JAY-BEE OIL & GAS, INC.

APPLICATION FOR MODIFICATION OF GENERAL PERMIT

Moe Well Pad Production Facility Tyler County, West Virginia

98 Vanadium Road Bridgeville, PA 15017 (412) 221-1100

APPLICATION FOR G70-D GENERAL PERMIT

Jay-Bee Oil & Gas, Inc.

Moe Well Pad Production Facility

Tyler County, West Virginia

Table of Contents

- I. Application Form
- II. Attachments
 - Attachment A Single Source Determination Form
 - Attachment C Current Business Certificate
 - Attachment D Process Flow Diagram
 - Attachment E Process Description
 - Attachment F Plot Plan
 - Attachment G Area Map
 - Attachment H G70-D Section Applicability Form
 - Attachment I Emission Units/ERD Table
 - Attachment J Fugitive Emissions Summary Sheet
 - Attachment K Gas Well Affected Facility Data Sheet
 - Attachment N Internal Combustion Engine Data Sheet(s)
 - Attachment P Glycol Dehydration Unit Data Sheet(s)
 - Attachment Q Pneumatic Controllers Data Sheet
 - Attachment R Pneumatic Pump Data Sheet
 - Attachment S Air Pollution Control Device Sheet(s)
 - Attachment T Emission Calculations
 - Attachment U Facility-wide Emission Summary Sheet(s)
 - Attachment V Class I Legal Advertisement

SECTION I

Application Form

.*	
dep	

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

	OF AIR POLLUTION IN 1 ION, ADMINISTRATIVE		UCTION, MODIFICATION, N OF
□CONSTRUCTION ⊠MODIFICATION □RELOCATION		□CLASS I ADMINISTRATIV □CLASS II ADMINISTRATIV	
	SECTION 1. GENERA	AL INFORMATION	
Name of Applicant (as registered with	th the WV Secretary of Sta	te's Office): Jay-Bee Oil &	Gas, Inc.
Federal Employer ID No. (FEIN): 55	5-073-8862		
Applicant's Mailing Address: 3570	Shields Hill Rd		
City: Cairo	State: WV		ZIP Code: 26337
Facility Name: Moe Well Pad Pro	duction Facility		1
Operating Site Physical Address: Off If none available, list road, city or to	f Klondike Acres Rd		
City: Middlebourne	Zip Code: 26149		County: Tyler
Latitude & Longitude Coordinates (N Latitude: 39.46791 Longitude: -80.88719	NAD83, Decimal Degrees t	o 5 digits):	
SIC Code: 1311		SIC Code: 1311	
NAICS Code: 211111		NAICS Code: 211111	
	CERTIFICATION O	F INFORMATION	
Proprietorship. Required records compliance certifications and al Representative. If a business wishes off and the appropriate names an unsigned G70-D Registration Appl utilized, the application I hereby certify that is an Aut (e.g., Corporation, Partnership, Limi obligate and legally bind the busines notify the Director of the Division o I hereby certify that all information documents appended hereto is, to the	usiness structure. A busine ion, Partnership, Limited I s of daily throughput, hours l required notifications mu to certify an Authorized R and signatures entered. Any ication will be returned to a will be returned to the a horized Representative and ited Liability Company, As is. If the business changes f Air Quality immediately. contained in this G70-D G e best of my knowledge, tri	ess may certify an Authorized R Liability Company, Association s of operation and maintenance, ist be signed by a Responsible (epresentative, the official agree administratively incomplete o the applicant. Furthermore spplicant. No substitution of f l in that capacity shall represen sociation Joint Venture or Sole its Authorized Representative, in eneral Permit Registration App ine, accurate and complete, and	tepresentative who shall have , Joint Venture or Sole , general correspondence, Official or an Authorized ement below shall be checked or improperly signed or , if the G70-D forms are not forms is allowed. t the interest of the business Proprietorship) and may a Responsible Official shall lication and any supporting
have been made to provide the most	comprehensive informatio		
Responsible Official Signature: Name and Title: Shane Dowell, Offi Email: sdowell@jaybeeoil.com	ice Manager Date	Phone: 304-628-311	9 Fax:
If applicable: Authorized Representative Signature Name and Title: Email:	Phone: Date:	Fax:	
If applicable: Environmental Contact Name and Title: Email:	Phone: Date:	Fax:	

OPERATING SITE INFORMATION

Briefly describe the proposed new operation and/or any change(s) to the facility: Jay-Bee is seeking approval for installation of a compressor engine. Jay-Bee is also seeking to replace the permitted 40 MMSCFD Dehydration Unit with a 20 MMSCFD Dehydration Unit. This change will result in a modification to EC-2 emissions. This is enclosed combustor the new dehydration unit will be routed to. However, there will be no physical changes to EC-2. There are no other proposed changes to the facility at this time.

Directions to the facility:

From Middlebourne, proceed southwest on State Route 18 (Main Street) out of town. Turn right onto Bridgeway Rd. Turn left onto Wick Rd and follow for approximately 2.0 miles. Turn left onto Klondike Acres Rd and follow for approximately 2.5 miles to well pad entrance.

ATTACHMENTS AND SUPPORTING DOCUMENTS

I have enclosed the following required documents:

Check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22).

 \boxtimes Check attached to front of application.

□ I wish to pay by electronic transfer. Contact for payment (incl. name and email address):

 \Box I wish to pay by credit card. Contact for payment (incl. name and email address):

S500 (Construction, Modification, and Relocation)
 S300 (Class II Administrative Update)
 \$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ, OOOO and/or OOOOa ¹
 \$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH ²

¹ Only one NSPS fee will apply.

² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ.

NSPS and NESHAP fees apply to new construction or if the source is being modified.

Responsible Official or Authorized Representative Signature (if applicable)

Single Source Determination Form (must be completed) – Attachment A

□ Siting Criteria Waiver (if applicable) – Attachment B	🖾 Current Business Certificate – Attachment C
🖾 Process Flow Diagram – Attachment D	⊠ Process Description – Attachment E
🛛 Plot Plan – Attachment F	🖾 Area Map – Attachment G

G70-D Section Applicability Form – Attachment H Emission Units/ERD Table – Attachment I

⊠ Fugitive Emissions Summary Sheet – Attachment J

Gas Well Affected Facility Data Sheet (if applicable) – Attachment K

□ Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L

□ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M

⊠ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N

□ Tanker Truck/Rail Car Loading Data Sheet (if applicable) – Attachment O

 \boxtimes Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalcTM input and output reports and information on reboiler if applicable) – Attachment P

 \boxtimes Pneumatic Controllers Data Sheet – Attachment Q

🖾 Pneumatic Pump Data Sheet – Attachment R

 \boxtimes Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment S

 \boxtimes Emission Calculations (please be specific and include all calculation methodologies used) – Attachment T

 \boxtimes Facility-wide Emission Summary Sheet(s) – Attachment U

🖾 Class I Legal Advertisement – Attachment V

🖾 One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments

All attachments must be identified by name, divided into sections, and submitted in order.

SECTION II

Attachments

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ¹/₄ mile of each other.

Is there equipment and activities in the same industrial grouping (defined by SIC code)?

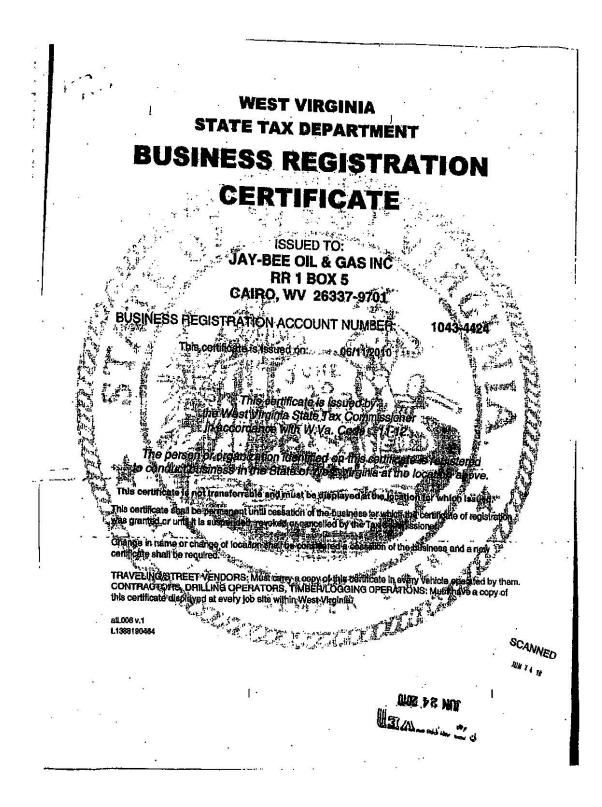
Yes \Box No \boxtimes

Is there equipment and activities under the control of the same person/people?

 $Yes \square No \boxtimes$

Is there equipment and activities located on the same site or on sites that share equipment and are within $\frac{1}{4}$ mile of each other? Yes \square No \boxtimes

The proposed modification to this facility will not change the previous single source determination. Additionally, there have been no other Jay-Bee facilities installed in proximity to this facility since that previous determination.


ATTACHMENT C – CURRENT BUSINESS CERTIFICATE

If the applicant is a resident of West Virginia, the applicant should provide a copy of the current Business Registration Certificate issued to them from the West Virginia Secretary of State's Office. If the applicant is not a resident of the State of West Virginia, the registrant should provide a copy of the Certificate of Authority/Authority of LLC/Registration. This information is required for all sources to operate a business in West Virginia regardless of whether it is a construction, modification, or administrative update.

If you are a new business to West Virginia and have applied to the West Virginia Secretary of State's Office for a business license, please include a copy of your application.

Please note: Under the West Virginia Bureau of Employment Programs, 96CSR1, the DAQ may not grant, issue, or renew approval of any permit, general permit registration, or Certificate to Operate to any employing unit whose account is in default with the Bureau of Employment Programs Unemployment Compensation Division.

Attached Current WV Business Certificate



ATTACHMENT D – PROCESS FLOW DIAGRAM

Provide a diagram or schematic that supplements the process description of the operation. The process flow diagram must show all sources, components or facets of the operation in an understandable line sequence of operation. The process flow diagram should include the emission unit ID numbers, the pollution control device ID numbers, and the emission point ID numbers consistent with references in other attachments of the application. For a proposed modification, clearly identify the process areas, emission units, emission points, and/or control devices that will be modified, and specify the nature and extent of the modification.

Use the following guidelines to ensure a complete process flow diagram:

- The process flow diagram shall logically follow the entire process from beginning to end.
- Identify each emission source and air pollution control device with proper and consistent emission unit identification numbers, emission point identification numbers, and control device identification numbers.
- The process flow lines may appear different for clarity. For example, dotted lines may be used for vapor flow and solid lines used for liquid flow and arrows for direction of flow.
- The process flow lines may be color coded. For example: new or modified equipment may be red; old or existing equipment may be blue; different stages of preparation such as raw material may be green; and, finished product or refuse, another color.

Plot: env045 11/4/2016 11:25 G:\JAY-BEE OIL&GAS\214054\MOE\FIGURE 3 MOE FDb01.dwg

ATTACHMENT E – PROCESS DESCRIPTION

Provide a detailed written description of the operation for which the applicant is seeking a permit. The process description is used in conjunction with the process flow diagram to provide the reviewing engineer a complete understanding of the activity at the operation. Describe in detail and order the complete process operation.

Use the following guidelines to ensure a complete Process Description:

- The process flow diagram should be prepared first and used as a guide when preparing the process description. The written description shall follow the logical order of the process flow diagram.
- All emission sources, emission points, and air pollution control devices must be included in the process description.
- When modifications are proposed, describe the modifications and the effect the changes will have on the emission sources, emission points, control devices and the potential emissions.
- Proper emission source ID numbers must be used consistently in the process description, the process flow diagram, the emissions calculations, and the emissions summary information provided.
- Include any additional information that may facilitate the reviewers understanding of the process operation.

The process description is required for all sources regardless of whether it is a construction, modification, or administrative update.

Jay-Bee Oil & Gas, Incorporated Moe Well Pad Production Facility Attachment E Process Description

Jay-Bee Oil & Gas, Inc. currently operates the Moe Well Pad Production Facility under a G-70C permit, permit number G70-C216.

Proposed Changes

Jay-Bee is seeking approval for installation of a compressor engine. Jay-Bee is also seeking to replace the permitted 40 MMSCFD Dehydration Unit with a 20 MMSCFD Dehydration Unit. Gas flow through this facility does not warrant the larger unit. This change will result in a modification to EC-2 emissions. This is enclosed combustor the new dehydration unit will be routed to. However, there will be no physical changes to EC-2. There are no other proposed changes to the facility at this time.

The proposed dehydration unit will generate emissions from the still vent and re-boiler. There will be no flash tank. Vapors from the still vent will be comprised of water and various low molecular weight hydrocarbons. Still vent vapors will be routed to the permitted enclosed combustor, EC-2. A capture and control efficiency of 98% is being claimed for the combustor. Any water condensing in the still vent column will be routed to the wastewater tanks.

Current Operations

Currently, Natural gas and Produced Fluids (condensate and water) are received from two wells and passed through Gas Processing Units (one per Marcellus well and two per Utica well) to avoid ice formation during subsequent pressure drops. These materials pass through a three-way separator where gas, condensate and water are separated. All gas fired equipment use natural gas produced at the site as fuel. The Facility will then compress (proposed modification) and then dehydrate the gas. The gas is then injected into a gathering pipeline owned and operated by others.

Both Condensate and Produced Water are accumulated in six (6) 210 BBL tanks (three for Condensate and three for Produced Water), pending truck transportation by others. The Condensate is transported to a regional processing facility and the Produced Water is transported to a regional disposal facility. Flash, working and breathing losses from these tanks is routed to a Vapor Recovery Unit (VRU) with the captured vapors routed back to the raw gas discharge line. An enclosed combustor is utilized as a backup control device for times when the VRU is not available, and is also utilized if a large slug of condensate production generates flash gas in excess of the capacity of the VRU. A capture and control efficiency of 98% is being claimed for this overall combination of controls.

A Thermo-electric generator to meet the minor electric demands for various monitoring and data tracking equipment has also been installed at this facility.

In summary, upon approval of this application, emission sources at this facility will include the following:

- Three Gas Processing Units (GPUs), each with a 1.5 MMBTU/hr heater (Existing).
- One Line Heater (Existing)
- Condensate Truck Loading (Existing)
- Produced Water Truck Loading (Existing)
- One Vapor Recovery Unit (VRU) with driver engine (Existing), controlling emissions from T01-T06.

- One Thermo-electric Generator (Existing)
- Backup Enclosed Combustor for VRU (Existing)
- Three Produced Water Tanks (Existing)
- Three Condensate Tanks (Existing)
- Dehydration Unit (Source 10E reboiler vent and 11E still vent) **REMOVE SOURCE**
- Enclosed Combustor for control of still vent (Source 11E) MODIFED SOURCE
- Un-captured/un-controlled emissions associated with VRU (Existing)
- One Caterpillar G3516BLE compressor engine (Source 13E) NEW SOURCE
- Dehydration Unit (Source 14E reboiler vent and 11E still vent) **NEW SOURCE**

ATTACHMENT F – PLOT PLAN

Provide an accurately scaled and detailed Plot Plan showing the locations of all emission units, emission points, and air pollution control devices. Show all emission units, affected facilities, enclosures, buildings and plant entrances and exits from the nearest public road(s) as appropriate. Note height, width and length of proposed or existing buildings and structures.

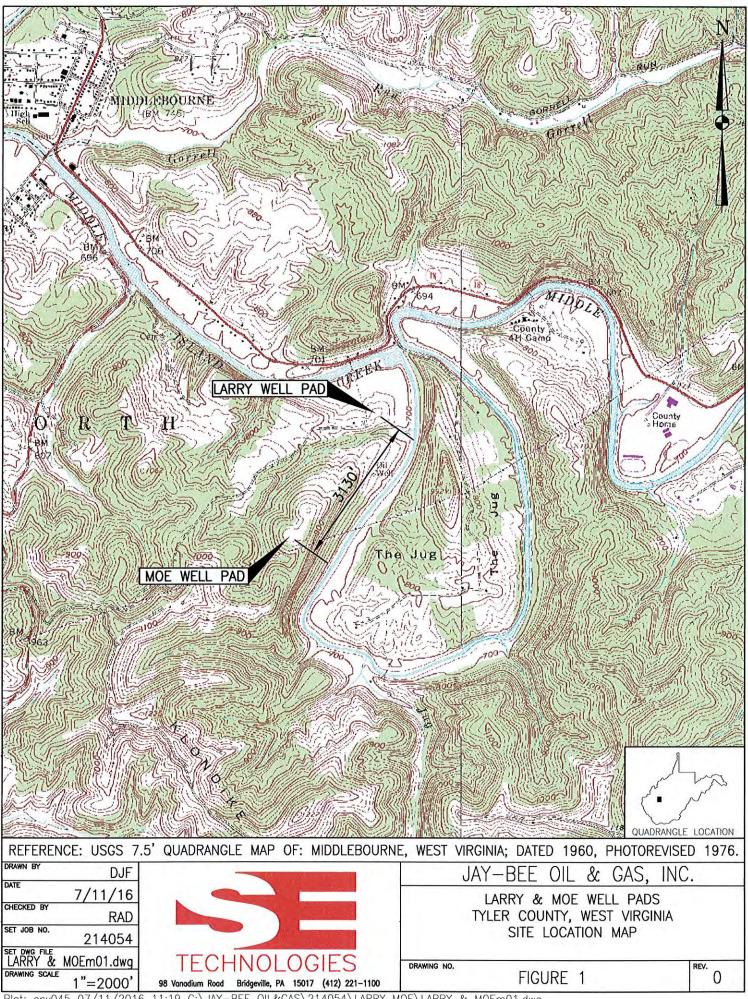
A scale between 1"=10' and 1"=200' should be used with the determining factor being the level of detail necessary to show operation or plant areas, affected facilities, emission unit sources, transfer points, etc. An overall small scale plot plan (e.g., 1"=300') should be submitted in addition to larger scale plot plans for process or activity areas (e.g., 1"=50') if the plant is too large to allow adequate detail on a single plot plan. Process or activity areas may be grouped for the enlargements as long as sufficient detail is shown.

Use the following guidelines to ensure a complete Plot Plan:

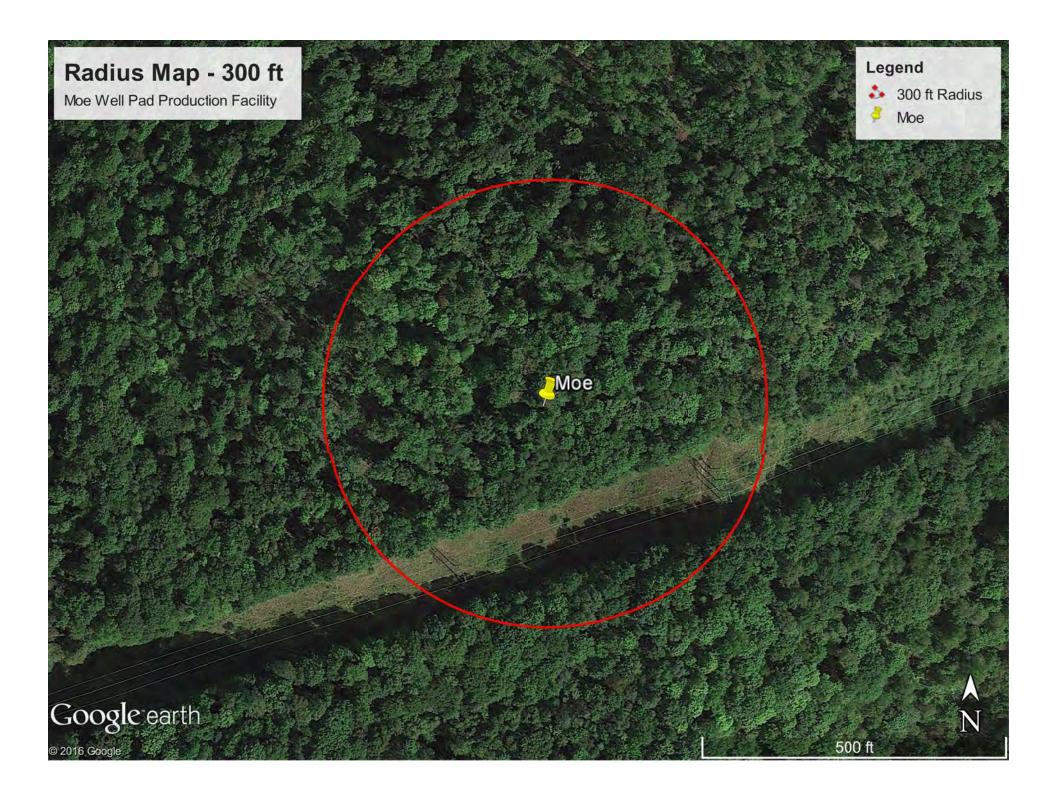
- Facility name
- Company name
- Company facility ID number (for existing facilities)
- Plot scale, north arrow, date drawn, and submittal date.
- Facility boundary lines
- Base elevation
- Lat/Long reference coordinates from the area map and corresponding reference point elevation
- Location of all point sources labeled with proper and consistent source identification numbers

This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

	¢¢¢ WELLS			
DJF DATE 8/16/16		JAY-BEE OIL & GAS, INC. MOE WELL PRODUCTION FACILITY		
CHECKED BY LFM		TYLER COUNTY, WEST VIRGINIA SITE LAYOUT PLAN		
214054-19		SILE LATUUT PLAN		
set dwg file MOEa01.dwg	TECHNOLOGIES	DRAWING NAME	REV.	


Plot: env045 08/16/2016 15:00 G:\JAY-BEE 0IL&GAS\214054\MOE\MOEa01.dwg

ATTACHMENT G – AREA MAP


Provide an Area Map showing the current or proposed location of the operation. On this map, identify plant or operation property lines, access roads and any adjacent dwelling, business, public building, school, church, cemetery, community or institutional building or public park within a 300' boundary circle of the collective emission units.

Please provide a 300' boundary circle on the map surrounding the proposed emission units collectively.

This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Plot: env045 07/11/2016 11:19 G:\JAY-BEE OIL&GAS\214054\LARRY MOE\LARRY & MOEm01.dwg

ATTACHMENT H – G70-D SECTION APPLICABILITY FORM

General Permit G70-D Registration Section Applicability Form

General Permit G70-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, pneumatic pumps, reciprocating internal combustion engines (RICEs), tank truck/rail car loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PER	GENERAL PERMIT G70-D APPLICABLE SECTIONS						
\boxtimes Section 5.0	Gas and Oil Well Affected Facility (NSPS, Subpart OOOO/OOOOa)						
Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹						
□Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOOa)						
Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOOa and/or NESHAP Subpart HH						
Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc						
□Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOOa)						
□Section 11.0	Pneumatic Pump Affected Facility (NSPS, Subpart OOOOa)						
Section 12.0	Fugitive Emissions GHG and VOC Standards (NSPS, Subpart OOOOa)						
Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines						
Section 14.0	Tanker Truck/Rail Car Loading ²						
Section 15.0	Glycol Dehydration Units ³						

1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subparts OOOO or OOOOa control requirements or the applicable control device requirements of Section 8.

2 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.

3 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
HTR-1	1E	Gas Processing Unit	2016		1.5 MMBTU/hr	Existing	None	None
HTR-2	2E	Gas Processing Unit	2016		1.5 MMBTU/hr	Existing	None	None
HTR-3	3E	Gas Processing Unit	2016		1.5 MMBTU/hr	Existing	None	None
HTR-4	4E	Line Heater	2016		0.5 MMBTU/hr	Existing	None	None
TL-1	5E	Condensate Truck Loading	2016		30,000 BBL/yr	Existing	None	None
TL-2	6E	Produced Water Truck Loading	2016		63,600 BBL/yr	Existing	None	None
VRU-1	7E	VRU Driver	2016	3/19/2012	84 HP	Existing	1C	None
TEG-1	8E	Thermoelectric Generator	2016		4.4 KW/hr	Existing	None	None
EC-1	9E	Enclosed Combustor	2016		10.0 MMBTU/hr	Existing	N/A	None
T01	7E/9E	Condensate Tank	2016		210 BBL	Existing	EC-1	VRU-1
T02	7E/9E	Condensate Tank	2016		210 BBL	Existing	EC-1	VRU-1
T03	7E/9E	Condensate Tank	2016		210 BBL	Existing	EC-1	VRU-1
T04	7E/9E	Produce Water Tank	2016		210 BBL	Existing	EC-1	VRU-1
T05	7E/9E	Produced Water Tank	2016		210 BBL	Existing	EC-1	VRU-1
T06	7E/9E	Produced Water Tank	2016		210 BBL	Existing	EC-1	VRU-1
RBV-1	10E	Dehydration Unit Re-boiler Vent	2016		0.500 MMBTU/hr	Removal	None	None
RSV-1	11E	Dehydration Unit Still Vent	2016		40 MMSCFD	Removal	EC-2	None
EC-2	11E	Enclosed Combustor	2016		10.0 MMBTU/hr	Modify	None	None
T01-T06	12E	Un-captured/Un-controlled VRU-1 Emissions	2016			Existing	None	None
CE-1	13E	Compressor Engine	Pending Approval	3/21/2012	1,380 HP	New	2C	None
RBV-2	14E	Dehydration Unit Re-boiler Vent	2016		0.200 MMBTU/hr	New	None	None
RSV-2	11E	Dehydration Unit Still Vent	2016		20 MMSCFD	New	EC-2	None

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system: 1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

			Sources of fugitive emissions	may include loading operation	ons, equipment le	aks, blowdowi	n emissions, et	C.
	ource/Equipm							
Ι	eak Detection	Method	Audible, visual, and olfactory (AVO) inspections	□ Infrared (FLIR) cameras	□ Other (pleas	se describe)		□ None required
Component	Closed		Source of	Leak Factors	Stream type		Estimated Em	issions (tpy)
Component Type	Vent System	Count		er (specify))	(gas, liquid, etc.)	VOC	HAP	GHG (methane, CO ₂ e
Pumps	□ Yes ⊠ No	1	API		⊠ Gas □ Liquid □ Both	<0.01	<0.01	0.34
/alves	□ Yes ⊠ No	56	EPA		□ Gas □ Liquid ⊠ Both	0.28	<0.01	3.87
afety Relie /alves	f 🗆 Yes 🖾 No	3	EPA		□ Gas □ Liquid ⊠ Both	0.01	<0.01	0.45
Open Ended Lines	□ Yes ⊠ No	20	EPA		⊠ Gas □ Liquid □ Both	0.06	<0.01	4.60
Sampling Connections	□ Yes ⊠ No	17	TECQ	TECQ		1.16	0.01	23.60
Connections Not sampling) Yes No	237	EPA		□ Gas □ Liquid ⊠ Both	0.13	<0.01	2.00
Compressors	□ Yes ⊠ No	1	API		⊠ Gas □ Liquid □ Both	0.02	<0.01	1.26
langes	□ Yes ⊠ No	120	API		□ Gas □ Liquid ⊠ Both	0.09	<0.01	4.47
Dther ¹	□ Yes ⊠ No	16	n/a		⊠ Gas □ Liquid □ Both	0.04	<0.01	0.055
Other equi	oment types m	ay include	compressor seals, relief valves, c	diaphragms, drains, meters, etc.	· · · · · · · · · · · · · · · · · · ·			·
lease provi	de an explana	tion of the	sources of fugitive emissions (e.g	g. pigging operations, equipmen	t blowdowns, pneu	matic controller	rs, etc.): Blowdo	owns
Please indicated	te if there are	any closed	d vent bypasses (include compone	ent): No				

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device	Subject to OOOO or OOOOa?
47-095-02315	December 2016	2-1-2017	Flow to separator and into gathering line as soon as practical.	47-095-02315
47-095-02334	December 2016	2-1-2017	Flow to separator and into gathering line as soon as practical.	47-095-02334

Note: If future wells are planned and no API number is available please list as PLANNED. If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,	
047 =	State code. The state code for WV is 047.
001 =	County Code. County codes are odd numbers, beginning with 001
	(Barbour) and continuing to 109 (Wyoming).
00001=	Well number. Each well will have a unique well number.

ATTACHMENT N - INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

snuti uiso i	ise inis joini	•					
Emission Unit ID# ¹ Engine Manufacturer/Model		VR	U-1	Cl	E-1		
Engine Manufac	turer/Model	Cummi	ns G5.9	Caterpillar	G3516 BLE		
Manufacturers F	Rated bhp/rpm	84 @	1800	1380	@ 1400		
Source Status ²		E	S	N	IS		
Date Installed/ Modified/Removed/Relocated ³		20	16	Upon Recei	ipt of Permit		
Engine Manufac /Reconstruction		After 3	/1/2013	3/21	/2012		
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		 ☑ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 ⋈ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS □ JJJJ Window □ NESHAP ZZZZ Remote Sources 		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZ □NESHAP ZZZZ/NSPS JJJJ Window □NESHAP ZZZZ Remo Sources	
Engine Type ⁶		48	RB	48	LB		
APCD Type ⁷		NS	CR	Ox	OxCat		
Fuel Type ⁸		RG		RG			
H ₂ S (gr/100 scf)		<1		<1			
Operating bhp/rpm		84 @ 1800		1380 @ 1400			
BSFC (BTU/bhr	o-hr)	7914		8256			
Hourly Fuel Thr	oughput	526.4 ft ³ /hr gal/hr		9,021 ft ³ /hr gal/hr		ft³/hr gal/hr	
Annual Fuel The (Must use 8,760) emergency gene	hrs/yr unless	4.62 MMft ³ /yr gal/yr		79.02 MMft ³ /yr gal/yr		MMft ³ /yr gal/yr	
Fuel Usage or H Operation Meter		Yes 🛛	No 🗆	Yes 🖂	No 🗆	Yes 🗆	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
AP	NO _x	0.19	0.81	1.52	6.66		
AP	СО	0.37	1.62	0.52	2.27		
AP	VOC	0.04	0.18	1.40	6.13		
AP	SO ₂	< 0.01	< 0.01	< 0.01	0.03		
AP	PM ₁₀	0.013	0.06	0.11	0.50		
AP	Formaldehyde	0.015	0.065	0.32	1.41		
AP	Total HAPs	0.022	0.10	0.53	2.31		
AP	GHG (CO ₂ e)	89.7	393	1,750	7,666		

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion engine/generator engine located at the well site. Multiple engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS Construction of New Source (installation) ES Existing Source

MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.

- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device 5 must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

- Enter the Engine Type designation(s) using the following codes: 6
 - 2SLB Two Stroke Lean Burn 4SRB Four Stroke Rich Burn Four Stroke Lean Burn 4SLB
- Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes: 7

	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction		IR SIPC LEC OxCat	Ignition Retard Screw-in Preco Low Emission Oxidation Cata	mbustion Char Combustion	nbers	5
8	Enter th	e Fuel Type using the following codes:						
	PQ	Pipeline Quality Natural Gas	RG	Raw Natura	al Gas /Productio	n Gas	D	Diesel
9	Enter t	he Potential Emissions Data Reference desi	ignation	using the f	following code	s. Attach all 1	efer	ence data used.
	MD GR	Manufacturer's Data GRI-HAPCalc [™]			P-42 her	(please list)		

Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at 10 manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the Emissions Summary Sheet.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# CE-1)

⊠ Oxidation Catalyst

Air Pollution Control Device Manufacturer's Data Sheet included? Yes \boxtimes No \square

□ NSCR

□ SCR

Provide details of process control used for proper mixing/control of reducing agent with gas stream: n/a

Manufacturer: EMIT Technologies, Inc.	Model #: ELX-4200Z-1616F-31CEO-36P
Design Operating Temperature: 1000 °F	Design gas volume: 9126 + scfm
Service life of catalyst: 2+ years, depending on site conditions	Provide manufacturer data? 🛛 Yes 🛛 No
Volume of gas handled: 9126 acfm at 1078 °F	Operating temperature range for NSCR/Ox Cat: From 750 °F to 1250 °F
Reducing agent used, if any: None	Ammonia slip (ppm): N/A
Dressure drep against actaluat had (dalta D), 20 inchas of U	

Pressure drop against catalyst bed (delta P): 3.0 inches of H_2O

Provide description of warning/alarm system that protects unit when operation is not meeting design conditions: **Part of** the routine maintenance inspection to warn or alert operations of emissions control degradation is a task called the post-PM emissions check.

Is temperature and pressure drop of catalyst required to be monitored per 40CFR63 Subpart ZZZZ? \Box Yes \boxtimes No

How often is catalyst recommended or required to be replaced (hours of operation)?

Because there are so many factors that impact life of a catalyst, the vendor does not recommend "hours of operation prior to replacement." The routine post-PM emissions check task (every 60 days or 1440 hrs of operation, whichever comes first) determines when the catalyst needs to be serviced or replaced.

How often is performance test required?

⊠ Initial □ Annual

 \boxtimes Every 8,760 hours of operation

Field Testing Required

□ No performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT)?

Date of Manufacture	March 22, 2012	Engine Serial Number	JEF01613	Date Modified/	Reconstructed	Not Any
Driver Rated HP	1380	Rated Speed in RPM	1400	Combustion Ty	-	Spark Ignited 4 Stroke
Number of Cylinders	16	Compression Ratio	8:1	Combustion Set	-	Ultra Lean Burr
Total Displacement (in ³)	4230	Fuel Delivery Method	Carburetor	Combustion Air	-	T.C./Aftercooled
	4230	r der Denvery Method	Carburetor	Combustion Air		1.C./Attercoolec
Raw Engine Emissions (905 LH	IV BTU/SCF Fuel Gas w	ith little to no H2S)				
Fuel Consumption	7443 LHV BTU/bhp	o-hr or 8256 HHV	BTU/bhp-hr			
Altitude	1200 ft					
Maximum Air Inlet Temp	105 F					
		g/bhp-hr ¹	lb/MMBTU ²	lb/hr	ТРҮ	
Nitrogen Oxides (NOx)		0.5		1.52	6.66	
Carbon Monoxide (CO)		2.43		7.39	32.38	
Volatile Organic Compounds (۱	VOC or NMNEHC)	0.92		2.80	12.26	
Formaldehyde (CH2O)		0.44		1.34	5.86	
Particulate Matter (PM) Filterable	e+Condensable		9.99E-03	1.14E-01	4.98E-01	
Sulfur Dioxide (SO2)			5.88E-04	6.70E-03	2.93E-02	
		g/bhp-hr ¹		lb/hr	Metric Tonne/yr	
Carlana Disuida (COO)		474		1442	5729	
Carbon Dioxide (CO2)		., .				
Methane (CH4)		4.05 RP) assuming 905 LHV BTU/SCF peration. For Air Permitting, it i	•	12.32 nd 105 F Max Air In		
Methane (CH4) ¹ g/bhp-hr are based on Cater Note that g/bhp-hr values are Formaldehyde to account for v	based on 100% Load O variations in fuel gas co m EPA's AP-42, Fifth Ec	4.05 RP) assuming 905 LHV BTU/SCF peration. For Air Permitting, it i	s recommended to add a safe	12.32 nd 105 F Max Air In ety margin to CO, V	llet Temperature. OC, and	
Methane (CH4) ¹ g/bhp-hr are based on Cater Note that g/bhp-hr values are Formaldehyde to account for v ² Emission Factor obtained fro	based on 100% Load O variations in fuel gas co m EPA's AP-42, Fifth Ec es, Table 3.2-2).	4.05 RP) assuming 905 LHV BTU/SCF peration. For Air Permitting, it i mposition and load.	s recommended to add a safe	12.32 nd 105 F Max Air In ety margin to CO, V	llet Temperature. OC, and	
Methane (CH4) ¹ g/bhp-hr are based on Catery Note that g/bhp-hr values are Formaldehyde to account for v ² Emission Factor obtained fro Gas-Fired Reciprocating Engin	based on 100% Load O variations in fuel gas co m EPA's AP-42, Fifth Ec es, Table 3.2-2).	4.05 RP) assuming 905 LHV BTU/SCF peration. For Air Permitting, it i mposition and load.	s recommended to add a safe	12.32 nd 105 F Max Air In ety margin to CO, V	llet Temperature. OC, and	
Methane (CH4) ¹ g/bhp-hr are based on Cater, Note that g/bhp-hr values are Formaldehyde to account for v ² Emission Factor obtained fro Gas-Fired Reciprocating Engin Catalytic Converter Emissions <i>Catalytic Converter Make amd</i> <i>Element Type:</i>	based on 100% Load O variations in fuel gas co m EPA's AP-42, Fifth Ec es, Table 3.2-2). Model: EMI	4.05 RP) assuming 905 LHV BTU/SCF peration. For Air Permitting, it i mposition and load. lition, Volume I, Chapter 3: Stati	s recommended to add a safe	12.32 nd 105 F Max Air In ety margin to CO, V	llet Temperature. OC, and	
Methane (CH4) ¹ g/bhp-hr are based on Cater, Note that g/bhp-hr values are Formaldehyde to account for v ² Emission Factor obtained fro Gas-Fired Reciprocating Engin Catalytic Converter Emissions <i>Catalytic Converter Make amd</i> <i>Element Type:</i>	based on 100% Load O variations in fuel gas co m EPA's AP-42, Fifth Ec es, Table 3.2-2). Model: EMI	4.05 RP) assuming 905 LHV BTU/SCF peration. For Air Permitting, it i mposition and load. lition, Volume I, Chapter 3: Stati	s recommended to add a safe	12.32 nd 105 F Max Air In ety margin to CO, V	llet Temperature. OC, and	
Methane (CH4) ¹ g/bhp-hr are based on Cater, Note that g/bhp-hr values are Formaldehyde to account for v ² Emission Factor obtained fro Gas-Fired Reciprocating Engin Catalytic Converter Emissions <i>Catalytic Converter Make amd</i> <i>Element Type:</i>	based on 100% Load O variations in fuel gas co m EPA's AP-42, Fifth Ec es, Table 3.2-2). Model: EMI EMI g: 1.5	4.05 RP) assuming 905 LHV BTU/SCF peration. For Air Permitting, it i mposition and load. lition, Volume I, Chapter 3: Stati	s recommended to add a safe	12.32 nd 105 F Max Air In ety margin to CO, V	llet Temperature. OC, and	
Methane (CH4) ¹ g/bhp-hr are based on Cater, Note that g/bhp-hr values are Formaldehyde to account for v ² Emission Factor obtained fro Gas-Fired Reciprocating Engin Catalytic Converter Emissions <i>Catalytic Converter Make amd</i> <i>Element Type:</i> <i>Number of Elements in Housin</i> <i>Air/Fuel Ratio Control</i>	based on 100% Load O variations in fuel gas co m EPA's AP-42, Fifth Ec es, Table 3.2-2). Model: EMI EMI g: 1.5	4.05 RP) assuming 905 LHV BTU/SCF peration. For Air Permitting, it i mposition and load. dition, Volume I, Chapter 3: Stati T ELX-4200Z-1616F-31CEO-36P T RE-3615Z erpillar ADEM3, NOx Feedback <u>% Reduction</u>	s recommended to add a safe	12.32 hd 105 F Max Air In ity margin to CO, V urces (Section 3.2	let Temperature. (OC, and Natural	
Methane (CH4) ¹ g/bhp-hr are based on Cater, Note that g/bhp-hr values are Formaldehyde to account for o ² Emission Factor obtained fro Gas-Fired Reciprocating Engin Catalytic Converter Emissions <i>Catalytic Converter Make amd</i> <i>Element Type:</i> <i>Number of Elements in Housin</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx)	based on 100% Load O variations in fuel gas co m EPA's AP-42, Fifth Ec es, Table 3.2-2). Model: EMI EMI g: 1.5	4.05 RP) assuming 905 LHV BTU/SCF peration. For Air Permitting, it i mposition and load. lition, Volume I, Chapter 3: Stati T ELX-4200Z-1616F-31CEO-36P T RE-3615Z arpillar ADEM3, NOx Feedback <u>% Reduction</u> 0	s recommended to add a safe	12.32 hd 105 F Max Air In htty margin to CO, V urces (Section 3.2 Lib/hr 1.52	llet Temperature. 'OC, and Natural 	
Methane (CH4) ¹ g/bhp-hr are based on Cater, Note that g/bhp-hr values are Formaldehyde to account for o ² Emission Factor obtained fro Gas-Fired Reciprocating Engin Catalytic Converter Emissions <i>Catalytic Converter Make amd</i> <i>Element Type:</i> <i>Number of Elements in Housin</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx) Carbon Monoxide (CO)	based on 100% Load O variations in fuel gas co m EPA's AP-42, Fifth Ec es, Table 3.2-2). Model: EMI g: 1.5 Cate	4.05 RP) assuming 905 LHV BTU/SCF peration. For Air Permitting, it i mposition and load. lition, Volume I, Chapter 3: Stati T ELX-4200Z-1616F-31CEO-36P T RE-3615Z arpillar ADEM3, NOx Feedback <u>% Reduction</u> 0 93	s recommended to add a safe onary Internal Combution Sou	12.32 hd 105 F Max Air In htty margin to CO, V urces (Section 3.2 urces (Section 3.2 urce	llet Temperature. 'OC, and Natural 	
Methane (CH4) ¹ g/bhp-hr are based on Cater, Note that g/bhp-hr values are Formaldehyde to account for v ² Emission Factor obtained fro Gas-Fired Reciprocating Engin Catalytic Converter Emissions <i>Catalytic Converter Make amd</i> <i>Element Type:</i> <i>Number of Elements in Housin</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (N	based on 100% Load O variations in fuel gas co m EPA's AP-42, Fifth Ec es, Table 3.2-2). Model: EMI g: 1.5 Cate	4.05 RP) assuming 905 LHV BTU/SCF peration. For Air Permitting, it i mposition and load. dition, Volume I, Chapter 3: Stati T ELX-4200Z-1616F-31CEO-36P T RE-3615Z erpillar ADEM3, NOx Feedback <u>% Reduction</u> 0 93 50 (use 5)	s recommended to add a safe	12.32 hd 105 F Max Air In htty margin to CO, V urces (Section 3.2 urces (Section 3.2 urce	llet Temperature. 'OC, and Natural 	
Methane (CH4) ¹ g/bhp-hr are based on Cater, Note that g/bhp-hr values are Formaldehyde to account for v ² Emission Factor obtained fro Gas-Fired Reciprocating Engin Catalytic Converter Emissions <i>Catalytic Converter Make amd</i> <i>Element Type:</i> <i>Number of Elements in Housin</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (Normaldehyde (CH2O)	based on 100% Load O variations in fuel gas co m EPA's AP-42, Fifth Ec es, Table 3.2-2). Model: EMI g: 1.5 Cate	4.05 (RP) assuming 905 LHV BTU/SCF peration. For Air Permitting, it is mposition and load. dition, Volume I, Chapter 3: Stati T ELX-4200Z-1616F-31CEO-36P T RE-3615Z arpillar ADEM3, NOx Feedback <u>% Reduction</u> 0 93 50 (use 5 76	s recommended to add a safe onary Internal Combution Sou	12.32 hd 105 F Max Air In htty margin to CO, V urces (Section 3.2 urces (Section 3.2 urce	llet Temperature. 'OC, and Natural 	
Methane (CH4) ¹ g/bhp-hr are based on Cater, Note that g/bhp-hr values are Formaldehyde to account for o ² Emission Factor obtained fro Gas-Fired Reciprocating Engin Catalytic Converter Emissions <i>Catalytic Converter Make amd</i> <i>Element Type:</i> <i>Number of Elements in Housin</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (N Formaldehyde (CH2O) Particulate Matter (PM)	based on 100% Load O variations in fuel gas co m EPA's AP-42, Fifth Ec es, Table 3.2-2). Model: EMI g: 1.5 Cate	4.05 RP) assuming 905 LHV BTU/SCF peration. For Air Permitting, it is mposition and load. dition, Volume I, Chapter 3: Stati T ELX-4200Z-1616F-31CEO-36P T RE-3615Z repillar ADEM3, NOx Feedback <u>% Reduction</u> 0 93 50 (use 3 76 0	s recommended to add a safe onary Internal Combution Sou	12.32 hd 105 F Max Air In htty margin to CO, V urces (Section 3.2 1 urces (Section 3.2 1 1.52 0.52 1.40 0.32 1.14E-01	llet Temperature. 'OC, and Natural 	
Methane (CH4) ¹ g/bhp-hr are based on Cater, Note that g/bhp-hr values are Formaldehyde to account for o ² Emission Factor obtained fro Gas-Fired Reciprocating Engin Catalytic Converter Emissions <i>Catalytic Converter Make amd</i> <i>Element Type:</i> <i>Number of Elements in Housin</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (N Formaldehyde (CH2O) Particulate Matter (PM)	based on 100% Load O variations in fuel gas co m EPA's AP-42, Fifth Ec es, Table 3.2-2). Model: EMI g: 1.5 Cate	4.05 (RP) assuming 905 LHV BTU/SCF peration. For Air Permitting, it is mposition and load. dition, Volume I, Chapter 3: Stati T ELX-4200Z-1616F-31CEO-36P T RE-3615Z arpillar ADEM3, NOx Feedback <u>% Reduction</u> 0 93 50 (use 5 76	s recommended to add a safe onary Internal Combution Sou	12.32 hd 105 F Max Air In htty margin to CO, V urces (Section 3.2 urces (Section 3.2 urce	llet Temperature. 'OC, and Natural 	
Methane (CH4) ¹ g/bhp-hr are based on Cater, Note that g/bhp-hr values are Formaldehyde to account for v ² Emission Factor obtained fro Gas-Fired Reciprocating Engin Catalytic Converter Emissions <i>Catalytic Converter Make and</i> <i>Element Type:</i> <i>Number of Elements in Housin</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (N Formaldehyde (CH2O) Particulate Matter (PM) Sulfur Dioxide (SO2)	based on 100% Load O variations in fuel gas co m EPA's AP-42, Fifth Ec es, Table 3.2-2). Model: EMI g: 1.5 Cate	4.05 RP) assuming 905 LHV BTU/SCF peration. For Air Permitting, it i mposition and load. dition, Volume I, Chapter 3: Stati T ELX-4200Z-1616F-31CEO-36P T RE-3615Z repillar ADEM3, NOx Feedback <u>% Reduction</u> 0 93 50 (use 3 76 0	s recommended to add a safe onary Internal Combution Sou	12.32 hd 105 F Max Air In htty margin to CO, V urces (Section 3.2 1 urces (Section 3.2 1 1.52 0.52 1.40 0.32 1.14E-01	llet Temperature. 'OC, and Natural 	
Methane (CH4) ¹ g/bhp-hr are based on Cater, Note that g/bhp-hr values are Formaldehyde to account for o ² Emission Factor obtained fro Gas-Fired Reciprocating Engin Catalytic Converter Emissions <i>Catalytic Converter Make amd</i> <i>Element Type:</i> <i>Number of Elements in Housin</i> , <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (N Formaldehyde (CH2O) Particulate Matter (PM)	based on 100% Load O variations in fuel gas co m EPA's AP-42, Fifth Ec es, Table 3.2-2). Model: EMI g: 1.5 Cate	4.05 RP) assuming 905 LHV BTU/SCF peration. For Air Permitting, it is mposition and load. dition, Volume I, Chapter 3: Stati T ELX-4200Z-1616F-31CEO-36P T RE-3615Z prpillar ADEM3, NOx Feedback <u>% Reduction</u> 0 93 50 (use 5 76 0 0 0	s recommended to add a safe onary Internal Combution Sou	12.32 Ind 105 F Max Air In Intry margin to CO, V arces (Section 3.2 1) Introduction 1.52 0.52 1.40 0.32 1.14E-01 6.70E-03	Ilet Temperature. 'OC, and Natural 6.66 2.27 6.13 1.41 4.98E-01 2.93E-02	

G3516B

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA G3516B

FUEL SYSTEM:

CATERPILLAR®

CA	Г	WIDE RANGE
WITH AIR FUEL RA	AT	TO CONTROL

ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER - STAGE 2 INLET (°F): AFTERCOOLER - STAGE 1 INLET (°F): JACKET WATER OUTLET (°F): COOLING SYSTEM: IGNITION SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOx EMISSION LEVEL (g/bhp-hr NOx): SET POINT TIMING:

8:1 130 201 210 JW+OC+1AC, 2AC ADEM3 DRY Ultra Lean Burn 0.5 30.0

1400

SITE CONDITIONS: FUEL: FUEL PRESSURE RANGE(psig): FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(ft): MAXIMUM INLET AIR TEMPERATURE(°F): NAMEPLATE RATING:

7.0-50.0 84.8 905 1200 105 1380 bhp@1400rpm

Nat Gas

		RATING	SITE RATING AT MAXIMUM INLET AIR TEMPERATURE		
NOTES	LOAD	100%	100%	75%	50%
(1)	bhp °F	1380 106	1380 105	1035 105	690 105
	-				
	(1)	(1) bhp °F	NOTES LOAD 100% (1) bhp 1380 °F 106	NOTES LOAD 100% 100% (1) bhp 1380 1380 °F 106 105	NOTES LOAD 100% 100% 75% (1) bhp 1380 1380 1035 °F 106 105 105

FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	7443	7443	7972	8562
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	8256	8256	8843	9498
AIR FLOW	(3)(4)	lb/hr	13863	13863	10874	7602
AIR FLOW WET (77°F, 14.7 psia)	(3)(4)	scfm	3126	3126	2452	1715
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	94.6	94.6	76.8	54.0
EXHAUST STACK TEMPERATURE	(6)	°F	992	992	986	1006
EXHAUST GAS FLOW (@ stack temp, 14.5 psia)	(7)(4)	ft3/min	9126	9126	7138	5065
EXHAUST GAS MASS FLOW	(7)(4)	lb/hr	14380	14380	11290	7900

EMISSIONS DATA						
NOx (as NO2)	(8)	g/bhp-hr	0.50	0.50	0.50	0.50
CO	(8)	g/bhp-hr	2.43	2.43	2.61	2.56
THC (mol. wt. of 15.84)	(8)	g/bhp-hr	4.77	4.77	5.11	5.19
NMHC (mol. wt. of 15.84)	(8)	g/bhp-hr	0.72	0.72	0.77	0.78
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	0.48	0.48	0.51	0.52
HCHO (Formaldehyde)	(8)	g/bhp-hr	0.44	0.44	0.43	0.42
CO2	(8)	g/bhp-hr	474	474	506	550
EXHAUST OXYGEN	(10)	% DRY	9.0	9.0	8.7	8.3
		and the galaxy states of				And the second sec
HEAT REJECTION						
HEAT DEL TO IACKET WATED (IW)	(11)	Btulpain	23438	22428	21564	10070

HEAT REJ. TO JACKET WATER (JW)	(11)	Btu/min	23438	23438	21564	19970
HEAT REJ. TO ATMOSPHERE	(11)	Btu/min	6110	6110	5092	4074
HEAT REJ. TO LUBE OIL (OC)	(11)	Btu/min	4449	4449	3947	3323
HEAT REJ. TO A/C - STAGE 1 (1AC)	(11)(12)	Btu/min	12934	12934	10814	3965
HEAT REJ. TO A/C - STAGE 2 (2AC)	(11)(12)	Btu/min	5679	5679	5341	3462

HEAT EXCHANGER SIZING CRITERIA

TOTAL JACKET WATER CIRCUIT (JW+OC+1AC)	(12)(13)	Btu/min	44701
TOTAL AFTERCOOLER CIRCUIT (2AC)	(12)(13)	Btu/min	5963
A cooling system safety factor of 0% has been added to the	ne heat exchange	er sizing criteria	a.

Γ

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Max. rating is the maximum capability for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

PREPARED BY: Joel LeBlanc, USA Compression Data generated by Gas Engine Rating Pro Version 3.04.00 Ref. Data Set DM8800-04-002, Printed 31Jan2011

Page 1 of 4

772 Airfield Lane Sheridan, WY 82801 Office: 307.673.0883 EST@emittechnologies.com

Prepared For: Joel LeBlanc USA COMPRESSION

INFORMATION PROVIDED BY CATERPILLAR

Engine:	G3516B
Horsepower:	1380
RPM:	1400
Compression Ratio:	8.0:1
Exhaust Flow Rate:	9126 CFM
Exhaust Temperature:	992 °F
Reference:	DM8800-04
Fuel:	Natural Gas
Annual Operating Hours:	8760

Uncontrolled Emissions

NOx:	0.50 g/bhp-hr
CO:	2.43 g/bhp-hr
THC:	4.77 g/bhp-hr
NMHC:	0.72 g/bhp-hr
NMNEHC:	0.48 g/bhp-hr
HCHO:	0.44 g/bhp-hr
Oxygen:	9.00 %

POST CATALYST EMISSIONS

NOx:	Unaffected by Oxidation Catalyst
CO:	>93% Reduction
VOC:	>50% Reduction
HCHO:	>76% Reduction

CONTROL EQUIPMENT

Catalytic Converter

Model: Catalyst Type: Manufacturer: Element Size:

Catalyst Elements: Housing Type: Catalyst Installation: Construction: Sample Ports: Inlet Connections: Outlet Connections: Configuration: Silencer: Silencer Grade: Insertion Loss: ELX-4200Z-1616F-31CE0-36P Oxidation, Precious group metals EMIT Technologies, Inc. 1 - Rectangle 36 x 15 x 3.5 1 - Rectangle 18 x 15 x 3.5 2

3 Element Capacity Accessible Housing 10 gauge Carbon Steel 6 (0.5" NPT) 16" Flat Face Flange 16" Flat Face Flange End In / Side Out Integrated Hospital Enhanced 35-50 dBA

www.emittechnologies.com

Vapor Combustor Unit (VCU)

HY-BON/EDI is pleased to provide the CH2.5 and CH10.0 enclosed combustors as an effective solution for eliminating VOC emissions. HY-BON/EDI's insulated combustors are automated and have been successfully tested per EPA 40, CFR 60 guidelines – making it the perfect blend of performance and safety. The combustor comes as a complete, skid mounted package containing the liquid knock-out vessel, liquid transfer pump, flame arrestor, bird screen and burner control system. Installation is simple and field performance adjustments can be made as production changes – making it the most flexible solution in the industry.

- EPA 40 CFR 60, Quad O Compliant
 <u>List of EPA Approved Combustion Control Devices</u>
- Completely Enclosed Combustion
- 99.99% Destruction Efficiency
- User Friendly Automated System
- Operational and Quad O reporting data can be saved to a USB Key
- RS-232 or RS-485 Communication supports satellite, cellular, or radio
 Modbus Slave Protocol allows it to communicate with SCADA systems and other devices/software

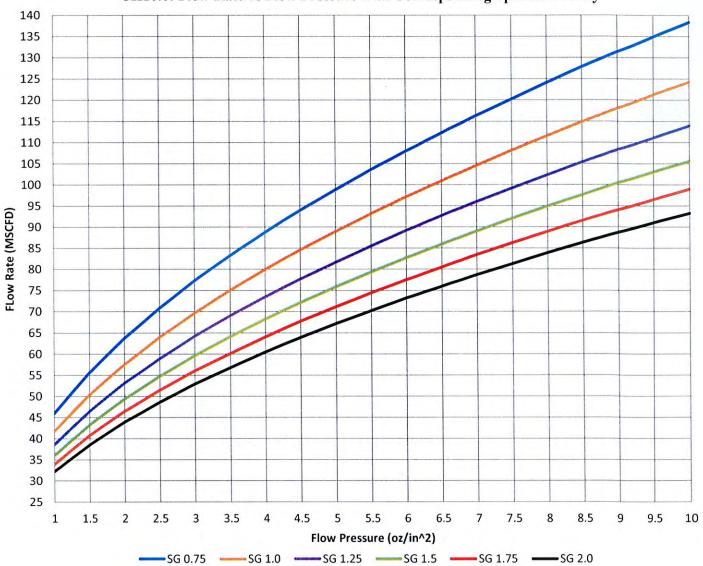
GENERAL PROPERTIES	CH2.5	CH10.0	
BURNER SIZE (MMBTU/hr)	2.5	10.0	
OUTER DIAMETER (inches)	34	54	
HEIGHT (feet)	16	20	
INLET PRESSURE (oz/in²)	≥ 0.5		
DESTRUCTION EFFICIENCY	≥ 99.99%		
SMOKELESS CAPACITY	100%		
TURN DOWN	SCAL	ABLE	

2404 Commerce Dr. Midland, TX 79703 432-697-2292 hy-bon.com

100 Ayers Blvd. Belpre, OH 45714 740-401-4000 ediplungerlift.com

With the fairly recent publication of the NSPS OOOO emission standard, all storage tank facilities constructed on or after August 23, 2011 will be allowed to emit 6 Tons or less of VOC's per year. This regulation not only forces companies to monitor and control their emissions, but it also forces the means of emission monitoring and controlling to be more reliable and exact. In response to such a stringent protocol, HY-BON Engineering Company is pleased to offer the CH10.0 enclosed Vapor Combustor Unit (VCU). Built upon a foundation of 60+ years' experience with tank vapors, the VCU is the solution for reducing residual tank vapor emissions when a Vapor Recovery Unit (VRU) is not sufficient or a viable option.

	GENERAL PROPERTIES	
	ТҮРЕ	Enclosed Tank Battery Flare
	AMBIENT TEMPERATURE	-20 °F to +100 °F
	PILOT FUEL REQUIREMENTS	Propane or Site Gas @5psi of natural gas = 13.3 SCFM @5psi of propane = 12.5 SCFM
	BURNER SIZE	10.0 million BTU/hr
	INLET PRESSURE REQUIRMENTS	Minimum 0.5 oz/in ² (~1.0 inche: w.c.)
	TURN DOWN RATIO	5:1
	DESTRUCTION EFFICIENCY	99.99% DRE
	MECHANICAL PROPERTIES	
	DESIGN WIND SPEED	100 MPH
14 14	AMBIENT TEMPERATURE	-20 °F to +120 °F
	ELECTRICAL AREA CLASSIFICATION	General Area Classification (Nor Hazardous)
	ELEVATION	up to 3,000ft ASL
	PROCESS PROPERTIES	
20	SMOKELESS CAPACITY	100%
	OPERATING TEMPERATURE	800 °F to 2000 °F (1500 °F Nominal)
0, Quad O Compliant	UTILITIES	
nclosed Combustion	PILOT GAS	Process Gas
uction Efficiency	ELECTRICITY	1 Phase, 60 Hz, 120V/10A
ted System ational Data via Thumb Drive	SOLAR PANEL OPTION AVAILABLE	YES


- EPA 40 CFR 60
- **Completely En**
- 99.99% Destru >
- **Fully Automate** P
- Output Operational Data via Thumb Drive P
- **Capable of SCADA Integration** P

Revision #3: 09/04/2015 1 2

2404 Commerce Dr. Midland, TX 79703 432-697-2292 <u>hy-bon.com</u>

100 Ayers Blvd. Belpre, OH 45714 740-401-4000 ediplungerlift.com

CH10.0: Flow Rate vs Flow Pressure with Corresponding Specific Gravity

Revision #3: 09/04/2015

ATTACHMENT P – GLYCOL DEHYDRATION UNIT DATA SHEET

		DAIA	SHEEI		
and/or Regen	erator at the fa		ehydration Uni gas sample ana s if necessary.		
Manufacturer: Cam		10	Model:		
Max. Dry Gas Flow	Rate: 20 mmscf/da	у	Reboiler Design He	at Input: 200 MMBT	ſU/hr
Design Type: 🛛 TI	EG 🗆 DEG	□ EG	Source Status ¹ : NS		
Date Installed/Modified/Removed ² : Upon Permit			Regenerator Still Vent APCD/ERD ³ : TO		
Control Device/ERD ID# ³ : EC-2			Fuel HV (BTU/scf): 1263		
H ₂ S Content (gr/100 scf): <0.001%			Operation (hours/year): 8760		
Pump Rate (gpm):	3.5		1		
Water Content (wt	%) in: Wet Gas: Sat	turated D	ry Gas: 7.0 lb/MMscf		
Is the glycol dehyd	ration unit exempt fr	om 40CFR63 Section	764(d)? 🛛 Yes	□ No: If Yes, answ	ver the following:
meters per day, as The actual average megagram per year	determined by the pro emissions of benzend	ocedures specified in e from the glycol deh	ol dehydration unit is §63.772(b)(1) of this ydration unit process cedures specified in §	subpart.	⊠ No re are less than 0.90
□ No		:41:	(IIA) en Huben Ch		⊠ N -
		being utilized? \Box Ye	rea (UA) or Urban Clu es 🛛 No	ister (UC)? 🗆 Yes	🖾 No
	ol dehydration unit ba	ack to the flame zone			
□ Yes ⊠ No			of the reboiler and m		
Still vent emissi	ions to the atmospher ions stopped with val	e.	he reboiler? Still vent	to enclosed combus	itor.
🗌 Flash Tank	he following equipme nent system that cont	*	nser or flash tank vap	ors	
		-	Technical Data		
			1		
Pollutants Controlled		Manufacturer's Guaranteed Control Efficiency (%)			
Hydrocarbons			99+% (No	ote: 98% used for cal	culations)
	1	Emissio	ons Data		1
Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology⁵	PTE ⁶	Controlled Maximum Hourly Emissions (lb/hr)	Controlled Maximum Annual Emissions (tpy)
		AP-42	NO _x	0.02	0.09
		AP-42	СО	0.02	0.07
		AP-42	VOC	< 0.01	0.005
RBV-2 / 14E	Reboiler Vent	AP-42	SO ₂	< 0.01	< 0.01
		AP-42	PM ₁₀	< 0.01	0.007
		AP-42	GHG (CO ₂ e)	24.2	105.8

RSV-2 / 11E	Glycol Regenerator Still Vent	GRI-GlyCalc TM	VOC	0.37	1.64
		-	100	0.57	1.04
		GRI-GlyCalc TM	Benzene	0.005	0.02
		GRI-GlyCalc TM	Toluene	0.016	0.07
		GRI-GlyCalc TM	Ethylbenzene	< 0.01	< 0.01
		GRI-GlyCalc TM	Xylenes	< 0.01	< 0.01
		GRI-GlyCalc TM	n-Hexane	0.009	0.04
None	Glycol Flash Tank	GRI-GlyCalc TM	VOC		
		GRI-GlyCalc TM	Benzene		
		GRI-GlyCalc TM	Toluene		
		GRI-GlyCalc TM	Ethylbenzene		
		GRI-GlyCalc TM	Xylenes		
		GRI-GlyCalc TM	n-Hexane		

1 Enter the Source Status using the following codes: Construction of New Source ES NS

Existing Source

MS Modification of Existing Source

Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or 2 removal.

- 3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number: Condenser FL CD Flare
 - NA None
- CC Condenser/Combustion Combination TO Thermal Oxidizer 0 Other (please list) 4 Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the well site incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

Enter the Potential Emissions Data Reference designation using the following codes: 5 MD

- Manufacturer's Data AP AP-42
- GRI-GLYCalcTM GR OT Other (please list)

6 Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalc[™] (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

OPTION A for 10.0 MM per day from 9.0 MM per day

Substitute 36" OD Glycol Tower in lieu of 30" tower 210/350 reconcentrator will remain the same.

NET PRICE ADDER OPTION A, F.O.B. ELECTRA, TX...... \$ 7,670.00

DESIGN CONDITIONS B

Gas Flow Rate20 MMSCFDGas Specific Gravity0.65Operating Pressure & Temperature960 psig @ 100°FDesign Pressure & Temperature1,440 psig @ 140°F

ITEM I – MISTTRAPTM-V COALESCING FILTER SEPARATOR – P/N 99501020

ONE (1) CAMERON 20"OD X 6'-0" S/S, 1440# DESIGN VERTICAL COALESCING FILTER WITH 20" YALE TYPE 500 R QUICK OPEN CLOSURE, ASME CODE CONSTRUCTED AND STAMPED, COMPLETE AS FOLLOWS:

A. VESSEL DESIGN PARAMETERS

Design Pressure / Temperature Lower Head	1440 psig / 130 °F 2:1 Elliptical (516-70), 0.82" minimum
Upper Head	Full Size Quick Opening Closure with Davit
Shell	20" OD, 0.969", SA-106-C
Corrosion Allowance	N/A
Radiography	RT-2
Post Weld Heat Treatment	No

B. <u>VESSEL INTERNALS / ATTACHMENTS</u>

- 6. One internal element support plate with seven (7) risers
- Seven (7) CAMERON Coalescing Elements, Model NGC5036RA1VC (1 micron)
- 8. One (1) welded warning plate
- 9. One (1) welded vessel nameplate
- 10. One (1) supports skirt and base ring

C. <u>VESSEL CONNECTIONS</u>

10. One (1) 6" 600# RF flange – INLET

11. One (1) 6" 600# RF flange – GAS OUTLET

- 12. Two (2) 2" 3000# couplets LEVEL CONTROLLERS
- 13. Two (2) 2" 3000# couplets SIGHT GLASSES
- 14. Two (2) 1" 3000# couplets LIQUID OUTLETS
- 15. One (1) 1" 3000# couplet PSV
- 16. Two (2) ¹/₂" 3000# couplets DIFFERENTIAL PRESSURE GAUGE
- 17. One (1) ¹/₂" 3000# couplet PRESSURE GAUGE
- 18. One (1) 30" ANSI 600 Yale Type 500 R Closure FILTER ACCESS

E. <u>PAINTING</u>

- 1. Mechanically Cleaned
- 3. Coating One Coat of CAMERON Standard Mesa Tan Primer

F. <u>MANUAL</u>

One (1) Installation and Operations Manual – P/N 61440037

ITEM II – ACCESSORIES FOR FILTER SEPARATOR – P/N 48820100

- J. Two (2) Norriseal liquid level controllers, Series 1005 P1, 2" NPT, Model 1018VP, pneumatic pilot
- K. Two (2) Invalco liquid level valve, 1" NPT, model DSG-160-418, 6000#, 1/4" port
- L. Two (2) Wellmark sight glasses, 2" MNPT, plain lens, 1500#
- M. One (1) Wellmark relief valve, 1" x 1" NPT, set at 1440#, model W9501-RS-1600, ASME code
- N. One (1) Pressure gauge, 0-2000 psi, ¹/₄" connection, SS housing, complete with ¹/₄" isolation valve
- O. One (1) Midwest pressure differential gauge, 0-30 psid, 2.5" dial, model 120-AA-00-00-30
- P. Three (3) ¹/₄" 2000# 316 SS ball valves for dP gauge and pressure gauge, PBVS-5312-08-3600-GG-NL
- Q. Four (4) 1" NPT 2000# regular port ball valves, CS body/ SS trim, PBVC-5312-38-2236-TL-NC
- R. Two (2) 1" NPT 2000# globe valves, Smith G80 or equal for dump valve by-pass.

(Note - Accessory package to be shipped loose if ordered)

PRICING:

All net prices are Ex-Works, CAMERON Electra, Texas fabrication facility.

ITEM II & III: GLYCOL DEHYDRATION UNIT, Designed for and consisting of:

Volume of Gas	20 MMSCFD
Inlet Pressure	960 psig
Inlet Temperature	100 F
Specific Gravity	0.65
Inlet Water Dewpoint	100% Saturation
Outlet Water Dewpoint	7# per MM

(A) One (1) NATCO 30" OD x 25'-0" shell length x 1440 psig working pressure, ASME Code Constructed and National Board Stamped, Glycol Contactor Tower complete with Integral Scrubber, Outside Gas/Glycol Heat Exchanger and complete as follows: P/N 99550308

1) VESSEL INTERNALS:

- a) 8 Bubble Cap Trays on 24" spacing
- b) Inlet Gas Diverter
- c) Full Diameter 304 SS wire mesh mist extractors in scrubber and tower, 9# density
- d) Extra heavy chimney tray and gas riser for longer life

2) **VESSEL EXTERNALS:**

- a) Welded steel skirt and base plate
- b) One External Gas/Glycol Heat Exchanger

3) **VESSEL CONNECTIONS:**

- a) One (1) 4" 600# ANSI RF flanged
- b) One (1) 2" FPT Conn..
- c) One (1) 1" 6000# threaded coupling
- d) One (1) 4" 600# ANSI RF flanged
- e) One (1) 1" 6000# threaded coupling
- f) One (1) 1/2" 6000# threaded cplg
- g) One (1) 1/2" 6000# threaded cplg
- h) One (1) 1" 6000# threaded coupling
- i) One (1) 1" 6000# threaded coupling
- j) One (1) 1" 6000# threaded coupling

GAS INLET LLC RELIEF GAS OUTLET LIQUID OUT PRESS GAUGE THERMOMETER GLYCOL IN GLYCOL OUT GLYCOL DRAIN

4) **ACCESSORIES FURNISHED:**

- a) One (1) INVALCO model CTU-215S liquid level control.
- b) One (1) INVALCO model DSG-160 diaphragm operated liquid discharge valve, with 1/4" SS trim or equal
- c) One (1) ASME 1" x 1" threaded safety relief valve set at 1440 psig
- d) One 3" dial type thermometer with thermowell
- e) One (1) 2-1/2" dial, 2000# pressure gage with 1/2" 6000# isolating valve
- f) One (1) lot instrument gas tubing and tubing fittings to hookup Level Control and Dump Valve

- g) One set of gaskets, studs and nuts for connection of Gas/Glycol Heat Exchanger to Contactor Gas Outlet
- 5) COATING:

Complete exterior of vessel is commercially blasted and painted one coat Mesa Tan Primer

ITEM III : SKID MOUNTED GLYCOL RECONCENTRATOR ASSEMBLY

- B) One (1) NATCO MODEL 210/350 TEG Glycol Reconcentrator Assembly with the following equipment mounted, piped and interconnected: 99560350 with one extra glycol/glycol heat exchanger. P/N 99560350,
 - 3) One (1) 24" OD x 8'-6" long Reboiler with a 24"OD x 6'-6" long Surge Tank, 3 psig Non-Code

Assembly complete with:

- a) One (1) 8.625" OD, 0.200MM BTU/Hr removable firetube
- b) One (1) 8.625" OD flanged, removable stack
- c) One (1) Flame Arrestor with burner and pilot assembly
- d) One (1) set of gas firing accessories including: Preheat line, fuel gas regulator, pilot gas regulator, diaphragm operated fuel gas control valve, 0-30# pressure gauge, manual shutoff valves and all necessary piping and tubing
- e) Two (2) Kimray Model T12 Thermostats with thermowells, One for reconcentrator temperature control and one for high temperature shutdown
- f) One (1) 3" dial type thermometer with thermowell
- g) Two (1) tubular type gauge glass assembly with safety gage cocks and gauge glass guard, one located in reconcentrator section and one in surge section.
- h) Two (2) fill connections, one in reconcentrator section and one in Surge section
- 4) One (1) 10.725" OD x 4'-0" long, non-code, flanged reflux column
 - a) complete with 1" ceramic packing
 - b) 1" reflux coil.

(3) Six (6) 3" x 1.5" x 10'-0" finned double pipe heat exchangers rated for 247,000 BTU/Hr.

(4) One (1) Nowata Model 1S3C-2000T glycol sock filter assembly (for rich glycol) complete with filter cartridges installed.

(5) One (1) Kimray 21015 PV gas driven glycol pump

(6) The reboiler, surge, and still column to be insulated with 1-1/2" Easy Wrap and covered with an aluminum jacket.

NET PRICE ITEM II & III, F.O.B. ELECTRA, TX...... \$ 75,984.00

ATTACHMENT Q – PNEUMATIC CONTROLLERS DATA SHEET						
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?						
\Box Yes \boxtimes No						
Please list approximate number.						
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after September 18, 2015?						
\Box Yes \boxtimes No						
Please list approximate number.						
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?						
\Box Yes \boxtimes No						
Please list approximate number.						
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after September 18, 2015?						
\Box Yes \boxtimes No						
Please list approximate number.						

ATTACHMENT R – PNEUMATIC PUMP DATA SHEET

Are there any natural gas-driven diaphragm pumps located at a well site that commenced construction, modification or reconstruction after September 18, 2015?

Yes No

Please list.

Source ID #	Date	Pump Make/Model	Pump Size

ATTACHMENT S – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.							
Emission Unit ID: n/a – no new or modified information under this portion.	Make/Model:						
Primary Control Device ID:	Make/Model:						
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No						
Secondary Control Device ID:	Make/Model:						
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No						

VAPOR COMBUSTION										
(Including Enclosed Combustors)										
General Information										
Control De	evice ID#: EC-2			Installation New Info. Belo changes.	W (from	Aodified -	modification to Waste Gas dration unit). No physical			
Maximum scfh	Rated Total Flow C			Maximum Heat Input mfg. spec 10.0 MMB	(from sheet)		leat Content ΓU/scf			
	Control Device Information									
Enclos	ed Combustion Dev l Oxidizer	ice	Type of Vapor Co		ontrol?		Ground Flare			
Manufactu Model: CH	rer: Hy-Bon 10.0			Hours of o	peration	per year? 8	3760			
List the en	nission units whose	emissions	are controlled by this	vapor conti	ol device	e (Emissior	n Point ID#)			
Emission Unit ID#	Emission Source	Descriptio	on	Emission Unit ID#	Emissio	on Source Description				
RBV-2	Dehydration Unit	Still Ven	t							
If this	vapor combustor c	ontrols en	missions from more the	an six (6) en	ission ur	iits, please	attach additional pages.			
Assist Typ	e (Flares only)		Flare Height	Tip Diameter Was the design per §60.18?						
Steam Pressu	re Air Non		feet		☐ Yes ☐ No Provide determination.					
			Waste Gas 1	Information	1					
Maxim	um Waste Gas Flow 31.2 (scfm)	Rate	Heat Value of W 633.6 I	⁷ aste Gas Sti 3TU/ft ³	ream	Exit Vel	ocity of the Emissions Stream (ft/s)			
	Provide an	attachme	ent with the characteri	stics of the v	waste gas	stream to	be burned.			
			Pilot Gas I	nformation						
Number	of Pilot Lights 1		Flow Rate to Pilot lame per Pilot 798 scfh	Heat Input per Pilot 985,100 BTU/hr Will automatic re-ignition be used? ⊠ Yes □ No						
	If automatic re-ignition is used, please describe the method. The unit will try to re-ignite up to 25 times. After that, it will go into manual mode which means someone will need to manually start. Gas flow is shut off if it fails to ignite.									
	Is pilot flame equipped with a monitor to detect the presence of the flame?If Yes, what type? ⊠ Thermocouple□ Infrared□ Ultraviolet□ Camera□ Other:									
	Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (If unavailable, please indicate). Operating ranges must be within what was specified in the data sheet.									
Additional information attached? 🛛 Yes 🔅 No Please attach copies of manufacturer's data sheets, drawings, flame demonstration per §60.18 or §63.11(b) and performance testing.										

ATTACHMENT T – EMISSIONS CALCULATIONS

Provide detailed potential to emit (PTE) emission calculations for criteria and hazardous air pollutants (HAPs) for each emission point identified in the application. For hazardous air pollutants and volatile organic compounds (VOCs), the speciated emission calculations must be included.

Use the following guidelines to ensure complete emission calculations:

- All emission sources and fugitive emissions are included in the emission calculations, as well as all methods used to calculate the emissions.
- Proper emission point identification numbers and APCD and ERD identification numbers are used consistently in the emission calculations that are used throughout the application.
- A printout of the emission summary sheets is attached to the registration application.
- Printouts of any modeling must be included with the emission calculations. The modeling printout must show all inputs/outputs or assumptions that the modeled emissions are based upon.
- If emissions are provided from the manufacturer, the manufacturer's documentation and/or certified emissions must also be included.
- The emission calculations results must match the emissions provided on the emissions summary sheet.
- If calculations are based on a compositional analysis of the gas, attach the laboratory analysis. Include the following information: the location that the sample was taken (and whether the sample was taken from the actual site or a representative site); the date the sample was taken; and, if the sample is considered representative, the reasons that it is considered representative (same gas field, same formation and depth, distance from actual site, etc.).
- Provide any additional clarification as necessary. Additional clarification or information is especially helpful when reviewing modeling calculations to assist the engineer in understanding the basis of assumptions and/or inputs.

Please follow specific guidance provided on the emissions summary sheet when providing the calculations.

Moe Well Pad Production Facility Tyler County, WV

Emission Point ID	Emission Unit ID	Description	NOx lb/hr	CO lb/hr	CO2e lb/hr	CH4 ⁴ lb/hr	VOC ⁴ lb/hr	SO2 lb/hr	PM lb/hr	Benzene lb/hr	Ethylbenzene lb/hr	Xylenes lb/hr	n-Hexane lb/hr	Toluene lb/hr	Formaldehyde lb/hr	Total HAPs lb/hr
13E	CE-1	Compressor Engine (Controlled) NEW	1.52	0.52	1,750	12.32	1.40	0.007	0.11	0.005	0.000	0.002	0.01	0.005	0.321	0.53
1E	HTR-1	GPU #1	0.15	0.13	181.1	0.003	0.01	0.001	0.011				0.003		0.000	0.003
2E	HTR-2	GPU #2	0.15	0.13	181.1	0.003	0.01	0.001	0.011				0.003		0.000	0.003
3E	HTR-3	GPU #3	0.15	0.13	181.1	0.003	0.01	0.001	0.011				0.003		0.000	0.003
4E	HTR-4	Line Heater	0.05	0.04	60.4	0.00	0.00	0.000	0.004				0.001		0.000	0.001
5E	TL-1	Truck Loading - Condensate ²					2.96						0.16			0.16
6E	TL-2	Truck Loading - Produced Water ²					0.08						0.01			0.01
7E	VRU-1	VRU Compressor	0.19	0.37	89.7	0.13	0.04	0.000	0.013	0.001	0.000	0.000		0.000	0.015	0.022
8E	TEG-1	Thermoelectric Generator	0.00	0.00	1.6	0.00	0.00	0.000	0.000				0.000		0.000	0.000
12E	T01-T06	Condensate Tanks + Water Tanks ³			6.5	0.26	1.83			0.00	0.00	0.002	0.055	0.002	0.000	0.060
9E	EC-1	Condensate Tanks + Water Tanks ¹	0.29	1.10	446.6	0.26	1.84	0.001	0.017				0.004		0.000	0.00
10E	RBV-1	500 MBTU/hr Reboiler REMOVE														
11E	EC-2	Dehydration Unit Combustor MODIFY (FROM NEW DEHY)	0.18	0.52	257.6	0.00	0.38	0.001	0.022	0.005			0.01	0.016	0.000	0.03
14E	RBV-2	Dehydration Unit Reboiler NEW	0.02	0.02	24.2	0.00	0.001	0.000	0.002				0.000		0.000	0.000
		Truck Traffic Fugitive Dust							30.10							1
		Fugitive Emissions			9.3	0.37	0.41									0.004
Total (Exlud	ing Fugitive Em	issions)	2.69	2.95	3180.12	12.73	6.73	0.01	0.20	0.01	0.00	0.00	0.26	0.02	0.34	0.82
Total			2.69	2.95	3189.40	13.10	7.14	0.01	30.30	0.01	0.00	0.00	0.26	0.02	0.34	0.83

Emission	Emission		NOx	со	CO2e	CH4	VOC	SO2	PM		Ethylbenzene		n-Hexane	Toluene	Formaldehyde	Total HAPs
Point ID	Unit ID	Description	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy
13E	CE-1	Compressor Engine (Controlled) NEW	6.66	2.27	7,666	53.97	6.13	0.029	0.50	0.022	0.002	0.009	0.06	0.020	1.407	2.31
1E	HTR-1	GPU #1	0.66	0.55	793	0.02	0.04	0.004	0.05				0.01		0.000	0.01
2E	HTR-2	GPU #2	0.66	0.55	793	0.02	0.04	0.004	0.05				0.01		0.000	0.01
3E	HTR-3	GPU #3	0.66	0.55	793	0.02	0.04	0.004	0.05				0.01		0.000	0.01
4E	HTR-4	Line Heater	0.22	0.18	264	0.01	0.01	0.001	0.02				0.00		0.000	0.00
5E	TL-1	Truck Loading - Condensate ²					0.91						0.05			0.05
6E	TL-2	Truck Loading - Produced Water ²					0.04						0.00			0.00
7E	VRU-1	VRU Compressor	0.81	1.62	393	0.55	0.18	0.002	0.06	0.005	0.000	0.001		0.002	0.065	0.10
8E	TEG-1	Thermoelectric Generator	0.01	0.00	7	0.00	0.00	0.000	0.00				0.00		0.000	0.00
12E	T01-T06	Condensate Tanks + Water Tanks ³			28	1.14	8.03			0.00	0.00	0.01	0.24	0.01		0.26
9E	EC-1	Condensate Tanks + Water Tanks ¹	1.25	4.81	1956	0.07	0.43	0.00	0.07				0.01		0.001	0.02
10E	RBV-1	500 MBTU/hr Reboiler REMOVE														
11E	EC-2	Dehydration Unit Combustor MODIFY (FROM NEW DEHY)	0.78	2.28	1128.3	0.02	1.66	0.003	0.095	0.02			0.05	0.07	0.001	0.14
14E	RBV-2	Dehydration Unit Reboiler NEW	0.09	0.07	105.8	0.002	0.005	0.001	0.007				0.002		0.000	0.002
		Truck Traffic Fugitive Dust							5.98							
		Fugitive Emissions			40.65	1.63	1.78									0.018
Total (Exlud	ing Fugitive Em	issions)	11.79	12.90	13928.94	55.80	17.50	0.05	0.90	0.05	0.00	0.02	0.45	0.10	1.48	2.93
Total			11.79	12.90	13969.58	57.42	19.28	0.05	6.88	0.05	0.00	0.02	0.45	0.10	1.48	2.94
		Previous Emissions	5.67	12.96	7160.64	3.38	15.01	0.02	6.46	0.05	0.00	0.01	0.44	0.16	0.07	0.78
		Increase/Decrease	6.12	-0.06	6808.94	54.04	4.27	0.03	0.42	0.00	0.00	0.01	0.01	-0.06	1.41	2.16

¹ Condensate and water tank emissions are currently controlled by a VRU + Enclosed Combustor at 98%. This line represents the un-controlled 2%.

² Truck loading is un-controlled.

³ This line represents the 2% Un-captured/Controlled associated with the VRU.

⁴ VRU-1 and EC-1 would not run concurrent so hourly VOC emissions for these sources are only accounted for once.

Un-controlled Emissions

Source CE-1							
Engine Data:							
Engine Data: Engine Manufacturer	Caterpilla	-					
Engine Model	G3516 BL						
Type (Rich-burn or Low Emission)	Lean	. C					
Aspiration (Natural or Turbocharged)	Turbo						
Aspiration (Natural of Furbocharged)	TUIDO						
Turbocharge Cooler Temperature	130	deg. F					
Manufacturer Rating	1,380	hp					
Speed at Above Rating	1,400	rpm					
Configeration (In-line or Vee)	In-Line	•					
Number of Cylinders	16						
Engine Bore	4.764	inches	Roger: Where of	do we find th	nis?		
Engine Stroke	5.984	inches	Roger: Where	do we find th	nis?		
Fuel Heat Content (HHV)	1,263	BTU/scf	5				
Engine Displacement	1,707	cu. in.					
Fuel Consumption (HHV)	8,256	Btu/bhp-hr					
	-,					AP-42	
						4Stroke Lean	
Emission Rates:	g/bhp-hr	lb/hr	tons/year	g/hr	lb/day	lb/mmbtu	
Oxides of Nitrogen, NOx	0.50	1.52	6.66	690	36.51		Comment
Carbon Monoxide CO	2.43	7.39	32.38	3,353	177.43		453.59 grams = 1 pound
VOC (NMNEHC)	0.92	2.80	12.26	1,270	67.18		2,000 pounds = 1 ton
CO2e		1750.13	7665.57				· · · ·
Total Annual Hours of Operation	8,760						
SO2	0,100	0.006699	0.0293			0.000588	
PM2.5		0.000878				0.0000771	
PM		0.113819				0.00999	
CO2	474	1442.09				0.00000	Mfg. Data
Methane	4.05	12.32					Mfg. Data
acrolein	4.00	0.058561				0.00514	
acetaldehyde		0.095248				0.00836	
formaldehyde	0.440	1.338624				0.11749	
benzene	0.770	0.005013				0.00044	
ethvlbenzene		0.000452				0.0000397	
methanol		0.000452				0.000397	
toluene		0.028483				0.00230	
		0.004646				0.00041	
xylenes		0.002096				0.00018	
n-Hexane							
total HAPs		1.545774	6.7705			0.134566219	

Controlled Emissions

Jay-Bee Oil &Gas ,LLC

Moe Well Pad Production Facility Tyler County, WV

Exhaust Stack Height

Exhaust Stack Velocity

Exhaust Stack Inside Diameter

Controlled Emission Rates							
Source VRU-1							
Engine Data: Engine Manufacturer Engine Model Type (Rich-burn or Low Emission) Aspiration (Natural or Turbocharged)	Cummins G5.9 Rich Burn Natural						
Manufacturer Rating Speed at Above Rating Configuration (In-line or V) Number of Cylinders Engine Bore Engine Stroke	84 1,800 In-line 6 4.020 4.720	hp rpm inches inches					
Engine Displacement Engine BMEP Fuel Consumption (HHV)	359 103 7,914	cu. in. psi Btu/bhp-hr				AP-42 strokerich	
Emission Rates:	g/bhp-hr	lb/hr	tpy	g/hr		o/MMBtu	
Oxides of Nitrogen, NOx	1.000	0.19	0.81	84	4.44		Comment
Carbon Monoxide CO	2.000	0.37	1.62	168	8.89		453.59 grams = 1 pound
VOC (NMNEHC)	0.220	0.04	0.18	18	0.98		2,000 pounds = 1 ton
CO2	449	83	364	37,716	1,996		
CO2e		90	393				
Total Annual Hours of Operation	8,760						
SO2	0,700	0.0004	0.0017			0.0006	
PM2.5		0.00632	0.0277			0.0095	
PM (Condensable)		0.00659	0.0289			0.00991	
CH ₄		0.12623	0.5529				Factor From 40 CFR 98, Table C-2
N ₂ O		0.01148	0.0503				Factor From 40 CFR 98, Table C-2
acrolein		0.00175	0.0077			0.00263	
acetaldehyde		0.00185	0.0081			0.00279	
formaldehyde	0.080	0.0148	0.0649				Per Mfg.
benzene		0.00105	0.0046			0.00158	
toluene		0.00037	0.0016			0.000558	
ethylbenzene		1.6E-05	0.0001			0.0000248	
xylenes		0.00013	0.0006			0.000195	
methanol		0.00203	0.0089			0.00306	
Total HAPs		0.02202	0.0964				
Exhaust Parameters:							
Exhaust Farameters: Exhaust Gas Temperature	1,078	deg. F					
Exhaust Gas Mass Flow Rate	1,070	lb/hr					
Exhaust Gas Mass Flow Rate	430	acfm					
	100						

96 8.00

4 0.333

82.1

4,927.4

inches feet

inches feet

ft/sec

ft/min

Moe Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source HTR-1 Through HTR-3

*Emissions shown below are for each Gas Processing Unit

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 1500.0 Mbtu/hr 98.0 % 1263.0 Btu/scf 29,084.8 scfd 0.000 Mole % 8760

Average heating value of natural gas 1020 Btu/scf

NOx	0.1501	lb/hr	0.657	tpy
СО	0.1261	lb/hr	0.552	tpy
CO2	180.1	lb/hr	788.7	tpy
CH4	0.003	lb/hr	0.02	tpy
CO2e	181	lb/hr	793	tpy
VOC	0.0083	lb/hr	0.036	tpy
SO2	0.0009	lb/hr	0.004	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0114	lb/hr	0.050	tpy
СНОН	0.0001	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0027	lb/hr	0.012	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0028	lb/hr	0.012	tpy

NOx	100 lb/MM	ICF
СО	84 lb/MM	ICF
CO ₂	120,000 lb/MM	ICF Global Warming Potential = 1
VOC	5.5 lb/MM	ICF
PM	7.6 lb/MM	ICF
SO ₂	0.6 lb/MM	ICF
CH ₄	2.3 lb/MM	ICF Global Warming Potential = 25
N_2O	2.2 lb/MM	ICF Global Warming Potential =298
нсон	0.075 lb/MM	ICF
Benzene	0.0021 lb/MM	ICF
n-Hexane	1.8 lb/MM	ICF
Toluene	0.0034 lb/MM	ICF

Moe Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source HTR-4 Line Heater						
Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation	98.0 1263.0 9,694.9) Mole %				Average heating value of natural gas 1020 Btu/scf
	NOx	0.0500	lb/hr	0.219	tpy	7
	СО	0.0420	lb/hr	0.184	tpy	
	CO2	60.0	lb/hr	262.9	tpy	
	CH4	0.001	lb/hr	0.01	tpy	
	CO2e	60	lb/hr	264	tpy	
	VOC	0.0028	lb/hr	0.012	tpy	
	SO2	0.0003	lb/hr	0.001	tpy	
	H2S	0.0000	lb/hr	0.000	tpy	
	PM10	0.0038	lb/hr	0.017	tpy	
	СНОН	0.0000	lb/hr	0.000	tpy	
	Benzene	0.0000	lb/hr	0.000	tpy	
	N-Hexane	0.0009	lb/hr	0.004	tpy	
	Toluene	0.0000	lb/hr	0.000	tpy	
	Total HAPs	0.0009	lb/hr	0.004	tpy	

NOx CO		lb/MMCF lb/MMCF	
CO ₂	120,000	lb/MMCF	Global Warming Potential = 1
VOC	5.5	lb/MMCF	
PM	7.6	lb/MMCF	
SO_2	0.6	lb/MMCF	
CH ₄	2.3	lb/MMCF	Global Warming Potential = 25
N_2O	2.2	lb/MMCF	Global Warming Potential =298
нсон	0.075	lb/MMCF	
Benzene	0.0021	lb/MMCF	
n-Hexane	1.8	lb/MMCF	
Toluene	0.0034	lb/MMCF	

Moe Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source TEG-1

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 13.0 MBtu/hr 98.0 % 1263.0 Btu/scf 252.1 scfd 0.000 Mole % 8760

Average heating value of natural gas 1020 Btu/scf Average heating value of natural gas

NOx	0.0013	lb/hr	0.006	tpy
СО	0.0011	lb/hr	0.005	tpy
CO2	1.6	lb/hr	6.8	tpy
CH4	0.000	lb/hr	0.00	tpy
CO2e	1.6	lb/hr	7	tpy
VOC	0.0001	lb/hr	0.000	tpy
SO2	0.0000	lb/hr	0.000	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0001	lb/hr	0.000	tpy
СНОН	0.0000	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0000	lb/hr	0.000	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0000	lb/hr	0.000	tpy

NOx	100 l	lb/MMCF	
СО	84 1	lb/MMCF	
CO ₂	120,000 l	lb/MMCF	Global Warming Potential = 1
VOC	5.5 1	lb/MMCF	
PM	7.6	lb/MMCF	
SO_2	0.6	lb/MMCF	
CH ₄	2.3	lb/MMCF	Global Warming Potential = 25
N_2O	2.2	lb/MMCF	Global Warming Potential =298
нсон	0.075	lb/MMCF	
Benzene	0.0021	lb/MMCF	
n-Hexane	1.8	lb/MMCF	
Toluene	0.0034	lb/MMCF	

Moe Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source EC-1 Enclosed Combustor Pilot					
Burner Duty Rating	985.1	MBtu/hr			
Burner Efficiency	98.0	%			
Gas Heat Content (HHV)	1263.0	Btu/scf			
Total Gas Consumption	19100.9	scfd			
H2S Concentration	0.000	Mole %			
Hours of Operation	8760				

NOx	0.0985	lb/hr	0.432	tpy
CO	0.0828	lb/hr	0.363	tpy
CO2	118.3	lb/hr	518.0	tpy
CH4	0.002	lb/hr	0.01	tpy
CO2e	119	lb/hr	521	tpy
VOC	0.0054	lb/hr	0.024	tpy
SO2	0.0006	lb/hr	0.003	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0075	lb/hr	0.033	tpy
СНОН	0.0001	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0018	lb/hr	0.008	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0019	lb/hr	0.008	tpy

AP-42 Factors Used (Tables 1.4.1-1.4.3)

NOx	100 lb/MMCF	
СО	84 lb/MMCF	
CO ₂	120,000 lb/MMCF	Global Warming Potential = 1
VOC	5.5 lb/MMCF	
PM	7.6 lb/MMCF	
SO_2	0.6 lb/MMCF	
CH ₄	2.3 lb/MMCF	Global Warming Potential = 25
N_2O	2.2 lb/MMCF	Global Warming Potential =298
нсон	0.075 lb/MMCF	
Benzene	0.0021 lb/MMCF	
n-Hexane	1.8 lb/MMCF	
Toluene	0.0034 lb/MMCF	

Moe Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source EC-1 Enclosed Vapor Combustor - Control of Tank Emissions

Destruction Efficiency Gas Heat Content (HHV) Max Flow to T-E Max BTUs to Flare 98.0 % 2313.1 Btu/scf 0.028 MMSCFD 2.746 MMBTU/hr

10.401 MMSCF/yr 24,058 MMBTU/yr

NOx	0.19	lb/hr	0.82	tpy
CO	1.02	lb/hr	4.45	tpy
CO2	321.02	lb/hr	1,406.07	tpy
CO2e	327.68	lb/hr	1,435.26	tpy
VOC	1.83	lb/hr	0.40	tpy
CH4	0.26	lb/hr	0.06	tpy
N2O	0.0006	lb/hr	0.0026	tpy
PM	0.0090	lb/hr	0.0395	tpy
СНОН	0.0001	lb/hr	0.0004	tpy
Benzene	0.0000	lb/hr	0.0000	tpy
n-Hexane	0.0021	lb/hr	0.0094	tpy
Toluene	0.0000	lb/hr	0.0000	tpy
Total HAP	0.0022	lb/hr	0.0098	tpy

Notes:

VOC, Total HAP, N-Hexane and CH4 emissions are taken from the Condensate and Produced Water Tank Emissions

Factors Used			
AP-42 Table 13.5-1	NOx	0.068 lb/MMBTU	
AP-42 Table 13.5-1	со	0.37 lb/MMBTU	
40 CFR 98 Table C-1	CO2	116.89 lb/MMBTU	Global Warming Potential = 1
40 CFR 98 Table C-2	CH4	0.0022 lb/MMBTU	Global Warming Potential = 25
40 CFR 98 Table C-2	N2O	0.00022 lb/MMBTU	Global Warming Potential =298
AP-42 Table 1.4-2	PM	7.6 lb/MMSCF	
AP-42 Table 1.4-3	Benzene	0.0021 lb/MMSCF	
AP-42 Table 1.4-3	Toluene	0.0034 lb/MMSCF	
AP-42 Table 1.4-3	Hexane	1.8 lb/MMSCF	
AP-42 Table 1.4-3	CHOH	0.075 lb/MMSCF	

Moe Well Pad Production Facility Tyler County, WV

Source RBV-2

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 200.0 MBtu/hr 98.0 % 1263.0 Btu/scf 3,878 scfd 0.000 Mole % 8760

NOx	0.0200	lb/hr	0.088	tpy
СО	0.0168	lb/hr	0.074	tpy
CO2	24.0	lb/hr	105.2	tpy
CH4	0.000	lb/hr	0.00	tpy
CO2e	24.2	lb/hr	105.8	tpy
VOC	0.0011	lb/hr	0.005	tpy
SO2	0.0001	lb/hr	0.001	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0015	lb/hr	0.007	tpy
СНОН	0.0000	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0004	lb/hr	0.002	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0004	lb/hr	0.002	tpy

NOx	100 lb/MMCF	
CO	84 lb/MMCF	
CO ₂	120,000 lb/MMCF	Global Warming Potential = 1
VOC	5.5 lb/MMCF	
PM	7.6 lb/MMCF	
SO ₂	0.6 lb/MMCF	
CH ₄	2.3 lb/MMCF	Global Warming Potential = 25
N ₂ O	2.2 lb/MMCF	Global Warming Potential = 298
нсон	0.075 lb/MMCF	
Benzene	0.0021 lb/MMCF	
n-Hexane	1.8 lb/MMCF	
Toluene	0.0034 lb/MMCF	

Moe Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source EC-2 Enclosed Combustor Pilot						
Burner Duty Rating	985.1	MBtu/hr				
Burner Efficiency	98.0	%				
Gas Heat Content (HHV)	1263.0	Btu/scf				
Total Gas Consumption	19100.9	scfd				
H2S Concentration	0.000	Mole %				
Hours of Operation	8760					
	hro	0.000.5		0.400		
	NOx	0.0985	lb/hr	0.432		

NOx	0.0985	lb/hr	0.432	tpy
CO	0.0828	lb/hr	0.363	tpy
CO2	118.3	lb/hr	518.0	tpy
CH4	0.002	lb/hr	0.01	tpy
CO2e	119	lb/hr	521	tpy
VOC	0.0054	lb/hr	0.024	tpy
SO2	0.0006	lb/hr	0.003	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0075	lb/hr	0.033	tpy
СНОН	0.0001	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0018	lb/hr	0.008	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0019	lb/hr	0.008	tpy

AP-42 Factors Used (Tables 1.4.1-1.4.3)

NOx	100 lb/MMCF	
СО	84 lb/MMCF	
CO ₂	120,000 lb/MMCF	Global Warming Potential = 1
VOC	5.5 lb/MMCF	
PM	7.6 lb/MMCF	
SO_2	0.6 lb/MMCF	
CH_4	2.3 lb/MMCF	Global Warming Potential = 25
N ₂ O	2.2 lb/MMCF	Global Warming Potential =298
нсон	0.075 lb/MMCF	
Benzene	0.0021 lb/MMCF	
n-Hexane	1.8 lb/MMCF	
Toluene	0.0034 lb/MMCF	

Moe Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Source EC-2 Enclosed Vapor Combustor

Destruction Efficiency Gas Heat Content (HHV) Max Flow to T-E Max BTUs to Flare 98.0 % 633.6 Btu/scf 0.04488 MMSCFD 1.18 MMBtu/hr

393.149 MMSCF/yr 10,380 MMBtu/yr

NOx	0.08	lb/hr	0.35	tpy
СО	0.44	lb/hr	1.92	tpy
CO2	138.50	lb/hr	606.65	tpy
CO2e	138.65	lb/hr	607.27	tpy
VOC	0.37	lb/hr	1.64	tpy
CH4	0.00	lb/hr	0.0114	tpy
N2O	0.000	lb/hr	0.0011	tpy
PM	0.014	lb/hr	0.062	tpy
Benzene	0.005	lb/hr	0.020	tpy
СНОН	0.000	lb/hr	0.001	tpy
n-Hexane	0.009	lb/hr	0.040	tpy
Toluene	0.016	lb/hr	0.069	tpy
Total HAPs	0.030	lb/hr	0.130	tpy

Note: VOCs and HAPs are set at 2% of the still vent emissions in the Glycalc Report.

Factors Used			
AP-42 Table 13.5-1	NOx	0.068 lb/MMBTU	
AP-42 Table 13.5-1	со	0.37 lb/MMBTU	
40 CFR 98 Table C-1	CO2	116.89 lb/MMBTU	Global Warming Potential = 1
40 CFR 98 Table C-2	CH4	0.0022 lb/MMBTU	Global Warming Potential = 25
40 CFR 98 Table C-2	N2O	0.00022 lb/MMBTU	Global Warming Potential =298
AP-42 Table 1.4-2	PM	7.6 lb/MMSCF	
AP-42 Table 1.4-3	СНОН	0.075 lb/MMSCF	

Moe Well Pad Production Facility Tyler County, WV

		L-1	<u>.</u>		
Tr	<mark>uck Loadiı</mark>	<mark>1g - C</mark> o	ndensat	e	
Per AP-42, Chapter 5.2.2.1.1 estimated as follows:	Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor LL can be estimated as follows: L_L =12.46*(SPM/T)				
Where, Loading Loss Saturation Factor True Vapor Pressure Molecular Weight of Vapors Temperature	S= P=	0.6 3.1 66.84	lb/1000 ga psia lb/lb-mol deg R	llons	
Maximum Daily Loading Hours of Loading	100 4,200 3	BBL/da gpd hr	ау		
Total VOC	8.9	lb/day	2.96	lb/hr]
Total HAP		lb/day	0.16	lb/hr	
Maximum Annual Loading	20,400 856,800	BBL/yı gpy			
Total VOC	1813.7	lb/yr	0.91	tpy	
Total HAP	98.0	lb/yr	0.05	tpy	
Emissions Total VOC Total HAP		% %			

Moe Well Pad Production Facility Tyler County, WV

		L -2			
Truck	<mark>k Loading -</mark>	Produ	iced Wa	ter	
Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor LL can be estimated as follows: L_L =12.46*(SPM/T)					
Where, Loading Loss Saturation Factor True Vapor Pressure Molecular Weight of Vapors Temperature	S= P=	0.6 0.3 30.68	lb/1000 ga psia lb/lb-mol deg R	allons	
Maximum Daily Loading	120	BBL/da	ay		
Hours of Loading	5,040 3	gpd hr			
Total VOC	0.2	lb/day	0.08	lb/hr	
Total HAP	0.0	lb/day	0.009	lb/hr	
Maximum Annual Loading	43,200 1,814,400	BBL/yı gpy	ſ		
Total VOC	87.3	lb/yr	0.04	tpy	
Total HAP	9.6	lb/yr	0.00	tpy]
Emissions Total VOC Total HAP		% %			

Moe Well Pad Production Facility Tyler County, WV

		Truck Loa Fugitive I								
Item Number	Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Trin	Maximum Trips per Hour	Truck Capacity (BBL/Truck)	Maximum Trips per Year	Control	Control Efficiency (%)
1	Produced Water Transportation Trucks	18	27	10	1.75	1	80	540	None	
2	Condensate Transportation Trucks	18	27	10	1.75	1	80	255	None	
			54000	lbs						

		PM	PM-10
k =	Particle size multiplier	0.8	0.36
s =	Silt content of road surface material (%)	10	3
S =	Mean vehicle speed (mph)	10	10
W =	Mean vehicle weight (tons)	27	27
w =	Mean number of wheels per vehicle	18	27
p =	Number of days per year with precipitation >0.01 in.	157	157

 $E (lb/vehicle mile traveled) = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365)$

Item 1 - Produ	uced Water	PM	PM-10
E	lb/vmt	7.378804125	1.220015589
E	$[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$	12.913	2.135
Е	$[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 lb] = t$	3.486	0.576

Item 2 - Cond	ensate	PM	PM-10	
E	lb/vmt	7.378804125	1.220015589	
E	$[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$	12.913	2.135	lb/hr
E	$[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 lb] = t$	1.646	0.272	tpy

	Jay-Bee Oil & Gas - Moe				
Flash Emissio	Flash Emission Calculations - Condensate				
		Using Gas-Oil Ratio Meth	lod		
		Un-Controlled			
		Site specific data	1		
Gas-Oil-ratio	=	500 scf/bbl	Using GOW from comparable well pads.		
Throughput	=	20,400 bbl/yr			
Stock tank gas molecular weight	=	39.56 g/mole			
		a .			
		Conversions			
1 lb	=	453.6 g			
1 mole	=	22.4 L			
1 scf	=	28.32 L			
1 ton	=	2000 lb			

Equations
$E_{TOT} = Q \frac{(bbl)}{(yr)} \times R \frac{(scf)}{(bbl)} \times \frac{28.32(L)}{1(scf)} \times \frac{1(mole)}{22.4(L)} \times MW \frac{(g)}{(mole)} \times \frac{1(lb)}{453.6(g)} \times \frac{1(ton)}{2000(lb)}$
E_{TOT} = Total stock tank flash emissions (TPY)
R = Measured gas-oil ratio (scf/bbl)
Q = Throughput (bbl/yr)
MW = Stock tank gas molecular weight (g/mole)
$E_{spec} = E_{TOT} \times X_{spec}$
E_{spec} = Flash emission from constituent

 X_{spec} = Weight fraction of constituent in stock tank gas

Flash Emissions

Constituent	TPY	
Total	562.3396	
VOC	394.5881	
Nitrogen	1.41E-01	
Carbon Dioxide	8.83E-01	
Methane	5.58E+01	
Ethane	1.11E+02	
Propane	1.46E+02	
Isobutane	3.94E+01	
n-Butane	9.07E+01	
2,2 Dimethylpropane	1.11E+00	
Isopentane	3.10E+01	
n-Pentane	3.26E+01	
2,2 Dimethylbutane	1.18E+00	
Cyclopentane	0.00E+00	
2,3 Dimethylbutane	1.70E+00	
2 Methylpentane	9.04E+00	
3 Methylpentane	5.40E+00	
n-Hexane	1.18E+01	HAP
Methylcyclopentane	8.60E-01	
Benzene	2.02E-01	HAP
Cyclohexane	1.22E+00	
2-Methylhexane	2.62E+00	
3-Methylhexane	2.58E+00	
2,2,4 Trimethylpentane	0.00E+00	
Other C7's	2.45E+00	
n-Heptane	3.79E+00	
Methylcyclohexane	2.36E+00	
Toluene	4.61E-01	HAP
Other C8's	3.85E+00	-
n-Octane	1.28E+00	-
Ethylbenzene	2.81E-02	HAP
M & P Xylenes	3.32E-01	HAP
O-Xylene	4.50E-02	HAP
Other C9's	1.60E+00	
n-Nonane	3.82E-01	1
Other C10's	6.02E-01	1
n-Decane	7.87E-02	1
Undecanes (11)	8.44E-02	1

E_{TOT} Sum of C3+

Jay-Bee O	il & Ga	s - Moe
-----------	---------	---------

Flash Emission Calculations - Produced Water

Using Gas-Water Ratio Method

Un-Controlled

Site specific data										
Gas-Water-ratio	=	4.06 scf/bbl	Using GOW from comparable well pads.							
Throughput	=	43,200 bbl/yr								
Stock tank gas molecular weight	=	30.68 g/mole								

		Conversions
1 lb	=	453.6 g
1 mole	=	22.4 L
1 scf	=	28.32 L
1 ton	=	2000 lb

Equations	
$\boxed{E_{xox} = O\frac{(bbl)}{K} \times R\frac{(scf)}{K} \times \frac{28.32(L)}{K} \times \frac{1(mole)}{K} \times MW\frac{(g)}{K} \times \frac{1(lb)}{K}) \times \frac{1(lb)}{K}}$	on)
$E_{TOT} = \mathcal{Q} \frac{1}{(yr)} \times \mathcal{K} \frac{1}{(bbl)} \times \frac{1}{1(scf)} \times \frac{1}{22.4(L)} \times \mathcal{M} W \frac{1}{(mole)} \times \frac{1}{453.6(g)} \times \frac{1}{200}$	$\overline{0(lb)}$

- E_{TOT} = Total stock tank flash emissions (TPY)
 - R = Measured gas-oil ratio (scf/bbl)
 - Q = Throughput (bbl/yr)
- MW = Stock tank gas molecular weight (g/mole)

$$E_{spec} = E_{TOT} \times X_{spec}$$

 E_{spec} = Flash emission from constituent

 X_{spec} = Weight fraction of constituent in stock tank gas

Flash Emissions

Constituent	TPY	1
Total	7.4991	1
VOC	3.8354	
Nitrogen	1.25E-01	
Carbon Dioxide	1.13E-01	
Methane	2.22E+00	
Ethane	1.21E+00	
Propane	8.62E-01	
Isobutane	2.15E-01	
n-Butane	6.07E-01	
2,2 Dimethylpropane	9.52E-03	
Isopentane	3.05E-01	
n-Pentane	4.24E-01	
2,2 Dimethylbutane	1.58E-02	
Cyclopentane	0.00E+00	
2,3 Dimethylbutane	3.05E-02	
2 Methylpentane	1.70E-01	
3 Methylpentane	1.10E-01	
n-Hexane	2.96E-01	HAP
Methylcyclopentane	2.76E-02	
Benzene	5.40E-03	HAP
Cyclohexane	3.80E-02	
2-Methylhexane	8.26E-02	
3-Methylhexane	8.59E-02	
2,2,4 Trimethylpentane	0.00E+00	
Other C7's	7.90E-02	
n-Heptane	1.44E-01	
Methylcyclohexane	7.63E-02	
Toluene	1.18E-02	HAP
Other C8's	1.31E-01	
n-Octane	4.11E-02	
Ethylbenzene	8.25E-04	HAP
M & P Xylenes	6.75E-03	HAP
O-Xylene	7.50E-04	HAP
Other C9's	3.97E-02	1
n-Nonane	7.42E-03	1
Other C10's	8.70E-03	1
n-Decane	1.50E-03	1
Undecanes (11)	1.42E-03	

E_{TOT} Sum of C3+

18.40 weight percent 59.35 weight percent 0.32 weight percent

Moe Well Pad Production Facility Tyler County, WV

Fugitive VOC Emissions

Volatile Organic Compounds, NMNEHC from gas analysis: Methane from gas analysis: Carbon Dioxide from gas analysis: HAPs from gas analysis: Hexane

HAPS from gas analysis:											
Hexane Gas Density:											
Gas Delisity.				0.0380	1 10/801						
				VOC		CO2	CO2	CH4	CH4	CO2e	Hexane
Emission Source:	Count	Oil & Gas Production*	VOC %	(lb/hr)	VOC (tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(tpy)	(tpy)
Pump Seals:											
Gas:	1	0.00529 lb/hr	18.4	0.001	0.004	0.000	0.000	0.003	0.0138	0.344	0.000
Valves:											
Gas/Vapor:	38	0.02700 scf/hr	18.4	0.011	0.048	0.000	0.001	0.035	0.1546	3.867	0.002
Light Liquid:	18	0.05000 scf/hr	100.0	0.052	0.229						
Low Bleed Pneumatic	-	1.39000 scf/hr	18.4	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.000
Relief Valves:	3	0.04000 scf/hr	18.4	0.001	0.006	0.000	0.000	0.004	0.0181	0.452	0.000
Open-ended Lines, gas:	20	0.06100 scf/hr	18.4	0.013	0.057	0.000	0.001	0.042	0.1839	4.598	0.002
Sampling Connectors:											
Gas:	11	0.03300 lb/hr	18.4	0.067	0.293	0.001	0.005	0.215	0.9436	23.595	0.010
Light Liquid:	6	0.03300 lb/hr	100.0	0.198	0.867						
Connectors:											
Gas:	177	0.00300 scf/hr	18.4	0.006	0.025	0.000	0.000	0.018	0.0800	2.001	0.001
Light Liquid:	60	0.00700 scf/hr	100.0	0.024	0.107						
Compressor Seals, Gas:	1	0.01940 lb/hr	18.4	0.004	0.016	0.000	0.000	0.012	0.0504	1.261	0.001
Flanges:											
Gas:	80	0.00086 lb/hr	18.4	0.013	0.055	0.000	0.001	0.041	0.1788	4.472	0.002
Light Liquid:	40	0.00300 scf/hr	100.0	0.007	0.030						

Blowdowns:

	Pressure (psig)	Internal Volume (scf)	Projected Blowdown Events (per vear)		Gas Released Per Year (lbs)	Composition of Gas (% by volume)	Released (lb/hr)	Released (tpy)	CO2e (tpy)
VOC	300	65	16	1040	124.8	0.70	0.0100	0.0438	
CH4	300	65	16	1040	44.0	0.10	0.0005	0.0022	0.0546
HAPs	300	65	16	1040	116.3	0.02	0.0003	0.0013	

	lb/hr	tpy
VOC	0.406	1.780
CH4	0.371	1.625
CO2	0.002	0.009
CO2e	9.280	40.645
HAPs	0.004	0.018

Notes:

Factors are from 40 CFR 98, Table W-1A (scf/hr), where available. Remaining are API (lb/hr) Sampling Connectors are from TECQ. Remaining are API (lb/hr)

Inlet Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.394	0.110	0.004	0.530			-		0.0039	
Carbon Dioxide, CO2	0.151	0.066	0.002	0.319			-		0.0015	
Hydrogen Sulfide, H2S	-	-	-	-			-		-	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	77.080	12.366	0.427	59.347	701.0	778.5	7.346		0.7693	
Ethane, C2H6	14.832	4.460	0.154	21.405	240.1	262.5	2.474		0.1471	3.945
Propane	4.967	2.190	0.076	10.512	115.0	125.0	1.183	10.512	0.0488	1.361
Iso-Butane	0.616	0.358	0.012	1.718	18.5	20.0	0.191	1.718	0.0060	0.200
Normal Butane	1.210	0.703	0.024	3.375	36.4	39.5	0.375	3.375	0.0117	0.379
Iso Pentane	0.266	0.192	0.007	0.921	9.8	10.6	0.101	0.921	0.0027	0.097
Normal Pentane	0.262	0.189	0.007	0.907	9.7	10.5	0.100	0.907	0.0026	0.094
Hexane	0.151	0.130	0.004	0.625	6.6	7.2	0.068	0.625	0.0015	0.062
Heptane	0.071	0.071	0.002	0.341	3.6	3.9	0.037	0.341	0.0007	0.033
	100.000	20.837	0.719		1,140.8	1,257.7	11.875	18.400	0.9958	6.172

0.058

Gas Density (STP) =

Ideal Gross (HHV)	1,257.7
Ideal Gross (sat'd)	1,236.6
GPM	-
Real Gross (HHV)	1,263.0
Real Net (LHV)	1,145.6

Condensate Tank Flash Vapor Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.036	0.009	0.000	0.022			-		0.0003	
Carbon Dioxide, CO2	0.141	0.041	0.001	0.103			-		0.0009	
Hydrogen Sulfide, H2S	-	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	24.485	3.370	0.116	8.458	191.0	212.2	2.002		0.2096	
Ethane, C2H6	25.943	8.112	0.280	20.358	436.7	477.4	4.500		0.2676	7.176
Propane	23.253	11.311	0.391	28.386	593.8	645.4	6.110	28.386	0.2520	7.030
Iso-Butane	4.773	3.064	0.106	7.690	158.2	171.4	1.633	7.690	0.0512	1.715
Normal Butane	10.980	6.916	0.239	17.357	358.3	388.2	3.685	17.357	0.1150	3.731
Iso Pentane	3.135	2.367	0.082	5.941	121.4	131.3	1.250	5.941	0.0328	1.195
Normal Pentane	3.175	2.307	0.080	5.791	118.5	128.2	1.219	5.791	0.0320	1.152
Hexane	2.378	1.531	0.053	3.841	78.2	84.5	0.804	3.841	0.0175	0.726
Heptane	1.701	0.818	0.028	2.052	41.6	44.9	0.428	2.052	0.0081	0.374
	100.000	39.846	1.376		2,097.7	2,283.4	21.630	71.059	0.9872	23.100

	Gas Density (STP) =	0.111
Ideal Gross (HHV)	2,283.4	
Ideal Gross (sat'd)	2,244.3	
GPM	-	
Real Gross (HHV)	2,313.1	
Real Net (LHV)	2,124.9	

Water Tank Flash Vapor Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	1.821	0.161	0.006	0.652			-		0.0057	
Carbon Dioxide, CO2	1.049	0.705	0.024	2.855			-		0.0160	
Hydrogen Sulfide, H2S	-	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	56.602	11.902	0.411	48.188	674.7	749.3	7.070		0.7404	
Ethane, C2H6	16.424	2.946	0.102	11.929	158.6	173.4	1.634		0.0972	2.606
Propane	8.000	1.933	0.067	7.827	101.5	110.3	1.044	7.827	0.0431	1.202
Iso-Butane	1.516	1.070	0.037	4.332	55.2	59.9	0.570	4.332	0.0179	0.599
Normal Butane	4.274	1.187	0.041	4.808	61.5	66.6	0.633	4.808	0.0197	0.641
Iso Pentane	1.784	0.942	0.033	3.812	48.3	52.2	0.497	3.812	0.0131	0.475
Normal Pentane	2.405	0.670	0.023	2.711	34.4	37.2	0.354	2.711	0.0093	0.334
Hexane	2.953	0.990	0.034	4.009	50.6	54.6	0.520	4.009	0.0114	0.470
Heptane	3.172	2.192	0.076	8.877	111.6	120.4	1.147	8.877	0.0218	1.004
	100.000	24.699	0.853		1,296.4	1,424.0	13.469	36.376	0.9954	7.331

0.069

	Gas Density (STP) =					
Ideal Gross (HHV)	1,424.0					
Ideal Gross (sat'd)	1,399.9					
GPM	-					
Real Gross (HHV)	1,430.5					

1,302.3

Real Net (LHV)

Still Vent Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.152	0.043	0.001	0.204	0.0	0.0	-		0.0015	
Carbon Dioxide, CO2	0.158	0.070	0.002	0.333	0.0	0.0	0.011		0.0016	
Hydrogen Sulfide, H2S	-	-	-	-	0.0	0.0	-		-	
Water	56.500	10.170	0.351	48.743	0.0	0.0	-		0.5653	
Oxygen, O2	-	-	-	-	0.0	0.0	-		-	
Methane, CH4	29.500	4.733	0.163	22.683	268.3	298.0	4.921		0.2944	
Ethane, C2H6	7.390	2.222	0.077	10.650	119.6	130.8	1.760		0.0733	1.966
Propane	3.180	1.402	0.048	6.721	73.6	80.0	0.985	6.721	0.0312	0.872
Iso-Butane	0.488	0.284	0.010	1.359	14.6	15.9	0.151	1.359	0.0047	0.159
Normal Butane	1.150	0.668	0.023	3.204	34.6	37.5	0.438	3.204	0.0111	0.361
Iso Pentane	0.267	0.193	0.007	0.923	9.9	10.7	0.113	0.923	0.0027	0.097
Normal Pentane	0.316	0.228	0.008	1.093	11.7	12.7	0.133	1.093	0.0032	0.114
Hexane	0.342	0.294	0.010	1.411	15.0	16.2	0.197	1.411	0.0034	0.140
Heptane	0.557	0.558	0.019	2.675	28.4	30.6	1.310	2.675	0.0055	0.256
	100.000	20.864	0.720		575.8	632.4	10.019	17.386	0.9980	3.963

	Gas Density (STP) =	0.058
Ideal Gross (HHV)	632.4	
Ideal Gross (sat'd)	622.2	
GPM	-	
Real Gross (HHV)	633.6	
Real Net (LHV)	577.0	

Specific Gravity of Air, @ 29.92 in. Hg and 60 -F,	28.9
One mole of gas occupies, @ 14.696 psia & 32 -F,	3
One mole of gas occupies, @ 14.696 psia & 60 -F,	37

28.9625 359.2 cu ft. per lb-mole 379.64 cu ft. per lb-mole

Hydrogen Sulfide (H2S) conversion chart:

<u>0</u> grains H2S/100 scf	=	<u>0.00000</u> mole % H2S
		<u>0.0</u> ppmv H2S
<u>0</u> mole % H2S	=	<u>0</u> grains H2S/100 scf
		<u>0.0</u> ppmv H2S
<u>0</u> ppmv H2S	=	0.000 grains H2S/100 scf
		0.00000 mole % H2S

Ideal Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	Z factor
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Z factor
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	0.9997
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	0.9964
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	587	637	6,545	7,100	7.15	0.9846
Water	H20	18.000	0.6215	0.0474	21.091	0	0	0	0	0	1.0006
Oxygen	O2	31.999	1.1048	0.0843	11.864	0	0	0	0	0	0.9992
Methane	CH4	16.043	0.5539	0.0423	23.664	909.4	1,010.0	21,520	23,879	9.53	0.9980
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,618.7	1,769.6	20,432	22,320	16.68	0.9919
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,314.9	2,516.1	19,944	21,661	23.82	0.9825
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,000.4	3,251.9	19,629	21,257	30.97	0.9711
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,010.8	3,262.3	19,680	21,308	30.97	0.9667
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,699.0	4,000.9	19,478	21,052	38.11	1.0000
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,706.9	4,008.9	19,517	21,091	38.11	1.0000
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,403.8	4,755.9	19,403	20,940	45.26	0.9879
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,100.0	5,502.5	22,000	23,000	52.41	0.9947

Real Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	Gal/Mole
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Gai/Wole
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	4.1513
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	6.4532
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	621	672	6,545	7,100	7.15	5.1005
Water	H2O	18.000	0.6215	0.0474	21.091						3.8376
Oxygen	O2	31.999	1.1048	0.0843	11.864	0	0	0	0	0	3.3605
Methane	CH4	16.043	0.5539	0.0423	23.664	911	1,012	21,520	23,879	9.53	6.4172
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,631	1,783	20,432	22,320	16.68	10.126
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,353	3,354	19,944	21,661	23.82	10.433
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,101	3,369	19,629	21,257	30.97	12.386
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,094	3,370	19,680	21,308	30.97	11.937
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,709	4,001	19,478	21,052	38.11	13.86
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,698	4,009	19,517	21,091	38.11	13.713
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,404	4,756	19,403	20,940	45.26	15.566
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,101	5,503	22,000	23,000	52.41	17.468

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: Moe Well Pad File Name: C:\Rogers_Files\Misc\Jay-Bee Oil & Gas\Moe\Moe 20 MMSCFD No Cond 11-15-16.ddf Date: November 15, 2016 DESCRIPTION: _____ Description: 20 MMSCFD Still Vent to Combustor No Flash Tank Annual Hours of Operation: 8760.0 hours/yr WET GAS: _____ Temperature: 85.00 deg. Pressure: 500.00 psig 85.00 deg. F Wet Gas Water Content: Saturated Component Conc. (vol %) ______ ____
 Carbon Dioxide
 0.1510

 Nitrogen
 0.3940

 Methane
 77.0800

 Ethane
 14.8320

 Propane
 4.9670

 Isobutane
 0.6160

 n-Butane
 1.2100

 Isopentane
 0.2660

 n-Pentane
 0.2620

 n-Hexane
 0.0580
 Cyclohexane0.0060Other Hexanes0.0930Heptanes0.0420Benzene0.0010Toluene0.0020 C8+ Heavies 0.0200 DRY GAS: _____ Flow Rate: 20.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF LEAN GLYCOL: _____ Glycol Type: TEG Water Content: 1.5 wt% H2O Flow Rate: 3.5 gpm PUMP : _______ Glycol Pump Type: Gas Injection Gas Injection Pump Volume Ratio: 0.080 acfm gas/gpm glycol

Page: 1

Page: 2

Control Device: Combustion Device Destruction Efficiency: 98.0 % Excess Oxygen: 5.0 % Ambient Air Temperature: 60.0 deg. F GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Moe Well Pad File Name: C:\Rogers_Files\Misc\Jay-Bee Oil & Gas\Moe\Moe 20 MMSCFD No Cond 11-15-16.ddf Date: November 15, 2016

DESCRIPTION:

	20 MMSCFD Still Vent to No Flash Tank	Combustor	
Annual Hours	of Operation:	8760.0	hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0,4665	11.196	2.0432
Ethane	0.2192	5.260	0.9599
Propane	0.1384	3.322	0.6063
Isobutane	0.0279	0.671	0.1224
n-Butane	0.0659	1.581	0.2885
Isopentane	0.0190	0.456	0.0832
n-Pentane	0.0224	0,539	0.0983
n-Hexane	0.0092	0.221	0.0403
Cyclohexane	0.0035	0.084	0.0154
Other Hexanes	0.0117	0,281	0.0512
Heptanes	0.0141	0.339	0.0620
Benzene	0.0046	0.109	0.0200
Toluene	0.0158	0.380	0.0693
C8+ Heavies	0.0416	0.997	0.1820
Total Emissions	1.0598	25.435	4.6419
Total Hydrocarbon Emissions	1.0598	25.435	4.6419
Total VOC Emissions	0.3742	8,980	1.6388
Total HAP Emissions	0.0296	0.710	0.1295
Total BTEX Emissions	0.0204	0,489	0.0892

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs∕hr	lbs/day	tons/yr
Methane	23.3242	559.781	102.1601
Ethane	10.9577	262.986	47.9949
Propane	6.9210	166.104	30.3139
Isobutane	1.3969	33.525	6.1183
n-Butane	3.2938	79.050	14.4266
Isopentane	0.9498	22.794	4.1599
n-Pentane	1.1224	26.937	4.9160
n-Hexane	0.4596	11.031	2.0132
Cyclohexane	0.1757	4.216	0.7694
Other Hexanes	0.5848	14.035	2.5613
Heptanes	0.7072	16.974	3.0977
Benzene	0.2280	5.471	0.9985
Toluene	0.7908	18.978	3.4635
C8+ Heavies	2.0781	49.875	9.1021

				Page: 2
Total Em	issions	52.9898	1271.756	232.0955
Total Hydrocarbon Em Total VOC Em Total HAP Em Total BTEX Em	issions issions	52.9898 18.7079 1.4784 1.0187	1271.756 448.989 35.481 24.449	232.0955 81.9405 6.4752 4.4620

EQUIPMENT REPORTS:

~_____

COMBUSTION DEVICE

Ambient Temperature: 60.00 deg. F Excess Oxygen: 5.00 % Combustion Efficiency: 98.00 % Supplemental Fuel Requirement: 2.58e-001 MM BTU/hr

Component	Emitted	Destroyed
Methane Ethane Propane Isobutane n-Butane	$\begin{array}{c} 2 & . & 00\% \\ 2 & . & 00\% \\ 2 & . & 00\% \\ 2 & . & 00\% \\ 2 & . & 00\% \end{array}$	98.00% 98.00% 98.00% 98.00% 98.00%
Isopentane	2.00%	98.00%
n-Pentane	2.00%	98.00%
n-Hexane	2.00%	98.00%
Cyclohexane	2.00%	98.00%
Other Hexanes	2.00%	98.00%
Heptanes	2.00%	98.00%
Benzene	2.00%	98.00%
Toluene	2.00%	98.00%
C8+ Heavies	2.00%	98.00%

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: Calculated Dry Gas Dew Point:	1.25 3.66	lbs. H2O/MMSCF
Temperature: Pressure: Dry Gas Flow Rate: Glycol Losses with Dry Gas: Wet Gas Water Content: Calculated Wet Gas Water Content: Calculated Lean Glycol Recirc. Ratio:	500.0 20.0000 0.0737 Saturated 63.67	MMSCF∕day

Component	Remaining in Dry Gas	Absorbed in Glycol
Water Water Carbon Dioxide Nitrogen Methane	5.74% 99.84% 99.99% 99.99%	94.26% 0.16% 0.01% 0.01%

Ethane	99.96%	Page: 0.04%	3
Propane	99.93%	0.07%	
Isobutane	99.90%	0.10%	
n-Butane	99.86%	0.14%	
Isopentane	99.85%	0.15%	
n-Pentane	99.81%	0.19%	
n-Hexane	99.66%	0.34%	
Cyclohexane	98.49%	1.51%	
Other Hexanes	99.74%	0.26%	
Heptanes	99.31%	0.69%	
Benzene	86.79%	13.21%	
Toluene	80.54%	19.46%	
C8+ Heavies	97.30%	2.70%	

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	37.09%	62.91%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane Isobutane n-Butane Isopentane n-Pentane	0.00% 0.00% 0.33% 0.36%	100.00% 100.00% 100.00% 99.67% 99.64%
n-Hexane	0.41%	99.59%
Cyclohexane	3.05%	96.95%
Other Hexanes	0.77%	99.23%
Heptanes	0.45%	99.55%
Benzene	4.97%	95.03%
Toluene	7.88%	92.12%
C8+ Heavies	11.75%	88.25%

STREAM REPORTS:

WET GAS STREAM

	85.00 deg. F 514.70 psia 8.35e+005 scfh		
	Component		Loading (lb∕hr)
	Carbon Dioxide Nitrogen Methane	1.34e-001 1.51e-001 3.93e-001 7.70e+001 1.48e+001	1.46e+002 2.42e+002 2.72e+004

Propane 4.96e+000 4.81e+003 Isobutane 6.15e-001 7.86e+002 n-Butane 1.21e+000 1.54e+003 Isopentane 2.66e-001 4.22e+002 n-Pentane 2.62e-001 4.15e+002 Cyclohexane 5.79e-002 1.10e+002 Cyclohexane 5.99e-003 1.11e+001 Other Hexanes 9.29e-002 1.76e+002 Heptanes 4.19e-002 9.25e+001 Benzene 9.99e-004 1.72e+000 Toluene 2.00e-003 4.05e+000 C8+ Heavies 2.00e-002 7.48e+001 Total Components 100.00 4.58e+004

DRY GAS STREAM

Temperature: 85.00 deg. F Pressure: 514.70 psia Flow Rate: 8.33e+005 scfh		
Component		Loading (lb∕hr)
Carbon Dioxide Nitrogen Methane	7.72e-003 1.51e-001 3.94e-001 7.71e+001 1.48e+001	1.46e+002 2.42e+002 2.72e+004
Isobutane n-Butane Isopentane	$\begin{array}{c} 4.96e+000\\ 6.15e-001\\ 1.21e+000\\ 2.66e-001\\ 2.62e-001 \end{array}$	7.86e+002 1.54e+003 4.21e+002
Cyclohexane Other Hexanes Heptanes		1.09e+001 1.76e+002 9.18e+001
Toluene C8+ Heavies	1.61e-003 1.95e-002	
Total Components	100.00	4.58e+004

LEAN GLYCOL STREAM

85.00 deg. 3.50e+000 gpm	F		
Component			Loading (lb∕hr)
 Wa Carbon Diox Nitro	iter ide gen	9.85e+001 1.50e+000 1.18e-012 1.35e-013 4.77e-018	2.96e+001 2.32e-011 2.65e-012
Prop Isobut	ane ane	8.51e-008 6.78e-009 1.22e-009 2.68e-009	1.34e-007 2.41e-008

Page: 4

Page: 5 Isopentane 1.61e-004 3.17e-003 n-Pentane 2.06e-004 4.06e-003 n-Hexane 9.61e-005 1.89e-003 Cyclohexane 2.81e-004 5.53e-003 Other Hexanes 2.32e-004 4.56e-003 Heptanes 1.63e-004 3.20e-003 Benzene 6.06e-004 1.19e-002 Toluene 3.43e-003 6.76e-002 C8+ Heavies 1.40e-002 2.77e-001 _____ ___ ___ ___ Total Components 100.00 1.97e+003 RICH GLYCOL AND PUMP GAS STREAM ______ Temperature:85.00 deg. FPressure:514.70 psiaFlow Rate:3.72e+000 gpm NOTE: Stream has more than one phase. Component Conc. Loading (wt%) (lb/hr) TEG 9.36e+001 1.94e+003 Water 3.84e+000 7.97e+001 Carbon Dioxide 1.65e-002 3.42e-001 Nitrogen 1.01e-002 2.10e-001 Methane 1.13e+000 2.33e+001 Ethane 5.29e-001 1.10e+001 Propane 3.34e-001 6.92e+000 Isobutane 6.74e-002 1.40e+000 n-Butane 1.59e-001 3.29e+000 Isopentane 4.60e-002 9.53e-001 n-Pentane 5.43e-002 1.13e+000 n-Hexane 2.23e-002 4.62e-001 Cyclohexane 8.74e-003 1.81e-001 Other Hexanes 2.84e-002 5.89e-001 Heptanes 3.43e-002 7.10e-001 Benzene 1.16e-002 2.40e-001 Toluene 4.14e-002 8.58e-001 C8+ Heavies 1.14e-001 2.35e+000 _____ ____ Total Components 100.00 2.07e+003 REGENERATOR OVERHEADS STREAM _____ Temperature: 212.00 deg. F Pressure: 14.70 psia

 Pressure:
 14.70 psia

 Flow Rate:
 1.87e+003 scfh

 Component
 Conc. Loading (vol%)

 Water
 5.65e+001 5.01e+001

 Carbon Dioxide
 1.58e-001 3.42e-001

 Nitrogen
 1.52e-001 2.10e-001

 Methane
 2.95e+001 2.33e+001

 Ethane
 7.39e+000 1.10e+001

 Propane
 3.18e+000 6.92e+000

 Isobutane
 4.88e-001 1.40e+000

 n-Butane
 1.15e+000 3.29e+000

 Isopentane
 2.67e-001 9.50e-001

Page: 6

Component	Conc. (vol%)	2
Ethane Propane Isobutane	6.83e+001 1.71e+001 7.37e+000 1.13e+000 2.66e+000	2.19e-001 1.38e-001 2.79e-002
	7.30e-001 2.50e-001 9.80e-002	2.24e-002 9.19e-003 3.51e-003
Benzene	3.31e-001 1.37e-001 4.03e-001 5.73e-001	4.56e-003 1.58e-002
Total Components	100.00	1.06e+000

	ATTA	CHM	ENT U	– FAC	ILITY	-WIDI	E CON	FROLI	LED E	MISSI	ONS SU	U MMA	RY SH	IEET		
List all sources	s of emi	ssions	in this	table. I	Use ext	ra page	es if nec	cessary.								
	NO	D _x	C	CO	v	OC	SO ₂		PM ₁₀		PM _{2.5}		CH ₄		GHG (CO ₂ e)	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1E	0.15	0.66	0.13	0.55	0.01	0.04	< 0.01	< 0.01	0.01	0.05	0.01	0.05	< 0.01	0.02	181.1	793
2E	0.15	0.66	0.13	0.55	0.01	0.04	< 0.01	< 0.01	0.01	0.05	0.01	0.05	< 0.01	0.02	181.1	793
3E	0.15	0.66	0.13	0.55	0.01	0.04	< 0.01	< 0.01	0.01	0.05	0.01	0.05	< 0.01	0.02	181.1	793
4E	0.05	0.22	0.04	0.18	< 0.01	0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	0.02	< 0.01	0.01	60.4	264
5E					2.96	0.91										
6E					0.08	0.04										
7E	0.19	0.81	0.37	1.62	0.04	0.18	< 0.01	< 0.01	0.01	0.06	0.01	0.06	0.13	0.55	89.7	393
8E	< 0.01	0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.6	7
9E	0.29	1.25	1.10	4.81	1.84	0.43	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.26	0.07	446.7	1956
10E																
11E	0.18	0.78	0.52	2.28	0.38	1.66	< 0.01	< 0.01	0.02	0.10	0.02	0.10	< 0.01	0.02	257.6	1128.
12E					1.83	8.03							0.26	1.14	6.5	28
13E	1.52	6.66	0.52	2.27	1.40	6.13	< 0.01	0.03	0.11	0.50	0.11	0.50	12.32	53.97	1,750	7,666
14E	0.02	0.09	0.02	0.07	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	0.01	< 0.01	< 0.01	24.2	105.8
TOTAL	2.69	11.79	2.95	12.90	6.73	17.50	0.01	0.05	0.20	0.90	0.20	0.90	12.73	55.80	3,189	13,929

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTA	CHMEN	NTU-	FACIL	LITY-W	IDE H	AP CO	ONTRO	LLED	EMISS	IONS	SUMM	ARY S	HEET	
List all sources of o	emissions	s in this	s table.	Use ext	ra page	es if ne	cessary	•						
	Formald	lehyde	Ber	izene	Tolu	uene	Ethylb	enzene	Xy	enes	He	xane	Tot	al HAPs
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1E											< 0.01	0.01	< 0.01	0.01
2E											< 0.01	0.01	< 0.01	0.01
3E											< 0.01	0.01	< 0.01	0.01
4E											< 0.01	< 0.01	< 0.01	< 0.01
5E											0.16	0.05	0.16	0.05
6E											0.01	< 0.01	0.01	< 0.01
7E	0.015	0.065	<0.01	< 0.01									0.02	0.10
8E														
9E	< 0.01	< 0.01									< 0.01	0.01	< 0.01	0.02
10E														
11E	< 0.01	< 0.01	<0.01	0.02	0.016	0.07					0.01	0.05	0.03	0.14
12E			<0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	0.01	0.06	0.24	0.06	0.26
13E	0.32	1.41	<0.01	0.02	< 0.01	0.02	<0.01	<0.01	< 0.01	0.01	0.01	0.06	0.53	2.31
14E	< 0.01	< 0.01									< 0.01	< 0.01	< 0.01	< 0.01
TOTAL	0.34	1.48	0.01	0.05	0.02	0.10	< 0.01	< 0.01	< 0.01	0.02	0.26	0.45	0.82	2.93

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT V – CLASS I LEGAL ADVERTISEMENT

Publication of a proper Class I legal advertisement is a requirement of the G70-D registration process. In the event the applicant's legal advertisement fails to follow the requirements of 45CSR13, Section 8 or the requirements of Chapter 59, Article 3, of the West Virginia Code, the application will be considered incomplete and no further review of the application will occur until this is corrected.

The applicant, utilizing the format for the Class I legal advertisement example provided on the following page, shall have the legal advertisement appear a minimum of one (1) day in the newspaper most commonly read in the area where the facility exists or will be constructed. The notice must be published no earlier than five (5) working days of receipt by this office of your application. The original affidavit of publication must be received by this office no later than the last day of the public comment period.

The advertisement shall contain, at a minimum, the name of the applicant, the type and location of the source, the type and amount of air pollutants that will be discharged (excluding fugitive emissions), the nature of the permit being sought, the proposed start-up date for the source, and a contact telephone number for more information.

The location of the source should be as specific as possible starting with: 1.) the street address of the source; 2.) the nearest street or road; 3.) the nearest town or unincorporated area, 4.) the county, and 5.) latitude and longitude coordinates in decimal format.

Types and amounts of pollutants discharged **must include** all regulated pollutants (Nitrogen Oxides, Carbon Monoxide, Particulate Matter-2.5, Particulate Matter-10, Volatile Organic Compounds, Sulfur Dioxide, Carbon Dioxide Equivalents, Methane, Formaldehyde, Benzene, Toluene, Ethylbenzene, Xylenes, Hexane, Total Hazardous Air Pollutants and their potential to emit or the permit level being sought in units of tons per year.

In the event the 30th day is a Saturday, Sunday, or legal holiday, the comment period will be extended until 5:00 p.m. on the following regularly scheduled business day.

A list of qualified newspapers that are eligible to publish legal ads may be found:

http://www.sos.wv.gov/elections/resource/Documents/Qualified%20Newspapers.pdf

Affidavit Notice Will Be Submitted Upon Receipt

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Jay-Bee Oil & Gas, Inc. has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a modification of the G70-C General Permit Registration and conversion to a G70-D General Permit Registration for its Moe Well Pad Production Facility located off Klondike Acres Rd near Middlebourne in Tyler County, West Virginia. The latitude and longitude coordinates are: 39.46791, -80.88719.

The applicant estimates an increase in potential emissions of the following regulated air pollutants:

6.12 tons of Nitrogen Oxides per year
4.27 tons of Volatile Organics per year
0.42 tons of Particulate Matter per year
0.03 tons of Sulfur Dioxide per year
1.41 tons of Formaldehyde per year
0.01 tons of n-Hexane per year
0.01 tons of Xylene per year
2.16 tons of Total Hazardous Air Pollutants per year
54.04 tons of Methane per year
6.809 tons of Greenhouse Gases per year

The applicant estimates a decrease in potential emissions of the following regulated air pollutants:

0.06 tons of Carbon Monoxide per year 0.06 tons of Toluene per year

Startup of operation is planned to begin on or about the 1st day of February, 2017. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours.

Dated this the (Day) day of (Month), (Year).

By: Mr. Shane Dowell Office Manager Jay-Bee Oil & Gas, Inc.