

Williams Ohio Valley Midstream LLC 100 Teletech Drive, Suite 2 Moundsville, WV 26041 (304) 843-4559 phone (304) 843-3131 fax

February 5, 2016 (Via Federal Express)

Beverly McKeone New Source Review Program Manager Division of Air Quality West Virginia Department of Environmental Protection 601 57th Street SE Charleston, WV 25304-2345

Subject: Application for 45CSR13 NSR Modification Permit Williams Ohio Valley Midstream LLC BARDALL COMPRESSOR STATION Marshall County, West Virginia

Dear Ms. McKeone:

Williams Ohio Valley Midstream LLC (OVM) is submitting an Application for 45CSR13 New Source Review (NSR) Modification Permit for the existing Bardall Compressor Station, located on the north side of Toms Run Road, approximately 3 miles east of Moundsville in Marshall County, West Virginia.

The requested 45CSR13 NSR Modification Permit will supersede and replace Permit R13-3090, issued September 17, 2013. This application for 45CSR13 NSR Modification Permit has been prepared and submitted to provide for the following proposed changes at the subject facility:

• Increase the 5.0 MMscfd Dehydrator 01 Emissions based on a recent representative site-specific gas analysis.

Furthermore, several emissions estimating protocols improvements were implemented as follows:

- Added Compressor Rod Packing and Engine Crankcase (RPC/2E) emission estimates.
- Updated the Reboiler 01 (RBV/6E) heat input value and emissions.
- Updated the Produced Water Storage Tank (T-01/7E) estimating protocols.
- Updated the Produced Water Truck-Load-Out (TLO/8E) estimating protocols.
- Updated Piping and Equipment Fugitive (FUG-G/1F and FUG-W/2F) estimating protocols.
- Utilized site-specific, representative, extended gas analysis.

The facility continues to qualify as a Minor Source under Non-Attainment New Source Review (NNSR), Prevention of Significant Deterioration (PSD), and Title V Operating Permits. The facility is also an Area Source for Hazardous Air Pollutants (HAP) under the National Emission Standards for Hazardous Air Pollutants (NESHAP) regulations.

Beverly McKeone WVDEP – Division of Air Quality February 5, 2016 Page 02 of 02

If you have any questions concerning this submittal or need additional information, please contact me at (304) 843-4559 or erika.baldauff@williams.com.

Sincerely,

Salaaff

Erika Baldauff Environmental Specialist

Enclosures: Application for NSR Modification Permit Attachments A through S Check for Application Fee

WILLIAMS FIELD SERVICES GROUP, INC PO BOX 21218 TULSA, OK 74121-1218

COMPANY NUMBER: 4000

CHECK NUMBER: 4000130763

PAY DATE	SUPPLIER NO.	SUPPLIER NA	AME	C	HECK TOTAL
01-JAN-16	526257	WV DEP - DIVISION OF AIR QUALITY			3,500.00
Invoice Date		Or Credit Memo /	Gross	Discount	Net
30-DEC-15 30-DE	Invo EC-2015 / APPLICATION FOR BARCALL PE	ice Description	3,500.00	0.00	3,500.00
			-		
-					
				-	
				-	
S	upplier Support 1-866-778	3-2665	Page Totals	0.00	3,500.00
			· · · · · · · · · · · · · · · · · · ·		
VERIFY THE AUTHEN	TICITY OF THIS MULTI-TONE SECURITY D	the second state of the second s	REA CHANGES COLOR GRAD	COPYE	
Villiams	WILLIAMS FIELD SERVICE PO BOX 21218	S GROUP, INC	JPMorgan Chase Bank, N.A. Chicago, IL	70-2322/719	
	TULSA, OK 74121-1218		Chec	k Number	: 4000130763
int all all all all all all all all all al	Company Number: 4000	Walter Martin and Summer and Summer	and the second	O N NOW	te: 01-JAN-16
a contraction					
Three Thous	and Five Hundred Dollars And Zer	o Cents			
		and the second			
ay To The Orde	er Of:		PAY (USD)	<u>in Culture</u> Literation	\$3,500.00
WV DEP - DIVI	SION OF AIR QUALITY				+0,000.00
601 57TH ST S	E				
CHARLESTON	, WV 25304 United States		T . >	in the second	1
			Doula R	-Che	a pire
81 A 14	States and the second		Authorize	d Signature	, r
Marinah I.	Sand and the second	and the second second			
Section of Section 19	I have and the second started	armitte anne 19 an an an Standard Standard State	and the second of the second	Constant State	Sugar the the man well

"4000130763" \$225:

MA1353 (6/11)

009401167

APPLICATION FOR 45CSR13 NEW SOURCE REVIEW (NSR) MODIFICATION PERMIT

For the:

Williams Ohio Valley Midstream LLC BARDALL COMPRESSOR STATION

Marshall County, West Virginia

Submitted to:

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY

Submitted by:

Williams Ohio Valley Midstream LLC Park Place Corporate Center 2 2000 Commerce Drive Pittsburgh, PA 15275

Prepared by:

EcoLogic Environmental Consultants, LLC 864 Windsor Court Santa Barbara, CA 93111

February 2016

APPLICATION FOR 45CSR13 NEW SOURCE REVIEW (NSR) MODIFICATION PERMIT

Williams Ohio Valley Midstream LLC BARDALL COMPRESSOR STATION

Marshall County, West Virginia

TABLE OF CONTENTS

COVER LETTER

APPLICATION FOR 45CSR13 NEW SOURCE REVIEW MODIFICATION PERMIT

- SECTION I. General
- SECTION II. Additional Attachments and Supporting Documents
- SECTION III. Certification of Information

ATTACHMENTS TO APPLICATION

- ATTACHMENT A Business Certificate
- ATTACHMENT B Map(s)
- ATTACHMENT C Installation and Start-Up Schedule
- ATTACHMENT D Regulatory Discussion
- ATTACHMENT E Plot Plan
- ATTACHMENT F Detailed Process Flow Diagram (PFD)
- ATTACHMENT G Process Description
- ATTACHMENT H Material Safety Data Sheets (MSDS)

(And Representative Extended Gas Analysis)

- ATTACHMENT I Emission Units Table
- ATTACHMENT J Emission Points Data Summary Sheet(s)
- ATTACHMENT K Fugitive Emissions Data Summary Sheet(s)
- ATTACHMENT L Emissions Unit Data Sheet(s)
- ATTACHMENT M Air Pollution Control Device Sheet(s)
- ATTACHMENT N Supporting Emissions Calculations
- ATTACHMENT O Monitoring/Recordkeeping/Reporting/Testing Plans
- ATTACHMENT P Public Notice (Class I Legal Advertisement)
- ATTACHMENT Q Business Confidential Claims (NOT APPLICABLE)
- ATTACHMENT R Authority Forms (NOT APPLICABLE)
- ATTACHMENT S Title V Permit Revision Information (NOT APPLICABLE)

APPLICATION FEE

APPLICATION FOR 45CSR13 NEW SOURCE REVIEW (NSR) MODIFICATION PERMIT

- SECTION I. General
- SECTION II. Additional Attachments and Supporting Documents
- SECTION III. Certification of Information

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 www.dep.wv.gov/dag PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOWN): CONSTRUCTION IM MODIFICATION RELOCATION CLASS I ADMINISTRATIVE UPDATE TEMPORARY CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FACT	APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL) PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY): ADMINISTRATIVE AMENDMENT MINOR MODIFICATION SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION						
FOR TITLE V FACILITIES ONLY: Please refer to "Title V Revisi (Appendix A, "Title V Permit Revision Flowchart") and ability	to operate with the c						
Section	I. General						
1. Name of applicant (as registered with the WV Secretary of WILLIAMS OHIO VALLEY MIDSTREAM LLC (OVM)	State's Office):	2. Federal Employer ID No. (FEIN): 27-0856707					
3. Name of facility (<i>if different from above</i>): BARDALL COMPRESSOR STATION		 4. The applicant is the: ☐ OWNER ☐ OPERATOR ⊠ BOTH 					
 Applicant's mailing address: 100 TELETECH DRIVE, SUITE 2 MOUNDSVILLE, WV 26041 SB. Facility's present physical address: NORTH SIDE OF TOMS RUN ROAD ~3 MILES EAST OF MOUNDSVILLE MARSHALL COUNTY, WV 							
 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? YES NO If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 							
7. If applicant is a subsidiary corporation, please provide the	name of parent cor	poration: THE WILLIAMS COMPANIES, INC.					
 Does the applicant own, lease, have an option to buy, or o If YES, please explain: APPLICANT LEASES THE PI If NO, you are not eligible for a permit for this source. 		rol of the <i>proposed site</i> ? ⊠ YES □ NO					
 Type of plant or facility (stationary source) to be construct relocated, administratively updated or temporarily peri- preparation plant, primary crusher, etc.): 		 North American Industry Classification System (NAICS) code for the facility: 213112 - SUPPORT ACTIVITIES FOR 					
1389 - OIL AND GAS FIELD SERVICES, N.E.C.		OIL AND GAS OPERATIONS					
11A. DAQ Plant ID No. (existing facilities):051-00133	numbers as	ent 45CSR13 and 45CSR30 (Title V) permit sociated with this process (existing facilities): 13-3090 – ISSUED 09/17/13					
12A. Directions to the facility:							
 12A. Directions to the facility: For Modifications, Administrative Updates or Temporary permits at an existing facility, please provide directions to the present location of the facility from the nearest state road; For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment B. From US-250/Grant Ave. in Moundsville: a. Travel 3.1 miles east on US-250 then turn right onto unmarked dirt road b. Travel approximately one mile on dirt road until you arrive at site. 							
All of the required forms and additional information can be found u	nder the Permitting	Section of DAQ's website, or requested by phone.					
Williams Ohio Va	Illey Midstream LLC						

12.B.	New site address (if applicable):	12C.	Nearest city or town:	12D.	County:						
	na		MOUNDSVILLE		MARSHALL						
12.E.	UTM Northing (KM):	12F.	UTM Easting (KM):	12G.	UTM Zone:						
	4,420.07 KM NORTHING	527.664 KM EASTING		17S							
13.	Briefly describe the proposed change(s) at t	he faci	ity:	-							
	THIS APPLICATION IS PREPARED AND SUBMITTED TO:										
	INCREASE THE 5.0 MMSCFD DEHYDRATOR 01 EMISSIONS BASED ON A RECENT REPRESENTATIVE SITE-										
	SPECIFIC GAS ANALYSIS.		SSION ESTIMATING PROTOCOLS	2							
14A.	Provide the date of anticipated installation or change: IMMEDIATELY UPON PERMIT 14B. Date of anticipated Start-Up if a permit is granted:										
	 If this is an After-The-Fact permit application, provide the date upon which the proposed change did happen: NA 										
140	C. Provide a Schedule of the planned Installation of/Change to and Start-Up of each of the units proposed in this permit										
140.	application as Attachment C (if more than one unit is involved).										
15.	5. Provide maximum projected Operating Schedule of activity/activities outlined in this application:										
	Hours Per Day: 24 Days Per Week: 7 Weeks Per Year: 52										
16.	Is demolition or physical renovation at an ex	isting f	acility involved? 🗌 YES 🖾 NO								
17.	 Risk Management Plans. If this facility is subject to 112(r) of the 1990 CAAA, or will become subject due to proposed changes (for applicability help see www.epa.gov/ceppo), submit your Risk Management Plan (RMP) to U.S. EPA Region III. 										
18.	8. Regulatory Discussion. List all Federal and State air pollution control regulations that you believe are applicable to the proposed process (<i>if known</i>). A list of possible applicable requirements is also included in Attachment S of this application (Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance (<i>if known</i>). Provide this information as Attachment D.										
	Section II. Additiona	l atta	achments and supporting	doci	uments.						
19.	Include a check payable to WVDEP – Division		· · · · · ·								
10.	45CSR13).	511 01 7 1	a quality with the appropriate uppro								
20.	Include a Table of Contents as the first page	e of vo	ur application package								
21.	Provide a Plot Plan , e.g. scaled map(s) and source(s) is or is to be located as Attachme			property	on which the stationary						
	- Indicate the location of the nearest occup	ed stru	cture (e.g. church, school, business	, reside	ence).						
22.	Provide a Detailed Process Flow Diagram device as Attachment F.	(s) sho	wing each proposed or modified em	issions	unit, emission point and control						
23.	Provide a Process Description as Attachn	nent G									

Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable).

24. Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.

- For chemical processes, provide a MSDS for each compound emitted to the air.

25. Fill out the Emission Units Table and provide it as Attachment I.

26. Fill out the Emission Points Data Summary Sheet (Table 1 and Table 2) and provide it as Attachment J.

27. Fill out the Fugitive Emissions Data Summary Sheet and provide it as Attachment K.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

28.	Check all applicable Emissions Unit Data	Sheets listed below:						
	🛛 Bulk Liquid Transfer (TLO/8E)	Haul Road Emissions	Quarry					
	Chemical Processes	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling					
	Concrete Batch Plant	Incinerator	and Storage Facilities					
	Grey Iron and Steel Foundry	Indirect Heat Exchanger	⊠ Storage Tanks (T-01/7E)					
	🔀 General Emission Unit, specify:							
		ENERATOR ENGINE DATA SHEET RATION UNIT DATA SHEET (DFT-0/						
	Fill out and provide the Emissions Unit Data	a Sheet(s) as Attachment L.						
29.	Check all applicable Air Pollution Control	ol Device Sheets listed below:						
	Absorption Systems	Baghouse	Flare					
	Adsorption Systems	Condenser	Mechanical Collector					
	Afterburner	Electrostatic Precipitator	Wet Collecting System					
	Other Collectors, specify: NON-SELEC	CTIVE CATALYTIC REDUCTION (01	-NSCR)					
	Fill out and provide the Air Pollution Contro	I Device Sheet(s) as Attachment M.						
30.	Provide all Supporting Emissions Calcul Items 28 through 31.	lations as Attachment N, or attach t	the calculations directly to the forms listed in					
31.	Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O.							
>	Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.							
32.		or will be located (See 45CSR§13-8	egal Advertisement in a newspaper of general 3.3 through 45CSR§13-8.5 and <i>Example Legal</i> nent P immediately upon receipt.					
33.	Business Confidentiality Claims. Does	this application include confidential in	formation (per 45CSR31)?					
	🗌 YES							
>								
	Section	III. Certification of Inform	nation					
34.	Authority/Delegation of Authority. Only Check applicable Authority Form below:	required when someone other than the NA	ne responsible official signs the application.					
	Authority of Corporation or Other Busine	ess Entity 🛛 Authority of F	Partnership					
	Authority of Governmental Agency	Authority of L	imited Partnership					
	Authority of Governmental Agency							

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

35A. Certification of Information. To certify this permit application, a Responsible Official (45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry. I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, it, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

\prec	VAL B
SIGNATURE:	aul front
	(Please use blue ink)

DATE: 02/05/20/6

35B.	Printed name of signee: PAUL HUNTER	35C. Title: GENERAL MANAGER, OHIO RIVER SUPPLY HUB				
	E-mail: PAULV.HUNTER@WILLIAMS.COM	36E.	Phone: (412) 787-5561	36F.	FAX: (412)(787-6002	
36A.	Printed name of contact person: ERIKA BALDAUFF	36B.	Title: ENVIRONMENTAL SPECI	ALIST		
36C.	E-mail: ERIKA.BALDAUFF@WILLIAMS.COM	36D.	Phone: (304) 843-4559	36E.	FAX: (304) 843-3131	

Attachment A: Business Certificate	Attachment K: Fugitive Emissions Data Summary Sheet
X Attachment B: Map(s)	Attachment L: Emissions Unit Data Sheet(s)
Attachment C: Installation and Start Up Schedule	Attachment M: Air Pollution Control Device Sheet(s)
Attachment D: Regulatory Discussion	Attachment N: Supporting Emissions Calculations
Attachment E: Plot Plan	Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans
Attachment F: Detailed Process Flow Diagram(s)	Attachment P: Public Notice
Attachment G: Process Description	Attachment Q: Business Confidential Claims) (NA)
Attachment H: Material Safety Data Sheets (MSDS)	Attachment R: Authority Forms) (NA)
Attachment I: Emission Units Table	Attachment S: Title V Permit Revision Information) (NA)
Attachment J: Emission Points Data Summary Sheet	Application Fee

Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section, at the address listed on the first page of this application. Please DO NOT fax permit applications.

FOR AGENCY USE ONLY – IF THIS IS A TITLE V SOURCE:

For Title V Administrative Amendments:

NSR permit writer should notify Title V permit writer of draft permit

For Title V Minor Modifications:

Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,
 NSR permit writer should notify Title V permit writer of draft permit.

□ For Title V Significant Modifications processed in parallel with NSR Permit revision:

Solution of the second state of the second sta

Public notice should reference both 45CSR13 and Title V permits,

EPA has 45 day review period of a draft permit.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

ATTACHMENT A

Business Certificate

"6. **West Virginia Business Registration**. Provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A."

• Certificate of Amendment to the Certificate of Authority

From: CAIMAN EASTERN MIDSTREAM, LLC

To: WILLIAMS OHIO VALLEY MIDSTREAM LLC

Date: May 15, 2012

• Certificate of Authority of a Foreign Limited Liability Company

To: CAIMAN EASTERN MIDSTREAM, LLC

Date: September 11, 2009

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

the attached true and exact copy of the Articles of Amendment to the Articles of Organization of

CAIMAN EASTERN MIDSTREAM, LLC

are filed in my office, signed and verified, as required by the provisions of West Virginia Code §31B-2-204 and conform to law. Therefore, I issue this

CERTIFICATE OF AMENDMENT TO THE CERTIFICATE OF AUTHORITY

changing the name of the limited liability company to

WILLIAMS OHIO VALLEY MIDSTREAM LLC

Given under my hand and the Great Seal of the State of West Virginia on this day of May 15, 2012

talil E. Yerre

Secretary of State

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

CAIMAN EASTERN MIDSTREAM, LLC

Control Number: 99GIS

a limited liability company, organized under the laws of the State of Texas

has filed its "Application for Certificate of Authority" in my office according to the provisions of West Virginia Code §31B-10-1002. I hereby declare the organization to be registered as a foreign limited liability company from its effective date of September 11, 2009, until a certificate of cancellation is filed with our office.

Therefore, I hereby issue this

CERTIFICATE OF AUTHORITY OF A FOREIGN LIMITED LIABILITY COMPANY

to the limited liability company authorizing it to transact business in West Virginia

Given under my hand and the Great Seal of the State of West Virginia on this day of September 11, 2009

Secretary of State

ATTACHMENT B

Map(s)

"12A. For **Modifications, Administrative Updates** or **Temporary** permits at an existing facility, please provide directions to the present location of the facility from the nearest state road. Include a MAP as Attachment B."

• Address:

North side of Toms Run Road ~3 Miles East of Moundsville Marshall County, West Virginia

• Latitude and Longitude:

39°55'49.08" North x -80°40'34.32" West (39.9303° North x -80.6762° West)

• UTM: 527.664 km Easting x 4,420.070 km Northing x Zone 17S

• Elevation:

~1,100'

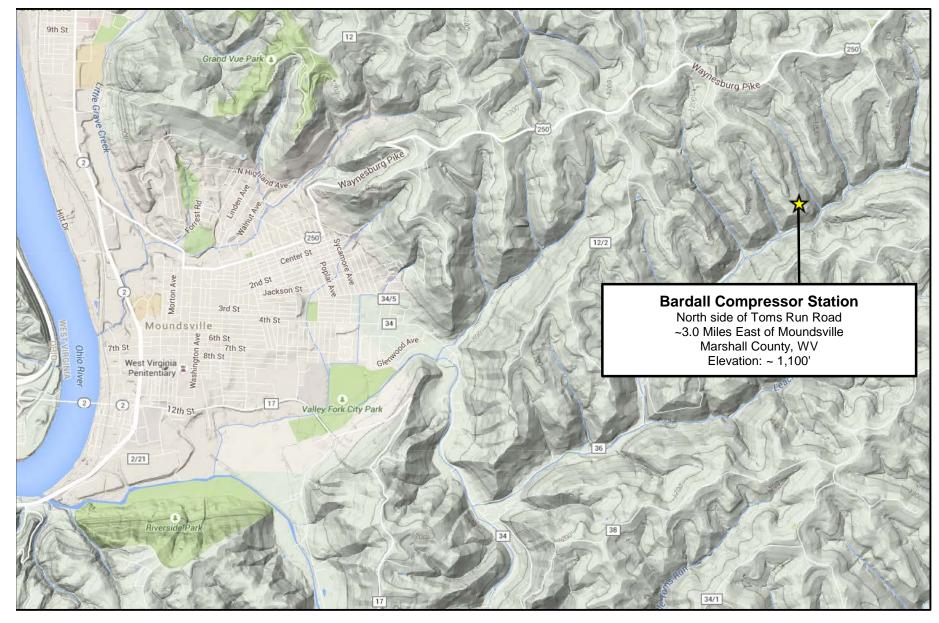
• Directions:

From 5th Street/Jefferson Ave. in **Moundsville:**

- a. Head east on 5th Street for 0.3 miles
- b. Turn left on Grant Ave.
- c. Travel 0.7 miles on Grant Ave. then turn right onto 1st street
- d. 1st street turns left and becomes US-250 S/Waynesburg Pike
- e. Travel 3.1 miles east on US-250 then turn right onto unmarked dirt road
- f. Travel approximately one mile on dirt road until you arrive at site.

• USGS:

7.5" Topographic – Moundsville, WV-OH – 1997


Williams Ohio Valley Midstream LLC

BARDALL COMPRESSOR STATION

Application for 45CSR NSR Modification Permit

Attachment B - Map(s)

Location/Topographic Map

ATTACHMENT C

Installation and Start-Up Schedule

"14C. Provide a **Schedule** of the planned **Installation** of/**Change** to and **Start-Up** of each of the units proposed in this permit application as Attachment C."

This application for 45CSR13 NSR Modification Permit has been prepared and submitted to provide for the following proposed changes at the subject facility:

• Increase the 5.0 MMscfd Dehydrator 01 Emissions based on a recent representative site-specific gas analysis.

Modifications will be implemented immediately upon permit issuance.

ATTACHMENT D

Regulatory Discussion

"18. **Regulatory Discussion**. List all Federal and State air pollution control regulations that you believe are applicable to the proposed process (if known). Discuss applicability and proposed demonstration(s) of compliance (if known). Provide this information as Attachment D."

Regulatory Discussion

- A. Applicability of New Source Review (NSR) Regulations
- B. Applicability of Federal Regulations
- C. Applicability of Source Aggregation
- D. Applicability of State Regulations

Williams Ohio Valley Midstream LLC BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment D REGULATORY DISCUSSION

A. Applicability of New Source Review (NSR) Regulations

The following New Source Review (NSR) regulations are potentially applicable to natural gas production facilities. Applicability to the Williams Ohio Valley Midstream LLC Bardall Compressor Station ("subject facility") has been determined as follows:

1. Prevention of Significant Deterioration (PSD) [Not Applicable]

This rule <u>does not apply</u>. The subject facility is a "PSD Minor Source" for each regulated pollutant, as follows:

- NOx: PSD Natural Minor Source with Pre-Controlled PTE < 250 tpy
- CO: PSD Natural Minor Source with Pre-Controlled PTE < 250 tpy
- VOC: PSD Natural Minor Source with Pre-Controlled PTE < 250 tpy
- SO2: PSD Natural Minor Source with Pre-Controlled PTE < 250 tpy
- PM10/2.5: PSD Natural Minor Source with Pre-Controlled PTE < 250 tpy

2. Non-Attainment New Source Review (NNSR)

This rule <u>does not apply</u>. The subject facility location is designated as either "Maintenance" or "Attainment/Unclassified" for all criteria pollutants.

3. Major Source of Hazardous Air Pollutants (HAPs)

This rule <u>does not apply</u>. The subject facility qualifies as a "HAP Area Source" as follows:

- Each HAP: HAP Area Source with Controlled Individual HAP PTE < 10 tpy
- Total HAPs: HAP Area Source with Controlled Total of All HAPs PTE < 25 tpy

4. Title V Operating Permit (TVOP)

This rule <u>does not apply</u>. The subject facility qualifies as a "Title V Minor Source" as follows:

- NOx: Title V Natural Minor Source with Pre-Controlled PTE < 100 tpy
- CO: Title V Natural Minor Source with Pre-Controlled PTE < 100 tpy
- VOC: Title V Natural Minor Source with Pre-Controlled PTE < 100 tpy
- SO2: Title V Natural Minor Source with Pre-Controlled PTE < 100 tpy
- PM10/2.5: Title V Natural Minor Source with Pre-Controlled PTE < 100 tpy
- Each HAP: Title V Natural Minor Source with Pre-Controlled PTE < 10 tpy
- Total HAPs: Title V Natural Minor Source with Pre-Controlled PTE < 25 tpy

[Not Applicable]

[Not Applicable]

[Not Applicable]

B. Applicability of Federal Regulations

The following federal regulations are potentially applicable to natural gas production facilities. Applicability to the subject facility has been determined as follows:

1. NSPS A, General Provisions

40CFR§60.1-§60.19

This rule does not apply because there are no sources at the facility subject to an NSPS.

2. NSPS Dc, Steam Generating Units

40CFR§60.40c-§60.48c

This rule does not apply because there is no steam generating unit at the subject facility with a maximum design heat input capacity ≥ 10 MMBtu/hr and ≤ 100 MMBtu/hr (§60.40c(a)).

3. NSPS Kb, Volatile Organic Liquid Storage Vessels

40CFR§60.110b-§60.117b

This rule does not apply because there is no tank used to store volatile organic liquids (VOL) with a design capacity \geq 75 m3 (19,815 gal, 471.8 bbl) (§60.110b(a)).

4. NSPS GG, Stationary Gas Turbines

40CFR§60.330-§60.335

This rule does not apply because there is no stationary gas turbine at the subject facility (§60.330).

5. NSPS KKK, Leaks from Natural Gas Processing Plants 40CFR§60.630-§60.636

This rule does not apply because the subject facility is not a natural gas processing plant (§60.630(b)).

6. NSPS LLL, Onshore Natural Gas Processing: SO2 Emissions 40CFR§60.640-§60.648

This rule does not apply because there is no gas sweetening operation at the subject facility (§60.640(a)).

7. NSPS IIII, Compression Ignition Reciprocating Internal Combustion Engines 40CFR§60.4200-§60.4219 [Not Applicable]

This rule does not apply because there is no stationary compression ignition engine at the subject facility (§60.4200(a)).

[Not Applicable]

[Not Applicable]

[Not Applicable]

[Not Applicable]

[Not Applicable]

[Not Applicable]

Attachment D - Regulatory Discussion – Page 03 of 09

8. NSPS JJJJ, Stationary Spark Ignition (SI) Internal Combustion Engines (ICE) 40CFR§60.4230-§60.4248 [Applicable]

This rule <u>does not apply</u> to the 500 bhp Caterpillar G398NA compressor engine (CE-01) because its maximum engine power is greater than or equal to 500 HP and it was manufactured or modified before 07/01/07 (§60.4230(a)(4)(i)).

9. NSPS KKKK, Stationary Combustion Turbines

40CFR§60.4300-§60.4420

[Not Applicable]

This rule <u>does not apply</u> because there is no stationary combustion turbine at the subject facility (§60.4300).

10. NSPS OOOO, Crude Oil and Natural Gas Production

40CFR§60.5360-§60.5430

This rule <u>does not apply</u> to the reciprocating compressor driven by the CAT G398NA engine because the compressor commenced construction before 08/23/11 (§60.5360 and §60.5365(c)).

This rule <u>does not apply</u> to the produced water storage vessel (tank) because the tank does not have the potential to emit VOC \geq 6 tpy (§60.5420).

This rule <u>does not apply</u> to the group of all equipment, except compressors, within a process unit (§60.5365(f)).

This rule <u>does not apply</u> to the pneumatic controllers because their bleed rate is < 6 scfh, located between the wellhead and point of custody transfer, and not located at a natural gas processing plant (\S 60.5365(d)(i)).

11. NESHAP A, General Provisions

40CFR§63.1-§63.16

This rule <u>does apply</u> to the 5.0 MMscfd Dehydrator 01 (DFT-01/4E and DSV-01/5E) because it is subject to NESHAP Subpart HH. Requirements include notification and recordkeeping.

12. NESHAP HH, Oil and Natural Gas Production Facilities

40CFR§63.760-§63.779

[Applicable]

[Applicable]

This rule <u>does apply</u> to the 5.0 MMscfd Dehydrator 01 (DFT-01/4E and DSV-01/5E). However, because the TEG dehydrator has a benzene PTE < 0.9 megagrams per year (< 1.0 tpy), it is exempt from all requirements except to maintain records of actual annual average benzene emissions to demonstrate continuing exemption status (§63.764(e)(1)).

This rule <u>does not apply</u> to storage vessels (tanks), compressors, or ancillary equipment because the subject facility is an area source of HAP emissions (§63.760(b)(2)). In no case does this rule apply to engines or turbines.

[Applicable]

13. NESHAP HHH, Natural Gas Transmission and Storage Facilities

40CFR§63.1270-§63.1289

This rule <u>does not apply</u> because the subject facility is not a natural gas transmission or storage subject facility transporting or storing natural gas prior to local distribution (§63.1270(a)).

14. NESHAP YYYY, Stationary Combustion Turbines

40CFR§63.6080-§63.6175

[Not Applicable]

[Not Applicable]

This rule <u>does not apply</u> because there is no stationary gas turbine at the subject facility (§63.6080).

15. NESHAP ZZZZ, Stationary Reciprocating Internal Combustion Engines (RICE) 40CFR§63.6580-§63.6675 [Applicable]

This rule <u>does apply</u> to the 500 bhp Caterpillar G398NA compressor engine (CE-01/1E) because it is an "existing" RICE, i.e., commenced construction or reconstruction before 06/12/06 (§63.6590(a)(2)(ii)). As the engine is existing, located at an area HAP source and has a rating \leq 500 bhp, it is subject to work practice standards (§63.6603(a), Table 2d).

16. NESHAP DDDDD, Industrial, Commercial, and Institutional Boilers and Process Heaters – Major Sources

40CFR§63.7480 - §63.7575

[Not Applicable]

[Not Applicable]

[Not Applicable]

This rule <u>does not apply</u> because the subject facility is not a major source of HAP (§63.7485).

17. NESHAP JJJJJJ, Industrial, Commercial, and Institutional Boilers and Process Heaters – Area Sources

40CFR§63.11193 - §63.11237

This rule <u>does not apply</u> because gas-fired boilers are not subject to the requirements of this subpart (§63.11195(e)). Specifically, "boiler" is defined as an enclosed device using controlled flame combustion in which water is heated to recover thermal energy in the form of steam and/or hot water.

18. Chemical Accident Prevention Provisions

40CFR§68.1-§68.220

This rule <u>does not apply</u> because the subject facility does not store more than a threshold quantity of a regulated substance in a process (§68.115).

19. Compliance Assurance Monitoring (CAM)

40CFR§64.1-§64.10

This rule <u>does not apply</u> because the subject facility is not major source that is required to obtain a part 70 or 71 (Title V) permit.

[Not Applicable]

Attachment D - Regulatory Discussion - Page 04 of 09

20. Mandatory Greenhouse Gases (GHG) Reporting

40CFR§98.1-§98.9

[Not Applicable]

This rule <u>does not apply</u>. The subject facility is not subject to a listed source category and the aggregate maximum heat input capacity is < 30 MMBtu/hr from all stationary fuel combustion sources combined (§98.2(a)).

C. Applicability of Source Aggregation

For New Source Review (NSR) and Title V permitting, the three-part regulatory criteria to determine whether emissions from two or more facilities should be aggregated and treated as a single source is whether the activities:

- i) Belong to the same industrial grouping; and
- ii) Are located on one or more contiguous or adjacent properties; and
- iii) Are under control of the same person (or persons under common control).

i) Same Industrial Grouping

The subject facility shares the same two-digit major SIC code of 13 as the upstream gas production wells and other Williams' facilities.

ii) Contiguous or Adjacent

The determination of whether two or more facilities are "contiguous" or "adjacent" is made on a case-by-case basis. This determination is proximity based, and it is important to focus on this criterion and whether two contiguous or adjacent facilities, considered as a single source, meet the common sense notion of a plant. The functional interrelationship of the two or more facilities is not a relevant inquiry in determining whether the facilities are "contiguous" or "adjacent."

Neither West Virginia nor federal regulations define the terms "contiguous" or "adjacent." It is clear, however, that the determination of whether two or more facilities are "contiguous" or "adjacent" is based on the plain meaning of the terms "adjacent" and "contiguous", which consider the physical distance between the facilities. The term contiguous is defined in the dictionary as being in actual contact; touching along a boundary or at a point. The term adjacent" is defined in the dictionary as not distant, nearby, having a common endpoint or border.

The closest Williams-owned facility to the subject facility is the Witzgal Dehydration Station, which is located approximately 0.6 miles away. These two facilities do not meet the common sense definition of being "contiguous" with or "adjacent".

The subject facility compresses and dehydrates gas produced from an upstream production well located in northern West Virginia. The subject facility is located on a parcel that is directly adjacent to a pre-existing upstream production wellpad operated by Chevron.

The location of the subject facility was chosen because of suitable characteristics for construction and operation, such as the availability of a reasonably flat grade and accessibility for large trucks and equipment. Williams' business model is to construct

scalable capacity that contemplates additional production from multiple operators and the initial configuration is merely a foundation for additional opportunities in the area. The subject facility does not need to be located in the immediate vicinity of the upstream wells in order to operate properly. Had suitable land been available elsewhere, the subject facility could have been located farther from the upstream wells and could theoretically be moved farther from the wells without affecting operations. Therefore, despite the fact that the subject facility is located in close proximity to one or many upstream production sources, aggregation of the subject facility with upstream wells does not meet the common sense notion of a plant.

iii) Common Control

Williams OVM operates under its parent company The Williams Companies, Inc. (Williams) and is the sole operator of the subject facility. The closest Williams-operated facility to the subject facility is the Witzgal Dehydration Station, located approximately 0.6 miles away. The Witzgal Dehydration Station is not "contiguous" with or "adjacent" to the subject facility.

The production wells, including the Chevron wellpad, that send natural gas to the subject facility are owned and operated by other companies, which are unaffiliated with Williams. Williams has no ownership stake in the Chevron wellpad or in any production well or production company that may send natural gas to the subject facility.

Furthermore, neither Williams OVM, nor Williams, exercise operational control over any equipment owned or operated by any natural gas producer upstream of the subject facility. All employees at the subject facility are under the exclusive direction of Williams and are not under the control of any other entity. Similarly, Williams has no authority over employees of the production wells. These companies operate wholly independent of one another. No employees are expected to shuttle back and forth between the subject facility and any production well.

At this time, contracts are in place for the subject facility to process natural gas produced from multiple upstream production wells located throughout the region. As future commercial opportunities are identified, the subject facility will potentially receive gas from other producers. Williams will not have ownership or control of any future wellhead facilities. The producers are, and will be responsible for, any decisions to produce or shut-in wellhead facilities and have no control over the equipment installed, owned, and operated by Williams. Similarly, Williams cannot control the installation or operation of any equipment located at a well site that may be considered an air contamination source.

For the reason above, it is clear that Williams does not have common control of any production wells, including the Chevron well.

Summary

The subject facility and the upstream production wells should not be aggregated and treated as a single source of emissions because the subject facility is not under common control with any of the upstream wells. Additionally, the subject facility and the upstream production wells, considered together, do not meet the common sense notion of a plant because the subject facility is expected to service multiple production wells and because the location of the facility was selected for reasons unrelated to the location of the production wells. Accordingly, the subject facility should not be aggregated with the upstream wells in determining major source or PSD status

D. Applicability of State Regulations

The following State regulations are potentially applicable to natural gas production facilities. Applicability to the facility has been determined as follows:

1. Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers 45CSR2 [Applicable]

This rule <u>does apply</u>, however, because the dehydrator reboiler (RBV-01/6E) has a maximum design heat input (MDHI) rating < 10 MMBtu/hr, the only requirement is to limit visible emissions to < 10% opacity during normal operations (§45-02-3.1). The reboiler combusts only natural gas which inherently conforms to the visible emission standards.

2. Prevent and Control the Discharge of Air Pollutants into the Open Air which Causes or Contributes to an Objectionable Odor or Odors 45CSR4 [Applicable]

This rule <u>does apply</u> and states that an objectionable odor is an odor that is deemed objectionable when in the opinion of a duly authorized representative of the Air Pollution Control Commission (Division of Air Quality), based upon their investigations and complaints, such odor is objectionable. No odors have been deemed objectionable.

3. Control of Air Pollution from Combustion of Refuse 45CSR6

[Not Applicable]

[Not Applicable]

This rule <u>does not apply</u> because there is no refuse combustion performed at the subject facility.

4. Prevent and Control Air Pollution from the Emission of Sulfur Oxides 45CSR10

This rule <u>does not apply</u> because each "fuel burning unit" at the subject facility has a Maximum Design Heat Input (MDHI) rating < 10 MMBtu/hr.

5. Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Administrative Updates, Temporary Permits, General Permits, and Procedures for Evaluation 45CSR13 [Applicable]

This rule <u>does apply</u>. Williams OVM is applying for a 45CSR13 New Source Review Modification Permit and has published the required Class I legal advertisement notifying the public of this application to modify the existing permit; and paid the appropriate application fee.

6. Permits for Construction and Major Modification of Major Stationary Sources of Air Pollutants

45CSR14

The rule does not apply because the subject facility is not a major source of air pollutants.

7. Standards of Performance for New Stationary Sources Pursuant to 40 CFR Part 60 45CSR16 [Not Applicable]

The rule does not apply because there are no sources at the facility subject to New Source Performance Standards (40 CFR Part 60).

8. Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contribute to Nonattainment 45CSR19 [Not Applicable]

This rule does not apply because the subject facility is a minor (or "deferred") source of all regulated pollutants.

9. Regulation of Volatile Organic Compounds (VOC) 45CSR21

This rule does not apply because the subject facility is not located in Putnam County, Kanawha County, Cabell County, Wayne County, or Wood County

10. Air Quality Management Fees Program

45CSR22

This rule does apply. It establishes a program to collect fees for certificates to operate and for permits to construct, modify or relocate sources of air pollution.

11. Prevent and Control Emissions of Toxic Air Pollutants 45CSR27

This rule does not apply because equipment used in the production and distribution of petroleum products is exempt, provided that the product contains no more than 5% benzene by weight (§45-22-2.4).

12. Air Pollution Emissions Banking and Trading

45CSR28

This rule does not apply. The subject facility does not choose to participate in the voluntarily statewide air pollutant emissions trading program.

[Applicable]

[Not Applicable]

[Not Applicable]

[Not Applicable]

[Not Applicable]

13. Emission Statements for VOC and NOX

45CSR29

This rule <u>does not apply</u> because subject facility is not located in Putnam, Kanawha, Cabell, Wayne, Wood, or Greenbrier Counties (§45-29-1).

14. Requirements for Operating Permits

45CSR30

This rule <u>does not apply</u> because the subject facility is a minor (or non-major or "deferred") source of all regulated pollutants.

Pursuant to the authority granted in West Virginia 45CSR§30-3.2 and 45CSR§30A-3.1, the DAQ is extending the deferral, which was set to expire December 15, 2000, of non-major sources subject to West Virginia 45CSR30 (Title V Program) from the obligation to submit an operating permit application.

15. Emission Standards for Hazardous Air Pollutants (HAP) 45CSR34

This rule <u>does apply</u> by reference to §40CFR63, Subparts HH and ZZZZ. Williams OVM is subject to the recordkeeping, monitoring, and testing required of these Subparts.

ng ponne

[Applicable]

[Not Applicable]

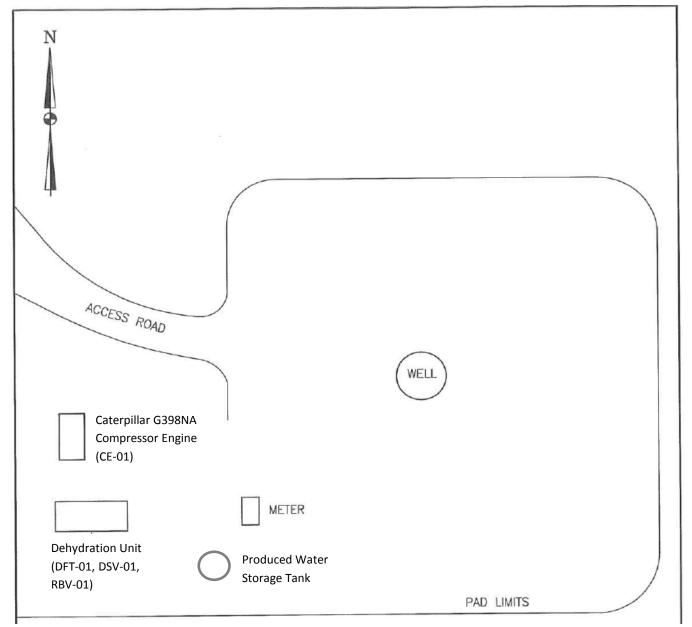
[Not Applicable]

ATTACHMENT E

Plot Plan

"21. Provide a **Plot Plan**, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as Attachment E."

• Plot Plan


Williams Ohio Valley Midstream LLC

BARDALL COMPRESSOR STATION

Application for 45CSR NSR Modification Permit

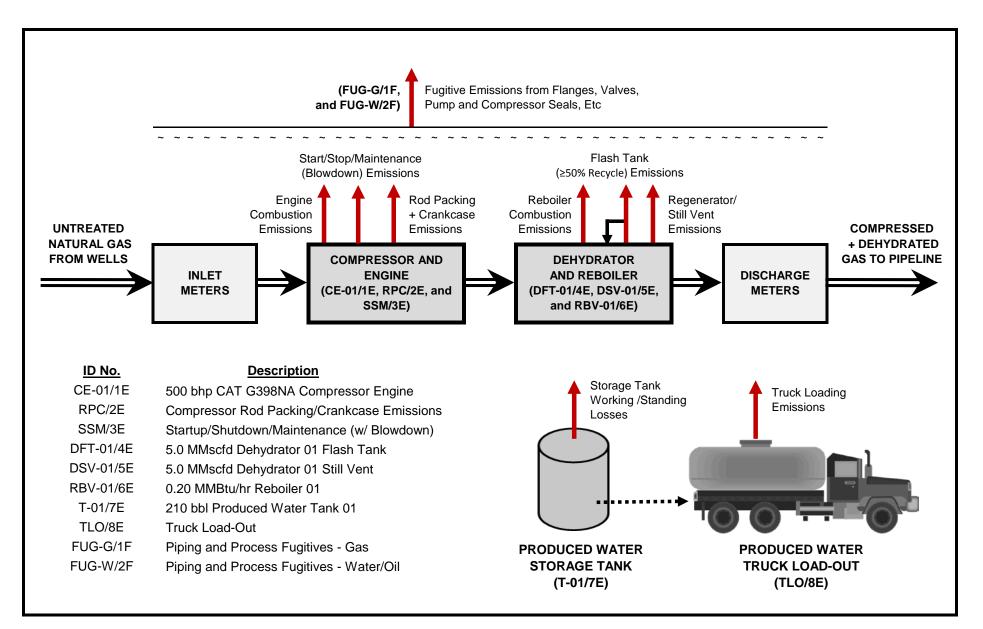
Attachment E - Plot Plan(s)

ATTACHMENT F

Detailed Process Flow Diagram

"22. Provide a **Detailed Process Flow Diagram(s)** showing each proposed or modified emissions unit, emission point and control device as Attachment F."

• Process Flow Diagram (PFD)


Williams Ohio Valley Midstream LLC

BARDALL COMPRESSOR STATION

Application for 45CSR NSR Modification Permit

Attachment F - Detailed Process Flow Diagram

Process Flow Diagram (PFD)

Process Flow Diagram (PFD)

ATTACHMENT G

Process Description

"23. Provide **a Process Description** as Attachment G. Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable)."

Process Description

- A. Project Overview
- B. Compressor Engine
- C. Compressor Rod Packing and Crankcase Emissions
- D. Startup/Shutdown/Maintenance (Blowdown)
- E. Triethylene Glycol (TEG) Dehydrator Flash Tank and Still Vent Dehydrator
- F. Triethylene Glycol (TEG) Dehydrator Reboiler
- G. Storage Tanks
- H. Truck Load-Out
- I. Piping and Equipment Fugitive Emissions

Williams Ohio Valley Midstream LLC BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment G PROCESS DESCRIPTION

A. Project Overview

Williams Ohio Valley Midstream LLC owns and operates the existing Bardall Compressor Station located on the north side of Toms Run Road, approximately 3 miles east of Moundsville in Marshall County (See Appendix B – Site Location Maps). The facility receives natural gas from local production wells then compresses and dehydrates the gas for delivery to a gathering pipeline.

This application for 45CSR13 NSR Modification Permit has been prepared and submitted to provide for the following proposed changes at the subject facility:

• Increase the 5.0 MMscfd Dehydrator 01 Emissions based on a recent representative site-specific gas analysis.

B. <u>Compressor Engine</u>

One (1) natural gas-fueled compressor engine is utilized at the facility. The rich-burn engine drives a natural gas compressor to increase the pressure of the natural gas. Emissions result from the combustion of natural gas fuel.

C. Compressor Rod Packing and Crankcase Emissions

The compressor and engine operations result in emissions from the wear of mechanical joints, seals, and rotating surfaces over time.

D. Start/Stop/Maintenance (Blowdown)

During routine operation of the facility, the compressor engine will undergo periods of startup and shutdown. Often when an engine is shutdown, the natural gas contained within the compressor and associated piping is vented to atmosphere. Additionally, there will be other infrequent and (often) de-minimis emissions from various maintenance activities at the facility that are not necessarily associated with compressor blowdowns (e.g., pigging events).

E. Dehydrator

One (1) dehydrator is utilized at the facility. The dehydrator is comprised of a contactor/absorber tower (no vented emissions), a flash tank, and a regenerator/still.

The dehydrator is used to remove water vapor from the inlet wet gas stream to meet pipeline specifications. In the dehydration process, the wet inlet gas stream flows through an absorber tower where the gas is contacted with lean glycol. The lean glycol absorbs the water in the gas stream and becomes rich glycol, laden with water and trace amounts of hydrocarbons.

The rich glycol is then sent to the flash tank where the pressure is reduced, thus liberating the lighter hydrocarbon, primarily methane, but also significant quantities of VOCs. A minimum of 50% of the flash tank offgas is recycled as fuel in the reboiler.

Following the flash tank, the rich glycol is then routed to the regenerator/still where it is boiled to drive off the water vapor and any remaining hydrocarbons. Once boiled, the glycol is returned to a lean state and used again in the process.

The off-gases from the regenerator/still are routed to the atmosphere.

F. <u>Reboiler</u>

A reboiler is utilized to supply heat for the regenerator/still. The reboiler is fueled by primarily by the flash tank off-gas, with supplemental natural gas as requisite.

G. Storage Tanks

There are tanks at the facility used to store various materials, including produced water, lube oil, fresh and spent TEG, etc. All of these tanks, except for the produced water storage tank, generate de-minimis (insignificant) emissions.

The produced water tank receives liquids from the dehydrator and inlet separator. Liquids removed through the dehydration process are cooled, condensed and sent to the 210 barrel atmospheric storage tank. The inlet separator removes produced fluids (primarily water) and these liquids are also sent to the 210 bbl atmospheric storage tank.

A ProMax simulation of a representative compressor station was completed to determine the presence of flash emissions from the storage tanks. The ProMax process simulation showed minimal tank flash emissions and these losses are included in the emission estimates.

H. Truck Load-Out

Loading of produced water into tanker trucks will produce small quantities of VOC emissions from the displacement of vapors inside the tanker trucks.

I. Piping and Equipment Fugitive Emissions

Piping and process equipment generate from leaks from different component types (connectors, valves, pumps, etc.) in gas-vapor service and water/oil service.

ATTACHMENT H

Material Safety Data Sheets (MSDS)

(And Representative Gas Analysis)

"24. Provide **Material Safety Data Sheets (MSDS)** for all materials processed, used or produced as Attachment H. For chemical processes, provide a MSDS for each compound emitted to the air."

• NATURAL GAS

- Inlet Gas Certificate of Analysis
- Extended Gas Analysis Summary

• MATERIAL SAFETY DATA SHEETS (MSDS):

- Natural Gas
- Triethylene Glycol (TEG)
- Produced Water/Condensate

Williams Ohio Valley Midstream LLC BARDALL COMPRESSOR STATION Application for 45CSR13 NSR Modification Permit Attachment H - Gas Analysis

Inlet Natural Gas - Certificate of Analysis

- WILLIAMS 7 RONMENTAL DALL DEHY INLET OVM-ENVIRONMENTAL 7 ONENT n e n n e n -Dioxide e tane iI-Butane iI-Pentane methylbutane/CycloC5 iylpentane iI-Hexane methylbutane/CycloC5 iylpentane iI-Hexane methylpentane iI-Hexane methylpentane iI-Hexane methylpentane iI-Hexane methylpentane iI-Butane iI	Data Effe Cyl Terr Cyli San MOL% 0.0000 0.4714 72.9892 0.1096 16.1322 0.7136 1.9107 0.3884 0.5005 0.0074 0.3884 0.5005 0.0074 0.0842 0.0842 0.0842 0.0842 0.0478 0.1279 0.0016 0.0152 0.0023 0.0008 0.0131 0.0237 0.0038 0.0131 0.0237 0.0038 0.0174 0.0002 0.0276 0.0145 0.0006	e Sampled : 06/17 e Analyzed : 06/29 ctive Date : 07/01 Pressure : 1,050 np : 70 nder Type : Spot .pp : 200 0,005 0,020 0,035 0,020 0,035 0,020 0,035 0,020 0,035 0,020 0,035 0,020 0,035 0,020 0,035 0,020 0,035 0,020 0,035 0,020 0,035 0,020 0,035 0,020 0,035 0,020 0,035 0,020 0,001 0,0000 0,000 0,000000	/2015 /2015
7 RONMENTAL DALL DEHY INLET OVM-ENVIRONMENTAL CONENT n n n n n n n n n n n n n n n n n n n	Data Effe Cyl Terr Cyli San MOL% 0.0000 0.4714 72.9892 0.1096 16.1322 0.7136 1.9107 0.3884 0.5005 0.0074 0.3884 0.5005 0.0074 0.0842 0.0842 0.0842 0.0842 0.0478 0.1279 0.0016 0.0152 0.0023 0.0008 0.0131 0.0237 0.0038 0.0131 0.0237 0.0038 0.0174 0.0002 0.0276 0.0145 0.0006	a Analyzed : 06/29 ctive Date : 07/01 Pressure : 1,050 up : 70 nder Type : Spot iple By : LH GPM@:14.73(PSIA) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.002 0.053 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.053 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.003 0.001 0.004 0.001 0.005 0.001 0.006 0.001 <th>/2015 /2015</th>	/2015 /2015
RONMENTAL DALL DEHY INLET OVM-ENVIRONMENTAL	Effe Cyl Tem Cyli San MOL% 0.0000 0.4714 72.9892 0.1096 16.1322 6.3512 0.7136 1.9107 0.3884 0.5005 0.0074 0.0184 0.5005 0.0074 0.0184 0.0074 0.0184 0.0478 0.0023 0.0025 0.0023 0.0026 0.0023 0.0026 0.0025 0.0025 0.0026 0.0025 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.00555	ctive Date : 07/01 Pressure : 1,050 np : 70 nder Type : Spot spie By : LH GPM@14.73(PSIA) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.035 0.020 0.053 0.001 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.003 0.001 0.001 0.001 0.002 0.001 0.003 0.001	/2015
RONMENTAL DALL DEHY INLET OVM-ENVIRONMENTAL	Cyli Tem Cyli San MOL% 0.0000 0.4714 72.9892 0.1096 16.1322 6.3512 0.7136 1.9107 0.3884 0.5005 0.0074 0.0184 0.0074 0.0184 0.0074 0.0162 0.0172 0.0023 0.0025 0.0022 0.0022 0.0022 0.0026	Pressure 1,050 nder Type 2,500 sple By 1,11 GPM@14.73(PSIA) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 4.331 1.757 0,234 0,605 0,143 0,162 0,003 0,006 0,003 0,001 0,005 0,001 0,001 0,001 0,001 0,001 0,002 0,001 0,003 0,001 0,004 0,011 0,005 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 0,001 0,001	
DALL DEHY INLET OVM-ENVIRONMENTAL	MOL% 0.0000 0.4714 72.9892 0.1096 16.1322 6.3512 0.7136 1.9107 0.3884 0.5005 0.074 0.0842 0.0478 0.1279 0.0016 0.0152 0.0023 0.0038 0.0131 0.0237 0.0388 0.114 0.022 0.2076 0.0145	npi : 70 isper : 5per npie By : Li GPM@14.73(PSIA) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.053 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.053 0.001 0.001 0.002 0.053 0.001 0.001 0.002 0.053 0.003 0.001 0.004 0.011 0.005 0.001 0.006 0.001 0.007 0.008 0.008 0.001 0.009 0.001 0.000 0.001 0.001 0.002 0.002 0.003 0.003 0.004	
OVM-ENVIRONMENTAL	Cyli MOL% 0.0000 0.4714 72.9892 0.1096 16.1322 6.3512 0.7136 1.9107 0.3884 0.5005 0.0074 0.0842 0.0478 0.122 0.016 0.0152 0.0023 0.0038 0.0131 0.0237 0.0388 0.114 0.002 0.0174	nder Type : Spot nple By : LH <u>GPM@14.73(PSIA)</u> 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.331 1.757 0.234 0.605 0.143 0.605 0.143 0.605 0.143 0.605 0.143 0.003 0.006 0.035 0.020 0.053 0.020 0.053 0.001 0.005 0.001 0.005 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.005 0.001 0.000 0.000 0.005 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	
PONENT n n n n-Dioxide a	MOL% 0.0000 0.4714 72.9892 0.1096 16.1322 0.512 0.7136 1.9107 0.3884 0.5005 0.0074 0.0842 0.0478 0.1279 0.016 0.0152 0.0023 0.0038 0.0131 0.0237 0.038 0.0174 0.002 0.0237 0.0038 0.0174 0.0020 0.0276 0.0145	Imple By :LH GPM@14.73(PSIA) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.234 0.605 0.143 0.182 0.003 0.005 0.0053 0.001 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.011 0.003 0.001 0.004 0.011 0.005 0.000 0.000 0.001 0.000 0.001 0.000 0.001	
n en n-Dioxide e h-Dioxide e tane tane h-Butane h-Butane h-Butane h-Butane h-Butane h-Pentane methylbutane/CycloC5 hylpentane hylpentane hylpentane hylpentane hylpentane hylpentane bylpentane hylpentane box hylpentane hylpentane hylpentane box hylpentane hylpentane hylpentane box hylpentane hylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane	MOL% 0.0000 0.4714 72.9892 0.1096 16.1322 6.3512 0.7136 1.9107 0.3884 0.5005 0.0074 0.0184 0.0842 0.0478 0.0279 0.0016 0.0152 0.0023 0.0008 0.0131 0.0237 0.0038 0.0174 0.0038 0.0174 0.0002 0.0276 0.0145 0.0006	GPM@14.73(PSIA) 0.000 0.000 0.000 0.000 4.331 1.757 0.234 0.605 0.143 0.182 0.003 0.006 0.035 0.020 0.053 0.020 0.053 0.020 0.053 0.001 0.005 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	
n en n-Dioxide e h-Dioxide e tane tane h-Butane h-Butane h-Butane h-Butane h-Butane h-Pentane methylbutane/CycloC5 hylpentane hylpentane hylpentane hylpentane hylpentane hylpentane bylpentane hylpentane box hylpentane hylpentane hylpentane box hylpentane hylpentane hylpentane box hylpentane hylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane methylpentane hylpexane	0.0000 0.4714 72.9892 0.1096 16.1322 6.3512 0.7136 1.9107 0.3884 0.5005 0.0074 0.0184 0.0842 0.0478 0.1279 0.0016 0.0152 0.0023 0.0008 0.0131 0.0237 0.0038 0.0174 0.0038 0.0174 0.0002 0.0276 0.0145 0.0006	0.000 0.000 0.000 4.331 1.757 0.234 0.605 0.143 0.182 0.003 0.006 0.035 0.020 0.053 0.020 0.053 0.020 0.053 0.001 0.005 0.001 0.000 0.004 0.001 0.000 0.004 0.011 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.000 0.005 0.001 0.005 0.000 0.001 0.005 0.000 0.001 0.005 0.000 0.001 0.005 0.000 0.001 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.0000000 0.00000000	
en ne n-Dioxide a h-Dioxide a he tane I-Butane I-Butane II-Butane II-Butane methylbutane/CycloC5 Iylpentane II-Hexane methylbentane Cyclopentane II-Hexane methylpentane Cyclopentane ENE methylpentane DHEXANE Iylhexane methylpentane DHEXANE Iylhexane methylpentane DHEXANE Iylhexane methylpentane Iylhexane methylpentane Iylhexane MCYC5 / 2,2,4-TMC5 imethylcyclopentane tane YLCYCLOHEXANE	0.4714 72.9892 0.1096 16.1322 6.3512 0.7136 1.9107 0.3884 0.5005 0.0074 0.0184 0.0842 0.0478 0.0184 0.0184 0.0479 0.0016 0.0152 0.0023 0.0008 0.0131 0.0237 0.0038 0.0174 0.0007 0.0002 0.0276 0.0145 0.0006	0.000 0.000 4.331 1.757 0.234 0.605 0.143 0.003 0.006 0.035 0.020 0.053 0.020 0.053 0.020 0.053 0.001 0.005 0.001 0.005 0.001 0.000 0.004 0.001 0.000 0.000 0.000 0.000 0.001 0.000	
ne n-Dioxide h-Dioxide he tane l-Butane n-Butane n-Butane n-Pentane methylbutane/CycloC5 nylpentane methylbutane/CycloC5 nylpentane methylpentane nethylpentane cyclopentane ENE methylpentane DHEXANE nylhexane methylpentane DHEXANE nylhexane methylpentane DHEXANE nylhexane methylpentane nylhexane methylpentane inflexion methylpentane nylhexane methylpentane nylhexane methylpentane nylhexane methylpentane nylhexane methylpentane nylhexane methylpentane nylhexane methylpentane nylhexane methylpentane nylhexane methylpentane nylhexane methylpentane nylhexane methylpentane nylhexane methylpentane nylhexane methylpentane nylhexane methylpentane nylhexane methylpentane nylhexane methylpentane nylhexane methylpentane	72.9892 0.1096 16.1322 6.3512 0.7136 1.9107 0.3884 0.5005 0.0074 0.0184 0.0842 0.0478 0.1279 0.0016 0.0152 0.0023 0.0008 0.0131 0.0237 0.0038 0.0174 0.0007 0.0002 0.0276 0.0145 0.0006	0.000 0.000 4.331 1.757 0.234 0.605 0.143 0.182 0.003 0.006 0.035 0.020 0.053 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.000 0.004 0.011 0.000 0.008 0.000 0.000 0.000 0.013 0.007	
n-Dioxide he he tane hi-Butane hi-Butane hi-Pentane methylbutane/CycloC5 hylpentane hylpentane hylpentane hi-Hexane methylpentane li-Hexane methylpentane bi-ENE methylpentane OHEXANE hylhexane methylpentane hylhexane hylhexane methylpentane hylhexane h	0.1096 16.1322 6.3512 0.7136 1.9107 0.3884 0.5005 0.0074 0.0184 0.0842 0.0478 0.1279 0.0016 0.0152 0.0023 0.0008 0.0131 0.0237 0.0038 0.0174 0.0007 0.0002 0.0276 0.0145 0.0006	0.000 4.331 1.757 0.234 0.605 0.143 0.182 0.003 0.006 0.035 0.020 0.053 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.000 0.004 0.004 0.001 0.004 0.001 0.000 0.000 0.000 0.000	
e ne tane tane II-Butane ntane II-Pentane methylbutane methylbutane/CycloC5 nylpentane nylpentane Nylpentane Nylpentane Nylpentane ENE methylpentane OHEXANE nylhexane methylpentane OHEXANE nylhexane methylpentane Nylhexane methylpentane Nylhexane methylpentane Nylhexane MCYC5 / 2,2,4-TMC5 immethylcyclopentane tane YLCYCLOHEXANE	16.1322 6.3512 0.7136 1.9107 0.3884 0.5005 0.0074 0.0184 0.0842 0.0478 0.1279 0.0016 0.0152 0.0023 0.0023 0.0008 0.0131 0.0237 0.0038 0.0174 0.0007 0.0002 0.0276 0.0145 0.0006	4.331 1.757 0.234 0.605 0.143 0.182 0.003 0.006 0.035 0.020 0.053 0.001 0.005 0.001 0.000 0.004 0.011 0.001 0.004 0.011 0.001 0.008 0.000 0.000 0.000 0.013 0.007	
ne tane tane II-Butane II-Pentane methylbutane/CycloC5 nylpentane II-Hexane methylpentane II-Hexane methylpentane Cyclopentane ENE methylpentane OHEXANE nylhexane methylpentane NJHexane MCYC5 / 2,2,4-TMC5 imethylcyclopentane tane YLCYCLOHEXANE	6.3512 0.7136 1.9107 0.3884 0.5005 0.0074 0.0184 0.0842 0.0478 0.1279 0.0116 0.0152 0.0023 0.0008 0.0131 0.0237 0.0038 0.0174 0.0002 0.0276 0.0145 0.0006	1.757 0.234 0.605 0.143 0.003 0.006 0.035 0.020 0.053 0.001 0.005 0.001 0.005 0.001 0.000 0.004 0.001 0.004 0.011 0.001 0.001 0.000 0.000 0.000 0.000 0.013 0.007	
tane II-Butane II-Pentane methylbutane/CycloC5 hylpentane hylpentane II-Hexane methylppentane lcyclopentane ENE methylpentane OHEXANE hylhexane methylpentane OHEXANE hylhexane methylpentane hylhexane methylpentane hylhexane methylpentane hylhexane methylpentane hylhexane methylpentane hylhexane MCYC5 / 2,2,4-TMC5 imethylcyclopentane tane YLCYCLOHEXANE	0.7136 1.9107 0.3884 0.5005 0.0074 0.0184 0.0842 0.0478 0.1279 0.0016 0.0152 0.0023 0.0008 0.0131 0.0237 0.0038 0.0174 0.0007 0.0002 0.0276 0.0145 0.0006	0.234 0.605 0.143 0.182 0.003 0.006 0.035 0.020 0.053 0.001 0.005 0.001 0.001 0.000 0.004 0.001 0.004 0.011 0.000 0.001 0.008 0.000 0.000 0.013 0.007	
II-Butane II-Butane II-Pentane methylbutane/CycloC5 hylpentane hylpentane hylpentane II-Hexane methylpentane ENE ENE methylpentane DHEXANE hylhexane methylpentane hylpentane hylhexane methylpentane hylhexa	1.9107 0.3884 0.5005 0.0074 0.0184 0.0842 0.0478 0.1279 0.0016 0.0152 0.0023 0.0008 0.0131 0.0237 0.0038 0.0131 0.0237 0.0038 0.0174 0.0002 0.0276 0.0145 0.0006	0.605 0.143 0.003 0.006 0.035 0.020 0.053 0.001 0.005 0.001 0.005 0.001 0.000 0.004 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.013 0.007	
ntane II-Pentane methylbutane/CycloC5 iylpentane iylpentane II-Hexane methylpentane Cyclopentane ENE ENE methylpentane DHEXANE iylhexane methylpentane iylhexane MCYC5 / 2,2,4-TMC5 imethylcyclopentane tane YLCYCLOHEXANE	0.3884 0.5005 0.0074 0.0184 0.0842 0.0478 0.0016 0.0152 0.0023 0.0008 0.0131 0.0237 0.0038 0.0174 0.0007 0.0002 0.0276 0.0145 0.0006	0.143 0.182 0.003 0.006 0.035 0.020 0.053 0.001 0.005 0.001 0.000 0.004 0.001 0.004 0.011 0.000 0.004 0.001 0.008 0.000 0.000 0.013 0.007	
II-Pentane methylbutane/CycloC5 nylpentane II-Hexane methylpentane cyclopentane ENE methylpentane DHEXANE nylhexane methylpentane DHEXANE nylhexane methylpentane nylhexane methylpentane nylhexane methylpentane nylhexane MCYC5 / 2,2,4-TMC5 imethylcyclopentane tane YLCYCLOHEXANE	0.5005 0.0074 0.0184 0.0842 0.0478 0.1279 0.0016 0.0152 0.0023 0.0008 0.0131 0.0237 0.0038 0.0174 0.0007 0.0002 0.0276 0.0145 0.0006	0.182 0.003 0.006 0.035 0.020 0.053 0.001 0.005 0.001 0.000 0.004 0.001 0.004 0.011 0.004 0.001 0.000 0.000 0.000 0.000 0.013 0.007	
methylbutane methylbutane/CycloC5 nylpentane nylpentane II-Hexane methylpentane Icyclopentane ENE methylpentane OHEXANE nylhexane methylpentane nylhexane MCYC5 / 2,2,4-TMC5 imethylcyclopentane tane YLCYCLOHEXANE	0.0074 0.0184 0.0842 0.0478 0.1279 0.0016 0.0152 0.0023 0.0008 0.0131 0.0237 0.0038 0.0174 0.0007 0.0002 0.0276 0.0145 0.0006	0.003 0.006 0.035 0.020 0.053 0.001 0.005 0.001 0.000 0.004 0.004 0.011 0.004 0.004 0.011 0.004 0.000 0.000 0.000 0.000	
methylbutane/CycloC5 nylpentane nylpentane II-Hexane methylpentane Icyclopentane ENE methylpentane OHEXANE nylhexane methylpentane nylhexane MCYC5 / 2,2,4-TMC5 immethylcyclopentane tane YLCYCLOHEXANE	0.0184 0.0842 0.0478 0.1279 0.0016 0.0152 0.0023 0.0008 0.0131 0.0237 0.0038 0.0174 0.0007 0.0002 0.0276 0.0145 0.0006	0.006 0.035 0.020 0.053 0.001 0.005 0.001 0.000 0.004 0.011 0.001 0.004 0.011 0.001 0.008 0.000 0.000 0.000 0.013 0.007	
nylpentane nylpentane II-Hexane methylpentane Icyclopentane ENE methylpentane OHEXANE nylhexane methylpentane nylhexane MCYC5 / 2,2,4-TMC5 imethylcyclopentane tane YLCYCLOHEXANE	0.0842 0.0478 0.1279 0.0016 0.0152 0.0023 0.0008 0.0131 0.0237 0.0038 0.0174 0.0007 0.0002 0.0276 0.0145 0.0006	0.035 0.020 0.053 0.001 0.005 0.001 0.000 0.004 0.001 0.004 0.011 0.008 0.000 0.000 0.000 0.013 0.007	
ylpentane II-Hexane methylpentane lcyclopentane ENE methylpentane OHEXANE hylhexane methylpentane hylhexane MCYC5 / 2.2.4-TMC5 imethylcyclopentane tane YLCYCLOHEXANE	0.0478 0.1279 0.0016 0.0152 0.0023 0.0008 0.0131 0.0237 0.0038 0.0174 0.0002 0.0276 0.0145 0.0006	0.020 0.053 0.001 0.005 0.001 0.000 0.004 0.001 0.001 0.008 0.000 0.000 0.000 0.013 0.007	
I-Hexane methylpentane lcyclopentane ENE methylpentane OHEXANE hylhexane methylpentane hylhexane MCYC5 / 2,2,4-TMC5 imethylcyclopentane tane YLCYCLOHEXANE	0.1279 0.0016 0.0152 0.0023 0.0008 0.0131 0.0237 0.0038 0.0174 0.0007 0.0002 0.0276 0.0145 0.0006	0.053 0.001 0.005 0.001 0.004 0.004 0.001 0.001 0.008 0.000 0.000 0.000 0.013 0.007	
methylpentane lcyclopentane ENE methylpentane OHEXANE hylhexane methylpentane hylhexane MCYC5 / 2.2.4-TMC5 imethylcyclopentane tane YLCYCLOHEXANE	0.0016 0.0152 0.0023 0.0008 0.0131 0.0237 0.0038 0.0174 0.0007 0.0002 0.0276 0.0145 0.0006	0.001 0.005 0.001 0.004 0.004 0.001 0.001 0.008 0.000 0.000 0.000 0.013 0.007	
Icyclopentane ENE methylpentane OHEXANE hylhexane methylpentane hylhexane MCYC5 / 2,2,4-TMC5 imethylcyclopentane tane YLCYCLOHEXANE	0.0152 0.0023 0.0008 0.0131 0.0237 0.0038 0.0174 0.0007 0.0002 0.0276 0.0145 0.0006	0.005 0.001 0.000 0.004 0.011 0.008 0.000 0.000 0.000 0.013 0.007	
ENE methylpentane DHEXANE hylhexane methylpentane hylhexane MCYC5 / 2,2,4-TMC5 imethylcyclopentane tane YLCYCLOHEXANE	0.0023 0.0008 0.0131 0.0237 0.0038 0.0174 0.0007 0.0002 0.0276 0.0145 0.0006	0.001 0.004 0.011 0.004 0.001 0.008 0.000 0.000 0.013 0.007	
methylpentane OHEXANE nylhexane methylpentane nylhexane MCYC5 / 2,2,4-TMC5 imethylcyclopentane tane YLCYCLOHEXANE	0.0008 0.0131 0.0237 0.0038 0.0174 0.0007 0.0002 0.0276 0.0145 0.0006	0.000 0.004 0.011 0.008 0.000 0.000 0.000 0.013 0.007	
OHEXANE hylhexane methylpentane hylhexane MCYC5 / 2,2,4-TMC5 imethylcyclopentane tane YLCYCLOHEXANE	0.0131 0.0237 0.0038 0.0174 0.0007 0.0002 0.0276 0.0145 0.0006	0.004 0.011 0.008 0.000 0.000 0.013 0.007	
nylhexane methylpentane nylhexane MCYC5 / 2,2,4-TMC5 imethylcyclopentane tane YLCYCLOHEXANE	0.0237 0.0038 0.0174 0.0007 0.0002 0.0276 0.0145 0.0006	0.011 0.001 0.008 0.000 0.000 0.013 0.007	
methylpentane nylhexane MCYC5 / 2,2,4-TMC5 imethylcyclopentane tane YLCYCLOHEXANE	0.0038 0.0174 0.0007 0.0002 0.0276 0.0145 0.0006	0.001 0.008 0.000 0.000 0.013 0.007	
nylhexane MCYC5 / 2,2,4-TMC5 imethylcyclopentane tane YLCYCLOHEXANE	0.0174 0.0007 0.0002 0.0276 0.0145 0.0006	0.008 0.000 0.000 0.013 0.007	
MCYC5 / 2,2,4-TMC5 imethylcyclopentane tane YLCYCLOHEXANE	0.0007 0.0002 0.0276 0.0145 0.0006	0.000 0.000 0.013 0.007	
imethylcyclopentane tane YLCYCLOHEXANE	0.0002 0.0276 0.0145 0.0006	0.000 0.013 0.007	
tane YLCYCLOHEXANE	0.0276 0.0145 0.0006	0.013 0.007	
YLCYCLOHEXANE	0.0145 0.0006	0.007	
	0.0006		
nothulhowan c		0.000	
methylhexane		0.000	
methylhexane	0.0008	0.000	
ENE	0.0023	0.001	
nylheptane	0.0034	0.002	
lylheptane	0.0021	0.001	
lylheptane	0.0019	0.001	
imethylcyclohexane	0.0017	0.001	
TANE / 1,T2-DMCYC6	0.0047	0.002	
MCYC6/1,C4-	0.0001	0.000	
C6/1,C2,C3-TMCYC5			
FMC6	0.0000	0.000	
methylheptane / 1,C2- C6	0.0005	0.000	
yclohexane	0.0005	0.000	
LBENZENE	0.0002	0.000	
ENE	0.0004	0.000	
ENE	0.0022	0.001	
ENE	0.0001	0.000	
NE	0.0015	0.001	
CANE	0.0016	0.001	
DECANE	0.0020	0.001	
L	100.0000	7.432	
- (Z) @ 14.73 @ 60 Deg. F = 0.995		C5+ GPM : 0.50	500
			@15.02
			-
7.363	7.386	7.403	7.55
1,320.95	1,325.10	1,328.16	1,354.7
1,297.83	1,301.98	1,305.04	1,331.6
	7 416	7 433	7.58
7 202			1,360.4
7.393 1.326.36			1,337.8
1,326.36			1,007.0
1,326.36 1,303.70	1,307.88	.,	
1,326.36 1,303.70 ROMENTAL BILL THOMPSON &	1,307.88		0005-
1,326.36 1,303.70	1,307.88 LEE HA	Sample Count : 2100 COC :	00258
	Real Gravity: 0.765 @14.65 7.363 1,320.95 1,297.83 7.393	Real Gravity: 0.7659 @14.65 @14.696 7.363 7.386 1,320.95 1,325.10 1,297.83 1,301.98 7.393 7.416 1,326.36 1,330.54	Real Gravity: 0.7659 C5+ Mole % : 1.32; @14.65 @14.696 @14.73 7.363 7.386 7.403 1,320.95 1,325.10 1,328.16 1,297.83 1,301.98 1,305.04 7.393 7.416 7.433 1,326.36 1,330.54 1,333.63

Williams Ohio Valley Midstream LLC BARDALL COMPRESSOR STATION Application for 45CSR13 NSR Modification Permit Attachment H - Gas Analysis

Extended Gas Analysis Summary

Representative Gas Analysis - Sampled 06/17/2015									
Compound	CAS	Formula	Molecular Weight (MW)	Mole % (M% = V%)	Mole Fraction (M%/Sum-M%)	Weighted Sum (MW*MF)	Weight % (WS/Sum-WS)	lb/MMscf (WS/UGC#)	
Water	109-86-4	H2O	18.02						
Carbon Monoxide	630-08-0	СО	28.01						
Nitrogen	7727-37-9	N2	28.01	0.4714	0.00471	0.1321	0.5975	347.99	
Oxygen	7782-44-7	O2	32.00						
Hydrogen Sulfide	2148-87-8	H2S	34.09						
Carbon Dioxide	124-38-9	CO2	44.01	0.1096	0.00110	0.0482	0.2182	127.11	
Methane*	75-82-8	CH4	16.04	72.9892	0.72989	11.7093	52.9766	30,855.91	
Ethane*	74-84-0	C2H6	30.07	16.1322	0.16132	4.8508	21.9466	12,782.68	
Propane**	74-98-6	C3H8	44.10	6.3512	0.06351	2.8006	12.6709	7,380.06	
i-Butane**	75-28-5	C4H10	58.12	0.7136	0.00714	0.4148	1.8765	1,092.96	
n-Butane**	106-97-8	C4H10	58.12	1.9107	0.019107	1.1105	5.0245	2,926.47	
Cyclopentane**	287-92-3	C5H10	70.10						
i-Pentane**	78-78-4	C5H12	72.15	0.3884	0.003884	0.2802	1.2678	738.44	
n-Pentane**	109-66-0	C5H12	72.15	0.5005	0.005005	0.3611	1.6338	951.57	
Cyclohexane**	110-82-7	C6H12	84.16	0.0283	0.000283	0.0238	0.1078	62.76	
Other Hexanes**	110-54-3	C6H14	86.18	0.1578	0.001578	0.1360	0.6152	358.34	
Methylcyclohexanes**	varies	C7H14	98.19	0.0147	0.000147	0.0144	0.0653	38.03	
Heptanes**	varies	C7H16	100.20	0.0749	0.000749	0.0751	0.3396	197.77	
C8+ Heavies**	varies	C8+	130.00 est	0.0214	0.000214	0.0278	0.1259	73.31	
Benzene***	71-43-2	C6H6	78.11	0.0023	0.000023	0.0018	0.0081	4.73	
Ethylbenzene***	100-41-4	C8H10	106.17	0.0002	0.000002	0.0002	0.0010	0.56	
n-Hexane***	110-54-3	C6H14	86.18	0.1279	0.001279	0.1102	0.4987	290.44	
Toluene***	108-88-3	C7H8	92.14	0.0023	0.000023	0.0021	0.0096	5.58	
2,2,4-Trimethylpentane***	540-84-1	C8H18	114.23	0.0007	0.000007	0.0008	0.0036	2.11	
Xylenes***	1330-20-7	C8H10	106.17	0.0027	0.000027	0.0029	0.0130	7.55	

Total:	100.00	1.0000	22.10	100.00	58,244
THC:	99.42	0.9942	21.92	99.18	57,769
Total CH4:	72.99	0.7299	11.71	52.98	30,856
Total VOC:	10.30	0.1030	5.36	24.26	14,131
Total HAP:	0.14	0.0014	0.12	0.53	311

* = Hydrocarbon (HC)
 ** = also Volatile Organic Compound (EPA-VOC)
 #UGC (Universal Gas Constant) = 379.482 scf/lb-mol @ 60 °F and 14.696 psia.
 Pound "X"/scf = M% of "X" * MW of "X" / UGC

0		F	Repr	esentative Gas Ana	alysis	As	sumed "Worst-Ca	se"
Compound	CAS	Formula	Mole %	Wgt %	lb/MMscf	Mole %	Wgt %	lb/MMscf
Nitrogen	7727-37-9	N2	0.4714	0.5975	347.9880	0.000	0.000	0.00
Carbon Dioxide	124-38-9	CO2	0.1096	0.2182	127.11	0.172	0.343	200.00
Methane*	75-82-8	CH4	72.9892	52.9766	30,855.91	100.000	100.000	42,275.00
Ethane*	74-98-6	C2H6	16.1322	21.9466	12,782.68	0.000	0.000	0.00
VOC**	Various	C3 thru C10+	10.2976	24.2611	14,130.71	12.389	29.187	17,000.00
Benzene***	71-43-2	C6H6	0.0023	0.0081	4.73	0.0049	0.017	10.00
Ethylbenzene***	100-41-4	C8H10	0.0002	0.0010	0.56	0.0036	0.017	10.00
n-Hexane***	110-54-3	C6H14	0.1279	0.4987	290.44	0.1541	0.601	350.00
Toluene***	108-88-3	C7H8	0.0023	0.0096	5.58	0.0041	0.017	10.00
2,2,4-Trimethylpentane***	540-84-1	C8H18	0.0007	0.0036	2.11	0.0033	0.017	10.00
Xylenes***	1330-20-7	C8H10	0.0027	0.0130	7.55	0.0036	0.017	10.00
Total HAP***	Various	C6 thru C8	0.1361	0.5339	310.98	0.1751	0.687	400.00

To be conservative, the following "worst-case" values were assumed:

Williams.

Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations Revision Date: 10/02/2013

Version: 1.0

SECTION 1: IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY

Product Identifier

Product Form: Mixture

Product Name: Wellhead Natural Gas

Synonyms: Wellhead Gas, Raw Gas, Methane, Residue Gas, Natural Gas Sweet, Marsh Gas, Fuel Gas, Petroleum Gas.

Intended Use of the Product

Use of the Substance/Mixture: Fuel.

Name, Address, and Telephone of the Responsible Party

Company

Williams, Inc. One Williams Center Tulsa, OK 74172, US T 800-688-7507

enterpriseehs@williams.com

Emergency Telephone Number Emergency number : 800-424-9300

SECTION 2: HAZARDS IDENTIFICATION

Classification of the Substance or Mixture

Classification (GHS-US)

Simple Asphy Flam. Gas 1 H220 Compressed gas H280

Label Elements

GHS-US Labeling

Hazard	Pictograms	(GHS-US)
--------	------------	----------

Signal Word (GHS-US)	: Danger
Hazard Statements (GHS-US)	: H220 - Extremely flammable gas
	H280 - Contains gas under pressure; may explode if heated
	May displace oxygen and cause rapid suffocation
Precautionary Statements (GHS-US)	: P210 - Keep away from heat, sparks, open flames, hot surfaces No smoking.
	P377 - Leaking gas fire: Do not extinguish, unless leak can be stopped safely.
	P381 - Eliminate all ignition sources if safe to do so.
	P403 - Store in a well-ventilated place.
	P410+P403 - Protect from sunlight. Store in a well-ventilated place.

Other Hazards

Other Hazards Not Contributing to the Classification: Contains hydrogen sulfide. Hydrogen sulfide is a highly flammable, explosive gas under certain conditions, is a toxic gas, and may be fatal. Gas can accumulate in the headspace of closed containers, use caution when opening sealed containers. Heating the product or containers can cause thermal decomposition of the product and release hydrogen sulfide. Exposure may aggravate those with pre existing eye, skin, or respiratory conditions.

Unknown Acute Toxicity (GHS-US) Not available

SECTION 3: COMPOSITION/INFORMATION ON INGREDIENTS

<u>Mixture</u>

Name	Product identifier	% (w/w)	Classification (GHS-US)
Methane	(CAS No) 74-82-8	> 75	Simple Asphy

10/02/2013

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

			Flam. Gas 1, H220
			Liquefied gas, H280
Ethane	(CAS No) 74-84-0	< 20	Simple Asphy
			Flam. Gas 1, H220
			Liquefied gas, H280
Propane	(CAS No) 74-98-6	< 10	Simple Asphy
			Flam. Gas 1, H220
			Liquefied gas, H280
Carbon dioxide	(CAS No) 124-38-9	< 10	Simple Asphy
			Compressed gas, H280
Butane	(CAS No) 106-97-8	< 5	Simple Asphy
			Flam. Gas 1, H220
			Liquefied gas, H280
Nitrogen	(CAS No) 7727-37-9	< 5	Simple Asphy
			Compressed gas, H280
Hydrogen sulfide	(CAS No) 7783-06-4	<= 0.0004	Flam. Gas 1, H220
			Liquefied gas, H280
			Acute Tox. 2 (Inhalation:gas), H330
			Aquatic Acute 1, H400

Full text of H-phrases: see section 16

SECTION 4: FIRST AID MEASURES

Description of First Aid Measures

General: Never give anything by mouth to an unconscious person. If you feel unwell, seek medical advice (show the label where possible). If frostbite or freezing occurs, immediately flush with plenty of lukewarm water to GENTLY warm the affected area. Do not use hot water. Do not rub affected area. Get immediate medical attention.

Inhalation: When symptoms occur: go into open air and ventilate suspected area.Remove to fresh air and keep at rest in a position comfortable for breathing. Call a POISON CENTER/doctor/physician if you feel unwell

Skin Contact: Remove contaminated clothing. Drench affected area with water for at least 15 minutes. Obtain medical attention if irritation persists. Thaw frosted parts with lukewarm water. Do not rub affected area.

Eye Contact: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.Obtain medical attention if irritation persists

Ingestion: Rinse mouth.Do NOT induce vomiting.Get immediate medical attention.

Most Important Symptoms and Effects Both Acute and Delayed

General: May cause frostbite on contact with the liquid.Butane is an asphyxiant. Lack of oxygen can be fatal

Inhalation: Gas can be toxic as a simple asphyxiant by displacing oxygen from the air.Asphyxia by lack of oxygen: risk of death.May cause drowsiness or dizziness

Skin Contact: Contact with the liquid may cause cold burns/frostbite

Eye Contact: This gas is non-irritating; but direct contact with liquefied/pressurized gas or frost particles may produce severe and possibly permanent eye damage from freeze burns

Ingestion: Ingestion is not considered a potential route of exposure. Non-irritating; but solid and liquid forms of this material and pressurized gas may cause freeze burns.

Chronic Symptoms: Contains a small amount of Hydrogen Sulfide, symptoms of overexposure are headaches, dizziness, nausea, coughing, respiratory irritation, eye irritation, skin irritation, pain in the nose, and loss of consciousness. Heating of the product may release higher amounts of Hydrogen Sulfide (H₂S).

Indication of Any Immediate Medical Attention and Special Treatment Needed

If exposed or concerned, get medical advice and attention.

SECTION 5: FIREFIGHTING MEASURES

Extinguishing Media

Suitable Extinguishing Media: Foam, dry chemical, carbon dioxide, water spray, fog

Unsuitable Extinguishing Media: Do not use a heavy water stream. Use of heavy stream of water may spread fire

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Special Hazards Arising From the Substance or Mixture

Fire Hazard: Extremely flammable gas

Explosion Hazard: May form flammable/explosive vapor-air mixture.Heating may cause an explosion.Heat may build pressure, rupturing closed containers, spreading fire and increasing risk of burns and injuries.

rupturing closed containers, spreading fire and increasing risk of burns and injuri

Reactivity: Hazardous reactions will not occur under normal conditions.

Advice for Firefighters

Precautionary Measures Fire: Exercise caution when fighting any chemical fire

Firefighting Instructions: Leaking gas fire: Do not extinguish, unless leak can be stopped safely. In case of leaking gas fire, eliminate all ignition sources if safe to do so. Use water spray or fog for cooling exposed containers. In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion.

Protection During Firefighting: Do not enter fire area without proper protective equipment, including respiratory protection.

Hazardous Combustion Products: Carbon oxides (CO, CO₂).Hydrocarbon, sulfur dioxide (SO₂), and Hydrogen sulfide (H₂S) fatal and irritating gases

Other information: Do not allow run-off from fire fighting to enter drains or water courses

Reference to Other Sections

Refer to section 9 for flammability properties.

SECTION 6: ACCIDENTAL RELEASE MEASURES

Personal Precautions, Protective Equipment and Emergency Procedures

General Measures: Use special care to avoid static electric charges.Eliminate every possible source of ignition.Keep away from heat/sparks/open flames/hot surfaces - No smoking.Avoid breathing (dust, vapor, mist, gas).Use only outdoors or in a well-ventilated area.Ruptured cylinders may rocket.Do not allow product to spread into the environment

For Non-Emergency Personnel

Protective Equipment: Use appropriate personal protection equipment (PPE).

Emergency Procedures: Evacuate unnecessary personnel.

For Emergency Personnel

Protective Equipment: Equip cleanup crew with proper protection.

Emergency Procedures: Ventilate area.

Environmental Precautions

Prevent entry to sewers and public waters. Avoid release to the environment

Methods and Material for Containment and Cleaning Up

For Containment: Notify authorities if liquid enters sewers or public waters. Use only non-sparking tools

Methods for Cleaning Up: Clear up spills immediately and dispose of waste safely. Isolate area until gas has dispersed. Use water spray to disperse vapors. For water based spills contact appropriate authorities and abide by local regulations for hydrocarbon spills into waterways. Contact competent authorities after a spill

Reference to Other Sections

See heading 8, Exposure Controls and Personal Protection.

SECTION 7: HANDLING AND STORAGE

Precautions for Safe Handling

Additional Hazards When Processed: Handle empty containers with care because residual vapors are flammable.Extremely flammable gas.Do not pressurize, cut, or weld containers. Do not puncture or incinerate container.Liquid gas can cause frost-type burns. If stored under heat for extended periods or significantly agitated, this material might evolve or release hydrogen sulfide, a toxic, flammable gas, which can raise and widen this material's actual flammability limits and significantly lower its auto-ignition temperature. Hydrogen sulfide can be fatal.

Hygiene Measures: Handle in accordance with good industrial hygiene and safety procedures. Wash hands and other exposed areas with mild soap and water before eating, drinking, or smoking and again when leaving work. Do no eat, drink or smoke when using this product

Technical Measures: Proper grounding procedures to avoid static electricity should be followed. Comply with applicable regulations.

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Storage Conditions: Store in a dry, cool and well-ventilated place.Keep container closed when not in use. Keep in fireproof place.Store in a well-ventilated place. Keep container tightly closed.Keep/Store away from extremely high or low temperatures, ignition sources, direct sunlight, incompatible materials. Store in original container.

Incompatible Materials: strong acids, Strong bases, Strong oxidizers, chlorine, Halogenated compounds

Conditions for Safe Storage, Including Any Incompatibilities Not available

Specific End Use(s)

Fuel.

SECTION 8: EXPOSURE CONTROLS/PERSONAL PROTECTION

Control Parameters

Hydrogen sulfide (7783-06-4)			
USA ACGIH	ACGIH TWA (ppm)	1 ppm	
USA ACGIH	ACGIH STEL (ppm)	5 ppm	
USA OSHA	OSHA PEL (Ceiling) (ppm)	20 ppm	
USA NIOSH	NIOSH REL (ceiling) (mg/m3)	15 mg/m ³	
USA NIOSH	NIOSH REL (ceiling) (ppm)	10 ppm	
USA IDLH	US IDLH (ppm)	100 ppm	
Alberta	OEL Ceiling (mg/m ³)	21 mg/m ³	
Alberta	OEL Ceiling (ppm)	15 ppm	
Alberta	OEL TWA (mg/m³)	14 mg/m ³	
Alberta	OEL TWA (ppm)	10 ppm	
British Columbia	OEL Ceiling (ppm)	10 ppm	
Manitoba	OEL STEL (ppm)	5 ppm	
Manitoba	OEL TWA (ppm)	1 ppm	
New Brunswick	OEL STEL (mg/m³)	21 mg/m ³	
New Brunswick	OEL STEL (ppm)	15 ppm	
New Brunswick	OEL TWA (mg/m³)	14 mg/m ³	
New Brunswick	OEL TWA (ppm)	10 ppm	
Newfoundland & Labrador	OEL STEL (ppm)	5 ppm	
Newfoundland & Labrador	OEL TWA (ppm)	1 ppm	
Nova Scotia	OEL STEL (ppm)	5 ppm	
Nova Scotia	OEL TWA (ppm)	1 ppm	
Nunavut	OEL Ceiling (mg/m ³)	28 mg/m ³	
Nunavut	OEL Ceiling (ppm)	20 ppm	
Nunavut	OEL STEL (mg/m ³)	21 mg/m ³	
Nunavut	OEL STEL (ppm)	15 ppm	
Nunavut	OEL TWA (mg/m³)	14 mg/m ³	
Nunavut	OEL TWA (ppm)	10 ppm	
Northwest Territories	OEL Ceiling (mg/m ³)	28 mg/m ³	
Northwest Territories	OEL Ceiling (ppm)	20 ppm	
Northwest Territories	OEL STEL (mg/m³)	21 mg/m ³	
Northwest Territories	OEL STEL (ppm)	15 ppm	
Northwest Territories	OEL TWA (mg/m³)	14 mg/m ³	
Northwest Territories	OEL TWA (ppm)	10 ppm	
Ontario	OEL STEL (ppm)	15 ppm	
Ontario	OEL TWA (ppm)	10 ppm	
Prince Edward Island	OEL STEL (ppm)	5 ppm	
Prince Edward Island	OEL TWA (ppm)	1 ppm	
Québec	VECD (mg/m ³)	21 mg/m ³	
Québec	VECD (ppm)	15 ppm	

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Québec	VEMP (mg/m ³)	14 mg/m ³
Québec	VEMP (ppm)	10 ppm
Saskatchewan	OEL STEL (ppm)	15 ppm
Saskatchewan	OEL TWA (ppm)	10 ppm
Yukon	OEL STEL (mg/m³)	27 mg/m ³
Yukon	OEL STEL (ppm)	15 ppm
Yukon	OEL TWA (mg/m³)	15 mg/m ³
Yukon	OEL TWA (ppm)	10 ppm
Propane (74-98-6)		
USA ACGIH	ACGIH TWA (ppm)	1000 ppm
USA OSHA	OSHA PEL (TWA) (mg/m3)	1800 mg/m ³
USA OSHA	OSHA PEL (TWA) (ppm)	1000 ppm
USA NIOSH	NIOSH REL (TWA) (mg/m3)	1800 mg/m ³
USA NIOSH	NIOSH REL (TWA) (ppm)	1000 ppm
USA IDLH	US IDLH (ppm)	2100 ppm (10% LEL)
Alberta	OEL TWA (ppm)	1000 ppm
British Columbia	OEL TWA (ppm)	1000 ppm
Manitoba	OEL TWA (ppm)	1000 ppm
Newfoundland & Labrador	OEL TWA (ppm)	1000 ppm
Nova Scotia	OEL TWA (ppm)	1000 ppm
Ontario	OEL TWA (ppm)	1000 ppm
Prince Edward Island	OEL TWA (ppm)	1000 ppm
Québec	VEMP (mg/m ³)	1800 mg/m ³
Québec	VEMP (ppm)	1000 ppm
Saskatchewan	OEL STEL (ppm)	1250 ppm
Saskatchewan	OEL TWA (ppm)	1000 ppm
Butane (106-97-8)		
USA ACGIH	ACGIH TWA (ppm)	1000 ppm
USA NIOSH	NIOSH REL (TWA) (mg/m3)	1900 mg/m³
USA NIOSH	NIOSH REL (TWA) (ppm)	800 ppm
Alberta	OEL TWA (ppm)	1000 ppm
British Columbia	OEL STEL (ppm)	750 ppm
British Columbia	OEL TWA (ppm)	600 ppm
Manitoba	OEL TWA (ppm)	1000 ppm
New Brunswick	OEL TWA (mg/m³)	1900 mg/m ³
New Brunswick	OEL TWA (ppm)	800 ppm
Newfoundland & Labrador	OEL TWA (ppm)	1000 ppm
Nova Scotia	OEL TWA (ppm)	1000 ppm
Nunavut	OEL STEL (mg/m ³)	2576 mg/m ³
Nunavut	OEL STEL (ppm)	1000 ppm
Nunavut	OEL TWA (mg/m³)	1901 mg/m³
Nunavut	OEL TWA (ppm)	800 ppm
Northwest Territories	OEL STEL (mg/m ³)	2576 mg/m ³
Northwest Territories	OEL STEL (ppm)	1000 ppm
Northwest Territories	OEL TWA (mg/m ³)	1901 mg/m ³
Northwest Territories	OEL TWA (ppm)	800 ppm
Ontario	OEL TWA (ppm)	800 ppm
Prince Edward Island	OEL TWA (ppm)	1000 ppm
Québec	VEMP (mg/m ³)	1900 mg/m ³
		1000 110/ 11

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Québec	VEMP (ppm)	800 ppm
Saskatchewan	OEL STEL (ppm)	1250 ppm
Saskatchewan	OEL TWA (ppm)	1000 ppm
Yukon	OEL TWA (ppm) OEL STEL (mg/m ³)	1600 mg/m ³
Yukon	OEL STEL (mg/m²)	5
Yukon	OEL TWA (mg/m ³)	750 ppm 1400 mg/m ³
Yukon	OEL TWA (ppm)	600 ppm
Carbon dioxide (124-38-9)		
USA ACGIH	ACGIH TWA (ppm)	5000 ppm
USA ACGIH	ACGIH STEL (ppm)	30000 ppm
USA OSHA	OSHA PEL (TWA) (mg/m3)	9000 mg/m ³
USA OSHA	OSHA PEL (TWA) (ppm)	5000 ppm
USA NIOSH	NIOSH REL (TWA) (mg/m3)	9000 mg/m ³
USA NIOSH	NIOSH REL (TWA) (ppm)	5000 ppm
USA NIOSH	NIOSH REL (STEL) (mg/m3)	54000 mg/m ³
USA NIOSH	NIOSH REL (STEL) (ppm)	30000 ppm
USA IDLH	US IDLH (ppm)	40000 ppm
Alberta	OEL STEL (mg/m ³)	54000 mg/m ³
Alberta	OEL STEL (ppm)	30000 ppm
Alberta	OEL TWA (mg/m³)	9000 mg/m³
Alberta	OEL TWA (ppm)	5000 ppm
British Columbia	OEL STEL (ppm)	15000 ppm
British Columbia	OEL TWA (ppm)	5000 ppm
Manitoba	OEL STEL (ppm)	30000 ppm
Manitoba	OEL TWA (ppm)	5000 ppm
New Brunswick	OEL STEL (mg/m ³)	54000 mg/m ³
New Brunswick	OEL STEL (ppm)	30000 ppm
New Brunswick	OEL TWA (mg/m³)	9000 mg/m³
New Brunswick	OEL TWA (ppm)	5000 ppm
Newfoundland & Labrador	OEL STEL (ppm)	30000 ppm
Newfoundland & Labrador	OEL TWA (ppm)	5000 ppm
Nova Scotia	OEL STEL (ppm)	30000 ppm
Nova Scotia	OEL TWA (ppm)	5000 ppm
Nunavut	OEL STEL (mg/m ³)	27000 mg/m ³
Nunavut	OEL STEL (ppm)	15000 ppm
Nunavut	OEL TWA (mg/m ³)	9000 mg/m ³
Nunavut	OEL TWA (ppm)	5000 ppm
Northwest Territories	OEL STEL (mg/m ³)	27000 mg/m ³
Northwest Territories	OEL STEL (ppm)	15000 ppm
Northwest Territories	OEL TWA (mg/m³)	9000 mg/m ³
Northwest Territories	OEL TWA (ppm)	5000 ppm
Ontario	OEL STEL (ppm)	30000 ppm
Ontario	OEL TWA (ppm)	5000 ppm
Prince Edward Island	OEL STEL (ppm)	30000 ppm
Prince Edward Island	OEL TWA (ppm)	5000 ppm
Québec	VECD (mg/m ³)	54000 mg/m ³
Québec	VECD (ppm)	30000 ppm
Québec	VEMP (mg/m ³)	9000 mg/m ³
Québec	VEMP (ppm)	5000 ppm
Saskatchewan	OEL STEL (ppm)	30000 ppm
10/02/2013	EN (English US)	30000 ppm 6/17

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Saskatchewan	OEL TWA (ppm)	5000 ppm
Yukon	OEL STEL (mg/m ³)	27000 mg/m³
Yukon	OEL STEL (ppm)	15000 ppm
Yukon	OEL TWA (mg/m³)	9000 mg/m³
Yukon	OEL TWA (ppm)	5000 ppm
Nitrogen (7727-37-9)		
Methane (74-82-8)		
USA ACGIH	ACGIH TWA (ppm)	1000 ppm
British Columbia	OEL TWA (ppm)	1000 ppm
Manitoba	OEL TWA (ppm)	1000 ppm
Newfoundland & Labrador	OEL TWA (ppm)	1000 ppm
Nova Scotia	OEL TWA (ppm)	1000 ppm
Ontario	OEL TWA (ppm)	1000 ppm
Prince Edward Island	OEL TWA (ppm)	1000 ppm
Saskatchewan	OEL STEL (ppm)	1250 ppm
Saskatchewan	OEL TWA (ppm)	1000 ppm
Ethane (74-84-0)		
USA ACGIH	ACGIH TWA (ppm)	1000 ppm
Alberta	OEL TWA (ppm)	1000 ppm
British Columbia	OEL TWA (ppm)	1000 ppm
Manitoba	OEL TWA (ppm)	1000 ppm
Newfoundland & Labrador	OEL TWA (ppm)	1000 ppm
Nova Scotia	OEL TWA (ppm)	1000 ppm
Ontario	OEL TWA (ppm)	1000 ppm
Prince Edward Island	OEL TWA (ppm)	1000 ppm
Saskatchewan	OEL STEL (ppm)	1250 ppm
Saskatchewan	OEL TWA (ppm)	1000 ppm

Exposure Controls

Appropriate Engineering Controls: Gas detectors should be used when flammable gases/vapours may be released.Ensure adequate ventilation, especially in confined areas.Proper grounding procedures to avoid static electricity should be followed.Emergency eye wash fountains and safety showers should be available in the immediate vicinity of any potential exposure.Use explosion-proof equipment

Personal Protective Equipment: Protective goggles.Protective clothing.Respiratory protection of the dependent type.Insulated gloves

Materials for Protective Clothing: Chemically resistant materials and fabrics.Wear fire/flame resistant/retardant clothing Hand Protection: Wear chemically resistant protective gloves.Insulated gloves

Eye Protection: Chemical goggles or face shield.

Skin and Body Protection: Not available

Respiratory Protection: Use a NIOSH-approved self-contained breathing apparatus whenever exposure may exceed established Occupational Exposure Limits.

Thermal Hazard Protection: Wear suitable protective clothing.

Other Information: When using, do not eat, drink or smoke.

SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES

Information on Basic Physical and Chemical Properties

Physical State

: Gas

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Appearance	:	Clear, Colorless gas
Odor	:	Contains Ethyl Mercaptan for leak detection, which has a skunk-like odor,
		odorless.
Odor Threshold	:	Not available
рН	:	Not available
Relative Evaporation Rate (butylacetate=1)	:	Not available
Melting Point	:	Not available
Freezing Point	:	Not available
Boiling Point	:	-157 °C (-250.6°F)
Flash Point	:	-187 °C (-304.6°F)
Auto-ignition Temperature	:	> 288 °C (>550.4°F)
Decomposition Temperature	:	Not available
Flammability (solid, gas)	:	Extremely flammable gas
Lower Flammable Limit	:	3 %
Upper Flammable Limit	:	17 %
Vapor Pressure	:	40 mm Hg @25°C (77°F)
Relative Vapor Density at 20 °C	:	0.6
Relative Density	:	Not available
Specific Gravity	:	Not available
Solubility	:	Not available
Log Pow	:	Not available
Log Kow	:	Not available
Viscosity, Kinematic	:	Not available
Viscosity, Dynamic	:	Not available
Explosion Data – Sensitivity to Mechanical Impact	:	Not available
Explosion Data – Sensitivity to Static Discharge	:	Not available

SECTION 10: STABILITY AND REACTIVITY

Reactivity: Hazardous reactions will not occur under normal conditions.

Chemical Stability: Extremely flammable gas.Stable at standard temperature and pressure.

Possibility of Hazardous Reactions: Hazardous polymerization will not occur.

Conditions to Avoid: Direct sunlight.Extremely high or low temperatures.Open flame.Overheating.Heat.Sparks.Incompatible materials. Avoid ignition sources

Incompatible Materials: Strong acids.Strong bases.Strong oxidizers.Halogenated compounds.Chlorine

Hazardous Decomposition Products: Carbon oxides (CO, CO2).hydrocarbons. Sulfur dioxide and hydrogen sulfide are fatal and irritating gases.

SECTION 11: TOXICOLOGICAL INFORMATION

Information on Toxicological Effects - ProductAcute Toxicity: Not classifiedLD50 and LC50 DataNot availableSkin Corrosion/Irritation: Not classifiedSerious Eye Damage/Irritation: Not classifiedRespiratory or Skin Sensitization: Not classifiedGerm Cell Mutagenicity: Not classifiedTeratogenicity: Not availableCarcinogenicity: Not classifiedSpecific Target Organ Toxicity (Repeated Exposure): Not classifiedReproductive Toxicity: Not classifiedSpecific Target Organ Toxicity (Single Exposure): Not classified

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Aspiration Hazard: Not classified

Symptoms/Injuries After Inhalation: Gas can be toxic as a simple asphyxiant by displacing oxygen from the air. Asphyxia by lack of oxygen: risk of death. May cause drowsiness or dizziness.

Symptoms/Injuries After Skin Contact: Contact with the liquid may cause cold burns/frostbite.

Symptoms/Injuries After Eye Contact: This gas is non-irritating; but direct contact with liquefied/pressurized gas or frost particles may produce severe and possibly permanent eye damage from freeze burns.

Symptoms/Injuries After Ingestion: Ingestion is not considered a potential route of exposure. Non-irritating; but solid and liquid forms of this material and pressurized gas may cause freeze burns.

Information on Toxicological Effects - Ingredient(s)

LD50 and LC50 Data

Hydrogen sulfide (7783-06-4)	
LC50 Inhalation Rat (mg/l)	0.99 mg/l (Exposure time: 1 h)
ATE (gases)	100.000 ppmV/4h
Propane (74-98-6)	
LC50 Inhalation Rat (mg/I)	658 mg/l (Exposure time: 4 h)
Butane (106-97-8)	
LC50 Inhalation Rat (mg/l)	658 mg/l (Exposure time: 4 h)
Ethane (74-84-0)	
LC50 Inhalation Rat (mg/I)	658 mg/l (Exposure time: 4 h)

SECTION 12: ECOLOGICAL INFORMATION

<u>Toxicity</u>		
Wellhead Natural Gas (CAS Mixture)		
LC50 Fish 1	0.002 mg/l (Exposure time: 96 h - Species: Coregonus clupeaformis)	
Hydrogen sulfide (7783-06-4)		
LC50 Fish 1	0.0448 mg/l (Exposure time: 96 h - Species: Lepomis macrochirus [flow-through])	
EC50 Daphnia 1	0.022 mg/l (Exposure time: 96 h - Species: Gammarus pseudolimnaeus)	
LC 50 Fish 2	0.016 mg/l (Exposure time: 96 h - Species: Pimephales promelas [flow-through])	
Persistence and Degradability		
Wellhead Natural Gas		
Persistence and Degradability	Not established.	
Bioaccumulative Potential		
Wellhead Natural Gas		
Bioaccumulative Potential	Not established.	
Hydrogen sulfide (7783-06-4)		
BCF fish 1	(no bioaccumulation expected)	
Log Pow	0.45 (at 25 °C)	
Propane (74-98-6)		
Log Pow	2.3	
Butane (106-97-8)		
Log Pow	2.89	
Carbon dioxide (124-38-9)		
BCF fish 1	(no bioaccumulation)	
Log Pow	0.83	
Ethane (74-84-0)		
Log Pow	<= 2.8	

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Mobility in Soil Not available

Other Adverse Effects

Other adverse effects: Can cause frost damage to vegetation. Has photochemical ozone creation potential.

Other Information: Avoid release to the environment.

SECTION 13: DISPOSAL CONSIDERATIONS

Waste Disposal Recommendations: Dispose of waste material in accordance with all local, regional, national, provincial, territorial and international regulations.

Additional Information: Handle empty containers with care because residual vapors are flammable. Empty gas cylinders should be returned to the vendor for recycling or refilling.

SECTION 14: TRANSPORT INFORMATION

In Accordance With ICAO/IATA/DOT/TDG <u>UN Number</u> UN-No.(DOT): 1971 DOT NA no.: UN1971 <u>UN Proper Shipping Name</u> DOT Proper Shipping Name

Hazard Labels (DOT)

DOT Packaging Exceptions (49 CFR 173.xxx)
DOT Packaging Non Bulk (49 CFR 173.xxx)
DOT Packaging Bulk (49 CFR 173.xxx)
Additional Information

Emergency Response Guide (ERG) Number

Transport by sea

DOT Vessel Stowage Location

: Natural gas, compressed (with high methane content)

: 2.1 - Flammable gases

: 302

: 302

: 115

E - The material may be stowed "on deck" or "under deck" on a cargo vessel and on a
passenger vessel carrying a number of passengers limited to not more than the larger
of 25 passengers, or one passenger per each 3 m of overall vessel length, but is
prohibited from carriage on passenger vessels in which the limiting number of
passengers is exceeded.

DOT Vessel Stowage Other : 40 - Stow "clear of living quarters"

<u>Air transport</u>

DOT Quantity Limitations Passenger Aircraft/Rail (49 CFR 173.27) : Forbidden

DOT Quantity Limitations Cargo Aircraft Only (49 CFR 175.75) : 150 kg

SECTION 15: REGULATORY INFORMATION

US	Fed	leral	Regu	lations

Wellhead Natural Gas		
SARA Section 311/312 Hazard Classes	Fire hazard	
	Immediate (acute) health hazard	
	Sudden release of pressure hazard	
Hydrogen sulfide (7783-06-4)		
Listed on the United States TSCA (Toxic Substances Control Act) inventory		
Listed on SARA Section 302 (Specific toxic chemical listings)		
Listed on SARA Section 313 (Specific toxic chemical listings)		
SARA Section 302 Threshold Planning Quantity (TPQ) 500		
SARA Section 313 - Emission Reporting 1.0 %		

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Propane (74-98-6)

Listed on the United States TSCA (Toxic Substances Control Act) inventory
Butane (106-97-8)
Listed on the United States TSCA (Toxic Substances Control Act) inventory
Carbon dioxide (124-38-9)
Listed on the United States TSCA (Toxic Substances Control Act) inventory
Nitrogen (7727-37-9)
Listed on the United States TSCA (Toxic Substances Control Act) inventory
Methane (74-82-8)
Listed on the United States TSCA (Toxic Substances Control Act) inventory
Ethane (74-84-0)
Listed on the United States TSCA (Toxic Substances Control Act) inventory
UC State Degulations

US State Regulations

Hydrogen sulfide (7783-06-4)

U.S. - California - SCAQMD - Toxic Air Contaminants - Non-Cancer Acute

U.S. - California - SCAQMD - Toxic Air Contaminants - Non-Cancer Chronic

- U.S. California Toxic Air Contaminant List (AB 1807, AB 2728)
- U.S. Colorado Hazardous Wastes Discarded Chemical Products, Off-Specification Species, Container and Spill Residues
- U.S. Connecticut Hazardous Air Pollutants HLVs (30 min)
- U.S. Connecticut Hazardous Air Pollutants HLVs (8 hr)
- U.S. Delaware Accidental Release Prevention Regulations Sufficient Quantities
- U.S. Delaware Accidental Release Prevention Regulations Threshold Quantities
- U.S. Delaware Accidental Release Prevention Regulations Toxic Endpoints
- U.S. Delaware Pollutant Discharge Requirements Reportable Quantities
- U.S. Hawaii Occupational Exposure Limits STELs
- U.S. Hawaii Occupational Exposure Limits TWAs
- U.S. Idaho Non-Carcinogenic Toxic Air Pollutants Acceptable Ambient Concentrations
- U.S. Idaho Non-Carcinogenic Toxic Air Pollutants Emission Levels (ELs)
- U.S. Idaho Occupational Exposure Limits Acceptable Maximum Peak Above the Ceiling Concentration for an 8-Hour Shift
- U.S. Idaho Occupational Exposure Limits Ceilings
- U.S. Idaho Occupational Exposure Limits TWAs
- U.S. Louisiana Reportable Quantity List for Pollutants
- U.S. Maine Air Pollutants Hazardous Air Pollutants
- U.S. Massachusetts Allowable Ambient Limits (AALs)
- U.S. Massachusetts Allowable Threshold Concentrations (ATCs)
- U.S. Massachusetts Oil & Hazardous Material List Groundwater Reportable Concentration Reporting Category 1
- U.S. Massachusetts Oil & Hazardous Material List Groundwater Reportable Concentration Reporting Category 2
- U.S. Massachusetts Oil & Hazardous Material List Reportable Quantity
- U.S. Massachusetts Oil & Hazardous Material List Soil Reportable Concentration Reporting Category 1
- U.S. Massachusetts Oil & Hazardous Material List Soil Reportable Concentration Reporting Category 2
- U.S. Massachusetts Right To Know List
- U.S. Massachusetts Threshold Effects Exposure Limits (TELs)
- U.S. Michigan Occupational Exposure Limits STELs
- U.S. Michigan Occupational Exposure Limits TWAs
- U.S. Michigan Polluting Materials List
- U.S. Michigan Process Safety Management Highly Hazardous Chemicals
- U.S. Minnesota Chemicals of High Concern
- U.S. Minnesota Hazardous Substance List
- U.S. Minnesota Permissible Exposure Limits STELs
- U.S. Minnesota Permissible Exposure Limits TWAs

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

.S Montana - Ambient Air Quality Standards
.S New Hampshire - Regulated Toxic Air Pollutants - Ambient Air Levels (AALs) - 24-Hour
.S New Hampshire - Regulated Toxic Air Pollutants - Ambient Air Levels (AALs) - Annual
.S New Jersey - Discharge Prevention - List of Hazardous Substances
.S New Jersey - Environmental Hazardous Substances List
.S New Jersey - Right to Know Hazardous Substance List
.S New Jersey - Special Health Hazards Substances List
.S New Jersey - TCPA - Extraordinarily Hazardous Substances (EHS)
.S New Mexico - Air Quality - Ambient Air Quality Standards
.S New York - Occupational Exposure Limits - TWAs
.S New York - Reporting of Releases Part 597 - List of Hazardous Substances
.S North Carolina - Control of Toxic Air Pollutants
.S North Dakota - Ambient Air Quality Standards - Maximum Permissible Concentrations
.S North Dakota - Hazardous Wastes - Discarded Chemical Products, Off-Specification Species, Container and Spill Residues
.S Ohio - Accidental Release Prevention - Threshold Quantities
.S Ohio - Extremely Hazardous Substances - Threshold Quantities
.S Oregon - Permissible Exposure Limits - Ceilings
.S Oregon - Permissible Exposure Limits - STELs
.S Pennsylvania - RTK (Right to Know) - Environmental Hazard List
.S Pennsylvania - RTK (Right to Know) List
.S Rhode Island - Air Toxics - Acceptable Ambient Levels - 1-Hour
.S Rhode Island - Air Toxics - Acceptable Ambient Levels - 24-Hour
.S Rhode Island - Air Toxics - Acceptable Ambient Levels - Annual
.S South Carolina - Toxic Air Pollutants - Maximum Allowable Concentrations
.S South Carolina - Toxic Air Pollutants - Pollutant Categories
.S Tennessee - Occupational Exposure Limits - STELs
.S Tennessee - Occupational Exposure Limits - TWAs
.S Texas - Drinking Water Standards - Secondary Constituent Levels (SCLs)
.S Texas - Effects Screening Levels - Long Term
.S Texas - Effects Screening Levels - Short Term
.S Vermont - Hazardous Waste - Hazardous Constituents
.S Vermont - Permissible Exposure Limits - STELs
.S Vermont - Permissible Exposure Limits - TWAs
.S Virginia - Water Quality Standards - Chronic Freshwater Aquatic Life
.S Virginia - Water Quality Standards - Chronic Saltwater Aquatic Life
.S Washington - Dangerous Waste - Dangerous Waste Constituents List
.S Washington - Dangerous Waste - Discarded Chemical Products List
.S Washington - Permissible Exposure Limits - STELs
.S Washington - Permissible Exposure Limits - TWAs
.S Wisconsin - Hazardous Air Contaminants - All Sources - Emissions From Stack Heights 25 Feet to Less Than 40 Feet
.S Wisconsin - Hazardous Air Contaminants - All Sources - Emissions From Stack Heights 40 Feet to Less Than 40 Feet
.S Wisconsin - Hazardous Air Contaminants - All Sources - Emissions From Stack Heights 75 Feet or Greater
.S Wisconsin - Hazardous Air Contaminants - Air Sources - Emissions From Stack Heights Less Than 25 Feet
.S Wyoming - Process Safety Management - Highly Hazardous Chemicals
.S Alaska - Water Quality Standards - Chronic Aquatic Life Criteria for Fresh Water
.S Alaska - Water Quality Standards - Chronic Aquatic Life Criteria for Fresh Water
ropane (74-98-6)
.S Connecticut - Hazardous Air Pollutants - HLVs (30 min)
.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr)
.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities
.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities
.S Delaware - Pollutant Discharge Requirements - Reportable Quantities

U.S. - Delaware - Pollutant Discharge Requirements - Reportable Quantities

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

U.S Hawaii - Occupational Exposure Limits - TWAs U.S Idaho - Occupational Exposure Limits - TWAs
U.S Idaho - Occupational Exposure Limits - TWAs
U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1
U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2
U.S Massachusetts - Oil & Hazardous Material List - Reportable Quantity
U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1
U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2
U.S Massachusetts - Right To Know List
U.S Michigan - Occupational Exposure Limits - TWAs
U.S Minnesota - Hazardous Substance List
U.S Minnesota - Permissible Exposure Limits - TWAs
U.S New Jersey - Discharge Prevention - List of Hazardous Substances
U.S New Jersey - Environmental Hazardous Substances List
U.S New Jersey - Right to Know Hazardous Substance List
U.S New Jersey - Special Health Hazards Substances List
U.S New Jersey - TCPA - Extraordinarily Hazardous Substances (EHS)
U.S New York - Occupational Exposure Limits - TWAs
U.S Ohio - Accidental Release Prevention - Threshold Quantities
U.S Oregon - Permissible Exposure Limits - TWAs
U.S Pennsylvania - RTK (Right to Know) List
U.S Tennessee - Occupational Exposure Limits - TWAs
U.S Texas - Effects Screening Levels - Long Term
U.S Texas - Effects Screening Levels - Short Term
U.S Vermont - Permissible Exposure Limits - TWAs
U.S Washington - Permissible Exposure Limits - STELs
U.S Washington - Permissible Exposure Limits - TWAs
Butane (106-97-8)
U.S Connecticut - Hazardous Air Pollutants - HLVs (30 min)
U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr)
U.S Connecticut - Hazardous Air Pollutants - HLVs (8 hr) U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities
U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities
U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities
U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities
U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs
U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern
 U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1
 U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2
 U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Reportable Quantity
 U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Reportable Quantity U.S Massachusetts - Oil & Hazardous Material List - Reportable Concentration - Reporting Category 1
 U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Reportable Quantity U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1
 U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Reportable Quantity U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Right To Know List
 U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Reportable Quantity U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Right To Know List U.S Michigan - Occupational Exposure Limits - TWAs
 U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Reportable Quantity U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Right To Know List U.S Michigan - Occupational Exposure Limits - TWAs U.S Minnesota - Chemicals of High Concern
 U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Reportable Quantity U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Right To Know List U.S Michigan - Occupational Exposure Limits - TWAs U.S Minnesota - Chemicals of High Concern U.S Minnesota - Hazardous Substance List
 U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Reportable Quantity U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Right To Know List U.S Minesota - Chemicals of High Concern U.S Minnesota - Chemicals of High Concern U.S Minnesota - Hazardous Substance List U.S Minnesota - Permissible Exposure Limits - TWAs
 U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Right To Know List U.S Minnesota - Chemicals of High Concern U.S Minnesota - Chemicals of High Concern U.S Minnesota - Hazardous Substance List U.S Minnesota - Permissible Exposure Limits - TWAS U.S New Jersey - Discharge Prevention - List of Hazardous Substances
 U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Quantity U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Right To Know List U.S Minnesota - Chemicals of High Concern U.S Minnesota - Chemicals of High Concern U.S Minnesota - Permissible Exposure Limits - TWAs U.S Ninnesota - Permissible Exposure Limits - TWAs U.S New Jersey - Discharge Prevention - List of Hazardous Substances U.S New Jersey - Environmental Hazardous Substances List
 U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAS U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - New Jenzery Diskage Limits - TWAS U.S Minnesota - Chemicals of High Concern U.S Minnesota - Chemicals of High Concern U.S Minnesota - Permissible Exposure Limits - TWAS U.S New Jersey - Discharge Prevention - List of Hazardous Substances U.S New Jersey - Environmental Hazardous Substances List U.S New Jersey - Right to Know Hazardous Substances List U.S New Jersey - Right to Know Hazardous Substances List
 U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Quantity U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Michigan - Occupational Exposure Limits - TWAs U.S Minnesota - Chemicals of High Concern U.S Minnesota - Permissible Exposure Limits - TWAs U.S New Jersey - Discharge Prevention - List of Hazardous Substances <li< td=""></li<>
 U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Reportable Quantity U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Right To Know List U.S Minnesota - Chemicals of High Concern U.S Minnesota - Chemicals of High Concern U.S Minnesota - Permissible Exposure Limits - TWAs U.S Minnesota - Permissible Exposure Limits - TWAs U.S New Jersey - Discharge Prevention - List of Hazardous Substances U.S New Jersey - Right to Know Hazardous Substances List U.S New Jersey - Special Health Hazardos Substances List U.S New Jersey - TCPA - Extraordinarily Hazardous Substances (EHS)
 U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities U.S Hawaii - Occupational Exposure Limits - TWAs U.S Maine - Chemicals of High Concern U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Quantity U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1 U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2 U.S Minesota - Repit To Know List U.S Minnesota - Chemicals of High Concern U.S Minnesota - Hazardous Substance List U.S Minnesota - Permissible Exposure Limits - TWAs U.S New Jersey - Environmental Hazardous

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

according to Federal Register / Vol. //, No. 58 / Monday, March 26, 2012 / Rules and Regulations
U.S Tennessee - Occupational Exposure Limits - TWAs
U.S Texas - Effects Screening Levels - Long Term
U.S Texas - Effects Screening Levels - Short Term
U.S Vermont - Permissible Exposure Limits - TWAs
U.S Washington - Permissible Exposure Limits - STELs
U.S Washington - Permissible Exposure Limits - TWAs
Carbon dioxide (124-38-9)
U.S Hawaii - Occupational Exposure Limits - STELs
U.S Hawaii - Occupational Exposure Limits - TWAs
U.S Idaho - Occupational Exposure Limits - TWAs
U.S Maine - Air Pollutants - Greenhouse Gases (GHG)
U.S Massachusetts - Oil & Hazardous Material List - Reportable Quantity
U.S Massachusetts - Right To Know List
U.S Massachusetts - Volatile Organic Compounds Exempt From Requirements
U.S Michigan - Occupational Exposure Limits - STELs
U.S Michigan - Occupational Exposure Limits - TWAs
U.S Minnesota - Hazardous Substance List
U.S Minnesota - Permissible Exposure Limits - STELs
U.S Minnesota - Permissible Exposure Limits - TWAs
U.S New Jersey - Right to Know Hazardous Substance List
U.S New York - Occupational Exposure Limits - TWAs
U.S Oregon - Permissible Exposure Limits - TWAs
U.S Pennsylvania - RTK (Right to Know) List
U.S Tennessee - Occupational Exposure Limits - STELs
U.S Tennessee - Occupational Exposure Limits - TWAs
U.S Texas - Effects Screening Levels - Long Term
U.S Texas - Effects Screening Levels - Short Term
U.S Vermont - Permissible Exposure Limits - STELs
U.S Vermont - Permissible Exposure Limits - TWAs
U.S Washington - Permissible Exposure Limits - STELs
U.S Washington - Permissible Exposure Limits - TWAs
Nitrogen (7727-37-9)
U.S Massachusetts - Oil & Hazardous Material List - Reportable Quantity
U.S Massachusetts - Right To Know List
U.S Minnesota - Hazardous Substance List
U.S New Jersey - Right to Know Hazardous Substance List
U.S Pennsylvania - RTK (Right to Know) List
U.S Washington - Permissible Exposure Limits - Simple Asphyxiants
Methane (74-82-8)
U.S Delaware - Accidental Release Prevention Regulations - Sufficient Quantities
U.S Delaware - Accidental Release Prevention Regulations - Threshold Quantities
U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities
U.S Delaware - Volatile Organic Compounds Exempt from Requirements
U.S Maine - Air Pollutants - Greenhouse Gases (GHG)
U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1
U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2
U.S Massachusetts - Oil & Hazardous Material List - Reportable Quantity
U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1
U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2
U.S Massachusetts - Right To Know List
U.S Massachusetts - Volatile Organic Compounds Exempt From Requirements

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

U.S Minnesota - Hazardous	Substance List			
U.S New Jersey - Discharge	Prevention - List of Hazardous Substances			
U.S New Jersey - Environme	ntal Hazardous Substances List			
U.S New Jersey - Excluded V	'olatile Organic Compounds			
U.S New Jersey - Right to Kn				
U.S New Jersey - Special Hea				
	raordinarily Hazardous Substances (EHS)			
-	se Prevention - Threshold Quantities			
U.S Oregon - Permissible Ex				
U.S Pennsylvania - RTK (Righ				
U.S Texas - Effects Screening				
U.S Texas - Effects Screening				
	le Exposure Limits - Simple Asphyxiants			
Ethane (74-84-0)				
	s Air Pollutants - HLVs (30 min)			
U.S Connecticut - Hazardous				
	elease Prevention Regulations - Sufficient Quantities			
	-			
	elease Prevention Regulations - Threshold Quantities			
	scharge Requirements - Reportable Quantities			
_	anic Compounds Exempt from Requirements			
	azardous Material List - Groundwater Reportable Concentration - Reporting Category 1			
	azardous Material List - Groundwater Reportable Concentration - Reporting Category 2			
	azardous Material List - Reportable Quantity			
U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1				
U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2				
U.S Massachusetts - Right T				
	U.S Massachusetts - Volatile Organic Compounds Exempt From Requirements			
U.S Minnesota - Hazardous				
	Prevention - List of Hazardous Substances			
-	ntal Hazardous Substances List			
U.S New Jersey - Excluded V				
U.S New Jersey - Right to Kn				
U.S New Jersey - Special Health Hazards Substances List				
U.S New Jersey - TCPA - Extraordinarily Hazardous Substances (EHS)				
U.S Ohio - Accidental Release Prevention - Threshold Quantities				
U.S Oregon - Permissible Exposure Limits - TWAs				
U.S Pennsylvania - RTK (Right to Know) List				
U.S Texas - Effects Screening Levels - Long Term				
U.S Texas - Effects Screening Levels - Short Term				
	U.S Washington - Permissible Exposure Limits - Simple Asphyxiants			
Canadian Regulations				
Wellhead Natural Gas				
WHMIS Classification	Class B Division 1 - Flammable Gas			
	Class A - Compressed Gas			

Hydrogen sulfide (7783-06-4)

Listed on the Canadian DSL (Domestic Substances List) inventory.

Listed on the Canadian Ingredient Disclosure List

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

WHMIS Classification	Class A - Compressed Gas			
	Class B Division 1 - Flammable Gas			
	Class D Division 1 Subdivision A - Very toxic material causing immediate and serious toxic effects			
	Class D Division 2 Subdivision B - Toxic material causing other toxic effects			
Propane (74-98-6)				
Listed on the Canadian DSL (I	Domestic Substances List) inventory.			
WHMIS Classification	Class A - Compressed Gas			
	Class B Division 1 - Flammable Gas			
Butane (106-97-8)				
Listed on the Canadian DSL (I	Domestic Substances List) inventory.			
Listed on the Canadian Ingree	dient Disclosure List			
WHMIS Classification	Class A - Compressed Gas			
	Class B Division 1 - Flammable Gas			
Carbon dioxide (124-38-9)				
Listed on the Canadian DSL (I	Listed on the Canadian DSL (Domestic Substances List) inventory.			
Listed on the Canadian Ingree	Listed on the Canadian Ingredient Disclosure List			
WHMIS Classification	WHMIS Classification Class A - Compressed Gas			
Nitrogen (7727-37-9)				
Listed on the Canadian DSL (I	Domestic Substances List) inventory.			
WHMIS Classification Class A - Compressed Gas				
Methane (74-82-8)				
Listed on the Canadian DSL (I	Domestic Substances List) inventory.			
WHMIS Classification	Class A - Compressed Gas			
	Class B Division 1 - Flammable Gas			
Ethane (74-84-0)				
Listed on the Canadian DSL (Domestic Substances List) inventory.				
WHMIS Classification	Class A - Compressed Gas			
	Class B Division 1 - Flammable Gas			
This product has been classifi	ied in accordance with the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS			
contains all of the informatio	n required by CPR.			

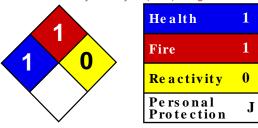
SECTION 16: OTHER INFORMATION

Revision date	: 10/02/2013
Other Information	: This document has been prepared in accordance with the SDS requirements of the OSHA
	Hazard Communication Standard 29 CFR 1910.1200

GHS Full Text Phrases:

Acute Tox. 2 (Inhalation:gas)	Acute toxicity (inhalation:gas) Category 2
Aquatic Acute 1	Hazardous to the aquatic environment - Acute Hazard Category 1
Compressed gas	Gases under pressure Compressed gas
Flam. Gas 1	Flammable gases Category 1
Liquefied gas	Gases under pressure Liquefied gas
Simple Asphy	Simple Asphyxiant
H220	Extremely flammable gas
H280	Contains gas under pressure; may explode if heated
H330	Fatal if inhaled
H400	Very toxic to aquatic life

Party Responsible for the Preparation of This Document


Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Williams, Inc. One Williams Center Tulsa, OK 74172, US 800-688-7507

This information is based on our current knowledge and is intended to describe the product for the purposes of health, safety and environmental requirements only. It should not therefore be construed as guaranteeing any specific property of the product North America GHS US 2012 & WHMIS

Att H - MSDS - Tri-Ethylene Glycol (TEG) - Page 1 of 5

Material Safety Data Sheet Triethylene glycol MSDS

Section 1: Chemical Product and Company Identification Product Name: Triethylene glycol **Contact Information:** Sciencelab.com, Inc. Catalog Codes: SLT2644 14025 Smith Rd. CAS#: 112-27-6 Houston, Texas 77396 US Sales: 1-800-901-7247 RTECS: YE4550000 International Sales: 1-281-441-4400 TSCA: TSCA 8(b) inventory: Triethylene glycol Order Online: ScienceLab.com Cl#: Not available. CHEMTREC (24HR Emergency Telephone), call: **Synonym:** 2,2'-[1,2-Ethanediylbis(oxy)]bisethanol 1-800-424-9300 Chemical Formula: C6H14O4 International CHEMTREC, call: 1-703-527-3887 For non-emergency assistance, call: 1-281-441-4400

Section 2: Composition and Information on Ingredients

Composition:

Name	CAS #	% by Weight
Triethylene glycol	112-27-6	100

Toxicological Data on Ingredients: Triethylene glycol: ORAL (LD50): Acute: 17000 mg/kg [Rat].

Section 3: Hazards Identification

Potential Acute Health Effects:

Very hazardous in case of eye contact (irritant), of ingestion. Slightly hazardous in case of inhalation. Inflammation of the eye is characterized by redness, watering, and itching.

Potential Chronic Health Effects:

Very hazardous in case of eye contact (irritant). Slightly hazardous in case of inhalation. CARCINOGENIC EFFECTS: Not available. MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available. The substance is toxic to kidneys, the nervous system. Repeated or prolonged exposure to the substance can produce target organs damage.

Section 4: First Aid Measures

Eye Contact:

Check for and remove any contact lenses. Immediately flush eyes with running water for at least 15 minutes, keeping eyelids open. Cold water may be used. Do not use an eye ointment. Seek medical attention.

Skin Contact: No known effect on skin contact, rinse with water for a few minutes.

Serious Skin Contact: Not available.

Inhalation: Allow the victim to rest in a well ventilated area. Seek immediate medical attention.

Serious Inhalation: Not available.

Ingestion:

Do not induce vomiting. Loosen tight clothing such as a collar, tie, belt or waistband. If the victim is not breathing, perform mouth-to-mouth resuscitation. Seek immediate medical attention.

Serious Ingestion: Not available.

Section 5: Fire and Explosion Data

Flammability of the Product: May be combustible at high temperature.

Auto-Ignition Temperature: 371°C (699.8°F)

Flash Points: CLOSED CUP: 177°C (350.6°F). OPEN CUP: 165.5°C (329.9°F).

Flammable Limits: LOWER: 0.9% UPPER: 9.2%

Products of Combustion: These products are carbon oxides (CO, CO2).

Fire Hazards in Presence of Various Substances: Not available.

Explosion Hazards in Presence of Various Substances:

Risks of explosion of the product in presence of mechanical impact: Not available. Risks of explosion of the product in presence of static discharge: Not available.

Fire Fighting Media and Instructions:

SMALL FIRE: Use DRY chemical powder. LARGE FIRE: Use water spray, fog or foam. Do not use water jet.

Special Remarks on Fire Hazards: Not available.

Special Remarks on Explosion Hazards: Not available.

Section 6: Accidental Release Measures

Small Spill:

Dilute with water and mop up, or absorb with an inert dry material and place in an appropriate waste disposal container. Finish cleaning by spreading water on the contaminated surface and dispose of according to local and regional authority requirements.

Large Spill:

Absorb with an inert material and put the spilled material in an appropriate waste disposal. Finish cleaning by spreading water on the contaminated surface and allow to evacuate through the sanitary system.

Section 7: Handling and Storage

Precautions:

Keep away from heat. Keep away from sources of ignition. Empty containers pose a fire risk, evaporate the residue under a fume hood. Ground all equipment containing material. Do not ingest. Do not breathe gas/fumes/ vapour/spray. Avoid contact with eyes If ingested, seek medical advice immediately and show the container or the label.

Storage:

Att H - MSDS - Tri-Ethylene Glycol (TEG) - Page 3 of 5

Keep container dry. Keep in a cool place. Ground all equipment containing material. Keep container tightly closed. Keep in a cool, well-ventilated place. Combustible materials should be stored away from extreme heat and away from strong oxidizing agents.

Section 8: Exposure Controls/Personal Protection

Engineering Controls:

Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors below their respective threshold limit value. Ensure that eyewash stations and safety showers are proximal to the work-station location.

Personal Protection: Splash goggles. Lab coat.

Personal Protection in Case of a Large Spill:

Splash goggles. Full suit. Boots. Gloves. Suggested protective clothing might not be sufficient; consult a specialist BEFORE handling this product.

Exposure Limits: Not available.

Section 9: Physical and Chemical Properties

Physical state and appearance: Liquid. (Hygroscopic liquid.)

Odor: Not available.

Taste: Not available.

Molecular Weight: 150.18 g/mole

Color: Colorless.

pH (1% soln/water): Not available.

Boiling Point: 285°C (545°F)

Melting Point: -5°C (23°F)

Critical Temperature: Not available.

Specific Gravity: 1.1274 (Water = 1)

Vapor Pressure: Not available.

Vapor Density: 5.17 (Air = 1)

Volatility: Not available.

Odor Threshold: Not available.

Water/Oil Dist. Coeff .: Not available.

lonicity (in Water): Not available.

Dispersion Properties: See solubility in water.

Solubility: Easily soluble in cold water.

Section 10: Stability and Reactivity Data

Stability: The product is stable.

Instability Temperature: Not available.

Conditions of Instability: Not available.

Incompatibility with various substances: Not available.

Corrosivity: Non-corrosive in presence of glass.

Special Remarks on Reactivity: Not available.

Special Remarks on Corrosivity: Not available.

Polymerization: No.

Section 11: Toxicological Information

Routes of Entry: Eye contact. Ingestion.

Toxicity to Animals: Acute oral toxicity (LD50): 17000 mg/kg [Rat].

Chronic Effects on Humans: The substance is toxic to kidneys, the nervous system.

Other Toxic Effects on Humans:

Very hazardous in case of ingestion. Slightly hazardous in case of inhalation.

Special Remarks on Toxicity to Animals: Not available.

Special Remarks on Chronic Effects on Humans: Not available.

Special Remarks on other Toxic Effects on Humans: Not available.

Section 12: Ecological Information

Ecotoxicity: Not available.

BOD5 and COD: Not available.

Products of Biodegradation:

Possibly hazardous short term degradation products are not likely. However, long term degradation products may arise.

Toxicity of the Products of Biodegradation: The products of degradation are more toxic.

Special Remarks on the Products of Biodegradation: Not available.

Section 13: Disposal Considerations

Waste Disposal:

Section 14: Transport Information

DOT Classification: Not a DOT controlled material (United States).

Identification: Not applicable.

Special Provisions for Transport: Not applicable.

Section 15: Other Regulatory Information

Federal and State Regulations:

Pennsylvania RTK: Triethylene glycol TSCA 8(b) inventory: Triethylene glycol

Other Regulations: OSHA: Hazardous by definition of Hazard Communication Standard (29 CFR 1910.1200).

Other Classifications:

WHMIS (Canada): Not controlled under WHMIS (Canada).

DSCL (EEC): R41- Risk of serious damage to eyes.

HMIS (U.S.A.):

Health Hazard: 1

Fire Hazard: 1

Reactivity: 0

Personal Protection: j

National Fire Protection Association (U.S.A.):

Health: 1

Flammability: 1

Reactivity: 0

Specific hazard:

Protective Equipment:

Not applicable. Lab coat. Not applicable. Splash goggles.

Section 16: Other Information

References: Not available.

Other Special Considerations: Not available.

Created: 10/10/2005 08:31 PM

Last Updated: 05/21/2013 12:00 PM

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall ScienceLab.com be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if ScienceLab.com has been advised of the possibility of such damages.

EnCana Corporation	Material Safety Data Sheet	Produced Water – Sweet	Page 1 of 2
--------------------	----------------------------	------------------------	-------------

SECTION 1 – MATERIAL IDENTIFICATION AND USE

Material Name:PRODUCED WATER (SWEET - FROM CRUDE OIL OR DEEP GAS PRODUCTION)Use:Process stream, wasteWHMIS Classification:Class B, Div. 2; Class D, Div. 2, Sub-Div. A and BNFPA:Fire: 3 Reactivity: 0Health: 2TDG:UN: 1267Class: 3Packing Group: IIShipping Name:PETROLEUM CRUDE OIL

Manufacturer/Supplier:ENCANA CORPORATION
#1800, 855 - 2nd Street S.W., P.O. BOX 2850
CALGARY, ALBERTA, T2P 2S5Emergency Telephone:(403) 645-3333
Water with C5+ aliphatic and aromatic hydrocarbons.

SECTION 2 – HAZARDOUS INGREDIENTS OF MATERIAL

Hazardous Ingredients	Approximate Concentrations (%)	C.A.S. Nos.	LD50/LC50 (Incl. Species & Route)	Exposure Limits
Sodium chloride	5-20	7647-14-05	N.Av.	N.Av.
n-Hexane	0.1-1	110-54-3	LD50,rat,oral,28.7 g/kg	50 ppm (OEL,TLV)
Benzene	0.1-1	71-43-2	LD50,rat,oral,930 mg/kg	0.5 ppm (OEL)
			LC50,rat,4 hr,13200 ppm	0.5 ppm (TLV)

OEL = 8 hr. Alberta Occupational Exposure Limit; TLV = Threshold Limit Value (8 hrs)

SECTION 3 – PHYSICAL DATA FOR MATERIAL

Physical State: Liquid	Vapour Pressure (mmHg): 20 @ 20 deg. C.
Specific Gravity: 1,0 - 1.1 @ 20 degrees C	Odour Threshold (ppm): N.Av.
Vapour Density (air=1): 2.5-3.0	Evaporation Rate: N.Av.
Percent Volatiles, by volume: 100	Boiling Pt. (deg.C) : 50 to 100
pH : N.Av.	Freezing Pt . (deg.C): -10 to 0 (est.)
Coefficient of Water/Oil Distribution: >100 / 1	
Odour & Appearance: colorless/straw coloured liquid, hydr	rocarbon odour
(N.AV. = not available N.App. = not applicable)	

SECTION 4 – FIRE AND EXPLOSION

Flammability: Yes **Conditions**: Bulk of material is water, and will not ignite. However, sufficient hydrocarbon vapour may be present to cause flash fire at normal temperatures*.

Means of Extinction: Foam, CO2, dry chemical. Explosive accumulations can build up in areas of poor ventilation*. **Special Procedures**: Use water spray to cool fire-exposed containers, and to disperse vapors if spill has not

ignited. If safe to do so, cut off supply and allow flame to burn out*.

Flash Point (deg.C) & Method: <-40 (TCC) (hydrocarbons)*

Upper Explosive Limit (% by vol.): 8*Sensitivity to Impact: NoLower Explosive Limit (% by vol.): 1*Sensitivity to Static Discharge: Yes, may ignite*Auto Ignition Temp. (deg.C): 260*TDG Flammability Classification: Class 3*Hazardous Combustion Products: Carbon monoxide, carbon dioxide*Hazardous Class 3*

*Assuming hydrocarbon content is high enough to ignite. Hydrocarbons may derive from the original produced water or contamination through transportation in a tank that had previously contained crude oil.

SECTION 5 – REACTIVITY DATA

Chemical Stability: Yes Conditions: Heat Incompatibility: Yes Substances: Oxidizing agents (e.g. chlorine, compressed oxygen) Reactivity: Yes Conditions: Heat, strong sunlight Hazardous Decomposition Products: Carbon monoxide, carbon dioxide

SECTION 6 – TOXICOLOGICAL PROPERTIES OF PRODUCT

Routes of Entry: Skin Absorption Yes Skin Contact: Yes (liquid) Eye Contact: Yes Inhalation: Acute: Yes Chronic: Yes Ingestion: Yes Effects of Acute Exposure: Vapour may cause irritation of eyes, nose and throat, dizziness and drowsiness. Contact with skin may cause irritation and possibly dermatitis. Hydrocarbons absorbed through intact skin. Contact of liquid with eyes may cause severe irritation. Effects of Chronic Exposure: Due to presence of benzene and n-hexane, long term exposure may increase the risk of anaemia, leukaemia and nervous system damage. Sensitization to Product: N.Av. Exposure Limits of Product: 0.5 ppm (8 hr Alberta OEL for benzene) Irritancy: Yes Synergistic Materials: None reported Carcinogenicity: Yes **Reproductive Effects**: Possibly Teratogenicity: Possibly Mutagenicity: Possibly

SECTION 7 – PREVENTIVE MEASURES

Personal Protective Equipment: Use positive pressure self-contained breathing apparatus, supplied air breathing apparatus, or cartridge respirator approved for organic vapours where concentrations may exceed exposure limits. **Gloves**: Viton (nitrile adequate for short exposure to liquid)

Respiratory: SCBA, SABA or cartridge respirator approved for organic vapours. **Eye**: Chemical splash goggles **Footwear**: As per safety policy. **Clothing**: As per fire protection policy.

Engineering Controls: Use only in well ventilated areas. Mechanical ventilation required in confined areas. Equipment must be explosion proof.

Leaks & Spills: Stop leak if safe to do so. Use personal protective equipment. Use water spray to cool containers. Remove all ignition sources. Provide explosion-proof clearing ventilation, if possible. Prevent from entering confined spaces, or from contaminating land and water courses. Dyke and pump into containers for recycling or disposal. Notify appropriate regulatory authorities.

Waste Disposal: Contact appropriate regulatory authorities for disposal requirements.

Handling Procedures & Equipment: Avoid contact with liquid. Avoid inhalation. Bond and ground all transfers. Avoid sparking conditions.

Storage Requirements: Store in a cool, dry, well ventilated area away from heat, strong sunlight, and ignition sources. **Special Shipping Information**: N.Av.

SECTION 8 – FIRST AID MEASURES

Skin:	Flush skin with water, removing contaminated clothing. Get medical attention if irritation persists or
	large areas of contact.

Eye: Immediately flush with large amounts of luke warm water for 15 minutes, lifting upper and lower lids at intervals. Get medical attention if irritation persists.

Inhalation: Ensure own safety. Remove victim to fresh air. Give oxygen, artificial respiration, or CPR if needed. Get immediate medical attention.

Ingestion: Give 2-3 glasses of milk or water to drink. DO NOT INDUCE VOMITING. Keep warm and at rest. Get immediate medical attention.

SECTION 9 – PREPARATION DATE OF MSDS

Prepared By: Encana Environment, Health and Safety (EHS) Phone Number: (403) 645-2000 Preparation Date: July 1, 2011 Ex

Expiry Date: July 1, 2014

ATTACHMENT I

Emission Units Table

"25. Fill out the Emission Units Table and provide it as Attachment I."

• Emissions Unit Table

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment I

EMISSION UNITS TABLE

(Include all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status.)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device⁴
CE-01	1E	Caterpillar G398NA Engine	2010	500 bhp	Existing	01-NSCR
RPC	2E	Reciprocating Compressor Rod Packing and Engine Crankcase	2010	500 bhp	Existing	na
SSM	3E	Start/Stop/Maintenance (Blowdown)	2010	500 bhp	Existing	na
DFT-01	4E	Dehydrator 01 Flash Tank (≥ 50% Recycle)	2013 / tbd	5.0 MMscfd	Modified	na
DSV-01	5E	Dehydrator 01 Regenerator/Still Vent	2013 / tbd	5.0 MMscfd	Modified	na
RBV-01	6E	Reboiler Vent	2013	0.20 MMBtu/hr	Existing	na
T-01	7E	Storage Tank Produced Water	tbd	210 bbl	New	na
TLO	8E	Truck Load-Out Produced Water	tbd	2,520 bbl/yr	New	na
FUG-G	1F	Piping and Equipment Fugitives (Gas)	2013	1,737 Fittings	Existing	na
FUG-W	2F	Piping and Equipment Fugitives (Water/Oil)	2013	873 Fittings	Existing	na

¹ For Emission Units (or <u>Sources</u>) use the following numbering system: 1S, 2S, 3S, ... or other appropriate designation.

² For Emission Points use the following numbering system: 1E, 2E, 3E, ... or other appropriate designation.

³New, modification, removal, etc.

⁴ For Control Devices use the following numbering system: 1C, 2C, 3C, ... or other appropriate designation.

ATTACHMENT J

Emission Points Data Summary Sheet

"26. Fill out the **Emission Points Data Summary Sheet** (Table 1 and Table 2) and provide it as Attachment J."

- Table 1 Emissions Data
- Table 2 Release Parameter Data

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment J - Emission Points Data Summary Sheet

Compressor Engine 01 (CE-01/1E)

							Table 1: E	Emissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Vented This <i>(Must</i> <i>Emissic</i>	on Unit Through Point <i>match</i> on Units Plot Plan)	Air Pol Control (Must r Emission Table & P	Device match n Units	Emissi	ime for on Unit mical res only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs			Pote Cont	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
Piol Pian)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		<u> </u>
								NOX	14.00	61.32	2.24	9.81	Gas	Vendor	
		500 bhp C/	AT G398NA	(4SRB@1,2	200 rpm)			CO	15.10	66.15	4.23	18.52	Gas	Vendor	
		(Comp	ressor Engi		SCR)			VOC	0.34	1.48	0.34	1.48	Gas	AP-42	
			(CE-01	/1E)				SO2	2.5E-03	0.01	2.5E-03	0.01	Gas	AP-42	
								PM10/2.5	0.08	0.37	0.08	0.37	Solid/Gas	AP-42	
								Benzene	6.8E-03	0.03	6.8E-03	0.03	Gas	AP-42	
								Ethylbenzene	1.1E-04	4.7E-04	1.1E-04	4.7E-04	Gas	AP-42	
								НСНО	0.09	0.39	0.09	0.39	Gas	AP-42	
								n-Hexane					Gas	AP-42	
								Methanol	0.01	0.06	0.01	0.06	Gas	AP-42	
	Upward							Toluene	2.4E-03	0.01	2.4E-03	0.01	Gas	AP-42	
CE-01/1E	Vertical	CE-01/1E	CE-01/1E	01-NSCR	NSCR	С	8,760	2,2,4-TMP					Gas	AP-42	
								Xylenes	8.4E-04	0.00	8.4E-04	0.00	Gas	AP-42	
								Other HAP	0.03	0.12	0.03	0.12	Gas	AP-42	
								Total HAP	0.14	0.61	0.14	0.61	Gas	Sum	
								CO2	506	2,215	506	2,215	Gas	AP-42	
								CH4	0.99	4.36	0.99	4.36	Gas	AP-42	
								N2O	9.5E-04	4.2E-03	9.5E-04	4.2E-03	Gas	AP-42	
								CO2e	531	2,326	531	2,326	Gas	Wgt Sum	

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment J - Emission Points Data Summary Sheet

Rod Packing/Crankcase Leaks (RPC/2E)

							Table 1: E	missions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	No. tchControl Device (Must match Emission Units Table & Plot Plan)Control Device (Must match Emission Units Table & Plot Plan)No. (Must match Emission Units Table & Plot Plan)Control Device (Must match Emission Units Table & Plot Plan)					Vent T Emissi <i>(Che</i> process	on Unit <i>mical</i>	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maxi Pote Uncon Emise	ential itrolled	Pote Cont	imum ential rrolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
FIOL FIAIT)		ID No.	Source	ID No.		Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
								NOX					Gas		
	Com		d Deeking/	Engline Cre		eke		СО					Gas		
	Com	pressor Ro	d Packing/I (RPC/		nkcase Le	aks		VOC	1.18	5.16	1.18	5.16	Gas	Vendor	
			(,				SO2					Gas		
								PM10/2.5					Solid/Gas		
								Benzene	4.7E-03	0.02	4.7E-03	0.02	Gas	Vendor	
								Ethylbenzene	4.7E-03	0.02	4.7E-03	0.02	Gas	Vendor	
								НСНО	1.2E-03	5.3E-03	1.2E-03	5.3E-03	Gas	Vendor	
								n-Hexane	4.7E-03	0.02	4.7E-03	0.02	Gas	Vendor	
								Methanol					Gas		
								Toluene	4.7E-03	0.02	4.7E-03	0.02	Gas	Vendor	
RPC/2E	na	RPC/2E	RPC/2E	na	na	С	8,760	2,2,4-TMP	4.7E-03	0.02	4.7E-03	0.02	Gas	Vendor	
								Xylenes	4.7E-03	0.02	4.7E-03	0.02	Gas	Vendor	
								Other HAP					Gas		
								Total HAP	0.03	0.13	0.03	0.13	Gas	Sum	
								CO2	7	30	7	30	Gas	Vendor	
								CH4	2.93	12.84	2.93	12.84	Gas	Vendor	
								N2O					Gas		
								CO2e	80	351	80	351	Gas	Wgt Sum	

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment J - Emission Points Data Summary Sheet

Start/Stop/Maintenance (w/ Blowdown) (SSM/3E)

							Table 1: E	missions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Vented This <i>(Must</i> <i>Emissi</i> c	on Unit Through Point <i>match</i> on Units Plot Plan)	Air Pol Control (Must r Emissio Table & F	Device match n Units	Emissi <i>(Che</i>	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Pote Uncor	imum ential htrolled sions ⁴	Pote Conf	imum ential trolled sions⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
FIOL FIAIT)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
								NOX					Gas		
	64	ort/Stop/Ma	aintenance	(Including I	Plawdawn	、		CO					Gas		
	31	arustop/ina	(SSM/		biowaown)		VOC		8.08		8.08	Gas	EE	
			,	- /				SO2					Gas		
								PM10/2.5					Solid/Gas		
								Benzene		4.8E-03		4.8E-03	Gas	EE	
								Ethylbenzene		4.8E-03		4.8E-03	Gas	EE	
								НСНО					Gas		
								n-Hexane		0.17		0.17	Gas	EE	
								Methanol					Gas		
								Toluene		4.8E-03		4.8E-03	Gas	EE	
SSM/3E	na	SSM/3E	SSM/3E	na	na	I	na	2,2,4-TMP		4.8E-03		4.8E-03	Gas	EE	
								Xylenes		4.8E-03		4.8E-03	Gas	EE	
								Other HAP					Gas		
								Total HAP		0.19		0.19	Gas	Sum	
								CO2		0.10		0.10	Gas	EE	
								CH4		20.11		20.11	Gas	EE	
								N2O					Gas		
1								CO2e		503		503	Gas	Wgt Sum	

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment J - Emission Points Data Summary Sheet

Dehydrator 01 - Flash-Tank (DSV-01/5E)

							Table 1: E	missions Data							
Emission Point ID No. (Must match Emission Units Table &	Emission Point Type ¹	Vented	Point match on Units	Air Pol Control (Must i Emissio Table & F	Device match n Units			All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maxi Pote Uncon Emiss	trolled	Pote Cont	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr ton/yr		lb/hr ton/yr		or Gas/Vapor)		C ,
								NOX					Gas		
		5	MMscfd De	hydrator 01				СО					Gas		
		(Flasl	h Tank w/ >		cle)			VOC	8.78	38.44	8.78	38.44	Gas	GLYCalc	
			(DFT-0	1/4E)				SO2					Gas		
								PM10/2.5					Solid/Gas		
								Benzene	0.03	0.12	0.03	0.12	Gas	GLYCalc	
								Ethylbenzene	2.2E-03	0.01	2.2E-03	0.01	Gas	GLYCalc	
								НСНО					Gas	GLYCalc	
								n-Hexane	0.23	1.00	0.23	1.00	Gas	GLYCalc	
								Methanol					Gas		
	Upward	DFT-	DFT-					Toluene	0.03	0.13	0.03	0.13	Gas	GLYCalc	
DFT-01/4E	Vertical	01/4E	01/4E	na	na	С	8,760	2,2,4-TMP	1.3E-03	0.01	1.3E-03	0.01	Gas	GLYCalc	
								Xylenes	0.03	0.12	0.03	0.12	Gas	GLYCalc	
								Other HAP					Gas		
								Total HAP	0.32	1.39	0.32	1.39	Gas	Sum	
								CO2	84.12	368.45	84.12	368.45	Gas	GLYCalc	
								CH4	13.79	60.41	13.79	60.41	Gas	GLYCalc	
								N2O					Gas		
								CO2e	429	1,879	429	1,879	Gas	Wgt Sum	

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment J - Emission Points Data Summary Sheet

Dehydrator 01 - Regenerator/Still Vent (DSV-01/6E)

							Table 1: E	missions Data							
Emission Point ID No. (Must match Emission Units Table &	Emission Point Type ¹	Vented This <i>(Must</i> <i>Emissic</i>	on Unit Through Point <i>match</i> on Units Plot Plan)	Air Po Control (Must i Emissio Table & F	Device match n Units	Emissi <i>(Che</i>	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Emis		Pote Cont	imum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr ton/yr		or Gas/Vapor)		
								NOX					Gas		
		5	MMscfd De	hydrator 01				CO					Gas		
		(F	Regenerator					VOC	2.34	10.25	2.34	10.25	Gas	GLYCalc	
			(DSV-0	1/5E)				SO2					Gas		
								PM10/2.5					Solid/Gas		
								Benzene	0.17	0.75	0.17	0.75	Gas	GLYCalc	
								Ethylbenzene	0.03	0.15	0.03	0.15	Gas	GLYCalc	
								НСНО					Gas	GLYCalc	
								n-Hexane	0.06	0.27	6.1E-02	0.27	Gas	GLYCalc	
								Methanol					Gas		
	Unword	DSV-	DSV-					Toluene	0.28	1.21	0.28	1.21	Gas	GLYCalc	
DSV-01/5E	Upward Vertical	01/5E	01/5E	na	na	С	8,760	2,2,4-TMP	3.6E-04	1.6E-03	3.6E-04	1.6E-03	Gas	GLYCalc	
								Xylenes	0.61	2.66	0.61	2.66	Gas	GLYCalc	
								Other HAP					Gas		
								Total HAP	1.15	5.04	1.15	5.04	Gas	Sum	
								CO2	0.01	0.05	0.01	0.05	Gas	GLYCalc	
								CH4	0.14	0.62	0.14	0.62	Gas	GLYCalc	
								N2O					Gas		
								CO2e	4	16	4	16	Gas	Wgt Sum	

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment J - Emission Points Data Summary Sheet

Dehydrator Reboiler 01 (RBV-01/5E)

							Table 1: E	missions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Io. This Point Control Device Ch Emission (Must match Point Emission Units Emission Units Pe& Type ¹ Table & Plot Plan)					Emissi	ime for on Unit <i>mical</i> ses only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Pote	mum ential htrolled sions ⁴	Pote Cont	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
PIOL PIAN)		ID No.	Source	ID No.		Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		· <i>· ·</i>
								NOX	0.02	0.09	0.02	0.09	Gas	AP-42	
		0.00 MM)/h.» D.a.h	duatau Dah	- 11 04			CO	0.02	0.07	0.02	0.07	Gas	AP-42	
		U.20 IVIIVIE	8tu/hr Dehy (RBV-0)		oller 01			VOC	1.1E-03	4.9E-03	1.1E-03	4.9E-03	Gas	AP-42	
			(,				SO2	1.2E-04	5.2E-04	1.2E-04	5.2E-04	Gas	AP-42	
							1	PM10/2.5	1.5E-03	0.01	1.5E-03	0.01	Solid/Gas	AP-42	
								Benzene	4.1E-07	1.8E-06	4.1E-07	1.8E-06	Gas	AP-42	
								Ethylbenzene					Gas	AP-42	
								НСНО	1.5E-05	6.4E-05	1.5E-05	6.4E-05	Gas	AP-42	
								n-Hexane	3.5E-04	1.5E-03	3.5E-04	1.5E-03	Gas	AP-42	
								Methanol					Gas	AP-42	
	Linuard	RBV-	RBV-					Toluene	6.7E-07	2.9E-06	6.7E-07	2.9E-06	Gas	AP-42	
RBV-01/6E	Upward Vertical	кву- 01/6E	кву- 01/6Е	na	na	С	8,760	2,2,4-TMP					Gas	AP-42	
								Xylenes					Gas	AP-42	
								Other HAP	3.7E-07	1.6E-06	3.7E-07	1.6E-06	Gas	AP-42	
								Total HAP	3.7E-04	1.6E-03	3.7E-04	1.6E-03	Gas	Sum	
								CO2	24	103	24	103	Gas	AP-42	
								CH4	4.5E-04	2.0E-03	4.5E-04	2.0E-03	Gas	AP-42	
								N2O	4.3E-04	1.9E-03	4.3E-04	1.9E-03	Gas	AP-42	
								CO2e	24	104	24	104	Gas	Wgt Sum	

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment J - Emission Points Data Summary Sheet

Produced Water Storage Tank 01 (T-01/6E)

							Table 1: E	missions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	o. ch Emission Point A & Type ¹ UD No. Control Device (Must match Emission Units Table & Plot Plan) Control Device (Must match Emission Units Table & Plot Plan)						on Unit <i>mical</i>	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maxi Pote Uncon Emise	ential htrolled	Pote Cont	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
PIOL PIAN)		ID No.	Source	ID No.		Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
								NOX					Gas		
				otor Stores	o Tonk			СО					Gas		
		210 001 P	roduced W (T-01/	-	erank			VOC	0.02	1.22	0.02	1.22	Gas	EPA	
			(****	,				SO2					Gas		
								PM10/2.5					Solid/Gas		
								Benzene	6.8E-04	8.2E-03	6.8E-04	8.2E-03	Gas	EPA	
								Ethylbenzene	6.8E-04	8.2E-03	6.8E-04	8.2E-03	Gas	EPA	
								НСНО					Gas		
								n-Hexane	2.3E-03	0.03	2.3E-03	0.03	Gas	EPA	
								Methanol					Gas		
	Unword							Toluene	6.8E-04	8.2E-03	6.8E-04	8.2E-03	Gas	EPA	
T-01/7E	Upward Vertical	T-01/7E	T-01/7E	na	na	С	8,760	2,2,4-TMP	6.8E-04	8.2E-03	6.8E-04	8.2E-03	Gas	EPA	
								Xylenes	6.8E-04	8.2E-03	6.8E-04	8.2E-03	Gas	EPA	
								Other HAP					Gas		
								Total HAP	5.7E-03	0.05	5.7E-03	0.05	Gas	Sum	
								CO2	4.6E-03	0.03	4.6E-03	0.03	Gas		
								CH4	0.08	3.14	0.08	3.14	Gas		
								N2O					Gas		
								CO2e	2.06	78.50	2.06	78.50	Gas		

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment J - Emission Points Data Summary Sheet

Produced Water - Truck Load-Out (TLO/7E)

							Table 1: E	Emissions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Unit Vented Through This Point <i>(Must match Emission Units</i> Table & Plot Plan)		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Vent Time for Emission Unit (Chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
								NOX					Gas		
	Truck Load-Out - Produced Water (TLO/8E)							СО					Gas		
								VOC		0.08		0.08	Gas	AP-42	
	· · · ·							SO2					Gas		
		TLO/8E	TLO/8E	na	na	Ι	na	PM10/2.5					Solid/Gas		
								Benzene		4.2E-03		4.2E-03	Gas	AP-42	
								Ethylbenzene		4.2E-03		4.2E-03	Gas	AP-42	
								НСНО					Gas		
								n-Hexane		4.2E-03		4.2E-03	Gas	AP-42	
								Methanol					Gas		
TLO/8E	Upward Vertical							Toluene		4.2E-03		4.2E-03	Gas	AP-42	
								2,2,4-TMP		4.2E-03		4.2E-03	Gas	AP-42	
								Xylenes		4.2E-03		4.2E-03	Gas	AP-42	
								Other HAP					Gas		
								Total HAP		0.03		0.03	Gas	Sum	
								CO2					Gas		
								CH4					Gas		
								N2O					Gas		
								CO2e					Gas		

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment J - Emission Points Data Summary Sheet

FACILITY-WIDE SUMMARY

						Table	1: Emissio	ns Data - Continu	ed						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Unit Vented Through This Point <i>(Must match Emission Units</i> Table & Plot Plan)		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Vent Time for Emission Unit (Chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
								NOX	14.02	61.40	2.26	9.90	Gas	Sum	
								CO	15.12	66.22	4.24	18.59	Gas	Sum	
	FACILITY-WIDE SUMMARY (Including Fugitives (FUG-G/1F and FUG-W/2F)							Point - VOC	12.66	64.72	12.66	64.72	Gas	Sum	
								Fugitive - VOC	2.46	10.78	2.46	10.78	Gas	Sum	
	,	J	5			,		Total - VOC	15.12	75.50	15.12	75.50	Gas	Sum	
								SO2	2.7E-03	0.01	2.7E-03	0.01	Gas	Sum	
								PM10/2.5	0.09	0.37	0.09	0.37	Gas	Sum	
								Benzene	0.24	1.06	0.24	1.06	Gas	Sum	
								Ethylbenzene	0.07	0.31	0.07	0.31	Solid/Gas	Sum	
								НСНО	0.09	0.39	0.09	0.39	Gas	Sum	
								n-Hexane	0.42	2.03	0.42	2.03	Gas	Sum	
								Methanol	0.01	0.06	0.01	0.06	Gas	Sum	
								Toluene	0.34	1.50	0.34	1.50	Gas	Sum	
na	na	na	na	na	na	na	na	2,2,4-TMP	0.03	0.16	0.03	0.16	Gas	Sum	
								Xylenes	0.67	2.95	0.67	2.95	Gas	Sum	
								Other HAP	0.03	0.12	0.03	0.12	Gas	Sum	
								Total HAP	1.90	8.56	1.90	8.56	Gas	Sum	
								CO2	620	2,718	620	2,718	Gas	Sum	
								CH4	23	125	23	125	Gas	Sum	
								N2O	1.4E-03	0.01	1.4E-03	0.01	Gas	Sum	
								CO2e	1,205	5,851	1,205	5,851	Gas	Sum	

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment J - Emission Points Data Summary Sheet

Table 1 Notes

Criteria Pollutants				
Pollutant	CAS			
NO2	10102-44-0			
CO	630-08-0			
VOC	na			
Propane	74-98-6			
i-Butane	75-28-5			
n-Butane	106-97-8			
SO2	7446-09-5			
PM10/2.5	na			

Hazardous Air Pollutants (HAPs)					
Pollutant	CAS				
Benzene	71-43-2				
Ethylbenzene	100-41-4				
Formadehyde	50-00-0				
n-Hexane	110-54-3				
Methanol	67-56-1				
Toluene	108-88-3				
2,2,4-TMP	540-84-1				
Xylenes	1330-20-7				
Other HAP	na				
Total HAP	na				

Greenhouse Gas (GHG) Pollutants				
Pollutant	CAS			
CO2	124-38-9			
CH4	74-82-8			
N2O	10024-97-2			
CO2e	na			

Table 1: Notes

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

1 Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

- 2 Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).
- 3 List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS2, VOCs, H2S, Inorganics, Lead, Organics, O3, NO, NO2, SO2, SO3, all applicable Greenhouse Gases (including CO2 and methane), etc. DO NOT LIST H2, H2O, N2, O2, and Noble Gases.

4 Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

5 Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

6 Indicate method used to determine emission rate as follows:

MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

7 Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m3) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO2, use units of ppmv (See 45CSR10).

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment J - Emission Points Data Summary Sheet

Release Parameter Data

				Table 2: Re	elease Parame	eter Data				
				Exit Gas		Emission Poir	nt Elevation (ft)	UTM Coordinates (km)		
Emiss Point No (Must m Emiss Units Ta	ID hatch ion	Inner Diameter (ft.)	Temp. (oF)	Volumetric Flow ¹ (acfm) (At operating conditions)	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting	
CE-01	1E	0.5	1,100	2,751	234	1,100	20.0	4,420.1	527.7	
RPC	2E					1,100	4.0	4,420.1	527.7	
SSM	3E					1,100	4.0	4,420.1	527.7	
DFT-01	4E	0.6	160	500	30	1,100	10.0	4,420.1	527.7	
DSV-01	5E	0.6	212	400	30	1,100	10.0	4,420.1	527.7	
RBV-01	6E	0.6	300	400	30	1,100	10.0	4,420.1	527.7	
T-01	7E		Amb			1,100	16.0	4,420.1	527.7	
TLO	8E		Amb			1,100	10.0	4,420.1	527.7	
FUG-G	1F					1,100	4.0	4,420.1	527.7	
FUG-W	2F					1,100	4.0	4,420.1	527.7	

¹ Give at operating conditions. Include inerts.

2 Release height of emissions above ground level.

ATTACHMENT K

Fugitive Emissions Data Summary Sheet

"27. Fill out the Fugitive Emissions Data Summary Sheet and provide it as Attachment K."

- Application Forms Checklist
- Fugitive Emissions Summary
- Leak Source Data Sheet

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment K - Fugitive Emissions

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

		APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
.)	Will there be h	aul road activities?
	□ Yes	☑ No
	□ If Yes, then	complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be S	storage Piles?
	□ Yes	☑ No
	□ If Yes, then	complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be L	iquid Loading/Unloading Operations?
	⊠ Yes	□ No Truck Load-Out (TLO/8E) is included in Point Source Emissions
	□ If Yes, then	complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
1.)	Will there be e	missions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes	☑ No
	□ If Yes, then	complete the GENERAL EMISSIONS UNIT DATA SHEET.
		equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, ons, flanges, agitators, cooling towers, etc.)?
	⊠ Yes	No
	☑ If Yes, then DATA SHEI	complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT ET.
5.)	Will there be G	General Clean-up VOC Operations?
	□ Yes	☑ No
	□ If Yes, then	complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be a	ny other activities that generate fugitive emissions?
	□ Yes	☑ No
	□ If Yes, then	complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	If you answere	ed "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions Summary."

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment K - Fugitive Emissions

FUGITIVE EMISSIONS DATA SUMMARY SHEET - Continued

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions.

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants Chemical Name/CAS ¹		n Potential ed Emissions ²	Maximur Controlled	Est. Method Used ⁴	
	Name/CAS	lb/hr	ton/yr	lb/hr	ton/yr	Used
Paved Haul Roads	na					
Unpaved Haul Roads	na					
Storage Pile Emissions	na					
Loading/Unloading Operations	Trucl	k Load-Out (TLO/	BE) is included in I	Point Source Emis	sions	-
Wastewater Treatment	na					
	VOC	2.46	10.78	2.46	10.78	O - EPA
	Benzene	0.03	0.12	0.03	0.12	O - EPA
	Ethylbenzene	0.03	0.12	0.03	0.12	O - EPA
	Formaldehyde (HCHO)					
	n-Hexane	0.12	0.53	0.12	0.53	O - EPA
	Methanol (MeOH)					
Equipment Leaks	Toluene	0.03	0.12	0.03	0.12	O - EPA
(FUG-G (1F) and FUG-L (2F))	2,2,4-TMP (i-Octane)	0.03	0.12	0.03	0.12	O - EPA
(Total)	Xylenes	0.03	0.12	0.03	0.12	O - EPA
	Other HAP					
	Total HAP	0.26	1.12	0.26	1.12	Sum
	CO2	0.02	0.08	0.02	0.08	MB
	CH4	5.43	23.79	5.43	23.79	MB
	N2O					
	CO2e	136	595	136	595	Wgt Sum
General Clean-up VOC Emissions	na					
Other	na					

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂,

VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases, etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in min (e.g. 5 lb VOC/20 min batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in min (e.g. 5 lb VOC/20 min batch).

⁴ Indicate method used to determine emission rate as follows:

MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment K - Fugitive Emissions

DESCRIPTION OF FUGITIVE EMISSIONS

Soure Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (Days) ³	Estimated Annual Emission Rate (lb/yr) ⁴				
	Light Liquid VOC ^{6,7}								
Pumps ⁵	Heavy Liquid VOC ⁸								
	Non-VOC ⁹								
	Gas VOC								
Valves ¹⁰	Light Liquid VOC								
valves	Heavy Liquid VOC								
	Non-VOC		1						
	Gas VOC								
Safety Relief Valves ¹¹	Light Liquid VOC		7						
	Non-VOC		This Facility is NOT Subject to Leak Detection and Repair (LDAR) Regulations.						
	Gas VOC	L							
Open Ended Lines ¹²	Light Liquid VOC								
	Non-VOC								
	Gas VOC								
Sampling Connections ¹³	Light Liquid VOC								
	Non-VOC								
Compressor	Gas VOC		-						
Compressors	Non-VOC								
	Gas VOC								
Flanges / Connectors	Light Liquid VOC								
	Non-VOC								
	Gas VOC								
Other*	Light Liquid VOC								
	Non-VOC								
				TOTAL (lb/yr)	21,569				
				TOTAL (tpy)	10.78				

*Other components include compressor seals, relief valves, diaphragms, drains, meters, etc.

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment K DESCRIPTION OF FUGITIVE EMISSIONS - Continued

Notes for Leak Source Data Sheet

1. For VOC sources include components on streams and equipment that contain greater than 10% VOC, including feed streams, reaction/separation facilities, and product/by-product delivery lines. Do not include certain leakless equipment as defined below by category.

2. By monitoring frequency, give the number of sources routinely monitored for leaks, using a portable detection device that measures concentration in visual or soap-bubble leak detection ppm. Do not include monitoring by methods. "M/Q(M)/Q/SA/A/0" means the time period between inspections as follows: Monthly/Quarterly, with Monthly follow-up of repaired leakers/Quarterly/Semi-annual/Annually/other (specify time period)

If source category is not monitored, a single zero in the space will suffice. For example, if 50 gas-service valves are monitored quarterly, with monthly follow-up of those repaired, 75 are monitored semi-annually, and 50 are checked bimonthly (alternate months), with non checked at any other frequency, you would put in the category valves, gas service: 0/50/0/75/0/50 (bimonthly).

3. Give the average number of days, after a leak is discovered, that an attempt will be made to repair the leak.

4. Note the method used: MB - material balance; EE - engineering estimate; 0 - other method, such as in-house emission factor (specify).

5. Do not include in the equipment count seal-less pumps (canned motor or diaphragm) or those with enclosed venting to a control device. (Emissions from vented equipment should be included in the estimates given in the Emission Points Data Sheet.)

6. Volatile organic compounds (VOC) means the term as defined in 40 CFR. 51.100 (s).

7. A light liquid is defined as a fluid with vapor pressure equal to or greater than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if 20% w/w or more of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20°C, then the fluid is defined as a light liquid.

8. A heavy liquid is defined as a fluid with a vapor pressure less than 0.04 psi (0.3 Kpa) at 20°c. For mixtures, if less than 20% w/w of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20°C. then the fluid is defined as a heavy liquid.

9. LIST CO, H2S, mineral acids, NO, SO, etc. DO NOT LIST H, H2O, N, O, and Noble Gases.

10. Include all process valves whether in-line or on an open-ended line such as sample, drain and purge valves. Do not include safety-relief valves, or leakless valves such as check, diaphragm, and bellows seal valves.

11. Do not include a safety-relief valve if there is a rupture disk in place upstream of the valve, or if the valve vents to a control device.

12. Open-ended lines include purge, drain and vent lines. Do not include sampling connections, or lines sealed by plugs, caps, blinds or second valves.

13. Do not include closed-purge sampling connections.

ATTACHMENT L

Emissions Unit Data Sheet(s)

"28. Fill out the Emissions Unit Data Sheet(s) as Attachment L."

- Natural Gas Compressor/Generator Engine Data Sheet
 CAT G398NA Compressor Engine Vendor Data
- Natural Gas Glycol Dehydration Unit Data Sheet
- 40 CFR Part 63; Subpart HH & HHH Registration Form
- Storage Tank Data Sheet
- Model Results Storage Tank ProMax
 - Flowchart
 - Workbook
- Bulk Liquid Transfer Operations

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment L - Emission Unit Data Sheet

NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

Compress	Compressor Station		BARDALL CS			
Source Identifi	cation Number ¹	CE-01/1E			1	
Engine Manufac	cturer and Model	CAT G398NA				
Manufacturer's	Rated bhp/rpm	500 /	1,200			
Source	Status ²	E	S			
Date Installed/Me	odified/Removed ³	20	10			
Manufactured/Re	construction Date ⁴	Pre-	1985			
Certified Engine (40	CFR60 NSPS JJJJ) ⁵	N	lo			
	Engine Type ⁶	RE	34S			
	APCD Type ⁷	NS	CR			
	Fuel Type ⁸	R	G			
Freine Fuel and	H ₂ S (gr/100 scf)	0	.2			
Engine, Fuel and Combustion Data	Operating bhp/rpm	500 /	1,200			
Combaction Data	BSFC (Btu/bhp-hr)	7,8	300			
	Fuel (ft ³ /hr)	4,2	239			
	Fuel (MMft ³ /yr)	37	.13			
	Operation (hrs/yr)	8,7	760			
Reference ⁹	PTE ¹⁰	lbs/hr	tons/yr		lbs/hr	tons/yr
MD	NOX	2.24	9.81			
MD	СО	4.23	18.52			
AP	VOC	0.34	1.48			
AP	SO2	2.5E-03	0.01			
AP	PM10/2.5	0.08	0.37			
AP	Benzene	6.8E-03	0.03			
AP	Ehtylbenzene	1.1E-04	4.7E-04			
AP	Formaldehyde	0.09	0.39			
AP	n-Hexane					
AP	Methanol	0.01	0.06			
AP	Toluene	2.4E-03	0.01			
AP	2,2,4-TMP					
AP	Xyelene	8.4E-04	3.7E-03			
AP	Other HAP	0.03	0.12			
Sum	Total HAP	0.14	0.61			
AP	CO2	506	2,215			
AP	CH4	0.99	4.36			
AP	N2O	9.5E-04	4.2E-03			
Weighted Sum	CO2e	531	2,326			

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment L - Emission Unit Data Sheet

NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

(Continued)

Notes to NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

1. Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. If more than three (3) engines exist, please use additional sheets.

2. Enter the Source Status using the following codes:

NS = Construction of New Source (installation)

ES = Existing Source

MS = Modification of Existing Source

RS = Removal of Source

3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.

4. Enter the date that the engine was manufactured, modified or reconstructed.

5. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6. Enter the Engine Type designation(s) using the following codes:

LB2S = Lean Burn Two Stroke

RB4S = Rich Burn Four Stroke

LB4S = Lean Burn Four Stroke

7. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F = Air/Fuel Ratio

IR = Ignition Retard

HEIS = High Energy Ignition System

SIPC = Screw-in Precombustion Chambers

PSC = Prestratified Charge

LEC = Low Emission Combustion

NSCR = Non-Selective Catalytic Reduction

SCR = Lean Burn & Selective Catalytic Reduction

8. Enter the Fuel Type using the following codes:

PQ = Pipeline Quality Natural Gas

RG = Raw Natural Gas

9. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this Compressor/Generator Data Sheet(s).

. MD = Manufacturer's Data

AP = AP-42

GR = GRI-HAPCalcTM

OT = Other (please list)

10. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the Emissions Summary Sheet.

			G39	98 EI	MISSIC	DNS DA	11.4	-,		
G398 EMISSIONS DATA @ STANDARD RATINGS										
NGINE	RATING (hp/npm)	NOx	CO (granvhp-hr)	нс	9602 	AMPIR Volivol	Tstack deg F	EXH FLOW clm	AIR FLOW	BSEC Blu/hp-hj
ia kicri	500/1200 stand/cata.yst	12.7	13.7	2.0	D.E	9.5	1100	2251 -	1437	7800
IA HCE	412/1000									
	stend catalysi	13 3 11.2	C.A 12.1	12 1.7	2.0 0.5	10.5 9.5	1090 1101	1695 1638 -	1225	746C 766E
IA LOR	ASO/1200 stand/catalyst	11.4	11.5	0.8	0.6	95	1202	2435	1459	8903
IA LOH	375/1000									
	stand catalysi	15.1 11.3	0.\$ 11.8	9.8 0.8	2.0 0.5	40.4 9.5	1000 1032	1776 1720	1220 1145	6273 6582
A LCH	525/1200	AF -						8050	0040	0000
	stand calalysi	20.6 9.8	0.8 10.7	9 0 0 8	2.D 05	10.5 9.5	1040	3053 3043	2040 1929	8026 8387
A LCA	550/1000									
	stand	19.0	0.9	0.9	2.0	30.4	1004 1056	2556 2445	1 750 1607	8011 6052
	catalysi	9.7	9.7	B .0	0.5	9.5	1055	2440	1807	0032
A LCA	700/1200 stand	¥8.S	6.8	1.1	2.0	_	1095	\$1\$7	1699	7936
AHCR	700/1200 stand	15 2	1.1	0.P	2.0	10.5	1103	2279	2155	7778
	calaiyet	15 Z 9.4	9.9	1.6	0.5	9.5	1132	3144	1998	7850
ALCR	610/1306 stand	15.8	0.9	1.2	2.0	_	664	2484	1723	78 46
A HCR	610/1000									7567
	eland calaiyal	14 의 8.9	0.8 9.6	1.1 1.6	2.0 0.5	10.5 9.5	1064 1075	2775 3032	1825	7887 7804
A HCH.82C	•	-1-			2					
OW EMIS	stand	£.0	1.5	1.4	6.2	13.6	1010	4482	3100	7643
A HCR \$20 OW EMIS	610/100C stand	0.3	1. 2	2.0	7.6	14.2	950	3841	2770	7529
A HCR MC OW EMIS	625/1200 stand	6.0	1,\$	1.3	6 .0	13.6	99 2	4135	2690	7791
A HCA SAC OW EMIS	550/1000 stand	6.0	1.8	1.7	6.7	142	929	3210	2950	7593

-

Williams Ohio Valley Midstream LLC BARDALL COMPRESSOR STATION Application for 45CSR13 NSR Modification Permit Attachment L - Emission Unit Data Sheet

NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET

		Compress	sor Station	BARD	ALL CS	
			er and Model			
		Max Dry Gas Flow	Rate (MMscf/day)	5.0		
		-	(MMBtu/hr) - LHV	0.2		
General		v .	(DEG or TEG)	TI	EG	
Dehydrat			Status ²		S	
Da	ta		odified/Removed ³	20	13	
			till Vent APCD ⁴		a	
		-	u/scf) - LHV	92	20	
		H ₂ S Conten	t (gr/100 scf)	0	.2	
		_	n (hrs/yr)		760	
Source ID # ¹	Vent	Reference ⁵	PTE ⁶	lbs/hr	tons/yr	
		GRI-GLYCalc	VOC	11.12	48.69	
		GRI-GLYCalc	Benzene	0.20	0.87	
		GRI-GLYCalc	Ethylbenzene	0.04	0.16	
	Flash Tank	GRI-GLYCalc	n-Hexane	0.29	1.27	
	(DFT-01/4E)	GRI-GLYCalc	Toluene	0.31	1.34	
Dehydrator 01	and Still Vent (DSV-01/5E) Combined	GRI-GLYCalc	2,2,4-TMP	1.7E-03	0.01	
-		GRI-GLYCalc	Xylenes	0.64	2.78	
		Sum	Total HAP	1.47	6.43	
		GRI-GLYCalc	CO2	84.13	368.50	
		GRI-GLYCalc	CH4	14	61	
		Weighted Sum	CO2e	433	1,894	
		AP-42	NOX	0.02	0.09	
		AP-42	СО	0.02	0.07	
		AP-42	VOC	1.1E-03	4.9E-03	
		AP-42	SO2	1.2E-04	5.2E-04	
		AP-42	PM10/2.5	1.5E-03	0.01	
		AP-42	Benzene	4.1E-07	1.8E-06	
		AP-42	Ethylbenzene			
		AP-42	НСНО	1.5E-05	6.4E-05	
		AP-42	n-Hexane	3.5E-04	1.5E-03	
Reboiler Vent 01	RBV-01/6E	AP-42	Methanol			
		AP-42	Toluene	6.7E-07	2.9E-06	
		AP-42	2,2,4-TMP			
		AP-42	Xylenes			
		AP-42	Other HAP	3.7E-07	1.6E-06	
		Sum	Total HAP	3.7E-04	1.6E-03	
		AP-42	CO2	24	103	
		AP-42	CH4	4.5E-04	2.0E-03	
		AP-42	N2O	4.3E-04	1.9E-03	
		Weighted Sum	CO2e	24	104	

Williams Ohio Valley Midstream LLC BARDALL COMPRESSOR STATION Application for 45CSR13 NSR Modification Permit Attachment L - Emission Unit Data Sheet

NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET (Continued)

Notes to NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET

1. Enter the appropriate Source Identification Numbers for the glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent. The glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Unit Data Sheet shall be completed for each, using Source Identification #s RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

2. Enter the Source Status using the following codes:

NS = Construction of New Source

ES = Existing Source

MS = Modification of Existing Source

RS = Removal of Source

3. Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.

4. Enter the Air Pollution Control Device (APCD) type designation using the following codes:

- NA = None
- CD = Condenser
- FL = Flare
- CC = Condenser/Combustion Combination
- TO = Thermal Oxidizer

5. Enter the Potential Emissions Data Reference designation using the following codes:

MD = Manufacturer's Data AP = AP-42 GR = GRI-GLYCalcTM OT = Other (please list): _____

6. Enter the Reboiler Vent and glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalc Aggregate Calculations Report to this Glycol Dehydration Unit Data Sheet(s). This PTE data shall be incorporated in the Emissions Summary Sheet.

Include a copy of the GRI-GLYCalcTM analysis. This includes a printout of the aggregate calculations report, which shall include emissions reports, equipment reports, and stream reports.

*An explanation of input parameters and examples, when using GRI-GLYCalcTM is available on our website.

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment L

40 CFR Part 63; Subpart HH & HHH Registration Form

West Virginia Department of Environmental Protection

Division of Air Quality

40 CFR Part 63; Subpart HH & HHH Registration Form

DIVISION OF AIR QUALITY: (304) 926-0475

WEB PAGE: http://www.wvdep.org

Complete this form for any oil and natural gas production or natural gas transmission and storage facility that uses an affected unit under HH/HHH, whether subject or not.

Affected facility actual annual average natural gas throughput (scf/day):	5.0	ММ
Affected facility actual annual average hydrocarbon liquid throughput: (bbl/day):	n	a
The affected facility processes, upgrades, or stores hydrocarbon liquids prior to custody transfer.	⊠ Yes	🗆 No
The affected facility processes, upgrades, or stores natural gas prior to the point at which natural gas (NG) enters the NG transmission and storage source category or is delivered to the end user.	⊠ Yes	□ No
The affected facility is: prior to a NG processing plant D NG processing plant prior to the point of custody transfer and there is no NG processing plant 		
The affected facility transports or stores natural gas prior to entering the pipeline to a local distribution company or to a final end user (if there is no local distribution company).	□ Yes	⊠ No
The affected facility exclusively processes, stores, or transfers black oil with an initial producing gas-to-oil ratio (GOR): na scf/bbl API gravity: na degrees	□ Yes	⊠ No

	Section B: Dehydration Unit (if applicable) ¹
Description: 5.0 MMs	cfd - Dehydrator 01 (DFT-01/4E and DSV-01/5E)
Date of Installation: 2013	Annual Operating Hours: 8,760 Burner rating (MMbtu/hr): 0.20
Exhaust Stack Height (ft): 10.0	Stack Diameter (ft): 0.6 Stack Temp. (oF): 120
Glycol Type: 🗹 TEG	EG Other: na
Glycol Pump Type:	Gas If Gas, what is the volume ratio?: 0.08 acfm/gpm
Condenser installed?	☑ No Exit Temp: na Condenser Pressure: na
Incinerator/flare installed?	☑ No Destruction Eff.: na
Other controls installed?	☑ No Describe: na
Wet Gas ²	Gas Temperature: 70 oF Gas Pressure: 1,000 psig
(Upstream of Contact Tower	Saturated Gas?: Ø Yes □ No If no, water content?: na
Dry Gas	Gas Flowrate: Actual: 5.0 MMscfd Design: 5.0 MMscfd
(Downstream of Contact Tower	Water Content: 7.0 lb/MMscf
Loon Chrod	Circulation Rate: Actual ³ : 1.50 gpm Max ⁴ : 1.50 gpm
Lean Glycol	Pump make/model: Kimray 9020PV
Church Floorh Tonk (if applianthe)	Temp: 160.0 oF Press: 40.0 psig Vented: ☑ Yes □ No
Glycol Flash Tank (if applicable)	If no, describe vapor control: A minimum of 50% of the Flash Tank off-gas
	is recycled as fuel in the reboiler.
Stripping Gas (if applicable)	Source of Gas na Rate: na

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment L

40 CFR Part 63; Subpart HH & HHH Registration Form - Continued

Please attach the following required dehydration unit information:

- 1. System map indicating the chain of custody information. See Page 43 of this document for an example of a gas flow schematic. It is not intended that the applicant provide this level of detail for all sources. The level of detail that is necessary is to establish where the custody transfer points are located. This can be accomplished by submitting a process flow diagram indicating custody transfer points and the natural gas flow. However, the DAQ reserves the right to request more detailed information in order to make the necessary decisions.
- 2. Extended gas analysis from the Wet Gas Stream, including mole percent of C1-C8, benzene, ethylbenzene, toluene, xylene and n-hexane, using Gas Processors Association (GPA) 2286 (or similar). A sample should be taken from the inlet gas line, downstream from any inlet separator, and using a manifold to remove entrained liquids from the sample and a probe to collect the sample from the center of the gas line. GPA standard 2166 reference method or a modified version of EPA Method TO-14, (or similar) should be used.

3. GRI-GLYCalc Ver. 3.0 aggregate report based on maximum Lean Glycol circulation rate and maximum throughput.

4. Detailed calculations of gas or hydrocarbon flow rate.

Section C: Facility NESHAPS Subpart HH/HHH status				
	Subject to Subpart HH However, <u>EXEMPT</u> because the facility is an area source of HAP emissions <u>and</u> the actual average emissions of benzene from the glycol dehy- dration unit process vent to the atmosphere is < 0.90 megagram per year (1.0 tpy); see 40CFR§63.764(e)(1)(ii).			
Affected facility status: - (choose only one)				
	□ Not Subject Because:		< 10/25 TPY Affected facility exclusively handles black oil. Facility-wide actual annual average NG throughput is < 650 thousand scf/day and facility-wide actual annual average hydrocarbon liquid is < 250 bpd. No affected source is present.	

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

ATTACHMENT L

ATTACHMENT L - STORAGE TANK DATA SHEET

Source ID	Status	Contents	Volume (gal)	Diam (ft)	Thru-Put (gal/yr)	Orientation	Ave Liq Hght (ft)
T-01	NEW	Produced Water	8,820	12.0	105,840	Vert	8.0
	•	Also the following Insi	gnificant Stora	age Tanks:	•		•
	EXIST	Lube Oil	500	4.0	6,000	Horiz	3.0
	EXIST	Methanol	330	4.0	3,960	Horiz	3.0

Notes to STORAGE TANK DATA SHEET

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc.

- 2. Enter storage tank Status using the following:
 - EXIST Existing Equipment
 - NEW Installation of New Equipment
 - REM Equipment Removed
- 3. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, etc.
- 4. Enter storage tank volume in gallons.
- 5. Enter storage tank diameter in feet.
- 6. Enter storage tank throughput in gallons per year.
- 7. Enter storage tank orientation using the following:

VERT Vertical Tank

- HORZ Horizontal Tank
- 8. Enter storage tank average liquid height in feet.

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

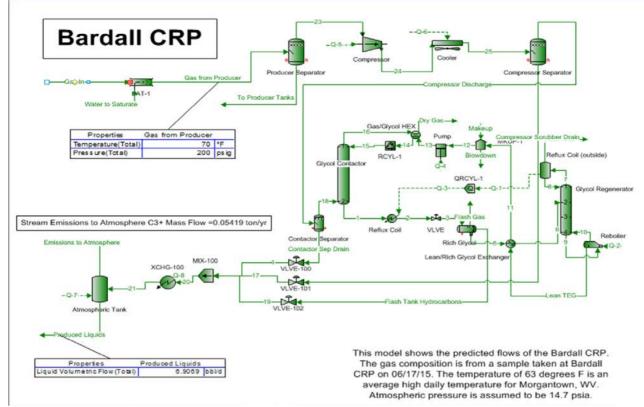
Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name				
Bardall Compressor Station	210 bbl Produced Water Tank				
3. Tank Equipment Identification No. (as assigned on <i>Equipment List Form</i>) T01	 Emission Point Identification No. (as assigned on Equipment List Form) 7E 				
5. Date of Commencement of Construction (for existing	tanks) TBD				
6. Type of change 🛛 New Construction 🗌 I	New Stored Material				
 Description of Tank Modification (if applicable) na 					
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tar					
7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode).					
7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.): na					
II. TANK INFORM	IATION (required)				
height.	e the internal cross-sectional area multiplied by internal 0 barrels				
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)				
10	15				
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)				
14	8				
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)				
liquid levels and overflow valve heights.	is also known as "working volume" and considers design 0 barrels				

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
105,840	289.97			
14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume)				
12				
15. Maximum tank fill rate (gal/min)				
16. Tank fill method Submerged	Splash Bottom Loading			
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems 🛛 Does Not Apply			
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
 18. Type of tank (check all that apply): Fixed Roofverticalhorizontalother (describe) External Floating Roofpontoon roof Domed External (or Covered) Floating Roof 	flat roofcone roofdome roof			
Donned External (or covered) Hoating Roof Internal Floating Roof vertical column su Variable Vapor Space Ifter roof Pressurized spherical cylindrica	diaphragm			
Underground				
19. Tank Shell Construction:	ATION (optional if providing TANKS Summary Sheets)			
Riveted Gunite lined Epoxy-coate	d rivets 🗌 Other (describe)			
20A. Shell Color 20B. Roof Colo				
21. Shell Condition (if metal and unlined):				
🗌 No Rust 🔄 Light Rust 📄 Dense R	ust 🗌 Not applicable			
22A. Is the tank heated? YES NO				
22B. If YES, provide the operating temperature (°F)				
22C. If YES, please describe how heat is provided to tank.				
23. Operating Pressure Range (psig): to				
24. Complete the following section for Vertical Fixed Roof Tanks				
24A. For dome roof, provide roof radius (ft)				
24B. For cone roof, provide slope (ft/ft)				
25. Complete the following section for Floating Roof Tanks Does Not Apply				
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type:				
25C. Is the Floating Roof equipped with a Secondary S	Seal? 🗌 YES 🔄 NO			
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):			
25E. Is the Floating Roof equipped with a weather ship	eld? YES NO			


25F. Describe deck fittings; indicat	e the number of eac	ch type of fitting:			
	ACCESS	S НАТСН			
BOLT COVER, GASKETED:	UNBOLTED COVER, GASKETED:		UNBOLTED COVER, UNGASKETED:		
	<u> </u>				
		JGE FLOAT WELL			
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:		
		N WELL			
BUILT-UP COLUMN – SLIDING			PIPE COLUMN – FLEXIBLE		
COVER, GASKETED:	COVER, UNGASH		FABRIC SLEEVE SEAL:		
		R WELL			
PIP COLUMN – SLIDING COVER, G			SLIDING COVER, UNGASKETED:		
	AGRETED.		SEIDING COVER, UNGAGRETED.		
	GAUGE-HATCH	SAMPLE PORT			
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:		
WEIGHTED MECHANICAL			SAMPLE WELL-SLIT FABRIC SEAL		
ACTUATION, GASKETED:	ACTUATION, UN		(10% OPEN AREA)		
		BREAKER			
WEIGHTED MECHANICAL ACTUAT	ION, GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:		
	RIM	L VENT			
WEIGHTED MECHANICAL ACTUAT			NICAL ACTUATION UNGASKETED		
	DECK DRAIN (3-I	NCH DIAMETER)			
OPEN:		90% CLOSED:			
STUB DRAIN 1-INCH DIAMETER:					
OTHER (DESCF	OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)				

26. Complete the following section for Internal Floating Roof Tanks 🛛 🖾 Does Not Apply				
26A. Deck Type: Dolted Welder	ed			
26B. For Bolted decks, provide deck constructio	on:			
26C. Deck seam:				
Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide				
Continuous sheet construction 7 feet wide				
 ☐ Continuous sheet construction 5 × 7.5 feet v ☐ Continuous sheet construction 5 × 12 feet v 				
Other (describe)	wide			
26D. Deck seam length (ft)	26E. Area of deck (ft ²)			
For column supported tanks: 26F. Number of columns:	26G. Diameter of each column:			
	tional if providing TANKS Summary Sheets)			
27. Provide the city and state on which the data in				
28. Daily Average Ambient Temperature (°F)				
29. Annual Average Maximum Temperature (°F)				
30. Annual Average Minimum Temperature (°F)				
31. Average Wind Speed (miles/hr)				
32. Annual Average Solar Insulation Factor (BTU/((ft ² ·day))			
33. Atmospheric Pressure (psia)				
V. LIQUID INFORMATION (op	otional if providing TANKS Summary Sheets)			
34. Average daily temperature range of bulk liquid:	:			
34A. Minimum (°F)	34B. Maximum (°F)			
35. Average operating pressure range of tank:				
35A. Minimum (psig)	35B. Maximum (psig)			
36A. Minimum Liquid Surface Temperature (°F)) 36B. Corresponding Vapor Pressure (psia)			
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)			
38A. Maximum Liquid Surface Temperature (°F) 38B. Corresponding Vapor Pressure (psia)				
39. Provide the following for each liquid or gas to b	be stored in tank. Add additional pages if necessary.			
39A. Material Name or Composition				
39B. CAS Number				
39C. Liquid Density (lb/gal)				
39D. Liquid Molecular Weight (lb/lb-mole)				
39E. Vapor Molecular Weight (lb/lb-mole)				

Maximum Vapor Press	sure						
39F. True (psia)							
<u>39G.</u> Reid (psia) Months Storage per Ye	oar						
39H. From	Cui						
39I. To							
VI. EMISSIONS AND CONTROL DEVICE DATA (required)							
40. Emission Control I	40. Emission Control Devices (check as many as apply): 🖾 Does Not Apply						
Carbon Adsorp	\Box Carbon Adsorption ¹						
Condenser ¹							
Conservation V	/ent (psig)						
Vacuum S			Pressure Se	etting			
Emergency Re	lief Valve (psig)			0			
☐ Inert Gas Blan							
Insulation of Ta	ank with						
Liquid Absorpti	ion (scrubber) ¹						
Refrigeration o							
Rupture Disc (
Vent to Inciner							
Other ¹ (describ	e):						
¹ Complete approp	oriate Air Pollution Cont	rol Device S	Sheet.				
41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).							
41. Expected Emissio	n Rate (submit Test Da	ta or Calcul	ations here	or elsewhere in the a	oplication).		
-	1		1				
41. Expected Emissio Material Name & CAS No.	n Rate (submit Test Da Breathing Loss (lb/hr)	ta or Calcul Workin Amount	1	or elsewhere in the a Annual Loss (lb/yr)	Estimation Method ¹		
Material Name &	Breathing Loss	Workin	g Loss	Annual Loss	Estimation Method ¹ EPA-450/3-85-001a,		
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹ EPA-450/3-85-001a,		
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹ EPA-450/3-85-001a,		
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹ EPA-450/3-85-001a,		
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹ EPA-450/3-85-001a,		
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹ EPA-450/3-85-001a,		
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹ EPA-450/3-85-001a,		
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹ EPA-450/3-85-001a,		
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹ EPA-450/3-85-001a,		
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss (lb/yr)	Estimation Method ¹ EPA-450/3-85-001a,		

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Location: Condensate Volume: Total VOC's: Bardall CRP 2527.925 bbl/yr 0.06 ton/yr

Emissi	ions to Atmosphere	
Temperature	°F	63
Pressure	psig	0
Mole Fraction Vapor	%	100

Emissions to Atmosphere		
Component	tons/year	
Water	0.01	
TEG	0.00	
Oxygen	0.00	
Nitrogen	0.00	
Methane	0.36	
CO2	0.02	
Ethane	0.10	
Propane	0.04	
i-Butane	0.00	
n-Butane	0.01	
i-Pentane	0.00	
n-Pentane	0.00	
2,2-Dimethylbutane	0.00	
2,3-Dimethylbutane	0.00	
2-Methylpentane	0.00	
3-Methylpentane	0.00	
Hexane	0.00	
2,2-Dimethylpentane	0.00	
Methylcyclopentane	0.00	
Benzene	0.00	
3,3-Dimethylpentane	0.00	
Cyclohexane	0.00	
2-Methylhexane	0.00	
2,3-Dimethylpentane	4.26E-06	

Prod	uced Liquids	
Temperature	°F	63
Pressure	psig	0
Std Liquid Volumetric Flow	bbl/d	6.9069

Produced Liquids		
Component	mass fraction	
Water	99.99	
TEG	0.00	
Oxygen	0.00	
Nitrogen	0.00	
Methane	0.00	
CO2	0.00	
Ethane	0.00	
Propane	0.00	
i-Butane	0.00	
n-Butane	0.00	
i-Pentane	0.00	
n-Pentane	0.00	
2,2-Dimethylbutane	0.00	
2,3-Dimethylbutane	0.00	
2-Methylpentane	0.00	
3-Methylpentane	0.00	
Hexane	0.00	
2,2-Dimethylpentane	0.00	
Methylcyclopentane	0.00	
Benzene	0.00	
3,3-Dimethylpentane	0.00	
Cyclohexane	0.00	
2-Methylhexane	0.00	
2,3-Dimethylpentane	1.17E-08	

3-Methylhexane	1.18E-05
1,t-2-Dimethylcyclopentane	7.17E-08
1,t-3Dimethylcyclopentane	9.42E-07
Heptane	1.44E-05
Methylcyclohexane	6.82E-05
2,5-Dimethylhexane	8.67E-08
2,3-Dimethylhexane	1.01E-06
Toluene	0.000175516
2-Methylheptane	6.34E-07
4-Methylheptane	1.22E-06
3-Methylheptane	1.18E-06
1,t-4-Dimethylcyclohexane	5.33E-10
Octane	1.77E-06
1,t-3-Dimethylcyclohexane	3.46E-11
2,6-Dimethylheptane	8.47E-08
Ethylcyclohexane	2.33E-06
Ethylbenzene	9.33E-06
m-Xylene	1.87E-05
p-Xylene	0.000101763
o-Xylene	5.15E-06
Nonane	5.71E-07
Decane	2.01E-07
Undecane	1.39E-07

3-Methylhexane	2.20E-08
1,t-2-Dimethylcyclopentane	2.58E-12
1,t-3Dimethylcyclopentane	1.38E-08
Heptane	2.99E-08
Methylcyclohexane	7.27E-07
2,5-Dimethylhexane	2.70E-11
2,3-Dimethylhexane	3.39E-09
Toluene	0.000118098
2-Methylheptane	2.96E-10
4-Methylheptane	2.07E-09
3-Methylheptane	2.15E-09
1,t-4-Dimethylcyclohexane	3.61E-17
Octane	1.98E-09
1,t-3-Dimethylcyclohexane	2.91E-18
2,6-Dimethylheptane	5.14E-11
Ethylcyclohexane	3.46E-08
Ethylbenzene	6.12E-06
m-Xylene	1.24E-05
p-Xylene	6.20E-05
o-Xylene	4.57E-06
Nonane	1.06E-09
Decane	2.31E-10
Undecane	2.15E-10

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number	er (as assigned on <i>Eq</i>	uipment List I	Form): TLO									
1. Loading Area Name: Bardall Compressor Station												
2. Type of cargo vessels accommodated at this rack or transfer point (check as many as apply): N/A □ Drums □ Marine Vessels □ Rail Tank Cars ■ Tank Trucks												
3. Loading Rack or Transfer Point Data:												
Number of pumps	6	1										
Number of liquids	loaded	1										
Maximum number of marine1vessels, tank trucks, tank cars,and/or drums loading at one time												
 Does ballasting on D Yes 	4. Does ballasting of marine vessels occur at this loading area? □ Yes □No ■ Does not apply											
5. Describe cleanin N/A	g location, compound	s and proced	ure for cargo vessel	s using t	his transfer point:							
6. Are cargo vessel If YES, describe:	s pressure tested for □Yes	leaks at this c	r any other location □ No	? N/A								
7. Projected Maxim	um Operating Sched	ule (for rack o	r transfer point as a	whole):								
Maximum	Jan Mar.	Apr Ju	ne July - S	ept.	Oct Dec.							
hours/day	24	24	24		24							
days/week	7	7	7		7							
weeks/quarter												

8. Bulk Liquid I	Data (add pages as necess	ary):					
Pump ID No.		1					
Liquid Name		Prod. H2O					
Max. daily throu	ughput (1000 gal/day)	8.8					
Max. annual thr	oughput (1000 gal/yr)	106					
Loading Method	1 ¹	SP					
Max. Fill Rate (gal/min)	200					
Average Fill Tin	ne (min/loading)	60					
Max. Bulk Liqui	d Temperature (°F)	60					
True Vapor Pre	ssure ²	1.5					
Cargo Vessel C	Condition ³	U					
Control Equipm	ent or Method ⁴	None					
Minimum contro	ol efficiency (%)	N/A					
Maximum	Loading (lb/hr)						
Emission Rate (VOC)	Annual (lb/yr)	168					
Estimation Meth	nod ⁵	EPA					
¹ BF = Bottom F	Fill SP = Splash Fill	SUB = S	ubmerged F	ill			1
² At maximum t	oulk liquid temperature						
³ B = Ballasted	Vessel, C = Cleaned, U = U	Incleaned	(dedicated :	service), O	= other (d	describe)	
CA = Carbon CO = Conder CRA = Comp CRC = Comp O = other (de	isation ressor-Refrigeration-Absorp ression-Refrigeration-Cond scibe)	otion ensation	LOA = Lea SC = Scrul TO = Ther	n Oil Adsor ober (Absor mal Oxidati	ption ption) on or Inci	neration	
MB = Materia	easurement based upon tes		mittal				

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING	RECORDKEEPING
REPORTING	TESTING

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

ATTACHMENT M

Air Pollution Control Device Sheet(s)

"29. Fill out the Air Pollution Control Device Sheet(s) as Attachment M."

• Air Pollution Control Device Sheet - 01-NSCR

Attachment M Air Pollution Control Device Sheet (OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): 01-NSCR

Heat Content (BTU/scf):

Oxygen Content (%): Moisture Content (%): Relative Humidity (%):

Equipment Information

1.	Manufacturer: GT Model No. GT, 201-V3-1-1-2108-1 (or equiv.)	2. Control Device Nan Type: NSCR	ne: Catalytic Converter							
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state									
4.	On a separate sheet(s) supply all data and calculatio	ns used in selecting or de	esigning this collection device.							
5.	. Provide a scale diagram of the control device showing internal construction.									
6.	Submit a schematic and diagram with dimensions an	d flow rates.								
7.	Guaranteed minimum collection efficiency for each pe	ollutant collected:								
	100%									
8.	Attached efficiency curve and/or other efficiency infor	rmation.								
9.	Design inlet volume: 2,251 CFM	10. Capacity:								
	Indicate the liquid flow rate and describe equipment p									
12.	Attach any additional data including auxiliary equip control equipment.	oment and operation de	tails to thoroughly evaluate the							
13.	Description of method of handling the collected mate	rial(s) for reuse of dispos	al.							
	Gas Stream C	haracteristics								
14.	Are halogenated organics present? Are particulates present? Are metals present?	Yes ⊠ No Yes ⊠ No Yes ⊠ No Yes ⊠ No								
15.	Inlet Emission stream parameters:	Maximum	Typical							
	Pressure (mmHg):									

16.	Type of pollutant(s) of Particulate (type)		□ SO _x	☐ Odor ⊠ Other NOx	and CO		
17.	Inlet gas velocity:		ft/sec	18. Pollutant	specific gravity:		
19.	Gas flow into the coll 2,251 CFM	lector: @ 1,100°F and	PSIA	20. Gas strea	m temperature: Inlet: Outlet:	1,100 <1,250	°F °F
21.	Gas flow rate: Design Maximum: Average Expected:	2,251 CI 2,251 CI		22. Particulate	e Grain Loading Inlet: Outlet:	in grains/scf:	
23.	Emission rate of eac	h pollutant (spec	ify) into and out	of collector:			
	Pollutant	IN Po	llutant	Emission	OUT Po	llutant	Control
		g/bhp-hr	grains/acf	Capture Efficiency %	g/bhp-hr	grains/acf	Efficiency %
	NOx	12.7		100	2.0		84
	CO	13.7		100	4.0		72
24.	Dimensions of stack:	: Heig	iht	ft.	Diameter		ft.
25.	Supply a curve show rating of collector.	ving proposed c	ollection efficien	cy versus gas	volume from 2	5 to 130 perce	nt of design
			Particulate	Distribution			
26.	Complete the table:	F	Particle Size Dis to C	stribution at In Collector	let Fraction	Efficiency of	Collector
Pa	articulate Size Range	e (microns)	Weight % fo	r Size Range	Weig	ht % for Size	Range
	0 – 2						
	2 – 4						
	4 – 6						
	6 – 8						
	8 – 10						
	10 – 12						
	12 – 16						
	16 – 20						
	20 – 30						
	30 – 40						
	40 – 50						
	40 – 50 50 – 60						
	50 - 60						
	50 – 60 60 – 70						

>100

27. Describe any air p reheating, gas hum		utlet gas conditioning processes (e.g., gas cooling, gas
28. Describe the collect	ction material disposal system:	
29. Have you included	Other Collectores Control Devic	e in the Emissions Points Data Summary Sheet?
Please propose n	ng parameters. Please propose	and Testing eporting in order to demonstrate compliance with the testing in order to demonstrate compliance with the
MONITORING:		RECORDKEEPING:
REPORTING:		TESTING:
MONITORING:		ocess parameters and ranges that are proposed to be strate compliance with the operation of this process
RECORDKEEPING: REPORTING:	Please describe the proposed red	cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air
TESTING:	Please describe any proposed pollution control device.	emissions testing for this process equipment on air
31. Manufacturer's Gu	aranteed Control Efficiency for eac	h air pollutant.
NOx: ≥ 84% CO:	:≥72%	
32. Manufacturer's Gu	aranteed Control Efficiency for eac	h air pollutant.
33. Describe all operat	ting ranges and maintenance proce	edures required by Manufacturer to maintain warranty.

ATTACHMENT N

Supporting Emissions Calculations

"30. Provide all Supporting Emissions Calculations as Attachment N."

• Emission Summary Spreadsheets

- o Controlled Emissions Criteria Pollutants
- Controlled Emissions Hazardous Air Pollutants (HAP)
- Greenhouse Gas (GHG) Emissions
- o PRE-Controlled Emissions Criteria Pollutants
- PRE-Controlled Emissions Hazardous Air Pollutants (HAP)

Unit-Specific Emission Spreadsheets

- Compressor Engine 500 bhp CAT G398NA (CE-01/1E)
- o Compressor Rod Packing/Engine Crankcase Leaks (RPC/2E)
- Start/Stop/Maintenance (Blowdown) (SSM/3E)
- Dehydrator 01 (Flash Tank (DFT-01/4E) and Regenerator/Still Vent (DSV-01/5E))
- o Dehydrator 01 (Combined) 5.0 MMscfd
- Reboiler 01 0.20 MMBtu/hr (RBV-01/6E)
- Storage Tank Produced Water (T-01/7E)
- o Representative Tank 01/7E Flash Emissions ProMax
- Truck Load-Out Produced Water (TLO/8E)
- Piping and Equipment Fugitives Gas & Water/Oil (FUG-G/1F and FUG-W/2F)
- AP-42 and GHG Emission Factors
- Model Results Dehydrator GRI-GLYCalc 4.0
 - Summary of Emissions
 - Summary of Input Values
 - Aggregate Calculations Report

Williams Ohio Valley Midstream LLC BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment N - Supporting Emissions Calculations

Controlled Emissions - Criteria Pollutants

Unit	Point	Control	Description	Decign Consoity	NC	Dx	C	0	VC	C	SC	Эх	PM10	0/2.5
ID	ID	ID	Description	Design Capacity	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CE-01	1E	01-NSCR	Compressor Engine - CAT G398NA	500 bhp	2.24	9.81	4.23	18.52	0.34	1.48	0.00	0.01	0.08	0.37
RPC	2E	na	Compressor Rod Packing/Engine Crankcase	500 bhp					1.18	5.16				
SSM	3E	na	Start/Stop/Maintenance (Blowdown)	500 bhp						8.08				
DFT-01	4E	na	TEG Dehydrator - Flash Tank	5.0 MMscfd					8.78	38.44				
DSV-01	5E	na	TEG Dehydrator - Still Vent	5.0 MMscfd					2.34	10.25				
RBV-01	6E	na	TEG Dehydrator - Reboiler Vent	0.20 MMBtu/hr	0.02	0.09	0.02	0.07	1.1E-03	4.9E-03	1.2E-04	5.2E-04	1.5E-03	0.01
T-01	7E	na	Storage Tank - Produced Water	210 bbl					0.02	1.22				
TLO	8E	na	Truck Load-Out - Produced Water	2,520 bbl/yr						0.08				
			TOTAL PO	INT SOURCE PTE:	2.26	9.90	4.24	18.59	12.66	64.72	0.00	0.01	0.09	0.37
			WV-DEP	Permit Threshold:	6 lb/hr <u>A</u>	ID 10 tpy	6 lb/hr <u>A</u>	ND 10 tpy	6 lb/hr <u>A/</u>	<u>VD</u> 10 tpy	6 lb/hr <u>A</u>	VD 10 tpy	6 lb/hr <u>A</u>	ID 10 tpy
			Title V	Permit Threshold:		100		100		100		100		100
FUG-G	1F	na	Process Piping Fugitives - Gas	1,737 fittings					1.59	6.94				
FUG-W	2F	na	Process Piping Fugitives - Water/Oil	873 fittings					0.88	3.84				
			TOTAL FUGIT	IVE SOURCE PTE:					2.46	10.78				
				TOTAL PTE:	2.26	9.90	4.24	18.59	15.12	75.50	2.7E-03	0.01	0.09	0.37

Notes: 1 - Emissions are based on operation at 100% of rated load for 8,760 hrs/yr; except that Start/Stop/Maintenance (SSM/3E) and Truck Load-Out (TLO/7E) emission generating activities are infrequent.

2 - VOC is volatile organic compounds, as defined by EPA, and includes HCHO (formaldehyde).

3 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5.

4 - Fugitive criteria pollutant emissions from compressor stations are not considered in major source determinations (45CSR30 Section 2.26.b.)

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment N - Supporting Emissions Calculations

Controlled Emissions - Hazardous Air Pollutants (HAP)

Unit ID	Point	Ben	zene	Ethylb	enzene	НСНО	(HAP)	n-He	xane	Meth	anol	Tolu	lene	2,2,4	-ТМР	Xyle	enes	Other	HAP	Tota	I HAP
Unit ID	ID	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CE-01	1E	6.8E-03	0.03	1.1E-04	4.7E-04	0.09	0.39			0.01	0.06	2.4E-03	0.01			8.4E-04	0.00	0.03	0.12	0.14	0.61
RPC	2E	4.7E-03	0.02	4.7E-03	0.02	0.00	0.01	4.7E-03	0.02			4.7E-03	0.02	4.7E-03	0.02	4.7E-03	0.02			0.03	0.13
SSM	3E		0.00		4.8E-03				0.17				4.8E-03		4.8E-03		4.8E-03				0.19
DFT-01	4E	0.03	0.12	2.2E-03	0.01			0.23	1.00			0.03	0.13	1.3E-03	0.01	0.03	0.12			0.32	1.39
DSV-01	5E	0.17	0.75	0.03	0.15			6.1E-02	0.27			0.28	1.21	3.6E-04	1.6E-03	0.61	2.66			1.15	5.04
RBV-01	6E	4.1E-07	1.8E-06			1.5E-05	6.4E-05	3.5E-04	1.5E-03			6.7E-07	2.9E-06					3.7E-07	1.6E-06	3.7E-04	1.6E-03
T-01	7E	6.8E-04	8.2E-03	6.8E-04	8.2E-03			2.3E-03	0.03			6.8E-04	8.2E-03	6.8E-04	8.2E-03	6.8E-04	8.2E-03			5.7E-03	0.05
TLO	8E		4.2E-03		4.2E-03				4.2E-03				4.2E-03		4.2E-03		4.2E-03				0.03
Sul	btotal:	0.21	0.94	0.04	0.19	0.09	0.39	0.30	1.50	0.01	0.06	0.31	1.38	7.1E-03	0.05	0.64	2.83	0.03	0.12	1.64	7.44
FUG-G	1F	9.3E-04	4.1E-03	9.3E-04	4.1E-03			0.03	0.14			9.3E-04	4.1E-03	9.3E-04	4.1E-03	9.3E-04	4.1E-03			0.04	0.16
FUG-W	2F	0.03	0.12	0.03	0.12			0.09	0.38			0.03	0.12	0.03	0.12	0.03	0.12			0.22	0.96
Sul	btotal:	0.03	0.12	0.03	0.12			0.12	0.53			0.03	0.12	0.03	0.12	0.03	0.12			0.26	1.12
ΤΟΤΑΙ	PTF.	0.24	1.06	0.07	0.31	0.09	0.39	0.42	2.03	0.01	0.06	0.34	1.50	0.03	0.16	0.67	2.95	0.03	0.12	1.90	8.56
	-DEP:		<u>R</u> 0.5 tpy	2 lb/hr (2 lb/hr <u>0</u>		2 lb/hr <u>(</u>		2 lb/hr (<u>DR</u> 5 tpy		<u>DR</u> 5 tpy		<u>DR</u> 5 tpy		0.12 0R 5 tpy		<u>OR</u> 5 tpy
т	itle V:		10		10		10		10		10		10		10		10		10		25

Notes: 1 - Emissions are based on operation at 100% of rated load for 8,760 hrs/yr; except that Start/Stop/Maintenance (SSM/3E) and Truck Load-Out (TLO/7E) emission generating activities are infrequent.

2 - HCHO is formaldehyde; Total HAP includes HCHO, n-hexane, BTEX (benzene, toluene, ethylbenzene, xylene), acetaldehyde, acrolein, and methanol.

Williams Ohio Valley Midstream LLC **BARDALL COMPRESSOR STATION**

Application for 45CSR13 NSR Modification Permit

Attachment N - Supporting Emissions Calculations

Greenhouse Gas (GHG) Emissions

Unit ID	Point ID	Control ID	Description	Heat Input MMBtu/hr (HHV)	Hours of Operation hr/yr	kg/MMBtu: GWP: CO2 tpy	53.06 1 CO2e tpy	kg/MMBtu: GWP: CH4 tpy	1.00E-03 25 CO2e tpy	kg/MMBtu: GWP: N2O tpy	1.00E-04 298 CO2e tpy	TOTAL CO2e tpy
CE-01	1E	01-NSCR	Compressor Engine - CAT G398NA	4.32	8,760	2,215	2,215	4.36	109	4.2E-03	1.24	2,326
RPC	2E	na	Compressor Rod Packing/Engine Crankcase		8,760	30	30	12.84	321			351
SSM	3E	na	Start/Stop/Maintenance (Blowdown)		8,760	0.10	0.10	20.11	503			503
DFT-01	4E	na	TEG Dehydrator - Flash Tank		8,760	368.45	368.45	60.41	1,510			1,879
DSV-01	5E	na	TEG Dehydrator - Still Vent		8,760	0.05	0.05	0.62	16			16
RBV-01	6E	na	TEG Dehydrator - Reboiler Vent	0.20	8,760	103	103	2.0E-03	4.9E-02	1.9E-03	0.56	104
T-01	7E	na	Storage Tank - Produced Water			0.03	0.03	3.14	78			79
TLO	8E	na	Truck Load-Out - Produced Water									
									то	TAL POINT SOU	JRCE PTE:	5,256

FUG-G	1F	na	Process Piping Fugitives - Gas	 8,760	0.08	0.08	24	595			595
FUG-W	2F	na	Process Piping Fugitives - Water/Oil	 							
•								ΤΟΤΑ	L FUGITIVE SO	URCE PTE:	595

- AND -

5,851

na

na

6.1E-03

na

na

TOTAL FACILITY-WIDE PTE:	2,718		125	
WV-DEP Threshold: (na	- OR -	na	- OR -
Title V Permit Threshold:	na		na	

Notes: 1 - Emissions are based on operation at 100% of rated load.

2 - Engine CO2 and CH4 emissions are based on vendor specifications.

3 - Fugitive CH4 emissions are based on EPA Fugitive Emission Factors for Oil and Gas Production Operations.

4 - All other GHG emissions are based on default values in 40CFR98, Subpart C, Table C-1.

5 - GHG NSR/PSD Thresholds and Title V Major Source Thresholds are applicable only if other regulated air pollutants exceed the corresponding Thresholds.

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment N - Supporting Emissions Calculations

PRE-Controlled Emissions - Criteria Pollutants

Unit ID	Point ID	Control	Description	Design Capacity	NOx		C	0	VOC		SOx		PM10/2.5	
		ID	Description		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CE-01	1E	01-NSCR	Compressor Engine - CAT G398NA	500 bhp	14.00	61.32	15.10	66.15	0.34	1.48	2.5E-03	0.01	0.08	0.37
RPC	2E	na	Compressor Rod Packing/Engine Crankcase	500 bhp					1.18	5.16				
SSM	3E	na	Start/Stop/Maintenance (Blowdown)	500 bhp						8.08				
DFT-01	4E	na	TEG Dehydrator - Flash Tank	5.0 MMscfd					8.78	38.44				
DSV-01	5E	na	TEG Dehydrator - Still Vent	5.0 MMscfd					2.34	10.25				
RBV-01	6E	na	TEG Dehydrator - Reboiler Vent	0.20 MMBtu/hr	0.02	0.09	0.02	0.07	1.1E-03	4.9E-03	1.2E-04	5.2E-04	1.5E-03	0.01
T-01	7E	na	Storage Tank - Produced Water	210 bbl					0.02	1.22				
TLO	8E na Truck Load-Out - Produced Water			2,520 bbl/yr						0.08				
TOTAL POINT SOURCE PTE:						61.40	15.12	66.22	12.66	64.72	2.7E-03	0.01	0.09	0.37
			WV-DEP	6 lb/hr <u>AND</u> 10 tpy		6 lb/hr <u>AND</u> 10 tpy		6 lb/hr <u>AND</u> 10 tpy		6 lb/hr <u>AND</u> 10 tpy		6 lb/hr <u>AND</u> 10 tpy		
			Title V		100		100		100		100		100	
FUG-G	1F	na	Process Piping Fugitives - Gas	1,737 fittings					1.59	6.94				
FUG-W	2F	na	Process Piping Fugitives - Water/Oil					0.88	3.84					
TOTAL FUGITIVE SOURCE PTE:									2.46	10.78				
				14.02	61.40	15.12	66.22	15.12	75.50	2.7E-03	0.01	0.09	0.37	
FUG-W 2F na Process Piping Fugitives - Water/Oil				873 fittings					0.88 2.46	3.84 10.78				

Notes: 1 - Emissions are based on operation at 100% of rated load for 8,760 hrs/yr; except that Start/Stop/Maintenance (SSM) and Truck Load-Out (TLO) emission generating activities are infrequent.

2 - VOC is volatile organic compounds, as defined by EPA, and includes HCHO (formaldehyde).

3 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5.

4 - Fugitive criteria pollutant emissions are not considered in major source determinations (45CSR30 Section 2.26.b.)

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment N - Supporting Emissions Calculations

PRE-Controlled Emissions - Hazardous Air Pollutants (HAP)

Unit ID	Point	Benzene		Ethylbenzene		HCHO (HAP)		n-Hexane		Methanol		Toluene		2,2,4-TMP		Xylenes		Other HAP		Total HAP	
	ID	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CE-01	1E	6.8E-03	0.03	1.1E-04	4.7E-04	0.09	0.39			0.01	0.06	2.4E-03	0.01			8.4E-04	3.7E-03	0.03	0.12	0.14	0.61
RPC	2E	4.7E-03	0.02	4.7E-03	0.02	1.2E-03	0.01	4.7E-03	0.02			4.7E-03	0.02	4.7E-03	0.02	4.7E-03	0.02			0.03	0.13
SSM	3E		0.00		4.8E-03				0.17				4.8E-03		4.8E-03		4.8E-03				0.19
DFT-01	4E	0.03	0.12	0.00	0.01			0.23	1.00			0.03	0.13	1.3E-03	0.01	0.03	0.12			0.32	1.39
DSV-01	5E	0.17	0.75	0.03	0.15			0.06	0.27			0.28	1.21	3.6E-04	1.6E-03	0.61	2.66			1.15	5.04
RBV-01	6E	4.1E-07	1.8E-06			1.5E-05	6.4E-05	3.5E-04	1.5E-03			6.7E-07	2.9E-06					3.7E-07	1.6E-06	3.7E-04	1.6E-03
T-01	7E	6.8E-04	8.2E-03	6.8E-04	8.2E-03			2.3E-03	0.03			6.8E-04	8.2E-03	6.8E-04	8.2E-03	6.8E-04	8.2E-03			5.7E-03	0.05
TLO	8E		4.2E-03		4.2E-03				4.2E-03				4.2E-03		4.2E-03		4.2E-03				0.03
Sul	btotal:	0.21	0.94	0.04	0.19	0.09	0.39	0.30	1.50	0.01	0.06	0.31	1.38	0.01	0.05	0.64	2.83	0.03	0.12	1.64	7.44
												1									
FUG-G	1F	9.3E-04	4.1E-03	9.3E-04	4.1E-03			0.03	0.14			9.3E-04	4.1E-03	9.3E-04	4.1E-03	9.3E-04	4.1E-03			0.04	0.16
FUG-W	2F	0.03	0.12	0.03	0.12			0.09	0.38			0.03	0.12	0.03	0.12	0.03	0.12			0.22	0.96
Sul	Subtotal:		0.12	0.03	0.12			0.12	0.53			0.03	0.12	0.03	0.12	0.03	0.12			0.26	1.12
TOTAL PTE:		0.24	1.06	0.07	0.31	0.09	0.39	0.42	2.03	0.01	0.06	0.34	1.50	0.03	0.16	0.67	2.95	0.03	0.12	1.90	8.56
WV-DEP:		2 lb/hr 0			DR 5 tpy	2 lb/hr <u>0</u>		-	<u>2.03</u> <u>OR</u> 5 tpy		DR 5 tpy		DR 5 tpy		DR 5 tpy	2 lb/hr (DR 5 tpy	2 lb/hr (
Title V:			10		<u>10</u>		<u>10</u>		10		<u>10</u>		10		<u>10</u>	<u></u>	<u>10</u>		<u>10</u>		25

Notes: 1 - Emissions are based on operation at 100% of rated load for 8,760 hrs/yr; except that Start/Stop/Maintenance (SSM/3E) and Truck Load-Out (TLO/7E) emission generating activities are infrequent.

2 - HCHO is formaldehyde; Total HAP includes HCHO, n-hexane, BTEX (benzene, toluene, ethylbenzene, xylene), acetaldehyde, acrolein, and methanol.

Williams Ohio Valley Midstream LLC BARDALL COMPRESSOR STATION Application for 45CSR13 NSR Modification Permit Attachment N - Supporting Emissions Calculations

Compressor Engine – 500 bhp CAT G398NA

Unit ID	Description	Reference	Pollutant		Pre-Cor Emiss			Control Efficiency		Contr Emiss		
				g/bhp-hr	lb/MMBtu	lb/hr	tpy	Emolency	g/bhp-hr	lb/MMBtu	lb/hr	tpy
	Engine 01	Vendor Guarantee	NOX	12.70	3.24	14.00	61.32	84.0%	2.03	0.52	2.24	9.81
	Ligine Vi	Vendor Guarantee	CO	13.70	3.49	15.10	66.15	72.0%	3.84	0.98	4.23	18.52
	Caterpillar (CAT)	AP-42 Table 3.2-3	THC	1.40	0.36	1.55	6.78	0.0%	1.40	0.36	1.55	6.78
	G398NA	AP-42 Table 3.2-3	NMHC	0.50	0.13	0.55	2.42	0.0%	0.50	0.13	0.55	2.42
	500 bhp (Site Rating)	AP-42 Table 3.2-3	NMNEHC	0.23	0.06	0.25	1.09	0.0%	0.23	0.06	0.25	1.09
	1,200 rpm	AP-42 Table 3.2-3	VOC	0.12	0.03	0.34	1.48	0.0%	0.31	0.08	0.34	1.48
		AP-42 Table 3.2-3	SO2	2.3E-03	5.9E-04	2.5E-03	0.01		2.3E-03	5.9E-04	2.5E-03	0.01
	Three Way Catalyst (NSCR)	AP-42 Table 3.2-3	PM10/2.5	0.08	0.02	0.08	0.37		0.08	0.02	0.08	0.37
	GT NSCR	AP-42 Table 3.2-3	Benzene	6.20E-03	1.6E-03	6.8E-03	0.03	0.0%	6.2E-03	1.6E-03	6.8E-03	0.03
	NESHAP ZZZZ (Existing)	AP-42 Table 3.2-3	Ethylbenzene	9.7E-05	2.5E-05	1.1E-04	4.7E-04	0.0%	9.7E-05	2.5E-05	1.1E-04	4.7E-04
	8,760 hr/yr	AP-42 Table 3.2-3	НСНО	0.08	0.02	0.09	0.39	0.0%	0.08	0.02	0.09	0.39
CE-01/1E	920 Btu/scf (LHV)	AP-42 Table 3.2-3	n-Hexane					0.0%				
	1,020 Btu/scf (HHV)	AP-42 Table 3.2-3	Methanol	0.01	3.1E-03	0.01	0.06	0.0%	0.01	3.1E-03	0.01	0.06
	7,800 Btu/bhp-hr (LHV)	AP-42 Table 3.2-3	Toluene	2.2E-03	5.6E-04	2.4E-03	0.01	0.0%	2.2E-03	5.6E-04	2.4E-03	0.01
	8,648 Btu/bhp-hr (HHV)	AP-42 Table 3.2-3	2,2,4-TMP					0.0%				
	3.90 MMBtu/hr (LHV)	AP-42 Table 3.2-3	Xylenes	7.6E-04	2.0E-04	8.4E-04	0.00	0.0%	7.6E-04	2.0E-04	8.4E-04	0.00
	4.32 MMBtu/hr (HHV)	AP-42 Table 3.2-3	Other HAP	0.02	0.01	0.03	0.12	0.0%	0.02	0.01	0.03	0.12
	34,164 MMBtu/yr (LHV)	Sum	Total HAP	0.12	0.03	0.14	0.61	0.0%	0.13	0.03	0.14	0.61
	37,877 MMBtu/yr (HHV)	AP-42 Table 3.2-3	CO2	459	117	506	2,215		459	117	506	2,215
	4,239 scf/hr	AP-42 Table 3.2-3	CH4 (GWP=25)	0.90	0.23	0.99	4.36		0.90	0.23	0.99	4.36
	0.10 MMscfd	AP-42 Table 3.2-3	N2O (GWP=298)	8.6E-04	2.2E-04	9.5E-04	0.00		8.6E-04	2.2E-04	9.5E-04	0.00
	37.13 MMscf/yr	40CFR98 - Table A-1	CO2e	482	123	531	2,326		482	123	531	2,326

Notes: 1 - The emissions are based on operation at 100% of rated load for 8,760 hr/yr.

2 - As per Engine Specifications, NMNEHC (non-methane/non-ethane hydrocarbon) does not include HCHO. VOC is the sum of NMNEHC and HCHO.

3 - PM10/2.5 is Filterable and Condensable Particulate Matter; including PM10 and PM2.5

4 - HCHO is Formaldehyde; Other HAP includes Acetaldehyde, Acrolein, 1,3-Butadiene, Methanol, Methylene Chloride, and traces of other HAP.

5 - The control efficiency (CE) for each HAP is assumed to be the same as the CE for NMHC, except for HCHO where the vendor provides specific data.

6 - The fuel heating value will vary, 920 Btu/scf (LHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.

7 - Only the calculations based on Vendor Guarantees should be used to establish emission limitations.

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment N - Supporting Emissions Calculations

Compressor Rod Packing/Engine Crankcase Leaks (RPC)

Compressor	Rod	Packing	Leaks	(Natural Gas)	1

		Number	Cyl's per			Total Fugitive	vo	oc	нсі	но	BTEX, r 2,2,4-TN	,	Total	HAP	cc	02	СН	14	со)2e
Unit ID	Unit Description	of Comp- ressors*	Comp- ressor	scfh per Cyl	Contin- gency	Leak Rate	17, Ib/M	000 Mscf	na Ib/MI		67 Ib/MN		40 Ib/MI	-	20 Ib/MM	-	42,2 Ib/MM			7,075 Mscf
						MMscf/yr	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
RPC/2E	Rod Packing Leaks	1	4	15	15%	0.60	1.17	5.14	na	na	4.6E-03	0.02	0.03	0.12	0.01	0.1	3	13	73	319

Engine Crankcase Emissions (Combustion Gas)

ſ			Total Reciprocating	Crankcase Leak Rate		vo	с	нс	но	BTEX, 2,2,4-TI	n-Hex, MP (ea)	Total	HAP	со	2	Cł	14	CO	2e
	Unit ID	Unit Description	Engine Horsepower (bhp)	0.50 scf/bhp-hr	Safety Factor	7.3 Ib/MN	-	1.9 Ib/M	94 Mscf		19 Mscf	3.0 Ib/MN		11,0 Ib/MN		2: Ib/MI		11,6 Ib/MM	
				MMscf/yr		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
	RPC/2E	Crankcase Emissions	500	2.19	250%	4.6E-03	0.02	1.2E-03	5.3E-03	1.2E-04	5.1E-04	1.9E-03	0.01	7	30	0.01	0.06	7	32

	vo	с	нс	нсно		BTEX, n-Hex, 2,2,4-TMP (ea)		Total HAP		CO2		CH4		CO2e	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
TAL RPC EMISSIONS:	1.18	5.16	1.2E-03	5.3E-03	4.7E-03	0.02	0.03	0.13	7	30	3	13	80	351	

- TOT
- 1 Fugitive equipment leaks from misc. equipment is a broad category Notes: covering leaks of natural gas from sealed surfaces, such as packing and gaskets, resulting from the wear of mechanical joints, seals, and rotating surfaces over time.
 - 2 Emission are based upon 40CFR98, Subpart W and manufacturer's data.
 - 3 To be conservative, and to account for potential future changes, the following "worst-case" gas characteristics were assumed:

Pollutant	Gas Analysis	Worst-Case Assumption
CO2	127 lb/MMscf	200 lb/MMscf
CH4	30,856 lb/MMscf	42,275 lb/MMscf
VOC	14,131 lb/MMscf	17,000 lb/MMscf
BTEX, n-Hex, TMP (ea)	52 lb/MMscf	67 lb/MMscf
Total HAP	311 lb/MMscf	400 lb/MMscf

4 - Total Misc. Equipment Fugitive Leak Rate (scf/yr) = No. of Compressors * Cylinders/Compressor * scfh/Cylinder * 8760 hr/yr * (1 + Contingency)

5 - Engine crankcase emissions are based on vendor data: "As a general rule, blow-by (i.e., crankcase emissions) on a new engine is approximately 0.5 scf/bhp-hr." A "safety factor" is used to account for increasing blow-by as the engines "wear".

6 - Crankcase emissions are estimated as follows:

(Data from CAT G398NA Data Sheet and Emissions Calculation Spreadsheet.)

Total Engine Exhaust (TEEx) (Volume)	2,251 ft3/min (acf/min)	400 MMscf/yr TEEx*
Pollutant	G3516B PTE	Crankcase Emission Factor**
Crankcase THC emissions (Mass)	6.78 tpy THC	33.86 lb THC / MMscf TEEx
Crankcase VOC emissions (Mass)	1.48 tpy VOC	7.39 lb VOC / MMscf TEEx
Crankcase HCHO emissions (Mass)	0.39 tpy HCHO	1.94 lb HCHO / MMscf TEEx
Crankcase BTEX (ea) emissions (Mass)	0.04 tpy BTEX (ea)	0.19 lb BTEX (ea) / MMscf TEEx
Crankcase HAP emissions (Mass)	0.61 tpy HAP	3.05 Ib HAP / MMscf TEEx
Crankcase CO2 emissions (Mass)	2,215 tpy CO2	11,065 lb CO2 / MMscf TEEx
Crankcase CH4 emissions (Mass)	4 tpy CH4	22 Ib CH4 / MMscf TEEx
Crankcase CO2e emissions (Mass)	2,326 tpy CO2e	11,615 lb CO2e /MMscf TEEx

* Conversion from acf/min to scf/yr based on 8,760 hr/yr, 1100 oF exhaust temp, and 68 oF std temp.

** Crankcase Emission Factor = PTE (tpy) from a G398NA Engine ÷ Total Engine Exhaust (TEEx) (MMscfy/yr).

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment N - Supporting Emissions Calculations

Start/Stop/Maintenance (Blowdown)

Unit ID (Point ID)	Description	No of Comp- ressor Units*	Total bhp	SSM and Blowdown	a. Engine "Cold-Start" Gas Volume	b. Blowdown Gas Volume	Total Gas Vented	VOC 17,000 Ib/MMscf	n-Hexane 350 Ib/MMscf	BTEX, Hex, TMP (Ea) 10 Ib/MMscf	Total HAP 400 Ib/MMscf	CO2 200 Ib/MMscf	CH4 42,275 Ib/MMscf	CO2e GWP = 25
				Events/yr	scf/SSM	scf/SSM	MMscf/yr	tpy	tpy	tpy	tpy	tpy	tpy	tpy
	a. Cold Start (Engine)	1	500	208	700		0.15	1.24	0.03	7.3E-04	2.9E-02	0.01	3	77
SSM/3E	b. Blowdown (Recip Comp)		300	208		3,108	0.65	5.49	0.11	3.2E-03	0.13	0.06	14	342
	c. Pigging	na	na	52	na	3,061	0.16	1.35	0.03	8.0E-04	0.03	0.02	3	84

TOTAL FACILITY-WIDE SSM EMISSIONS:

8.08 0.17 4.8E-03 0.19 0.10 20 503

Notes: 1 - SSM Emissions are the sum of: a. Unburned fuel resulting from "cold-start" of idle gas-fired engine; and

b. Natural gas that is purged (aka blowdown) from the compressor and associated piping and equipment.

c. Gas vented from pigging operations conducted to clear liquids from the pipeline.

2 - Starting Gas Quantity and Blowdown (B-D) Gas Quantity as per Engineering Department.

(e.g., 8,577 scf/B-D of a compressor with a 1,380 bhp engine equals 6.22 scf/bhp/B-D.)

Engine	a. Unburned "Cold-Start" Gas is Constant at:	700 scf/start
Engine	 b. Blowdown Gas is Related to bhp at: 	6.22 scf/bhp/B-D

3 - To be conservative, the following gas characteristics were assumed:

	Pollutant	Inlet Ga	as Analysis	Estimated
	Carbon Dioxide	127	lb/MMscf	200 lb/MMscf
	Methane	30,856	lb/MMscf	42,275 lb/MMscf
	VOC (Propane)	14,131	lb/MMscf	17,000 lb/MMscf
	n-Hexane	290	lb/MMscf	350 lb/MMscf
	BTEX, TMP (ea)	4	lb/MMscf	10 lb/MMscf
	Total HAP:	311	lb/MMscf	400 lb/MMscf
estima	ates are conservatively based	d on:	4.0	Cold-Starts per week.
			4.0	Blowdown(s) per week.

5 - Pigging calculations based on 52 events per year and 3,061 scf/event (assuming 50 scf of gas blowdown at 900 psig).

4 - Emission

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment N - Supporting Emissions Calculations

Dehydrator 01 (Flash Tank (DFT-01/5E) and Regenerator/Still Vent (DSV-01/6E)) - 5.0 MMscfd

		P. /		Pre-Contro	I - GLYCalc	Pre-Contro	ol x 120%	Control Eff	Controlled	Emissions
Unit ID	Description	Reference	Pollutant	lb/hr	tpy	lb/hr	tpy	%	lb/hr	tpy
			NOX							
	Dehydrator 01		СО							
	Flash Tank (DFT-01/5E)	GRI-GLYCalc 4.0	VOC	7.31	32.04	8.78	38.44		8.78	38.44
	(DF1-01/3E)		SO2							
			PM10/2.5							
	(Minimum of 50% Flash Tank	GRI-GLYCalc 4.0	Benzene	0.02	0.10	0.03	0.12		0.03	0.12
	Off-Gas is used as Fuel in	GRI-GLYCalc 4.0	Ethylbenzene	1.8E-03	0.01	2.2E-03	0.01		2.2E-03	0.01
	the Reboiler)		НСНО							
		GRI-GLYCalc 4.0	n-Hexane	0.19	0.84	0.23	1.00		0.23	1.00
DFT-01/4E		GRI-GLYCalc 4.0	Methanol							
	5.0 MMscfd	GRI-GLYCalc 4.0	Toluene	0.02	0.11	0.03	0.13		0.03	0.13
		GRI-GLYCalc 4.0	2,2,4-TMP	1.1E-03	4.9E-03	1.3E-03	0.01		1.3E-03	0.01
	8,760 Hr/yr	GRI-GLYCalc 4.0	Xylenes	0.02	0.10	0.03	0.12		0.03	0.12
		GRI-GLYCalc 4.0	Other HAP							
	0.21 MMscf/hr	GRI-GLYCalc 4.0	Total HAP	0.27	1.16	0.32	1.39		0.32	1.39
	1,825 MMscf/yr	GRI-GLYCalc 4.0	CO2	70.10	307.04	84.12	368.45		84.12	368.45
		GRI-GLYCalc 4.0	CH4	11.49	50.34	13.79	60.41		13.79	60.41
	NESHAP HH - Exempt	GRI-GLYCalc 4.0	N2O							
		40CFR98 - Table A-1	CO2e	357	1,566	429	1,879		429	1,879
		- <i>i</i>		Pre-Contro	I - GLYCalc	Pre-Contro	ol x 120%	Control Eff	Controlled	Emissions
Unit ID	Description	Reference	Pollutant	lb/hr	tpy	lb/hr	tpy	%	lb/hr	tpy
			NOX							
	Dehydrator 01		CO							
	Regenerator/Still Vent									
	(DSV-01/6E)	GRI-GLYCalc 4.0	VOC	1.95	8.54	2.34	10.25		2.34	10.25
	(DSV-01/6E)	GRI-GLYCalc 4.0	VOC SO2	1.95	8.54	2.34	10.25		2.34	10.25
	(DSV-01/6E)									
	=		SO2							
	 (Still Vent Emissions to		SO2 PM10/2.5							
	=	 GRI-GLYCalc 4.0	SO2 PM10/2.5 Benzene	 0.14	 0.63	 0.17	 0.75		 0.17	 0.75
	 (Still Vent Emissions to	 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0	SO2 PM10/2.5 Benzene Ethylbenzene	 0.14 0.03	 0.63 0.12	 0.17 0.03	 0.75 0.15		 0.17 0.03	 0.75 0.15
DSV-01/5E	 (Still Vent Emissions to	 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 	SO2 PM10/2.5 Benzene Ethylbenzene HCHO	 0.14 0.03 	 0.63 0.12 	 0.17 0.03 	 0.75 0.15 	 	 0.17 0.03 	 0.75 0.15
DSV-01/5E	 (Still Vent Emissions to	GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0	SO2 PM10/2.5 Benzene Ethylbenzene HCHO n-Hexane	 0.14 0.03 0.05	 0.63 0.12 0.22	 0.17 0.03 0.06	 0.75 0.15 0.27	 	 0.17 0.03 6.1E-02	 0.75 0.15 0.27
DSV-01/5E	(Still Vent Emissions to Atmosphere)	GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0	SO2 PM10/2.5 Benzene Ethylbenzene HCHO n-Hexane Methanol	 0.14 0.03 0.05 	 0.63 0.12 0.22 	 0.17 0.03 0.06 	 0.75 0.15 0.27 	 	 0.17 0.03 6.1E-02 	 0.75 0.15 0.27
DSV-01/5E	(Still Vent Emissions to Atmosphere)	GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0	SO2 PM10/2.5 Benzene Ethylbenzene HCHO n-Hexane Methanol Toluene	 0.14 0.03 0.05 0.23	 0.63 0.12 0.22 1.01	 0.17 0.03 0.06 0.28	 0.75 0.15 0.27 1.21	 -	 0.17 0.03 6.1E-02 0.28	 0.75 0.15 0.27 1.21
DSV-01/5E	(Still Vent Emissions to Atmosphere) 5.0 MMscfd	GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0	SO2 PM10/2.5 Benzene Ethylbenzene HCHO n-Hexane Methanol Toluene 2,2,4-TMP	 0.14 0.03 0.05 0.23 3.0E-04	 0.63 0.12 0.22 1.01 0.00	 0.17 0.03 0.06 0.28 3.6E-04	 0.75 0.15 0.27 1.21 0.00	 	 0.17 0.03 6.1E-02 0.28 3.6E-04	 0.75 0.15 0.27 1.21 1.6E-03
DSV-01/5E	(Still Vent Emissions to Atmosphere) 5.0 MMscfd	 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0	SO2 PM10/2.5 Benzene Ethylbenzene HCHO n-Hexane Methanol Toluene 2,2,4-TMP Xylenes	 0.14 0.03 0.05 0.23 3.0E-04 0.51	 0.63 0.12 0.22 1.01 0.00 2.22	 0.17 0.03 0.06 0.28 3.6E-04 0.61	 0.75 0.15 0.27 1.21 0.00 2.66	 -	 0.17 0.03 6.1E-02 0.28 3.6E-04 0.61	 0.75 0.15 0.27 1.21 1.6E-03 2.66
DSV-01/5E	(Still Vent Emissions to Atmosphere) 5.0 MMscfd 8,760 Hr/yr	GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0 GRI-GLYCalc 4.0	SO2 PM10/2.5 Benzene Ethylbenzene HCHO n-Hexane Methanol Toluene 2,2,4-TMP Xylenes Other HAP	 0.14 0.03 0.05 0.23 3.0E-04 0.51 	 0.63 0.12 0.22 1.01 0.00 2.22 	 0.17 0.03 0.06 0.28 3.6E-04 0.61 	 0.75 0.15 0.27 1.21 0.00 2.66 	 -	 0.17 0.03 6.1E-02 0.28 3.6E-04 0.61 	 0.75 0.15 0.27 1.21 1.6E-03 2.66
DSV-01/5E	(Still Vent Emissions to Atmosphere) 5.0 MMscfd 8,760 Hr/yr 0.21 MMscf/hr	GRI-GLYCalc 4.0	SO2 PM10/2.5 Benzene Ethylbenzene HCHO n-Hexane Methanol Toluene 2,2,4-TMP Xylenes Other HAP Total HAP	 0.14 0.03 0.05 0.23 3.0E-04 0.51 0.96	 0.63 0.12 0.22 1.01 0.00 2.22 4.20	 0.17 0.03 0.06 0.28 3.6E-04 0.61 1.15	 0.75 0.15 0.27 1.21 0.00 2.66 5.04		 0.17 0.03 6.1E-02 0.28 3.6E-04 0.61 1.15	 0.75 0.15 0.27 1.21 1.6E-03 2.66 5.04
DSV-01/5E	(Still Vent Emissions to Atmosphere) 5.0 MMscfd 8,760 Hr/yr 0.21 MMscf/hr	GRI-GLYCalc 4.0 GRI-GLYCalc 4.0	SO2 PM10/2.5 Benzene Ethylbenzene HCHO n-Hexane Methanol Toluene 2,2,4-TMP Xylenes Other HAP Total HAP CO2	 0.14 0.03 0.05 0.23 3.0E-04 0.51 0.96 0.01	 0.63 0.12 0.22 1.01 0.00 2.22 4.20 0.05	 0.17 0.03 0.06 0.28 3.6E-04 0.61 1.15 0.01	 0.75 0.15 0.27 1.21 0.00 2.66 5.04 0.05		 0.17 0.03 6.1E-02 0.28 3.6E-04 0.61 1.15 0.01	 0.75 0.15 0.27 1.21 1.6E-03 2.66 5.04 0.05

Application for 45CSR13 NSR Modification Permit

Attachment N - Supporting Emissions Calculations

Dehydrator 01 (Combined) - 5.0 MMscfd

Unit ID	Description	Reference	Pollutant	Pre-Contro	l - GLYCalc	Pre-Contr	ol x 120%	Control Eff	Controlled	Emissions
Unit ID	Description	Reference	Pollutant	lb/hr	tpy	lb/hr	tpy	%	lb/hr	tpy
			NOX							
	Dehydrator 01		CO							
	(Combined -	GRI-GLYCalc 4.0	VOC	9.26	40.58	11.12	48.69		11.12	48.69
	Flash Tank (DFT-01/4E) and		SO2							
	Regenerator/Still Vent (DSV-		PM10/2.5							
	01/5E))	GRI-GLYCalc 4.0	Benzene	0.17	0.73	0.20	0.87		0.20	0.87
		GRI-GLYCalc 4.0	Ethylbenzene	0.03	0.13	0.04	0.16		0.04	0.16
	40.0 MMscfd		НСНО							
		GRI-GLYCalc 4.0	n-Hexane	0.24	1.06	0.29	1.27		0.29	1.27
DEHY-01	8,760 Hr/yr	GRI-GLYCalc 4.0	Methanol							
		GRI-GLYCalc 4.0	Toluene	0.25	1.11	0.31	1.34		0.31	1.34
		GRI-GLYCalc 4.0	2,2,4-TMP	0.00	0.01	0.00	0.01		0.00	0.01
	1.67 MMscf/hr	GRI-GLYCalc 4.0	Xylenes	0.53	2.32	0.64	2.78		0.64	2.78
	14,600 MMscf/yr	GRI-GLYCalc 4.0	Other HAP							
		GRI-GLYCalc 4.0	Total HAP	1.22	5.36	1.47	6.43		1.47	6.43
	NESHAP HH - Exempt	GRI-GLYCalc 4.0	CO2	70.11	307.08	84.13	368.50		84.13	368.50
		GRI-GLYCalc 4.0	CH4	11.61	50.86	13.93	61.03		13.93	61.03
		GRI-GLYCalc 4.0	N2O							
		40CFR98 - Table A-1	CO2e	360	1,579	433	1,894		433	1,894

Notes: 1 - To be conservative, and to account for potential future changes in gas quality, the following worst-case emissions were assumed:

1,579 tpy

432 lb/hr

5.0 MMscfd Dehydrator 01		Calc 4.0* Results		-Case Margin)	*Dehydrator Operating Parameters (See Attachments H - Extended Gas Analysis and L - GRI-GLYCalc Model results)								
THC	26.61 lb/hr	116.53 tpy	31.93 lb/hr	139.84 tpy	Dry Gas Flow Rate:	5.0 MMscfd	Extended Gas Analysis:	06/29/15					
NMNEHC = VOC	9.26 lb/hr	40.58 tpy	11.12 lb/hr	48.69 tpy	Wet Gas Temperature:	70 oF	Flash Tank Temperature:	160 oF					
Benzene	0.17 lb/hr	0.73 tpy	0.20 lb/hr	0.87 tpy	Wet Gas Pressure:	1,000 psig	Flash Tank Pressure:	40 psig					
Ethylbenzene	0.03 lb/hr	0.13 tpy	0.04 lb/hr	0.16 tpy	Wet Gas Water Content:	Saturated	Flash Tank Off-Gas:	50% Recycle					
НСНО					Dry Gas Water Content:	7.00 lb-H2O/MMscf	Stripping Gas:	na					
n-Hexane	0.24 lb/hr	1.06 tpy	0.29 lb/hr	1.27 tpy	Lean Glycol Water Content:	1.50 wt% H2O	Regen Overhead Control:	na					
Methanol					Glycol Pump Type:	Gas Injection	Condenser Temperature:	na					
Toluene	0.25 lb/hr	1.11 tpy	0.31 lb/hr	1.34 tpy	Glycol Pump Model:	Kimray 9020PV	Condenser Pressure:	na					
2,2,4-TMP	1.4E-03	0.01 tpy	1.7E-03	0.01 tpy	Lean Glycol Circulation Rate:	1.50 gpm	Control Efficiency:	na					
Xylenes	0.53 lb/hr	2.32 tpy	0.64 lb/hr	2.78 tpy									
Other HAP													
Total HAP	1.22 lb/hr	5.36 tpy	1.47 lb/hr	6.43 tpy									
CO2	70.11 lb/hr	307.08 tpy	84.13 lb/hr	368.50 tpy									
CH4	11.61 lb/hr	50.86 tpy	13.93 lb/hr	61.03 tpy									

CO2e

360 lb/hr

1,894.35 tpy

Application for 45CSR13 NSR Modification Permit

Attachment N - Supporting Emissions Calculations

Reboiler 01 - 0.20 MMBtu/hr

Unit ID	Description	Reference	Pollutant	Emissio	n Factor	Pre-Co	ntrolled	Control	Contr	olled
Unit ID	Description	Reference	Pollutant	lb/MMscf	lb/MMBtu	lb/hr	tpy	%	lb/hr	tpy
		EPA AP-42 Table 1.4-2	NOX	100.00	0.10	0.02	0.09	na	0.02	0.09
	Reboiler 01	EPA AP-42 Table 1.4-2	CO	84.00	0.08	0.02	0.07	na	0.02	0.07
		EPA AP-42 Table 1.4-2	VOC	5.68	0.01	1.1E-03	4.9E-03	na	1.1E-03	4.9E-03
		EPA AP-42 Table 1.4-2	SO2	0.60	5.88E-04	1.2E-04	5.2E-04	na	1.2E-04	5.2E-04
		EPA AP-42 Table 1.4-2	PM10/2.5	7.60	0.01	1.5E-03	0.01	na	1.5E-03	0.01
	0.20 MMBtu/hr (HHV)	EPA AP-42 Table 1.4-3	Benzene	2.1E-03	2.06E-06	4.1E-07	1.8E-06	na	4.1E-07	1.8E-06
		EPA AP-42 Table 1.4-3	Ethylbenzene							
	8,760 hr/yr	EPA AP-42 Table 1.4-3	НСНО	0.08	7.35E-05	1.5E-05	6.4E-05	na	1.5E-05	6.4E-05
		EPA AP-42 Table 1.4-3	n-Hexane	1.80	1.76E-03	3.5E-04	1.5E-03	na	3.5E-04	1.5E-03
RBV-01/6E		EPA AP-42 Table 1.4-3	Methanol							
		EPA AP-42 Table 1.4-3	Toluene	3.4E-03	3.33E-06	6.7E-07	2.9E-06		6.7E-07	2.9E-06
	1,020 Btu/scf (HHV)	EPA AP-42 Table 1.4-3	2,2,4-TMP					na		
		EPA AP-42 Table 1.4-3	Xylenes							
		EPA AP-42 Table 1.4-3	Other HAP	1.9E-03	1.86E-06	3.7E-07	1.6E-06	na	3.7E-07	1.6E-06
	196 scf/hr	EPA AP-42 Table 1.4-3	Total HAP	1.88	1.85E-03	3.7E-04	1.6E-03	na	3.7E-04	1.6E-03
	4.71 Mscfd	EPA AP-42 Table 1.4-2	CO2	120,000	118	24	103	na	24	103
	1.72 MMscf/yr	EPA AP-42 Table 1.4-2	CH4	2.30	2.25E-03	4.5E-04	2.0E-03	na	4.5E-04	2.0E-03
		EPA AP-42 Table 1.4-2	N2O	2.20	2.16E-03	4.3E-04	1.9E-03	na	4.3E-04	1.9E-03
		40CFR98 - Table A-1	CO2e	120,713	118	24	104	na	24	104

Notes: 1 - The combustion emission factors are based on a default fuel heat content of 1,020 Btu/scf (HHV).

2 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5.

3 - Total HAP includes HCHO, n-hexane, BTEX (benzene, toluene, ethylbenzene, xylene), acetaldehyde, acrolein, and methanol.

Application for 45CSR13 NSR Modification Permit

Attachment N - Supporting Emissions Calculations

Storage Tank - Produced Water

		Capa-	Turn-	T-Put	EPA-450/	ProMax	VO	C	n-Hex	ane	BTEX,	TMP-ea	Total	HAP		Pro	Max		CO	2e
Unit ID (Point ID)	Material Stored	city	overs	1-Fut	(Working and Breathing	(Flashing	100.00	Wgt%	10.00	Ngt%	3.00	Wgt%	25.00	Wgt%	CO	2	CH	14	GWP	= 25
		bbl	/yr	bbl/yr	Losses)	Losses)	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
T-01/7E	Prod H2O	210	12.0	2,520	0.039 lb/bbl	0.012 lb/hr	0.02	0.10	2.3E-03	0.01	6.8E-04	3.0E-03	0.01	0.02	4.6E-03	0.02	0.08	0.36	2.06	9

Г			Capa-	Turn-	T-Put		Diambert Case	VO	C	n-He	exane	BTEX,	TMP-ea	Tota	I HAP	C	02	CH	14	CO	2e
	Unit ID (Point ID)	Material Stored	city	overs	1-F ut	Tank Volume	Blanket Gas Volume	17,000	lb/MMcf	350	lb/MMcf	80) lb/MMcf	400	lb/MMcf	200	lb/MMcf	42,275	lb/MMcf	GWP	= 25
ľ			bbl	/yr	bbl/yr		Volume	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
	T-01/7E	Prod H2O	210	12.0	2,520	1,100 scf	13,200 scf		0.11		2.3E-03		5.3E-04		2.6E-03		1.3E-03		0.28		7

	Unit ID	Material Stored	Capa- city	Pneumatic Device Emission	Pneumatic Device Hours	Gas Volume Vented	ed 17,000 lb	VOC 17,000 lb/MMcf		n-Hexane 350 lb/MMcf		TMP-ea lb/MMcf		I HAP Ib/MMcf		O2 lb/MMcf	C⊦ 42,275	4 Ib/MMcf	CO: GWP	
Ì	(Point ID)		bbl	Factor	Per Year	(MMscf/yr)	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
	T-01/7E	Prod H2O	210	13.5 scf/hr	8,760	0.12		1.01		2.1E-02		4.7E-03		2.4E-02		1.2E-02		2.50		63

TOTAL EMISSIONS:	0.02	1.22	2.3E-03	0.03	6.8E-04	8.2E-03	0.01	0.05	4.6E-03	0.03	0.08	3.14	2.06	79

Notes: 1 - Total tank emissions result from working/breathing losses, flashing losses and gas losses from pneumatic device used to push liquids into the storage tank.

3 - These emission estimates are nearly 4X more conservative than emission factors required by the TCEQ on the Barnett Shale produced water tanks at gas-only sites.

Table 1. Produced Water Storage Tank Flash Loss Emissions Factors for Barnett Shale Special Inventory Purposes ONLY

Pollutant	Average Produc	ed Water Emission Factor (lb/bbl)
	Gas Production Only Sites	Liquid Hydrocarbon and Gas Production Sites
VOC	0.01	0.0402
Benzene	0.0001	0.000054
Toluene	0.0003	0.000130
Ethylbenzene	0.000006	0.000003
Xylene(s)	0.00006	0.000049
n-Hexane	NA	0.000987

4 - Total HAP is estimated at 25.0% of VOC emissions. This is a very conservative estimate based on an investigation of other produced water emission estimating protocols, as exemplified above (e.g., (0.0001+0.0003+0.00006+0.00006)*100 = 4.7%).

5 - The ProMax Simulation software was used to estimate flashing losses from the produced water storage tank.

6 - The total storage tank capacity at the facility is:	210	bbl =	8,820	gal.
7 - It is estimated that the tank will be emptied up to:	12	t-o/yr =	2,520	bbl/yr

8 - A natural gas blanket <u>may</u> be used on the produced water tank to prevent air from entering the tank and causing an explosion. Field natural gas would be used as the blanket gas. An option to use blanket gas on the produced water tank is requested.

9 - Pneumatic device emission factor from Table W-1A to Subpart W of Part 98 — Eastern US, Intermittent Bleed Pneumatic Device Vents

^{2 -} EPA-450/3-85-001a – "Volatile Organic Compound Emissions from Petroleum Refinery Wastewater Systems - Background Information for Proposed Standards" is a reasonable protocol for estimating potential water/oil storage tank working and breathing losses. EPA-450/3-85-001a, page 3-39, gives a VOC emission factor of 420 kg/MMgal wastewater produced in an oil-water separator. (0.420 g/gal * 0.0022 lb/g * 42 gal/bbl = 0.03889 lb/bbl)

Williams Ohio Valley Midstream LLC BARDALL COMPRESSOR STATION Application for 45CSR13 NSR Modification Permit Attachment N - Supporting Emissions Calculations

Representative Tank 01/8E Flash Emissions - ProMax

Component	Tank 01 - Ib/hr
Water	2.28E-03
TEG	0.00E+00
Oxygen	0.00E+00
Nitrogen	0.00E+00
Methane	8.22E-02
CO2	4.57E-03
Ethane	2.28E-02
Propane	9.13E-03
i-Butane	0.00E+00
n-Butane	2.28E-03
i-Pentane	0.00E+00
n-Pentane	0.00E+00
2,2-Dimethylbutane	0.00E+00
2,3-Dimethylbutane	0.00E+00
2-Methylpentane	0.00E+00
3-Methylpentane	0.00E+00
Hexane	0.00E+00
2,2-Dimethylpentane	0.00E+00
Methylcyclopentane	0.00E+00
Benzene	0.00E+00
3,3-Dimethylpentane	0.00E+00
Cyclohexane	0.00E+00
2-Methylhexane	0.00E+00
2,3-Dimethylpentane	9.73E-07
3-Methylhexane	2.69E-06
t-2-Dimethylcyclopentane	1.64E-08
t-3Dimethylcyclopentane	2.15E-07
Heptane	3.29E-06
Methylcyclohexane	1.56E-05
2,5-Dimethylhexane	1.98E-08
2,3-Dimethylhexane	2.31E-07
Toluene	4.01E-05
2-Methylheptane	1.45E-07
4-Methylheptane	2.79E-07
3-Methylheptane	2.69E-07
,t-4-Dimethylcyclohexane	1.22E-10
Octane	4.04E-07
,t-3-Dimethylcyclohexane	7.90E-12
2,6-Dimethylheptane	1.93E-08
Ethylcyclohexane	5.32E-07
Ethylbenzene	2.13E-06
m-Xylene	4.27E-06
p-Xylene	2.32E-05
o-Xylene	1.18E-06
Nonane	1.30E-07
Decane	4.59E-08
	3.17E-08
TOTAL lb/hr	0.12
tpy	0.54
CO2e lb/hr	2.06
tpy	9.02
VOC lb/hr	0.012
4	0.05
tpy HAP lb/hr	0.0001

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment N - Supporting Emissions Calculations

Truck Load-Out - Produced Water

Unit ID	Description	S	Ρ	М	т	CE	L	T-Put	VOC AP-42 Sect 5.2	n-Hexane, BTEX, and 2,2,4-TMP (Ea) 5.00% of VOC	Total HAP 30.00% of VOC
		sat. fac.	psia	lb/lb-mol	°R	%	lb/Mgal	Mgal/yr	tpy	tpy	tpy
TLO/8E	Truck Load-Out - Produced Water	1.45	1.5	30.0	510	0.0%	1.59	106	0.08	4.2E-03	0.03
								TOTAL:	0.08	4.2E-03	0.03

Notes: 1 - Emission factors and formulas are from AP-42 Section 5.2 "Transportation and Marketing of Petroleum Liquids":

L_L = 12.46 x S x P x M / T x (1 - CE)

where: $L_L =$ loading loss, lb/1000 gal of liquid loaded

- S = saturation factor, use 1.45 for splash loading
- P = true vapor pressure of liquid loaded, psia.
 (Conservative estimate Measured RVP (100 °F) ranges from 1.0 to 1.3 psia; so the actual TVP is expected to be less than 0.7 psia at common storage temperature.)

bbl =

t-o/yr =

8.820

2,520

gal.

bbl/yr

- M = molecular weight of vapors, lb/lb-mol (Conservative estimate.)
- T = temperature of bulk liquid loaded, $^{\circ}R = ^{\circ}F + 460$ (Conservatively assumed 50 $^{\circ}F$.)
- CE = overall emission reduction efficiency (collection efficiency x control efficiency)

210

12

2 - Molecular weight and vapor pressure are based on operator experience and sampling data at various locations in the Marcellus Shale basin.

3 - The total storage tank capacity at the facility	is:
---	-----

4 - It is estimated that each tank will be emptied up to:

5 - n-Hexane, each BTEX, and 2,2,4-TMP components are estimated at 5% of VOC emissions and Total HAP is estimated at 30% of VOC emissions.

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment N - Supporting Emissions Calculations

Piping and Equipment Fugitives - Gas & Water/Oil

Unit ID	Description	Component (Unit) Type	Unit Count	THC Factor	LDAR Control	Hydroc (T⊦		VO 29.19		n-He: 0.60	kane Wgt%	,	TMP-ea Wgt%		HAP Wgt%	CC 0.34	D2 Wgt%	CI 100.00		CO GWP	
		(Gas)	oount	lb/hr/Unit	Credit	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
		Valves	386	0.00992	0%	3.82	16.75	1.12	4.89	2.3E-02	0.10	6.6E-04	2.9E-03	0.03	0.12	0.01	0.06	3.82	16.75	96	419
	Process Piping F Fugitives (Gas)	Pump Seals	0																		
FUG-G/1F		Other	45	0.01940	0%	0.87	3.82	0.25	1.12	5.2E-03	2.3E-02	1.5E-04	6.6E-04	6.0E-03	0.03	3.0E-03	0.01	0.87	3.82	22	96
FUG-G/IF		Connectors	1,106	0.00044	0%	0.49	2.13	0.14	0.62	2.9E-03	1.3E-02	8.4E-05	3.7E-04	3.3E-03	1.5E-02	1.7E-03	0.01	0.49	2.13	12	53
		Flanges	180	0.00086	0%	0.15	0.68	0.05	0.20	9.3E-04	4.1E-03	2.7E-05	1.2E-04	1.1E-03	4.7E-03	5.3E-04	2.3E-03	0.15	0.68	4	17
		Open-ended	21	0.00441	0%	0.09	0.41	0.03	0.12	5.6E-04	2.4E-03	1.6E-05	7.0E-05	6.4E-04	2.8E-03	3.2E-04	1.4E-03	0.09	0.41	2	10
			1,737	Su	ibtotal:	5.43	23.79	1.59	6.94	0.03	0.14	9.3E-04	4.1E-03	0.04	0.16	0.02	0.08	5.43	23.79	136	595

Unit ID	Description	Component (Unit) Type	Unit Count	THC Factor	LDAR Control	Hydroc (TH	arbons IC)	VC 100.00	DC Wgt%	_	xane Wgt%	BTEX, 1 3.00	ſMP-ea Wgt%	Total 25.00		CC 	D2 Wgt%	Cł 	l4 Wgt%	CO: GWP	-
		(Water/Oil)	count	lb/hr/Unit	Credit	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
		Valves	193	0.00022	0%	0.04	0.18	0.04	0.18	4.2E-03	0.02	1.2E-03	0.01	0.01	0.05						
	Process Piping Fugitives	Pump Seals	4	0.00005	0%	2.1E-04	9.3E-04	2.1E-04	9.3E-04	2.1E-05	9.3E-05	6.3E-06	2.8E-05	5.3E-05	2.3E-04						
FUG-W/2F		Other	23	0.03086	0%	0.69	3.04	0.69	3.04	0.07	0.30	0.02	0.09	0.17	0.76						
100-00/21	(Water/Oil)	Connectors	553	0.00024	0%	0.13	0.59	0.13	0.59	0.01	0.06	4.0E-03	0.02	0.03	0.15						
	(**************	Flanges	90	0.00001	0%	5.8E-04	2.5E-03	5.8E-04	2.5E-03	5.8E-05	2.5E-04	1.7E-05	7.6E-05	1.4E-04	6.3E-04						
		Open-ended	11	0.00055	0%	0.01	0.03	0.01	0.03	5.8E-04	2.5E-03	1.7E-04	7.6E-04	1.4E-03	0.01						
			873	Su	ubtotal:	0.88	3.84	0.88	3.84	0.09	0.38	0.03	0.12	0.22	0.96						

TOTAL FUGITIVE EMISSIONS:	6.31	27.63	2.46	10.78	0.12	0.53	0.03	0.12	0.26	1.12	0.02	0.08	5.43	23.79	136	595

Notes: 1 - Assumed 8,760 hours per year of fugitive emissions.

2 - Gas and Water/Oil emissions calculated using EPA Protocol for Equipment Leak Emission Estimates, EPA-453/R-95-017, Nov 1995.

TABLE 2.4	G	as	Water/Oil			
O&G PROD (AVE)	kg/hr	lb/hr	kg/hr	lb/hr		
Valves	4.5E-03	0.00992	9.8E-05	0.00022		
Pump Seals	na	na	2.4E-05	0.00005		
Others*	8.8E-03	0.01940	1.4E-02	0.03086		
Connectors	2.0E-04	0.00044	1.1E-04	0.00024		
Flanges	3.9E-04	0.00086	2.9E-06	0.00001		
Open-Ended Lines	2.0E-03	0.00441	2.5E-04	0.00055		

*These high "Others" emission factors are almost certainly an error in the EPA Protocol.

3 - Components in Gas Service are based on GRI-HAPCalc estimates, plus a4 - Components in Water/Oil Service are based on Gas Component count, times a

- 5 "Other" components include compressor seals, relief valves, diaphragms, drains, meters, etc.
- 6 To be conservative, the following gas and water/oil characteristics were assumed:

Pollutant	G	as	Water/Oil			
Foliutant	Analysis	Estimated	Analysis	Estimated		
Carbon Dioxide	0.22 Wgt%	0.34 Wgt%	Wgt%	Wgt%		
Methane	52.98 Wgt%	100.00 Wgt%	Wgt%	Wgt%		
VOC	24.26 Wgt%	29.19 Wgt%	Wgt%	100.00 Wgt%		
n-Hexane	0.50 Wgt%	0.60 Wgt%	Wgt%	10.00 Wgt%		
BTEX, TMP-ea	0.01 Wgt%	0.02 Wgt%	Wgt%	3.00 Wgt%		
Total HAP	0.53 Wgt%	0.69 Wgt%	Wgt%	25.00 Wgt%		

...

10.11

Potentially Applicable **AP-42 and GHG EMISSION FACTORS** (Preferentially use test data or vendor data where available)

			GAS-FIRED ENGINE			GAS-FIRED TURBINE	
	Pollutant	<u>AP-42</u>	<u> Fable 3.2-1; 3.2-2; 3.2-3</u>	<u>3 07/00</u>	<u>AP-42 T</u>	<u>able 3.1-1; 3.1-2a; 3.1-</u>	<u>3 04/00</u>
	ronutant	2SLB	4SLB	4SRB	Uncontrolled	Water Injection	Lean Pre-Mix#
		lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu
	NOX (≥ 90% Load)	3.170E+00	4.080E+00	2.210E+00	3.200E-01	1.300E-01	9.900E-02
	CO (≥ 90% Load)	3.860E-01	3.170E-01	3.720E+00	8.200E-02	3.000E-02	1.500E-02
₹	THC (TOC)	1.640E+00	1.470E+00	3.580E-01	1.100E-02	1.100E-02	1.100E-02
ER	NMHC (THC-CH4)	1.900E-01	2.200E-01	1.280E-01	2.400E-03	2.400E-03	2.400E-03
CRITERIA	NMNEHC (NMHC-C2H6)	1.191E-01	1.150E-01	5.760E-02	2.100E-03	2.100E-03	2.100E-03
Ö	VOC	1.200E-01	1.180E-01	2.960E-02	2.100E-03	2.100E-03	2.100E-03
	SO2*** (2,000 gr-S/MMscf)	5.880E-04	5.880E-04	5.880E-04	3.400E-03	3.400E-03	3.400E-03
	PM10/2.5 (Filter+Cond)	4.831E-02	9.987E-03	1.941E-02	6.600E-03	6.600E-03	6.600E-03
	Benzene	1.940E-03	4.400E-04	1.580E-03	1.200E-05	1.200E-05	9.100E-07
	Ethylbenzene	1.080E-04	3.970E-05	2.480E-05	3.200E-05	3.200E-05	3.200E-05
	Formaldehyde (HCHO)	5.520E-02	5.280E-02	2.050E-02	7.100E-04	7.100E-04	2.000E-05
s	n-Hexane	4.450E-04	1.110E-03				
HAPs	Methanol (MeOH)	2.480E-03	2.500E-03	3.060E-03			
Т	Toluene	9.630E-04	4.080E-04	5.580E-04	1.300E-04	1.300E-04	1.300E-04
	TMP, 2,2,4- (i-Octane)	8.460E-04	2.500E-04				
	Xylenes	2.680E-04	1.840E-04	1.950E-04	6.400E-05	6.400E-05	6.400E-05
	Other HAPs	1.715E-02	1.443E-02	6.359E-03	1.061E-04	1.061E-04	1.061E-04
	CO2**** (GWP=1)	1.170E+02	1.170E+02	1.170E+02	1.170E+02	1.170E+02	1.170E+02
GHG	CH4 (GWP=25)	1.450E+00	1.250E+00	2.300E-01	8.600E-03	8.600E-03	8.600E-03
5	N2O (GWP=298)	2.205E-04	2.205E-04	2.205E-04	3.000E-03	3.000E-03	3.000E-03
	CO2e	1.533E+02	1.483E+02	1.228E+02	1.181E+02	1.181E+02	1.181E+02
					(#Lean Pre-Mix - aka: [Dry Low Emissions (DLE o	or DLN) and SoLoNOx)

		GAS-FIF	RED EXTERNAL COME	BUSTION	FLARE	DIESEL ENGINE
	Pollutant	AP-42 Table 1.4	<u>-1; 1.4-2; 1.4-3 (<100 N</u>	<u>1MBtu/hr) 07/98</u>	<u>13.5-1 04/15</u>	<u>3.3-1; 3.3-2 10/96</u>
	Follutant	Uncontrolled	LoNOx Burners	Flue Gas Recirc	Combustion	Uncontrolled
		lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu
	NOX	9.804E-02	4.902E-02	3.137E-02	6.800E-02	4.410E+00
	CO	8.235E-02	8.235E-02	8.235E-02	3.100E-01	9.500E-01
≤	THC (TOC)	1.078E-02	1.078E-02	1.078E-02	≥98%	3.600E-01
CRITERIA	NMHC (THC-CH4)	8.529E-03	8.529E-03	8.529E-03	Destruction	3.534E-01
RIT	NMNEHC (NMHC-C2H6)	5.490E-03	5.490E-03	5.490E-03	and Removal	3.503E-01
ō	VOC (NMNEHC+HCHO)	5.564E-03	5.564E-03	5.564E-03	Efficiency	3.600E-01
	SO2 (2,000 gr-S/MMscf)	5.882E-04	5.882E-04	5.882E-04	5.882E-04	2.900E-01
	PM10/2.5 (Filter+Condense)	7.451E-03	7.451E-03	7.451E-03	7.451E-03	3.100E-01
	Benzene	2.059E-06	2.059E-06	2.059E-06		9.330E-04
	Ethylbenzene					
	HCHO (Formaldehyde)	7.353E-05	7.353E-05	7.353E-05		1.180E-03
s	n-Hexane	1.765E-03	1.765E-03	1.765E-03	≥98% Destruction	
HAPs	Methanol (MeOH)				and Removal	
Т	Toluene	3.333E-06	3.333E-06	3.333E-06	Efficiency	4.090E-04
	2,2,4-TMP (i-Octane)				,	
	Xylenes					2.850E-04
	Other HAPs	1.861E-06	1.861E-06	1.861E-06		1.050E-03
	CO2 (GWP=1)	1.176E+02	1.176E+02	1.176E+02	1.176E+02	1.640E+02
GHG	CH4 (GWP=25)	2.255E-03	2.255E-03	2.255E-03	98% DRE	6.614E-03
ġ	N2O (GWP=298)	2.157E-03	6.275E-04	6.275E-04	2.157E-03	1.323E-03
	CO2e	1.183E+02	1.179E+02	1.179E+02	1.183E+02	1.646E+02

40 CFR 98 - DEFAULT EMISSION FACTORS								
Fuel Type	Table C-1 to Sub	part C of Part 98	Table C-2 to Subpart C of Part 98					
	Default HHV	Carbon Dioxide	Methane	Nitrous Oxide				
		lb CO2/MMBtu	lb CH4/MMBtu	lb N2O/MMBtu				
Fuel Oil No. 2 (Diesel)	0.138 MMBtu/gal	163.054	6.614E-03	1.323E-03				
Propane	0.091 MMBtu/gal	138.605	6.614E-03	1.323E-03				
Natural Gas	1,026 Btu/scf	116.977	2.205E-03	2.205E-04				

Global Warming Potential (100 Yr) (GWP)									
<u>Table A-1 to Subpart A of Part 98</u>									
CO2	CH4*	N2O#							
1.00	25.00	298.00							
	#Device editors El								

#Revised by EPA on 11/29/13

*Converted Ext Comb Emission Factors to lb/MMBtu by dividing lb/MMscf by AP-42 default HHV of 1,020 Btu/scf.

**Converted GHG Emission Factors to lb/MMBtu by multiplying kg/MMBtu by 2.2046 lb/kg.

***Assumes 100% conversion of fuel sulfur to SOX (2,000 gr/MMscf).

****Assumes 99.5% conversion of fuel carbon to CO2 for natural gas.

Conversion	Factors

Conversion Factors								
http://www	/.or	nlineconversion.com/						
1.0 lb	=	453.592 g						
1.0 kg	=	2.205 lb						
1.0 hp	=	2,544.433 Btu/hr						
1.0 hp	=	745.700 Watt						
1.0 kW	=	3,412.142 Btu/hr						
1.0 kW-hr	=	1.340 hp-hr						
1.0 cf	=	7.481 gal						
1.0 gal H2O	=	8.338 lb						
1.0 cf H2O	=	62.371 gal						
1.0 m	=	3.281 ft						
1.0 km	=	0.621 mi						
1.0 acre	=	43,560.174 ft2						
1.0 °F	=	(°C*9/5)+32						
1.0 °R	=	°F+459.67						
1.0 %	=	10,000 ppm						
UGC (stp)	=	379.48 scf/lb-mol						

GRI-GLYCalc VERSION 4.0 - EMISSIONS SUMMARY

Case Name: OVM Bardall TEG Dehydrator File Name: C:\projects2\wfs\OVM\Bardall\R13 Application #2\Bardall 5 MM Dehy -09.03.15.ddf Date: September 08, 2015

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.1183	2.838	0.5180
Ethane	0.1878	4.508	0.8227
Propane	0.2249	5.398	0.9852
Isobutane	0.0508	1.219	0.2225
n-Butane	0.1892	4.541	0.8288
Isopentane	0.0492	1.180	0.2154
n-Pentane	0.0853	2.048	0.3738
n-Hexane	0.0512	1.228	0.2241
Cyclohexane	0.1022	2.454	0.4478
Other Hexanes	0.0434	1.041	0.1899
Heptanes	0.0835	2.004	0.3658
Methylcyclohexane	0.0688	1.652	0.3015
2,2,4-Trimethylpentane	0.0003	0.007	0.0013
Benzene	0.1435	3.445	0.6286
Toluene	0.2297	5.512	1.0059
Ethylbenzene	0.0278	0.667	0.1217
Xylenes	0.5060	12.145	2.2164
C8+ Heavies	0.0942	2.260	0.4125
Total Emissions	2.2562	54.148	9.8820
Total Hydrocarbon Emissions	2.2562	54.148	9.8820
Total VOC Emissions	1.9501	46.802	8.5413
Total HAP Emissions	0.9585	23.003	4.1981
Total BTEX Emissions	0.9070	21.768	3.9727

FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	11.4940	275.856	50.3437
Ethane	5.5418	133.002	24.2729
Propane	3.4260	82.225	15.0060
Isobutane	0.5417	13.001	2.3726
n-Butane	1.5921	38.210	6.9732
Isopentane	0.3843	9.224	1.6833
n-Pentane	0.5464	13.113	2.3931
n-Hexane	0.1911	4.587	0.8371
Cyclohexane	0.0959	2.302	0.4200
Other Hexanes	0.2124	5.097	0.9302
Heptanes	0.1601	3.842	0.7012
Methylcyclohexane	0.0527	1.265	0.2309
2,2,4-Trimethylpentane	0.0011	0.027	0.0049
Benzene	0.0226	0.542	0.0989
Toluene	0.0246	0.591	0.1078
Ethylbenzene	0.0018	0.043	0.0079
Xylenes	0.0238	0.571	0.1041
C8+ Heavies	0.0374	0.898	0.1639

Total En	missions	24.3497		Page: 2 106.6517
Total Hydrocarbon En Total VOC En Total HAP En Total BTEX En	missions missions		584.393 175.535 6.360 1.747	106.6517 32.0351 1.1607 0.3187

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	22.9880	551.712	$ 100.6874 \\ 48.5458 \\ 30.0120 \\ 4.7452 $
Ethane	11.0835	266.004	
Propane	6.8520	164.449	
Isobutane	1.0834	26.001	
n-Butane	3.1841	76.419	13.9465
Isopentane	0.7686	18.447	3.3666
n-Pentane	1.0927	26.226	4.7862
n-Hexane	0.3822	9.174	1.6742
Cyclohexane	0.1918	4.603	0.8401
Other Hexanes	0.4248	10.194	1.8604
Heptanes	0.3202	7.684	1.4023
Methylcyclohexane	0.1054	2.530	0.4618
2,2,4-Trimethylpentane	0.0022	0.054	0.0098
Benzene	0.0451	1.083	0.1977
Toluene	0.0492	1.182	0.2157
Ethylbenzene	0.0036	0.087	0.0159
Xylenes	0.0475	1.141	0.2082
C8+ Heavies	0.0748	1.796	0.3277
Total Emissions	48.6994	1168.786	213.3034
Total Hydrocarbon Emissions	48.6994	1168.786	213.3034
Total VOC Emissions	14.6279	351.070	64.0703
Total HAP Emissions	0.5300	12.720	2.3215
Total BTEX Emissions	0.1455	3.493	0.6375

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	11.6122	278.694	50.8616
Ethane	5.7296	137.510	25.0956
Propane	3.6510	87.623	15.9912
Isobutane	0.5925	14.220	2.5951
n-Butane	1.7813	42.751	7.8020
Isopentane	0.4335	$10.404 \\ 15.161 \\ 5.815 \\ 4.755 \\ 6.138$	1.8987
n-Pentane	0.6317		2.7669
n-Hexane	0.2423		1.0612
Cyclohexane	0.1981		0.8679
Other Hexanes	0.2557		1.1201
Heptanes	0.2436	5.846	1.0670
Methylcyclohexane	0.1215	2.917	0.5324
2,2,4-Trimethylpentane	0.0014	0.034	0.0062
Benzene	0.1661	3.986	0.7275
Toluene	0.2543	6.103	1.1137
Ethylbenzene	0.0296	0.710	0.1297
Xylenes	0.5298	12.715	2.3206
C8+ Heavies	0.1316	3.158	0.5763

Total	Emissions	26.6059	638.541	Page: 3 116.5337
	Emissions Emissions	26.6059 9.2640 1.2235 0.9798	638.541 222.337 29.363 23.515	116.5337 40.5765 5.3588 4.2914

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: OVM Bardall TEG Dehydrator File Name: C:\projects2\wfs\OVM\Bardall\R13 Application #2\Bardall 5 MM Dehy -09.03.15.ddf Date: September 08, 2015 DESCRIPTION: _____ Description: 5 MMscfd TEG Dehydrator Wet Gas: 70 oF, 1,000 psig Pump: Kimray 9020 PV (1.5 qpm max) Flash Tank: 160 oF, 40 psig, 50% Recycle Annual Hours of Operation: 8760.0 hours/yr WET GAS: _____ Temperature: 70.00 acj 1000.00 psig 70.00 deg. F Wet Gas Water Content: Saturated Component Conc. (vol %) ----- -----Carbon Dioxide 0.1096 Nitrogen 0.4714 Methane 72.9892 Ethane 16.1322 Propane 6.3512
 Isobutane
 0.7136

 n-Butane
 1.9107

 Isopentane
 0.3884

 n-Pentane
 0.5005

 n-Hexane
 0.1279
 Cyclohexane 0.0283 Other Hexanes 0.1578 Heptanes 0.0749 Methylcyclohexane 0.0147 2,2,4-Trimethylpentane 0.0007
 Benzene
 0.0023

 Toluene
 0.0023

 Ethylbenzene
 0.0002

 Xylenes
 0.0027

 C8+ Heavies
 0.0214
 DRY GAS: _____ Flow Rate: 5.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF LEAN GLYCOL: Glycol Type: TEG Water Content: 1.5 wt% H2O Flow Rate: 1.5 gpm

Page: 1

Glycol Pump Type: Gas Injection Gas Injection Pump Volume Ratio: 0.080 acfm gas/gpm glycol

FLASH TANK:

Flash Control: Combustion device Flash Control Efficiency: 50.00 % Temperature: 160.0 deg. F Pressure: 40.0 psig GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: OVM Bardall TEG Dehydrator File Name: C:\projects2\wfs\OVM\Bardall\R13 Application #2\Bardall 5 MM Dehy -09.03.15.ddf Date: September 08, 2015

DESCRIPTION:

Description: 5 MMscfd TEG Dehydrator Wet Gas: 70 oF, 1,000 psig Pump: Kimray 9020 PV (1.5 gpm max) Flash Tank: 160 oF, 40 psig, 50% Recycle

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.1183	2.838	0.5180
Ethane	0.1878	4.508	0.8227
	0.2249	5.398	0.9852
Propane			
Isobutane	0.0508	1.219	0.2225
n-Butane	0.1892	4.541	0.8288
Isopentane	0.0492	1.180	0.2154
n-Pentane	0.0853	2.048	0.3738
n-Hexane	0.0512	1.228	0.2241
Cyclohexane	0.1022	2.454	0.4478
Other Hexanes	0.0434	1.041	0.1899
Heptanes	0.0835	2.004	0.3658
Methylcyclohexane	0.0688	1.652	0.3015
2,2,4-Trimethylpentane	0.0003	0.007	0.0013
Benzene	0.1435	3.445	0.6286
Toluene	0.2297	5.512	1.0059
TOTUEIle	0.2207	J.J12	1.0055
Ethylbenzene	0.0278	0.667	0.1217
Xylenes	0.5060	12.145	2.2164
C8+ Heavies	0.0942	2.260	0.4125
Total Emissions	2.2562	54.148	9.8820
Total Hydrocarbon Emissions	2.2562	54.148	9.8820
Total VOC Emissions	1.9501	46.802	8.5413
Total HAP Emissions	0.9585	23.003	4.1981
Total BTEX Emissions	0.9070	21.768	3.9727
TOTAL DIDN HEEDDIDID	0.0070	21.700	5.5727

FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	$11.4940 \\ 5.5418 \\ 3.4260 \\ 0.5417 \\ 1.5921$	275.856	50.3437
Ethane		133.002	24.2729
Propane		82.225	15.0060
Isobutane		13.001	2.3726
n-Butane		38.210	6.9732
Isopentane	0.3843	9.224	1.6833
n-Pentane	0.5464	13.113	2.3931

			Page: 2
n-Hexane	0.1911	4.587	0.8371
Cyclohexane	0.0959	2.302	0.4200
Other Hexanes	0.2124	5.097	0.9302
Heptanes	0.1601	3.842	0.7012
Methylcyclohexane	0.0527	1.265	0.2309
2,2,4-Trimethylpentane	0.0011	0.027	0.0049
Benzene	0.0226	0.542	0.0989
Toluene	0.0246	0.591	0.1078
Ethylbenzene	0.0018	0.043	0.0079
Xylenes	0.0238	0.571	0.1041
C8+ Heavies	0.0374	0.898	0.1639
Total Emissions	24.3497	584.393	106.6517
Total Hydrocarbon Emissions Total VOC Emissions	24.3497 7.3140	584.393 175.535	106.6517 32.0351
Total HAP Emissions	0.2650	6.360	1.1607
Total BTEX Emissions	0.0728	1.747	0.3187

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	22.9880	551.712	100.6874
Ethane	11.0835	266.004	48.5458
Propane	6.8520	164.449	30.0120
Isobutane	1.0834	26.001	4.7452
n-Butane	3.1841	76.419	13.9465
Isopentane	0.7686	18.447	3.3666
n-Pentane	1.0927	26.226	4.7862
n-Hexane	0.3822	9.174	1.6742
Cyclohexane	0.1918	4.603	0.8401
Other Hexanes	0.4248	10.194	1.8604
Heptanes	0.3202	7.684	1.4023
Methylcyclohexane	0.1054	2.530	0.4618
2,2,4-Trimethylpentane	0.0022	0.054	0.0098
Benzene	0.0451	1.083	0.1977
Toluene	0.0492	1.182	0.2157
Ethylbenzene	0.0036	0.087	0.0159
Xylenes	0.0475	1.141	0.2082
C8+ Heavies	0.0748	1.796	0.3277
Total Emissions	48.6994	1168.786	213.3034
Total Hydrocarbon Emissions	48.6994	1168.786	213.3034
Total VOC Emissions	14.6279	351.070	64.0703
Total HAP Emissions	0.5300	12.720	2.3215
Total BTEX Emissions	0.1455	3.493	0.6375

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

·			
Component	lbs/hr	lbs/day	tons/yr
Methane	11.6122	278.694	50.8616
Ethane	5.7296	137.510	25.0956
Propane	3.6510	87.623	15.9912
Isobutane	0.5925	14.220	2.5951
n-Butane	1.7813	42.751	7.8020
Isopentane	0.4335	10.404	1.8987
n-Pentane	0.6317	15.161	2.7669

			Page: 3
n-Hexane	0.2423	5.815	1.0612
Cyclohexane	0.1981	4.755	0.8679
Other Hexanes	0.2557	6.138	1.1201
Heptanes	0.2436	5.846	1.0670
Methylcyclohexane	0.1215	2.917	0.5324
2,2,4-Trimethylpentane	0.0014	0.034	0.0062
Benzene	0.1661	3.986	0.7275
Toluene	0.2543	6.103	1.1137
Ethylbenzene	0.0296	0.710	0.1297
Xylenes	0.5298	12.715	2.3206
C8+ Heavies	0.1316	3.158	0.5763
Total Emissions	26.6059	638.541	116.5337
Total Hydrocarbon Emissions	26.6059	638.541	116.5337
Total VOC Emissions	9.2640	222.337	40.5765
Total HAP Emissions	1.2235	29.363	5.3588
Total BTEX Emissions	0.9798	23.515	4.2914

COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT:

Component	Uncontrolled tons/yr	Controlled tons/yr	% Reduction
Methane	101.2053	50.8616	49.74
Ethane	49.3685	25.0956	49.17
Propane	30.9972	15.9912	48.41
Isobutane	4.9677	2.5951	47.76
n-Butane	14.7753	7.8020	47.20
Isopentane	3.5820	1.8987	46.99
n-Pentane	5.1601	2.7669	46.38
n-Hexane	1.8983	1.0612	44.10
Cyclohexane	1.2879	0.8679	32.61
Other Hexanes	2.0503	1.1201	45.37
Heptanes	1.7681	1.0670	39.66
Methylcyclohexane	0.7633	0.5324	30.25
2,2,4-Trimethylpentane	0.0111	0.0062	44.09
Benzene	0.8264	0.7275	11.96
Toluene	1.2216	1.1137	8.83
Ethylbenzene	0.1376	0.1297	5.77
Xylenes	2.4247	2.3206	4.29
C8+ Heavies	0.7402	0.5763	22.14
Total Emissions	223.1854	116.5337	47.79
Total Hydrocarbon Emissions	223.1854	116.5337	47.79
Total VOC Emissions	72.6116	40.5765	44.12
Total HAP Emissions	6.5196	5.3588	17.80
Total BTEX Emissions	4.6102	4.2914	6.91

EQUIPMENT REPORTS:

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: Calculated Dry Gas Dew Point:	1.25 0.81	lbs. H20/MMSCF
Temperature:		deg. F
Pressure:		
Dry Gas Flow Rate:	5.0000	MMSCF/day
Glycol Losses with Dry Gas:	0.0648	lb/hr
Wet Gas Water Content:	Saturated	
Calculated Wet Gas Water Content:		lbs. H2O/MMSCF
Calculated Lean Glycol Recirc. Ratio:	18.91	gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	3.42%	96.58%
Carbon Dioxide	99.47%	0.53%
Nitrogen	99.96%	0.04%
Methane	99.96%	0.04%
Ethane	99.90%	0.10%
Propane	99.86%	0.14%
Isobutane	99.83%	0.17%
n-Butane	99.77%	0.23%
Isopentane	99.79%	0.21%
n-Pentane	99.73%	0.27%
n-Hexane	99.61%	0.39%
Cyclohexane	98.08%	1.92%
Other Hexanes	99.70%	0.30%
Heptanes	99.34%	0.66%
Methylcyclohexane	98.13%	1.87%
2,2,4-Trimethylpentane	99.75%	0.25%
Benzene	81.21%	18.79%
Toluene	76.37%	23.63%
Ethylbenzene	73.40%	26.60%
Xylenes	65.17%	34.83%
C8+ Heavies	99.48%	0.52%

FLASH TANK

Flash Control:	Combustion device
Flash Control Efficiency:	50.00 %
Flash Temperature:	160.0 deg. F
Flash Pressure:	40.0 psig

Component	Left in Glycol	Removed in Flash Gas
Water	99.06%	0.94%
Carbon Dioxide	4.60%	95.40%
Nitrogen	0.50%	99.50%
Methane	0.51%	99.49%
Ethane	1.67%	98.33%
Propane	3.18%	96.82%
Isobutane	4.48%	95.52%
n-Butane	5.61%	94.39%
Isopentane	6.20%	93.80%
n-Pentane	7.46%	92.54%

n-Hexane Cyclohexane Other Hexanes Heptanes Methylcyclohexane	12.05% 36.57% 9.70% 20.96% 41.57%	Page: 87.95% 63.43% 90.30% 79.04% 58.43%	5
2,2,4-Trimethylpentane Benzene Toluene Ethylbenzene Xylenes	12.42% 77.25% 83.72% 89.65% 92.51%	87.58% 22.75% 16.28% 10.35% 7.49%	
C8+ Heavies	59.16%	40.84%	

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	73.30%	26.70%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	3.16%	96.84%
n-Pentane	3.06%	96.94%
n-Hexane	2.28%	97.72%
Cyclohexane	7.52%	92.48%
Other Hexanes	5.00%	95.00%
Heptanes	1.60%	98.40%
Methylcyclohexane	8.25%	91.75%
2,2,4-Trimethylpentane	5.35%	94.65%
Benzene	6.37%	93.63%
Toluene	9.32%	90.68%
Ethylbenzene	11.48%	88.52%
Xylenes	13.85%	86.15%
C8+ Heavies	13.11%	86.89%

STREAM REPORTS:

WET GAS STREAM

Temperature:	70.00	deg.	F
Pressure:	1014.70	psia	
Flow Rate:	2.09e+005	scfh	

 Component
 Conc.
 Loading (vol%)

 Water
 4.98e-002
 4.93e+000

 Carbon Dioxide
 1.10e-001
 2.65e+001

 Nitrogen
 4.71e-001
 7.25e+001

Methane 7.30e+001 6.43e+003 Ethane 1.61e+001 2.67e+003 Propane 6.35e+000 1.54e+003 Isobutane 7.13e-001 2.28e+002 n-Butane 1.91e+000 6.10e+002 Isopentane 3.88e-001 1.54e+002 n-Pentane 5.00e-001 1.98e+002 n-Hexane 1.28e-001 6.06e+001 Cyclohexane 2.83e-002 1.31e+001 Other Hexanes 1.58e-001 7.47e+001 Heptanes 7.49e-002 4.12e+001 Methylcyclohexane 1.47e-002 7.93e+000 2,2,4-Trimethylpentane 7.00e-004 4.39e-001 Benzene 2.30e-003 9.87e-001 Toluene 2.30e-003 1.16e+000 Ethylbenzene 2.00e-004 1.17e-001 Xylenes 2.70e-003 1.57e+000 C8+ Heavies 2.14e-002 2.00e+001 Total Components 100.00 1.22e+004

DRY GAS STREAM Temperature: 70.00 deg. F Pressure: 1014.70 psia Flow Rate: 2.08e+005 scfh Component Conc. Loading (vol%) (lb/hr) Water 1.71e-003 1.69e-001 Carbon Dioxide 1.09e-001 2.64e+001

Nitrogen 4.71e-001 7.25e+001 Methane 7.30e+001 6.43e+003 Ethane 1.61e+001 2.66e+003 Propane 6.35e+000 1.54e+003 Isobutane 7.13e-001 2.27e+002 n-Butane 1.91e+000 6.09e+002 Isopentane 3.88e-001 1.54e+002 n-Pentane 4.99e-001 1.98e+002 n-Hexane 1.27e-001 6.03e+001 Cyclohexane 2.78e-002 1.28e+001 Other Hexanes 1.57e-001 7.45e+001 Heptanes 7.45e-002 4.10e+001 Methylcyclohexane 1.44e-002 7.78e+000 2,2,4-Trimethylpentane 6.99e-004 4.38e-001 Benzene 1.87e-003 8.02e-001 Toluene 1.76e-003 8.89e-001 Ethylbenzene 1.47e-004 8.56e-002 Xylenes 1.76e-003 1.03e+000 C8+ Heavies 2.13e-002 1.99e+001 Total Components 100.00 1.21e+004

LEAN GLYCOL STREAM Temperature: 70.00 deg. F Flow Rate: 1.50e+000 gpm

Page: 6

Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.85e+001 1.50e+000 1.66e-012 3.82e-013 9.08e-018	1.27e+001 1.40e-011 3.23e-012
Propane Isobutane	1.48e-007 1.01e-008 1.41e-009 4.11e-009 1.90e-004	8.52e-008 1.19e-008 3.47e-008
n-Hexane Cyclohexane Other Hexanes		1.19e-003 8.32e-003 2.28e-003
	2.01e-006 1.16e-003 2.80e-003	1.70e-005 9.76e-003 2.36e-002
Xylenes C8+ Heavies	9.63e-003 1.68e-003	
Total Components	100.00	8.44e+002

RICH GLYCOL AND PUMP GAS STREAM

Temperature:	70.00 deg. F
Pressure:	1014.70 psia
Flow Rate:	1.62e+000 gpm
NOTE: Stream	has more than one phase.

Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.23e+001 1.94e+000 2.51e-002 2.97e-002 2.57e+000	1.74e+001 2.26e-001 2.67e-001
Propane Isobutane	1.25e+000 7.86e-001 1.26e-001 3.75e-001 9.10e-002	7.08e+000 1.13e+000 3.37e+000
n-Hexane Cyclohexane Other Hexanes		4.35e-001 3.02e-001 4.70e-001
	2.84e-004 2.20e-002 3.36e-002	2.55e-003 1.98e-001 3.02e-001
77 7		6 3 5 0 9 1

Xylenes 7.05e-002 6.35e-001

Page: 8

C8+ Heavies 2.03e-002 1.83e-001 Total Components 100.00 9.00e+002

FLASH TANK OFF GAS STREAM Temperature: 160.00 deg. F Pressure: 54.70 psia Flow Rate: 7.96e+002 scfh Component Conc. Loading (vol%) (lb/hr) Water 4.36e-001 1.65e-001 Carbon Dioxide 2.33e-001 2.15e-001 Nitrogen 4.53e-001 2.66e-001 Methane 6.83e+001 2.30e+001 Ethane 1.76e+001 1.11e+001 Propane 7.41e+000 6.85e+000 Isobutane 8.89e-001 1.08e+000 n-Butane 2.61e+000 3.18e+000 Isopentane 5.08e-001 7.69e-001 n-Pentane 7.22e-001 1.09e+000 n-Hexane 2.11e-001 3.82e-001 Cyclohexane 1.09e-001 1.92e-001 Other Hexanes 2.35e-001 4.25e-001 Heptanes 1.52e-001 3.20e-001 Methylcyclohexane 5.12e-002 1.05e-001 2,2,4-Trimethylpentane 9.33e-004 2.24e-003 Benzene 2.75e-002 4.51e-002 Toluene 2.55e-002 4.92e-002 Ethylbenzene 1.63e-003 3.62e-003 Xylenes 2.13e-002 4.75e-002 C8+ Heavies 2.09e-002 7.48e-002 Total Components 100.00 4.93e+001

FLASH TANK GLYCOL STREAM

Temperature: 160.00 deg. F Flow Rate: 1.51e+000 gpm

Component Conc. Loading (wt%) (lb/hr) TEG 9.77e+001 8.31e+002 Water 2.03e+000 1.73e+001 Carbon Dioxide 1.22e-003 1.04e-002 Nitrogen 1.58e-004 1.35e-003 Methane 1.39e-002 1.18e-001 Ethane 2.21e-002 1.88e-001 Propane 2.64e-002 2.25e-001 Isobutane 5.97e-003 5.08e-002 n-Butane 2.22e-002 1.89e-001 Isopentane 5.97e-003 5.08e-002 n-Pentane 1.03e-002 8.80e-002 n-Hexane 6.15e-003 5.23e-002 Cyclohexane 1.30e-002 1.11e-001 Other Hexanes 5.36e-003 4.56e-002 Heptanes 9.97e-003 8.49e-002 Methylcyclohexane 8.81e-003 7.50e-002 2,2,4-Trimethylpentane 3.72e-005 3.17e-004 Benzene 1.80e-002 1.53e-001 Toluene 2.98e-002 2.53e-001 Ethylbenzene 3.69e-003 3.14e-002 Xylenes 6.90e-002 5.87e-001 C8+ Heavies 1.27e-002 1.08e-001 Total Components 100.00 8.51e+002

FLASH GAS EMISSIONS _____ Flow Rate: 2.00e+003 scfh Control Method: Combustion Device Control Efficiency: 50.00 Component Conc. Loading (vol%) (lb/hr) _____ ____ Water 4.99e+001 4.74e+001 Carbon Dioxide 3.02e+001 7.01e+001 Nitrogen 1.80e-001 2.66e-001 Methane 1.36e+001 1.15e+001 Ethane 3.50e+000 5.54e+000 Propane 1.47e+000 3.43e+000 Isobutane 1.77e-001 5.42e-001 n-Butane 5.20e-001 1.59e+000 Isopentane 1.01e-001 3.84e-001 n-Pentane 1.44e-001 5.46e-001 n-Hexane 4.21e-002 1.91e-001 Cyclohexane 2.16e-002 9.59e-002 Other Hexanes 4.68e-002 2.12e-001 Heptanes 3.03e-002 1.60e-001 Methylcyclohexane 1.02e-002 5.27e-002 2,2,4-Trimethylpentane 1.86e-004 1.12e-003 Benzene 5.48e-003 2.26e-002 Toluene 5.07e-003 2.46e-002 Ethylbenzene 3.24e-004 1.81e-003 Xylenes 4.25e-003 2.38e-002 C8+ Heavies 4.17e-003 3.74e-002 _____ ____ Total Components 100.00 1.42e+002 REGENERATOR OVERHEADS STREAM _____ Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 1.12e+002 scfh

 Component
 Conc.
 Loading (vol%)

 Water
 8.69e+001
 4.61e+000

 Water
 8.69e+001
 4.61e+000

 Carbon Dioxide
 7.99e-002
 1.04e-002

 Nitrogen
 1.63e-002
 1.35e-003

 Methane
 2.50e+000
 1.18e-001

 Ethane
 2.12e+000
 1.88e-001

 Propane
 1.73e+000
 2.25e-001

 Isobutane
 2.96e-001
 5.08e-002

```
Page: 10
```

n-Butane 1.10e+000 1.89e-001 Isopentane 2.31e-001 4.92e-002 n-Pentane 4.01e-001 8.53e-002 Cyclohexane 4.12e-001 5.12e-002 Cyclohexane 4.12e-001 1.02e-001 Other Hexanes 1.71e-001 4.34e-002 Heptanes 2.83e-001 8.35e-002 Methylcyclohexane 2.38e-001 6.88e-002 2,2,4-Trimethylpentane 8.91e-004 3.00e-004 Benzene 6.23e-001 1.44e-001 Toluene 8.45e-001 2.30e-001 Ethylbenzene 8.87e-002 2.78e-002 Xylenes 1.62e+000 5.06e-001 C8+ Heavies 1.87e-001 9.42e-002 Total Components 100.00 6.88e+000

ATTACHMENT O

Monitoring/Recordkeeping/Reporting/Testing Plans

"31. **Monitoring, Recordkeeping, Reporting and Testing Plans**. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O."

- Monitoring/Recordkeeping/Reporting/Testing Plans
 - A. Monitoring
 - B. Recordkeeping
 - C. Reporting
 - D. Testing

Application for 45CSR13 NSR Modification Permit

Attachment O MONITORING/RECORDKEEPING/REPORTING/TESTING PLANS

Williams Ohio Valley Midstream LLC proposes the following monitoring, recordkeeping, testing and reporting requirements at the subject facility:

A. Monitoring

- 1. Monitor and record quantity of natural gas combusted in the engine.
- 2. Monitor and record quantity of natural gas treated in the dehydrator.
- 3. Monitor and record quantity of produced water transferred from the storage tank.

B. <u>Recordkeeping</u>

- 1. Maintain records of the amount of natural gas consumed and hours of operation for the engine.
- 2. Maintain records of the amount of natural gas treated in the dehydrator.
- 3. Maintain records demonstrating the actual annual average benzene emissions are less than one ton per year.
- 4. Maintain records of the amount of produced water transferred from the storage tank.
- 5. Maintain records of testing conducted in accordance with the permit.
- Maintain a record of all potential to emit (PTE) HAP calculations for the entire facility. These records shall include the natural gas compressor engine, dehydration unit and ancillary equipment.
- 7. The records shall be maintained on site or in a readily available off-site location for a period of five (5) years.

C. Reporting

- 1. Any deviations from the allowable emissions limitations, including visible emissions.
- 2. Any and all application forms, reports, or compliance certifications required by this Permit shall be certified by a responsible official.

D. Testing

Emissions testing is not requisite for any equipment at the site.

ATTACHMENT P

Public Notice

"32. **Public Notice**. At the time that the application is submitted, place a **Class I Legal Advertisement** in a newspaper of general circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and Example Legal Advertisement for details). Please submit the **Affidavit of Publication** as Attachment P immediately upon receipt."

The applicant shall cause such legal advertisement to appear a minimum of one (1) day in the newspaper most commonly read in the area where the facility exists or will be constructed. The notice must be published no earlier than five (5) working days of receipt by this office of your application. The original affidavit of publication must be received by this office no later than the last day of the public comment period.

Types and amounts of pollutants discharged must include all regulated pollutants (PM, PM10, VOC, SO2, Xylene, etc.) and their potential to emit or the permit level being sought in units of tons per year (including fugitive emissions).

- Legal Advertisement (as shown) will be placed in a newspaper of general circulation in the area where the source is located (See 45CSR§13-8.3 thru 45CSR§13-8.5).
- An Affidavit of Publication shall be submitted immediately upon receipt.

BARDALL COMPRESSOR STATION

Application for 45CSR13 NSR Modification Permit

Attachment P - Public Notice

AIR QUALITY PUBLIC NOTICE Notice of Application

Notice is given that Williams Ohio Valley Midstream LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a 45CSR13 NSR Modification Permit for an existing compressor station, located on the north side of Toms Run Road, approximately 3 miles east of Moundsville in Marshall County, West Virginia.

The latitude and longitude coordinates are 39.9303° North and -80.6762° West.

The applicant estimates the increased potential to regulated air pollutants will be as follows:

- (0.01) tons of nitrogen oxides per year
- (0.01) tons of carbon monoxide per year
- 37.28 tons of volatile organic compounds per year
- (0.01) tons of particulate matter per year
- 0.81 tons of benzene per year
- 0.66 tons of total hazardous air pollutants per year
- 1,579 tons of carbon dioxide equivalent per year

Modifications will be implemented immediately upon permit issuance.

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality (DAQ), 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the _____ day of _____, 2016.

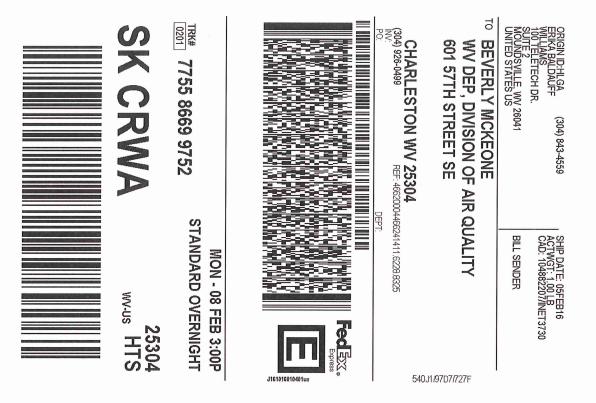
By: Williams Ohio Valley Midstream LLC Mr. Paul Hunter General Manager, Ohio River Supply Hub Park Place Corporate Center 2 2000 Commerce Drive Pittsburgh, PA 15275

ATTACHMENT Q Business Confidential Claims (NOT APPLICABLE)

also

ATTACHMENT R Authority Forms (NOT APPLICABLE)

also


ATTACHMENT S Title V Permit Revision Information (NOT APPLICABLE)

APPLICATION FEE

Include a check payable to WVDEP – Division of Air Quality.

- As per WV Rule 22 (45CSR22) filed on May 6, 1991, a **minimum fee of \$1,000** must be submitted for each 45CSR13 permit application filed with the WVDEP-DAQ.
- Additional charges may apply, depending on the nature of the application as outlined in Section 3.4.b. of Regulation 22, and shown below:
 - NSPS Requirements: \$1,000 (na)
 - NESHAP Requirements: **\$2,500** (HH DFT-01/4E and DSV-01/5E)
- Total application fee is **\$3,500** [= \$1,000 minimum fee + \$2,500 additional charges]

***** End of Application for 45CSR13 NSR Permit ****

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.