625 Liberty Ave, Suite 1700 Pittsburgh PA 15222 www.eqt.com

TEL: (412) 395-3699 FAX: (412) 395-2156

Alex Bosiljevac Environmental Coordinator

February 1, 2016

CERTIFIED MAIL # 7015 1660 0000 9399 3696

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: G70 Permit Modification EQT Production Company OXF-163 Natural Gas Production Site

Dear Mr. Durham,

Enclosed are two electronic copies and one original hard copy of a proposed modification to the G70 General Air Permit for the OXF-163 Natural Gas Production Well Site. A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely,

Alex Bosilievac EQT Corporation

Enclosures

EQT Production Company

G70-B General Permit Registration Application

OXF 163 Natural Gas Production Site

Harrisville, West Virginia

Prepared By:

ENVIRONMENTAL RESOURCES MANAGEMENT, Inc. Hurricane, West Virginia

January 2016

INTRODUCTION

EQT Production Company (EQT) is submitting this G70-B General Permit Modification Application to the WVDEP's Department of Air Quality for the OXF-163 natural gas production site located in Ritchie County, West Virginia. This application addresses the operational activities associated with the production of natural gas and condensates at the OXF-163 pad.

FACILITY DESCRIPTION

The EQT OXF-163 natural gas production site will operate in Ritchie County, WV and consists of six (6) natural gas wells. Natural gas and liquids (including water and condensates) are extracted from underground deposits. The natural gas will be transported from the wells to a gas line for compression and additional processing, as necessary. The produced liquids are stored in storage vessels.

The applicant is currently authorized to operate the following:

- Six (6) natural gas wells;
- Six (6) line heaters each rated at 1.54 MMBtu/hr heat input;
- One (1) 100 bbl sand trap blowdown tank for storage of condensate and water;
- Six (6) 400 barrel (bbl) tanks for storage of condensate and water;
- Two (2) thermoelectric generator (TEG) each rated at 0.013 MMBtu/hr heat input; and
- Two (2) enclosed combustion devices each with a capacity of 11.66 MMBtu/hr heat input.

The applicant seeks to authorize the operation of:

- One (1) 110 HP stationary natural gas compressor engine; and
- One (1) line heater rated at 1.54 MMBtu/hr heat input.

A process flow diagram is included in this application in Attachment D.

STATEMENT OF AGGREGATION

The OXF-163 pad is located in Ritchie County, WV and operated by EQT Production Company. Stationary sources of air pollutants may require aggregation of total emission levels if these sources share the same industrial grouping, are operating under common control, and are classified as contiguous or adjacent properties. EQT will operate the OXF-163 with the same industrial grouping as nearby facilities, and some of these facilities are under common control. EQT, however, is not subject to the aggregation of stationary emission sources because these sites do not meet the definition of contiguous or adjacent facilities.

The OXF-163 pad will operate under SIC code 1311 (Crude Petroleum and Natural Gas Extraction). There are surrounding wells and compressor stations operated by EQT that share the same two-digit major SIC code of 13 for Crude Petroleum and Natural Gas Extraction. Therefore, the OXF-163 pad does share the same SIC codes as the surrounding wells and compressor stations.

EQT Production Company is the sole operator of the OXF-163 pad. EQT is also the sole operator of other production sites and compressor stations in the area. Therefore, EQT does qualify as having nearby operations under common control.

EQT's OXF-122 (085-00048) Natural Gas Production site is within 0.77 miles of the OXF-163 pad. OXF-122 is a planned pad and has not been turned into production, but has been permitted under G70-A146. These facilities do not meet the definition of contiguous or adjacent properties since they are not in contact and do not share a common boundary. Operations conducted at the OXF-163 site do not rely on or interact with other sites. Furthermore, operations separated by this distance do not meet the common sense notion of a "plant."

On August 18, 2015 the EPA Administrator signed the *Source Determination for Certain Emission Units in the Oil and Natural Gas Sector*. This notice is to clarify how properties in the oil and natural gas sector are determined to be adjacent in order to assist permitting authorities and permit applicants in making consistent source determinations. The following proposed regulatory text defines "adjacent" for the oil and gas sector in terms of proximity.

Pollutant emitting activities shall be considered adjacent if they are located on the same surface site, or on surface sites that are located within $\frac{1}{4}$ mile of one another.

The OXF-122 and OXF-163 pads are located on surface sites located greater than EPA's ¹/₄ mile proposed ruling. Although the applicant notes the proposed status of this adjacency determination, it is the only guidance available on a finite distance impacting the adjacency determination, and has been noted due to lack of finalized guidance. Based upon the proximity of nearby facilities, EQT does not believe aggregation based upon adjacency is required.

Based on the above reasoning, EQT is not subject to the aggregation of stationary emission sources since the stationary sources are not considered contiguous or adjacent facilities.

REGULATORY DISCUSSION

This section outlines the State air quality regulations that could be reasonably expected to apply to the OXF-163 pad and makes an applicability determination for each regulation based on activities conducted at the site and the emissions of regulated air pollutants. This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-B permit application forms.

The West Virginia State Regulations address federal regulations, including Prevention of Significant Deterioration permitting, Title V permitting, New Source Performance Standards, and National Emission Standards for Hazardous Air Pollutants. The regulatory requirements in reference to OXF-163 are described in detail in the below section.

WEST VIRGINIA STATE AIR REGULATIONS

45 CSR 02 – To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

The line heaters are indirect heat exchangers that combust natural gas but are exempt since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 04 – To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

Operations conducted at the OXF-163 wellpad are subject to this requirement. Based on the nature of the process at the wellpad, the presence of objectionable odors is unlikely.

45 CSR 06 – Control of Air Pollution from the Combustion of Refuse

The enclosed combustion device located on the OXF-163 natural gas production site is subject to this regulation. Per 45 CSR 6-4.3, opacity of emissions from the enclosed combustion device shall not exceed 20 percent, except as provided by 4.4. Particulate matter emissions from this unit will not exceed the levels calculated in accordance with 6-4.1.

§45-6-4.1 Determination for Maximum Allowable Particulate Emissions

Emissions (lb/hr) = F x Incinerator Capacity (tons/hr)

Incinerator Capacity = 0.12 tons per hour or 245 lbs/hr

 ρNG = 0.042 lb/scf – Density of NG from EPA AP42 – Sections 1.4 and 3.2 (NG combustion)

 $\frac{140,000\ scf}{day} * \frac{1\ day}{24\ hours} * \frac{0.042\ lb}{scf} = \frac{245\ lb}{hr} = \frac{1,073\ tons}{year}$

If the Incinerator Capacity is less than 15,000 lbs/hr, then F = 5.43

F = 5.43 * (0.12 tons per hour)

F = 0.67 lbs / hour

The enclosed combustion devices utilize AP-42 Section 1.4 PM emission factors to determine emissions from the combustion of refuse natural gas. Based upon the type of fuel combusted and the emission factors utilized, the PM emissions from the enclosed combustion devices will be well below the maximum allowable particulate emissions mandated by 45 CSR 06.

45 CSR 10 – To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

The line heaters are indirect heat exchangers that combust natural gas but are exempt since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 13 – Permits for Construction, Modification, Relocation, and Operation of Stationary Sources of Air Pollutants

This G70-B permit application is being submitted for the operational activities associated with EQT's production of natural gas.

45 CSR 14 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD). The G70B-applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the OXF-163 pad will not exceed emission thresholds established by this permitting program. EQT will monitor future construction and modification activities at the site closely and will compare future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

45 CSR 16 - Standards of Performance for New Stationary Sources (NSPS)

45CSR 16 applies to registrants that are subject to NSPS requirements described in more detail in the Federal Regulations section. Applicable requirements of NSPS, Subpart JJJJ and OOOO are included in the G70-B general permit.

This facility is expected to contain gas well affected facilities under Subpart OOOO. This facility will contain a spark ignition internal combustion engine subject to Subpart JJJJ. No additional NSPS are applicable for this facility. Additional discussion is provided in the Federal Regulation Discussion of this permit application.

45 CS R19 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contributed to Non-attainment

Federal construction permitting programs regulate new and modified sources of non-attainment pollutants under Non-Attainment New Source Review (NNSR). The G70-B applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the OXF-163 pad will not exceed emission thresholds established by either of these permitting programs. EQT will monitor future construction and modification activities at the site closely and will compare future increase in emissions with the NSR thresholds to ensure these activities will not trigger this program.

45 CSR 25 – Control of Air Pollution from Hazardous Waste Treatment, Storage, and Disposal Facilities

No hazardous waste will be burnt at this well site; therefore, it is not subject to this hazardous waste rule.

45 CSR 30 – Requirements for Operating Permits

45 CSR 30 applies to the requirements of the federal Title V operating permit program (40 CFR 70). The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of combination of HAPs, and 100 tpy of other regulated pollutants.

The potential emissions of regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpad is not a major source for Title V purposes.

45 CSR 34 – National Emission Standards for Hazardous Air Pollutants (NESHAP)

45 CSR 34 applies to registrants that are subject to the NESHAP requirements. Excluded from G70-B general permit eligibility are sources that are subject to NESHAP Subpart HHH.

The following NESHAP included in the G70-B permit are not subject to the OXF-163 facility:

• 40CFR63 Subpart HH (National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities).

FEDERAL REGULATIONS

40 CFR 60 Subpart JJJJ (Standards of Performance for Stationary Spark Ignition Internal Combustion Engines).

Subpart JJJJ sets forth nitrogen oxides (NOx), carbon monoxide (CO), and volatile organic compound (VOC) emission limits, fuel requirements, installation requirements, and monitoring requirements based on the year of installation of the subject internal combustion engine.

The Ford CSG-637 is a 110 HP EPA Certified 4 stroke lean burn (4SLB) spark ignition (SI) engine manufactured in 2015. Per 40CFR60.4230(a)(4)(iii), an engine manufactured on or after July 1, 2008 with a maximum engine power less than 500 HP must comply with the provisions of 40 CFR 60 Subpart JJJJ.

Emission standards contained in the EPA Certificate of Conformity issued to this engine conform to 40 CFR 60 Subpart JJJJ Table 1 - NOx, CO, VOC Emissions Standards for Stationary Non-Emergency SI Engines greater than 100 HP. Therefore, per 40CFR60.4243(a)(1), EQT must operate and maintain the certified stationary SI internal combustion engine and control device according to the manufacturer's emission-related written instructions to ensure applicable emission standards outlined in Part 60 Subpart JJJJ Table 1 are maintained. Additionally, performance testing is not required.

40 CFR 60 Subpart OOOO (Standards of Performance for Crude oil and Natural Gas Production, Transmission and Distribution)

EPA published the NSPS for the oil and gas sector on August 16, 2012. EPA published final amendments to the subpart on September 23, 2013.

Subpart OOOO establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC) and sulfur dioxide (SO₂) emissions from affected facilities that commence construction, modification or reconstruction after August 23, 2011. The applicable provisions and requirements of Subpart OOOO are included under the G70-B permit.

The only affected facilities expected to be subject to Subpart OOOO located at the OXF-163 production pad are listed below:

• Each gas well affected facility, which is a single natural gas well.

There are several equipment types that will be installed at OXF-163 that do not meet the affected facility definitions as specified by EPA. These include pneumatic controllers and storage vessels.

<u>Pneumatic Controllers</u>: Pneumatic controller installed at this facility will be intermittent bleed rate devices. Therefore, the facility will not qualify as a pneumatic controller affected facility.

<u>Storage vessels</u>: Based on PTE calculations included within this permit, each storage vessel will be manifolded and routed to an enclosed combustion device such that emissions from each of these tanks are expected to be below 6 tons per year (tpy) of VOC. Therefore, these tanks will not be considered group 2 storage vessel affected facilities as specified in §60.5365(e).

No additional NSPS are expected to be applicable to this facility.

40CFR63 Subpart ZZZZ (National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines)

Subpart ZZZZ establishes national emission limitations and operating limitations for hazardous air pollutants (HAPs) emitted from stationary reciprocating internal combustion engines (RICE) located at major and area sources of HAP emissions. This Subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations and operating limitations.

The Ford CSG-637 is a 110 HP EPA Certified 4 stroke lean burn (4SLB) spark ignition (SI) engine manufactured in 2015. The engine meets the requirements of 40 CFR 60 Subpart JJJJ. Per 40CFR63.6590(c)(1), no further requirements apply for a new stationary RICE located at an area source subject to regulation under 40 CFR 60 Subpart JJJJ.

No additional NESHAP are expected to be applicable to this facility.

dep	west virginia department of environmental protection West virginia department of environmental protection WV 253 Phone (304) 926-04 Fax (304) 926-04				
G70-B GF	NERAL PF	RMIT RE	GISTRATION A	www.dep.wv.gov	
PREVENTION AND	CONTROL OF AIR RELOCATION, A	POLLUTION IN	REGARD TO THE CONSTRUCT VE UPDATE AND OPERATION ITIES LOCATED AT THE WI	UCTION, MODIFICATION,	
□CONSTR ⊠MODIFIC □RELOCA	UCTION ATION		□CLASS I ADMINISTRATIV □CLASS II ADMINISTRATI	/E UPDATE	
	SE	CTION I. GENEI	RAL INFORMATION		
Name of Applicant (a	s registered with the V	WV Secretary of S	tate's Office): EQT Productio	n Company	
Federal Employer ID	No. (FEIN): 25-0724	685			
Applicant's Mailing A	ddress: 625 Liberty	Avenue, Suite 1	700		
City: Pittsburgh		State: PA		ZIP Code: 15222	
Facility Name: OXF-1	63 Natural Gas Pro	oduction Facility	Y	I month of the second	
Operating Site Physics If none available, list	al Address: None road, city or town and	l zip of facility. S	Summers Rd. Brushy Fork, W	Vest Union, WV 26456	
City: West Union, W	IV	Zip Code: 26456		County: Ritchie	
Latitude & Longitude Latitude: 39.13602 Longitude: -80.84274		, Decimal Degrees	to 5 digits):		
SIC Code: 1311		······································	DAQ Facility ID No. (For exis	ting facilities)	
NAICS Code: 211111			085-00053		
	C	ERTIFICATION O	OF INFORMATION		
Official is a Presiden Directors, or Owner, d authority to bin Proprietorship. Re compliance certif Representative. If a bu off and the approg unsigned G70-B Regi	t, Vice President, Sec lepending on business d the Corporation, Pa equired records of dail ications and all requin usiness wishes to certioriate names and signi stration Application	retary, Treasurer, s structure. A busin rtnership, Limited ly throughput, hou red notifications m ify an Authorized 1 atures entered. An will be returned	be signed below by a Responsib General Partner, General Manag tess may certify an Authorized R Liability Company, Association rs of operation and maintenance ust be signed by a Responsible (Representative, the official agree y administratively incomplete to the applicant. Furthermore applicant. No substitution of	er, a member of the Board of Representative who shall have Joint Venture or Sole general correspondence, Official or an Authorized ement below shall be checked or improperly signed or if the G70-B forms are not	
I hereby certify that business (e.g., Corpore may obligate and legal shall notify the Directo	ly bind the business.	nited Liability Co If the business cha	ve and in that capacity shall repr mpany, Association Joint Ventur anges its Authorized Representat iately.	e or Sole Proprietorship) and	
I hereby certify that al documents appended h have been made to pro	ereto is, to the best of	f my knowledge, ti	eneral Permit Registration Appl rue, accurate and complete, and t on possible.	ication and any supporting that all reasonable efforts	
Responsible Official S Name and Title: Kenn Email:		e Vice Presiden Date:	<u>t</u> Phone: 412 5535	700 Fax: N/A	
f applicable: Authorized Representa Name and Title: Email:	tive Signature:	Phone: Date:	Fax:		
lf applicable: Environmental Contact Name and Title: <u>Envir</u> Email: abosiljevac@	onmental Coordina		2) 395-3699	Fax:	

OPERATING SITE INFORMATION

Briefly describe the proposed new operation and/or any change(s) to the facility: **EQT proposes the addition of one** (1) low pressure separator to regulate flashing emissions from produced fluids originating from the six (6) high pressure phase separators. The low pressure separator will be installed between the high pressure phase separators and produced fluid tanks. A natural gas compressor engine will be installed to compress the natural gas realized at the low pressure separator and directed to the sales pipeline.

Directions to the facility: Traveling North on Route 19 (Grove Summers Road), turn left in Summers, WV onto Sugar Run. Continue for 1.83 miles and at the fork turn left Summers Rd Brushy Fork. Travel a little over a mile and take the unnamed road on the left to the site. The facility is located alongside this unnamed road.

ATTACHMENTS AND SUPPORTING DOCUMENTS

I have enclosed the following required documents:

Check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22).

 \Box Check attached to front of application.

□ I wish to pay by electronic transfer. Contact for payment (incl. name and email address):

⊠ I wish to pay by credit card. Contact for payment (incl. name and email address): <u>Alex Bosiljevac -</u> <u>abosiljevac@eqt.com</u>

S500 (Construction, Modification, and Relocation)
 S300 (Class II Administrative Update)
 \$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or OOOO ¹
 \$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH ²

¹ Only one NSPS fee will apply.

² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ.

NSPS and NESHAP fees apply to new construction or if the source is being modified.

Responsible Official or Authorized Representative Signature (if applicable)

Single Source Determination Form (must be completed in its entirety) – Attachment A

□ Siting Criteria Waiver (if applicable) – Attachment B	🖾 Current Business Certificate – Attachment C

Image: Process Flow Diagram – Attachment DImage: Process Description – Attachment E

⊠ Plot Plan – Attachment F ⊠ Area Map – Attachment G

☐ G70-B Section Applicability Form – Attachment H ☐ Emission Units/ERD Table – Attachment I

Superior Fugitive Emissions Summary Sheet – Attachment J

 \boxtimes Gas Well Affected Facility Data Sheet (if applicable) – Attachment K

Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L

🖾 Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M

⊠ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N

🖾 Tanker Truck Loading Data Sheet (if applicable) – Attachment O

 \Box Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalcTM input and output reports and information on reboiler if applicable) – Attachment P

Pneumatic Controllers Data Sheet – Attachment Q

 \boxtimes Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment R

🗵 Emission Calculations (please be specific and include all calculation methodologies used) – Attachment S

⊠ Facility-wide Emission Summary Sheet(s) – Attachment T

🖾 Class I Legal Advertisement – Attachment U

🖾 One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments

All attachments must be identified by name, divided into sections, and submitted in order.

Table of Contents

- ATTACHMENT A SINGLE SOURCE DETERMINATION FORM
- ATTACHMENT B CITING CRITERIA WAIVER (NOT APPLICABLE)
- ATTACHMENT C BUSINESS CERTIFICATE
- ATTACHMENT D PROCESS FLOW DIAGRAM
- ATTACHMENT E PROCESS DESCRIPTION
- ATTACHMENT F PLOT PLAN
- ATTACHMENT G AREA MAP
- ATTACHMENT H APPLICABILITY FORM
- ATTACHMENT I EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE
- ATTACHMENT J FUGITIVE EMISSIONS SUMMARY SHEET
- ATTACHMENT K GAS WELL AFFECTED FACILITY DATA SHEET
- ATTACHMENT L STORAGE VESSEL DATA SHEET
- ATTACHMENT M HEATER AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART Dc
- ATTACHMENT N INTERNAL COMBUSTION ENGINE DATA SHEET
- ATTACHMENT O TANKER TRUCK LOADING DATA SHEET
- ATTACHMENT P GLYCOL DEHYDRATION UNIT DATA SHEET (NOT APPLICABLE)
- ATTACHMENT Q PNEUMATIC CONTROLLERS DATA SHEET
- ATTACHMENT R AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE (ERD) SHEET
- ATTACHMENT S EMISSION CALCULATIONS
- ATTACHMENT T FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET
- ATTACHMENT U CLASS I LEGAL ADVERTISEMENT

Attachment A

SINGLE SOURCE DETERMINATION FORM

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

Is there a facility owned by or associated with the natural gas industry located within one (1) mile of the proposed facility? Yes X No \Box

If Yes, please complete the questionnaire on the following page (Attachment A).

Please provide a source aggregation analysis for the proposed facility below:

See Introduction for additional source aggregation analysis.

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Answer each question with a detailed explanation to determine contiguous or adjacent properties which are under a common control and any support facilities. This section must be completed in its entirety.

Provide a map of contiguous or adjacent facilities (production facilities, compressor stations, dehydration facilities, etc.) which are under common control and those facilities that are not under common control but are support facilities. Please indicate the SIC code, permit number (if applicable), and the distance between facilities in question on the map.

indicate the bic code; permit number (if appreable), and the distance between facilities in question	on the map.	
Are the facilities owned by the same parent company or a subsidiary of the parent company? Provide the owners identity and the percentage of ownership of each facility.	Yes 🖂	No 🗆
Does an entity such as a corporation have decision making authority over the operation of a second entity through a contractual agreement or voting interest? Please explain.	Yes 🖂	No 🗆
Is there a contract for service relationship between the two (2) companies or, a support/dependency relationship that exists between the two (2) companies? Please explain.	Yes 🗆	No 🛛
Do the facilities share common workforces, plant managers, security forces, corporate executive officers or board executives?	Yes 🗵	No 🗆
Will managers or other workers frequently shuttle back and forth to be involved actively at both facilities?	Yes 🗆	No 🛛
Do the facilities share common payroll activities, employee benefits, health plans, retirement funds, insurance coverage, or other administrative functions? Please explain.	Yes 🛛	No 🗆
Does one (1) facility operation support the operation of the other facility?	Yes 🗆	No 🛛
Is one (1) facility dependent on the other? If one (1) facility shuts down, what are the limitations on the other to pursue outside business? Please explain.	Yes 🗆	No 🛛
Are there any financial arrangements between the two (2) entities?	Yes 🗆	No 🛛
Are there any legal or lease agreements between the two (2) facilities?	Yes 🗆	No 🛛
Do the facilities share products, byproducts, equipment, or other manufacturing or air pollution control device equipment? Please explain.	Yes 🗆	No 🛛
Do all the pollutant-emitting activities at the facilities belong to the same SIC Code? Please provide the SIC Codes. 1311	Yes 🗵	No 🗆
Was the location of the new facility chosen primarily because of its proximity to the existing facility to integrate the operation of the two (2) facilities? Please explain.	Yes 🗆	No 🛛
Will materials be routinely transferred between the two (2) facilities? Please explain the amount of transfer and how often the transfers take place and what percentages go to the various entities.	Yes 🗆	No 🛛
Does the facility influence production levels or compliance with environmental regulations at other facilities? Who accepts the responsibility for compliance with air quality requirements? Please explain.	Yes 🗆	No 🛛
	1	

Attachment B

CITING CRITERIA WAIVER – (NOT APPLICABLE)

Attachment C

BUSINESS CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: EQT PRODUCTION COMPANY 625 LIBERTY AVE 1700 PITTSBURGH, PA 15222-3114

BUSINESS REGISTRATION ACCOUNT NUMBER:

1022-8081

This certificate is issued on: 08/4/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.3 L0553297664

Attachment D PROCESS FLOW DIAGRAM

Attachment D OFX 163 Natural Gas Production Process Flow Diagram

\bigcirc

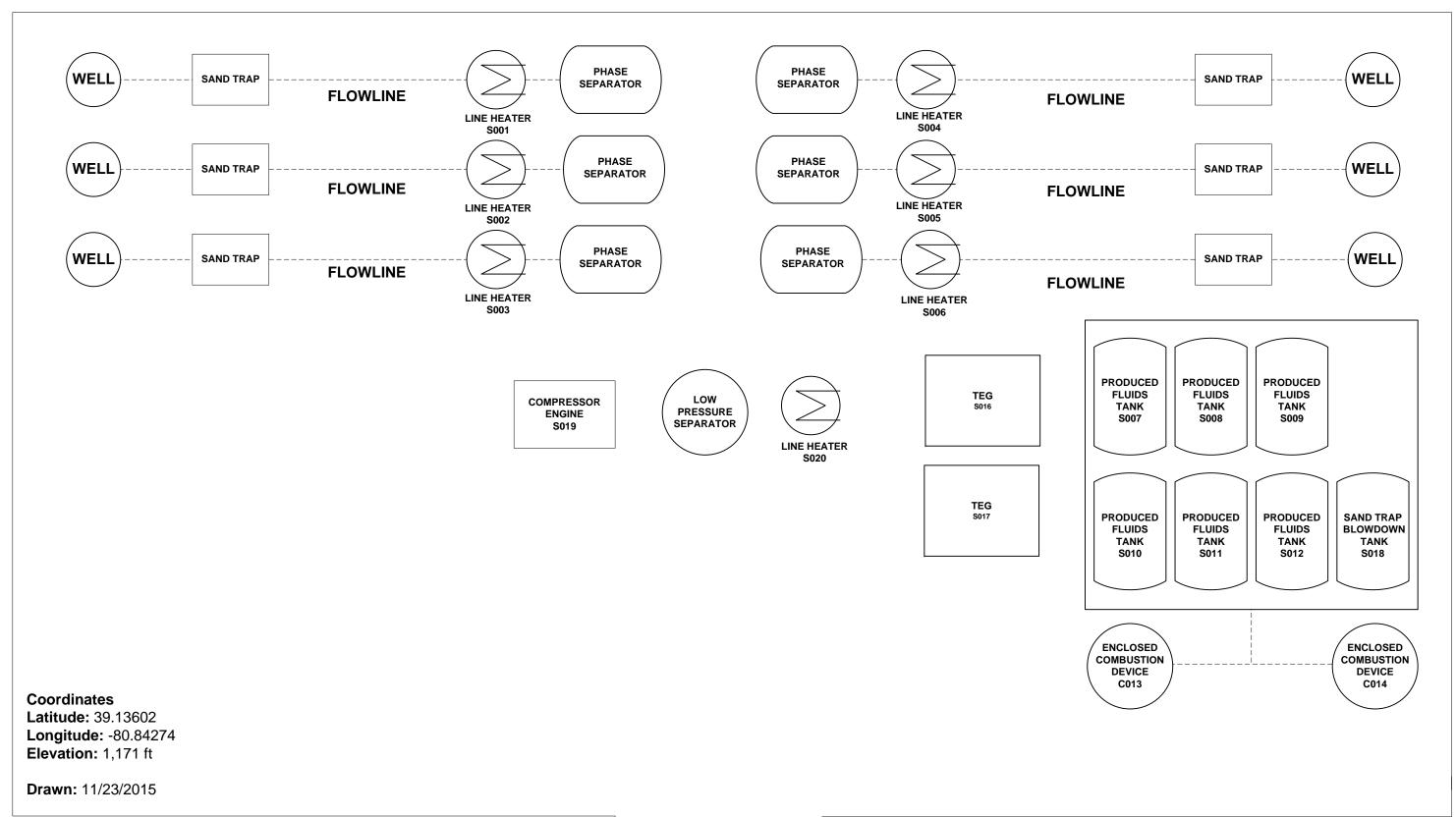
Attachment E

PROCESS DESCRIPTION

Attachment E Process Description

This permit modification application is being filed for EQT Production Company and addresses operational activities associated with the OXF-163 natural gas production site. Incoming raw natural gas from the six (6) wells enters the site through a pipeline. The raw gas is first routed through the sand traps to remove any sediment. Fluids from these sand traps are manually blown down to the sand trap blowdown tank (S018), as needed. From the sand traps, raw gas is routed through line heaters (S001-S006) to assist with the phase separation process in the downstream high pressure phase separators. In the high pressure phase separators, produced fluids are removed from the raw gas before being dumped to a second stage of fluid separation. The produced fluids pass through a line heater (S020) to further assist in the separation process. At this low pressure separator, produced fluid pressure is reduced from approximately 390 psig to 30 psig. Vapors realized at the low pressure separator are directed to a 110 bhp compressor engine (S019) and routed to the sales pipeline. Produced fluids from the low pressure separator are routed to the produced fluids storage tanks (S007-S012). Emissions from the produced fluids tanks and sand trap blowdown tank are directed to one of the two enclosed combustion devices (C013, C014) and combusted. Produced fluids are pumped into a tank truck (S015) on an as-needed basis and are disposed of off-site. Vapors during truck loading will be controlled by either of the two enclosed combustion devices.

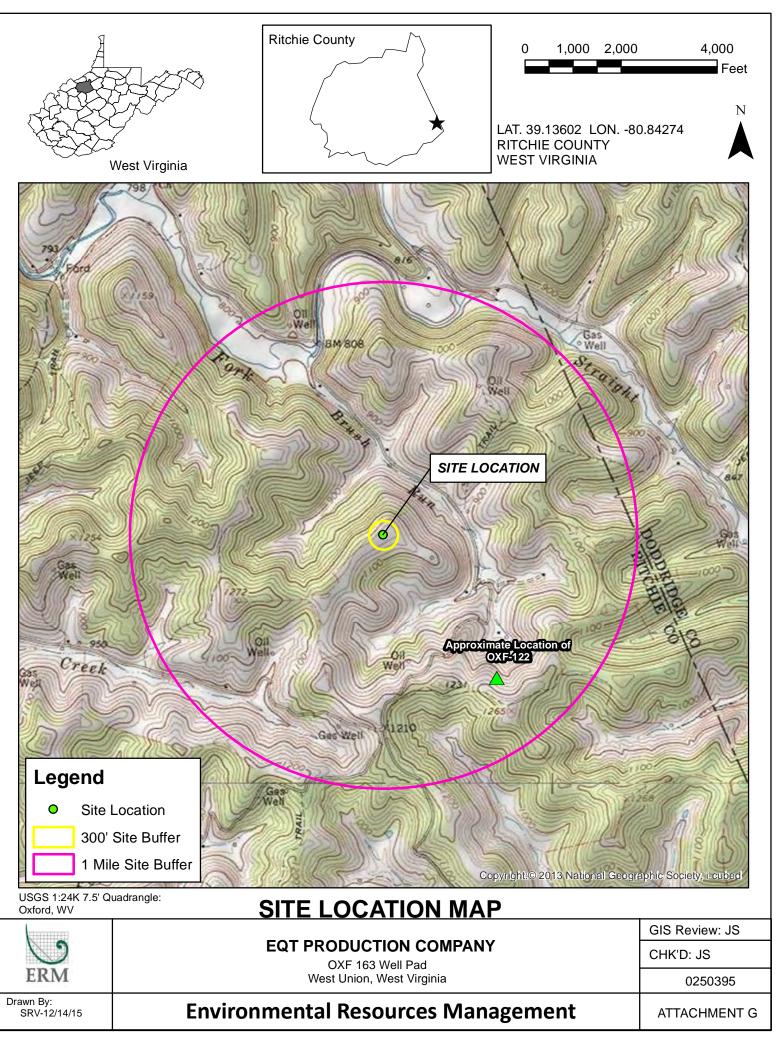
Two thermoelectric generation units (S016, S017) are operated and provide power to the OXF-163 natural gas production site.


A process flow diagram is included as Attachment D.

Attachment F

Attachment F

Plot Plan



Attachment G

AREA MAP

DX C

Attachment H APPLICABILITY FORM

ATTACHMENT H – G70-B SECTION APPLICABILITY FORM

General Permit G70-B Registration Section Applicability Form

General Permit G70-B was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-B allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

	GENERAL PERMIT G70-B APPLICABLE SECTIONS
X Section 5.0	Gas Well Affected Facility (NSPS, Subpart OOOO)
X Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹
\Box Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO)
X Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO and/or NESHAP Subpart HH
X Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc
□Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)
□Section 11.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO) ²
□Section 12.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO) ²
X Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines, Microturbines
X Section 14.0	Tanker Truck Loading ³
□Section 15.0	Glycol Dehydration Units ⁴

1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 8.

2 Applicants that are subject to Section 11 and 12 may also be subject to the applicable RICE requirements of Section 13.

3 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.

4 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

Attachment I

EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
S001	E001	Line Heater	2015	2015	1.54 MMBtu/hr	Existing	NA	NA
S002	E002	Line Heater	2015	2015	1.54 MMBtu/hr	Existing	NA	NA
S003	E003	Line Heater	2015	2015	1.54 MMBtu/hr	Existing	NA	NA
S004	E004	Line Heater	2015	2015	1.54 MMBtu/hr	Existing	NA	NA
S005	E005	Line Heater	2015	2015	1.54 MMBtu/hr	Existing	NA	NA
S006	E006	Line Heater	2015	2015	1.54 MMBtu/hr	Existing	NA	NA
S007	E013 E014	Produced Fluid Tank	2015	2015	400 bbl	Modification	C013 C014	NA
S008	E013 E014	Produced Fluid Tank	2015	2015	400 bbl	Modification	C013 C014	NA
S009	E013 E014	Produced Fluid Tank	2015	2015	400 bbl	Modification	C013 C014	NA
S010	E013 E014	Produced Fluid Tank	2015	2015	400 bbl	Modification	C013 C014	NA
S011	E013 E014	Produced Fluid Tank	2015	2015	400 bbl	Modification	C013 C014	NA
S012	E013 E014	Produced Fluid Tank	2015	2015	400 bbl	Modification	C013 C014	NA
C013	E013	Enclosed Combustion Device	2015	2015	11.66 MMBtu/hr	Modification	NA	NA
C014	E014	Enclosed Combustion Device	2015	2015	11.66 MMBtu/hr	Modification	NA	NA
S015	E013 E014 E015	Tank Truck Loading Rack	2015	2015	55,640 gal/day	Modification	NA	NA
S016	E016	Thermal Electric Generator	2015	2015	0.013 MMBtu/hr	Existing	NA	NA
S017	E017	Thermal Electric Generator	2015	2015	0.013 MMBtu/hr	Existing	NA	NA

S018	E013 E014	Sand Trap Blowdown Tank	2015	2015	100 bbl	Existing	C013 C014	NA
S019	E019	Natural Gas Compressor Engine	2016	2015	110 bhp	New	NA	Selective Catalytic Reduction
S020	E020	Line Heater	2016	2015	1.54 MMBtu/hr	New	NA	NA
 ¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S, or other appropriate designation. ² For Emission Points use the following numbering system:1E, 2E, 3E, or other appropriate designation. ³ When required by rule ⁴ New, modification, removal, existing ⁵ For Control Devices use the following numbering system: 1C, 2C, 3C, or other appropriate designation. ⁶ For ERDs use the following numbering system: 1D, 2D, 3D, or other appropriate designation. 								

Attachment J

FUGITIVE EMISSIONS SUMMARY SHEET

			ATTACHMENT J – FUGITIVE EMI	SSIONS SUMM	IARY SHE	ET			
	Sources of fugitive emissions may include loading operations, equipment leaks, blowdown emissions, etc.								
	Use extra pages for each associated source or equipment if necessary. Source/Equipment: Facility Wide								
	Leak Detection Method Used		□ Audible, visual, and olfactory (AVO) inspections □ Infrared (FLIR) cameras	☐ Other (please follow section 4			□ None required		
Compone	Closed		Source of Leak Factors	Stream type		Estimated Emi	ssions (tpy)		
Туре	Vent System	Count	(EPA, other (specify))	(gas, liquid, etc.)	VOC	НАР	GHG (CO ₂ e)		
Pumps	□ Yes □ No			□ Gas □ Liquid □ Both					
Valves	□ Yes ⊠ No	237	EPA, 40 CFR 98 Subpart W	⊠ Gas □ Liquid □ Both	0.30	0.03	22.86		
Safety Reli Valves	ef \square Yes \boxtimes No	7	EPA, 40 CFR 98 Subpart W	⊠ Gas □ Liquid □ Both	0.01	<0.01	1.00		
Open Ende Lines	d □ Yes ⊠ No	17	EPA, 40 CFR 98 Subpart W	⊠ Gas □ Liquid □ Both	0.05	<0.01	3.70		
Sampling Connection	IS Yes			□ Gas □ Liquid □ Both					
Connection (Not samplin		1040	EPA, 40 CFR 98 Subpart W	⊠ Gas □ Liquid □ Both	0.15	0.01	11.14		
Compresso	rs Yes No	1	EPA, 40 CFR 98 Subpart W Table W-1B: Default average component counts are used for major equipment. Compressor components (12 valves and 57 connections) are included in valve and connection counts.	⊠ Gas □ Liquid □ Both					
Flanges	□ Yes □ No			□ Gas □ Liquid □ Both					
Other ¹	□ Yes □ No			□ Gas □ Liquid □ Both					
¹ Other equ	ipment types m	ay include	e compressor seals, relief valves, diaphragms, drains, meters, etc.				· · · · · · · · · · · · · · · · · · ·		
			sources of fugitive emissions (e.g. pigging operations, equipmened surfaces associated with production equipment, including		atic controllers	, etc.):			
Please indi	cate if there are	any close	d vent bypasses (include component): NA						
Specify all	equipment used	in the clo	osed vent system (e.g. VRU, ERD, thief hatches, tanker truck loa	ding, etc.) NA					

Attachment K

GAS WELL AFFECTED FACILITY DATA SHEET

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device
47-085-10132	February 2016*	February 2016*	Green Completion
47-085-10133	February 2016*	February 2016*	Green Completion
47-085-10134	February 2016*	February 2016*	Green Completion
47-085-10135	February 2016*	February 2016*	Green Completion
47-085-10136	February 2016*	February 2016*	Green Completion
47-085-10137	February 2016*	February 2016*	Green Completion

*Anticipated

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

047 =	State code.	The state	code for W	'V is 047.
001	Country Cold	C		

- 001 = County Code. County codes are odd numbers, beginning with 001 (Barbour) and continuing to 109 (Wyoming).
- 00001 = Well number. Each well will have a unique well number.

Note: If future wells are planned and no API number is available please list as PLANNED. If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

Attachment L STORAGE VESSEL DATA SHEET

ATTACHMENT L – STORAGE VESSEL DATA SHEET

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name OXF-163 Storage Tank Area	2. Tank Name Produced Fluid Tanks (S007-S012)					
3. Emission Unit ID number S007-S012	4. Emission Point ID number E013 or E014					
 5. Date Installed , Modified or Relocated (for existing tanks) Anticipated 2/2016 Was the tank manufactured after August 23, 2011? ☑ Yes □ No 	 6. Type of change: □ New construction □ New stored material ⊠ Other □ Relocation 					
 7A. Description of Tank Modification (<i>if applicable</i>) Addition of upstream low pressure separator. 7B. Will more than one material be stored in this tank? <i>If so, a separate form must be completed for each material.</i> 						
□ Yes ⊠ No 7C. Was USEPA Tanks simulation software utilized? □ Yes ⊠ No						
If Yes, please provide the appropriate documentation and items	8-42 below are not required.					
TANK INFORMATION						
8. Design Capacity (<i>specify barrels or gallons</i>). Use the internal 16,800 gallons	cross-sectional area multiplied by internal height.					
9A. Tank Internal Diameter (ft.) 12	9B. Tank Internal Height (ft.) 20					

9A. Talik Internal Diameter (II.) 12	9B. Tank Internal Height (It.) 20			
10A. Maximum Liquid Height (ft.) 20	10B. Average Liquid Height (ft.) 10			
11A. Maximum Vapor Space Height (ft.) 20	11B. Average Vapor Space Height (ft.) 10			
12. Nominal Capacity (specify barrels or gallons).	This is also known as "working volume". 16,800 gallons			
13A. Maximum annual throughput (gal/yr) 20,002,	58413B. Maximum daily throughput (gal/day) 54,801			
14. Number of tank turnovers per year 1,191	15. Maximum tank fill rate (gal/min) 38.06			
16. Tank fill method \Box Submerged \Box Splash \boxtimes Bottom Loading				
17. Is the tank system a variable vapor space system	n? 🗆 Yes 🖾 No			
If yes, (A) What is the volume expansion capacity of	f the system (gal)?			
(B) What are the number of transfers into the	system per year?			
18. Type of tank (check all that apply):				
\boxtimes Fixed Roof \boxtimes vertical \square horizontal	\Box flat roof \Box cone roof \boxtimes dome roof \Box other (describe)			
\Box External Floating Roof \Box pontoon roof	\Box double deck roof			
Domed External (or Covered) Floating Roof				
\Box Internal Floating Roof \Box vertical column	an support			
□ Variable Vapor Space □ lifter roof □	diaphragm			
□ Pressurized □ spherical □	cylindrical			
□ Other (describe)				

PRESSURE/VACUUM CONTROL DATA

19. Check as many as apply:						
□ Does Not Apply	\Box Rupture Disc (psig)					
□ Inert Gas Blanket of	\Box Carbon Adsorption ¹					
☑ Vent to Vapor Combustion Devic	Vent to Vapor Combustion Device ¹ (vapor combustors, flares, thermal oxidizers, enclosed combustors)					
□ Conservation Vent (psig)	\Box Condenser ¹					
Vacuum Setting	Pressure Setting					
Emergency Relief Valve (psig)	Emergency Relief Valve (psig)					
-0.5 oz Vacuum Setting 16.0 d	Pressure Setting					
□ Thief Hatch Weighted □ Yes ⊠ No - A lock down screw hatch will be installed instead of Thief Hatch.						
¹ Complete appropriate Air Pollution Control Device Sheet						

20. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).									
Material Name	Flashing Loss Breathing Loss		ng Loss	Working Loss		Total Emissions		Estimation	
							Loss		Method ¹
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Produced Fluid (Pre- Control)	97.53	427.18	0.02	0.07	0.08	0.36	97.63	427.61	O - ProMax

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND	OPERATIC	ON INFORMATION			
21. Tank Shell Construction:					
	🗆 Epox	y-coated rivets 🛛 O			
21A. Shell Color: Green		21B. Roof Color: Gre	en	21C. Year	r Last Painted: NA
22. Shell Condition (if metal and u	nlined):				
🛛 No Rust 🛛 Light Rust	□ Dense			-	
22A. Is the tank heated? \Box Yes		22B. If yes, operating t	emperature:	22C. If ye	es, how is heat provided to tank?
23. Operating Pressure Range (psig					
Must be listed for tanks using				1	
24. Is the tank a Vertical Fixed Ro	of Tank?	24A. If yes, for dome	roof provide radius (ft):	24B. If ye	es, for cone roof, provide slop (ft/ft):
\boxtimes Yes \Box No		5 ft			
25. Complete item 25 for Floating		s \Box Does not apply	\boxtimes		
25A. Year Internal Floaters Installe	ed:				
25B. Primary Seal Type (check one	e): 🗆 Met	allic (mechanical) sho	e seal 🛛 Liquid mo	unted resili	ent seal
	🗆 Vap	oor mounted resilient s	eal \Box Other (des	scribe):	
25C. Is the Floating Roof equipped	l with a seco	ndary seal? 🛛 Yes	□ No		
25D. If yes, how is the secondary s	eal mounted	$!? (check one) \square Sho$	e 🗆 Rim 🗆 Otl	her (descrit	be):
25E. Is the floating roof equipped v	with a weath	er shield? 🗌 Yes	🗆 No		
25F. Describe deck fittings:					
26. Complete the following section	for Interna	l Floating Roof Tanks	\boxtimes Does not apply	у	
26A. Deck Type: 🗌 Bolted	□ V	Velded	26B. For bolted decks, provide deck construction:		
26C. Deck seam. Continuous shee	t constructio	on:			
\Box 5 ft. wide \Box 6 ft. wide \Box	7 ft. wid	e \Box 5 x 7.5 ft. wide	\Box 5 x 12 ft. wide \Box	other (de	escribe)
26D. Deck seam length (ft.):	26E. Area	a of deck (ft ²):	26F. For column supportanks, # of columns:	orted	26G. For column supported tanks, diameter of column:
27. Closed Vent System with VRU	? 🗆 Yes	🖾 No			
28. Closed Vent System with Enclo	osed Combu	stor? 🛛 Yes 🗌 No			
SITE INFORMATION					
29. Provide the city and state on wh					
30. Daily Avg. Ambient Temperate			31. Annual Avg. Maxi	-	
32. Annual Avg. Minimum Tempe	rature (°F):	44.0	33. Avg. Wind Speed	(mph): 18 n	ıph
34. Annual Avg. Solar Insulation F	Factor (BTU)	/ft ² -day): 1,123	35. Atmospheric Press	ure (psia): 1	4.7 (Atmosphere)
LIQUID INFORMATION			1		

36. Avg. daily temperature range of bulk liquid (°F): 82.9	36A. Minimum (°F): 82.9			36B. Maximur	m (°F): 82.9
37. Avg. operating pressure range of tank (psig): 0 psig	37A. Minimum (psig): 0 psig			37B. Maximum (psig): 0 psig	
38A. Minimum liquid surface temperature (°F)	: 82.9	38B. (Corresponding va	apor pressure (psi	ia): 0.43
39A. Avg. liquid surface temperature (°F): 82.	9	39B. (Corresponding va	apor pressure (psi	ia): 0.43
40A. Maximum liquid surface temperature (°F): 82.9	40B. 0	Corresponding va	apor pressure (psi	ia): 0.43
41. Provide the following for each liquid or gas	s to be stored in the tank.	Add add	litional pages if r	necessary.	
41A. Material name and composition:	Produced Flui	d			
41B. CAS number:					
41C. Liquid density (lb/gal):	7.9				
41D. Liquid molecular weight (lb/lb-mole):	19.68				
41E. Vapor molecular weight (lb/lb-mole):					
41F. Maximum true vapor pressure (psia):					
41G. Maximum Reid vapor pressure (psia):					
41H. Months Storage per year.	From: January To: December				
42. Final maximum gauge pressure and temperature prior to transfer into tank used as inputs into flashing emission calculations.	30 psig 110 F				

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴
NA	NA	NA	NA

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc. 2.

Enter storage tank Status using the following:

EXIST Existing Equipment

Installation of New Equipment NEW

REM Equipment Removed

Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. 3.

4. Enter the maximum design storage tank volume in gallons.

ATTACHMENT L – STORAGE VESSEL DATA SHEET

1. Bulk Storage Area Name OXF-163 Storage Tank	2. Tank Name Sand Trap Blowdown Tank					
Area						
3. Emission Unit ID number S018	4. Emission Point ID number E013 or E014					
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:					
Anticipated 02/2016	\Box New construction \Box New stored material \boxtimes Other					
Was the tank manufactured after August 23, 2011?	□ Relocation					
\boxtimes Yes \square No						
7A. Description of Tank Modification (<i>if applicable</i>) Instal						
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.					
\Box Yes \boxtimes No						
7C. Was USEPA Tanks simulation software utilized?						
\Box Yes \boxtimes No						
If Yes, please provide the appropriate documentation and item.	s 8-42 below are not required.					
ANK INFORMATION						
8. Design Capacity (<i>specify barrels or gallons</i>). Use the interna 16,800 gallons						
9A. Tank Internal Diameter (ft.) 12	9B. Tank Internal Height (ft.) 20					
10A. Maximum Liquid Height (ft.) 20	10B. Average Liquid Height (ft.) 10					
11A. Maximum Vapor Space Height (ft.) 20	11B. Average Vapor Space Height (ft.) 10					
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 5,800 gallons					
13A. Maximum annual throughput (gal/yr) 305,760	13B. Maximum daily throughput (gal/day) 838					
14. Number of tank turnovers per year 52	15. Maximum tank fill rate (gal/min) 14					
16. Tank fill method \Box Submerged \Box Splash	⊠ Bottom Loading					
17. Is the tank system a variable vapor space system? \Box Yes	🖾 No					
If yes, (A) What is the volume expansion capacity of the system	-					
(B) What are the number of transfers into the system per	year?					
18. Type of tank (check all that apply):						
\boxtimes Fixed Roof \square vertical \boxtimes horizontal \square flat root	f \Box cone roof \Box dome roof \Box other (describe)					
□ External Floating Roof □ pontoon roof □ double	deck roof					
Domed External (or Covered) Floating Roof						
□ Internal Floating Roof □ vertical column support	□ self-supporting					
□ Variable Vapor Space □ lifter roof □ diaphragm						
□ Pressurized □ spherical □ cylindrical						
□ Other (describe)						
RESSURE/VACUUM CONTROL DATA						
19. Check as many as apply:						
□ Does Not Apply □ Rupt	ure Disc (psig)					
□ Inert Gas Blanket of □ Cart	oon Adsorption ¹					
\boxtimes Vent to Vapor Combustion Device ¹ (vapor combustors, flare	es, thermal oxidizers, enclosed combustors)					
□ Conservation Vent (psig) □ Cond	lenser ¹					
0.5 oz Vacuum Setting 14 oz Pressure Setting						
Emergency Relief Valve (psig)						
-0.5 oz Vacuum Setting 16.0 oz Pressure Setting						
\Box Thief Hatch Weighted \Box Yes \boxtimes No - A lock down screw	hatch will be installed instead of Thief Hatch.					

¹ Complete appropriate Air Pollution Control Device Sheet

20. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).									
Material Name	Flashi	ng Loss	Breathing Loss Working Loss		g Loss	Total E	missions	Estimation	
							Loss		Method ¹
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Produced Fluid (pre-control)	5.64	24.7	0.0	0.0	0.003	0.01	5.64	24.71	O - ProMax

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATIO	N INFORMATION						
21. Tank Shell Construction:							
\Box Riveted \Box Gunite lined \Box Epox	y-coated rivets $\boxtimes O$	ther (describe) WEL	DED				
21A. Shell Color: Green	21B. Roof Color: Gr	een	21C. Year	Last Painted: NA			
22. Shell Condition (if metal and unlined):	•		•				
\boxtimes No Rust \square Light Rust \square Dense	Rust 🛛 Not applic	able					
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating t	emperature:	22C. If ye	s, how is heat provided to tank?			
23. Operating Pressure Range (psig): -0.5 oz.	23. Operating Pressure Range (psig): -0.5 oz. to 14 oz.						
Must be listed for tanks using VRUs wi							
24. Is the tank a Vertical Fixed Roof Tank ?	•	roof provide radius (ft):	24B. If ye	s, for cone roof, provide slop (ft/ft):			
\boxtimes Yes \square No	5 ft.		NA				
25. Complete item 25 for Floating Roof Tanks	\square Does not apply	\boxtimes					
25A. Year Internal Floaters Installed:							
25B. Primary Seal Type (check one): Met	allic (mechanical) sho	e seal 🛛 Liquid mo	unted resili	ent seal			
U Vap	or mounted resilient s	eal \Box Other (des	scribe):				
25C. Is the Floating Roof equipped with a seco	ndary seal? 🛛 Yes	□ No					
25D. If yes, how is the secondary seal mounted	? (check one) \Box Sho	e 🗆 Rim 🗆 Otl	her (describ	be):			
25E. Is the floating roof equipped with a weath	er shield? 🗌 Yes	🗆 No					
25F. Describe deck fittings:							
26. Complete the following section for Interna	l Floating Roof Tanks	\boxtimes Does not apply	y				
26A. Deck Type: Bolted W	/elded	26B. For bolted decks,	, provide dec	k construction:			
26C. Deck seam. Continuous sheet construction	n:						
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	e \Box 5 x 7.5 ft. wide	\Box 5 x 12 ft. wide \Box	other (de	escribe)			
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. For column supportanks, # of columns:	orted	26G. For column supported tanks, diameter of column:			
27. Closed Vent System with VRU? Yes	🗆 No						
28. Closed Vent System with Enclosed Combu	stor? 🛛 Yes 🗆 No						
SITE INFORMATION							
29. Provide the city and state on which the data	in this section are based	Charleston, WV					
30. Daily Avg. Ambient Temperature (°F): 70	° F	31. Annual Avg. Maxi	mum Tempe	erature (°F): 65.5 °F			
32. Annual Avg. Minimum Temperature (°F):	44 °F	33. Avg. Wind Speed	(mph): 18 1	nph			

34. Annual Avg. Solar Insulation Factor (BTU/ft ² -day): 1,123		35. A	35. Atmospheric Pressure (psia): 14.70			
LIQUID INFORMATION						
36. Avg. daily temperature range of bulk	36A. Minimum (°F):	81.24		36B. Maximur	n (°F): 81.24	
liquid (°F): 81.24						
37. Avg. operating pressure range of tank	37A. Minimum (psig	(): 0 psi	g	37B. Maximur	n (psig): 0 psig	
(psig): 0 psig		-	-			
	01.04					
38A. Minimum liquid surface temperature (°F): 81.24	38B.	Corresponding	vapor pressure (ps	ia): 0.4	
39A. Avg. liquid surface temperature (°F): 81.24		39B.	Corresponding	vapor pressure (ps	ia): 0.4	
40A. Maximum liquid surface temperature (°F): 81.24		40B. Corresponding vapor pressure (psia): 0.4				
41. Provide the following for each liquid or ga	s to be stored in the tank	. Add add	litional pages i	f necessary.		
41A. Material name and composition:	Produced Fl	uid				
41B. CAS number:						
41C. Liquid density (lb/gal):	7.95					
41D. Liquid molecular weight (lb/lb-mole):	19.68					
41E. Vapor molecular weight (lb/lb-mole):						
41F. Maximum true vapor pressure (psia):						
41G. Maximum Reid vapor pressure (psia):						
41H. Months Storage per year.	From: Janua To: Decembe					
42. Final maximum gauge pressure and	393 psia					
temperature prior to transfer into tank used as	85 F					
inputs into flashing emission calculations.						

Certificate of Analysis :

13060035-001A

Company: Well: Field:	Gas Analytical Services Oxford 21 Pad EQT Midstream	For:	Gas Analytical Services Alan Ball PO Box 1028	3
Sample of: Conditions: Sampled by:	Condensate-Spot 393 @ N.G. RM-GAS		Bridgeport, WV, 26330	
Sample dy: Sample date: Remarks: Remarks:	5/28/2013 Cylinder No.: GAS	Report Da	ate: 6/27/2013	

Analysis: (GPA 2186M)	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %
Nitrogen	0.000	28.013	0.000	0.8094	0.000
Methane	12.131	16.043	2.159	0.3000	4.855
Carbon Dioxide	0.087	44.010	0.042	0.8180	0.035
Ethane	10.145 30.070		3.384	0.3562	6.403
Propane	9.322	44.097	4.560	0.5070	6.061
lso-butane	2.446	58.123	1.577	0.5629	1.889
N-butane	6.995	58.123	4.510	0.5840	5.207
Iso-pentane	3.988	72.150	3.191	0.6244	3.446
N-pentane	5.018	72.150	4.016	0.6311	4.291
i-Hexanes	· 4.263	86.177	4.026	0.6795	4.092
n-Hexane	4.311	85.713	4.125	0.6640	4.172
2,2,4 trimethylpentane	0.025	114.231	0.032	0.6967	0.031
Benzene	0.136	78.114	0.102	0.8846	0.090
Heptanes	11.691	97.742	12.715	0.7030	12.206
Toluene	0.717	92.141	0.630	0.8719	0.569
Octanes	9.741	106.996	11.781	0.7535	10.540
E-benzene	0.074	106.167	0.040	0.8718	0.068
M-,O-,P-xylene	0.878	106.167	1.032	0.8731	0.803
Nonanes	4.769	122.539	6.704	0.7576	6.051
Decanes Plus	13.263	240.460	35.374		29.191
	100.000	-	100.000		100.000

Calculated Values	Total Sample	Decanes Plus
Specific Gravity at 60 °F	0.6744	0.8174
Api Gravity at 60 °F	78.317	41.616
Molecular Weight	90.157	240.460
Pounds per Gallon (in Vacuum)	5.623	6.815
Pounds per Gallon (in Air)	5.617	6.807
Cu. Ft. Vapor per Gallon @ 14.73 psia	23.722	10.730

Southern Petroleum Laboratories, Inc.

Attachment M

HEATER AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART Dc

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵	
S001	E001	Line Heater	2015	Existing	1.54	1,088	
S002	E002	Line Heater	2015	Existing	1.54	1,088	
S003	E003	Line Heater	2015	Existing	1.54	1,088	
S004	E004	Line Heater	2015	Existing	1.54	1,088	
S005	E005	Line Heater	2015	Existing	1.54	1,088	
S006	E006	Line Heater	2015	Existing	1.54	1,088	
S016	E016	TEG	2015	Existing	0.013	1,088	
S017	E017	TEG	2015	Existing	0.013	1,088	
S020	E020	Line Heater	2015	New	1.54	1,088	

¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.

² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.

³ New, modification, removal

⁴ Enter design heat input capacity in MMBtu/hr.

⁵ Enter the fuel heating value in BTU/standard cubic foot.

Attachment N

INTERNAL COMBUSTION ENGINE DATA SHEET

ATTACHMENT N – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. Generator(s) and microturbine generator(s) shall also use this form.

Emission Unit I	$D#^1$	SO	19						
Engine Manufac	turer/Model	Ford / C	CSG-637						
Manufacturers H	Rated bhp/rpm	110 /	3200						
Source Status ²		N	IS						
Date Installed/ Modified/Remo	ved/Relocated ³	04/2	2016						
Engine Manufac /Reconstruction	tured Date ⁴	20	015						
Check all applic Rules for the en EPA Certificate if applicable) ⁵	gine (include	 ⋈ 40CFR60 S ⋈ JJJJ Certifi □ 40CFR60 S □ IIII Certific □ 40CFR63 S □ NESHAP 2 JJJJ Window □ NESHAP 2 Sources 	ed? ubpart IIII ed? ubpart ZZZZ	□ 40CFR60 S □ JJJJ Certifi □ 40CFR60 S □ HIII Certifi □ 40CFR63 S □ NESHAP 2 JJJJ Window □ NESHAP 2 Sources	ed? Subpart IIII ed? Subpart ZZZZ	□ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources			
Engine Type ⁶			LB						
APCD Type ⁷		SO	CR						
Fuel Type ⁸		Р	Q						
H ₂ S (gr/100 scf))	0.	25						
Operating bhp/r	pm	110 /	3,200						
BSFC (BTU/bhj	o-hr)	6,5	52.9						
Hourly Fuel Th	oughput	686.5 ft ³ / ga	hr l/hr		/hr l/hr		/hr l/hr		
Annual Fuel Th (Must use 8,760 emergency gene	hrs/yr unless	6.01 MMf ga	t ³ /yr l/yr		Aft ³ /yr l/yr	MMft ³ /yr gal/yr			
Fuel Usage or H Operation Meter		Yes 🖂	No 🗆	Yes 🗆 No 🗆		Yes 🗆	No 🗆		
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)		
MD	NO _x	0.42	1.85						
MD	СО	0.88	3.85						
MD	VOC	0.29	1.29						
AP	SO ₂	<0.01	<0.01						
AP	PM (Filterable)	<0.01	<0.01						
AP	PM (Condensable)	<0.01	0.03						
AP	Formaldehyde	0.04	0.17						
AP	Total HAPs	0.04	0.17						
AP	GHG (CO ₂ e)	95.79	419.54						

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS Construction of New Source (installation) ES Existing Source

	MS REM	Modification of Existing Source Removal of Source	RS	Re	ocated Source								
3	Enter th	he date (or anticipated date) of the engine's installation	n (constru	ction of s	ource), modification, relocation or removal.								
4	Enter th	he date that the engine was manufactured, modified or	reconstru	icted.									
5	must be mainter	e operated and maintained in accordance with the man nance to demonstrate compliance, but no performance nufacturer's emission-related written instructions, the	ufacturer' testing is	s emissio required	ording to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device on-related written instructions. You must keep records of conducted If the certified engine is not operated and maintained in accordance with idered a non-certified engine and you must demonstrate compliance as								
	Provide a manufacturer's data sheet for all engines being registered.												
6	Enter th	he Engine Type designation(s) using the following coo	les:										
	2SLB 4SLB	Two Stroke Lean Burn Four Stroke Lean Burn	4SRB Four Stroke Rich Burn										
7	Enter th	ne Air Pollution Control Device (APCD) type designa	tion(s) us	ing the fo	llowing codes:								
	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction		IR SIPC LEC OxCat	Ignition Retard Screw-in Precombustion Chambers Low Emission Combustion Oxidation Catalyst								
8	Enter th	ne Fuel Type using the following codes:											
	PQ	Pipeline Quality Natural Gas RC	G Ra	w Natura	Gas /Production Gas D Diesel								
9	Enter t	the Potential Emissions Data Reference design	ation usi	ng the f	ollowing codes. Attach all reference data used.								
	MD GR	Manufacturer's Data GRI-HAPCalc TM	AP OT										

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# E019, use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included? Yes 🖂 No 🗆

□ NSCR

SCR

□ Oxidation Catalyst

Provide details of process control used for proper mixing/control of reducing agent with gas stream: Sequential Multipart **Fuel Injection**

Manufacturer: Ford	Model #: CSG-637
Design Operating Temperature: 1,600 °F	Design gas volume: scfm
Service life of catalyst: 5000 hrs	Provide manufacturer data? 🛛 Yes 🛛 No
Volume of gas handled: 444.9 cfm at 1,600 °F	Operating temperature range for NSCR/Ox Cat: From °F to °F
Reducing agent used, if any:	Ammonia slip (ppm):
Pressure drop against catalyst bed (delta P): 6" inches	of H ₂ O
Provide description of warning/alarm system that prote	ccts unit when operation is not meeting design conditions:
Is temperature and pressure drop of catalyst required to □ Yes ⊠ No	b be monitored per 40CFR63 Subpart ZZZZ?
How often is establish recommanded or required to be r	1 1/1 6 (;)0

How often is catalyst recommended or required to be replaced (hours of operation)?

5000 hrs

How often is performance test required?

🗌 Initial 🗌 Annual

Every 8,760 hours of operation Field Testing Required

No performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT, 40CFR60.4243(a)(1) - EQT must operate and maintain the certified stationary SI internal combustion engine and control device according to the manufacturer's emission-related written instructions, keep records of conducted maintenance to demonstrate compliance, but no performance testing is required.

		Gas	soline			L	PG				NG		
RPM Cont [HP] [HP] [HP] Consum		Fuel Consumption [gal/hr]	Power Cont. [HP]	Power Int. [HP]	BSFC [lb/hp-hr]	Fuel Consumption [gal/hr]	Power Cont. [HP]	Power Int. [HP]	BSFC [ft^3/hp- hr]	Fuel Consumption [ft^3/hr]	Fuel Consumption [btu/hr]		
1500	42.3	47.0	0.48	3.7	52.1	57.9	0.34	4.1	47.8	53.1	6.81	361.8	379,914
1600	47.7	53.0	0.45	3.9	56.8	63.2	0.33	4.3	52.4	58.2	6.54	380.9	399,966
1700	52.2	58.0	0.43	4.1	60.0	66.7	0.33	4.6	54.7	60.8	6.58	400.0	420,019
1800	55.0	61.1	0.43	4.2	63.1	70.2	0.33	4.8	57.0	63.3	6.62	419.1	440,071
1900	58.5	65.0	0.42	4.4	66.3	73.7	0.33	5.0	60.1	66.7	6.57	438.2	460,124
2000	61.2	68.0	0.41	4.6	69.5	77.2	0.33	5.2	63.1	70.2	6.52	457.3	480,176
2100	65.7	73.0	0.40	4.7	73.1	81.2	0.33	5.5	66.0	73.4	6.49	476.4	500,229
2200	70.2	78.0	0.39	4.9	76.7	85.2	0.33	5.7	68.9	76.6	6.47	495.5	520,281
2300	74.7	83.0	0.37	5.0	81.1	90.1	0.32	5.9	73.0	81.1	6.34	514.6	540,334
2400	79.2	88.0	0.36	5.2	85.4	94.9	0.32	6.2	77.1	85.6	6.23	533.7	560,386
2500	82.8	92.0	0.35	5.3	89.4	99.3	0.31	6.4	80.7	89.6	6.17	552.8	580,439
2600	85.5	95.0	0.35	5.4	93.3	103.7	0.31	6.6	84.3	93.6	6.11	571.9 6	600,491
2700	87.3	97.0	0.35	5.5	95.9	106.6	0.31	6.9	87.0	96.6	6.12	591.0	620,544
2800	88.2	98.0	0.35	5.7	98.6	109.5	0.31	7.1	89.7	99.6	6.12	610.1	640,596
2900	89.1	99.0	0.36	5.8	101.0	112.3	0.32	7.3	92.6	102.9	6.11	629.2	660,649
3000	90.9	101.0	0.36	5.9	103.5	115.0	0.32	7.5	95.5	106.1	6.11	648.3	680,701
3100	93.6	104.0	0.35	6.0	104.8	116.5	0.32	7.8	97.3	108.1	6.17	667.4	700,754
3200	96.3	107.0	0.35	6.1	106.1	117.9	0.33	8.0	99.0	110.0	6.24	686.5	720,806

CSG637

*Fuel Consumption and BSFC listed is 100% Intermittent Load

*Figures are Gross; Fan losses not accounted for.

Attachment O

TANKER TRUCK LOADING DATA SHEET

		ENT O – TAI				1		
Emission Uni				E013/E014	ł	rear Inst	alled/Mo	dified: 2015
Emission Uni	t Description:	Fank Truck Loadi	ng Rack					
			Loading	Area Data				
Number of Pu	mps: 1	Numbe	r of Liquids	Loaded: 1		Max num (1) time:	cks loading at one	
Are tanker tru If Yes, Please		sted for leaks at this	or any other	r location?	□ Yes	🛛 No	🗆 Not	Required
		vent system and an s not available.	y bypasses.	Emissions co	ollected	and contro	olled by e	nclosed
□ Closed Sy □ Closed Sy	stem to tanker t stem to tanker t	k loadout systems u ruck passing a MAC ruck passing a NSP	T level annu S level annua	al leak test?				
Closed Sy	stem to tanker t	ruck not passing an	annual leak	test and has v	apor ret	urn?		
	Projecteo	d Maximum Operat	ing Schedul	e (for rack o	or transf	er point as	a whole)
Time		Jan – Mar	Apr	- Jun	J	Jul – Sept		Oct - Dec
Hours/day		As needed	As n	eeded	A	s needed		As needed
Days/week		As needed	As no	eeded	A	s needed		As needed
		Bulk Liquid	Data (use e	xtra pages a	s necess	ary)		
Liquid Name		Produced F	luids					
Max. Daily T (1000 gal/day)	55.64						
Max. Annual (1000 gal/yr)		20,306.	1					
Loading Meth	iod ¹	BF						
Max. Fill Rat	e (gal/min)	42						
Average Fill ((min/loading)		100 mi	n					
Max. Bulk Li Temperature		70 °F						
True Vapor P	ressure ²	NA						
Cargo Vessel	Condition ³	U						
Control Equip Method ⁴	oment or	Enclosed Con Device (C013 or C						
Max. Collecti (%)	on Efficiency	70 %						
Max. Control (%)	Efficiency	98 %						
Max.VOC Emission	Loading (lb/hr)	0.05						
Rate	Annual (ton/yr)	0.22						
Max.HAP Emission	Loading (lb/hr)	<0.01						
Rate	Annual (ton/yr)	<0.01						
Estimation M	ethod ⁵	EPA AP-42, Pro	Max					
BF	Bottom Fill	SI	P Splas	h Fill		SUB	Submerg	ged Fill
At ma B O	ximum bulk liquic Ballasted Ve Other (descri	ssel C	Clear	ned		U	Unclean	ed (dedicated service
	s many as apply Carbon Ads Enclosed C Thermal Ox EPA Emiss	(complete and sub	VB F ation	Dedicat Flare		r Balance (o	closed sys	,

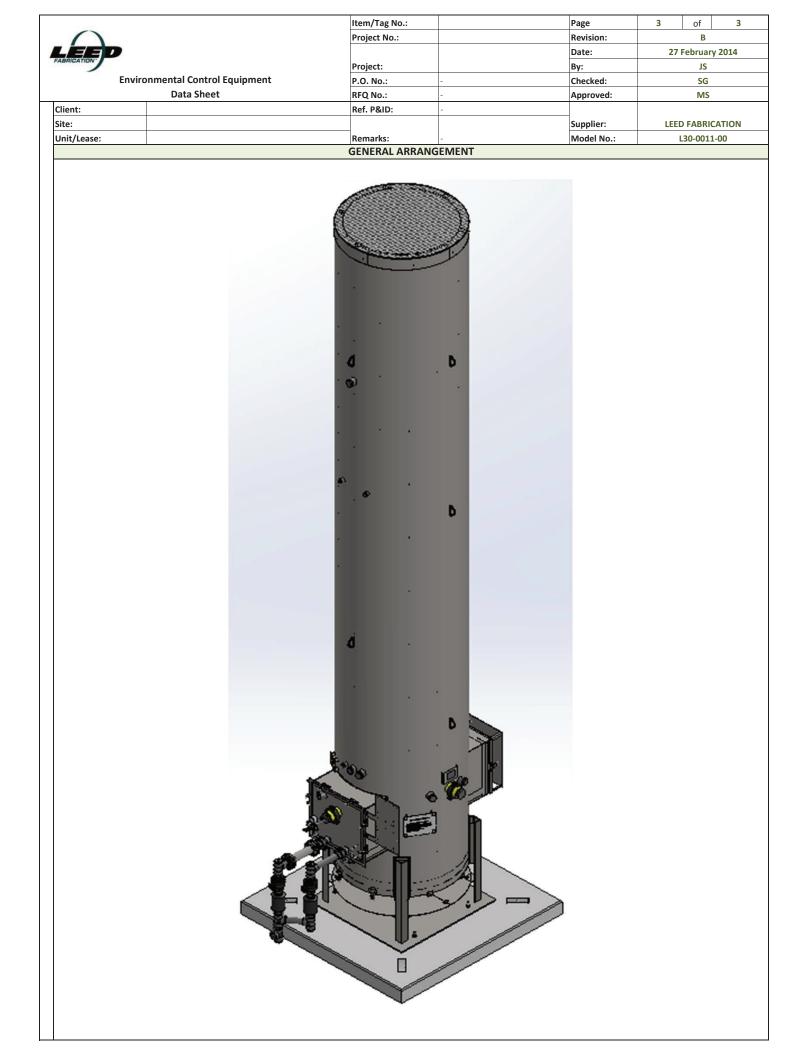
Attachment Q

PNEUMATIC CONTROLLERS DATA SHEET

ATTACHMENT Q – PNEUMATIC CONTROLLERS DATA SHEET										
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011?										
\Box Yes \boxtimes No										
Please list approximate number.										
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011?										
Please list approximate number.										

Attachment R

AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE (ERD) SHEET


ATTACHMENT R – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

	VAPOR COMBUSTION (Including Enclosed Combustors)												
		(Ir			ibusto	ors)							
			General Ir										
Control De	vice ID#: C013			Installation Date: 2015									
Maximum ~7,800 sci	Rated Total Flow C h 188,000			Maximum Heat Input mfg. spec s 11.66 MMBTU/h	(from sheet)	Design Heat Content 1,088 BTU/scf							
			Control Devic	e Informati	on								
Type of Vapor Combustion Control?													
Enclose	ed Combustion Devi l Oxidizer	ce	Elevatoria Elevatoria	ed Flare			Ground Flare						
	rer: LEED Fabrica			Hours of o	peration	per year? 8	3,760						
List the emission units whose emissions are controlled by this vapor control device (Emission Point ID# S007-S012 , S015 , S018)													
Emission Unit ID#	Emission Source I	escriptio	n	Emission Unit ID#	Emission Source Description								
S007- S012	Produ	ed Flui	d Tanks										
S018	Sand Tra	p Blowd	lown Tank										
S015	Tank Tr	ick Load	ding Rack										
If this	vapor combustor c	ontrols en	nissions from more the	an six (6) em	ission ur	iits, please	attach additional pages.						
Assist Typ	e (Flares only)		Flare Height	Tip Diameter			Was the design per §60.18?						
Steam Pressu	re Air Non		~25 feet	4 feet			☐ Yes ☐ No Provide determination.						
			Waste Gas 1	Information	l								
Maximum	Waste Gas Flow Ra (lb/hr)	e 55.96	Heat Value of W Variable		ream	Exit Vel	ocity of the Emissions Stream (ft/s)						
	Provide an	attachme	nt with the characteri	stics of the v	vaste gas	stream to	be burned.						
			Pilot Gas I	nformation									
Number	of Pilot Lights 1		Flow Rate to Pilot ame per Pilot ~ 30 scfh		nput per MMBTU		Will automatic re-ignition be used? Set Yes Solution No						
If automati	c re-ignition is used	, please d	lescribe the method.										
	me equipped with a f the flame? \square		o detect the □ No	If Yes, what type? ⊠ Thermocouple □ Infrared □ Ultraviolet □ Camera □ Other:									
			enance procedures req ched manufacture s				aintain the warranty. (If						
			s □ No lata sheets, drawings,	flame demoi	nstration	per §60.18	or §63.11(b) and						

	VAPOR COMBUSTION												
		(In	cluding Enclo	sed Con	ıbusto	rs)							
			General Ir	nformation									
Control De	evice ID#: C014			Installation		015 Aodified	Relocated						
Maximum ~7,800 sct	Rated Total Flow C fh 188,00 0			Maximum Heat Input mfg. spec 11.66 MMBTU/h	(from sheet)	Design Heat Content 1,088 BTU/scf							
			Control Devic	e Informati	on								
	ed Combustion Dev l Oxidizer	ice	Type of Vapor Co		ontrol?		Ground Flare						
	rer: LEED Fabrica closed Combusto			Hours of o	peration	per year? 8	3,760						
List the emission units whose emissions are controlled by this vapor control device (Emission Point ID# S007-S012 , S015 , S018)													
Emission Unit ID#	Emission Source I	Description	n	Emission Unit ID#	Emissie	Description							
S007- S012	Produ	ced Flui	d Tanks										
S018	Sand Tra	ap Blowd	lown Tank										
S015	Tank Tr	uck Loac	ling Rack										
If this	s vapor combustor c	ontrols en	nissions from more the	an six (6) en	nission ur	iits, please	attach additional pages.						
Assist Typ	e (Flares only)		Flare Height	Tip Diameter			Was the design per §60.18?						
Steam Pressu	re 🛛 Air		~25 feet	4 feet			☐ Yes ☐ No Provide determination.						
			Waste Gas 1	Information	1								
Maximum	Waste Gas Flow Ra (lb/hr)	ite 55.96	Heat Value of W Variable		ream	Exit Vel	ocity of the Emissions Stream (ft/s)						
	Provide an	attachme	nt with the characteri	stics of the	waste gas	stream to	be burned.						
			Pilot Gas I	nformation									
Number	of Pilot Lights 1		Flow Rate to Pilot ame per Pilot ~30 scfh		nput per MMBTU		Will automatic re-ignition be used? Ves 🛛 No						
If automati	ic re-ignition is used	l, please d	lescribe the method.										
	me equipped with a f the flame? ⊠		o detect the D No	If Yes, what type? ⊠ Thermocouple □ Infrared □ Ultraviolet □ Camera □ Other:									
			enance procedures req ched manufacture s				intain the warranty. (If						
	*		s 🗆 No ata sheets, drawings,	flame demo	nstration	per §60.18	or §63.11(b) and						

_																	
	-							Item/Tag No.	No.:			Page		1	of	2	
1								Project No.:					Revision:			В	
	LEED												Date:		27	February	2014
1	FABRICATION							Dealert							21		
								Project:					Ву:			JS	
	Enviro	omen	ital (Control Equipme	ent			P.O. No.:		-			Checked:			SG	
1			Dat	a Sheet				RFQ No.:		-			Approved	d:		MS	
F	Client:		-					Ref. P&ID:									
								Ref. P&ID:		-			-				
	Site:								S						LEEI	D FABRIC	CATION
	Unit/Lease:							Remarks:		-			Model No	odel No.: L30-0011-00			
								GENERAL									
	Design Codes							01			lupr				CED Fabrics	tion Cha	a da uda
1	Design Code:										NDE:			LI	EED Fabrica	ation Sta	ndards
2	Service:										Custon	ner Specs:		Yes			
3	Description:			Standard	Dual	Stage 48 H	ligh Effic	iency Combus	tor						✓ No		
-										TA					<u> </u>		
								PROCI	ESS DAT								
	Gas Composition:							nol %	Process	Conditions:							
	das composition.						'	1101 /6		Variable		Valu	e	Units	5		
4	Methane					-				Flow Rate		Up to	140	Mscf	4		
												· ·			-		
5	Ethane								Pressure		Up to	12	oz/in	2			
6	Propane	Propane							Temperature					°F			
7	I-Butane								M	olecular Wei	ght	1					
											-				التربيع ال		
8	n-Butane									ess/Waste S		✓ Gas			Liquid		
9	I-Pentane								Detaile	d Process De	scriptio	n / Process N	lotes:				
10	n-Pentane								1. Turno	down 10:1. E	Based or	an expected	normal o	peratin	g rate indic	cated abo	ove.
												esign conditi			-		
11	n-Hexane										-	in. 0.10 oz/in					
12	C02								S. Burn	er Fressure I	210p. IVI		£				
13	N2	N2															
14									1								
									-								
15	H ₂ O								1								
16	C7																
17	C8																
18	C9																
19	C10																
20	C11+																
	TOTAL								-								
21				10	JIAL												
	Other Components:						-	PPMV	Availab	le Utilities:							
22	H2S								F	uel / Pilot G	as		Min.	30psig	Natural Ga	s /Propa	ne 40-50 SCFH
23	Benzene								1	nstrument A	ir		NA				
												-					
24	Toluene									Power			120 \	V / 60 H	z or Solar P	ower	
25	E-Benzene									Steam			NA				
26	Xylene								1	Purge Gas							
Ē								DECK	DESIGN DATA			1					
						-		DESIC	1								
27	Ambient Temperatures	s:								erformance	Require	ments:			Unde	r 85 dBA	
28			Low,	°F			-20			ral Design Co	ode:						
29		ł	ligh,	°F			120		Wind Design Code:					ASCE			
	Design Conditions:		ress	ure/Temperature					<u>+</u>								
31	Max. Relative Humidity	y, %				<u> </u>	90				Pressu	Pressure/Speed				h	
32	Elevation (ASL), ft										Catego	ry					
33							Class I D	iv 2	Seismin	ismic Design Code:							
									Scianic	Design Cour							
34	Electrical Design Code:	_					NEC		Location								
1							E	QUIPMENT	INT SPECIFICATION								
35	Туре:			Elevated	√ E	inclosed			Equipm	ent Design:							
36			\Box	Above Ground						-	ompone	ont		N/~	terial / Size	a / Ratin	7 / Other
					- •	Authinta Ct	cl.		-		ompone			ivia	cendi / SIZE	- / nating	57 Other
37				Stack	î	Iultiple Sta	CK		Burner								
38				Portable / Trailer						Burner Tip) / Assist	Gas Burner			30	04 SS	
39											urner Bo					on Steel	
40	Smokeless By:			Steam	<u>م</u> ۲	ssist Air			Dilat	D		1			Carb		
	SHIOKEIESS DY.		<u> </u>		_				Pilot								
41				Gas Assist	∕ S	taging					Pilot Tip)			30	04 SS	
42									F	ilot Line	(s)			Carb	on Steel		
43	Stack: Self Supporting						Fireboy	/ Stack									
					7 0	mokel		C • · · ·	FILEDOX	JUGLK	<i></i>						
44						mokeless		Gas Assist	I		Shell					on Steel	
45	Pilot:				Continuc	nuous		Piping					Carb	on Steel			
46	Pilot Air Inspirator: 🗸 Local 🗌 Remo				Remote			· · ·		5			Carb	on Steel	-		
						ermocoup	le)	Nozzles									
47	Pilot Flame Control: No Yes (1				1 162 (11)6	επιοcoup		Flanges				Carbon Steel					
48									Insulation				Blanket				
49	Pilot Ignition: 🗌 Flamefront Generator 🗸 Inspir				Inspirati	ng Ignito	r	Insulation Pins				304 SS					
50					Automat	_	Manual					NA					
						<u> </u>		Refractory									
51				h Pilot Flame Cont					Refractory Anchors				NA				
52			Wit	h Auto Pilot Re-Igr	nition				Ladders and Platforms						NA		
53												nnections		Per EPA requirements			
			M4 -	aual a st		· · · -·									TELEPAT		
54					i.e P	iezo-Electi	ric		I		Sight Gla	SS				2	
55	1		Bat	terv Pack					1		Other						

		Item/Tag	No.:	Page	2	of	3
\cap		Project N		Revision:		В	
LEED				Date:	2	7 Februar	y 2014
FABRICATION		Project:		By:		JS	
Enviror	nmental Control Equipme		_	, Checked:		SG	
	Data Sheet	RFQ No.:	_	Approved:		MS	
Client:		Ref. P&I		, the second			
Site:				Supplier:		ED FABRIC	
Unit/Lease:		Remarks	_	Model No.		L30-0011	
Officy Lease.			NT SPECIFICATION	woder wo.	•	130-0011	1-00
Flama Datastian	Thormocouple	✓ Ionization Rod					
Flame Detection:	Thermocouple		Auxiliary Equipment				
Concerned Constitutions	UV Scanner		Valves			NA	
General Configuration:			Blowers			NA	
	Comment	8	Dampers			NA	
			Inlet KO / Liquid Seal			NA	
			Flame / Detonation Arres	tor		Yes	
	•		Instrumentation & Controls				
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Solenoids / Shut-Off Valv	res (Check with Sale	es for avail	lable conf
			Flow Meters			NA	
		D	Calorimeter			NA	
			Pressure Switches/Transmit	tters		NA	
			Thermocouples		Check with Sale	es for avail	lable conf
	a		Temperature Switches/Transr	mitters		NA	
			BMS	(Check with Sal	es for avail	lable conf
	tran .		CEMS			NA	
			Other			NA	
			Other			NA	
	S REAL		Other			NA	
			Other			NA	
			Other			NA	
		FABRICATIO	Other			NA	
Special requirements	Skid Mounted	-		Equipment Inf	0	NA	
Special requirements			DN AND INSPECTION	Equipment Infr			ions
Special requirements	Skid Mounted	-	DN AND INSPECTION Component	Equipment Infr		/ Dimensi	ions
	Other	-	DN AND INSPECTION Component Burner	Equipment Infr			ions
Special requirements Inspection	Other Vendor Standard	-	DN AND INSPECTION Component Burner Burner Assembly	Equipment Infr			ions
Inspection	Other Vendor Standard Other. Specify:	-	DN AND INSPECTION Component Burner Burner Assembly Stack	Equipment Inf	Weight	/ Dimensi	
	Other Vendor Standard Other. Specify: Vendor Standard	-	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly	Equipment Inf	Weight		
Inspection	○ Other ○ Vendor Standard ○ Other. Specify: ○ Vendor Standard ○ MTR	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip	Equipment Inf	Weight	/ Dimensi	
Inspection	Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s)	Equipment Infr	Weight	/ Dimensi	
Inspection Material Certification	 Other ✓ Vendor Standard Other. Specify: ✓ Vendor Standard MTR Certificate of Com Other (Specify): 	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly	Equipment Infr	Weight	/ Dimensi	
Inspection	○ Other ✓ Vendor Standard ○ Other. Specify: ✓ Vendor Standard ○ MTR ○ Certificate of Com ○ Other (Specify): ✓ Vendor Standard	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment	Equipment Infr	Weight	/ Dimensi	
Inspection Material Certification	✓ Other ✓ Vendor Standard ✓ Other. Specify: ✓ Vendor Standard MTR Certificate of Com Other (Specify): ✓ ✓ Vendor Standard Radiography. Specify	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers	Equipment Infr i i i i i i i i i i i i i	Weight	/ Dimensi	
Inspection Material Certification	Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Spec Ultrasonic. Specify	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal		Weight	/ Dimensi	
Inspection Material Certification	Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Spec Ultrasonic. Specify Liquid Penetrant.	Concrete Pad	DN AND INSPECTION Component Burner Stack Stack Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arresi		Weight	/ Dimensi	
Inspection Material Certification	Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Spec Ultrasonic. Specify Liquid Penetrant. Magnetic Particles.	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid		Weight	/ Dimensi	
Inspection Material Certification	Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Spec Ultrasonic. Specify Liquid Penetrant. Magnetic Particles. PMI. Specify:	Concrete Pad	DN AND INSPECTION Component Burner Stack Stack Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arresi		Weight	/ Dimensi	
Inspection Material Certification NDE	 Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Specify Ultrasonic. Specify Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: 	Concrete Pad	DN AND INSPECTION Component Burner Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid		Weight	/ Dimensi	
Inspection Material Certification	Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Spec Ultrasonic. Specify Liquid Penetrant. Magnetic Particles. PMI. Specify:	Concrete Pad	DN AND INSPECTION Component Burner Stack Stack Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid Instrumentation & Controls		Weight	/ Dimensi	
Inspection Material Certification NDE	 Other Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Specify Ultrasonic. Specify Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Other. Specify: Other. Specify: 	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid Instrumentation & Controls BMS		Weight	/ Dimensi	
Inspection Material Certification NDE	 Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Specify Ultrasonic. Specify Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard 	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid Instrumentation & Controls BMS		Weight	/ Dimensi	
Inspection Material Certification NDE Surface Preparation	 Other Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Specify Ultrasonic. Specify Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Other. Specify: Other. Specify: 	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid Instrumentation & Controls BMS		Weight	/ Dimensi	
Inspection Material Certification NDE Surface Preparation	 Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Spec Ultrasonic. Specify Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard 	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid Instrumentation & Controls BMS		Weight	/ Dimensi	
Inspection Material Certification NDE Surface Preparation Paint System	 Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Spec Ultrasonic. Specify Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: 	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid Instrumentation & Controls BMS		Weight	/ Dimensi	
Inspection Material Certification NDE Surface Preparation Paint System	 Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Spec Ultrasonic. Specify: Ultrasonic. Specify: Other. Specify: Other. Specify: Vendor Standard 	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid Instrumentation & Controls BMS		Weight	/ Dimensi	

		Pressure			
Flare Size	# of Orifices (N)	(OZ/in^2)	m³/s	mSCFD	MMBTU/hr
18	2	1	0.0021	6.34	0.39
18	2	2	0.0029	8.97	0.56
18	2	3	0.0036	10.99	0.68
18	2	4	0.0042	12.69	0.78
18	2	5	0.0046	14.18	0.88
18	2	6	0.0051	15.54	0.96
18	2	7	0.0055	16.78	1.04
18	2	8	0.0059	17.94	1.11
18	2	9	0.0062	19.03	1.18
18	2	10	0.0066	20.06	1.24
18	2	11	0.0069	21.04	1.30
18	2	12	0.0072	21.97	1.36
18	2	13	0.0075	22.87	1.42
18	2	14	0.0078	23.73	1.47
18	2	15	0.0081	24.57	1.52
18	2	16	0.0083	25.37	1.57
18	2	17	0.0086	26.15	1.62
18	2	18	0.0088	26.91	1.67
24	4	1	0.0042	12.69	0.78
24	4	2	0.0059	17.94	1.11
24	4	3	0.0072	21.97	1.36
24	4	4	0.0083	25.37	1.57
24	4	5	0.0093	28.37	1.76
24	4	6	0.0102	31.08	1.92
24	4	7	0.0110	33.56	2.08
24	4	8	0.0118	35.88	2.22
24	4	9	0.0125	38.06	2.35
24	4	10	0.0131	40.12	2.48
24	4	11	0.0138	42.08	2.60
24	4	12	0.0144	43.95	2.72
24	4	13	0.0150	45.74	2.83
24	4	14	0.0156	47.47	2.94
24	4	15	0.0161	49.13	3.04
24	4	16	0.0166	50.75	3.14
24	4	17	0.0171	52.31	3.24
24	4	18	0.0176	53.82	3.33
36	10	1	0.0104	31.72	1.96
36	10	2	0.0147	44.85	2.78
36	10	3	0.0180	54.93	3.40

§ MMBTU/hr values are calculated based on 1500 BTU/scf gas

 $P_{age} 15$

36	10	4	0.0208	63.43	3.92
36	10	5	0.0232	70.92	4.39
36	10	6	0.0255	77.69	4.81
36	10	7	0.0275	83.91	5.19
36	10	8	0.0294	89.71	5.55
36	10	9	0.0312	95.15	5.89
36	10	10	0.0329	100.29	6.21
36	10	11	0.0345	105.19	6.51
36	10	12	0.0360	109.87	6.80
36	10	13	0.0375	114.35	7.08
36	10	14	0.0389	118.67	7.34
36	10	15	0.0403	122.83	7.60
36	10	16	0.0416	126.86	7.85
36	10	17	0.0429	130.77	8.09
36	10	18	0.0441	134.56	8.33
48	14	1	0.0146	44.40	2.75
48	14	2	0.0206	62.79	3.89
48	14	3	0.0252	76.91	4.76
48	14	4	0.0291	88.80	5.49
48	14	5	0.0325	99.29	6.14
48	14	6	0.0356	108.76	6.73
48	14	7	0.0385	117.48	7.27
48	14	8	0.0412	125.59	7.77
48	14	9	0.0437	133.21	8.24
48	14	10	0.0460	140.41	8.69
48	14	11	0.0483	147.27	9.11
48	14	12	0.0504	153.81	9.52
48	14	13	0.0525	160.09	9.91
48	14	14	0.0545	166.14	10.28
48	14	15	0.0564	171.97	10.64
48	14	16	0.0582	177.61	10.99
48	14	17	0.0600	183.07	11.33
48	14	18	0.0617	188.38	11.66

 $\frac{1}{2}$

Attachment S EMISSION CALCULATIONS

Line Heaters S001 - S006, S020

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (Ib/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	<0.01	0.03
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	<0.01	0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	<0.01	<0.01
СО	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	0.12	0.52
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	0.14	0.62
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	<0.01	0.01
$PM_{Condensable}$	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	<0.01	0.04
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	0.01	0.05
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,088	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	1.54	1,088	8,760	180.14	789.03
CH_4	0.001	kg CO ₂ / MMBtu	40 CFR Subpart C	1.54	1,088	8,760	<0.01	0.01
N ₂ O	0.0001	kg CO ₂ / MMBtu	40 CFR Subpart C	1.54	1,088	8,760	<0.01	<0.01
Total HAPs							<0.01	0.01
Total CO ₂ e							180.33	789.85

Notes:

-Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater. Cumulative emission rates for all 7 line heaters are diplayed in the Total Site Emissions Table.

-Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

-AP-42, Chapter 1.4 references are from the July 1998 revision.

Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) × Boiler Rating (MMBtu/hr)

Thermoelectric Generators S016 & S017

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf) Operating Hours		Max. Hourly Emissions. (Ib/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.01	<0.01
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.01	<0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.01	<0.01
СО	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.01	<0.01
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.01	0.01
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.01	<0.01
$PM_{Condensable}$	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.01	<0.01
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.01	<0.01
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,088	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	0.013	1,088	8,760	1.52	6.66
CH ₄	0.001	kg CO ₂ / MMBtu	40 CFR Subpart C	0.013	1,088	8,760	<0.01	<0.01
N ₂ O	0.0001	kg CO ₂ / MMBtu	40 CFR Subpart C	0.013	1,088	8,760	<0.01	<0.01
Total HAPs		·			1	<u> </u>	<0.01	<0.01
Total CO ₂ e							1.52	6.67

Notes:

-Emission rates displayed above represent the max. hourly and max. annual emissions for one TEG. Cumulative emission rates for both TEGs are diplayed in the Total Site Emissions Table.

-Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

- AP-42, Chapter 1.4 references are from the July 1998 revision.

-Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) × Boiler Rating (MMBtu/hr)

Produced Fluids Tanks S007 - S012

Pollutant	Max. Hourly Emissions using ProMax (Ib/hr)	Max. Annual Emissions using ProMax (tons/yr)
VOCs	97.63	427.61
Total HAPs	5.57	24.38
Hexane	4.98	21.83
Benzene	0.14	0.59
Toluene	0.30	1.31
Ethylbenzene	0.01	0.06
Xylene	0.12	0.51
CO ₂	0.12	0.54
CH ₄	1.68	7.36
Total CO ₂ e	42.15	184.62

Notes:

-Emission rates for Produced Fluid Tanks S007 - S012 were calculated using ProMax software. ProMax output sheets for the OXF-163 Pad are attached.

-The emission rates displayed above are pre-control device emissions.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

-CO₂ and CH₄ emissions solved for using emissions rates (lb/hr) of "Produced Fluid" from the ProMax output sheets.

-For emission calculation purposes, the total throughput for tanks S007 - S012 is modeled as being received through a single tank. The throughput value represents the total throughput for all six (6) 400-barrel tanks. Therefore, emission rates represent a total from all produced fluids tanks located on the well pad. Actual throughput for each tank will vary based on operations.

Sand Trap Blow Tank S018

Pollutant	Max. Hourly Emissions using ProMax (Ib/hr)	Max. Annual Emissions using ProMax (tons/yr)
VOCs	5.64	24.71
Total HAPs	0.28	1.22
Hexane	0.25	1.10
Benzene	0.01	0.03
Toluene	0.01	0.06
Ethylbenzene	0.00	0.00
Xylene	0.00	0.02
CO ₂	0.02	0.07
CH ₄	0.90	3.94
Total CO ₂ e	22.52	98.63

Notes:

-Blowdown operations are conducted on the OFX 163 pad daily to allow for the removal of fluids from the sand traps. Based on available operational information, blowdowns are assummed to occur for one hour per day.

-Emissions from the Sand Trap Blow Tank are routed to an enclosed ground flare. The values displayed above a pre-control emission rates.

-Emission rates for the Sand Trap Blow Tank were calculated using ProMax software. ProMax output sheets for the OFX-163 Pad are attached.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1. GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

-CO₂ and CH₄ emissions solved for using emissions rates (lb/hr) of Stream "4" from the ProMax output sheets.

Tank Unloading Operations S015

Pollutant	Max. Hourly Emissions (Ib/hr)	Max. Yearly Emissions (tons/yr)	Loading Rack Collection Efficiency	Enclosed Combustion Device Combusion Efficiency	Post-Control Max. Hourly Emissions (Ib/hr)	Post-Control Max. Yearly Emissions (tons/yr)	Max. Hourly Emissions Not Collected by Loading Rack (Ib/hr)	Max. Yearly Emissions Not Collected by Loading Rack (tons/yr)
VOCs	0.17	0.73	70%	98%	<0.01	0.01	0.05	0.22
HAPs	<0.01	<0.01	70%	98%	<0.01	<0.01	<0.01	<0.01
CO ₂	<0.01	<0.01	70%	98%	0.61	2.66	<0.01	<0.01
CH ₄	<0.01	<0.01	70%	98%	<0.01	<0.01	<0.01	<0.01
Total CO ₂ e	0.05	0.22			0.61	2.66	0.02	0.07

Total Emissions from Tank Unloading Operations

-CO₂ and CH₄ emissions solved for using emissions rates (lb/hr) of load out fluids from ProMax summary sheets.

Notes:

-Emission rates for liquid unloading operations were calculated using ProMax software. ProMax summary sheets are attached.

Enclosed Combustion Devices C013 - C014

		Emissions from	Tanks		Gas Composition	of Vent Gas			
Input to Enclosed Combustion Device	Pollutant	Amount of Gas Sent to Enclosed Combustion Device (Ibs/hr)	Amount of Gas Sent to Enclosed Combustion Device (tons/year)	Enclosed Combustion Device Combustion Efficiency	Max. Hourly Emissions (Ib/hr)	Max. Yearly Emissions (tons/yr)	Gas Stream	Mole Fraction	
	VOCs	48.81	213.81	98%	0.98	4.28	Methane	0.07	
	HAPs	2.78	12.19	98%	0.06	0.24	Ethane	0.21	
	Hexane	2.49	10.92	98%	0.05	0.22	Propane	0.29	
	Benzene	0.07	0.30	98%	<0.01	<0.01	Butane	0.23	
Produced Fluid Tanks S007 - S012	Toluene	0.15	0.66	98%	<0.01	0.01	Pentanes	0.10	
	Ethylbenzene	0.01	0.03	98%	<0.01	<0.01	Carbon Dioxide	0.002	
	Xylene	0.06	0.26	98%	<0.01	<0.01			
	CO ₂	0.06	0.27	98%	141.23	618.59	Ven	t Gas Properties	
	CH₄	0.84	3.68	98%	0.02	0.07			
	VOCs	2.82	12.36	98%	0.06	0.25	Vent Gas Properties	Mass Flow Rate	Density (lb/ft ³)
	HAPs	0.14	0.61	98%	<0.01	0.01		(lb/hr)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Hexane	0.13	0.55	98%	<0.01	0.01	Condensate Tank	55.96	0.13
	Benzene	0.00	0.02	98%	<0.01	<0.01	Blowdown Tank	4.03	0.10
Sand Trap Blowdown Tank - S018	Toluene	0.01	0.03	98%	<0.01	<0.01		1	
	Ethylbenzene	<0.001	0.00	98%	<0.01	<0.01			
	Xylene	0.00	0.01	98%	<0.01	<0.01			
	CO ₂	0.01	0.04	98%	12.66	55.45			
	CH ₄	0.45	1.97	98%	<0.01	0.04	1		
	VOCs	0.08	0.36	98%	<0.01	<0.01			
T	HAPs	<0.001	0.001	98%	<0.01	<0.01			
Truck Loading - S015	CO ₂	<0.001	0.002	98%	0.30	1.33			
	CH ₄	<0.001	0.00	98%	<0.01	<0.01			
	VOCs	51.72	226.53		1.03	4.53			
	HAPs	2.92	12.80		0.06	0.26	_		
	Hexane	2.62	11.47		0.05	0.23			
	Benzene	0.07	0.31		<0.01	<0.01			
	Toluene	0.16	0.69		<0.01	0.01			
Totals	Ethylbenzene	0.01	0.03		<0.01	<0.01			
	Xylene	0.06	0.27		<0.01	<0.01			
	CO ₂	0.07	0.31		154.19	675.37			
	CH ₄	1.29	5.66		0.03	0.11			
	CO2e	32.36	141.73		154.84	678.19			

	Emissions from Pilot Operations													
Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factors (kg X/MMBtu)	Heat Value of Natural Gas (Btu/scf)	Enclosed Ground Flare Pilot Rating (Btu/hr)	Enclosed Ground Flare Burner Rating (Btu/hr)	Pilot Max. Hourly Emissions (Ib/hr)	Pilot Max. Annual Emissions (tons/yr)	Burner Max. Hourly Emissions (Ib/hr)	Burner Max. Annual Emissions (tons/yr)	Max. Hourly Emissions (lb/hr)	Max. Annual Emissions (tons/yr)			
VOCs	5.5		1,088	30,000	11,660,000	<0.01	<0.01			<0.01	<0.01			
Hexane	1.8		1,088	30,000	11,660,000	<0.01	<0.01			<0.01	<0.01			
Formaldehyde	0.075		1,088	30,000	11,660,000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
CO	84		1,088	30,000	11,660,000	<0.01	0.01	0.90	3.94	0.90	3.95			
NO _x	100		1,088	30,000	11,660,000	<0.01	0.01	1.07	4.69	1.07	4.71			
PM _{Condensable}	5.70		1,088	30,000	11,660,000	<0.01	<0.01	0.06	0.27	0.06	0.27			
PM _{Filterable}	1.90		1,088	30,000	11,660,000	<0.01	<0.01	0.02	0.09	0.02	0.09			
PM _{Total}	7.6		1,088	30,000	11,660,000	<0.01	<0.01	0.08	0.36	0.08	0.36			
SO ₂	0.6		1,088	30,000	11,660,000	<0.01	<0.01	<0.01	0.03	<0.01	0.03			
CO ₂		52	1,088	30,000	11,660,000	3.44	15.08	1226.46	5371.89	1229.90	5386.98			
CH ₄		0.0	1,088	30,000	11,660,000	<0.01	<0.01	0.02	0.10	0.02	0.10			
N ₂ O		<0.001	1,088	30,000	11,660,000	<0.01	<0.01	<0.01	0.01	<0.01	0.01			
Total HAPs						<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
CO ₂ e						3.45	15.10	1227.75	5377.55	1231.20	5392.65			

Total Enclosed Combustion Device Emissions Max. Yearly Max. Hourly Emissions Pollutant Emissions (tons/yr) (lb/hr) 1.03 4.53 VOCs HAPs 0.06 0.26 Hexane 0.05 0.23 Formaldehyde <0.01 <0.01 CO 0.90 3.95 NOx 1.07 4.71 0.06 0.27 $\mathsf{PM}_{\mathsf{Condensable}}$ PM_{Filterable} 0.02 0.09 $\mathsf{PM}_{\mathsf{Total}}$ 0.08 0.36 SO₂ <0.01 0.03 CO_2 1384.10 6062.34 CH₄ N₂O 0.05 0.22 <0.01 0.01 CO₂e 1,386.04 6,070.84

Notes:

-Emissions from Enclosed Combustion Device Operations from AP-42, Chapter 1.4 references are from the July 1998 revision. -Greenhouse Gas Emissions from the Enclosed Combustion Device Pilot and Burner calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors. -Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr. PM Filterable = Filterable PM emissions (PM10 + PM2.5) PM Condensable (product of natural gas combustion) = PM Condensable Inorganic + PM Condensable Organic

PM Total = PM Filterable + PM Condensable emissions.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO ₂=1, GWP CH₄=25, GWP N₂O=298

Example Calculations:

Emissions from Tanks VOCs (lb/hr) = Amount of Gas sent to Enclosed Combustion Device (lb/hr) x 0.02 = Max. Hourly Emissions (lb/hr) Emissions from Enclosed Combustion Device Operations (lb/hr) = Emission factor (lb/106 Btu) x Heat Value of Natural Gas (Btu/scf) ÷ 1,000,000 x Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 ÷ 24 Emissions from Enclosed Combustion Device Vapor Destruction CO2 Methodologies shown below sample equation

Emissions from Enclosed Combustion Device Operations CO2 (tons/yr) = ((Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 x 365 x Fraction of Gas Combusted by Enclosed Combustion Device x Mole Fraction of Methane x Number of Carbon Atoms in Methane) + ... + (Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 x 365 x Fraction of Gas Combusted by Enclosed Combustion Device x Mole Fraction of Pentanes-plus x Number of Carbon Atoms in Pentanes-plus)) x .0526 (kg/ft3) CO2 x .001 x 1.102 tons/tonnes

$E_{a,CH4}(un-combusted) = V_a *(1-\eta) * X_{CH4}$	(Eq.	₩-19)
$E_{a,CO2}$ (un-combusted) = $V_a * X_{CO2}$	(Eq.	₩-20)
$E_{a,CO2} (combusted) = \sum_{J=1}^{5} (\eta * V_a * Y_j * R_j)$	(Eq.	₩-21)

Where:

Ea,CH4(un-combusted) = Contribution of annual un-combusted CH4 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions. Ea,CO2(un-combusted) = Contribution of annual un-combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions. Ea,CO2(combusted) = Contribution of annual combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Va = Volume of gas sent to Enclosed Combustion Device in cubic feet, during the year.

 η = Fraction of gas combusted by a burning Enclosed Combustion Device (default is 0.98). For gas sent to an unlit Enclosed Combustion Device, η is zero.

XCH4 = Mole fraction of CH4 in gas to the Enclosed Combustion Device.

XCO2 = Mole fraction of CO2 in gas to the Enclosed Combustion Device.

Y_i = Mole fraction of gas hydrocarbon constituents j (such as methane, ethane, propane, butane, and pentanes-plus).

R_i = Number of carbon atoms in the gas hydrocarbon constituent j: 1 for methane, 2 for ethane, 3 for propane, 4 for butane, and 5 for pentanes plus).

Natural Gas Compressor Engine S019

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Engine Rating (bhp)	Fuel Consumption (Btu/bhp-hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours		Annual Emissions (tpy)
VOC's	1.21	g/bhp-hr	Vendor Guarantee	110.0	6,553	1,088	8,760	0.29	1.29
Formaldehyde	5.28E-02	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,088	8,760	0.04	0.17
Hexane	1.11E-03	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,088	8,760	<0.01	<0.01
Benzene	4.40E-04	lb/MMBtu	AP-42 Chapter 3.2	8.2 110.0 6,553 1,088 8,760		<0.01	<0.01		
Toluene	4.08E-04	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,088	8,760	<0.01	<0.01
Ethylbenze	3.97E-05	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,088	8,760	<0.01	<0.01
Xylene	1.84E-04	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,088	8,760	<0.01	<0.01
CO	3.62	g/bhp-hr	Vendor Guarantee	110.0	6,553	1,088	8,760	0.88	3.85
NOx	1.74	g/bhp-hr	Vendor Guarantee	110.0	6,553	1,088	8,760	0.42	1.85
PM _{Filterable}	7.71E-05	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,088	8,760	<0.01	<0.01
PM _{Condensable}	9.91E-03	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,088	8,760	<0.01	0.03
SO ₂	5.88E-04	lb/MMBtu	AP-42 Chapter 3.2	110.0	6,553	1,088	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	110.0	6,553	1,088	8,760	95.69	419.11
CH ₄	0.001	kg CH ₄ / MMBtu	40 CFR Subpart C	110.0	6,553	1,088	8,760	<0.01	<0.01
N ₂ O	0.0001	kg N ₂ O / MMBtu	40 CFR Subpart C	110.0	6,553	1,088	8,760	<0.01	<0.01
Total HAPs		<u> </u>					1	0.04	0.17
Total CO ₂ e								95.79	419.54

Notes:

-Emission rates displayed above represent the max. hourly and max. annual emissions for one NG compressor.

-Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

- AP-42, Chapter 3.2, Table 3.2-2 - Uncontrolled Emission Factors for 4-Stroke Lean Burn Engines

 $PM_{Filterable}$ = Filterable PM emissions (PM10 + PM2.5)

PM_{Condensable} = PM Condensable Inorganic + PM Condensable Organic

-Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

 $-CO_2 equivalency solved for using Global Warming Potentials found in 40 CFR 98 Table A-1 (Updated January 2014). GWP CO_2=1, GWP CH_4=25, GWP N_2O=298 CO_2=1, GWP CO_2=1,$

- Vendor Guarantee Emissions are listed in Attachment S

- Vendor Guarantee Emissions are converted from g/kW-hr to g/bhp-hr. 1 kW = 1.34 bhp

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) × Boiler Rating (MMBtu/hr)

Fugitive Emissions from Unpaved Haul Roads

Constant	Industrial Roads						
Constant	PM	PM-10	PM-2.5				
k (lb/VMT)	4.9	1.5	0.15				
а	0.7	0.9	0.9				
b	0.45	0.45	0.45				

where

Patricle size multiplier¹

k s p

4.8 Silt content of road surface material (%)

150 Number of days per year with precipitation

Item Number	Description	Number of Wheels	W Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Year	Control Efficiency (%)	PM Emissions (Ibs/hr)	PM Emissions (tons/yr)	PM-10 Emissions (Ibs/hr)	PM-10 Emissions (tons/yr)	PM-2.5 Emissions (Ibs/hr)	PM-2.5 Emissions (tons/yr)
1	Liquids Hauling	14	30	0.72	4,835	NA	3.10	7.49	0.79	1.91	0.08	0.19
2	Employee Vehicles	4	3	0.72	200	NA	1.10	0.11	0.28	0.03	0.03	0.003
						Totals:	4.20	7.60	1.07	1.94	0.11	0.19

Notes:

¹ - Particle Size Multiplier used from AP-42 13.2.2 - Final Version 11/2006

² - Silt Content of Road Surface uses Sand and Gravel Processing Plant Road from AP-42 13.2.2 - Final Version 11/2006

³ - Number of days per year with precipitation >0.01 in3 found using AP-42 13.2.2 Figure 13.2.2-1 - Final Version 11/2006

Example Calculations:

Emissions (lb/Vehicle Mile Traveled) - E = $k \times (s/12)^a \times (W/3)^b$

Equation 1a from AP-42 13.2.2 - Final Version 11/2006

Size Specific Emissions (Ib/VMT) - E_{ext} = E[(365-p)/365]

Equation 2 from AP-42 13.2.2 - Final Version 11/2006

Fugitive Leaks

Default Average Component Counts for Major Onshore Natural Gas Production Equipment ¹								
Facility Equipment Type	Valves	Connectors	Open-ended Lines	Pressure Relie Valves				
Wellheads	8	38	0.5	0				
Separators	1	6	0	0				
Meters/Piping	12	45	0	0				
Compressors	12	57	0	0				
In-line Heaters	14	65	2	1				
Dehydrators	24	90	2	2				

Well Specific Equipment Counts							
Facility Equipment							
Туре	Count on Site						
Wellheads	6						
Separators	7						
Meters/Piping	7						
Compressors	1						
In-line Heaters	7						
Dehydrators	0						

¹- Table W-1B to 40CFR98 Subpart W

Gas Composition														
Emissions from Flaring Operations	Propane	Butane	Pentanes	Heptane	Octanes	Nonanes	Decanes	Hexane	Benzene	Toluene	Ethylbenzene	Xylene	CO ₂	CH ₄
Mole %	4.16	1.71	0.71	0.22	0.14	0.03	0.009	0.41	0.01	0.014	<0.001	0.007	0.19	78.57
MW	44	58	72	100	114	128	142	86.00	78.00	92.00	106.00	106.00	44.00	16.00

	Fugitive Emissions												
Facility Equipment Type	Total Count	Emission Rate (scf/hr/component) ²	Hours of Operation	VOCs (Ibs/hr)	VOCs (tons/yr)	HAPs (Ibs/hr)	HAPs (tons/yr)	CO ₂ (lbs/hr)	CO ₂ (tons/yr)	CH₄ (Ibs/hr)	CH₄ (tons/yr)	Total CO ₂ e (Ibs/hr)	Total CO₂e (tons/yr)
Valves	237	0.027	8760	0.07	0.30	0.006	0.03	0.001	0.006	0.21	0.91	5.22	22.86
Connectors	1040	0.003	8760	0.03	0.15	0.003	0.01	<0.001	0.003	0.10	0.45	2.54	11.14
Open-ended Lines	17	0.06	8760	0.01	0.05	0.001	0.004	<0.001	< 0.001	0.03	0.15	0.85	3.70
Pressure Relief Valves	7	0.04	8760	0.003	0.01	<0.001	0.001	<0.001	< 0.001	0.01	0.04	0.23	1.00
-			Total Emissions:	0.12	0.51	0.01	0.05	<0.01	0.01	0.35	1.55	8.84	38.70

²- Table W-1A to 40CFR98 Subpart W

Notes:

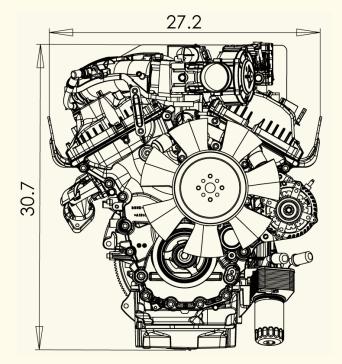
-Gas Composition data for OXF-163 site was unavailable. Gas composition was used to determine fugitive emissions based upon a nearby similar natural gas production site operated by EQT.

Example Equations: Fugitive Emissions (lb/hr) = Count x Emission Rate x Hours of Operation ÷ 385.5 scf/lbmol x mol VOC's

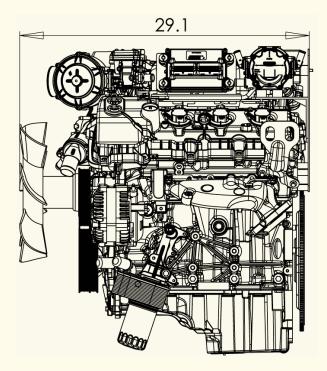
Total OXF 163 Site Emission Levels

	VC	Cs	H	APs	(0	N	IO _x	PM (Total)	PM (Fil	terable)	PM (Con	densable)	S	0 ₂	C	20 ₂	C	H ₄	N	20	C	O ₂ e
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Line Heater (S001)	< 0.01	0.03	< 0.01	0.01	0.12	0.52	0.14	0.62	0.01	0.05	< 0.01	0.01	<0.01	0.04	< 0.01	< 0.01	180.14	789.03	< 0.01	0.01	< 0.01	<0.01	180.33	789.85
Line Heater (S002)	<0.01	0.03	< 0.01	0.01	0.12	0.52	0.14	0.62	0.01	0.05	< 0.01	0.01	< 0.01	0.04	< 0.01	< 0.01	180.14	789.03	< 0.01	0.01	< 0.01	<0.01	180.33	789.85
Line Heater (S003)	<0.01	0.03	< 0.01	0.01	0.12	0.52	0.14	0.62	0.01	0.05	< 0.01	0.01	< 0.01	0.04	< 0.01	< 0.01	180.14	789.03	< 0.01	0.01	< 0.01	<0.01	180.33	789.85
Line Heater (S004)	<0.01	0.03	< 0.01	0.01	0.12	0.52	0.14	0.62	0.01	0.05	< 0.01	0.01	< 0.01	0.04	< 0.01	< 0.01	180.14	789.03	< 0.01	0.01	< 0.01	<0.01	180.33	789.85
Line Heater (S005)	<0.01	0.03	< 0.01	0.01	0.12	0.52	0.14	0.62	0.01	0.05	< 0.01	0.01	< 0.01	0.04	< 0.01	< 0.01	180.14	789.03	< 0.01	0.01	< 0.01	<0.01	180.33	789.85
Line Heater (S006)	< 0.01	0.03	< 0.01	0.01	0.12	0.52	0.14	0.62	0.01	0.05	< 0.01	0.01	< 0.01	0.04	< 0.01	<0.01	180.14	789.03	< 0.01	0.01	< 0.01	<0.01	180.33	789.85
TEG (S016)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	1.52	6.66	< 0.01	< 0.01	< 0.01	<0.01	1.52	6.67
TEG (S017)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	1.52	6.66	< 0.01	< 0.01	< 0.01	<0.01	1.52	6.67
Enclosed Combustion Unit (C013)	1.03	4.53	0.06	0.26	0.90	3.95	1.07	4.71	0.08	0.36	0.02	0.09	0.06	0.27	0.01	0.03	1384.10	6062.34	0.05	0.22	< 0.01	0.01	1386.04	6070.84
Enclosed Combustion Unit (C014)	1.03	4.53	0.06	0.26	0.90	3.95	1.07	4.71	0.08	0.36	0.02	0.09	0.06	0.27	0.01	0.03	1384.10	6062.34	0.05	0.22	< 0.01	0.01	1386.04	6070.84
Tank Truck Loading Activities (E015)	0.05	0.22	< 0.01	< 0.01													<0.01	<0.01	< 0.01	< 0.01			0.02	0.07
Compressor Engine (E019)	0.29	1.29	0.04	0.17	0.88	3.85	0.42	1.85	< 0.01	0.03	< 0.01	<0.01	< 0.01	0.03	< 0.01	< 0.01	95.69	419.11	< 0.01	< 0.01	< 0.01	<0.01	95.79	419.54
Line Heater (S020)	< 0.01	0.03	< 0.01	0.01	0.12	0.52	0.14	0.62	0.01	0.05	< 0.01	0.01	< 0.01	0.04	< 0.01	<0.01	180.14	789.03	< 0.01	0.01	< 0.01	<0.01	180.33	789.85
Haul Roads									4.20	7.60	4.20	7.60												
Fugitives Leaks	0.12	0.51	0.01	0.05													<0.01	0.01	0.35	1.55			8.84	38.70
Totals	2.53	11.31	0.17	0.82	3.52	15.40	3.56	15.61	4.44	8.68	4.24	7.86	0.12	0.82	0.02	0.06	4127.93	18080.36	0.45	2.09	0.00	0.02	4,142.07	18,142.27

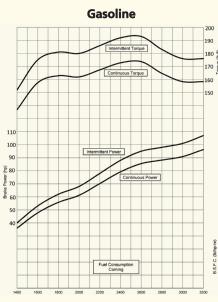
-Two enclosed combustion devices are being included in this application. Emissions from the produced fluid tanks, sand trap blowdown tanks, and tank truck loading are routed to either C013 or C014. For the permitting of these sources, it is assumed that vapors are being evenly distributed between the two enclosed combustion devices. For this reason, the emissions from the combustion of vent gases between C013 and C014 are additive.


	Tota	l HAPs	Forma	ldehyde	He	kane	Ben	zene	Tolu	Jene	Ethylb	enzene	Xy	lene
Emission Sources	lb/hr	tons/yr												
Line Heater (S001)	< 0.01	0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Line Heater (S002)	< 0.01	0.01	< 0.01	< 0.01	<0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Line Heater (S003)	<0.01	0.01	< 0.01	< 0.01	<0.01	0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01
Line Heater (S004)	<0.01	0.01	< 0.01	< 0.01	< 0.01	0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Line Heater (S005)	< 0.01	0.01	< 0.01	< 0.01	<0.01	0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
Line Heater (S006)	<0.01	0.01	< 0.01	< 0.01	<0.01	0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01
TEG (S016)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
TEG (S017)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Enclosed Combustion Unit (C013)	0.06	0.26	< 0.01	< 0.01	0.05	0.23	<0.01	< 0.01	<0.01	0.01	<0.01	< 0.01	<0.01	< 0.01
Enclosed Combustion Unit (C014)	0.06	0.26	<0.01	<0.01	0.05	0.23	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	< 0.01
Tank Truck Loading Activities (E015)	<0.01	<0.01			<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01
Compressor Engine (E019)	0.04	0.17	0.04	0.17	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Line Heater (S020)	< 0.01	0.01	< 0.01	< 0.01	< 0.01	0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Haul Roads														
Fugitives Leaks	0.01	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Totals	0.17	0.82	0.04	0.17	0.10	0.54	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	<0.01	<0.01

Total OXF-163 Site Emission Levels - HAP Speciation


t vapors are being eveniy o between C013 and C014 are additive.

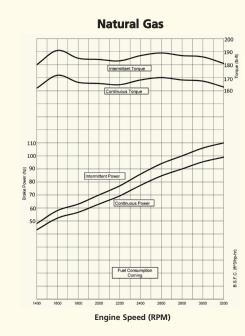
Installation Drawings


Front End View

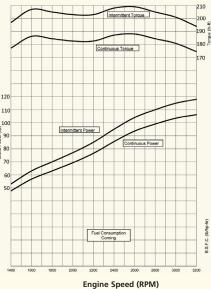
Left Side View

Power Curves (corrected per SAE J1349)

Engine Speed (RPM)


Ford

Powertrain Assemblies


& Components

Provided By Ford Component Sales

Power <u>Produ</u>cts

Liquefied Petroleum Gas

For additional information Contact:

400 University Ct • Blackwood NJ 08012 856/228-7298 • Fax:856/228-5531 www.edi-dist.com

CSG-637 EFI

3.7 Liter 6-Cylinder

Options

Engine Cooling Fans • 14" (355mm) diameter suction • 14" (355mm) diameter pusher Flywheels • 11.5" (292mm) SAE over-center clutch • flat face flywheel **Flywheel Housings** • SAE #3 **Exhaust Manifold** • rear dump down **Power Steering Pump** Air Conditioning Wiring Harnesses **Discrete Speed Switch** Variable Speed Hand Throttle Variable Speed Foot Pedal **Engine Mounts** • Automotive with insulators • Open power unit **Electronic Instrument Panel, Gauges** Three Way Catalyst / Muffler Standard

Transmissions 6R80 electronic shift

Emissions Information

California Air Resources Board (CARB) Environmental Protection Agency (EPA) Emission Certified Packages

Warranty

Contact Engine Distributors, Inc for warranty details.

Powertrain Assemblies & Components Provided By Ford Component Sales

Specifications

Engine Type	V-6
Bore and Stroke	3.7"x 3.4" (94mm x 86mm)
Displacement	3.7L Liter (225.7 CID)
Compression Ratio	10.5:1
Oil Capacity	6 qts. including filter
	355 Lbs. with accessories (161 Kgs.)
Dimensions	L 25.4" x W 29.5" x H 29.4"
	(646 mm x 751 mm x 748 mm)

Gasoline (corrected per SAE J1349)

Unleaded 87 or 89 octane		
Intermittent Power	107 [HP] @ 3200rpm	(80 [kW] @ 3200rpm)
Continuous Power		(72 [kW] @ 3200rpm)
Intermittent Torque		(261 [N-m] @ 2600rpm)
Continuous Torque	173 [ft-lbs] @ 2600rpm	(235 [N-m] @ 3200rpm)

Natural Gas (corrected per SAE J1349)

Fuel Specification	1050 BTU/FT3	
Intermittent Power	110 [HP] @ 3200rpm	(82 [kW] @ 3200rpm)
Continuous Power	99 [HP] @ 3200rpm	(74 [kW] @ 3200rpm)
Intermittent Torque		
Continuous Torque	172 [ft-lbs] @1600rpm	(233 [N-m] @ 1600rpm)

Liquefied Petroleum Gas (corrected per SAE J1349)

Fuel Specification	HD-5	
Intermittent Power	118 [HP] @ 3200rpm	(88 [kW] @ 3200rpm)
Continuous Power		(79 [kW] @ 3200rpm)
Intermittent Torque	209 [ft-lbs] @ 2600rpm	(284 [N-m] @ 2600rpm)
Continuous Torque	188 [ft-lbs] @ 2600rpm	(255 [N-m] @ 2600rpm)

Standard Features / Benefits

Set-for-life valvetrain

Deep skirted, ribbed cylinder block casting for rigidity

150 AMP Alternator

Aluminum cylinder block and heads.

Chain driven dual camshafts with automatic tensioning system

Structural front cover and deep sump oil pan

Alternate fuel ready valvetrain components

Individual coil on plug electronic ignition

Four main bolts with side bolts through block for strength and durability

Gasoline Sequential Port Fuel Injection


Closed loop fuel control for all fuels

Electronic engine management system with built-in engine protection against detonation, high coolant temperature, low oil pressure, over speed shutdown and starter lockout

Next generation governing – discrete speeds, variable speeds, drive by wire – using the highest quality components.

Variable CAM Timing for intake camshafts - advances or retards timing to maximize engine power and fuel efficiency

Forged steel crankshaft

Pursuant to Section 213 of the Clean Air Act (42 U.S.C. section 7547) and 40 CFR Part 60, 40 CFR Part 1048, 1065, 1068, and 60 (stationary only and combined stationary and mobile) and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following nonroad engines, by engine family, more fully described in the documentation required by 40 CFR Part 60, 40 CFR Part 1048 and produced in the stated model year.

This certificate of conformity covers only those new nonroad spark-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 60, 40 CFR Part 1048 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 60, 40 CFR Part 1048. This certificate of conformity does not cover nonroad engines imported prior to the effective date of the certificate.

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068.20 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 60, 40 CFR Part 1048. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 1048.

This certificate does not cover large nonroad engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

		Flowsheet1 Plant Schematic		
Client Name:	EQT		Job:	
Location:	OXF 163 100% Conti	ngency		
Flowsheet:	Flowsheet1			
		EQT OXF 163 Well Pad 100% Contingency Low Pressure Tower		
		Temperature 85° F Pressure 393° psig Std Liquid Volumetric Flow 252.97# bU/d Volumetric Flow 393° psig Std Liquid Volumetric Flow 1122.7# bU/d Tank (patery stable Liquid (volumetric Flow) stable Liquid (volumetric Flow)		
		Temperature 109 *F Pressure 0 psig Std Liquid Volumetric Flow 1304.6 bb/d Water(Volumetric Fraction) 85.782 %		
		Working, Breathing and Loading losses include non-VOC con	ponents	

			All St	reams Report reams by Total Phase			
Client Name:	EQT				Job I ow P	ressure Tower	
Location:	OXF 163 100%	Contingonov			300. LOW I		
Flowsheet:	Flowsheet1	Contingency					
FIOWSHEEL.	FIOWSHEELT						
			Conn	ections			
			Flash Gas	OXF 163 Pad	Produced	Stable Liquid	To Sales
				Condensate	Water		Pipeline
From Block			Tank Battery			Tank Battery	Low Pressure
FION DIOOR			Tank Battory			Turik Buttery	Tower
To Block				MIX-100	MIX-100		
TO DIOCK				1017-100	WIX-100		
			Stream C	omposition			
			Flash Gas	OXF 163 Pad	Produced	Stable Liquid	To Sales
				Condensate	Water		Pipeline
Mole Fraction			%	%	%	%	%
Nitrogen				7 0 0 *	70 0 *		70
			•	÷			-
Methane			4.79025	12.131 *	0 *	0.000517316	32.9728
Carbon Dioxide			0.12734	0.087 *	0 *	7.18988E-05	0.211546
Ethane			14.1347	10.145 *	0 *	0.00692533	24.9407
Propane			23.2543	9.322 *	0 *	0.0351357	18.3246
i-Butane			6.65717	2.446 *	0 *	0.0234758	3.45921
n-Butane			17.9914	6.995 *	0 *	0.08746	8.3454
i-Pentane			6.97683	3.988 *	0 *	0.0818026	2.66111
n-Pentane			7.41963	5.018 *	0 *	0.11323	2.73381
Isohexane			3.36892	4.263 *	0 *	0.116563	1.15759
n-Hexane			2.64558	4.311 *	0 *	0.122818	0.898037
	tono			0.025 *	0 *		
2,2,4-Trimethylper	nane		0.00633142			0.000769115	0.00212165
Benzene			0.0794116	0.136 *	0 *	0.00389865	0.0270703
Heptane			2.81121	11.691 *	0 *	0.360583	0.943585
Toluene			0.148981	0.717 *	0 *	0.0222629	0.0497816
Octane			0.847851	9.741 *	0 *	0.30974	0.28594
Ethylbenzene			0.00548629	0.074 *	0 *	0.00235899	0.0018499
		-	0.0504859	0.878 *	0 *	0.02808	0.0170597
					a *		
o-Xylene				4.769 *	0 *	0.15329	0.0512013
o-Xylene Nonane			0.15129	4.769 * 13.263 *	0 *	0.15329	0.0512013
o-Xylene Nonane Decane			0.15129 0.152173	13.263 *	0 *	0.427981	0.0527042
o-Xylene Nonane Decane			0.15129				
o-Xylene Nonane			0.15129 0.152173	13.263 * 0 * OXF 163 Pad	0 * 100 * Produced	0.427981	0.0527042 2.86393 To Sales
o-Xylene Nonane Decane Water			0.15129 0.152173 8.38073 Flash Gas	13.263 * 0 * OXF 163 Pad Condensate	0 * 100 * Produced Water	0.427981 98.103 Stable Liquid	0.0527042 2.86393 To Sales Pipeline
o-Xylene Nonane Decane Water Mass Fraction			0.15129 0.152173 8.38073 Flash Gas %	13.263 * 0 * OXF 163 Pad Condensate %	0 * 100 * Produced Water %	0.427981 98.103 Stable Liquid %	0.0527042 2.86393 To Sales Pipeline %
o-Xylene Nonane Decane Water Mass Fraction Nitrogen			0.15129 0.152173 8.38073 Flash Gas % 0	13.263 * 0 * OXF 163 Pad Condensate % 0 *	0 * 100 * Produced Water % 0 *	0.427981 98.103 Stable Liquid % 0	0.0527042 2.86393 To Sales Pipeline % 0
o-Xylene Nonane Decane Water Mass Fraction Nitrogen Methane			0.15129 0.152173 8.38073 Flash Gas % 0 1.50103	13.263 * 0 * OXF 163 Pad Condensate % 0 * 2.49009 *	0 * 100 * Produced Water % 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696	0.0527042 2.86393 To Sales Pipeline % 0 14.898
o-Xylene Nonane Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide			0.15129 0.152173 8.38073 Flash Gas % 0 1.50103 0.109463	13.263 * 0 * OXF 163 Pad Condensate % * 0 * 0 * 0.0489906 *	0 * 100 * Produced Water % 0 * 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696 0.000160783	0.0527042 2.86393 To Sales Pipeline % 0 14.898 0.262212
o-Xylene Nonane Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane			0.15129 0.152173 8.38073 Flash Gas % 0 1.50103 0.109463 8.30163	13.263 * 0 * OXF 163 Pad Condensate % 0 * 2.49009 * 0.0489906 * 3.90318 *	0 * 100 * Produced Water % 0 * 0 * 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696 0.000160783 0.0105811	0.0527042 2.86393 To Sales Pipeline % 0 14.898 0.262212 21.1218
o-Xylene Nonane Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane			0.15129 0.152173 8.38073 Flash Gas % 0 1.50103 0.109463 8.30163 20.0289	13.263 * 0 * OXF 163 Pad Condensate % 0 * 2.49009 * 0.0489906 * 3.90318 * 5.25959 *	0 * 100 * Produced Water % 0 * 0 * 0 * 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696 0.000160783 0.0105811 0.0787257	0.0527042 2.86393 To Sales Pipeline % 0 14.898 0.262212 21.1218 22.7579
o-Xylene Nonane Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane			0.15129 0.152173 8.38073 Flash Gas % 0 1.50103 0.109463 8.30163 20.0289 7.55771	13.263 * 0 * OXF 163 Pad Condensate % 0.0489906 * 3.90318 * 5.25959 * 1.81906 *	0 * 100 * Produced Water % 0 * 0 * 0 * 0 * 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696 0.000160783 0.0105811 0.0787257 0.0693322	0.0527042 2.86393 To Sales Pipeline % 0 14.898 0.262212 21.1218 22.7579 5.66268
o-Xylene Nonane Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane			0.15129 0.152173 8.38073 Flash Gas % 0 1.50103 0.109463 8.30163 20.0289 7.55771 20.4252	13.263 * 0 * OXF 163 Pad Condensate % 0 * 2.49009 * 0.0489906 * 3.90318 * 5.25959 * 1.81906 * 5.20208 *	0 * 100 * Produced Water % 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696 0.000160783 0.0105811 0.0787257 0.0693322 0.2583	0.0527042 2.86393 To Sales Pipeline % 0 14.898 0.262212 21.1218 22.7579 5.66268 13.6613
o-Xylene Nonane Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane			0.15129 0.152173 8.38073 Flash Gas % 0 1.50103 0.109463 8.30163 20.0289 7.55771 20.4252 9.83208	13.263 * 0 * OXF 163 Pad Condensate % 0.0489906 * 3.90318 * 5.25959 * 1.81906 * 5.20208 * 3.68156 *	0 * 100 * Produced Water % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696 0.000160783 0.0105811 0.0787257 0.0693322 0.2583 0.299894	0.0527042 2.86393 To Sales Pipeline % 0 14.898 0.262212 21.1218 22.7579 5.66268 13.6613 5.40747
o-Xylene Nonane Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane			0.15129 0.152173 8.38073 Flash Gas % 0 1.50103 0.109463 8.30163 20.0289 7.55771 20.4252	13.263 * 0 * OXF 163 Pad Condensate % 0 * 2.49009 * 0.0489906 * 3.90318 * 5.25959 * 1.81906 * 5.20208 *	0 * 100 * Produced Water % 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696 0.000160783 0.0105811 0.0787257 0.0693322 0.2583 0.298894 0.415111	0.0527042 2.86393 To Sales Pipeline % 0 14.898 0.262212 21.1218 22.7579 5.66268 13.6613
o-Xylene Nonane Decane			0.15129 0.152173 8.38073 Flash Gas % 0 1.50103 0.109463 8.30163 20.0289 7.55771 20.4252 9.83208	13.263 * 0 * OXF 163 Pad Condensate % 0.0489906 * 3.90318 * 5.25959 * 1.81906 * 5.20208 * 3.68156 *	0 * 100 * Produced Water % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696 0.000160783 0.0105811 0.0787257 0.0693322 0.2583 0.299894	0.0527042 2.86393 To Sales Pipeline % 0 14.898 0.262212 21.1218 22.7579 5.66268 13.6613 5.40747
o-Xylene Nonane Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane Isohexane			0.15129 0.152173 8.38073 Flash Gas % 0 1.50103 0.109463 8.30163 8.30163 20.0289 7.55771 20.4252 9.83208 10.4561 5.67063	13.263 * 0 * 0 * 0 * 0 0 * 2.49009 * 0.0489906 * 3.90318 * 5.25959 * 1.81906 * 5.20208 * 3.68156 * 4.63241 *	0 * 100 * Produced Water % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696 0.000160783 0.0105811 0.0787257 0.0693322 0.2583 0.298894 0.415111 0.510405	0.0527042 2.86393 70 Sales Pipeline % 0 14.898 0.262212 21.1218 22.7579 5.66268 13.6613 5.40747 5.5552 2.80956
o-Xylene Nonane Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane Isohexane n-Hexane	ntane		0.15129 0.152173 8.38073 Flash Gas % 0 1.50103 0.109463 8.30163 20.0289 7.55771 20.4252 9.83208 10.4561 5.67063 4.4531	13.263 * 0 * 0 * 0 * 0 * 2.49009 * 0.0489906 * 3.90318 * 5.25959 * 1.81906 * 5.20208 * 3.68156 * 4.63241 * 4.70052 *	0 * 100 * Produced Water % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696 0.000160783 0.0105811 0.0787257 0.0693322 0.2583 0.298894 0.415111 0.510405 0.537794	0.0527042 2.86393 70 Sales Pipeline % 0 14.898 0.262212 21.1218 22.7579 5.66268 13.6613 5.40747 5.5552 2.80956 2.17962
o-Xylene Nonane Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Butane n-Pentane n-Pentane lsohexane n-Hexane 2,2,4-Trimethylper	ntane		0.15129 0.152173 8.38073 Flash Gas % 0 1.50103 0.109463 8.30163 20.0289 7.55771 20.4252 9.83208 10.4561 5.67063 4.4531 0.0141265	13.263 * 0 * 0 * 0 * 0 * 2.49009 * 0.0489906 * 3.90318 * 5.25959 * 1.81906 * 5.20208 * 3.68156 * 4.63241 * 4.63241 * 4.70052 * 4.75345 * 0.0365395 *	0 * 100 * Produced Water % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696 0.000160783 0.0105811 0.0787257 0.0693322 0.2583 0.298894 0.415111 0.510405 0.537794 0.00446414	0.0527042 2.86393 70 Sales Pipeline % 0 14.898 0.262212 21.1218 22.7579 5.66268 13.6613 5.40747 5.5552 2.80956 2.17962 0.00682574
o-Xylene Nonane Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane i-Pentane Isohexane n-Hexane 2,2,4-Trimethylper Benzene	ntane		0.15129 0.152173 8.38073 Flash Gas % 0 1.50103 0.109463 8.30163 20.0289 7.55771 20.4252 9.83208 10.4561 5.67063 4.4531 0.0141265 0.12116	13.263 * 0 * 0 * Condensate % 0 * 2.49009 * 0.0489906 * 3.90318 * 5.25959 * 1.81906 * 3.68156 * 4.63241 * 4.77052 * 4.75345 * 0.0365395 * 0.135926 *	0 * 100 * Produced Water % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696 0.000160783 0.0105811 0.0787257 0.0693322 0.2583 0.298894 0.415111 0.510405 0.537794 0.00446414 0.015474	0.0527042 2.86393 70 Sales Pipeline % 0 14.898 0.262212 21.1218 22.7579 5.66268 13.6613 5.40747 5.5552 2.80956 2.17962 0.00682574 0.0595542
o-Xylene Nonane Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane i-Pentane Isohexane n-Hexane 2,2,4-Trimethylper Benzene Heptane	ntane		0.15129 0.152173 8.38073 Flash Gas % 0 1.50103 0.109463 8.30163 20.0289 7.55771 20.4252 9.83208 10.4561 5.67063 4.4531 0.0141265 0.12116 5.50209	13.263 * 0 * 0 * Condensate % 0 * 2.49009 * 0.0489906 * 3.90318 * 5.25959 * 1.81906 * 3.68156 * 4.63241 * 4.75345 * 0.0365395 * 0.135926 * 14.9891 *	0 * 100 * Produced Water % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696 0.000160783 0.0105811 0.0787257 0.0693322 0.2583 0.29894 0.415111 0.510405 0.537794 0.00446414 0.015474 1.83592	0.0527042 2.86393 70 Sales Pipeline % 0 14.898 0.262212 21.1218 22.7579 5.66268 13.6613 5.40747 5.5552 2.80956 2.17962 0.00682574 0.0595542 2.66293
o-Xylene Nonane Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane i-Pentane Isohexane n-Hexane 2,2,4-Trimethylper Benzene Heptane Toluene	ntane		0.15129 0.152173 8.38073 Flash Gas % 0 1.50103 0.109463 8.30163 20.0289 7.55771 20.4252 9.83208 10.4561 5.67063 4.4531 0.0141265 0.12116 5.50209 0.268121	13.263 * 0 * 0 * Condensate % 0 * 2.49009 * 0.0489906 * 3.90318 * 5.25959 * 1.81906 * 3.68156 * 4.63241 * 4.70052 * 0.0365395 * 0.135926 * 14.9891 * 0.845293 *	0 * 100 * Produced Water % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696 0.000160783 0.0105811 0.0787257 0.0693322 0.2583 0.299894 0.415111 0.510405 0.537794 0.00446414 0.015474 1.83592 0.10423	0.0527042 2.86393 70 Sales Pipeline % 0 14.898 0.262212 21.1218 22.7579 5.66268 13.6613 5.40747 5.5552 2.80956 2.17962 0.00682574 0.0595542 2.66293 0.129185
o-Xylene Nonane Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Pentane n-Pentane lsohexane n-Hexane 2,2,4-Trimethylper Benzene Heptane Toluene Octane	ntane		0.15129 0.152173 8.38073 Flash Gas % 0 1.50103 0.109463 8.30163 20.0289 7.55771 20.4252 9.83208 10.4561 5.67063 4.4531 0.0141265 0.12116 5.50209 0.268121 1.8917	13.263 * 0 * 0 * Condensate % 2.49009 * 0.0489906 * 3.90318 * 5.25959 * 1.81906 * 5.20208 * 3.68156 * 4.63241 * 4.7052 * 0.3653955 * 0.135926 * 14.9891 * 0.845293 *	0 * 100 * Produced Water % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696 0.000160783 0.0105811 0.0787257 0.0693322 0.2583 0.299894 0.415111 0.510405 0.537794 0.00446414 0.015474 1.83592 0.10423 1.79781	0.0527042 2.86393 To Sales Pipeline % 0 14.898 0.262212 21.1218 22.7579 5.66268 13.6613 5.40747 5.5552 2.80956 2.17962 0.00682574 0.0595542 2.66293 0.129185 0.919923
o-Xylene Nonane Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Pentane so-Hexane n-Pentane 2,2,4-Trimethylper Benzene Heptane Toluene Octane Ethylbenzene	ntane		0.15129 0.152173 8.38073 Flash Gas % 0 1.50103 0.109463 8.30163 20.0289 7.55771 20.4252 9.83208 10.4561 5.67063 4.4531 0.0141265 0.12116 5.50209 0.268121 1.8917 0.0113767	13.263 * 0 * 0 * 0 * 0 * 0 * 0 * 0.0489906 * 0.0489906 * 3.90318 * 5.25959 * 1.81906 * 5.20208 * 3.68156 * 4.63241 * 4.75345 * 0.0365395 * 0.135926 * 0.45293 * 14.2872 * 0.100522 *	0 * 100 * Produced Water % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696 0.000160783 0.0105811 0.0787257 0.0693322 0.2583 0.299894 0.415111 0.510405 0.537794 0.00446414 0.015474 1.83592 0.10423 1.79781 0.0127256	0.0527042 2.86393 70 Sales Pipeline % 0 14.898 0.262212 21.1218 22.7579 5.66268 13.6613 5.40747 5.5552 2.80956 2.17962 0.00682574 0.0595542 2.66293 0.129185 0.919923 0.00553135
o-Xylene Nonane Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylper Benzene Heptane Toluene Octane Ethylbenzene o-Xylene	ntane		0.15129 0.152173 8.38073 Flash Gas % 0 1.50103 0.109463 8.30163 20.0289 7.55771 20.4252 9.83208 10.4561 5.67063 4.4531 0.0141265 0.12116 5.50209 0.268121 1.8917 0.0113767 0.104691	13.263 * 0 * 0 * 0 * 0 * 0 * 0 * 0.0489906 * 0.0489906 * 0.0489906 * 3.90318 * 5.25959 * 1.81906 * 5.20208 * 3.68156 * 4.63241 * 4.63241 * 0.0365395 * 0.135926 * 0.135926 * 14.9891 * 0.845293 * 14.2372 * 0.100522 * 1.19268 *	0 * 100 * Produced Water % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696 0.000160783 0.0105811 0.0787257 0.0693322 0.2583 0.299894 0.415111 0.510405 0.537794 0.00446414 0.015474 1.83592 0.10423 1.79781 0.0127256 0.151478	0.0527042 2.86393 70 Sales Pipeline % 0 14.898 0.262212 21.1218 22.7579 5.66268 13.6613 5.40747 5.5552 2.80956 2.17962 0.00682574 0.00682574 0.00682574 2.66293 0.129185 0.919923 0.00553135 0.0510099
o-Xylene Nonane Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Pentane Isohexane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylper Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane	ntane		0.15129 0.152173 8.38073 Flash Gas % 0 1.50103 0.109463 8.30163 20.0289 7.55771 20.4252 9.83208 10.4561 5.67063 4.4531 0.0141265 0.12116 5.50209 0.268121 1.8917 0.0113767 0.104691 0.379004	13.263 * 0 * 0 * Condensate % 0 * 2.49009 * 0.0489906 * 3.90318 * 5.25959 * 1.81906 * 5.20208 * 3.68156 * 4.63241 * 4.75345 * 0.0365395 * 0.135926 * 14.9891 * 0.845293 * 14.2372 * 0.100522 * 1.19268 *	0 * 100 * Produced Water % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696 0.000160783 0.0105811 0.0787257 0.0693322 0.2583 0.299894 0.415111 0.510405 0.537794 0.00446414 0.015474 1.83592 0.10423 1.79781 0.0127256 0.151478 0.998986	0.0527042 2.86393 70 Sales Pipeline % 0 14.898 0.262212 21.1218 22.7579 5.66268 13.6613 5.40747 5.5552 2.80956 2.17962 0.00682574 0.0595542 2.66293 0.129185 0.919923 0.00553135 0.0510099 0.184951
o-Xylene Nonane Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Pentane Isohexane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylper Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane	ntane		0.15129 0.152173 8.38073 Flash Gas % 0 1.50103 0.109463 8.30163 20.0289 7.55771 20.4252 9.83208 10.4561 5.67063 4.4531 0.0141265 0.12116 5.50209 0.268121 1.8917 0.0113767 0.104691 0.379004 0.422908	13.263 * 0 * 0 * 0 * 0 * 0 * 0 * 0.0489906 * 0.0489906 * 0.0489906 * 3.90318 * 5.25959 * 1.81906 * 5.20208 * 3.68156 * 4.63241 * 4.63241 * 0.0365395 * 0.135926 * 0.135926 * 14.9891 * 0.845293 * 14.2372 * 0.100522 * 1.19268 *	0 * 100 * Produced Water % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696 0.000160783 0.0105811 0.0787257 0.0693322 0.2583 0.299894 0.415111 0.510405 0.537794 0.00446414 0.015474 1.83592 0.10423 1.79781 0.0127256 0.151478 0.998986 3.09418	0.0527042 2.86393 70 Sales Pipeline % 0 14.898 0.262212 21.1218 22.7579 5.66268 13.6613 5.40747 5.5552 2.80956 2.17962 0.00682574 0.00682574 0.00595542 2.66293 0.129185 0.919923 0.00553135 0.0510099
o-Xylene Nonane Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylper Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	ntane		0.15129 0.152173 8.38073 Flash Gas % 0 1.50103 0.109463 8.30163 20.0289 7.55771 20.4252 9.83208 10.4561 5.67063 4.4531 0.0141265 0.12116 5.50209 0.268121 1.8917 0.0113767 0.104691 0.379004	13.263 * 0 * 0 * Condensate % 0 * 2.49009 * 0.0489906 * 3.90318 * 5.25959 * 1.81906 * 5.20208 * 3.68156 * 4.63241 * 4.75345 * 0.0365395 * 0.135926 * 14.9891 * 0.845293 * 14.2372 * 0.100522 * 1.19268 * 7.82617 *	0 * 100 * Produced Water % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696 0.000160783 0.0105811 0.0787257 0.0693322 0.2583 0.299894 0.415111 0.510405 0.537794 0.00446414 0.015474 1.83592 0.10423 1.79781 0.0127256 0.151478 0.998986	0.0527042 2.86393 70 Sales Pipeline % 0 14.898 0.262212 21.1218 22.7579 5.66268 13.6613 5.40747 5.5552 2.80956 2.17962 0.00682574 0.0595542 2.66293 0.129185 0.919923 0.00553135 0.0510099 0.184951
o-Xylene Nonane Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylper Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	ntane		0.15129 0.152173 8.38073 Flash Gas % 0 1.50103 0.109463 8.30163 20.0289 7.55771 20.4252 9.83208 10.4561 5.67063 4.4531 0.0141265 0.12116 5.50209 0.268121 1.8917 0.0113767 0.104691 0.379004 0.422908	13.263 * 0 * 0 * 0 * 0 * 0 * 2.49009 * 0.0489906 * 3.90318 * 5.25959 * 1.81906 * 5.20208 * 3.68156 * 4.63241 * 4.75345 * 0.0365395 * 0.135926 * 0.135926 * 0.135926 * 0.135926 * 0.135926 * 0.135926 * 0.135926 * 0.100522 * 1.19268 * 7.82617 * 24.1456 *	0 * 100 * Produced Water % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696 0.000160783 0.0105811 0.0787257 0.0693322 0.2583 0.299894 0.415111 0.510405 0.537794 0.00446414 0.015474 1.83592 0.10423 1.79781 0.0127256 0.151478 0.998986 3.09418	0.0527042 2.86393 70 Sales Pipeline % 0 14.898 0.262212 21.1218 22.7579 5.66268 13.6613 5.40747 5.5552 2.80956 2.17962 0.00682574 0.0595542 2.66293 0.129185 0.919923 0.00553135 0.0510099 0.184951 0.211201
o-Xylene Nonane Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylper Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	ntane		0.15129 0.152173 8.38073 Flash Gas % 0 1.50103 0.109463 8.30163 20.0289 7.55771 20.4252 9.83208 10.4561 5.67063 4.4531 0.0141265 0.12116 5.50209 0.268121 1.8917 0.0113767 0.104691 0.379004 0.422908 2.94904	13.263 * 0 * 0 * Condensate % 0 * 2.49009 * 0.0489906 * 3.90318 * 5.25959 * 1.81906 * 5.20208 * 3.68156 * 4.63241 * 4.75345 * 0.0365395 * 0.135926 * 0.435937 * 14.9891 * 0.100522 * 1.19268 * 7.82617 * 24.1456 * 0 *	0 * 100 * Produced Water % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696 0.000160783 0.0105811 0.0787257 0.0693322 0.2583 0.299894 0.415111 0.510405 0.537794 0.00446414 0.015474 1.83592 0.10423 1.79781 0.0127256 0.151478 0.998986 3.09418 89.804	0.0527042 2.86393 70 Sales Pipeline % 0 14.898 0.262212 21.1218 22.7579 5.66268 13.6613 5.40747 5.5552 2.80956 2.17962 0.00682574 0.0595542 2.66293 0.129185 0.919923 0.00553135 0.0510099 0.184951 0.211201 1.45314
o-Xylene Nonane Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Pentane n-Pentane	ntane		0.15129 0.152173 8.38073 Flash Gas % 0 1.50103 0.109463 8.30163 20.0289 7.55771 20.4252 9.83208 10.4561 5.67063 4.4531 0.0141265 0.12116 5.50209 0.268121 1.8917 0.0113767 0.104691 0.379004 0.422908	13.263 * 0 * 0 * Condensate % 0 * 2.49009 * 0.0489906 * 3.90318 * 5.25959 * 1.81906 * 5.20208 * 3.68156 * 4.63241 * 4.75345 * 0.0365395 * 0.135926 * 14.9891 * 0.845293 * 0.100522 * 1.19268 * 7.82617 * 24.1456 * 0 * OXF 163 Pad *	0 * 100 * Produced Water % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696 0.000160783 0.0105811 0.0787257 0.0693322 0.2583 0.299894 0.415111 0.510405 0.537794 0.00446414 0.015474 1.83592 0.10423 1.79781 0.0127256 0.151478 0.998986 3.09418	0.0527042 2.86393 70 Sales Pipeline % 0 14.898 0.262212 21.1218 22.7579 5.66268 13.6613 5.40747 5.5552 2.80956 2.17962 0.00682574 0.0595542 2.66293 0.129185 0.919923 0.00553135 0.0551099 0.184951 0.211201 1.45314
o-Xylene Nonane Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylper Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	ntane		0.15129 0.152173 8.38073 Flash Gas % 0 1.50103 0.109463 8.30163 20.0289 7.55771 20.4252 9.83208 10.4561 5.67063 4.4531 0.0141265 0.12116 5.50209 0.268121 1.8917 0.0113767 0.104691 0.379004 0.422908 2.94904	13.263 * 0 * 0 * Condensate % 0 * 2.49009 * 0.0489906 * 3.90318 * 5.25959 * 1.81906 * 5.20208 * 3.68156 * 4.63241 * 4.75345 * 0.0365395 * 0.135926 * 0.435937 * 14.9891 * 0.100522 * 1.19268 * 7.82617 * 24.1456 * 0 *	0 * 100 * Produced Water % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.427981 98.103 Stable Liquid % 0 0.000421696 0.000160783 0.0105811 0.0787257 0.0693322 0.2583 0.299894 0.415111 0.510405 0.537794 0.00446414 0.015474 1.83592 0.10423 1.79781 0.0127256 0.151478 0.998986 3.09418 89.804	0.0527042 2.86393 70 Sales Pipeline % 0 14.898 0.262212 21.1218 22.7579 5.66268 13.6613 5.40747 5.5552 2.80956 2.17962 0.00682574 0.059542 2.66293 0.129185 0.919923 0.00553135 0.0510099 0.184951 0.211201 1.45314

* User Specified Values ? Extrapolated or Approximate Values

Licensed to The ERM Group, Inc. and Affiliates

			All St	reams Report treams by Total Phase			
Client Name:	EQT				Job: Low	Pressure Tower	
Location:	OXF 163 100%	Contingency					
Flowsheet:	Flowsheet1						
Mass Flow			Flash Gas Ib/h	OXF 163 Pad Condensate Ib/h	Produced Water Ib/h	Stable Liquid Ib/h	To Sales Pipeline Ib/h
Methane			1.68003	58.3017 *	0	* 0.0768738	56.5448
Carbon Dioxide			0.122517	1.14704 *	0	* 0.0293102	0.995215
Ethane			9.29164	91.3872 *	0	* 1.92891	80.1667
Propane			22.4174	123.145 *	0	* 14.3514	86.3766
i-Butane			8.459	42.5905 *	0	* 12.639	21.4924
n-Butane			22.861	121.799 *	0	* 47.0872	51.8508
i-Pentane			11.0046	86.1982 *	0	* 54.6698	20.5238
n-Pentane			11.703	108.461 *	0	* 75.6734	21.0845
Isohexane			6.34689	110.056 *	0	* 93.0452	10.6636
n-Hexane			4.98415	111.295 *	0	* 98.0381	8.27263
2,2,4-Trimethylpe	entane		0.0158111	0.855517 *	0	* 0.813799	0.0259068
Benzene			0.135609	3.18251 *	0	* 2.82087	0.226035
Heptane			6.15825	350.947 *	0	* 334.682	10.107
Toluene			0.300096	19.7913 *	0	* 19.0009	0.490316
Octane			2.1173	333.344 *	0	* 327.735	3.49153
Ethylbenzene			0.0127335	2.35357 *	0	* 2.31984	0.020994
o-Xylene			0.117176	27.9248 *	0	* 27.614	0.193606
Nonane			0.424202	183.238 *	0	* 182.112	0.701975
Decane			0.473342	565.333 *	0	* 564.058	0.801605
Water			3.30073	0 *	16379.8	* 16371	5.51531

		Stream	Properties			
Property	Units	Flash Gas	OXF 163 Pad Condensate	Produced Water	Stable Liquid	To Sales Pipeline
Temperature	°F	108.94	85 *	85 *	108.94	110
Pressure	psia	14.6959 *	407.696 *	407.696 *	14.6959	44.6959
Mole Fraction Vapor	%	100	2.45359	0	0	100
Mole Fraction Light Liquid	%	0	97.5464	100	1.897	0
Mole Fraction Heavy Liquid	%	0	0	0	98.103	0
Molecular Weight	lb/lbmol	51.1967	78.1542	18.0153	19.6801	35.5056
Mass Density	lb/ft^3	0.125609	34.8738	62.1455	59.0603	0.266912
Molar Flow	lbmol/h	2.18619	29.9581	909.217	926.299	10.6897
Mass Flow	lb/h	111.926	2341.35	16379.8	18229.7	379.545
Vapor Volumetric Flow	ft^3/h	891.06	67.1378	263.571	308.662	1421.99
Liquid Volumetric Flow	gpm	111.093	8.37043	32.8609	38.4825	177.287
Std Vapor Volumetric Flow	MMSCFD	0.019911	0.272847	8.28081	8.43639	0.097358
Std Liquid Volumetric Flow	sgpm	0.40111	7.37824 *	32.7444 *	38.0517	1.66977
Compressibility		0.981609	0.156312	0.0202195	0.000802511	0.972546
Specific Gravity		1.76768		0.996417	0.94695	1.22591
API Gravity				9.96415	16.2525	
Enthalpy	Btu/h	-122403	-2.32161E+06	-1.11589E+08	-1.12853E+08	-463504
Mass Enthalpy	Btu/lb	-1093.61	-991.568	-6812.63	-6190.61	-1221.21
Mass Cp	Btu/(lb*°F)	0.423778	0.531146	0.981529	0.935294	0.446928
Ideal Gas CpCv Ratio		1.10152	1.06777	1.32512	1.29221	1.14561
Dynamic Viscosity	cP	0.00850597		0.833816	0.599424	0.00970047
Kinematic Viscosity	cSt	4.22747		0.837605	0.629656	2.26884
Thermal Conductivity	Btu/(h*ft*°F)	0.0109151		0.353848	0.32163	0.0142024
Surface Tension	lbf/ft			0.00492858	0.00425208 ?	
Net Ideal Gas Heating Value	Btu/ft^3	2575.51	3993.4	0	101.736	1849.09
Net Liquid Heating Value	Btu/lb	18907.8	19235.7	-1059.76	993.84	19616.3
Gross Ideal Gas Heating Value	Btu/ft^3	2796.57	4313.43	50.31	159.007	2017.18
Gross Liquid Heating Value	Btu/lb	20546.3	20789.6	0	2098.17	21412.9

Remarks

		All St	reams Report reams ny Total Phase	
Client Name:	EQT			Job: Low Pressure Tower
Location:	OXF 163 100%	Contingency		
Flowsheet:	Flowsheet1			
		Conn	ections	
		To Tanks	3	
From Block		Low Pressure	MIX-100	
		Tower		
To Block		Tank Battery	Low Pressure	
			Tower	
			· · ·	
		Stream C	omposition	
		To Tanks		
Mole Fraction		10 Tanks	3 %	
Nitrogen		0	7 0 0	
Methane		0.0117951	0.386958	
Carbon Dioxide		0.00037156	0.00277515	
Ethane		0.0401901	0.323608	
Propane		0.0401901	0.297356	
i-Butane		0.0390953	0.0780232	
n-Butane		0.129616	0.223129	
i-Pentane		0.0980375	0.12721	
n-Pentane		0.130434	0.160066	
Isohexane		0.124221	0.135982	
n-Hexane		0.128758	0.137514	
2,2,4-Trimethylpe	ntane	0.000782212	0.000797457	
Benzene	intario	0.00407645	0.00433817	
Heptane		0.366353	0.372923	
Toluene		0.0225613	0.0228711	
Octane		0.311007	0.310721	
Ethylbenzene		0.00236635	0.00236047	
o-Xylene		0.0281327	0.0280067	
Nonane		0.153285	0.152123	
Decane		0.427331	0.423067	
Water		97.8918	96.8102	
		To Tanks	3	
Mass Fraction		%	%	
Nitrogen		0	0	
Methane		0.00957879	0.311422	
Carbon Dioxide		0.000827777	0.00612699	
Ethane		0.0611754	0.48815	
Propane		0.200467	0.657788	
i-Butane		0.115028	0.227499	
n-Butane		0.381364	0.650596	
i-Pentane		0.358063	0.460432	
n-Pentane		0.476384	0.57935	
Isohexane		0.541894	0.587868	
n-Hexane		0.561686	0.594487	
2,2,4-Trimethylpe	ntane	0.00452311	0.00456979	
Benzene		0.016119	0.0169995	
Heptane		1.85829	1.8746	
Toluene		0.105231	0.105716	
Octane		1.79838	1.78057	
Ethylbenzene		0.0127174	0.0125717	
o-Xylene		0.151193	0.149162	
Nonane		0.995203	0.978776	
Decane		3.07788	3.01976	
Water		89.274	87.4935	
		To Tanks	3	
Mass Flow		lb/h	lb/h	
Nitrogen		0	0	
Methane		1.7569	58.3017	
Carbon Dioxide		0.151828	1.14704	

			All St	eams Report reams y Total Phase				
Client Name:	EQT	<u>_</u>			Job: Low	Pressure Tow	er	
Location:	OXF 163 100	% Contingency						
Flowsheet:	Flowsheet1							
			To Tanks	3				
Mass Flow			lb/h	lb/h				
Ethane			11.2205	91.3872				
Propane			36.7688	123.145				
i-Butane			21.098	42.5905				
n-Butane i-Pentane			69.9482 65.6744	121.799 86.1982				
n-Pentane			87.3765	108.461				
Isohexane			99.3921	110.056				
n-Hexane			103.022	111.295				
2,2,4-Trimethylp	entane		0.82961	0.855517				
Benzene			2.95647	3.18251				
Heptane			340.84	350.947				
Toluene			19.301	19.7913				
Octane			329.852	333.344				
Ethylbenzene			2.33258	2.35357				
o-Xylene			27.7312	27.9248				
Nonane			182.536	183.238				
Decane			564.532	565.333				
Water		Unite		16379.8 Properties				
Water Property		Units °F						
Water Property Temperature Pressure			Stream F To Tanks	Properties 3				
Water Property Temperature Pressure Mole Fraction Va		°F psia %	Stream F To Tanks 110 44.6959 0	Properties 3 85.0988 407.696 0.0218605				
Water Property Temperature Pressure Mole Fraction Va Mole Fraction Lig	ght Liquid	°F psia % %	Stream F To Tanks 110 44.6959 0 2.10449	Bit State Bit State <t< td=""><td></td><td></td><td></td><td></td></t<>				
Water Property Temperature Pressure Mole Fraction Va Mole Fraction He	ght Liquid eavy Liquid	°F psia % % %	Stream F To Tanks 110 44.6959 0 2.10449 97.8955	State State 3 407.696 0.0218605 3.11287 96.8653 96.8653				
Water Property Temperature Pressure Mole Fraction Va Mole Fraction He Mole Fraction He Mole Cular Weigh	ght Liquid eavy Liquid	°F psia % % % lb/lbmol	Stream F To Tanks 110 44.6959 0 2.10449 97.8955 19.7543	Store Store 3 407.696 0.0218605 3.11287 96.8653 19.9336				
Water Property Temperature Pressure Mole Fraction Va Mole Fraction Lig Mole Fraction He Mole Charter Weigh Mass Density	ght Liquid eavy Liquid	°F psia % % b/lbmol lb/lbmol	Stream F To Tanks 110 44.6959 0 2.10449 97.8955 19.7543 58.8096	Store Store 3 85.0988 407.696 0.0218605 3.11287 96.8653 96.8653 19.9336 57.7408 57.7408				
Water Property Temperature Pressure Mole Fraction Va Mole Fraction He Mole craction He Molecular Weigh Mass Density Molar Flow	ght Liquid eavy Liquid	°F psia % % lb/lbmol lb/lbmol lb/ft^3 lbmol/h	Stream F To Tanks 110 44.6959 0 2.10449 97.8955 19.7543 58.8096 928.485	Properties 3 85.0988 407.696 0.0218605 3.11287 96.8653 19.9336 57.7408 939.175				
Water Property Temperature Pressure Mole Fraction Va Mole Fraction Ke Mole Fraction He Molecular Weigh Mass Density Molar Flow Mass Flow	ght Liquid eavy Liquid nt	°F psia % % lb/lbmol lb/ft^3 lbmol/h lb/h	Stream F To Tanks 110 44.6959 0 2.10449 97.8955 19.7543 58.8096 928.485 18341.6	Properties 3 85.0988 407.696 0.0218605 3.11287 96.8653 19.9336 57.7408 939.175 18721.1				
Water Property Temperature Pressure Mole Fraction Va Mole Fraction Va Mole Fraction He Molecular Weigh Mass Density Molar Flow Mass Flow Vapor Volumetric	ght Liquid eavy Liquid nt c Flow	°F psia % % b/lbmol lb/lbmol lb/ft^3 lbmol/h lb/h ft^3/h	Stream F To Tanks 110 44.6959 0 2.10449 97.8955 19.7543 58.8096 928.485 18341.6 311.881	Properties 3 85.0988 407.696 0.0218605 3.11287 96.8653 19.9336 57.7408 939.175 18721.1 324.227				
Water Property Temperature Pressure Mole Fraction Va Mole Fraction He Mole Fraction He Molecular Weigh Mass Density Molar Flow Mass Flow Vapor Volumetric Liquid Volumetric	ght Liquid eavy Liquid nt c Flow c Flow	°F psia % % b/lbmol lb/lbmol lb/ft^3 lbmol/h lb/h ft^3/h gpm	Stream F To Tanks 110 44.6959 0 2.10449 97.8955 19.7543 58.8096 928.485 18341.6 311.881 38.8838	Properties 3 85.0988 407.696 0.0218605 3.11287 96.8653 19.9336 57.7408 939.175 18721.1 324.227 40.4231				
Water Property Temperature Pressure Mole Fraction Va Mole Fraction He Molecular Weigh Molecular Weigh Molar Flow Mass Density Molar Flow Mass Flow Vapor Volumetric Std Vapor Volum	ght Liquid eavy Liquid nt c Flow c Flow netric Flow	°F psia % % lb/lbmol lb/ft^3 lbmol/h lb/h ft/3/h gpm MMSCFD	Stream F To Tanks 110 44.6959 0 2.10449 97.8955 19.7543 58.8096 928.485 18341.6 311.881 38.8838 8.4563	Properties 3 85.0988 407.696 0.0218605 3.11287 96.8653 19.9336 57.7408 939.175 18721.1 324.227 40.4231 8.55365				
Water Property Temperature Pressure Mole Fraction Va Mole Fraction Lig Mole Fraction He Molecular Weigh Mass Density Molar Flow Mass Flow Vapor Volumetric Std Vapor Volum Std Liquid Volum	ght Liquid eavy Liquid nt c Flow c Flow netric Flow	°F psia % % b/lbmol lb/lbmol lb/ft^3 lbmol/h lb/h ft^3/h gpm	Stream F To Tanks 110 44.6959 0 2.10449 97.8955 19.7543 58.8096 928.485 18341.6 311.881 38.8838 8.4563 38.4529	Properties 3 85.0988 407.696 0.0218605 3.11287 96.8653 19.9336 57.7408 939.175 18721.1 324.227 40.4231 8.55365 40.1226				
Water Property Temperature Pressure Mole Fraction Va Mole Fraction Va Mole Fraction He Molecular Weigh Molecular Weigh Mass Density Molar Flow Mass Flow Vapor Volumetric Liquid Volumetric	ght Liquid eavy Liquid nt c Flow c Flow netric Flow	°F psia % % lb/lbmol lb/ft^3 lbmol/h lb/h ft/3/h gpm MMSCFD	Stream F To Tanks 110 44.6959 0 2.10449 97.8955 19.7543 58.8096 928.485 18341.6 311.881 38.8838 8.4563 38.4529 0.00245581	Properties 3 85.0988 407.696 0.0218605 3.11287 96.8653 19.9336 57.7408 939.175 18721.1 324.227 40.4231 8.55365				
Water Property Temperature Pressure Mole Fraction Va Mole Fraction Lig Mole Fraction He Molecular Weigh Mass Density Molar Flow Mass Flow Vapor Volumetric Std Vapor Volumetric Std Liquid Volum Compressibility Specific Gravity	ght Liquid eavy Liquid nt c Flow c Flow netric Flow	°F psia % % lb/lbmol lb/ft^3 lbmol/h lb/h ft/3/h gpm MMSCFD	Stream F To Tanks 110 44.6959 0 2.10449 97.8955 19.7543 58.8096 928.485 18341.6 311.881 38.8838 8.4563 38.4529 0.00245581 0.94293 16.7972	Properties 3 85.0988 407.696 0.0218605 3.11287 96.8653 19.9336 57.7408 939.175 18721.1 324.227 40.4231 8.55365 40.1226				
Water Property Temperature Pressure Mole Fraction Va Mole Fraction Lig Mole Fraction He Molecular Weigh Mass Density Molar Flow Mass Flow Mass Flow Vapor Volumetric Std Vapor Volumetric Std Vapor Volumetric Std Liquid Volumetric Std Volumetric Std Volumetric	ght Liquid eavy Liquid nt c Flow c Flow netric Flow	°F psia % % b/lbmol lb/lbmol lb/tt^3 lbmol/h lb/h ft^3/h gpm MMSCFD sgpm Btu/h	Stream F To Tanks 110 44.6959 0 2.10449 97.8955 19.7543 58.8096 928.485 18341.6 311.881 38.8838 8.4563 38.4529 0.00245581 0.94293	Properties 3 85.0988 407.696 0.0218605 3.11287 96.8653 19.9336 57.7408 939.175 18721.1 324.227 40.4231 8.55365 40.1226				
Water Property Temperature Pressure Mole Fraction Va Mole Fraction Lig Mole Fraction He Mole Fraction He Mole Fraction He Mole Fraction He Mole Fraction He Mole Fraction He Mole Fraction Volumetric Stoper Volumetric Mass Enthalpy Mass Enthalpy	ght Liquid eavy Liquid nt c Flow c Flow netric Flow	°F psia % % b/lbmol lb/lbmol lb/tt^3 lbmol/h lb/h ft^3/h gpm MMSCFD sgpm Btu/h Btu/h	Stream F To Tanks 110 44.6959 0 2.10449 97.8955 19.7543 58.8096 928.485 18341.6 311.881 38.8838 8.4563 38.4529 0.00245581 0.94293 16.7972 -1.12975E+08 -6159.51	Properties 3 85.0988 407.696 0.0218605 3.11287 96.8653 19.9336 57.7408 939.175 18721.1 324.227 40.4231 8.55365 40.1226 0.0240748 -1.13911E+08 -6084.62				
Water Property Temperature Pressure Mole Fraction Va Mole Fraction Lig Mole Fraction He Mole Fraction He Mole Fraction He Mole Fraction He Mole Fraction He Mole Fraction He Mole Fraction Volumetric Stoper Volumetric Mass Enthalpy Mass Cp	ght Liquid eavy Liquid nt c Flow c Flow c Flow netric Flow netric Flow	°F psia % % b/lbmol lb/lbmol lb/tt^3 lbmol/h lb/h ft^3/h gpm MMSCFD sgpm Btu/h	Stream F To Tanks 110 44.6959 0 2.10449 97.8955 19.7543 58.8096 928.485 18341.6 311.881 38.8838 8.4563 38.4529 0.00245581 0.94293 16.7972 -1.12975E+08 -6159.51 0.933323	Properties 3 85.0988 407.696 0.0218605 3.11287 96.8653 19.9336 57.7408 939.175 18721.1 324.227 40.4231 8.55365 40.1226 0.0240748 -1.13911E+08 -6084.62 0.925869				
Water Property Temperature Pressure Mole Fraction Va Mole Fraction Lig Mole Fraction He Mole Fraction He Mole Fraction He Mole Fraction He Mole Fraction He Mole Fraction He Mole Fraction Volumetric Stoper Volumetric Mass Enthalpy Mass Cp Ideal Gas CpCv	ght Liquid eavy Liquid nt c Flow c Flow c Flow metric Flow metric Flow Ratio	°F psia % % b/lbmol lb/lbmol lb/ft^3 lbmol/h lb/h ft^3/h gpm MMSCFD sgpm Btu/h Btu/lb Btu/(lb*°F)	Stream F To Tanks 110 44.6959 0 2.10449 97.8955 19.7543 58.8096 928.485 18341.6 311.881 38.48529 0.00245581 0.94293 16.7972 -1.12975E+08 -6159.51 0.933323 1.29082	Properties 3 85.0988 407.696 0.0218605 3.11287 96.8653 19.9336 57.7408 939.175 18721.1 324.227 40.4231 8.55365 40.1226 0.0240748 -1.13911E+08 -6084.62				
Water Property Temperature Pressure Mole Fraction Va Mole Fraction Vi Mole Fraction He Molecular Weigh Mass Density Molar Flow Mass Flow Vapor Volumetrid Std Vapor Volumetrid Std Vapor Volumetrid Std Liquid Volumetrid Sta Liquid Volumetr	ght Liquid eavy Liquid nt c Flow c Flow c Flow metric Flow metric Flow Ratio	°F psia % % % lb/lbmol lb/ft^3 lbmol/h lb/h ft^3/h gpm MMSCFD sgpm Btu/h Btu/lb Btu/(lb*°F) cP	Stream F To Tanks 110 44.6959 0 2.10449 97.8955 19.7543 58.8096 928.485 18341.6 311.881 38.4563 38.4529 0.00245581 0.94293 16.7972 -1.12975E+08 -6159.51 0.933323 1.29082 0.586507	Properties 3 85.0988 407.696 0.0218605 3.11287 96.8653 19.9336 57.7408 939.175 18721.1 324.227 40.4231 8.55365 40.1226 0.0240748 -1.13911E+08 -6084.62 0.925869				
Water Property Temperature Pressure Mole Fraction Va Mole Fraction Vi Mole Fraction He Molecular Weigh Mass Density Molar Flow Mass Flow Vapor Volumetric Std Vapor Volumetric Std Vapor Volumetric Std Liquid Volumetric Std Liquid Volumetric Std Liquid Volumetric Std Liquid Volumetric Std Liquid Volumetric Std Liquid Volumetric Specific Gravity Enthalpy Mass Enthalpy Mass Cp Ideal Gas CpCv Dynamic Viscosi Kinematic Viscosi	ght Liquid eavy Liquid nt c Flow c Flow c Flow metric Flow metric Flow metric Flow	°F psia % % % lb/lbmol lb/ft^3 lbmol/h lb/h ft/^3/h gpm MMSCFD sgpm Btu/h Btu/h Btu/lb Btu/(lb*°F) CP cSt	Stream F To Tanks 110 44.6959 0 2.10449 97.8955 19.7543 58.8096 928.485 18341.6 311.881 38.8838 8.4563 38.4529 0.00245581 0.94293 16.7972 -1.12975E+08 -6159.51 0.933323 1.29082 0.586507 0.616807	Properties 3 85.0988 407.696 0.0218605 3.11287 96.8653 19.9336 57.7408 939.175 18721.1 324.227 40.4231 8.55365 40.1226 0.0240748 -1.13911E+08 -6084.62 0.925869				
Water Property Temperature Pressure Mole Fraction Va Mole Fraction Va Mole Fraction He Mole Constity Mole Fraction He Mass Density Molar Flow Mass Density Molar Flow Mass Flow Vapor Volumetric Std Vapor Volumetric Std Vapor Volumetric Std Liquid Volumetric Std Liquid Volumetric Std Liquid Volumetric Std Liquid Volumetric Stop Columetric Specific Gravity API Gravity Enthalpy Mass Cp Ideal Gas CpCv Dynamic Viscosi Kinematic Viscosi Thermal Conduc	ght Liquid eavy Liquid nt c Flow c Flow c Flow metric Flow metric Flow metric Flow	°F psia % % % b/lbmol lb/lbmol lb/rt^3 lbmol/h lb/h ft/3/h gpm MMSCFD sgpm Btu/h Btu/lb Btu/lb Btu/lb Btu/lb btu/(lb*°F) cP cSt Btu/(h*ft*°F)	Stream F To Tanks 110 44.6959 0 2.10449 97.8955 19.7543 58.8096 928.485 18341.6 311.881 38.8838 8.4563 38.4529 0.00245581 0.94293 16.7972 -1.12975E+08 -6159.51 0.933323 1.29082 0.586507 0.616807 0.319262	Properties 3 85.0988 407.696 0.0218605 3.11287 96.8653 19.9336 57.7408 939.175 18721.1 324.227 40.4231 8.55365 40.1226 0.0240748 -1.13911E+08 -6084.62 0.925869				
Water Property Temperature Pressure Mole Fraction Va Mole Fraction Lig Mole Fraction He Molecular Weigh Mass Density Molar Flow Mass Flow Wapor Volumetric Std Vapor Volumetric Std Vapor Volumetric Std Liquid Volum Compressibility Specific Gravity API Gravity Enthalpy Mass Enthalpy Mass Cp Ideal Gas CpCv Dynamic Viscosi Kinematic Viscos Thermal Conduc	ght Liquid eavy Liquid nt c Flow c Flow netric Flow netric Flow netric Flow sity sity	°F psia % % % b/lbmol lb/lbmol lb/ft^3 lbmol/h lb/h ft^3/h gpm MMSCFD sgpm Btu/h Btu/lb Btu/lb CP cSt Btu/(h*ft*°F) lbf/ft	Stream F To Tanks 110 44.6959 0 2.10449 97.8955 19.7543 58.8096 928.485 18341.6 311.881 38.8838 8.4563 38.4529 0.00245581 0.94293 16.7972 -1.12975E+08 -6159.51 0.933233 1.29082 0.586507 0.616807 0.319262 0.00420727 ?	Properties 3 85.0988 407.696 0.0218605 3.11287 96.8653 19.9336 57.7408 939.175 18721.1 324.227 40.4231 8.55365 40.1226 0.0240748 -1.13911E+08 -6084.62 0.925869 1.28999				
Water Property Temperature Pressure Mole Fraction Va Mole Fraction Va Mole Fraction He Molecular Weigh Mass Density Molar Flow Mass Flow Vapor Volumetric Liquid Volumetric Std Vapor Volumetric Std Vapor Volumetric Std Vapor Volumetric Std Liquid Volum Compressibility Specific Gravity API Gravity Enthalpy Mass Enthalpy Mass Cp Ideal Gas CpCv Dynamic Viscosi Kinematic Viscos Thermal Conducc Surface Tension Net Ideal Gas He	ght Liquid eavy Liquid nt c Flow c Flow netric Flow netric Flow Ratio ity sity sity tivity	°F psia % % % b/lbmol lb/lbmol lb/ft^3 lbmol/h lb/h ft^3/h gpm MMSCFD sgpm Btu/h Btu/lb Btu/lb CP cSt Btu/(h*ft*°F) lb/ft Btu/h*3	Stream F To Tanks 110 44.6959 0 2.10449 97.8955 19.7543 58.8096 928.485 18341.6 311.881 38.8838 8.4563 38.4529 0.00245581 0.94293 16.7972 -1.12975E+08 -6159.51 0.93323 1.29082 0.586507 0.616807 0.319262 0.00420727 ? 107.56	Properties 3 85.0988 407.696 0.0218605 3.11287 96.8653 19.9336 57.7408 939.175 18721.1 324.227 40.4231 8.55365 40.1226 0.0240748 -1.13911E+08 -6084.62 0.925869 1.28999 127.383				
Water Property Temperature Pressure Mole Fraction Va Mole Fraction Lig Mole Fraction Lig Mole Fraction He Mass Density Molar Flow Mass Density Molar Flow Mass Flow Vapor Volumetric Std Vapor Volumetric Std Vapor Volumetric Std Liquid Score Mass Enthalpy Mass Cp Ideal Gas CpCv Dynamic Viscosi Kinematic	ght Liquid eavy Liquid nt c Flow c Flow netric Flow netric Flow netric Flow sity sity sity tivity eating Value ng Value	°F psia % % % bl/lbmol lb/lbmol lb/ft^3 lbmol/h lb/h ft^3/h gpm MMSCFD sgpm Btu/h Btu/lb CP cSt Btu/(h*ft*°F) lbf/ft Btu/ht/3 Btu/lb	Stream F To Tanks 110 44.6959 0 2.10449 97.8955 19.7543 58.8096 928.485 18341.6 311.881 38.8838 8.4563 38.4529 0.00245581 0.94293 16.7972 -1.12975E+08 -6159.51 0.933323 1.29082 0.586507 0.616807 0.319262 0.00420727 ? 107.56 1103.16	Properties 3 85.0988 407.696 0.0218605 3.11287 96.8653 19.9336 57.7408 939.175 18721.1 324.227 40.4231 8.55365 40.1226 0.0240748 -1.13911E+08 -6084.62 0.925869 1.28999 127.383 1478.49				
Water Property Temperature Pressure Mole Fraction Va Mole Fraction Lig Mole Fraction He Molecular Weigh Mass Density Molar Flow Mass Flow Vapor Volumetric Std Vapor Volumetric Std Paper Volumetric Sta Vapor Valumetric Sta Vapor	ght Liquid eavy Liquid nt c Flow c Flow netric Flow netric Flow netric Flow netric Flow sity sity sity ctivity eating Value ng Value Heating Value	°F psia % % % b/lbmol lb/lbmol lb/ft^3 lbmol/h lb/h ft^3/h gpm MMSCFD sgpm Btu/h Btu/lb Btu/lb CP cSt Btu/(h*ft*°F) lb/ft Btu/h*3	Stream F To Tanks 110 44.6959 0 2.10449 97.8955 19.7543 58.8096 928.485 18341.6 311.881 38.8838 8.4563 38.4529 0.00245581 0.94293 16.7972 -1.12975E+08 -6159.51 0.93323 1.29082 0.586507 0.616807 0.319262 0.00420727 ? 107.56	Properties 3 85.0988 407.696 0.0218605 3.11287 96.8653 19.9336 57.7408 939.175 18721.1 324.227 40.4231 8.55365 40.1226 0.0240748 -1.13911E+08 -6084.62 0.925869 1.28999 127.383				

		End	ergy Stream Repo	ort	
Client Name:	EQT			Job: Low Pressur	e Tower
Location:	OXF 163 10	00% Contingency			
Flowsheet:	Flowsheet1				
			Energy Streams		
Energy Stream		Energy Rate	Power	From Block	To Block
Q-1		472354 Btu/h	185.642 hp		Low Pressure Tower
Remarks					

Location: OXF 163 100% Contingency Modified: 3:22 PM, 1/20/2016				Low Press	ocks sure Tower or Report			
Flowsheet: Flowsheet1 Status: Solved 4:03 PM, 1/20/2016 Stream Connection Type Other Block Stream Connection Type Other Block 3 Inlet MIX-100 To Sales Pipeline Vapor Outlet To Tanks Light Liquid Outlet Tank Battery Q-1 Energy Block Parameters Pressure Drop 363 psi Main Liquid Phase Light Liquid Mole Fraction Vapor 1.1382 % Heat Duty 472354 Btu/h Mole Fraction Light Liquid 2.08054 % Heat Release Curve Type Plug Flow Mole Fraction Heavy Liquid 96.7813 % Heat Release Curve 5	Client Name:	EQT				Job: Low P	ressure Tower	
Connections Stream Connection Type Other Block Stream Connection Type Other Block 3 Inlet MIX-100 To Sales Pipeline Vapor Outlet To Tanks Light Liquid Outlet Tank Battery Q-1 Energy Block Parameters Pressure Drop 363 psi Main Liquid Phase Light Liquid Mole Fraction Vapor 1.1382 % Heat Duty 472354 Btu/h Mole Fraction Light Liquid 2.08054 % Heat Release Curve Type Plug Flow Mole Fraction Heavy Liquid 96.7813 % Heat Release Curve 5	_ocation:		псу					
StreamConnection TypeOther BlockStreamConnection TypeOther Block3InletMIX-100To Sales PipelineVapor OutletTo TanksLight Liquid OutletTank BatteryQ-1EnergyBlock ParametersPressure Drop363 psiMain Liquid PhaseLight LiquidMole Fraction Vapor1.1382 %Heat Duty472354 Btu/hMole Fraction Light Liquid2.08054 %Heat Release Curve TypePlug FlowMole Fraction Heavy Liquid96.7813 %Heat Release Curve5	Flowsheet:	Flowsheet1				Status: Solv	ved 4:03 PM, 1/20/2	2016
StreamConnection TypeOther BlockStreamConnection TypeOther Block3InletMIX-100To Sales PipelineVapor OutletTo TanksLight Liquid OutletTank BatteryQ-1EnergyBlock ParametersPressure Drop363 psiMain Liquid PhaseLight LiquidMole Fraction Vapor1.1382 %Heat Duty472354 Btu/hMole Fraction Light Liquid2.08054 %Heat Release Curve TypePlug FlowMole Fraction Heavy Liquid96.7813 %Heat Release Curve5								
3 Inlet MIX-100 To Sales Pipeline Vapor Outlet To Tanks Light Liquid Outlet Tank Battery Q-1 Energy Block Parameters Pressure Drop 363 psi Main Liquid Phase Light Liquid Mole Fraction Vapor 1.1382 % Heat Duty 472354 Btu/h Mole Fraction Light Liquid 2.08054 % Heat Release Curve Type Plug Flow Mole Fraction Heavy Liquid 96.7813 % Heat Release Curve 5				Conne	ections			
To TanksLight Liquid OutletTank BatteryQ-1EnergyBlock ParametersPressure Drop363 psiMain Liquid PhaseLight LiquidMole Fraction Vapor1.1382 %Heat Duty472354 Btu/hMole Fraction Light Liquid2.08054 %Heat Release Curve TypePlug FlowMole Fraction Heavy Liquid96.7813 %Heat Release Curve5	Stream	Connection Type		Other Block	Stream	Connect	ion Type	Other Block
Block Parameters Pressure Drop 363 psi Main Liquid Phase Light Liquid Mole Fraction Vapor 1.1382 % Heat Duty 472354 Btu/h Mole Fraction Light Liquid 2.08054 % Heat Release Curve Type Plug Flow Mole Fraction Heavy Liquid 96.7813 % Heat Release Curve 5	3	Inlet	÷	MIX-100	To Sales Pipeline	Vapor	Outlet	
Pressure Drop363 psiMain Liquid PhaseLight LiquidMole Fraction Vapor1.1382 %Heat Duty472354 Btu/hMole Fraction Light Liquid2.08054 %Heat Release Curve TypePlug FlowMole Fraction Heavy Liquid96.7813 %Heat Release Curve5	To Tanks	Light Liquid Outlet		Tank Battery	Q-1	Ene	rgy	
Pressure Drop363 psiMain Liquid PhaseLight LiquidMole Fraction Vapor1.1382 %Heat Duty472354 Btu/hMole Fraction Light Liquid2.08054 %Heat Release Curve TypePlug FlowMole Fraction Heavy Liquid96.7813 %Heat Release Curve5								
Mole Fraction Vapor1.1382 %Heat Duty472354 Btu/hMole Fraction Light Liquid2.08054 %Heat Release Curve TypePlug FlowMole Fraction Heavy Liquid96.7813 %Heat Release Curve5				Block Pa	arameters			
Mole Fraction Light Liquid2.08054%Heat Release Curve TypePlug FlowMole Fraction Heavy Liquid96.7813%Heat Release Curve5	Pressure Drop		363	psi	Main Liquid Phase		Light Liquid	
Mole Fraction Heavy Liquid 96.7813 % Heat Release Curve 5	Mole Fraction Vap	or	1.1382	%	Heat Duty		472354	Btu/h
	Mole Fraction Ligh	t Liquid	2.08054	%	Heat Release Curve T	уре	Plug Flow	
	Mole Fraction Hea	vy Liquid	96.7813	%			5	
Remarks								

Simulation Initiated on 1/21	/2016 8:45:43 AM	OXF163_LowPressu	reTower_1.21.2016.pmx		Page 1 of 2
		MIX	OCKS (-100 litter Report		
Client Name:	EQT			Job: Low Pressure Tow	er
Location:	OXF 163 100% Conti	ngency		Modified: 2:14 PM, 7/24	/2014
Flowsheet:	Flowsheet1			Status: Solved 4:03 PM	, 1/20/2016
		Conn	ections		
Stream	Connection T	/pe Other Block	Stream	Connection Type	Other Block
Produced Water	Inlet	· ·	OXF 163 Pad Condensate	Inlet	
3	Outlet	Low Pressure Tower			
			•		
		Block Pa	arameters		
Pressure Drop		0 psi	Fraction to PStream	3	100 %
		÷			
Remarks					

Simulation Initiated on 1/21	/2016 8:45:43 AM		OXF163_LowPressure	Tower_1.21.2016.pmx			Page 1 of
			Blo Tank E _{Separato}				
Client Name:	EQT				Job: Low P	ressure Tower	
Location:	OXF 163 100% Continge	ency			Modified: 1	:46 PM, 11/20/20)15
Flowsheet:	Flowsheet1				Status: Solv	ved 4:03 PM, 1/2	20/2016
			Conne	ctions			
Stream	Connection Type)	Other Block	Stream	Connect	ion Type	Other Block
To Tanks	Inlet	Low	Pressure Tower	Flash Gas	Vapor	Outlet	
Stable Liquid	Light Liquid Outle	t					
			Block Pa	rameters			
Pressure Drop		30	psi	Main Liquid Phase		Light Liqu	uid
Mole Fraction Vap	or	0.235458	%	Heat Duty		- ·	0 Btu/h
Mole Fraction Ligh	t Liquid	1.89254	%	Heat Release Curve	Туре	Plug Flo	WC
Mole Fraction Hea	vy Liquid	97.872	%	Heat Release Curve Increments			5
Remarks							

	F		Environment onment1			
Client Name: EQT				Job: Low P	ressure Tower	
Location: OXF 163 100	% Contingency					
Flowsheet: Flowsheet1	0					
		Environm	ent Settings			
Number of Poynting Intervals	0		Freeze Out Temperatu	re	10 °F	
	Ũ		Threshold Difference			
Gibbs Excess Model	77 °F		Phase Tolerance		1 %	
Evaluation Temperature						
• •						
		Com	onents			
Component Name	Henry`s Law Component	Phase Initiator	Component Name		Henry`s Law Component	Phase Initiator
Nitrogen	False	False	2,2,4-Trimethylpentane		False	False
Methane	False	False	Benzene		False	False
Carbon Dioxide	False	False	Heptane		False	False
Ethane	False	False	Toluene		False	False
Propane	False	False	Octane		False	False
i-Butane	False	False	Ethylbenzene		False	False
n-Butane	False	False	o-Xylene		False	False
i-Pentane	False	False	Nonane		False	False
n-Pentane	False	False	Decane		False	False
Isohexane	False	False	Water		False	True
n-Hexane	False	False				
	Phys	ical Prop	erty Method Sets			
Liquid Molar Volume	COSTALD		Overall Package		Peng-Robins	on
Stability Calculation	Peng-Robins	son	Vapor Package		Peng-Robins	on
Light Liquid Package	Peng-Robins	son	Heavy Liquid Package		Peng-Robins	on
Remarks						

			Calculat	or Report			
Client Name:	EQT				Job: Low P	ressure Tower	
ocation:	OXF 163 100% 0	Contingency					
			Simple	Solver 1			
				e Code			
			Sourc	ecode			
Residual Error (for C	(V1) = TP / 476190) - 1					
			Calculated V	ariable [CV1]			
SourceMoniker	Volumetric Flow		ts!Flowsheet1!PS	treams!OXF 163 Pad Conc	lensate!Phas	ses!Total!Properties!Std Liqu	uid
/alue Jnit	252.968						
Jnit	bbl/d						
				/			
			Measured \	/ariable [TP]			
SourceMoniker		<pre></pre>	ts!Flowsheet1!PS	treams!Stable Liquid!Phase	es!Total!Prop	perties!Std Liquid Volumetric	Flow
/alue	476190						
Jnit	bbl/yr						_
			<u> </u>			Statua: Caluad	
-			Solver P	roperties		Status: Solved	
Error		9.28204E-07		Iterations		3	
Calculated Value Lower Bound		7.37824		Max Iterations Weighting		201	
Upper Bound			sgpm	Priority		0	
Opper Bound			sgpm			Active	
Sten Size				Solver Active			
Step Size		False	sgpm	Solver Active		Active	
Is Minimizer Algorithm		False Default		Solver Active Group Skip Dependency Chee	ck	False	
Is Minimizer				Group	ck		
Is Minimizer Algorithm				Group	ck		
Is Minimizer Algorithm			sgpm	Group Skip Dependency Chee	ck		
Is Minimizer Algorithm			sgpm Simple	Group Skip Dependency Cher Solver 2	ck		
Is Minimizer Algorithm Remarks	1/4) - I E /86 - 4		sgpm Simple	Group Skip Dependency Chee	ck		
Is Minimizer Algorithm	:V1) = LF /86 - 1		sgpm Simple	Group Skip Dependency Cher Solver 2	ck		
Is Minimizer Algorithm Remarks	:V1) = LF /86 - 1		sgpm Simple Sourc	Group Skip Dependency Cher Solver 2 e Code	ck		
Is Minimizer Algorithm Remarks Residual Error (for C		Default	sgpm Simple Sourc Calculated V	Group Skip Dependency Cher Solver 2 e Code /ariable [CV1]		False	
Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker	ProMax:ProMax	Default	sgpm Simple Sourc Calculated V	Group Skip Dependency Cher Solver 2 e Code /ariable [CV1]			etric Flo
Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker /alue	ProMax:ProMax 1122.66	Default	sgpm Simple Sourc Calculated V	Group Skip Dependency Cher Solver 2 e Code /ariable [CV1]		False	etric Flo
Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker /alue	ProMax:ProMax	Default	sgpm Simple Sourc Calculated V	Group Skip Dependency Cher Solver 2 e Code /ariable [CV1]		False	etric Flo
Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker /alue	ProMax:ProMax 1122.66	Default	sgpm Simple Sourc Calculated V ts!Flowsheet1!PS	Group Skip Dependency Cher Solver 2 e Code /ariable [CV1] treams!Produced Water!Pt		False	etric Flo
Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker /alue Jnit	ProMax:ProMax 1122.66 bbl/d	Default	sgpm Simple Sourc Calculated V ts!Flowsheet1!PS Measured V	Group Skip Dependency Cher Solver 2 e Code /ariable [CV1] treams!Produced Water!Pf /ariable [LF]	ases!Total!F	False Properties!Std Liquid Volume	
Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker /alue Jnit	ProMax:ProMax 1122.66 bbl/d ProMax:ProMax	Default	sgpm Simple Sourc Calculated V ts!Flowsheet1!PS Measured V	Group Skip Dependency Cher Solver 2 e Code /ariable [CV1] treams!Produced Water!Pf /ariable [LF]	ases!Total!F	False	
Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker /alue Jnit SourceMoniker	ProMax:ProMax 1122.66 bbl/d ProMax:ProMax Fraction!Water	Default	sgpm Simple Sourc Calculated V ts!Flowsheet1!PS Measured V	Group Skip Dependency Cher Solver 2 e Code /ariable [CV1] treams!Produced Water!Pf /ariable [LF]	ases!Total!F	False Properties!Std Liquid Volume	
Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker /alue Jnit SourceMoniker /alue	ProMax:ProMax 1122.66 bbl/d ProMax:ProMax Fraction!Water 86.006	Default	sgpm Simple Sourc Calculated V ts!Flowsheet1!PS Measured V	Group Skip Dependency Cher Solver 2 e Code /ariable [CV1] treams!Produced Water!Pf /ariable [LF]	ases!Total!F	False Properties!Std Liquid Volume	
Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker /alue Jnit SourceMoniker /alue	ProMax:ProMax 1122.66 bbl/d ProMax:ProMax Fraction!Water	Default	sgpm Simple Sourc Calculated V ts!Flowsheet1!PS Measured V	Group Skip Dependency Cher Solver 2 e Code /ariable [CV1] treams!Produced Water!Pf /ariable [LF]	ases!Total!F	False Properties!Std Liquid Volume	
Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker /alue Jnit SourceMoniker /alue	ProMax:ProMax 1122.66 bbl/d ProMax:ProMax Fraction!Water 86.006	Default	sgpm Simple Sourc Calculated V ts!Flowsheet1!PS Measured V ts!Flowsheet1!PS	Group Skip Dependency Cher Solver 2 e Code /ariable [CV1] treams!Produced Water!Pf /ariable [LF] treams!Stable Liquid!Phase	ases!Total!F	False Properties!Std Liquid Volume	
Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker /alue Jnit SourceMoniker /alue Jnit	ProMax:ProMax 1122.66 bbl/d ProMax:ProMax Fraction!Water 86.006	Default (Project!Flowshee (Project!Flowshee	sgpm Simple Sourc Calculated V ts!Flowsheet1!PS Measured V ts!Flowsheet1!PS	Group Skip Dependency Cher Solver 2 e Code /ariable [CV1] treams!Produced Water!Pf /ariable [LF] treams!Stable Liquid!Phase	ases!Total!F	False Properties!Std Liquid Volume position!Std. Liquid Volume Status: Solved	
Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker /alue Jnit SourceMoniker /alue Jnit Error	ProMax:ProMax 1122.66 bbl/d ProMax:ProMax Fraction!Water 86.006	Default Project!Flowshee Project!Flowshee 6.92057E-05	sgpm Simple Sourc Calculated V tts!Flowsheet1!PS Measured V tts!Flowsheet1!PS Solver P	Group Skip Dependency Chea Solver 2 e Code /ariable [CV1] treams!Produced Water!Pr /ariable [LF] treams!Stable Liquid!Phase treams!Stable Liquid!Phase	ases!Total!F	False Properties!Std Liquid Volume position!Std. Liquid Volume Status: Solved 3	
Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker /alue Jnit SourceMoniker /alue Jnit Error Calculated Value	ProMax:ProMax 1122.66 bbl/d ProMax:ProMax Fraction!Water 86.006	Default (Project!Flowshee (Project!Flowshee	sgpm Simple Sourc Calculated V tts!Flowsheet1!PS Measured V tts!Flowsheet1!PS Solver P sgpm	Group Skip Dependency Chea Solver 2 e Code /ariable [CV1] treams!Produced Water!Pr /ariable [LF] treams!Stable Liquid!Phase treams!Stable Liquid!Phase Iterations Max Iterations	ases!Total!F	False Properties!Std Liquid Volume position!Std. Liquid Volume Status: Solved 3 20	
Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker /alue Jnit SourceMoniker /alue Jnit Error Calculated Value Lower Bound	ProMax:ProMax 1122.66 bbl/d ProMax:ProMax Fraction!Water 86.006	Default Project!Flowshee Project!Flowshee 6.92057E-05	sgpm Simple Sourc Calculated V ts!Flowsheet1!PS Measured V ts!Flowsheet1!PS Solver P sgpm	Group Skip Dependency Chea Solver 2 e Code /ariable [CV1] treams!Produced Water!Pr /ariable [LF] treams!Stable Liquid!Phase Properties Iterations Max Iterations Weighting	ases!Total!F	False Properties!Std Liquid Volume nposition!Std. Liquid Volume Status: Solved 3 20 1	
Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker /alue Jnit SourceMoniker /alue Jnit Error Calculated Value Lower Bound Upper Bound	ProMax:ProMax 1122.66 bbl/d ProMax:ProMax Fraction!Water 86.006	Default Project!Flowshee Project!Flowshee 6.92057E-05	sgpm Simple Sourc Calculated V its!Flowsheet1!PS Measured N its!Flowsheet1!PS Solver P sgpm sgpm	Group Skip Dependency Chea Solver 2 e Code /ariable [CV1] treams!Produced Water!Pr /ariable [LF] treams!Stable Liquid!Phase /ariable [LF] treams!Stable Liquid!Phase /ariable [LF] /ariable [LF]	ases!Total!F	False Properties!Std Liquid Volume nposition!Std. Liquid Volume Status: Solved 3 20 1 0	
Is Minimizer Algorithm Remarks Remarks Residual Error (for C SourceMoniker /alue Jnit SourceMoniker /alue Jnit Error Calculated Value Lower Bound Upper Bound Step Size	ProMax:ProMax 1122.66 bbl/d ProMax:ProMax Fraction!Water 86.006	Default Default (Project!Flowshee (Project!Flowshee 6.92057E-05 32.7444	sgpm Simple Sourc Calculated V ts!Flowsheet1!PS Measured V ts!Flowsheet1!PS Solver P sgpm	Group Skip Dependency Chea Solver 2 e Code /ariable [CV1] treams!Produced Water!Pr /ariable [LF] treams!Stable Liquid!Phase /ariable [LF] treams!Stable Liquid!Phase /ariable [LF] /ariable [LF]	ases!Total!F	False Properties!Std Liquid Volume nposition!Std. Liquid Volume Status: Solved 3 20 1	
Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker /alue Jnit SourceMoniker /alue Jnit Error Calculated Value Lower Bound Upper Bound Step Size Is Minimizer	ProMax:ProMax 1122.66 bbl/d ProMax:ProMax Fraction!Water 86.006	Default Project!Flowshee (Project!Flowshee 6.92057E-05 32.7444 False	sgpm Simple Sourc Calculated V its!Flowsheet1!PS Measured N its!Flowsheet1!PS Solver P sgpm sgpm	Group Skip Dependency Cher Solver 2 e Code /ariable [CV1] treams!Produced Water!Pr /ariable [LF] treams!Stable Liquid!Phase /roperties Iterations Max Iterations Weighting Priority Solver Active Group	ases!Total!F	False Properties!Std Liquid Volume status: Solved 3 20 1 0 Active	
Is Minimizer Algorithm Remarks Remarks Residual Error (for C SourceMoniker Value Jnit SourceMoniker Value Jnit Error Calculated Value Lower Bound Upper Bound Step Size	ProMax:ProMax 1122.66 bbl/d ProMax:ProMax Fraction!Water 86.006	Default Default (Project!Flowshee (Project!Flowshee 6.92057E-05 32.7444	sgpm Simple Sourc Calculated V its!Flowsheet1!PS Measured N its!Flowsheet1!PS Solver P sgpm sgpm	Group Skip Dependency Chea Solver 2 e Code /ariable [CV1] treams!Produced Water!Pr /ariable [LF] treams!Stable Liquid!Phase /ariable [LF] treams!Stable Liquid!Phase /ariable [LF] /ariable [LF]	ases!Total!F	False Properties!Std Liquid Volume nposition!Std. Liquid Volume Status: Solved 3 20 1 0	
Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker /alue Jnit SourceMoniker /alue Jnit Error Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm	ProMax:ProMax 1122.66 bbl/d ProMax:ProMax Fraction!Water 86.006	Default Project!Flowshee (Project!Flowshee 6.92057E-05 32.7444 False	sgpm Simple Sourc Calculated V its!Flowsheet1!PS Measured N its!Flowsheet1!PS Solver P sgpm sgpm	Group Skip Dependency Cher Solver 2 e Code /ariable [CV1] treams!Produced Water!Pr /ariable [LF] treams!Stable Liquid!Phase /roperties Iterations Max Iterations Weighting Priority Solver Active Group	ases!Total!F	False Properties!Std Liquid Volume status: Solved 3 20 1 0 Active	_
Is Minimizer Algorithm Remarks Remarks Residual Error (for C SourceMoniker /alue Jnit SourceMoniker /alue Jnit Error Calculated Value Lower Bound Upper Bound Upper Bound Step Size Is Minimizer Algorithm	ProMax:ProMax 1122.66 bbl/d ProMax:ProMax Fraction!Water 86.006	Default Project!Flowshee (Project!Flowshee 6.92057E-05 32.7444 False	sgpm Simple Sourc Calculated V its!Flowsheet1!PS Measured N its!Flowsheet1!PS Solver P sgpm sgpm	Group Skip Dependency Cher Solver 2 e Code /ariable [CV1] treams!Produced Water!Pr /ariable [LF] treams!Stable Liquid!Phase /roperties Iterations Max Iterations Weighting Priority Solver Active Group	ases!Total!F	False Properties!Std Liquid Volume status: Solved 3 20 1 0 Active	
Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker /alue Jnit SourceMoniker /alue Jnit Error Calculated Value Lower Bound Upper Bound Step Size Is Minimizer	ProMax:ProMax 1122.66 bbl/d ProMax:ProMax Fraction!Water 86.006	Default Project!Flowshee (Project!Flowshee 6.92057E-05 32.7444 False	sgpm Simple Sourc Calculated V its!Flowsheet1!PS Measured N its!Flowsheet1!PS Solver P sgpm sgpm	Group Skip Dependency Cher Solver 2 e Code /ariable [CV1] treams!Produced Water!Pr /ariable [LF] treams!Stable Liquid!Phase /roperties Iterations Max Iterations Weighting Priority Solver Active Group	ases!Total!F	False Properties!Std Liquid Volume status: Solved 3 20 1 0 Active	_

					· · · · · · · · · · · · · · · · · · ·
		User Val	ue Sets Report		
Client Name:	EQT			Job: Low P	Pressure Tower
Location:	OXF 163 100%	Contingency			
		Cnu	Flow/Frac.		
			ue [CnPlusSum]		
* Parameter		97.5306 lb/h	Upper Bound		
Lower Bound		lb/h	* Enforce Bounds		False
Remarks This User Value Se	et was programma	tically generated. GUID={E867C	:485-3D3C-49CB-BC24-EA16(096DB2B1}	
		Та	nk Losses		
			ue [ShellLength]		
* Parameter		20 ft	Upper Bound		
* Lower Bound		0 ft	* Enforce Bounds		False
			lue [ShellDiam]		
* Parameter		12 ft	Upper Bound		
* Lower Bound		0 ft	* Enforce Bounds		False
			lue [BreatherVP]		
* Parameter		0.03 psig	Upper Bound		
Lower Bound			* Enforce Bounds		False
* Parameter		-0.03 psig	IE [BreatherVacP]		
Lower Bound		-0.03 paig	* Enforce Bounds		False
		User Valu	ue [DomeRadius]		
Parameter		ft	Upper Bound		ft
Lower Bound		ft	* Enforce Bounds		False
* Parameter			alue [OpPress]		
Lower Bound		0 psig	* Enforce Bounds		False
		User Value	e [AvgPercentLiq]		
* Parameter		50 %	Upper Bound		
Lower Bound		%	* Enforce Bounds		False
* Damara 1			e [MaxPercentLiq]		
* Parameter Lower Bound		90 %	Upper Bound * Enforce Bounds		False
		/0			
		User Va	alue [AnnNetTP]		
* Parameter		1302.8 bbl/day	Upper Bound		
* Lower Bound		0 bbl/day	* Enforce Bounds		False
			Value [OREff]		
* Parameter		0 %	Upper Bound		Foloc
Lower Bound		%	* Enforce Bounds		False
* Parameter			ue [AtmPressure]		
		1/ 1085 poio	Linner Round		
Lower Bound		14.1085 psia	Upper Bound * Enforce Bounds		False

		User var	lue Sets Report	
lient Name:	EQT			Job: Low Pressure Tower
ocation:	OXF 163 100% Co	ontingency		
		Use	r Value [TVP]	
Parameter Lower Bound		0.357052 psia	Upper Bound * Enforce Bounds	Foloo
Lower Bound			Eniorce Bounds	False
		User Value	e [AvgLiqSurfaceT]	
Parameter Lower Bound		57.7675 °F	Upper Bound * Enforce Bounds	Falsa
Lower Bound			Eniorce Bounds	False
		User Value	e [MaxLiqSurfaceT]	
Parameter		66.3119 °F	Upper Bound	
Lower Bound			* Enforce Bounds	False
		User Val	ue [TotalLosses]	
Parameter		0.201826 lb/h	Upper Bound	
Lower Bound		lb/h	* Enforce Bounds	False
		User Value	e [WorkingLosses]	
Parameter		0.123411 ton/yr	Upper Bound	
Lower Bound		ton/yr	* Enforce Bounds	False
		User Value	e [StandingLosses]	
Parameter		0.0239218 ton/yr	Upper Bound	
Lower Bound		ton/yr	* Enforce Bounds	False
		User Value	e [RimSealLosses]	
Parameter		0 ton/yr	Upper Bound	
Lower Bound			* Enforce Bounds	False
		Lleor Value	e [WithdrawalLoss]	
Parameter		0 ton/yr	Upper Bound	
Lower Bound			* Enforce Bounds	False
		Liser Valu	e [LoadingLosses]	
Parameter		0.337536 lb/h	Upper Bound	
Lower Bound		lb/h	* Enforce Bounds	False
		llser Value	[DeckFittingLosses]	
Parameter		0 ton/yr	Upper Bound	
Lower Bound			* Enforce Bounds	False
		llser Value	[DeckSeamLosses]	
Parameter		0 ton/yr	Upper Bound	
Lower Bound			* Enforce Bounds	False
		Llear Value	e [FlashingLosses]	
Parameter		0 ton/yr	Upper Bound	
Lower Bound			* Enforce Bounds	False
			e [GasMoleWeight]	
Parameter		0.0286986 kg/mol	Upper Bound	
Lower Bound		<u> </u>	* Enforce Bounds	False

* User Specified Values ? Extrapolated or Approximate Values

			wsheet1 Schematic		
Client Name:	EQT		Jot	b:	
Location:	OXF 163 Blowdown Ta	ank			
Flowsheet:	Flowsheet1				
		EQT OXF 163 Well Pad Blowdown Tank			
		Itemporature 0393 psig Pressure 393 psig Std Liquid Volumetric Flow 3.9363# bbl/d OXF 163 Pid Combinisate VSU-Loo Produced Wates MIX-Loo Temperature 393" psig Std Liquid Volumetric Flow 393" psig Std Liquid Volumetric Flow 17.209# Bbl/d Freesure	Stream 4 C3+ Mass Flow =5.639 lb/h		
		Note	Tank loss calculations for "5". working and breathing losses from the Horizontal Cylinder are 0.006458 lb/ Loading losses are 0.005697 lb/h of loaded liquid.	wh.	

Page 1 of 2

		-		Tank_1.15.2015.pmx			Page 1 of
			All Sti	eams Report Ceams Total Phase			
Client Name:	EQT				Job:		
					JUD.		
Location:	OXF 163 Blowd	Dwn Tank					
Flowsheet:	Flowsheet1						
			0.000	attan a			
			Conne	ctions			
		OXF 163	Pad	Produced	3	4	5
		Condens	ate	Water			
From Block					MIX-100	VSSL-100	VSSL-100
To Block		MIX-10	0	MIX-100	VSSL-100		
		Stre	am Co	mposition			
		OXF 163 Condens	Pad	Produced Water	3	4	5
Mala Frentian			ale		0/	0/	0/
Mole Fraction		%		%	%	%	%
Nitrogen			0 *	0 *	0	0	0
Methane		12	2.131 *	0 *	0.392614	27.3856	0.00324335
Carbon Dioxide		().087 *	0 *	0.00281572	0.188732	0.000133896
Ethane			0.145 *	0 *	0.328338	22.1609	0.0134067
Propane			9.322 *	0 *	0.301702	18.5656	0.0382483
				-			
i-Butane			2.446 *	0 *	0.0791637	4.10285	0.0211225
n-Butane			6.995 *	0 *	0.22639	10.5719	0.0771576
i-Pentane		3	3.988 *	0 *	0.12907	3.92666	0.0742901
n-Pentane		F	5.018 *	0 *	0.162405	4.14581	0.104945
Isohexane			4.263 *	0 *	0.13797	1.84699	0.113318
				0 *			
n-Hexane			4.311 *		0.139524	1.42628	0.120962
2,2,4-Trimethylpe	entane		0.025 *	0 *	0.000809114	0.0032794	0.00077348
Benzene		0	0.136 *	0 *	0.00440158	0.0433292	0.00384005
Heptane		11	1.691 *	0 *	0.378374	1.4202	0.363346
Toluene			0.717 *	0 *	0.0232054	0.0758285	0.0224463
Octane			9.741 *	0 *			
				-	0.315263	0.393346	0.314137
Ethylbenzene			0.074 *	0 *	0.00239498	0.00255291	0.0023927
o-Xylene			0.878 *	0 *	0.0284161	0.0229641	0.0284947
Nonane			4.769 *	0 *	0.154347	0.0642958	0.155646
NUTIALLE		-	+./03	0			0.100040
				0 *		0.0591568	
Decane			3.263 *	0 *	0.429251	0.0591568	0.43459
Decane				-		0.0591568 3.59376	
Decane Water		0XF 163	3.263 * 0 * Pad	0 * 100 * Produced	0.429251		0.43459
Decane Water		OXF 163 Condens	3.263 * 0 * Pad	0 * 100 * Produced Water	0.429251 96.7635 3	3.59376 4	0.43459 98.1075 5
Decane Water Mass Fraction		0XF 163	3.263 * 0 * Pad sate	0 * 100 * Produced Water %	0.429251 96.7635 3 %	3.59376 4 %	0.43459 98.1075 5 %
Decane Water Mass Fraction Nitrogen		OXF 163 Condens	3.263 * 0 * Pad	0 * 100 * Produced Water % :4* *	0.429251 96.7635 3 % 0	3.59376 4 % 0	0.43459 98.1075 5 % 0
Decane Water Mass Fraction Nitrogen		OXF 163 Condens %	3.263 * 0 * Pad sate	0 * 100 * Produced Water %	0.429251 96.7635 3 %	3.59376 4 %	0.43459 98.1075 5 %
Decane Water Mass Fraction Nitrogen Methane		13 OXF 163 Condens % 2.4	3.263 * 0 * Pad sate 0 * 9009 *	0 * 100 * Produced Water % :4* *	0.429251 96.7635 3 % 0 0.31553	3.59376 4 % 0 11.1728	0.43459 98.1075 5 % 0 0.00264355
Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide		0XF 163 Condens % 2.4 0.048	3.263 * 0 * Pad sate 0 * 9009 * 9906 *	0 * 100 * Produced Water % :4* * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782	3.59376 4 % 0 11.1728 0.211232	0.43459 98.1075 5 % 0.00264355 0.000299389
Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane		0XF 163 Condens % 2.4 0.048 3.9	B.263 * 0 * Pad sate 0 * 9009 * 9906 * 0318 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589	3.59376 4 % 0 11.1728 0.211232 16.9462	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816
Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane		0XF 163 Condens % 2.4 0.048 3.9 5.2	3.263 * 0 * Pad sate 9009 * 9906 * 0318 * 5959 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899
Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane		13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8	3.263 * 0 * Pad sate 9009 * 9906 * 0318 * 5959 * 1906 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748
Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane		13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2	3.263 * 0 * Pad sate 0 * 9009 * 9906 * 0318 * 5959 * 1906 * 0208 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847
Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane		13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2	3.263 * 0 * Pad sate 9009 * 9906 * 0318 * 5959 * 1906 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748
Decane Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane		0XF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6	3.263 * 0 * Pad sate 0 * 9009 * 9906 * 0318 * 5959 * 1906 * 0208 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.227847
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane		13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 1.8 5.2 3.6 4.6	3.263 * 0 * Pad sate 9009 * 9906 * 0318 * 5959 * 1906 * 0208 * 8156 * 3241 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687	0.43459 98.1075 5 % 0.00264355 0.00029389 0.0204816 0.0856899 0.0623748 0.227847 0.227847 0.272322 0.384692
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane Isohexane		0XF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7	3.263 * 0 * 90 * 99906 * 99906 * 19906 * 00208 * 8156 * 3241 * 0052 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.227847 0.227847 0.227822 0.384692 0.496139
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Butane n-Pentane Isohexane n-Hexane		13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 1.8 5.2 3.6 4.6 4.7 4.7	3.263 * 0 * 9009 * 99006 * 0318 * 5959 * 1906 * 0208 * 8156 * 3241 * 0052 * 5345 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.227847 0.227847 0.272322 0.384692 0.496139 0.529609
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe	entane	13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 1.8 5.2 3.6 4.6 4.6 4.7 4.7 0.036	3.263 * 0 * 9009 * 99006 * 0318 * 5959 * 1906 * 00208 * 8156 * 3241 * 0052 * 5345 * 5395 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.272322 0.384692 0.496139 0.529609 0.00448896
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene	entane	13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 1.8 5.2 3.6 4.6 4.6 4.7 4.7 4.7 0.036 0.13	3.263 * 0 * 0 * 9009 * 99006 * 0318 * 5959 * 1906 * 00208 * 8156 * 3241 * 0052 * 5345 * 5395 * 5926 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.595623 0.60233 0.00463007 0.0172238	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725	0.43459 98.1075 5 % 0.00264355 0.00029389 0.0204816 0.0856899 0.0623748 0.227847 0.227847 0.272322 0.384692 0.496139 0.529609 0.00448896 0.0152397
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane i-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane	entane	13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 1.8 5.2 3.6 4.6 4.6 4.7 4.7 4.7 0.036 0.13	3.263 * 0 * 9009 * 99006 * 0318 * 5959 * 1906 * 00208 * 8156 * 3241 * 0052 * 5345 * 5395 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657	0.43459 98.1075 5 % 0.00264355 0.00029389 0.0204816 0.0856899 0.0623748 0.227847 0.277847 0.272322 0.384692 0.496139 0.529609 0.00448896
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane i-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane	entane	13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.6 4.7 4.7 4.7 0.036 0.13 14.	3.263 * 0 * 0 * 9009 * 99006 * 0318 * 5959 * 1906 * 00208 * 8156 * 3241 * 0052 * 5345 * 5395 * 5926 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.595623 0.60233 0.00463007 0.0172238	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725	0.43459 98.1075 5 % 0.00264355 0.00029389 0.0204816 0.0856899 0.0623748 0.227847 0.227847 0.272322 0.384692 0.496139 0.529609 0.00448896 0.0152397
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene	entane	OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84	3.263 * 0 * 0 * 9009 * 9906 * 0318 * 5959 * 1906 * 0208 * 8156 * 3241 * 0052 * 5345 * 5395 * 5926 * 9891 * 5293 *	0 * 100 * Produced Water % .:4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007 0.0172238 1.89933 0.107111	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.272322 0.384692 0.496139 0.529609 0.00448896 0.0152397 1.84977 0.105077
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane i-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane	entane	OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84 14.	3.263 * 0 * 0 * 9009 * 9906 * 0318 * 5959 * 1906 * 00208 * 8156 * 3241 * 0052 * 5345 * 5395 * 5926 * 9891 * 5293 * 2372 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007 0.0172238 1.89933 0.107111 1.80406	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681 1.14266	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.227847 0.272322 0.384692 0.496139 0.529609 0.00448896 0.0152397 1.84977 0.105077 1.82312
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane Isohexane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene	entane	OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84 0.10 0.10	3.263 * 0 * 0 * 9009 * 9906 * 0318 * 5959 * 1906 * 00208 * 8156 * 3241 * 0052 * 5345 * 5926 * 9891 * 5293 * 2372 * 0522 *	0 * 100 * Produced Water % .:4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007 0.0172238 1.89933 0.107111 1.80406 0.0127376	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681 1.14266 0.00689261	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.227847 0.272322 0.384692 0.496139 0.529609 0.00448896 0.0152397 1.84977 0.105077 1.82312 0.012906
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane Isohexane n-Pentane Isohexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene	entane	OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84 14. 0.10 1.1	3.263 * 0 * 0 * 9009 * 99906 * 0318 * 5959 * 1906 * 0208 * 8156 * 3241 * 0052 * 5345 * 5926 * 9891 * 5293 * 2372 * 0522 * 9268 *	0 * 100 * Produced Water % .:4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.60233 0.60233 0.00463007 0.0172238 1.89933 0.107111 1.80406 0.0127376 0.151129	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681 1.14266 0.00689261 0.0620008	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.272322 0.384692 0.496139 0.529609 0.0044896 0.0152397 1.84977 0.105077 1.82312 0.012906 0.012906
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane Sohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane	entane	13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84 14. 0.10 1.1 7.8	3.263 * 0 * 0 * 9009 * 99906 * 0318 * 5959 * 1906 * 0052 * 5345 * 5926 * 9891 * 5293 * 2372 * 0522 * 9268 * 2617 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007 0.0172238 1.89933 0.107111 1.80406 0.0127376 0.151129 0.991688	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681 1.14266 0.00689261 0.0620008 0.209713	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.272322 0.384692 0.496139 0.529609 0.0044896 0.0152960 0.0052397 1.84977 0.105077 1.82312 0.012906 0.153698 1.01422
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane	entane	13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84 14. 0.10 1.1 7.8	3.263 * 0 * 0 * 9009 * 99906 * 0318 * 5959 * 1906 * 0208 * 8156 * 3241 * 0052 * 5345 * 5926 * 9891 * 5293 * 2372 * 0522 * 9268 *	0 * 100 * Produced Water % .:4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.60233 0.60233 0.00463007 0.0172238 1.89933 0.107111 1.80406 0.0127376 0.151129	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681 1.14266 0.00689261 0.0620008	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.272322 0.384692 0.496139 0.529609 0.0044896 0.0152397 1.84977 0.105077 1.82312 0.012906 0.012906
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Fropane i-Butane n-Butane n-Butane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene Ethylbenzene Ethylbenzene Octane Ethylbenzene Nonane Decane	entane	13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84 14. 0.10 1.1 7.8	3.263 * 0 * 0 * 9009 * 99906 * 0318 * 5959 * 1906 * 0052 * 5345 * 5926 * 9891 * 5293 * 2372 * 0522 * 9268 * 2617 *	0 * 100 * Produced Water % :4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007 0.0172238 1.89933 0.107111 1.80406 0.0127376 0.151129 0.991688	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681 1.14266 0.00689261 0.0620008 0.209713	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.272322 0.384692 0.496139 0.529609 0.0044896 0.0152960 0.0052397 1.84977 0.105077 1.82312 0.012906 0.153698 1.01422
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane lsohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene Ethylbenzene Ethylbenzene Octane Ethylbenzene Nonane Decane	entane	13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84 14. 0.10 1.1 7.8	3.263 * 0 * 0 * 9009 * 99906 * 0318 * 5959 * 1906 * 0052 * 5345 * 59926 * 9891 * 5293 * 2372 * 0522 * 9268 * 2617 * 1456 *	0 * 100 * Produced Water % .:4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007 0.0172238 1.89933 0.107111 1.80406 0.0127376 0.151129 0.991688 3.0596	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681 1.14266 0.00689261 0.0620008 0.209713 0.214053	0.43459 98.1075 5 % 0.00264355 0.00029389 0.0204816 0.0856899 0.0623748 0.227847 0.227847 0.272322 0.384692 0.496139 0.529609 0.00448896 0.0152907 1.84977 0.105077 1.82312 0.012906 0.153698 1.01422 3.1416
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Butane n-Pentane lsohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene Ethylbenzene o-Xylene Nonane Decane	entane	13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84 1.1 7.8 24.	3.263 * 0 * 0 * 9009 * 99906 * 0318 * 5959 * 1906 * 00208 * 8156 * 3241 * 0052 * 5345 * 5996 * 9891 * 9268 * 2372 * 00522 * 9268 * 2617 * 1456 * 0 *	0 * 100 * Produced Water % .:4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007 0.0172238 1.89933 0.107111 1.80406 0.0127376 0.151129 0.991688 3.0596 87.3286	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681 1.14266 0.00689261 0.0620008 0.209713 0.214053 1.64648	0.43459 98.1075 5 % 0.00264355 0.00029389 0.0204816 0.0856899 0.0623748 0.227847 0.227847 0.272322 0.384692 0.496139 0.529609 0.0448896 0.0152907 1.84977 0.105077 1.82312 0.012906 0.0153698 1.01422 3.1416 89.7978
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	entane	13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84 1.1 7.8 24. OXF 163	3.263 * 0 * 0 * 9009 * 99906 * 0318 * 5959 * 1906 * 00208 * 8156 * 3241 * 0052 * 5345 * 5999 * 9891 * 5293 * 2372 * 0052 * 9268 * 2617 * 1456 * 0 *	0 * 100 * Produced Water % .:4* * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.429251 96.7635 3 % 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007 0.0172238 1.89933 0.107111 1.80406 0.0127376 0.151129 0.991688 3.0596	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681 1.14266 0.00689261 0.0620008 0.209713 0.214053	0.43459 98.1075 5 % 0.00264355 0.00029389 0.0204816 0.0856899 0.0623748 0.227847 0.227847 0.272322 0.384692 0.496139 0.529609 0.00448896 0.0152907 1.84977 0.105077 1.82312 0.012906 0.153698 1.01422 3.1416
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water	entane	OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84 1.1 7.8 24. OXF 163 Condens	3.263 * 0 * 0 * 9009 * 99906 * 0318 * 5959 * 1906 * 00208 * 8156 * 3241 * 0052 * 5345 * 5999 * 9891 * 5293 * 2372 * 0052 * 9268 * 2617 * 1456 * 0 *	0 * 100 * Produced Water % 	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007 0.0172238 1.89933 0.107111 1.80406 0.0127376 0.151129 0.991688 3.0596 87.3286	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681 1.14266 0.00689261 0.0620008 0.209713 0.214053 1.64648 4	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.272322 0.384692 0.496139 0.529609 0.00448896 0.0152397 1.84977 0.105077 1.82312 0.012906 0.153698 1.01422 3.1416 89.7978
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane lsohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water	entane	13 OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84 1.1 7.8 24. OXF 163	3.263 * 0 * 0 * 9009 * 99906 * 0318 * 5959 * 1906 * 00208 * 8156 * 3241 * 0052 * 5345 * 5999 * 9891 * 5293 * 2372 * 0052 * 9268 * 2617 * 1456 * 0 *	0 * 100 * Produced Water % 	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007 0.0172238 1.89933 0.107111 1.80406 0.0127376 0.151129 0.991688 3.0596 87.3286	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681 1.14266 0.00689261 0.0620008 0.209713 0.214053 1.64648	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.272322 0.384692 0.496139 0.529609 0.00448896 0.0152977 1.84977 0.105077 1.82312 0.012206 0.012206 0.153698 1.01422 3.1416 89.7978
Decane Water Water Mass Fraction Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane	entane	OXF 163 Condens % 2.4 0.048 3.9 5.2 1.8 5.2 3.6 4.6 4.7 0.036 0.13 14. 0.84 1.1 7.8 24. OXF 163 Condens	3.263 * 0 * 0 * 9009 * 99906 * 0318 * 5959 * 1906 * 00208 * 8156 * 3241 * 0052 * 5345 * 5999 * 9891 * 5293 * 2372 * 0052 * 9268 * 2617 * 1456 * 0 *	0 * 100 * Produced Water % 	0.429251 96.7635 3 % 0 0.31553 0.00620782 0.494589 0.666466 0.2305 0.659178 0.466506 0.586993 0.595623 0.60233 0.00463007 0.0172238 1.89933 0.107111 1.80406 0.0127376 0.151129 0.991688 3.0596 87.3286	3.59376 4 % 0 11.1728 0.211232 16.9462 20.8195 6.0645 15.6265 7.20475 7.60687 4.04776 3.12577 0.00952657 0.0860725 3.61903 0.177681 1.14266 0.00689261 0.0620008 0.209713 0.214053 1.64648 4	0.43459 98.1075 5 % 0.00264355 0.000299389 0.0204816 0.0856899 0.0623748 0.227847 0.272322 0.384692 0.496139 0.529609 0.00448896 0.0152397 1.84977 0.105077 1.82312 0.012906 0.153698 1.01422 3.1416 89.7978

* User Specified Values ? Extrapolated or Approximate Values

Licensed to The ERM Group, Inc. and Affiliates

Process Streams Report All Streams Tabulated by Total Phase							
Client Name:	EQT	ł			Job:	ł	
Location:	OXF 163 Blowd	own Tank					
Flowsheet:	Flowsheet1						
	- b						
Mass Flow			OXF 163 Pad Condensate Ib/h	Produced Water Ib/h	3 Ib/h	4 Ib/h	5 Ib/h
Carbon Dioxide			0.0178486 *	0 *	0.0178486	0.0170119	0.000836683
Ethane			1.42203 *	0 *	1.42203	1.36479	0.0572387
Propane			1.91621 *	0 *	1.91621	1.67673	0.239473
i-Butane			0.66273 *	0 *	0.66273	0.488415	0.174315
n-Butane			1.89526 *	0 *	1.89526	1.2585	0.636751
i-Pentane			1.34129 *	0 *	1.34129	0.580247	0.761042
n-Pentane			1.68771 *	0 *	1.68771	0.612632	1.07508
Isohexane			1.71252 *	0 *	1.71252	0.325993	1.38653
n-Hexane			1.73181 *	0 *	1.73181	0.251739	1.48007
2,2,4-Trimethylpenta	ane		0.0133123 *	0 *	0.0133123	0.000767238	0.012545
Benzene			0.0495215 *	0 *	0.0495215	0.00693199	0.0425895
Heptane			5.46092 *	0 *	5.46092	0.291464	5.16945
Toluene			0.307962 *	0 *	0.307962	0.0143098	0.293653
Octane			5.187 *	0 *	5.187	0.0920259	5.09497
Ethylbenzene			0.0366228 *	0 *	0.0366228	0.000555108	0.0360676
o-Xylene			0.434524 *	0 *	0.434524	0.00499334	0.429531
Nonane			2.85128 *	0 *	2.85128	0.0168895	2.83439
Decane			8.79688 *	0 *	8.79688	0.0172391	8.77964
Water			0 *	251.085 *	251.085	0.132602	250.953
			Stream P	roperties			
Property		Units	OXF 163 Pad Condensate	Produced Water	3	4	5

			roperties		1	1
Property	Units	OXF 163 Pad	Produced	3	4	5
		Condensate	Water			
Temperature	°F	85 *	85 *	85.0985	81.2476	81.2476
Pressure	psia	407.696 *	407.696 *	407.696	14.6959 *	14.6959
Mole Fraction Vapor	%	2.45359	0	0.0230435	100	0
Mole Fraction Light Liquid	%	97.5464	100	3.15836	0	1.89085
Mole Fraction Heavy Liquid	%	0	0	96.8186	0	98.1092
Molecular Weight	lb/lbmol	78.1542	18.0153	19.9617	39.3218	19.6824
Mass Density	lb/ft^3	34.8738	62.1455	57.6693	0.100821	59.5067
Molar Flow	lbmol/h	0.466163	13.9373	14.4035	0.204814	14.1987
Mass Flow	lb/h	36.4326	251.085	287.518	8.05367	279.464
Vapor Volumetric Flow	ft^3/h	1.0447	4.04028	4.98563	79.8808	4.69635
Liquid Volumetric Flow	gpm	0.130248	0.503723	0.621585	9.95916	0.585519
Std Vapor Volumetric Flow	MMSCFD	0.00424564	0.126936	0.131182	0.00186537	0.129316
Std Liquid Volumetric Flow	sgpm	0.114809 *	0.501937 *	0.616747	0.0334227	0.583324
Compressibility		0.156312	0.0202195	0.0241386	0.987379	0.000837364
Specific Gravity			0.996417		1.35767	0.954107
API Gravity			9.96415			16.16
Enthalpy	Btu/h	-36125.4	-1.71055E+06	-1.74667E+06	-9516.56	-1.73716E+06
Mass Enthalpy	Btu/lb	-991.568	-6812.63	-6075.02	-1181.64	-6216.03
Mass Cp	Btu/(lb*°F)	0.531146	0.981529	0.925125	0.421416	0.933799
Ideal Gas CpCv Ratio		1.06777	1.32512	1.28953	1.13713	1.29464
Dynamic Viscosity	cP		0.833816		0.00889172	0.806918
Kinematic Viscosity	cSt		0.837605		5.50571	0.837473
Thermal Conductivity	Btu/(h*ft*°F)		0.353848		0.0122885	0.312771
Surface Tension	lbf/ft		0.00492858			0.00445237
Net Ideal Gas Heating Value	Btu/ft^3	3993.4	0	129.245	2031.86	101.8
Net Liquid Heating Value	Btu/lb	19235.7	-1059.76	1511.97	19454.3	994.904
Gross Ideal Gas Heating Value	Btu/ft^3	4313.43	50.31	188.284	2213.19	159.075
Gross Liquid Heating Value	Btu/lb	20789.6	0	2634.35	21204.2	2099.2

Remarks

Simulation Initiated on 1/15	/2015 12:05:46 PM	OXF163_Blowdown Tank_1.15.2015.pmx					Page 1 of 1		
			MD	ocks (-100 litter Report					
Client Name:	EQT				Job:				
Location:	OXF 163 Blowdo	own Tank			Modified: 2:	14 PM, 7/24/2	014		
Flowsheet:	Flowsheet1				Status: Solv	/ed 11:54 AM,	1/15/2015		
Connections									
Stream	Connecti	on Type	Other Block	Stream	Connecti	ion Type	Other Block		
Produced Water	Ini	et		OXF 163 Pad Condensate	Inl	et			
3	Out	let	VSSL-100						
			Block P	arameters					
Pressure Drop			0 psi	Fraction to PStream	3		100 %		
Remarks									

Simulation Initiated on 1/15	5/2015 12:05:46 PM		OXF163_Blowdown	Tank_1.15.2015.pmx			Page 1 of		
			VSSI	Cks 100 or Report					
Client Name:	EQT				Job:	I			
Location:	OXF 163 Blowdo	own Tank			Modified: 1	:11 PM, 7/17/201	4		
Flowsheet:	Flowsheet1				Status: Sol	ved 11:54 AM, 1/	15/2015		
Connections									
Stream	Connecti	on Type	Other Block	Stream	Connect	ion Type	Other Block		
3	Inle	et	MIX-100	4	Vapor	Outlet			
5	Light Liqu	id Outlet							
			Block Pa	rameters					
Pressure Drop		393	psi	Main Liquid Phase		Light Liqu	id		
Mole Fraction Vap	or	1.42198	%	Heat Duty			0 Btu/h		
Mole Fraction Ligh	nt Liquid	1.86396		Heat Release Curve	Туре	Plug Flo	W		
Mole Fraction Hea	avy Liquid	96.7141	%	Heat Release Curve Increments			5		
Pomorko									
Remarks									

		F		Environment onment1			
Client Name:	EQT	-			Job:		
Location:	OXF 163 Blowd	own Tank					
Flowsheet:	Flowsheet1						
			Environm	ent Settings			
Number of Poynti	ng Intervals	0		Freeze Out Temperatur Threshold Difference	е	10 °F	
Gibbs Excess Mo Evaluation Tempe		77 °F		Phase Tolerance		1 %	
				onents			
Component Name		Henry`s Law Component	Phase Initiator	Component Name		Henry`s Law Component	Phase Initiator
Nitrogen		False	False	2,2,4-Trimethylpentane		False	False
Methane		False	False	Benzene		False	False
Carbon Dioxide		False	False	Heptane		False	False
Ethane		False	False	Toluene		False	False
Propane		False	False	Octane		False	False
i-Butane		False	False	Ethylbenzene		False	False
n-Butane		False	False	o-Xylene		False	False
i-Pentane		False	False	Nonane		False	False
n-Pentane		False	False	Decane		False	False
Isohexane		False	False	Water		False	True
n-Hexane		False	False				
		Phys	ical Prope	erty Method Sets			
		COSTALD)	Overall Package		Peng-Robins	on
Liquid Molar Volume	9			1		Deve Delt's a	
Liquid Molar Volume Stability Calculation	9	Peng-Robins	son	Vapor Package		Peng-Robins	on

Calculator Report Ciret Name: DXP 193 Blowdown Tank Sumple Solver 1 Source Code Redual Error (for CV1) = TP / 20 -1 Calculated Variable [CV1] SourceMoniter PortfaceProductProjectIFDownheets/FlowaheetTPStreamsDXF 103 Prod Condensate/PhasesTrotal/Properties/Std Liquid Volumetric Flow Yalue 3.9331 Data PortfaceProductProjectIFDownheetS/FlowaheetTPStreamsDXF 103 Properties/Std Liquid Volumetric Flow Yalue 19.8997 Unit Delvid SourceMoniter PortfaceProductProjectIFDownheetS/FlowaheetTPStreamsDIPhasesTrotalProperties/Std Liquid Volumetric Flow Yalue 19.8997 Unit Delvid Calculated Value 0.114005 ggm Error -16.2407E-05 Calculated Value 0.14090 ggm Error -16.2407E-05 Calculated Value 0.14090 ggm Bygmin Defrault Signe Source Code Calculated Value 0.14090 ggm Aporthin Defrault Signe Signe Aporthin Defrault Source Code <th>Simulation Initiated on 1/15</th> <th>72013 12.03.46 FM</th> <th>OXF163_Blowdown 1</th> <th>ank_1.15.2015.pmx</th> <th></th> <th></th> <th>Page 1 of 1</th>	Simulation Initiated on 1/15	72013 12.03.46 FM	OXF163_Blowdown 1	ank_1.15.2015.pmx			Page 1 of 1				
Location: XXF 163 Biowdown Tank Simple Solver 1 Source Code Residual Error (for CV1) = TP / 20 - 1 Calculated Variable [CV1] SourceMoniker ProMax:ProMax/Project/Flowsheets/Flowsh			Calculato	r Report							
Simple Solver 1 Source Code Residual Error (for CV1) = TP / 20 - 1 Calculated Variable [CV1] Source Code Calculated Variable [CV1] SourceMoniker ProMax:ProMax/ProjectIFlowsheets/Flows	Client Name:	EQT			Job:						
Source Code Residual Error (for CV1) = TP / 20 · 1 Calculated Variable [CV1] SourceMoniker ProMax: ProMax:Project:FlowsheetsIPStreamsISP hasesITotalIPropertiesIStd Liquid Volumetric Flow Value 3.9363 Unit bolid SourceMoniker ProMax: ProMax:Project/FlowsheetsIPStreamsISIPhasesITotalIPropertiesIStd Liquid Volumetric Flow Value 19.9997 Unit bolid SourceMoniker ProMax: ProMax:Project/FlowsheetsIPStreamsISIPhasesITotalIPropertiesIStd Liquid Volumetric Flow Value 19.9997 Unit bolid Calculated Value 0.118247E-05 Interations 5 Calculated Value Active Active Calculated Value Coroup Adjorithm Default Simple Solver 2 Source Moniker ProMax: ProMax! Project!Flowsheets!Flowsheets!Prome: Fraction!Properties!Std Liquid Volumetr											
Source Code Residual Error (for CV1) = TP / 20 · 1 Calculated Variable [CV1] SourceMoniker ProMax/Project/Flowsheets/F											
Source Code Residual Error (for CV1) = TP / 20 · 1 Calculated Variable [CV1] SourceMoniker ProMax/Project/Flowsheets/F											
Source Code Residual Error (for CV1) = TP / 20 · 1 Calculated Variable [CV1] SourceMoniker ProMax: ProMax:Project:FlowsheetsIPStreamsISP hasesITotalIPropertiesIStd Liquid Volumetric Flow Value 3.9363 Unit bolid SourceMoniker ProMax: ProMax:Project/FlowsheetsIPStreamsISIPhasesITotalIPropertiesIStd Liquid Volumetric Flow Value 19.9997 Unit bolid SourceMoniker ProMax: ProMax:Project/FlowsheetsIPStreamsISIPhasesITotalIPropertiesIStd Liquid Volumetric Flow Value 19.9997 Unit bolid Calculated Value 0.118247E-05 Interations 5 Calculated Value Active Active Calculated Value Coroup Adjorithm Default Simple Solver 2 Source Moniker ProMax: ProMax! Project!Flowsheets!Flowsheets!Prome: Fraction!Properties!Std Liquid Volumetr			Simple S	olver 1							
Calculated Variable [CV1] Source Moniker ProMax:ProMaxIProject/Flowsheets/F											
Calculated Variable [CV1] SourceMoniker ProMac ProMaxIProject/Flowsheets/Flow	Desidual Error (for C	()(1) TB (20 1	Source	COUE							
SourceMoniker ProMax/Project/Flowsheets/Flowsheet1/PStreams/OXF 163 Pad Condensate/Phases/Total/Properties/Std Liqui Volumetric Flow Value 3.93631 Unit bb/d SourceMoniker ProMax/Project/Flowsheets/Flowsheet1/PStreams/SI/Phases/Total/Properties/Std Liquid Volumetric Flow Yalue 19.9997 Unit bb/d SourceMoniker ProMax/Project/Flowsheet1/PStreams/SI/Phases/Total/Properties/Std Liquid Volumetric Flow Value 19.9997 Unit bb/d Calculated Value 0.114609 sgpm Kax Promining 1 Calculated Value 0.114609 sgpm Max Iterations 5 Upper Bound sgpm Solver Active Active Is Minimizer False Group Algorithm Calculated Value 0 Skip Dependency Check False Source Code Remarks Calculated Variable [CV1] Source Variable [CV1] Source Code Residual Error (for CV1) = LF./86 - 1 <td c<="" td=""><td>Residual Ellor (IOI C</td><td>(v I) = IP / 20 - I</td><td></td><td></td><td></td><td></td><td></td></td>	<td>Residual Ellor (IOI C</td> <td>(v I) = IP / 20 - I</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Residual Ellor (IOI C	(v I) = IP / 20 - I								
SourceMoniker ProMaxProMaxIProject/FlowsheetsIFlowsheet11PStreamsIOXF 163 Pad CondensateIPhasesITotalIPropertiesIStd Liqui Value 3.95631 Unit bbl/d SourceMoniker ProMaxProMaxIProject/FlowsheetSIFlowsheet1IPStreamsISIPhasesITotalIPropertiesIStd Liqui Volumetric Flow Value 19.9997 Unit bbl/d Error - 1.62467E-05 Iterations 5 Catculated Value 0.114609 gpm Max Iterations 20 Lower Bound sgpm Priority 0 Site Site Site Site Solver 2 Catculated Value 0.114609 sgpm Solver Active Active Is Minnizer False Group Algorithm Default Skip Dependency Check False Remarks Catculated Value 17.2033 Unit bbl/d Catculated Value 0.114809 sgpm Priority 0 Site Site Site Site Solver 2 Source Code Residual Error (for CV1) = LF /86 - 1 Catculated Value 17.2033 Unit bbl/d Catculated Value 0.501397 sgpm Active Site Solver 2 Source Code Residual Error (for CV1) = LF /86 - 1 Catculated Value 0.501397 sgpm Active Site Solver 2 Source Code Residual Error (for CV1) = LF /86 - 1			O al a al a (a d) / a								
Volumetric Flow Value 3.35831 Unit bbl/d SourceMoniker ProMax/ProMaxiProject/Flowsheets/Flowsheet1!PStreams/5/Phases/Total/Properties/Std Liquid Volumetric Flow Value 19.9997 Unit bbl/d SourceMoniker 0.116809 sgpm Max Iterations 5 Calculated Value 0.114809 sgpm Max Iterations 20 Lower Bound sgpm Priority 0 Step Size sgpm Solver Active Active Is Mininizer False Group Algorithm Default Skip Dependency Check False Remarks Remarks SourceMoniker ProMax/Project/Flowsheet1!PStreams!5/Phases/Total/Properties/Std Liquid Volumetric Flow Value 17.2093 Unit bbl/d SourceMoniker ProMax/Project/Flowsheet1!PStreams!5/Phases/Total/Properties/Std Liquid Volumetric Fraction/N Value 0.501937 ggpm Max Iterations 20 Lower Bound Sgpm Priority 0 Source Moniker ProMax/Project/Flowsheet1!PStreams!5/Phases/Total/Properties/Std Liquid Volumetric Fraction/N Value 0.501937 ggpm Max Iterations 20 Lower Bound Sgpm Priority 0 Step Size Sgpm Solver Active Active 0 Step Size Sgpm Priority 0 Step Size Sgpm Solver Active Active Active 0 Step Size Sgpm Solver Active Active Active 0 Step Size Sgpm Solver Active Active Core Check False	0 11 1		Calculated va								
Value 3.93631 Unit bb//d SourceMoniker ProMax:ProMax!ProjectiFlowsheets/Flowsheet1!PStreams/5/Phases/Total/Properties/Std Liquid Volumetric Flow Value 19.9997 Unit bb//d SourceMoniker ProMax:ProMax!ProjectiFlowsheets/Flowsh	SourceMoniker										
Unit bb/d Measured Variable [TP] SourceMoniker ProMax:ProMaxIProjectIFlowsheets/Flowsheet1/PStreamsI5IPhases/TotalIProperties/Std Liquid Volumetric Flow Value 19.997 Unit bb/d SourceMoniker ProMax:ProMaxIProjectIFlowsheets/Flowsheet1/PStreamsI5IPhases/TotalIProperties/Std Liquid Volumetric Flow Value 0.114809 sgpm Max Iterations 5 Catculated Value 0.114809 sgpm Max Iterations 20 Lower Bound sggm Weighting 1 0 Upper Bound sggm Solver Active Active 4 Algorithm Default Skip Dependency Check False Remarks Source Code Source Code Residual Error (for CV1) = LF /86 - 1 Catculated Variable [CV1] SourceMoniker ProMax:ProMaxIProjectIFlowsheets/Flowsheet1/PStreamsIProduced WaterIPhases/TotalIProperties/IStd Liquid Volumetric Fraction/N Value 0.2024 Measured Variable [CV1] Solver Properties Status: Solved SourceMoniker ProMax:ProMaxIProjectIFlowsheets/Flowsheet1/PStreamsI5/Phases/Total/Properties/Std Liquid Volumetric Fraction/N Value 6.00	Value										
Measured Variable [TP] SourceMoniker ProMax.ProMax!Project!Flowsheets!Flowshe											
SourceMoniker ProMax:ProMaxIProject/Flowsheets/Flowshee		551/G									
SourceMoniker ProMax:ProMaxIProject/Flowsheets/Flowshee			Magginged V/	richle [TD]							
Value 19.9997 Unit bbl/d Solver Properties Status: Solved Error -1.62467E-05 Iterations 20 Lower Bound 0.114809 sgpm Max Iterations 20 Lower Bound sgpm Priority 0 Step Size sgpm Solver Active Active Is Minimizer False Group - Algorithm Default Skip Dependency Check False Remarks Calculated Variable [CV1] Source Code Residual Error (for CV1) = LF /86 - 1 Source Code Residual Error (for CV1) = LF /86 - 1 Source Code Residual Error (for CV1) = LF /86 - 1 Source Code Source Code Source Moniker ProMax:ProMaxIProject/Flowsheet/IPStreams/SiProduced Water/Phases/Total/Project/siStd Liquid Volumetric Fraction/N Value Solver Properties <td< td=""><td>CourseMention</td><td></td><td></td><td></td><td>nortion I Ot -</td><td>Liquid Volumetric Flour</td><td></td></td<>	CourseMention				nortion I Ot -	Liquid Volumetric Flour					
Unit bbl/d Error -1.62467E-05 Iterations 5 Calculated Value 0.118409 sgpm Max Iterations 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Priority 0 Step Size sgpm Solver Active Active Is Minimizer False Group Active Algorithm Default Skip Dependency Check False Remarks Simple Solver 2 Source Code Source Code Calculated Variable [CV1] SourceMonker ProMax:ProMax!Project/Flowsheets/Flowsheet1!PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumetr Value 17.2093 Measured Variable [LF] SourceMonker ProMax:ProMax!Project/Flowsheets!Flowsheet1!PStreams!S!Phases!Total!Composition!Std. Liquid Volumetric Fraction!! Value 86.0024 1 Value 0.501937 sgpm Max Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 5 Calculated Value 0.501937 sgpm Max Iterations			s:riowsneet1!PStre	eams:o:Phases:Total!Pro	pernes!Std	Liquia volumetric FIOW					
Solver Properties Status: Solved Error -1.62467E-05 Iterations 5 Calculated Value 0.114809 sppm Max Iterations 20 Lower Bound sppm Weighing 1 Upper Bound sppm Priority 0 Site Size sgpm Solver Active Active Is Minimizer False Group Active Algorithm Default Skip Dependency Check False Remarks Simple Solver 2 Source Code Remarks Calculated Variable [CV1] SourceMoniker ProMax:ProMaxIProjectFlowsheets/Flowsheet1PStreams/Produced Water/Phases/Total/Properties/Std Liquid Volumetric Value Value Value SourceMoniker ProMax:ProMax/ProjectFlowsheets/Flowsheet1PStreams/B/Phases/Total/Properties/Std Liquid Volumetric Fraction/N Value SourceMoniker ProMax:ProMax/ProjectFlowsheets/Flowsheet1PStreams/B/Phases/Total/Composition/Std. Liquid Volumetric Fraction/N <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
Error -1.62467E-05 Iterations 5 Calculated Value 0.114809 sgpm Max Iterations 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Priority 0 Sitep Size sgpm Solver Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False Remarks Calculated Variable [CV1] Source Code Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] SourceMoniker ProMax:ProMaxIProject/Flowsheets/Fl											
Error -1.62467E-05 Iterations 5 Calculated Value 0.114809 sgpm Max Iterations 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Solver Active Active 0 Sigp Size sgpm Solver Active Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False Remarks Calculated Variable [CV1] Source Code Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] SourceMoniker ProMax:ProMaxIProjectIFlowsheetsIFlowsheet1!PStreamsIProduced WaterIPhasesITotalIPropertiesIStd Liquid Volumettr Value 17.2093 Unit bbl/d Measured Variable [LF] SourceMoniker ProMax:ProMaxIProjectIFlowsheetsI'PStreamsISIPhasesITotalIPropertiesIStd Liquid Volumetr Value 86.0024 Unit 9% Calculated Variable [LF] SourceMoniker ProMax:ProMaxIProjectIFlowsheetsI'PStreamsISIPhasesITotalICompositionIStd. Liquid Volumetric FractionIV Value 86.0024 Unit 9% Calculated Variable [LF] SourceMoniker ProMax:ProMaxIProjectIFlowsheetsI'PStreamsISIPhasesITotalICompositionIStd. Liquid Volumetric FractionIV Value 86.0024 Unit 9% Calculated Variable [LF] SourceMoniker ProMax:ProMaxIProjectIFlowsheetsI'PStreamsISIPhasesITotalICompositionIStd. Liquid Volumetric FractionIV Value 86.0024 Unit 9% Calculated Variable [LF] Source Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Loculated Value 0.501937 sgpm Max Iterations 20 Lique Beound sgpm Priority 0 Solver Active Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False			Solver Dr	operties		Status: Solved					
Calculated Value 0.114809 sgpm Max Iterations 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Priority 0 Step Size sgpm Solver Active Active Is Minimizer False Group False Algorithm Default Skip Dependency Check False Remarks Calculated Variable [CV1] Source Code Recommendation of the system Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumet Value 17.2093 Unit bbl/d SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!SIPhases!Total!Properties!Std Liquid Volumetric Fraction? Value 86.0024 Unit Value 86.0024 Unit % Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.0501937 sgpm Max Iterations 20 Lower Bound sgpm Priority 0 Step Size sgpm Solver Active	Error	1 604675 05	Solver Pr								
Lower Bound sgpm Weighting 1 Upper Bound sgpm Priority 0 Step Size sgpm Solver Active Active Is Minimizer False Group Adjorithm Algorithm Default Skip Dependency Check False Remarks Simple Solver 2 Source Code Calculated Variable [CV1] Source Code Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] Source Moniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumetric Value Value Solver Properties Status: Solved Error 2.7567E-05 Literations Solver Properties Status: Solved Error 2.7567E-05 Calculated Variable [LF] Solver Properties Status: Solved Error 2.7567E-05 Calculated Variable [LF] Solver Properties Spm			sapm								
Upper Bound sgpm Priority 0 Step Size sgpm Solver Active Active Is Minimizer False Group False Algorithm Default Skip Dependency Check False Remarks Calculated Variable [CV1] Source Code Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] SourceMoniker ProMax:ProMaxIProject/Flowsheet1!PStreamsIProduced WaterIPhases!Total!Properties!Std Liquid Volumetric Value Value 17.2093 Umit bb/d SourceMoniker ProMax:ProMaxIProject!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!! Value 86.0024 Unit % Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.051937 ggpm Max Iterations 20 Lower Bound sgpm Yeighting 1 Uppe Bo											
Step Size sgpm Solver Active Active Is Minimizer False Group Algorithm Algorithm Default Skip Dependency Check False Remarks Simple Solver 2 Source Code Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] Source Code Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] SourceMoniker ProMax:ProMaxIProject/Flowsheets/Flowsheet1/PStreams/Produced Water/Phases!Total/Properties/Std Liquid Volumetr Value 17.2093 Unit bb/d SourceMoniker ProMax:ProMaxIProject/Flowsheets/Flowsheet1/PStreams/SiPhases!Total/Composition!Std. Liquid Volumetric Fraction!\/ Value Source Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Upper Bound sgpm Priority 0 Step Size sgpm Solver Active Active Is Minimizer False Group Active											
Is Minimizer False Group Algorithm Default Skip Dependency Check False Remarks Remarks Simple Solver 2 Source Code Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] SourceMoniker ProMax:ProMaxIProject/Flowsheets/Flowsheet1!PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumetr Value 17.2093 Unit bbl/d Measured Variable [LF] SourceMoniker ProMax:ProMaxIProject/Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction! Value 86.0024 Unit % Terror 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Max Iterions 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Solver Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False						· · · · · · · · · · · · · · · · · · ·					
Algorithm Default Skip Dependency Check False Remarks Simple Solver 2 Source Code Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] Source Code Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] Source Moniker ProMax:ProMax!Project/Flowsheets!Flowsheets!Plowsh			- 31								
Remarks Simple Solver 2 Source Code Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] SourceMoniker ProMax:ProjectIFlowsheetsIFlowsheet1IPStreams!Produced WaterIPhases!TotallProperties!Std Liquid Volumet Value 17.2093 Unit bbl/d SourceMoniker ProMax:ProjectIFlowsheetsIFlowsheet1IPStreams!5IPhases!TotallComposition!Std. Liquid Volumetric Fraction!Value 86.0024 Unit % Solver Properties Status: Solved Calculated Value 0.501937 sgpm Max Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Lower Bound sgpm Priority 0 Solver Properties Status: Solved Lower Bound sgpm Weighting 1 Uper Bound sgpm Priority 0 Solver Active Active Solver Froup Algorithm Default Skip Dependency Check False					ck	False					
Simple Solver 2 Source Code Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumet Value 17.2093 Unit bb/d Measured Variable [LF] SourceMoniker ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!Value 86.0024 Unit % Solver Properties Status: Solved Error 2.7567E-05 Merations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Lower Bound sgpm Solver Active Active <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
Source Code Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumet Value 17.2093 Unit bbl/d Measured Variable [LF] SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!Value Solver Properties Status: Solved Liquid Value Value 86.0024 Unit % Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 Sgpm Max Iterations 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Solver Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False											
Residual Error (for CV1) = LF /86 - 1 Calculated Variable [CV1] SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!Produced Water!Phases!Tota!!Properties!Std Liquid Volumet Value 17.2093 Unit bbl/d Measured Variable [LF] SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Tota!!Composition!Std. Liquid Volumetric Fraction!N Value 86.0024 Value Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Weighting 1 Upper Bound sgpm Weighting 1 1 0 Step Size sgpm Solver Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False											
Calculated Variable [CV1] SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumet Value 17.2093 Unit bbl/d SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!N Value 86.0024 Unit % Solver Properties Status: Solved Error 2.7567E-05 Calculated Value 0.501937 gpm Max Iterations 5 Calculated Value 0.501937 sppm Weighting 1 Upper Bound sgpm Priority 0 Step Size sgpm Solver Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False			Source	Code							
SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumet Value 17.2093 Unit bbl/d SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!NValue SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!NValue Value 86.0024 Unit % Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Lower Bound sgpm Priority 0 0 3 Step Size sgpm Solver Active Active 1 0 3	Residual Error (for C	V1) = LF /86 - 1									
SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumet Value 17.2093 Unit bbl/d SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!NValue SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!NValue Value 86.0024 Unit % Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Lower Bound sgpm Priority 0 0 3 Step Size sgpm Solver Active Active 1 0 3											
SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!Produced Water!Phases!Total!Properties!Std Liquid Volumet Value 17.2093 Unit bbl/d SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!NValue SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!NValue Value 86.0024 Unit % Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Lower Bound sgpm Priority 0 0 Step Size sgpm Solver Active Active 3 Is Minimizer False Group Algorithm Default Skip Dependency Check False			Calculated Va	riable [CV1]							
Value 17.2093 Unit bbl/d Measured Variable [LF] SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!N Value 86.0024 Unit % Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 <sgpm< th=""> Max Iterations 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Priority 0 Step Size sgpm Solver Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False</sgpm<>	SourceMoniker	ProMax:ProMax!Project!Flowsheet			ases!Total!	Properties!Std Liquid Volume	tric Flow				
Unit bbl/d Measured Variable [LF] SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!NValue Value 86.0024 Unit % Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Solver Active Active Is Minimizer False Group Active Algorithm Default Skip Dependency Check False					accol. i otal.						
Measured Variable [LF] SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!V Value 86.0024 Unit % Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Priority 0 Step Size sgpm Solver Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False											
SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!N Value 86.0024 Unit % Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Solver Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False											
SourceMoniker ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!N Value 86.0024 Unit % Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Solver Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False			Measured Va	ariable [I F]							
Value 86.0024 Unit % Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Priority 0 Step Size sgpm Solver Active Active Is Minimizer False Group False Algorithm Default Skip Dependency Check False	SourceMoniker	ProMax:ProMaxIProjectIFlowsheet			nnositionISI	td. Liquid Volumetric Fraction	Water				
Unit % Solver Properties Status: Solved Error 2.7567E-05 Iterations 5 Calculated Value 0.501937 sgpm Max Iterations 20 Lower Bound sgpm Weighting 1 Upper Bound sgpm Priority 0 Step Size sgpm Solver Active Active Is Minimizer False Group Teles Algorithm Default Skip Dependency Check False											
Solver PropertiesStatus:SolvedError2.7567E-05Iterations5Calculated Value0.501937 sgpmMax Iterations20Lower BoundsgpmWeighting1Upper BoundsgpmPriority0Step SizesgpmSolver ActiveActiveIs MinimizerFalseGroup-AlgorithmDefaultSkip Dependency CheckFalse											
Error2.7567E-05Iterations5Calculated Value0.501937 sgpmMax Iterations20Lower BoundsgpmWeighting1Upper BoundsgpmPriority0Step SizesgpmSolver ActiveActiveIs MinimizerFalseGroup											
Error2.7567E-05Iterations5Calculated Value0.501937 sgpmMax Iterations20Lower BoundsgpmWeighting1Upper BoundsgpmPriority0Step SizesgpmSolver ActiveActiveIs MinimizerFalseGroup			Solver Pr	operties		Status: Solved					
Calculated Value0.501937 sgpmMax Iterations20Lower BoundsgpmWeighting1Upper BoundsgpmPriority0Step SizesgpmSolver ActiveActiveIs MinimizerFalseGroupAlgorithmDefaultSkip Dependency CheckFalse	Error	2 7567E-05	50170111								
Lower BoundsgpmWeighting1Upper BoundsgpmPriority0Step SizesgpmSolver ActiveActiveIs MinimizerFalseGroupAlgorithmAlgorithmDefaultSkip Dependency CheckFalse			sqpm								
Upper Bound sgpm Priority 0 Step Size sgpm Solver Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False											
Step Size sgpm Solver Active Active Is Minimizer False Group Algorithm Default Skip Dependency Check False	Upper Bound			Priority							
Is Minimizer False Group Algorithm Default Skip Dependency Check False	Step Size					Active					
	Is Minimizer	False		Group							
Remarks	Algorithm	Default		Skip Dependency Chec	ck	False					
Remarks											
	Remarks										

Simulation initiated on 1/	13/2013 12:03:40 FIM	i i		Tank_1.15.2015.pmx		Page 1 01 2
			User Value	Sets Report		
Client Name:	EQT	I			Job:	
Location:	OXF 163 Blowd	own Tank				
				ow/Frac.		
			User Value	[CnPlusSum]		
* Parameter		5.63944	lb/h	Upper Bound		
Lower Bound			lb/h	* Enforce Bounds		False
Remarks This User Value S	et was programma	tically generated. C	GUID={E867C485	3D3C-49CB-BC24-EA1609	6DB2B1}	
				•		
				Losses		
* •				[ShellLength]		
 Parameter Lower Bound 		10	ft ft	Upper Bound * Enforce Bounds		
Lower Bound		0	π	* Enforce Bounds		False
				[ShellDiam]		
* Parameter		10		Upper Bound		
* Lower Bound			ft	* Enforce Bounds		False
		· ·				
			User Value	[BreatherVP]		
* Parameter		0.03		Upper Bound		
Lower Bound		0.000	polg	* Enforce Bounds		False
			User Value [BreatherVacP]		
* Parameter		-0.03		Upper Bound		
Lower Bound				 * Enforce Bounds 		False
				DomeRadius]		
Parameter			ft	Upper Bound		ft
Lower Bound			ft	* Enforce Bounds		False
				10 Day and		
* Doromotor		0	User value	e [OpPress]		
* Parameter Lower Bound		0	psig	* Enforce Bounds		False
Lower Dound				Enioree Dounds		1 000
			llser Value [A	vgPercentLiq]		
* Parameter		50		Upper Bound		
Lower Bound		50	%	* Enforce Bounds		False
			User Value IN	laxPercentLiq]		
* Parameter		90	%	Upper Bound		
Lower Bound			%	* Enforce Bounds		False
				[AnnNetTP]		
* Parameter		19.8551		Upper Bound		
* Lower Bound		0	bbl/day	* Enforce Bounds		False
				ue [OREff]		
		0	%	Upper Bound		Feler
* Parameter				* Enforce Bounds		False
* Parameter Lower Bound			70			
Lower Bound		44.1007	User Value [AtmPressure]		
		14.1085	User Value [AtmPressure] Upper Bound * Enforce Bounds		False

		User Val	ue Sets Report		
Client Name:	EQT			Job:	
Location:	OXF 163 Blowde	own Tank			
	Į				
		User	Value [TVP]		
* Parameter		0.40546 psia	Upper Bound		
Lower Bound			* Enforce Bounds	False	
* Deverseter			[AvgLiqSurfaceT]		
 Parameter Lower Bound 		57.7675 °F	Upper Bound * Enforce Bounds	False	
201101 200110					
		User Value	[MaxLiqSurfaceT]		
* Parameter		66.3119 °F	Upper Bound		
Lower Bound			* Enforce Bounds	False	
* Parameter		0.00645818 lb/h	IE [TotalLosses] Upper Bound		
Lower Bound		lb/h	* Enforce Bounds	False	
		User Value	[WorkingLosses]		
* Parameter		0.0282868 ton/yr	Upper Bound * Enforce Bounds	F alaa	
Lower Bound		ton/yr	Enforce Bounds	False	
		Liser Value	[StandingLosses]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound		ton/yr	* Enforce Bounds	False	
			[RimSealLosses]		
* Parameter Lower Bound		0 ton/yr	Upper Bound * Enforce Bounds	False	
Lower Dound			Enlorde Bounds	1 4100	
		User Value	[WithdrawalLoss]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds	False	
			Il andiaul annal		
* Parameter		0.00569714 lb/h	[LoadingLosses] Upper Bound		
Lower Bound		lb/h	* Enforce Bounds	False	
		User Value [DeckFittingLosses]		
* Parameter		0 ton/yr	Upper Bound	F ala a	
Lower Bound			* Enforce Bounds	False	
		Liser Value I	DeckSeamLosses]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds	False	
			[FlashingLosses]		
* Parameter Lower Bound		0 ton/yr	Upper Bound * Enforce Bounds	False	
		User Value	[GasMoleWeight]		
* Parameter		0.0279891 kg/mol	Upper Bound		
Lower Bound			* Enforce Bounds	False	
Demerike					
Remarks This User Value Set	was programmat	ically generated. GUID={B57AF	C7E-AAE8-4873-921B-7B403	31991004}	

* User Specified Values ? Extrapolated or Approximate Values

Attachment T

FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET

	ATTAC	HMEN	T T – F	ACILI	ΓY-WI	DE CO	NTROL	LED EN	AISSIC	NS SU	MMAR	Y SHE	ET	
List all sources of	emissio	ns in th	is table.	Use ex	tra pag	es if nec	cessary.							
Emission Point ID#	NO _x		СО		VOC		SO ₂		PM ₁₀		PM _{2.5}		GHG (CO ₂ e)	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Line Heater (S001)	0.14	0.62	0.12	0.52	<0.01	0.03	<0.01	<0.01	0.01	0.05	0.01	0.05	180.33	789.85
Line Heater (S002)	0.14	0.62	0.12	0.52	<0.01	0.03	<0.01	<0.01	0.01	0.05	0.01	0.05	180.33	789.85
Line Heater (S003)	0.14	0.62	0.12	0.52	<0.01	0.03	<0.01	<0.01	0.01	0.05	0.01	0.05	180.33	789.85
Line Heater (S004)	0.14	0.62	0.12	0.52	<0.01	0.03	<0.01	<0.01	0.01	0.05	0.01	0.05	180.33	789.85
Line Heater (S005)	0.14	0.62	0.12	0.52	<0.01	0.03	<0.01	<0.01	0.01	0.05	0.01	0.05	180.33	789.85
Line Heater (S006)	0.14	0.62	0.12	0.52	<0.01	0.03	<0.01	<0.01	0.01	0.05	0.01	0.05	180.33	789.85
TEG (S016)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.52	6.67
TEG (S017)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.52	6.67
Enclosed Combustion Unit (E013)	1.07	4.71	0.90	3.95	1.03	4.53	0.01	0.03	0.02	0.09	0.02	0.09	1,386.04	6,070.84
Enclosed Combustion Unit (E014)	1.07	4.71	0.90	3.95	1.03	4.53	0.01	0.03	0.02	0.09	0.02	0.09	1,386.04	6,070.84
Tank Truck Loading Activities (E015)					0.07	0.31							0.02	0.11
Compressor Engine (E019)	0.42	1.85	0.88	3.85	0.29	1.29	<0.01	<0.01	0.01	0.03	0.01	0.03	95.79	419.54
Line Heater (S020)	0.14	0.62	0.12	0.52	<0.01	0.03	<0.01	<0.01	0.01	0.05	0.01	0.05	180.33	789.85
TOTAL	3.56	15.61	3.52	15.40	2.41	10.80	0.02	0.06	0.24	1.08	0.12	0.82	4,133.23	18,103.57

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

	ATTAC	CHMENT	ГТ–FA	CILITY	-WIDE	HAP CO	ONTROI	LLED E	MISSIO	NS SUM	MARY	SHEET		
List all sources of e	missions	in this t	able. Us	e extra p	ages if n	ecessary	•							
Emission Point ID#	Formaldehyde		Benzene		Toluene		Ethylbenzene		Xylenes		Hexane		Total HAPs	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Line Heater (S001)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	0.01
Line Heater (S002)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	0.01
Line Heater (S003)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	0.01
Line Heater (S004)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	0.01
Line Heater (S005)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	0.01
Line Heater (S006)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	0.01
TEG (S016)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TEG (S017)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Enclosed Combustion Unit (E013)	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	0.05	0.23	0.06	0.26
Enclosed Combustion Unit (E014)	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	0.05	0.23	0.06	0.26
Tank Truck Loading Activities (E015)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Compressor Engine (E019)	0.04	0.17	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.04	0.17
Line Heater (S020)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	0.01
TOTAL	0.04	0.17	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	0.10	0.54	0.16	0.78

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

Attachment U

CLASS I LEGAL ADVERTISEMENT

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-B General Permit for the OXF-163 natural gas production facility located in West Union, Doddridge County, West Virginia. The latitude and longitude coordinates are: 39.13602 and -80.84274.

The applicant estimates the potential to discharge the following regulated air pollutants on a facility-wide basis will be:

Carbon Monoxide (CO) = 15.40 tpy Nitrogen Oxides (NO_x) = 15.61 tpy Particulate Matter – Total = 8.68 tpy Sulfur Dioxide (SO₂) = 0.06 tpy Volatile Organic Compounds (VOC) = 11.31 tpy Formaldehyde = 0.17 tpy Hexane = 0.54 tpy Toluene = 0.02 tpy Hazardous Air Pollutants (HAPs) = 0.82 tpy Carbon Dioxide Equivalents (CO₂e) = 18,142.27 tpy

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the XXth day of January, 2016.

By: EQT Production Company Kenneth Kirk Executive Vice President 625 Liberty Avenue, Suite 1700 Pittsburgh, PA 15222