
38A. Minimum liquid surface temperature (°F)	:	38B. Corresponding v	apor pressure	e (psia):		
39A. Avg. liquid surface temperature (°F): 39B. Corresponding vapor pressure (psia):			e (psia):			
40A. Maximum liquid surface temperature (°F)):	40B. Corresponding v	apor pressure	e (psia):		
41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary.						

41A. Material name and composition:		
41B. CAS number:		
41C. Liquid density (lb/gal):		
41D. Liquid molecular weight (lb/lb-mole):		
41E. Vapor molecular weight (lb/lb-mole):		
41F. Maximum true vapor pressure (psia):		
41G. Maximum Reid vapor pressure (psia):		
41H. Months Storage per year.		
From: To:		
42. Final maximum gauge pressure and		
temperature prior to transfer into tank used as		
inputs into flashing emission calculations.		

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc. 2.

Enter storage tank Status using the following:

EXIST Existing Equipment

NEW Installation of New Equipment

Equipment Removed REM

Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. Enter the maximum design storage tank volume in gallons.

3. 4.

TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application and will be noted on the issued G35-C Registration.

Emission Unit ID#: TL		Emissi	on Point ID#	: 12E		Year Installed	/Modified: 2005		
Emission Unit Descripti	on: Emissions	from Truc	k Loading a	re vented to A	Atmosph	ere			
			Loading	Area Data					
Number of Pumps: 1 / On TruckNumber of Liquids Loaded: 1Max number (1) time: 1						Max number of (1) time: 1	of trucks loading at one		
Are tanker trucks pressure tested for leaks at this or any other location? \Box Yes \Box No \boxtimes Not Required If Yes, Please describe:									
Provide description of c	losed vent syst	em and an	y bypasses.						
 Are any of the following truck loadout systems utilized? Closed System to tanker truck passing a MACT level annual leak test? Closed System to tanker truck passing a NSPS level annual leak test? Closed System to tanker truck not passing an annual leak test and has vapor return? 									
Projected Maximum Operating Schedule (for rack or transfer point as a whole)									
Time	Jan – N	ar	Apr	- Jun	J	ul – Sept	Oct - Dec		
Hours/day	24		2	24		24	24		
Days/week	7			7		7	7		
	Bı	lk Liquid	Data (use e	xtra pages a	s necess	ary)			
Liquid Name	P	ipeline Li	quids						
Max. Daily Throughput (1000 gal/day)		0.42							
Max. Annual Throughpu (1000 gal/yr)	ıt	153.3							
Loading Method ¹		SUB							
Max. Fill Rate (gal/min))	0.30							
Average Fill Time (min/loading)		60							
Max. Bulk Liquid Temperature (°F)		65.0							

True Vapor P	ressure ²	7.70	
Cargo Vessel	Condition ³	С	
Control Equip Method ⁴	pment or	None	
Max. Collection Efficiency (%)		0	
Max. Control Efficiency (%)		0	
Max.VOC	Loading (lb/hr)	0.07	
Rate	Annual (ton/yr)	0.28	
Max.HAP	Loading (lb/hr)	0.00	
Emission Rate	Annual (ton/yr)	0.00	
Estimation M	ethod ⁵	TM	

1	BF	Bottom Fill	SP	Splash Fi	11		SUB	Submerged Fill
2	At maxim	um bulk liquid temperature		-				-
3	В	Ballasted Vessel	С	Cleaned		U	Uncleaned	l (dedicated service)
	0	Other (describe)						
4	List as n	nany as apply (complete and s	submit app	propriate A	Air Polluti	on Contro	ol Device S	Sheets)
	CA	Carbon Adsorption		VB	Dedicate	d Vapor I	Balance (cl	losed system)
	ECD	Enclosed Combustion Devic	ce	F	Flare			
	ТО	Thermal Oxidization or Inci	ineration					
5	EPA	EPA Emission Factor in AP	-42			MB	Material	Balance
	ТМ	Test Measurement based up	on test dat	ta submitt	al	0	Other (des	scribe)

ATTACHMENT M

NOT APPLICABLE (SEE NOTE)

Note: No air pollution control devices used on equipment at this facility.

Rule 13 Permit Application

Tanner Compressor Station Pineville, West Virginia

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East, Suite 1500 Charleston, West Virginia

January 2016

ATTACHMENT N

SUPPORTING EMISSIONS CALCULATIONS

Rule 13 Permit Application

Tanner Compressor Station Pineville, West Virginia

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East, Suite 1500 Charleston, West Virginia

January 2016

Table 1. Annual Potential To Emit (PTE) Summary Cranberry Pipeline Corporation - Tanner Compressor Station

Criteria Pollutants

Proposed PTE - Criteria Polluta	Proposed PTE - Criteria Pollutants												
Source	РМ	PM10	PM2.5	SO2	NOx	со	VOC	CO2e					
Engines (ton/yr)	0.769	0.769	0.769	0.046	47.876	83.990	17.926	9064.736					
Reboiler (ton/yr)	0.024	0.024	0.024	0.002	0.322	0.271	0.018	384.378					
Dehydration Unit (ton/yr)	-	-	-	-	-	-	39.653	4219.170					
Storage Tanks (ton/yr)	-	-	-	-	-	-	0.994	-					
Truck Loading (ton/yr)	-	-	-	-	-	-	0.280	-					
Fugitives (ton/yr)	-	-	-	-	-	-	0.157	3.656					
Total Emissions (ton/yr)	0.793	0.793	0.793	0.048	48.198	84.260	59.028	13671.940					
Total Emissions (lb/hr)	0.181	0.181	0.181	0.011	11.004	19.238	13.477	3121.447					

Previous Emission Summary (G35-A105) - Criteria Pollutants

Source	РМ	PM10	PM2.5	SO2	NOx	со	VOC	CO2e
Engines (ton/yr)	-	-	-	-	47.840	83.920	9.310	-
Reboiler (ton/yr)	-	-	-	-	0.320	0.270	0.020	-
Dehydration Unit (ton/yr)	-	-	-	-	-	-	15.940	-
Storage Tanks (ton/yr)	-	-	-	-	-	-	-	-
Truck Loading (ton/yr)	-	-	-	-	-	-	-	-
Fugitives (ton/yr)	-	-	-	-	-	-	-	-
Total Emissions (ton/yr)	0.000	0.000	0.000	0.000	48.160	84.190	25.270	0.000
Total Emissions (lb/hr)	0.000	0.000	0.000	0.000	10.995	19.221	5.769	0.000

Proposed Difference of Emissions - Criteria Pollutants

	РМ	PM10	PM2.5	SO2	NOx	со	voc	CO2e
Total Emissions (ton/yr)	0.793	0.793	0.793	0.048	0.038	0.070	33.758	13671.940

Hazardous Air Pollutants (HAPs)

Proposed PTE - HAPs	roposed PTE - HAPs												
Source	Benzene	Toluene	Ethylbenzene	Xylene	n-Hexane	Formaldehyde	Total HAPs						
Engines (ton/yr)	0.034	0.032	0.003	0.014	0.086	4.094	5.617						
Reboiler (ton/yr)	0.000	0.000	-	-	-	0.000	0.000						
Dehydration Unit (ton/yr) ⁽¹⁾	1.944	3.228	4.548	5.364	0.179	-	15.263						
Storage Tanks (ton/yr)	-	-	-	-	-	-	-						
Truck Loading (ton/yr)	-	-	-	-	-	-	-						
Fugitives (ton/yr)	0.000	0.000	0.000	0.000	-	-	0.001						
Total Emissions (ton/yr)	1.978	3.260	4.551	5.378	0.265	4.094	20.881						
Total Emissions (lb/hr)	0.452	0.744	1.039	1.228	0.061	0.935	4.767						

Previous Emission Summary (G35-A105) - HAPs

Source	Benzene	Toluene	Ethylbenzene	Xylene	n-Hexane	Formaldehyde	Total HAPs
Engines (ton/yr)	-	-	-	-	-	4.180	4.180
Reboiler (ton/yr)	-	-	-	-	-	-	-
Dehydration Unit (ton/yr)	1.620	2.690	3.790	4.470	0.060	-	12.630
Storage Tanks (ton/yr)	-	-	-	-	-	-	-
Truck Loading (ton/yr)	-	-	-	-	-	-	-
Fugitives (ton/yr)	-	-	-	-	-	-	-
Total Emissions (ton/yr)	1.620	2.690	3.790	4.470	0.060	4.180	16.810
Total Emissions (lb/hr)	0.370	0.614	0.865	1.021	0.014	0.954	3.838

Proposed Difference of Emissions - HAPs

	Benzene	Toluene	Ethylbenzene	Xylene	n-Hexane	Formaldehyde	Total HAPs
Total Emissions (ton/yr)	0.358	0.570	0.761	0.908	0.205	-0.086	4.071

Pollutant	Emissio	n Factor		PTE per Engine (lb/hr)	PTE per Engine ^(a) (tons/yr)	PTE x 3 (tons/yr)
Criteria Pollutants						
PM/PM10/PM2 5	9.91E-03	lb/MMBtu	(2)	0.058	0.256	0 768
SO.	5 88E-04	lb/MMBtu	(2)	0.003	0.015	0.046
	0.000-04		(2)	0.000	15.02	47.00
	2.00E+00	g/np-nr	(1)	3.038	15.93	47.80
VOC	7.50E-01	g/hp-hr	(1)	1.364	5.975	17.92
Hazardous Air Pollutants						
1,1,2,2-Tetrachloroethane	4.00E-05	lb/MMBtu	(2)	0.000	0.001	0.003
1,1,2-Trichloroethane	3.18E-04	lb/MMBtu	(2)	0.002	0.008	0.025
1,3-Butadiene	2.67E-04	lb/MMBtu	(2)	0.002	0.007	0.021
1,3-Dichloropropene	2.64E-05	lb/MMBtu	(2)	0.000	0.001	0.002
2-Methylnaphthalene	3.32E-05	lb/MMBtu	(2)	0.000	0.001	0.003
2,2,4-Trimethylpentane	2.50E-04	lb/MMBtu	(2)	0.001	0.006	0.019
Acetaldehyde	8.36E-03	lb/MMBtu	(2)	0.049	0.216	0.648
Acrolein	5.14E-03	lb/MMBtu	(2)	0.030	0.133	0.398
Benzene	4.40E-04	lb/MMBtu	(2)	0.003	0.011	0.034
Biphenyl	2.12E-04	lb/MMBtu	(2)	0.001	0.005	0.016
Carbon Tetrachloride	3.67E-05	lb/MMBtu	(2)	0.000	0.001	0.003
Chlorobenzene	3.04E-05	lb/MMBtu	(2)	0.000	0.001	0.002
Chloroform	2.85E-05	lb/MMBtu	(2)	0.000	0.001	0.002
Ethylbenzene	3.97E-05	lb/MMBtu	(2)	0.000	0.001	0.003
Ethylene Dibromide	4.43E-05	lb/MMBtu	(2)	0.000	0.001	0.003
Formaldehyde	5.28E-02	lb/MMBtu*	(2)	0.311	1.364	4.093
Methanol	2.50E-03	lb/MMBtu	(2)	0.015	0.065	0.194
Methylene Chloride	2.00E-05	lb/MMBtu	(2)	0.000	0.001	0.002
n-Hexane	1.11E-03	lb/MMBtu	(2)	0.007	0.029	0.086
Naphthalene	7.44E-05	lb/MMBtu	(2)	0.000	0.002	0.006
PAH (POM)	2.69E-05	lb/MMBtu	(2)	0.000	0.001	0.002
Phenol	2.40E-05	lb/MMBtu	(2)	0.000	0.001	0.002
Styrene	2.36E-05	lb/MMBtu	(2)	0.000	0.001	0.002
Toluene	4.08E-04	lb/MMBtu	(2)	0.002	0.011	0.032
Vinyl Chloride	1.49E-05	lb/MMBtu	(2)	0.000	0.000	0.001
Xylenes	1.84E-04	lb/MMBtu	(2)	0.001	0.005	0.014
Total HAPs				0.427	1.872	5.616
Greenhouse Gas Emissions						
CO ₂	116.89	lb/MMBtu	(3)	6.89E+02	3.02E+03	9.06E+0
CH ₄	2.2E-03	lb/MMBtu	(3)	1.30E-02	5.70E-02	1.71E-01
N ₂ O	2.2E-04	lb/MMBtu	(3)	1.30E-03	5.70E-03	1.71E-02
CO ₂ e ^(b)	-	-		690.21	3023.13	9058.71

(a) Annual emissions (tons/yr) = [Emission Factor (g/HP-hr)]x[Power Output (HP)] x [Hours of Operation (hrs/yr)] x [Number of engines]x[1.10231131x10^-6(ton/gram)]

(b) Annual emissions (tons/yr) = [Emission Factor (lbs/MMBtu)] x Brake Specific Fuel Consumption (BTU/HP-hr)] x Power Output (HP)] x [Number of engines] x [8760 (hrs/yr)] x [1 ton/2000 lbs)

Engine Power Output (kW) =	615	
Engine Power Output (hp) =	825	
Number of Engines Operating at a Time =	1	
Average BSFC (BTU/HP-hr) =	7,150	(4)
Heat Content Natural Gas(Btu/scf) =	1,020.0	(5)
Fuel Throughput (ft3/hr) =	5,783.1	(6)
PTE Hours of Operation =	8,760	

(b) CO₂ equivalent = [(CO₂ emissions)*(GWP_{CO2})]+[(CH₄ emissions)*(GWP_{CH4})]+[(N₂O emissions)*(GWP_{N2O})] Global Warming Potential (GWP)

CO_2	1	(7)
CH_4	25	(7)
N ₂ O	298	(7)

Notes:

(1) Emission factors from White Superior 6G825 spec sheet

(2) AP-42, Chapter 3.2, Table 3.2-2. Natural Gas-fired Reciprocating Engines (7/00). Uncontrolled Emission

Factors for 4-Stroke Lean-Burn Engines.

(3) Emission factors are from 40 CFR 98, Subpart C, Table C-1 and C-2.

(4) Fuel consumption from manufacturer's specification sheet.

(5) Value obtained from AP-42, Chapter 3.2, Table 3.2-1, footnote b

(6) Fuel throughput = BSFC (BTU/HP-hr) x Power (HP) / Heat Content (BTU/scf)

(7) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

Pollutant	Emission Factor		PTE (lb/hr)	PTE ^(a) (tons/yr)
Criteria Pollutants				
PM/PM10/PM2.5	9.50E-03 lb/MMBtu	(2)	0.002	0.000
SO ₂	5.88E-04 lb/MMBtu	(2)	0.000	0.000
NOx	5 08 g/hp-hr	(1)	0.314	0.078
CO	22.30 g/hp-hr	(1)	1.377	0.344
VOC	2.96E-02 lb/MMBtu	(1)	0.006	0.002
Hazardous Air Pollutants				
1,1,2,2-Tetrachloroethane	2.53E-05 lb/MMBtu	(2)	0.000	0.000
1,1,2-Trichloroethane	1.53E-05 lb/MMBtu	(2)	0.000	0.000
1,3-Butadiene	6.63E-04 lb/MMBtu	(2)	0.000	0.000
1,3-Dichloropropene	1.27E-05 lb/MMBtu	(2)	0.000	0.000
Acetaldehyde	2.79E-03 lb/MMBtu	(2)	0.001	0.000
Acrolein	2.63E-03 lb/MMBtu	(2)	0.001	0.000
Benzene	1.58E-03 lb/MMBtu	(2)	0.000	0.000
Carbon Tetrachloride	1.77E-05 lb/MMBtu	(2)	0.000	0.000
Chlorobenzene	1.29E-05 lb/MMBtu	(2)	0.000	0.000
Chloroform	1.37E-05 lb/MMBtu	(2)	0.000	0.000
Ethylbenzene	2.48E-05 lb/MMBtu	(2)	0.000	0.000
Ethylene Dibromide	2.13E-05 lb/MMBtu	(2)	0.000	0.000
Formaldehyde	2.05E-02 lb/MMBtu	f (2)	0.004	0.001
Methanol	3.06E-03 lb/MMBtu	(2)	0.001	0.000
Methylene Chloride	4.12E-05 lb/MMBtu	(2)	0.000	0.000
Naphthalene	9.71E-05 lb/MMBtu	(2)	0.000	0.000
PAH (POM)	1.41E-04 lb/MMBtu	(2)	0.000	0.000
Styrene	1.19E-05 Ib/MMBtu	(2)	0.000	0.000
loluene	5.58E-04 lb/MMBtu	(2)	0.000	0.000
Vinyi Chloride	7.18E-06 ID/MIMBtu	(2)	0.000	0.000
Xylenes	1.95E-04 ID/MIMBTU	(2)	0.000	0.000
Total HAPs			0.000	0.002
Greenhouse Gas Emissions		_		
CO ₂	116.89 lb/MMBtu	(3)	2.41E+01	6.02E+00
CH ₄	2.2E-03 lb/MMBtu	(3)	4.54E-04	1.14E-04
N ₂ O	2.2E-04 lb/MMBtu	(3)	4.54E-05	1.14E-05
CO ₂ e ^(b)			1.38	6.03

Calculations: If emission factor note 1 is used, use calculation (a). If emission factor note 2 or 3 is used, (a) Annual emissions (tons/yr) = [Emission Factor (g/HP-hr)]x[Power Output (HP)] x [Hours of Operation (hrs/yr)] x [Number of engines]x[1.10231131x10^-6(ton/gram)]

(b) Annual emissions (tons/yr) = [Emission Factor (lbs/MMBtu)] x Brake Specific Fuel Consumption (BTU/HP-hr)] x Power Output (HP)] x [Number of engines] x [8760 (hrs/yr)] x [1 ton/2000 lbs)

Engine Power Output (kW) =	21	
Engine Power Output (hp) =	28	
Number of Engines Operating at a Time =	1	
Average BSFC (BTU/HP-hr) =	7,360	(4)
Heat Content Natural Gas(Btu/scf) =	1,020.0	(5)
Fuel Throughput (ft3/hr) =	202.0	(6)
PTE Hours of Operation =	500	

(b) CO_2 equivalent = [(CO_2 emissions)*(GWP_{CO2})]+[(CH_4 emissions)*(GWP_{CH4})]+[(N_2O emissions)*(GWP_{N2O})] Global Warming Potential (GWP)

CO_2	1	(7)
CH_4	25	(7)
N_2O	298	(7)

Notes:

(1) Emission factors from manufacturer's spec sheet

(2) AP-42, Chapter 3.2, Table 3.2-3. Natural Gas-fired Reciprocating Engines (7/00). Uncontrolled Emission Factors for 4-Stroke Rich-Burn Engines.

(3) Emission factors are from 40 CFR 98, Subpart C, Table C-1 and C-2. (4) Fuel consumption from manufacturer's specification sheet.

(5) Value obtained from AP-42, Chapter 3.2, Table 3.2-3, footnote b

(6) Fuel throughput = BSFC (BTU/HP-hr) x Power (HP) / Heat Content (BTU/scf)

(7) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

Dellutent	Emission Foster		Emissions	Emissions
Pollutant	Emission Factor		(lb/hr)	(tons/year)
Criteria Pollutants				
PM/PM10/PM2.5	7.6 lb/MMcf	(1)	0.01	0.02
SO ₂	0.6 lb/MMcf	(1)	0.00	0.00
NOx	100 lb/MMcf	(2)	0.00	0.32
CO	84 lb/MMcf	(2)	0.06	0.27
VOC	5.5 lb/MMcf	(1)	0.00	0.02
Hazardous Air Pollutants				
Arsenic	2.0E-04 lb/MMcf	(3)	1.47E-07	6.44E-07
Benzene	2.1E-03 lb/MMcf	(4)	1.54E-06	6.76E-06
Beryllium	1.2E-05 lb/MMcf	(3)	8.82E-09	3.86E-08
Cadmium	1.1E-03 lb/MMcf	(3)	8.09E-07	3.54E-06
Chromium	1.4E-03 lb/MMcf	(3)	1.03E-06	4.51E-06
Cobalt	8.4E-05 lb/MMcf	(3)	6.18E-08	2.71E-07
Dichlorobenzene	1.2E-03 lb/MMcf	(4)	8.82E-07	3.86E-06
Formaldehyde	7.5E-02 lb/MMcf	(4)	5.51E-05	2.42E-04
Hexane	1.8E+00 lb/MMcf	(4)	1.32E-03	5.80E-03
Lead	5.0E-04 lb/MMcf	(3)	3.68E-07	1.61E-06
Manganese	3.8E-04 lb/MMcf	(3)	2.79E-07	1.22E-06
Mercury	2.6E-04 lb/MMcf	(3)	1.91E-07	8.37E-07
Naphthalene	6.1E-04 lb/MMcf	(4)	4.49E-07	1.96E-06
Nickel	2.1E-03 lb/MMcf	(3)	1.54E-06	6.76E-06
PAH/POM	1.3E-03 lb/MMcf	(4)	9.47E-07	4.15E-06
Selenium	2.4E-05 lb/MMcf	(3)	1.76E-08	7.73E-08
Toluene	3.4E-03 lb/MMcf	(4)	2.50E-06	1.10E-05
Total HAP	1.9E+00 lb/MMCF		1.39E-03	6.09E-03
Greenhouse Gas Emissions				
CO ₂	116.89 lb/MMBtu	(5)	87.67	383.981
CH ₄	2.2E-03 lb/MMBtu	(5)	1.65E-03	7.24E-03
N ₂ O	2.20E-04 lb/MMBtu	(5)	1.65E-04	7.24E-04
CO ₂ e ^(b)			87.76	384.378
Total			97 915	294 624

Table 4. Reboiler Rates and Emissions (RBV-1)

Calculations:

(a) Annual emissions (tons/yr) = [Annual Usage (MMBtu/yr or MMCF/yr)]x [Number of Identical Heaters]x [Emission Factor (Ib/MMBtu or Ib/MMCF)] / [2,000 lb/ton]

Number Reboilers 1
Fuel Use (MMBtu/hr) = 0.75
Hours of Operation (hr/yr)= 8760
PTE Fuel Use (MMcf/yr) = 6.4

(b) CO₂ equivalent = [(CO₂ emissions)*(GWP_{CO2})]+[(CH₄ emissions)*(GWP_{CH4})]+[(N₂O emissions)*(GWP_{N2O})] Global Warming Potential (GWP)

CO ₂	1	(6)
CH_4	25	(6)
N_2O	298	(6)

(7)

Notes:

(1) AP-42, Chapter 1.4, Table 1.4-2. Emission Factors For Criteria Pollutants and Greenhouse Gases From Natural Gas Combustion, July 1998.

(2) AP-42, Chapter 1.4, Table 1.4-1. Emission Factors For Nitrogen Oxides (Nox) and Carbon Monoxide(CO) From Natural Gas Combustion, July 1998.

(3) AP-42, Chapter 1.4, Table 1.4-4. Emission Factors For Metals From Natural Gas Combustion, July 1998.

(4) AP-42, Chapter 1.4, Table 1.4-3. Emission Factors for Speciated Organic Compounds from Natural Gas Combustion, July 1998.

(5) Emission factors are from 40 CFR 98, Subpart C, Table C-1 and C-2.

(6) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

(7) MMBtu to MMcf conversion factor is 1020. AP-42, Chapter 1.4

	Newly Ca	alculated Em	issions ⁽¹⁾	Currently Perm	itted Emissions ⁽²⁾	Proposed Em	ission Limits ⁽³⁾	Proposed Emissi	on Limits w/ Buffer ⁽⁴⁾
Pollutant	PTE (lb/hr)	PTE (lb/day)	PTE (tons/yr)	PTE (lb/hr)) PTE (tons/yr)	PTE (lb/hr)	PTE ⁽³⁾ (tons/yr)	PTE (lb/hr) PTE ⁽³⁾ (tons/yr)
Criteria Pollutants									
VOC	7.5444	181.0652	33.0444	3.639	15.940	7.544	33.044	9.053	39.653
Hazardous Air Pollutants									
Benzene	0.2277	5.4658	0.9975	0.370	1.620	0.370	1.620	0.444	1.944
Toluene	0.3863	9.2718	1.6921	0.614	2.690	0.614	2.690	0.737	3.228
Ethylbenzene	0.5770	13.8477	2.5272	0.865	3.790	0.865	3.790	1.038	4.548
Xylenes	0.7174	17.2170	3.1421	1.021	4.470	1.021	4.470	1.225	5.364
n-Hexane	0.0341	0.8181	0.1493	0.014	0.060	0.034	0.149	0.041	0.179
Total HAP	1.9425	46.6203	8.5082	2.884	12.630	2.904	12.719	3.485	15.263
Greenhouse Gas Emissions									
CO ₂			-						
CH ₄	38.5312	924.7496	168.7668						
N ₂ O	-	-	-						
CO ₂ e ^(a)	963.28	23118.74	4219.17						

Global Warming Potential (GWP)

CO ₂	1 (5)
CH ₄	25 (5)
N ₂ O 2	98 (5)

Notes: (1) Emissions Calculated utilizing GRI-GLYCalc and reflect the uncontrolled regenerator emissions

(2) PTE emissions from previously issued General Permit G35-A105
 (3) PTE emissions composite of highest emission rate from newly calculated emissions and previously issued permit

(4) PTE emissions account for a 20% buffer due to gas variability
 (5) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

Table 6. Tank Emissions Cranberry Pipeline Corporation - Tanner Compressor Station									
Emission Unit ID	Tank Capacity (gal)	Tank Contents	Control Devices	Tank Throughput (bbls/day)	VOC Emi Factor (Ibs	ssion s/bbls)	VOC Emissions (lbs/yr)	VOC Emissions (lb/hr)	VOC Emissions (tons/yr)
T01	1000	Pipeline Liquids	None	5.00	0.35	(1)	993.45	0.113	0.497
T02	1000	Pipeline Liquids	None	5.00	0.35	(1)	993.45	0.113	0.497
T03	2000	New Oil	None	0.65	0.004	(2)	1.01	1.15E-04	5.05E-04
T04	1000	Used Oil	None	0.33	0.003	(2)	0.34	3.88E-05	1.70E-04
T05	250	Antifreeze	None	0.07	0.000	(2)	0.00	0.00E+00	0.00E+00
Total VOC	Emissions*	*					1988.25	0.23	0.99

Calculations:

Notes:

(1) VOC emission factor includes Flashing/Working/Breathing losses calculated from pressurized liquid sample taken by FESCO and modeled using E+P Tanks 2.0. The sample was taken from the Putnam B6 site on 4-25-13 and is assumed to be representative worst case with respect to Tanner

(2) VOC emission factor includes Working/Breathing losses as calculated from TANKS 4.0.9.d

** Based on Putnam B-6 Tank Study, Total HAP emissions were found to be less than 0.01 tons per year. The highest emissions from any individual HAP was from n-Hexane where emissions were 0.004 tons per year

Dellutent				PTE ^{(a) Gas}
Pollutant	En	ission Factor		
				(tons/yr)
Valves	9.9E-03	lb/hr/source	(1)	3.08
Low Bleed Pneumatic Valves	9.9E-03	lb/hr/source	(1)	1.56
Flanges	8.6E-04	lb/hr/source	(1)	1.13
Connector	4.4E-04	lb/hr/source	(1)	0.58
Other Points in Gas Service	1.9E-02	lb/hr/source	(1)	1.50
Total Gas Released	-	-		7.86
Total VOC Released (gas service)			(b)	0.16
Total Benzene Released (gas service)			(2)	0.00
Total Toluene Released (gas service)			(2)	0.00
Total Ethylbenzene Released (gas service)			(2)	0.00
Total Xylene Released (gas service)			(2)	0.00
Calculations:			CO2e	3.66
(a) Annual emissions (tons/yr) = [Emission Factor (lb/hr/s per Year] x [0.0005 tons/ lb]	source)] x [Nun	nber of Sources]	x [Hours o	f Operation
(b) Gas sample from Tanner gas analysis as worst case a	at 2 <mark>wt %</mark> VOC			
Number of Components in Gas Service				
	Valves=	71	(3)	
Low Bleed Pneu	umatic Valves=	36	(3)	
	Connectors=	301	(3)	
Other Points in	Gas Service =	8	(3)	
Maximum Hour	of Operation =	8,760		
Global Warming Potential (GWP)				
	CO ₂	1	(4)	
	CH ₄	25	(4)	
	N ₂ O	298	(4)	
 (1) Emission factors from 1995 EPA Protocol for Equipm Production (2) M(4) (for individual UAD taken from Taxana Station or 	ent Leak Emis	sion Estimates, 1	Table 2-4 C	Dil and Gas

(2) Wt % for individual HAP taken from Tanner Station gas analysis performed by Southern Petroleum Laboratories 02/13

(3) Default Average Component Counts for Major Onshore Natural Gas Production Equipment from 40 CFR 98, Subpart W, Table W-1B

(4) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

Table 8. Truck Loading (TL) VOC Emissions Cranberry Pipeline Corporation - Tanner Compressor Station

Contents	Volume Transferred ³	Loading Loss ^(a) (lb VOC/1000gal)	PTE VOC Emissions (lb/hr)	PTE VOC Emissions (ton/yr) ^(b)
Pipeline Liquids	153,300 gal/yr	3.659	0.064	0.280
Total			0.064	0.280

Calculations:

(a) Loading Loss (lbs/1000 gal) = 12.46x[Saturation Factor] x [True Vapor Pressure of Liquid Loaded (psia)] x[Molecular Weight of Vapors(lbs/lbmole)]/ [Temperature of Bulk Liquid Loaded(°R)]

(b) Annual Emissions(tons/yr) = [Loading Loss (lb VOC/ 1000 gal)]*[Volume Transferred(gal/yr)]/1000/2000

	<u>Pipeline liquids</u>	
Saturation factor	0.60	Note (1)
Pvap (psia)	7.70	Note (2)
Molecular Weight Vap (lb/lbmol)	33.37	Note (2)
Bulk Liquid Tempurature (F)	65.00	Note (2)

Notes:

(1) AP-42 Section 5.2, Table 5.2-1 Saturation Factors for Calculating Petroleum Liquid Loading Losses, Submerged loading - dedicated normal service

(2) Putnam B6 Compressor Station Pressurized Separator Sampling and Emission Estimation Report, August 2013

(3) Annual rates based on maximum throughput of 5 bbls/d

CleanBurn[®]II Gas Engine Model 6GTLB

Standard Equipment

- Air Intake Connection: 12"-150# inlet flange.
- Bearings: Heavy duty precision trimetal, adapted for bearing temperature sensors.
- Cylinder Heads: Individual, "prechambered" with pilot check valve, water cooled with one intake and one exhaust valve per head, stellite faced valves and valve inserts.
- Cylinder Block: With removable wet cylinder liners.
- Connecting Rods: Forged steel, H-section, rifle drilled, machined for bearing temperature sensors.
- Controls: Electronic air/fuel panel controls engine mounted exhaust wastegate valve, pneumatic starting logic controls engine mounted start and run fuel valve.
- Cooler, Lube Oil: Shell and tube type, mounted and piped.
- Crankcase Doors: Pressure relief doors (Bicera type).
- Crankshaft: Bedded, forged steel, counterweighted, dynamically balanced.

Engine Bed: Heavy duty, deeply ribbed.

- Exhaust Manifold: Dry type, insulation blanketed.
- · Filter, Lube Oil: Full flow off engine.
- Flywheel: With ring gear and barring holes.
- Fuel System: Fuel injected with electronic air-fuel control.
- Governor: Hydraulic UG8L with manual speed setting.
- Ignition: High energy capacitor discharge Altronic III, non-shielded primary and secondary with electronic ignition advance.
- Intercooler: Rectangular, fin type, separate water system, 3" water connections with companion flanges, thermostat unmounted.
- Pistons: Oil cooled, cast iron, 6 ring design.
- Pumps: Jacket Water; built-in centrifugal, belt driven, 4"-150# inlet flange. Lube Oil; gear type with pressure regulating valve.

Prelube; manual, mounted and piped.

- Sheave, Crankshaft: 6 "C" section and 2 "B" section grooves.
- Shutdowns: Overspeed; electronic with automatic reset. Turbine inlet temperature; (relays in pyrometer).
- Starter Motor: One air/gas starter motor, with strainer, lubricator, quick opening valve and brackets, engine mounted.
- Thermocouples/Temperature Monitoring: 50 ft. leads, type 'J'—individual cylinder exhaust thermocouples, turbocharger inlet and final exhaust thermocouples, unmounted magneto powered digital pyrometer.
- Thermometers, Oil and Jacket Water: In and out, (4) dial type.
- Thermostat, Jacket Water: With full flow bypass, 4" inlet connections, unmounted.
- Turbocharger: High capacity, exhaust driven, 14"-150# outlet flange.
- Optional Equipment: Available upon request.

Specifications - (Full Load Data)

4-Stroke Cycle, Turbocharged, Intercooled, Fuel Injected

Configuration & no. of cylinders Bore/Stroke Displacement BMEP Compression Ratio BSFC @ 900 rpm Speed — rated/range Torque — constant over range Piston speed @ 900 rpm Power @ 900 rpm	in. cu. in. psi Btu/bhp-hr rpm ft. lbs. fpm bhp (kW)	Inline 6 10x10-1/2 4948 146.7 8.20 : 1 7150 900/600-900 4814 1575 825 (615)
Fuel gas pressure Starting air pressure Engine air flow requirement Air intake pressure drop-max. Exhaust flow Exhaust temp. Exhaust back pressure-max. Heat rejection — jacket water Heat rejection — lube oil & intercooler	psig psig scfm in. H ₂ O lbs./min. [°] F in. H ₂ O Btu/min. ¹ Btu/min. ²	35 · 40 150 1885 10 149 1080 10 12500 8350
Lube oil system — engine only Lube oil flow thru filter Cooling water system Jacket water pump flow Intercooler water pump flow Engine weight — dry (approx) Rotation — from flywheel end	gal. gpm gal. gpm gpm lbs.	65 35 50 275 100 20000 counter- clockwise

¹ Given 180° F jacket water out of engine.

2 120° F water to engine required.

Note: Above dimensions are approximate and not to be used for construction purposes.

Performance Data (full load):

RPM	BHP (kW)	Fuel Consumption (BTU/BHP-HR)		*Emissions TONS/YEAR]
1		BSFC	NOX	CO	**NMHC
900	825 (615)	7150	15.9	27.9	6.0
750	688 (513)	7050	13.3	19.9	5.0
600	550 (410)	7400	21.2	18.1	4.0

*Exhaust Emissions-full load & speed (gm/bhp-hr) NOz 2.0, CO 3.5, NMHC 0.75

Conversions:

Torque (ft/lbs) = $5252 \times bhp$ rpm BMEP (psi) = Torque X 150.8 824.67 X (# of Cyls.) Emissions (gms/bhp-hr) = $103.6 \times tpy$ bhp

Qualifying Conditions: Emissions & BSFC

- Ratings based on 130°F air manifold temperature.
- For NO_X requirements less than those expressed above, trade-offs between NO_X and BSFC will be evaluated on a specific case basis.
- Emissions are based on pipeline quality gas — i.e., LHV = 900 BTU/R² ± 15% and CH₄ content greater than 90%.

Rating Conditions:

- Superior engines are rated per DEMA standards; i.e., continuous-duty, full load operation w/10% overload for 2 hours maximum in any 24 hour period.
- Ratings are based on pipeline quality gas.
 Performance may vary depending on fuel composition.
- Consult Superior for ratings above 4000' elevation or 100°F.

Note: Standard equipment, specifications and data are subject to change without notice.

Cooper Industries Ajax-Superior Division 1401 Sheridan Avenue Springfield, OH 45501 Telephone: (513) 327-4200 Fax: (513) 327-4487

ALASE - COREARAS - COOPER-BESTEMERS ENTERPRISE" - EN-TRONICS - PEN" -SUPERIORE - TEXCENTRICS PRODUCTS

unanion and Close Burn and an and an arke of Coanas Industries I

MANUFACTURER DATA SHEET

e

ſ

			,		1	Values	n arams /	bhn-hr	
Model Home	kWe	Fuel	Engine Size	Enaine	EPA Certificate #				d H B
Standby	Rating		8	Family	(1)	THC	NOX	ပ္ပ	
8 kW	7	Nat Gas	407	DGNXS.4072DB	DGNXS.4072DB-001	3.75	0.45	317.3	8.55
8 kW	ω	Propane	407	DGNXS.4072DB	DGNXS.4072DB-001	1.57	1.86	168.4	10.67
10 kW	თ	Nat Gas	530	DGNXS.5302DC	DGNXS.5302DC-006	2.93	1.88	43.5	13.18
10 kW	10	Propane	530	DGNXS.5302DC	DGNXS.5302DC-006	1.80	1,91	79.8	14.28
14 kW	4	Nat Gas	992	DGNXB.9992ST	DGNXB.9992ST-018	0.84	5.68	18.6	22.36
14 kW	4	Propane	992	DGNXB.9992SL	DGNXB.9992SL-017	0.81	6.76	51.2	22.20
17 kW	47	Nat Gas	992	DGNXB.9992ST	DGNXB.9992ST-018	0.85	6.01	23.1	25.04
17 kW	17	Propane	992	DGNXB.9992SL	DGNXB.9992SL-017	0.98	6.13	81.1	26.80
20 kW	18	Nat Gas	666	DGNXB.9992ST	DGNXB.9992ST-018	0.84	5.08	22.3	27.67
20 kW	20	Propane	666	DGNXB.9992SL	DGNXB.9992SL-017	0.80	5.84	58.0	30.52
Effective in 2009, the Generac spark ignite Actual exhaust emis	e EPA has in ad gensets it sion data for	nplemented exha neet the requirem Total Hydrocarby	ust emission: ents of 40 CF ons (THC), N	s regulations on stationary FR part 60 subpart JUJ an itrogen Oxides (NOX) and Dis information scored	spark-ignited gaseous engine gene d are EPA certified. Carbon Monoxide (CO) that were s	ierators for e submitted to	mergency at EPA and an	pplications. e official dat	All a of record

only be disseminated upon request, to regulatory govermental bodies for emissions permitting purposes or to specifying organizations as submittal data when expressly required by project specifications, and shall remain confidential and not open to public viewing.

The information in not intended for compilation or sales purposes and may not be used as such, nor may it be reproduced without the expressed written permission of Generac Power Systems, Inc.

The stated values are actual exhaust emission test measurements obtained from units representative of the generator types and engines described.

Values are official data of record as submitted to the EPA for certification purposes. Testing was conducted in accordance with prevailing EPA protocols, which are typically accepted by SCAOMD and other regional authorities

No emission values provided are to be construed as guarantees of emission levels for any given Generac generator unit.

Generac Power Systems reserves the right to revise this information without prior notice.

Consult state and local regulatory agencies for specific permitting requirements.

The emissions performance data supplied by the equipment manufacturer is only one element required toward completion of the permitting and installation process. State and local regulation may vary on a case by case basis and must be consulted by the permit applicant or equipment owner prior to equipment purchase or installation. The data supplied herein by Genera Power Systems cannot be construed as guarantee of install-ability of the generator set. load point.

Rev 0 1/2013 The emission values provide are not to be construed as emission limits. *1 All the listed units can be sold in California, SCAOMD and CARB certification are not required. GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: Tanner Compressor Station File Name: N:\West Virginia\Cabot\Projects\2015\Air Permits\Tanner Station\Jan 2016 Update\GlyCalc\GLYCalc Tanner PTE R13_2016.ddf Date: January 12, 2016 DESCRIPTION: _____ Description: PTE for Rule 13 Permit Application Sample Taken on 4/22/2015 Annual Hours of Operation: 8760.0 hours/yr WET GAS: _____ Temperature: 86.40 ucg. 693.07 psig 86.40 deg. F Wet Gas Water Content: Saturated Component Conc. (vol %) ----- -----Carbon Dioxide 0.0695 Nitrogen 0.9319 Methane 97.1809 Ethane 1.4730 Propane 0.0793
 Isobutane
 0.0092

 n-Butane
 0.0187

 Isopentane
 0.0009

 n-Pentane
 0.0009

 Cyclopentane
 0.0009
 n-Hexane 0.0035 Cyclohexane 0.0019 Other Hexanes 0.0062 Heptanes 0.0134 Methylcyclohexane 0.0063 2,2,4-Trimethylpentane 0.0009 Benzene 0.0009 Toluene 0.0009 Ethylbenzene 0.0009 Xylenes 0.0009 C8+ Heavies 0.0389 DRY GAS: _____ Flow Rate: 13.0 MMSCF/day Water Content: 7.0 lbs. H20/N 7.0 lbs. H20/MMSCF LEAN GLYCOL: _____ Glycol Type: TEG Water Content: 1.5 wt% H2O Flow Rate: 3.5 gpm

Page: 1

PUMP:

Glycol Pump Type: Gas Injection Gas Injection Pump Volume Ratio: 0.080 acfm gas/gpm glycol
GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Tanner Compressor Station File Name: N:\West Virginia\Cabot\Projects\2015\Air Permits\Tanner Station\Jan_2016 Update\GlyCalc\GLYCalc Tanner PTE R13_2016.ddf Date: January 12, 2016

DESCRIPTION:

Description: PTE for Rule 13 Permit Application

Sample Taken on 4/22/2015

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	38.5312	924.750	168.7668
Ethane	1.4297	34.312	6.2620
Propane	0.1409	3.381	0.6169
Isobutane	0.0264	0.633	0.1155
n-Butane	0.0637	1.529	0.2790
Isopentane	0.0040	0.095	0.0173
n-Pentane	0.0048	0.114	0.0208
Cyclopentane	0.0154	0.369	0.0673
n-Hexane	0.0341	0.818	0.1493
Cyclohexane	0.0682	1.636	0.2985
Other Hexanes	0.0482	1.156	0.2111
Heptanes	0.2709	6.502	1.1866
Methylcyclohexane	0.3045	7.309	1.3338
2,2,4-Trimethylpentane	0.0101	0.243	0.0444
Benzene	0.2277	5.466	0.9975
Toluene	0.3863	9.272	1.6921
Ethylbenzene	0.5770	13.848	2.5272
Xylenes	0.7174	17.217	3.1421
C8+ Heavies	4.6450	111.479	20.3449
Total Emissions	47.5053	1140.127	208.0732
Total Hydrocarbon Emissions	47.5053	1140.127	208.0732
Total VOC Emissions	7.5444	181.065	33.0444
Total HAP Emissions	1.9527	46.864	8.5526
Total BTEX Emissions	1.9084	45.802	8.3589

EQUIPMENT REPORTS:

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25

Page: 1

and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages	: 1.25	
Calculated Dry Gas Dew Point:	: 2.21	lbs. H2O/MMSCF
Temperature	· 86.4	dea F
Dregure	. 693.1	ngia
Dry Cag Flow Pate		MMCCE /day
DIY GAS FIOW RACE.	. 13.0000	MMSCF/Uay
Glycol Losses with Dry Gas:	: 0.0509	lb/hr
Wet Gas Water Content:	: Saturated	
Calculated Wet Gas Water Content:	: 50.96	lbs. H2O/MMSCF
Calculated Lean Glycol Recirc. Ratio	: 7.95	gal/lb H2O
Re	emaining	Absorbed
Component ir	Dry Gas	in Glycol
Water	4.34%	95.66%
Carbon Dioxide	99.68%	0.32%
Nitrogen	99.98%	0.02%
Methane	99.98%	0.028
Fthane	99 938	0 078

Echane	99.95%	0.07%
Propane	99.87%	0.13%
Isobutane	99.81%	0.19%
n-Butane	99.74%	0.26%
Isopentane	99.73%	0.27%
n-Pentane	99.64%	0.36%
(here] en entenne		1
Cyclopentane	98.456	1.556
n-Hexane	99.36%	0.64%
Cyclohexane	97.17%	2.83%
Other Hexanes	99.52%	0.48%
Heptanes	98.74%	1.26%
Methylcyclohexane	96.71%	3.29%
2.2.4-Trimethylpentane	99.46%	0.54%
Benzene	77.50%	22.50%
Toluene	67.58%	32.42%
Ethylbenzene	57 93%	42 07%
		11.070
Xylenes	47.65%	52.35%
C8+ Heavies	95.25%	4.75%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	52.73%	47.27%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane Isobutane n-Butane Isopentane n-Pentane	0.00% 0.00% 0.32% 0.35%	100.00% 100.00% 100.00% 99.68% 99.65%
Cyclopentane	0.46%	99.54%
n-Hexane	0.40%	99.60%
Cyclohexane	3.04%	96.96%
Other Hexanes	0.76%	99.24%
Heptanes	0.45%	99.55%

Methylcyclohexane	3.83%	96.17%
,2,4-Trimethylpentane	1.17%	98.83%
Benzene	4.97%	95.03%
Toluene	7.87%	92.13%
Ethylbenzene	10.37%	89.63%
Xylenes	12.87%	87.13%
C8+ Heavies	11.69%	88.31%

STREAM REPORTS:

2

WET GAS STREAM

Temperature: 86.40 deg. F Pressure: 707.77 psia Flow Rate: 5.42e+005 scfh		
Component	Conc. (vol%)	Loading (lb/hr)
Water	1.07e-001	2.76e+001
Carbon Dioxide	6.95e-002	4.37e+001
Nitroger	9.32e-001	3.73e+002
Methane	9.72e+001	2.23e+004
Ethane	1.47e+000	6.33e+002
Propane	e 7.93e-002	5.00e+001
Isobutane	e 9.20e-003	7.65e+000
n-Butane	e 1.87e-002	1.55e+001
Isopentane	e 9.00e-004	9.29e-001
n-Pentane	e 9.00e-004	9.29e-001
Cyclopentane	e 9.00e-004	9.03e-001
n-Hexane	3.50e-003	4.31e+000
Cyclohexane	1.90e-003	2.29e+000
Other Hexanes	6.20e-003	7.64e+000
Heptanes	1.34e-002	1.92e+001
Methylcyclohexane	e 6.30e-003	8.85e+000
2,2,4-Trimethylpentane	9.00e-004	1.47e+000
Benzene	9.00e-004	1.01e+000
Toluene	9.00e-004	1.19e+000
Ethylbenzene	9.00e-004	1.37e+000
Xylenes	9.00e-004	1.37e+000
C8+ Heavies	3.89e-002	9.48e+001
Total Components	100.00	2.36e+004

DRY GAS STREAM

Temperature	 86 10 de	 200 F			
Pressure:	707.77 ps	sia			
Flow Rate:	5.42e+005 sc	cfh			
	Component		Conc. (vol%)	Loading (lb/hr)	

Water 4.67e-003 1.20e+000 Carbon Dioxide 6.94e-002 4.36e+001 Nitrogen 9.33e-001 3.73e+002

Methane 9.73e+001 2.23e+004 Ethane 1.47e+000 6.33e+002 Propane 7.93e-002 5.00e+001 Isobutane 9.20e-003 7.63e+000 n-Butane 1.87e-002 1.55e+001 Isopentane 8.99e-004 9.26e-001 n-Pentane 8.98e-004 9.25e-001 Cyclopentane 8.88e-004 8.89e-001 n-Hexane 3.48e-003 4.29e+000 Cyclohexane 1.85e-003 2.22e+000 Other Hexanes 6.18e-003 7.61e+000 Heptanes 1.33e-002 1.90e+001 Methylcyclohexane 6.10e-003 8.56e+000 2,2,4-Trimethylpentane 8.97e-004 1.46e+000 Benzene 6.99e-004 7.79e-001 Toluene 6.09e-004 8.01e-001 Ethylbenzene 5.22e-004 7.92e-001 Xylenes 4.30e-004 6.51e-001 C8+ Heavies 3.71e-002 9.03e+001 ----- ------Total Components 100.00 2.36e+004 LEAN GLYCOL STREAM _____ Temperature: 86.40 deg. F Flow Rate: 3.50e+000 gpm Conc. Loading (wt%) (lb/hr) Component (wt%) (lb/hr) TEG 9.85e+001 1.94e+003 Water 1.50e+000 2.95e+001 Carbon Dioxide 7.03e-013 1.38e-011 Nitrogen 4.29e-013 8.46e-012 Methane 7.97e-018 1.57e-016 Ethane 1.12e-008 2.21e-007 Propane 1.34e-010 2.64e-009

Isobutane 2.25e-011 4.43e-010 n-Butane 5.05e-011 9.94e-010 Isopentane 6.49e-007 1.28e-005 Cyclopentane 3.57e-006 7.04e-005 n-Hexane 7.02e-006 1.38e-004 Cyclohexane 1.09e-004 2.14e-003 Other Hexanes 1.88e-005 3.69e-004 Heptanes 6.17e-005 1.21e-003 Methylcyclohexane 6.16e-004 1.21e-002

2,2,4-Trimethylpentane 6.12e-006 1.20e-004 Benzene 6.05e-004 1.19e-002 Toluene 1.68e-003 3.30e-002 Ethylbenzene 3.39e-003 6.68e-002 Xylenes 5.38e-003 1.06e-001 C8+ Heavies 3.12e-002 6.15e-001 Temperature:86.40 deg.Pressure:707.77 psiaFlow Rate:3.66e+000 gpm 86.40 deg. F NOTE: Stream has more than one phase.

Component	Conc. (wt%)	Loading (lb/hr)
TEG	9.49e+001	1.94e+003
Water	2.74e+000	5.60e+001
Carbon Dioxide	1.00e-002	2.05e-001
Nitrogen	3.19e-002	6.52e-001
Methane	1.88e+000	3.85e+001
Ethane	6.99e-002	1.43e+000
Propane	6.89e-003	1.41e-001
Isobutane	1.29e-003	2.64e-002
n-Butane	3.12e-003	6.37e-002
Isopentane	1.94e-004	3.97e-003
n-Pentane	2.33e-004	4.77e-003
Cyclopentane	7.55e-004	1.54e-002
n-Hexane	1.67e-003	3.42e-002
Cyclohexane	3.44e-003	7.03e-002
Other Hexanes	2.37e-003	4.86e-002
Heptanes	1.33e-002	2.72e-001
Methylcyclohexane	1.55e-002	3.17e-001
2,2,4-Trimethylpentane	5.02e-004	1.03e-002
Benzene	1.17e-002	2.40e-001
Toluene	2.05e-002	4.19e-001
Ethylbenzene	3.15e-002	6.44e-001
Xylenes	4.03e-002	8.23e-001
C8+ Heavies	2.57e-001	5.26e+000
Total Components	100.00	2.04e+003

REGENERATOR OVERHEADS STREAM _____ Temperature:212.00 deg. FPressure:14.70 psiaFlow Rate:1.52e+003 scfh Component Conc. Loading (vol%) (lb/hr) Water 3.67e+001 2.65e+001 Carbon Dioxide 1.16e-001 2.05e-001 Nitrogen 5.81e-001 6.52e-001 Methane 5.99e+001 3.85e+001 Ethane 1.19e+000 1.43e+000 Propane 7.97e-002 1.41e-001 Isobutane 1.13e-002 2.64e-002 n-Butane 2.73e-002 6.37e-002 Isopentane 1.37e-003 3.96e-003 n-Pentane 1.64e-003 4.75e-003 Cyclopentane 5.47e-003 1.54e-002 n-Hexane 9.87e-003 3.41e-002 Cyclohexane 2.02e-002 6.82e-002 Other Hexanes 1.40e-002 4.82e-002 Heptanes 6.75e-002 2.71e-001 Methylcyclohexane 7.74e-002 3.05e-001 2,2,4-Trimethylpentane 2.22e-003 1.01e-002 Benzene 7.28e-002 2.28e-001

Toluene 1.05e-001 3.86e-001 Ethylbenzene 1.36e-001 5.77e-001 Xylenes 1.69e-001 7.17e-001 C8+ Heavies 6.80e-001 4.64e+000 Total Components 100.00 7.48e+001 Page: 6

- Certificate of Analysis -

Company Name: CABOT

Website www.rllco.com Phone 304-776-7740 Email CustomerService@rllco.com

Final Report

Report Date:5/1/2015Report Number:31298-0Chain of Custody #:04272015Lab Analyst:WG

Project Comments: NG EXTENDED

Lab ID: 15043511

Sample Type: Natural Gas

Your Sample ID: TANNER

Date Sampled: 4/22/2015 9:50:00AM Date Received: 4/27/2015 Analysis Date: 04/30/15

Method	Analyte	Result	Units	MDL/PQL
Collection	Sampler	EAS	-	
	Sampling Temp	71.9	°F	
	Sample PSI	575	-	
GPA 2145	Temperature (heating value)	60.0	°F	
	Temperature (density)	60.0	°F	
	Atmospheric Pressure	14.696	PSIA	
per GPA 2172	Molar Mass	16.4940	-	
	Relative Density	0.5704	-	
	Compressibility Factor	0.9980	-	
per GPA 2172	Btu/Gal	59690.0	BTU/Gal	
	Btu/Ideal CF	1017.2	BTU/Ideal CF	
	Btu/Real CF	1019.3	BTU/Real CF	
GPA 2286	Helium	0.0252	Mole %	0.001
	Hydrogen	0.1395	Mole %	0.001
	Nitrogen	0.9319	Mole %	0.001
	Oxygen	<0.0010	Mole %	0.001
	Methane	97.1809	Mole %	0.001
	Carbon Dioxide	0.0695	Mole %	0.001
	Ethane	1.4730	Mole %	0.001
	Propane	0.0793	Mole %	0.001
	I-Butane	0.0092	Mole %	0.001
	N-Butane	0.0187	Mole %	0.001
	I-Pentane	<0.0010	Mole %	0.001
	N-Pentane	<0.0010	Mole %	0.001

Website	www.rllco.com
Phone	304-776-7740
Email	CustomerService@rllco.c

Lab ID: 15043511

Sample Type: Natural Gas

Your Sample ID: TANNER

Date Sampled:	4/22/2015	9:50:00AM
Date Received:	4/27/2015	
Analysis Date:	04/30/15	

om

Method Result Units MDL/PQL Analyte GPA 2286 Hexanes Plus 0.0728 Mole % 0.001 < 0.0010 Carbon Monoxide Mole % 0.001 0.0010 2,2-Dimethylbutane Mole % 0.001 2,3-Dimethylbutane < 0.0010 Mole % 0.001 2-Methylpentane 0.0026 Mole % 0.001 3-Methylpentane 0.0026 Mole % 0.001 0.0035 N-Hexane Mole % 0.001 2,2-Dimethylpentane < 0.0010 Mole % 0.001 0.0026 Methylcyclopentane Mole % 0.001 < 0.0010 Mole % Benzene 0.001 3-dimethylpentane < 0.0010 Mole % 0.001 0.0019 Mole % Cyclohexane 0.001 0.0047 2-Methylhexane/2,3-Dimethylpentane Mole % 0.001 0.0035 3-Methylhexane Mole % 0.001 3-Dimethylcyclopentane < 0.0010 Mole % 0.001 < 0.0010 3-Ethylpentane Mole % 0.001 2,2,4-Trimethylpentane < 0.0010 Mole % 0.001 N-Heptane 0.0052 Mole % 0.001 0.0063 Methylcyclohexane Mole % 0.001 0.0020 Mole % 2,5-Dimethylhexane 0.001 1,t-2,c-4-trimethylcyclopentane < 0.0010 Mole % 0.001 2,2,3-Trimethylpentane < 0.0010 Mole % .001 Toluene < 0.0010 Mole % 0.001 < 0.0010 2-Methylheptane Mole % 0.001 0.0035 4-Methylheptane Mole % 0.001 3-Methylheptane 0.0027 Mole % 0.001 0.0016 2,2,5-trimethylhexane Mole % 0.001 N-Octane 0.0049 Mole % 0.001 2,2,4,4-tetramethylpentane < 0.0010 Mole % 0.001 < 0.0010 2,2,4-trimethylhexane Mole % 0.001

< 0.0010

Mole %

0.001

isopropylcyclopentane

Website	www.rllco.com
Phone	304-776-7740
Email	CustomerService@rllco.com

Lab ID:	15043511
---------	----------

Sample Type: Natural Gas

Your Sample ID: TANNER

Date Sampled:	4/22/2015	9:50:00AM
Date Received:	4/27/2015	
Analysis Date:	04/30/15	

Method	Analyte	Result	Units	MDL/PQL
GPA 2286	2,2-dimethylheptane	<0.0010	Mole %	0.001
	2,4-dimethylheptane	<0.0010	Mole %	0.001
	2,2,3-trimethylhexane	<0.0010	Mole %	0.001
	Ethylbenzene	<0.0010	Mole %	0.001
	2,2,3,3-tetramethylpentane	<0.0010	Mole %	0.001
	1,t-2,t-4-trimethylcyclohexane	<0.0010	Mole %	0.001
	M/P Xylene	<0.0010	Mole %	0.001
	2-Methyloctane	0.0021	Mole %	0.001
	O-Xylene	<0.0010	Mole %	0.001
	3-Methyloctane	0.0014	Mole %	0.001
	1,1,2-trimethylcyclohexane	<0.0010	Mole %	0.001
	isobutylcyclopentane	<0.0010	Mole %	0.001
	N-Nonane	0.0101	Mole %	0.001
	1,c-2,t-3,trimethylcyclohexane	<0.0010	Mole %	0.001
	Isopropylbenzene	<0.0010	Mole %	0.001
	2,2-dimethyloctane	<0.0010	Mole %	0.001
	isopropylcyclohexane	<0.0010	Mole %	0.001
	Cyclooctane	<0.0010	Mole %	0.001
	n-butylcyclopentane	<0.0010	Mole %	0.001
	propylcyclohexane	<0.0010	Mole %	0.001
	N-Propylbenzene	<0.0010	Mole %	0.001
	m-ethyltoluene	<0.0010	Mole %	0.001
	p-ethyltoluene	<0.0010	Mole %	0.001
	1,3,5-Trimethylbenzene	<0.0010	Mole %	0.001
	2-methylnonane	<0.0010	Mole %	0.001
	3-ethyloctane	<0.0010	Mole %	0.001
	3-methylnonane	<0.0010	Mole %	0.001
	t-butylbenzene	<0.0010	Mole %	0.001
	n-decane	0.0018	Mole %	0.001
	i-butylbenzene	<0.0010	Mole %	0.001
	sec-butylbenzene	<0.0010	Mole %	0.001

Website	www.flco.com
Phone	304-776-7740
Email	CustomerService@rllco.com

	Lab ID: 15043511		Date Sampled	l: 4/22/2015 9:50:00AM
San	nple Type: Natural Gas		Date Received	d: 4/27/2015
Your S	Sample ID: TANNER		Analysis Date	e: 04/30/15
Method	Analyte	Result	Units	MDL/PQL
GPA 2286	T-Butylcyclohexane n-	<0.0010	Mole %	0.001
	Butylcyclohexane	<0.0010	Mole %	0.001
	n-Butylbenzene	<0.0010	Mole %	0.001
	n-undecane	0.0088	Mole %	0.001

Joe Arnold

Laboratory QA/QC Manager

Results relate only to items tested. Samples tested as received. This report may not be reproduced except in full with the approval of R. L. Laughlin.

CERTIFICATE OF ANALYSIS

Number: 2013020311-004A

SLR International Corp Roy Judy 900 Lee St. E Suite 0500 Huntington Square Charleston, WV 25301

Field:ChaStation:TarStation No.:109Sample Point:MetCylinder # :SLE

Comments:

Charlestown, WV. Tanner 109-00106 Meter Run SLR-021 Report Date:Sample Of:Sample Date:01/Sample Conditions:65PO / Ref. No.:

02/15/13 Spot - Gas 01/30/2013 15:45 650 psi ,N.G.° F

ANALYTICAL DATA							
Components	Mol %	w	t%	GPM at	Method	Lab	Date
				14.000 psia	CDA 2296	Tech.	02/15/12
	0.400		0.050		(MC14)	JL	02/15/15
Nitrogen	0.496		00.000		(1010-14)		
Methane	97.897		90.021				
Carbon Dioxide	0.068		0.183	0.004			
Ethane	1.445		2.653	0.384			
Propane	0.066		0.177	0.018			
iso Butane	0.007		0.024	0.002			
n-Butane	0.009		0.031	0.003			
iso Pentane	0.003		0.012	0.001			
n-Pentane	0.002		0.006	0.001			
Hexanes Plus	0.007		0.043	0.001			
	100.000	1	00.000	0.410			
					TOTAL		C6+
Relative Density at 60 °F (air =1) Rea	al Gas				0.5655		3.64
Calculated Molecular Weight	-				16.356		105.263
Compressibility Factor					0.9980		1.5
Calculated Gross BTU per ft3 @ 14.	650 psia & 6	50 °F					
Real Gas	Dry Basis				1015.9		5658.3
	Saturated	Basis			999		5560.2

as Stale

Hydrocarbon Laboratory Manager

CERTIFICATE OF ANALYSIS

Number: 2013020311-004A

SLR International Corp Roy Judy 900 Lee St. E Suite 0500 Huntington Square Charleston, WV 25301

Field:	Charlestown, WV.	Report Date:	02/15/13
Station:	Tanner	Sample Of:	Spot - Gas
Station No.:	109-00106	Sample Date:	01/30/2013 15:45
Sample Point:	Meter Run	Sample Conditions:	650 psi ,N.G.º F
Cylinder # :	SLR-021	PO / Ref. No.:	a 0

Comments:

ANALYTICAL DATA

Components	Mol %	Wt%	GPM at	Method	Lab	Date
			14.000 psia	CDA 2296	Tech.	02/15/12
Nitrogon	0.406	0.950		GFA-2200	JL	02/15/15
Mathema	0.490	0.000		(1010-14)		
Methane	97.897	96.021				
Carbon Dioxide	0.068	0.183				
Ethane	1.445	2.653	0.384			
Propane	0.066	0.177	0.018			
iso Butane	0.007	0.024	0.002			
n-Butane	0.009	0.031	0.003			
iso Pentane	0.003	0.012	0.001			
n-Pentane	0.002	0.006	0.001			
Hexanes	0.000	0.004	0.000			
Heptanes Plus	0.007	0.039	0.001			
	100.000	100.000	0.410			
				TOTAL		C7+
Relative Density at 60 °F (air =1)	Real Gas			0.5655		3.7464
Calculated Molecular Weight				16.356		108.327
Compressibility Factor				0.998		
Calculated Gross BTU per ft3 @) 14.650 psia & 60	°F				
Real Gas	Dry Basis			1015.9		5814.1
	Saturated Ba	asis		999		5713.2

Chio Staley

Hydrocarbon Laboratory Manager

CERTIFICATE OF ANALYSIS

Number: 2013020311-004A

SLR International Corp
Roy Judy
900 Lee St. E Suite 0500
Charleston, WV 25301

Field:	Charlestown	
Station:	Tanner	
Station No.:	109-00106	
Sample Point:	Meter Run	
Cylinder # :	SLR-021	
Comments:		

WV.

Report Date: 02/15/13 Sample Of: Spot - Gas Sample Date: 01/30/2013 15:45 Sample Conditions: 650 psi ,N.G.° F PO / Ref. No.:

ANALYTICAL DATA						
Components	Mol %	Wt%	GPM at 14.650 psia	Method	Lab Tech.	Date Analyzed
				GPA-2286	JL	02/15/13
Nitrogen	0.496	0.850		(MC14)		
Methane	97.897	96.021				
Carbon Dioxide	0.068	0.183				
Ethane	1.445	2.653	0.384			
Propane	0.066	0.177	0.018			
iso Butane	0.007	0.024	0.002			
n-Butane	0.009	0.031	0.003			
iso Pentane	0.003	0.012	0.001			8
n-Pentane	0.002	0.006	0.001			
i-Hexanes	NIL	0.002	NIL			
n-Hexane	NIL	0.002	NIL			
Benzene	NIL	NIL	NIL			
Cyclohexane	NIL	0.002	NIL			
i-Heptanes	NIL	0.002	NIL			
n-Heptane	0.002	0.005	NIL			
Toluene	0.001	0.003	NIL			
i-Octanes	0.003	0.015	0.001			
n-Octane	0.001	0.004	NIL			
*e-Benzene	NIL	NIL	NIL			
*m,o,&p-Xylene	NIL	0.002	NIL			
i-Nonanes	NIL	0.002	NIL			
n-Nonane	NIL	0.002	NIL			
i-Decanes	NIL	NIL	NIL			
n-Decane	NIL	0.002	NIL			
Undecanes	NIL	NIL	NIL			
Dodecanes	NIL	NIL	NIL			
Tridecanes	NIL	NIL	NIL			
Tetradecanes Plus	NIL	NIL	NIL			
Totals	100.000	100.000	0.410			
Calculated Values	TOTAL	C10+				
Molecular Weight	16.356	144,567				
Real Dry BTU @ 14.65 psia, 60 °F	1015.9	7718.7				
Real Wet BTU @ 14.65 psia, 60 °F	999.0	7584.5				
Relative Density	0.5655	4.9126				
	್ರಾತ್ಮಾನ್					

GPM's at 14.65 psia, 60 °F 0.410 Compressibility Factor 0.998

Clis Staley

Hydrocarbon Laboratory Manager

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	T01 - PPL Storage Tank - 7E Beckley West Virginia Cranberry Pipeline Corporation Vertical Fixed Roof Tank Tanner Compressor Station	
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	6.75 5.20 6.75 3.50 1,000.00 76.65 76,650.00 N	
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	White/White Good White/White Good	
Roof Characteristics Type: Height (ft) Radius (ft) (Dome Roof)	Dome 1.00 5.20	
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03	

Meterological Data used in Emissions Calculations: Beckley, West Virginia (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T01 - PPL Storage Tank - 7E - Vertical Fixed Roof Tank Beckley, West Virginia

,		Dail Temp	ly Liquid Su erature (de	rf. g F)	Liquid Bulk Temp Vapor Pressure (psia)		(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 9)	All	52.42	47.61	57.23	50.92	3.9633	3.5920	4.3650	67.0000			92.00	Option 4: RVP=9, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T01 - PPL Storage Tank - 7E - Vertical Fixed Roof Tank Beckley, West Virginia

Annual Emission Calcaulations	
Standing Losses (lb):	84.2574
Vapor Space Volume (cu ft):	80.1630
Vapor Density (lb/cu ft):	0.0483
Vapor Space Expansion Factor:	0.1068
Vented Vapor Saturation Factor:	0.5578
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	80.1630
Tank Diameter (ft):	5.2000
Vapor Space Outage (ft):	3.7747
Tank Shell Height (ft):	6.7500
Roof Outage (ft):	0.5247
Roof Outage (Dome Roof)	0.5247
Dome Radius (ff):	5 2000
Shell Radius (ft):	2.6000
Vener Density	
Vapor Density Vapor Density (lb/cu ft):	0.0483
Vapor Molecular Weight (lb/lb-mole):	67.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.9633
Daily Avg. Liquid Surface Temp. (deg. R):	512.0898
Daily Average Ambient Temp. (deg. F):	50.9000
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	510.5900
Tank Paint Solar Absorptance (Snell):	0.1700
Daily Total Solar Insulation	0.1700
Factor (Btu/sqft day):	1,123.3333
Vapor Space Expansion Easter	
Vapor Space Expansion Factor	0 1069
Daily Vanor Temperature Range (deg. R):	19 2311
Daily Vapor Pressure Range (usia):	0.7730
Breather Vent Press, Setting Range(psia)	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.9633
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	3.5920
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	4.3650
Daily Avg. Liquid Surface Temp. (deg R):	512.0898
Daily Min. Liquid Surface Temp. (deg R):	507.2821
Daily Max. Liquid Surface Temp. (deg R):	516.8976
Daily Anbient Temp. Range (deg. R).	19.2033
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.5578
Vapor Pressure at Daily Average Liquid:	0.0000
Vapor Space Outage (ft):	3.9633
Mandana Lasara (Ib.)	070 / 100
VVORKING LOSSES (ID):	270.4428
Vapor Molecular Weight (ID/ID-mole):	67.0000
Surface Tomporature (psia):	2 0622
Appual Net Throughput (gal/yr.):	76 650 0000
Annual Turnovere:	76,000,0000
Turnover Factor:	0.5581
Maximum Liquid Volume (gal):	1.000.0000
Maximum Liquid Height (ft):	6,7500
Tank Diameter (ft):	5,2000
Working Loss Product Factor:	1.0000
Total Losses (Ib):	354.7002

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T01 - PPL Storage Tank - 7E - Vertical Fixed Roof Tank Beckley, West Virginia

	Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Gasoline (RVP 9)	270.44	84.26	354.70				

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	T02 - PPL Storage Tank - 8E Beckley West Virginia Cranberry Pipeline Corporation Vertical Fixed Roof Tank Tanner Compressor Station
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	6.75 5.20 6.75 3.50 1,000.00 76.65 76,650.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	White/White Good White/White Good
Roof Characteristics Type: Height (ft) Radius (ft) (Dome Roof)	Dome 1.00 5.20
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Beckley, West Virginia (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T02 - PPL Storage Tank - 8E - Vertical Fixed Roof Tank Beckley, West Virginia

,		Dail Temp	ly Liquid Su erature (de	rf. g F)	Liquid Bulk Temp Vapor Pressure (psia)		(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 9)	All	52.42	47.61	57.23	50.92	3.9633	3.5920	4.3650	67.0000			92.00	Option 4: RVP=9, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T02 - PPL Storage Tank - 8E - Vertical Fixed Roof Tank Beckley, West Virginia

Annual Emission Calcaulations	
Standing Losses (lb):	84.2574
Vapor Space Volume (cu ft):	80.1630
Vapor Density (ID/culit):	0.0483
Vented Vanor Saturation Factor:	0.5578
vented vaper editateler radier.	0.0070
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	80.1630
Tank Diameter (ft):	5.2000
Vapor Space Outage (π): Tank Sholl Height (#):	3.7747
Average Liquid Height (ft):	3 5000
Roof Outage (ft):	0.5247
Roof Outage (Dome Roof)	
Root Outage (ft):	0.5247
Shell Radius (ft):	2 6000
Sheli Radids (it).	2.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0483
Vapor Molecular Weight (lb/lb-mole):	67.0000
Vapor Pressure at Daily Average Liquid	0.0000
Surface Temperature (psia):	3.9033
Daily Avg. Liquid Surface Temp. (deg. R).	512.0090
Ideal Gas Constant R	30.9000
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	510.5900
Tank Paint Solar Absorptance (Shell):	0.1700
Tank Paint Solar Absorptance (Roof):	0.1700
Daily Total Solar Insulation	1 100 0000
Factor (Blu/sqli day).	1,123.3333
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.1068
Daily Vapor Temperature Range (deg. R):	19.2311
Daily Vapor Pressure Range (psia):	0.7730
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	0.0000
Vanor Pressure at Daily Minimum Liquid	3.9033
Surface Temperature (nsia):	3 5920
Vapor Pressure at Daily Maximum Liquid	0.0020
Surface Temperature (psia):	4.3650
Daily Avg. Liquid Surface Temp. (deg R):	512.0898
Daily Min. Liquid Surface Temp. (deg R):	507.2821
Daily Max. Liquid Surface Temp. (deg R):	516.8976
Daily Ambient Temp. Range (deg. R):	19.2833
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.5578
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	3.9633
Vapor Space Outage (ft):	3.7747
Working Longood (Ib):	270 4429
Vanor Molecular Weight (lb/lb-mole):	67 0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.9633
Annual Net Throughput (gal/yr.):	76,650.0000
Annual Turnovers:	76.6500
Turnover Factor:	0.5581
Maximum Liquid Volume (gal):	1,000.0000
Tank Diameter (ff):	5 2000
Working Loss Product Factor:	1,0000
	1.0000
Total Losses (lb):	354.7002

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T02 - PPL Storage Tank - 8E - Vertical Fixed Roof Tank Beckley, West Virginia

	Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Gasoline (RVP 9)	270.44	84.26	354.70				

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	T03 - New Oil Tank - 9E Beckley West Virginia Cranberry Pipeline Corporation Horizontal Tank Tanner Compressor Station
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	12.00 5.50 2,000.00 5.00 10,000.00 N
Paint Characteristics Shell Color/Shade: Shell Condition	Red/Primer Good
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Beckley, West Virginia (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T03 - New Oil Tank - 9E - Horizontal Tank Beckley, West Virginia

		Dai Temp	y Liquid Su erature (de	rf. g F)	Liquid Bulk Temp	quid Bulk emp Vapor Pressure (psia)		psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	All	61.23	50.76	71.70	55.24	0.0068	0.0047	0.0095	130.0000			188.00	Option 1: VP60 = .0065 VP70 = .009

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T03 - New Oil Tank - 9E - Horizontal Tank Beckley, West Virginia

Annual Emission Calcaulations	
Standing Losses (lb):	0.8022
Vapor Space Volume (cu ft):	181.5921
Vapor Density (lb/cu ft):	0.0002
Vapor Space Expansion Factor:	0.0765
vented vapor Saturation Factor:	0.9990
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	181.5921
Tank Diameter (ft):	5.5000
Effective Diameter (ft):	9.1693
Vapor Space Outage (ft):	2.7500
Tank Shell Length (ft):	12.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0002
Vapor Molecular Weight (lb/lb-mole):	130.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0068
Daily Avg. Liquid Surface Temp. (deg. R):	520.8986
Daily Average Ambient Temp. (deg. F):	50.9000
(osia cuff / (lb-mol-deg P)):	10 731
Liquid Bulk Temperature (deg. R):	514 9100
Tank Paint Solar Absorptance (Shell):	0.8900
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,123.3333
Vener Speen Europeien Fester	
Vapor Space Expansion Factor:	0.0765
Daily Vapor Temperature Range (deg. R):	41.8775
Daily Vapor Pressure Range (psia):	0.0049
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0068
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.0047
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.0095
Daily Avg. Liquid Surface Temp. (deg R):	520.8986
Daily Min. Liquid Surface Temp. (deg R).	510.4292
Daily Max. Elquid Surface Terrip. (deg R). Daily Ambient Temp. Range (deg. R):	19 2833
Baily random romp. range (abg. r).	10.2000
Vented Vapor Saturation Factor	0.0000
Vented vapor Saturation Factor:	0.9990
vapor Pressure at Dally Average Liquid:	0.0069
Vanor Space Outage (ff):	2 7500
Vapor Space Outage (it).	2.7500
Marling Langes (Ib):	0.0107
Vonor Molecular Weight (Ib/Ib mole):	120.0000
Vapor Pressure at Daily Average Liquid	130.0000
Surface Temperature (neia):	0.0068
Annual Net Throughput (gal/yr.):	10 000 0000
Annual Turnovers:	5.0000
Turnover Factor:	1.0000
Tank Diameter (ft):	5.5000
Working Loss Product Factor:	1.0000
Total Losses (Ib):	1.0129

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T03 - New Oil Tank - 9E - Horizontal Tank Beckley, West Virginia

	Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Distillate fuel oil no. 2	0.21	0.80	1.01				

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	T04 - Used Oil Tank - 10E Beckley West Virginia Cranberry Pipeline Corporation Vertical Fixed Roof Tank Tanner Compressor Station
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	5.00 6.00 5.00 3.00 1,000.00 5.00 5,000.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Medium Good Gray/Medium Good
Roof Characteristics Type: Height (ft) Radius (ft) (Dome Roof)	Dome 1.00 6.00
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Beckley, West Virginia (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T04 - Used Oil Tank - 10E - Vertical Fixed Roof Tank Beckley, West Virginia

		Dai Temp	ily Liquid Su berature (de	ırf. :g F)	Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	All	58.66	49.84	67.48	53.98	0.0062	0.0045	0.0084	130.0000			188.00	Option 1: VP50 = .0045 VP60 = .0065

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T04 - Used Oil Tank - 10E - Vertical Fixed Roof Tank Beckley, West Virginia

Annual Emission Calcaulations	
Standing Losses (lb):	0.2425
Vapor Space Volume (cu ft):	71.2094
Vapor Density (Ib/cu ft): Vapor Space Expansion Eactor:	0.0001
Vented Vanor Saturation Factor:	0.0041
	0.0002
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	71.2094
Tank Diameter (ft):	6.0000
Vapor Space Outage (π): Tank Shell Height (ft):	2.5185
Average Liquid Height (ft):	3.0000
Roof Outage (ft):	0.5185
Roof Outage (Dome Roof)	
Roof Outage (ft):	0.5185
Dome Radius (ft):	6.0000
Shell Radius (ft):	3.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0001
Vapor Molecular Weight (lb/lb-mole):	130.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0062
Daily Avg. Liquid Surface Temp. (deg. R):	518.3293
Daily Average Ambient Temp. (deg. F):	50.9000
Ideal Gas Constant R	10 721
(psia cuit / (ib-morature (deg. R)).	513,6500
Tank Paint Solar Absorntance (Shell):	0.6800
Tank Paint Solar Absorptance (Boof):	0.6800
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,123.3333
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0641
Daily Vapor Temperature Range (deg. R):	35.2723
Daily Vapor Pressure Range (psia):	0.0039
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	0.0000
Vanor Pressure at Daily Minimum Liquid	0.0062
Surface Temperature (neia):	0.0045
Vapor Pressure at Daily Maximum Liquid	0.0010
Surface Temperature (psia):	0.0084
Daily Avg. Liquid Surface Temp. (deg R):	518.3293
Daily Min. Liquid Surface Temp. (deg R):	509.5113
Daily Max. Liquid Surface Temp. (deg R):	527.1474
Daily Ambient Temp. Range (deg. R):	19.2833
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9992
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.0062
vapor Space Outage (π):	2.5185
Working Losses (lb):	0.0964
Vapor Molecular Weight (lb/lb-mole):	130.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0062
Annual Net Enroughput (gal/yr.):	5,000.0000
Turnover Factor	5.0000
Maximum Liquid Volume (gal):	1 000 0000
Maximum Liquid Height (ft):	5.0000
Tank Diameter (ft):	6.0000
Working Loss Product Factor:	1.0000
Total Losses (lb):	0.3390

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T04 - Used Oil Tank - 10E - Vertical Fixed Roof Tank Beckley, West Virginia

	Losses(lbs)					
Components	Working Loss	Breathing Loss	Total Emissions			
Distillate fuel oil no. 2	0.10	0.24	0.34			

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	T05 - Antifreeze Tank - 11E Beckley West Virginia Cranberry Pipeline Corporation Vertical Fixed Roof Tank Tanner Compressor Station				
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	5.00 2.80 5.00 3.00 250.00 5.00 1,250.00 N				
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	White/White Good White/White Good				
Roof Characteristics Type: Height (ft) Radius (ft) (Dome Roof)	Dome 1.00 2.80				
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03				

Meterological Data used in Emissions Calculations: Beckley, West Virginia (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T05 - Antifreeze Tank - 11E - Vertical Fixed Roof Tank Beckley, West Virginia

		Da Tem	ily Liquid Su perature (de	urf. ∋g F)	Liquid Bulk Temp	quid Bulk emp Vapor Pressure (psia)		(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Propylene glycol	All	52.42	47.61	57.23	50.92	0.0006	0.0005	0.0008	76.1100			76.11	Option 2: A=8.2082, B=2085.9, C=203.54

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T05 - Antifreeze Tank - 11E - Vertical Fixed Roof Tank Beckley, West Virginia

Annual Emission Calcaulations	
Standing Losses (Ib):	0.0016
Vapor Space Volume (cu ft):	15.9174
Vapor Density (Ib/cu ft):	0.0000
Vented Vanor Saturation Factor:	0.0334
	0.0000
Tank Vapor Space Volume:	15 0174
Tank Diameter (ft):	2 2000
Vanor Space Outage (ft):	2 5850
Tank Shell Height (ft):	5.0000
Average Liquid Height (ft):	3.0000
Roof Outage (ft):	0.5850
Roof Outage (Dome Roof)	
Roof Outage (ft):	0.5850
Dome Radius (ft):	2.8000
Shell Radius (ft):	1.4000
Vapor Density	
Vapor Density (Ib/cu ft):	0.0000
Vapor Molecular Weight (Ib/Ib-mole):	76.1100
Surface Temperature (psia):	0.0006
Daily Avg. Liquid Surface Temp. (deg. R):	512.0898
Daily Average Ambient Temp. (deg. F):	50.9000
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	510.5900
Tank Paint Solar Absorptance (Snell):	0.1700
Daily Total Solar Insulation	0.1700
Factor (Btu/sqft day):	1,123.3333
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0334
Daily Vapor Temperature Range (deg. R):	19.2311
Daily Vapor Pressure Range (psia):	0.0003
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	0.0000
Vanor Pressure at Daily Minimum Liquid	0.0006
Surface Temperature (psia):	0.0005
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.0008
Daily Avg. Liquid Surface Temp. (deg R):	512.0898
Daily Min. Liquid Surface Temp. (deg R):	507.2821
Daily Max. Liquid Surface Temp. (deg R):	516.8976
Daily Ambient Temp. Range (deg. R).	19.2000
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9999
Surface Tomporature (peia):	0.0006
Vapor Space Outage (ft):	2.5850
Working Losses (lb):	0.0014
Vapor Molecular Weight (lb/lb-mole):	76.1100
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0006
Annual Net Throughput (gal/yr.):	1,250.0000
Annual Turnovers:	5.0000
Turnover Factor: Maximum Liquid Volume (col):	1.0000
Maximum Liquid Volume (gar).	200.0000
Tank Diameter (ft):	2.8000
Working Loss Product Factor:	1.0000
Total Losses (lb):	0.0030

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T05 - Antifreeze Tank - 11E - Vertical Fixed Roof Tank Beckley, West Virginia

	Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Propylene glycol	0.00	0.00	0.00				

ATTACHMENT O

MONITORING/RECORDKEEPING/REPORTING/ TESTING PLANS

Rule 13 Permit Application

Tanner Compressor Station Pineville, West Virginia

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East, Suite 1500 Charleston, West Virginia

January 2016

Monitoring

The company will at a minimum monitor hours of operation, site production throughputs, as well as planned and unplanned maintenance of permitted equipment comprising the facility.

Recordkeeping

The company will retain records for five (5) years, two (2) years on site, certified by a company official at such time that the DAQ may request said records.

The company will keep records of the items monitored, such as station throughput, hours of operation, planned maintenance activities, unplanned maintenance activities, and complaints regarding the facility.

Reporting

The company will report any control equipment malfunctions, emission limit or opacity deviations.

Testing

There are no testing requirements until such time as the remote source designation should change

ATTACHMENT P

PUBLIC NOTICE

Rule 13 Permit Application

Tanner Compressor Station Pineville, West Virginia

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East, Suite 1500 Charleston, West Virginia

January 2016
AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Cranberry Pipeline Corporation has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Modification Permit, for a natural gas compression and dehydration station located off Pinnacle Creek Rd. (Country Rt. 12/3) near Pineville, in Pineville, West Virginia. The latitude and longitude coordinates are 37.55001 and -81.45957.

The applicant estimates the increased potential to discharge of the following Regulated Air Pollutants will be:

Pollutant	Tons/yr
PM/PM10/PM2.5	0.80
SO ²	0.05
NO _x	0.04
CO	0.07
VOCs	33.76
Benzene	0.36
Toluene	0.57
Ethylbenzene	0.76
Xylene	0.91
n-hexane	0.21
Total HAPs	4.07

Modification of operation will take place upon issuance of permit. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the XXth day of Febraury, 2016.

By: Cranberry Pipeline Corporation Brody Webster Safety and Environmental Manager 900 Lee Street East, Suite 1500 Charleston, WV 25301

ATTACHMENT Q

NOT APPLICABLE (SEE NOTE)

Note: No information contained within this application is claimed confidential.

Rule 13 Permit Application

Tanner Compressor Station Pineville, West Virginia

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East, Suite 1500 Charleston, West Virginia

ATTACHMENT R

AUTHORITY FORMS

Rule 13 Permit Application

Tanner Compressor Station Pineville, West Virginia

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East, Suite 1500 Charleston, West Virginia

Attachment R AUTHORITY OF CORPORATION OR OTHER BUSINESS ENTITY (DOMESTIC OR FOREIGN)

TO: The West Virginia Department of Environmental Protection, Division of Air Quality

DATE: October 8 , 2015

ATTN.: Director

Corporation's / other business entity's Federal Employer I.D. Number _____042989934

The undersigned hereby files with the West Virginia Department of Environmental Protection, Division of Air Quality, a permit application and hereby certifies that the said name is a trade name which is used in the conduct of an incorporated business or other business entity.

Further, the corporation or the business entity certifies as follows:

(1) **BRODY WEBSTER** (is/are) the authorized representative(s) and in that capacity may represent the interest of the corporation or the business entity and may obligate and legally bind the corporation or the business entity.

(2) The corporation or the business entity is authorized to do business in the State of West Virginia.

(3) If the corporation or the business entity changes its authorized representative(s), the corporation or the business entity shall notify the Director of the West Virginia Department of Environmental Protection, Division of Air Quality, immediately upon such change.

President or Other Authorized Officer (Vice President, Secretary, Treasurer or other official in charge of a principal business function of the corporation or the business entity)

(If not the President, then the corporation or the business entity must submit certified minutes or bylaws stating legal authority of other authorized officer to bind the corporation or the business entity).

Secretary

CABOT OIL & GAS CORPORATION CRANBERRY PIPELINE CORPORATION

Name of Corporation or business entity

ATTACHMENT S

NOT APPLICABLE (SEE NOTE)

Note: Not a Title V Permit Revision.

Rule 13 Permit Application

Tanner Compressor Station Pineville, West Virginia

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East, Suite 1500 Charleston, West Virginia

ATTACHMENT T

PERMIT APPLICATION FEE

Rule 13 Permit Application

Tanner Compressor Station Pineville, West Virginia

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East, Suite 1500 Charleston, West Virginia

FINAL PERMITS

Rule 13 Permit Application

Tanner Compressor Station Pineville, West Virginia

Cranberry Pipeline Corporation c/o Cabot Oil & Gas Corporation 900 Lee Street East, Suite 1500 Charleston, West Virginia