MODIFICATION TO GENERAL PERMIT REGISTRATION G40-C051A MILL POINT QUARRY

Prepared for:

Appalachian Aggregates, LLC 21071 Midland Trail

Lewisburg, West Virginia 24901

Prepared by:

Potesta & Associates, Inc. 7012 MacCorkle Avenue, S.E. Charleston, West Virginia 25304

Phone: (304) 342-1400 Fax: (304) 343-9031 Email: potesta@potesta.com

Project No. 0101-16-0352

December 2016

POTESTA

TABLE OF CONTENTS

Application for General Permit Registration	SECTION I
Current Business Certificate	ATTACHMENT A
Process Description	ATTACHMENT B
Description of Fugitive Emissions	ATTACHMENT C
Process Flow Diagram	ATTACHMENT D
Plot Plan	ATTACHMENT E
Area Map	ATTACHMENT F
Equipment Data Sheets and Registration Section Applicability Form	ATTACHMENT G
Air Pollution Control Device Sheets	ATTACHMENT H
Emissions Calculations	ATTACHMENT I
Class I Legal Advertisement	ATTACHMENT J
Electronic Submittal	ATTACHMENT K
General Permit Registration Application Fee	ATTACHMENT L
Emissions Summary Sheets	ATTACHMENT O

Attachments not required for this application: M, N, and Other.

SECTION I

APPLICATION FOR GENERAL PERMIT REGISTRATION

	WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTE DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 Phone: (304) 926-0475 • www.dep.wv.gov		APPLICATION FOR GENERAL PERMIT REGISTRATION CONSTRUCT, MODIFY, RELOCATE OR ADMINISTRATIVELY UPDATE A STATIONARY SOURCE OF AIR POLLUTANTS			
		RELOCA		CLASS I ADMINISTRATIVE UPDATE		
			I	CLASS II ADMINISTRATIVE UPDATE		
	CHECK WHICH TYPE OF GENERAL PE		EGISTRATIO	ON YOU ARE APPLYING FOR:		
🔲 🖸 G10-D – Coal I	Preparation and Handling		🔳 G4	i40-C – Nonmetallic Minerals Processing		
G20-B - Hot M	ix Asphalt		🗆 G5	50-B – Concrete Batch		
G30-D - Natur	al Gas Compressor Stations		🗆 G6	60-C - Class II Emergency Generator		
G33-A – Spark	Ignition Internal Combustion Engines		🗆 G6	65-C – Class I Emergency Generator		
🗆 G35-A – Natura	al Gas Compressor Stations (Flare/Glycol Dehydra	ation Unit)	🗆 G7	70-A – Class II Oil and Natural Gas Production Facility		
	SECTION I. G	ENERAL		TION		
1. Name of applica Appalachian Agg	nt (as registered with the WV Secretary of State's			2. Federal Employer ID No. (FEIN): 01-0640503		
3. Applicant's maili	ng address:	4.	Applicant's ph	physical address:		
21071 Midland T Lewisburg, West		Rt. 39 Mill Point, WV 24954				
5. If applicant is a s	ubsidiary corporation, please provide the name of	parent co	orporation: Old	ldcastle Materials, Inc.		
6. WV BUSINESS 다 다	change amendments or other Business Registra	poration/ ation Certi ority / Aut	Organization ificate as Attac	n / Limited Partnership (one page) including any name		
	SECTION II. F		INFORMATI	ΓΙΟΝ		
modified, relocated preparation plant, p	acility (stationary source) to be constructed, or administratively updated (e.g., coal imary crusher, etc.): lopper and Grizzly Feeder	Classific	ndard Industria cation cation (SIC) coo			
9. DAQ Plant ID No	. (for existing facilities only):	10. List all current 45CSR13 and other General Permit numbers associated with this process (for existing facilities only):				
075-00002		G40-C0)51A			

A :	PRIMARY	OPERATING	SITE	INFORMATION
------------	---------	-----------	------	-------------

	A: PRIMARY OPERATING SITE INFORMAT	110N						
11A. Facility name of primary operating site:	12A. Address of primary operating site:							
Mill Point Quarry	Mailing: See Box 3 Physical See Box 4	i i i i i i i i i i i i i i i i i i i						
5-								
13A. Does the applicant own, lease, have an option to buy, or otherwise have control of the proposed site? IF YES Descent Solution: Applicant owns site								
□ S IF YES, please explain: Applicant owns	site.							
IF NO, YOU ARE NOT ELIGIBLE FOR A P	ERMIT FOR THIS SOURCE.							
nearest state road;		lirections to the present location of the facility from the						
For Construction or Relocation permits, MAP as Attachment F.	please provide directions to the proposed new	site location from the nearest state road. Include a						
From I-79 N, take Exit 57 for US-19 S towar for approximately 53.5 miles and site will be	d Beckley, then take the WV-55 Exit to on the left just before the intersection o	ward Muddlety/Craigsville. Stay on WV-55 E f WV-55 E and Rt. 219/Seneca Trail.						
15A. Nearest city or town:	16A. County:	17A. UTM Coordinates:						
Hillsboro	Pocahontas	Northing (KM): 4,224.181						
		Easting (KM): 571.759						
		Zone: 17						
18A. Briefly describe the proposed new operation Replacement Grizzly and Feeder Hopper, re-	• • • •	19A. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits):						
emissions, and addition of haulroad emission	s for stone shipped off site.	Latitude: 38.162674						
		Longitude: -80.180870						
B: 1 ST ALTERNATE OPERATING SITE INFO	DRMATION (only available for G20, G40, &	G50 General Permits) NOT APPLICABLE						
11B. Name of 1 st alternate operating site:	12B. Address of 1 st alternate operating site:							
	Mailing:	Physical [.]						
	0							
13B. Does the applicant own, lease, have an option to buy, or otherwise have control of the proposed site? □ YES □ NO □ YES, please explain:								
S IF NO, YOU ARE NOT ELIGIBLE FOR A PE 14P. S For Modifications of Administration II.								
nearest state road;		rections to the present location of the facility from the						
For Construction or Relocation permits, p MAP as Attachment F.	lease provide directions to the proposed new	site location from the nearest state road. Include a						

15B. Nearest city or town:	16B. County:	17B. UTM Coordinates:
		Northing (KM): Easting (KM):
		Zone:
18B. Briefly describe the proposed new oper	19B. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits):	
		Latitude: Longitude:

C: 2ND ALTERNATE OPERATING SITE INFORMATION (only available for G20, G40, & G50 General Permits): NOT APPLICABLE

11C. Name of 2 nd alternate operating site:	12C. Address of	2 nd alternate operating site:		
	Mailing:		Physical:	
13C. Does the applicant own, lease, have an option ↓ IF YES , please explain:				YES 🗆 NO
□ □ IF NO, YOU ARE NOT ELIGIBLE FOR A PI	ERMIT FOR THIS	SOURCE.		
14C. → For Modifications or Administrative U nearest state road:			tions to the present locat	ion of the facility from the
For Construction or Relocation permits, MAP as Attachment F.	please provide dire	ctions to the proposed new site	location from the neare	st state road. Include a
			- <u>,,,,</u>	
15C. Nearest city or town:	16C. County:	· · · · · · · · · · · · · · · · · · ·	17C. UTM	Coordinates:
			Northing (KM): Easting (KM):	
18C. Briefly describe the proposed new operation	or change (s) to the	e facility:	Zone: 19C. Latitude & Longit	uide Opportington
	of onange (o) to an	e lacinty.	(NAD83, Decimal Degr	ees to 5 digits):
			Latitude:	
20. Provide the date of anticipated installation or ch	nange:	21. Date of anticipated Start-u	up if registration is grante	ed:
<u>01/11/2017</u>	-	<u>01 / 11 / 2017</u>		
If this is an After-The-Fact permit application, prove which the proposed change did happen: :	ride the date upon			
//				
22. Provide maximum projected Operating Sched other than 24/7/52 may result in a restriction to the	lule of activity/activ facility's operation)	ities outlined in this application	if other than 8760 hours	/year. (Note: anything
Hours per day <u>24</u> Days per week <u>7</u>	_ Weeks per year	- <u>52</u> Percentage of ope	ration <u>100</u>	

SECTION III. ATTACHMENTS AND SUPPORTING DOCUMENTS

23. Include a check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR22 and 45CSR13).

24. Include a Table of Contents as the first page of your application package.

All of the required forms and additional information can be found under the Permitting Section (General Permits) of DAQ's website, or requested by phone.

25. Please check all attachments included with this permit application. Please refer to the appropriate reference document for an explanation of the attachments listed below.

- ATTACHMENT A : CURRENT BUSINESS CERTIFICATE
- ATTACHMENT B: PROCESS DESCRIPTION
- ATTACHMENT C: DESCRIPTION OF FUGITIVE EMISSIONS
- ATTACHMENT D: PROCESS FLOW DIAGRAM
- ATTACHMENT E: PLOT PLAN
- ATTACHMENT F: AREA MAP
- ATTACHMENT G: EQUIPMENT DATA SHEETS AND REGISTRATION SECTION APPLICABILITY FORM
- ATTACHMENT H: AIR POLLUTION CONTROL DEVICE SHEETS
- ATTACHMENT I: EMISSIONS CALCULATIONS
- ATTACHMENT J: CLASS I LEGAL ADVERTISEMENT
- ATTACHMENT K: ELECTRONIC SUBMITTAL
- ATTACHMENT L: GENERAL PERMIT REGISTRATION APPLICATION FEE
- □ ATTACHMENT M: SITING CRITERIA WAIVER
- □ ATTACHMENT N: MATERIAL SAFETY DATA SHEETS (MSDS)
- ATTACHMENT O: EMISSIONS SUMMARY SHEETS
- □ OTHER SUPPORTING DOCUMENTATION NOT DESCRIBED ABOVE (Equipment Drawings, Aggregation Discussion, etc.)

Please mail an original and two copies of the complete General Permit Registration Application with the signature(s) to the DAQ Permitting Section, at the address shown on the front page of this application. Please DO NOT fax permit applications. For questions regarding applications or West Virginia Air Pollution Rules and Regulations, please refer to the website shown on the front page of the application or call the phone number also provided on the front page of the application.

SECTION IV. CERTIFICATION OF INFORMATION

Presid structu Liabilit mainte notifica Repres	ent, Secretary, Treasurer, General Partner, ure. A business may certify an Authorized R y Company, Association, Joint Venture or S enance, general correspondence, Emission ations must be signed by a Responsible Off sentative, the official agreement below shal olete or improperly signed or unsigned Reg	I be signed below by a Responsible Official. A Responsible Official is a President, Vice General Manager, a member of a Board of Directors, or Owner, depending on business epresentative who shall have authority to bind the Corporation, Partnership, Limited sole Proprietorship. Required records of daily throughput, hours of operation and Inventory, Certified Emission Statement, compliance certifications and all required icial or an Authorized Representative. If a business wishes to certify an Authorized be checked off and the appropriate names and signatures entered. Any administratively stration Application will be returned to the applicant.
	FOR A CORPORATION (domestic or for	<u>sign)</u>
	I certify that I am a President, V corporation	fice President, Secretary, Treasurer or in charge of a principal business function of the
	FOR A PARTNERSHIP	
	I certify that I am a General Pa	tner
	FOR A LIMITED LIABILITY COMPANY	
	I certify that I am a General Par	tner or General Manager
	FOR AN ASSOCIATION	
		or a member of the Board of Directors
	FOR A JOINT VENTURE	General Partner or General Manager
	FOR A SOLE PROPRIETORSHIP	
	I certify that I am the Owner and	Proprietor
is an A Liability change I hereb hereto	Company, Association Joint Venture or So is its Authorized Representative, a Respons v certify that all information contained in this	ty shall represent the interest of the business (e.g., Corporation, Partnership, Limited le Proprietorship) and may obligate and legally bind the business. If the business sible Official shall notify the Director of the Office of Air Quality immediately, and/or, General Permit Registration Application and any supporting documents appended ate and complete, and that all reasonable efforts have been made to provide the most
Signature	Stille	12/08/2016
(please use blue ink)	Responsible Official	Date
Name & Title J (please print or type)	ohn Wilkinson – Vice President	
Signature Not A	Applicable	
(please use blue ink)	Authorized Representative (if applicable	e) Date
Applicant's Nan	ne Appalachian Aggregates, LLC	
Phone & Fax	540-777-7624	Use Email
Email jwilkinsor	Phone	Fax
		and the second second
Page 5 of 5	County/City of Washingto Commenced Wister of Virgin The foregoing instrument was actino before me this 8 day of Dec by Sohn Wilkinson (name of person seeking acknowladge Mark J. Advant Notany Public My Commission Expires: Novem	COMMISSION Commission 10/18/2013 T524540 WEALTH OF

ATTACHMENT A

BUSINESS CERTIFICATE

PAGE 01

WEST VIRGINIA STATE TAX DEPARTMENT

BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: APPALACHIAN AGGREGATES, LLC DBA APPALACHIAN AGGREGATES 2950 CHARLES AVE DUNBAR, WV 25064-2103

BUSINESS REGISTRATION ACCOUNT NUMBER:

2322-1066

This certificate is issued on: 01/19/2018

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above

This certificate shall be permanent unfit cessation of the business for which the certificate of registration was granted or unfit it is suspanded, revoked or cancelled by the Tax Commissioner.

Change in name or change of focation shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENOORS: Must carry a copy of this certificate in every vehicle openand by the CONTRACTORS: DRILLING OPERATORS, TIMBER/LOGOING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

40.995 v.4 11982543935

ATTACHMENT B

PROCESS DESCRIPTION

ATTACHMENT B

PROCESS DESCRIPTION

Introduction to Project

Appalachian Aggregates, LLC is applying for a revised registration under General Permit G40-C to include the replacement of a vibrating grizzly feeder (GF1) and hopper (H1). The yearly rate of the new grizzly feeder will be the same as the existing facility feed rate which is 600 tons per hour and 5,256,000 tons per year. In Attachment G, the proposed hopper and grizzly feeder are shown in blue text. The facility potential to emit (PTE) has also been updated to include truck loading transfer points. haulroad emissions for trucking stone off-site. and re-calculation/combining of sixteen (16) remote open stockpiles into seven (7) remote open stockpile areas.

Permitting History Since Entering the General Permit Program

Boxley Aggregates of West Virginia, LLC (Boxley) was initially registered under the General Permit G40 by G40-C051 in 2011. An amendment to the registration was approved in January 2014 under G40-C051A for the installation of a stand-alone agricultural lime plant. On December 31, 2015, Boxley sold the facility to Oldcastle Materials, Inc. and, effective January 8, 2016, the company name was changed to Appalachian Aggregates, LLC. The West Virginia Department of Environmental Protection, Division of Air Quality (DAQ) approved the transfer of permit G40-C015A to Appalachian Aggregates, LLC in a letter dated May 2, 2016. The current, existing permit registration is G40-C051A.

Facility and Process Description

The Main Plant is comprised of primary crushing and screening operations for sized aggregate production. Final sized products are stockpiled and loaded to truck via front-end loaders. The Agricultural Lime Plant consists of crushing and screening operations with material stockpiled in a fully enclosed building to await shipment off-site. For the PTE, the hourly emissions estimate is based on the entire facility concurrently operating. Operating rates are listed in the affected source sheets for the processing and conveying equipment.

<u>Main Plant</u>

Stone is hauled by front-end loader from the quarry pit and dumped in Hopper H1 with attached vibrating Grizzly Feeder GF1 (TPA). The grizzly feeder transfers stone either to jaw crusher CR1 or a bypass chute to belt conveyor BC1 (TP1). Crushed stone is transferred from the jaw crusher to belt conveyor BC1 (TP2). Water sprays at the discharge of the crusher help minimize fugitive emissions. The stone is conveyed from BC1 to BC2 (TP3) and BC2 to triple deck screen S1 (TP4). The oversize material from screen S1 is transferred via belt conveyor BC5 to stockpile OS-C (TP8) or by way of belt conveyor BC7 (TP5) to a fully enclosed bin BS1 (TP12). The mid-sized material from

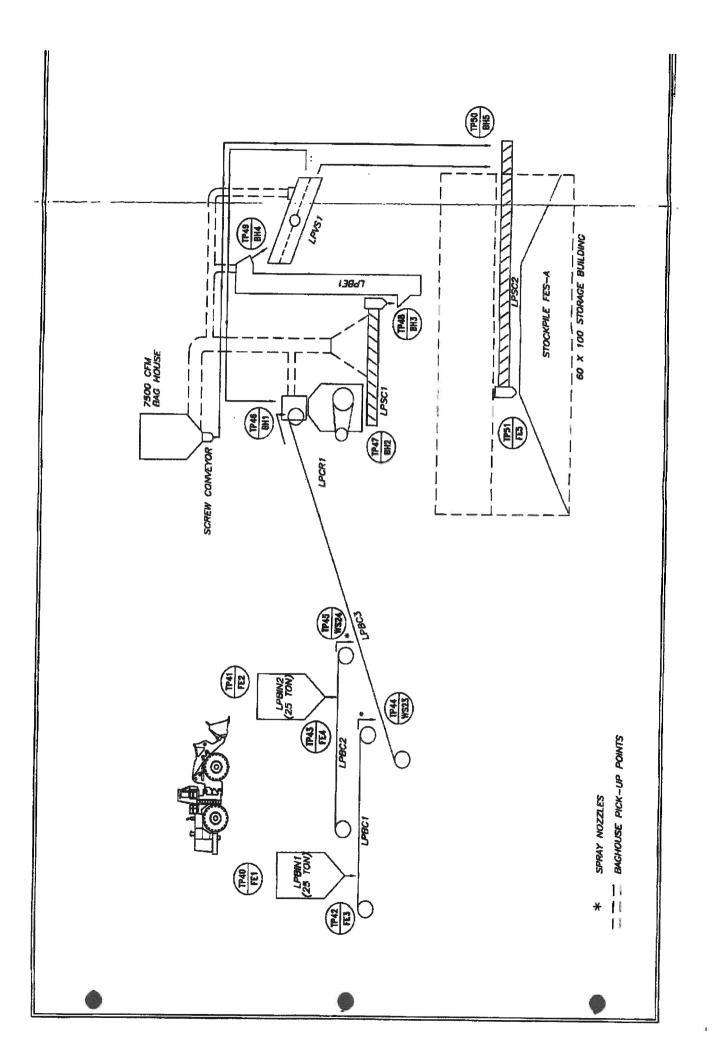
screen S1 is transferred to belt conveyor BC6 (TP6) then to stockpile OS-B (TP9) or by way of belt conveyor BC7 (TP5) to a fully enclosed bin BS1 (TP12). The fine material from the screen S1 (TP7) is placed into stockpile OS-A via belt conveyors BC3 to BC4 (TP10) to OS-A (TP11). From the bin BS1, overflow material can drop to stockpile OS-D through a chute. Stone is transferred out of the bin to belt conveyor BC8 by a feeder (TP13) then dropped into an impact crusher CR2 (TP14). Water sprays at the inlet and exit of the crusher minimize fugitive emissions as the sized material is transferred to triple deck screen S2 by belt conveyor BC9 (TP16). The oversize material from screen S2 is either transferred to belt conveyor BC15 (TP17) then to BC16 (TP27) and then to screen S3 (TP28), or by way of belt conveyor BC15A (TP21) to a rotary crusher CR3 (TP34). The mid-sized material from screen S2 (TP18 & TP19) is conveyed to stockpiles OS-G (TP22) and OS-F (TP23) through belt conveyors BC14 and BC13, respectively, or to screen S3 via belt conveyors BC15 (TP17) / BC16 (TP28). The fine material from screen S2 transfers to BC10 (TP20), then from BC10 to BC11 (TP24) and BC12 to OS-E (TP26). The fines from S2 may also be directed to screen S3 by transferring to belt conveyors BC15 (TP27) / BC16 (TP28). The material is screened through S3 with the mid-sized material (TP30 & TP31) transferred to open stockpiles OS-J and OS-I through conveyor belts BC20 (TP36) and BC21 (TP37). The oversized material (TP29) is moved in closed circuit to the rotary crusher CR3 by belt conveyors BC17 (TP33) and BC18 (TP34). The fine material from S3 (TP32) is transferred to OS-H by belt conveyors BC22 (TP38) and BC23 (TP39). Water sprays at the transfer points control fugitive emissions. There are six (6) remote open stockpile areas (Open Stockpile Area K through Q) in which material is stored until it is loaded onto trucks and shipped off-site. Numerous individual stockpiles can be inside an open stockpile area and may consist of several aggregate types.

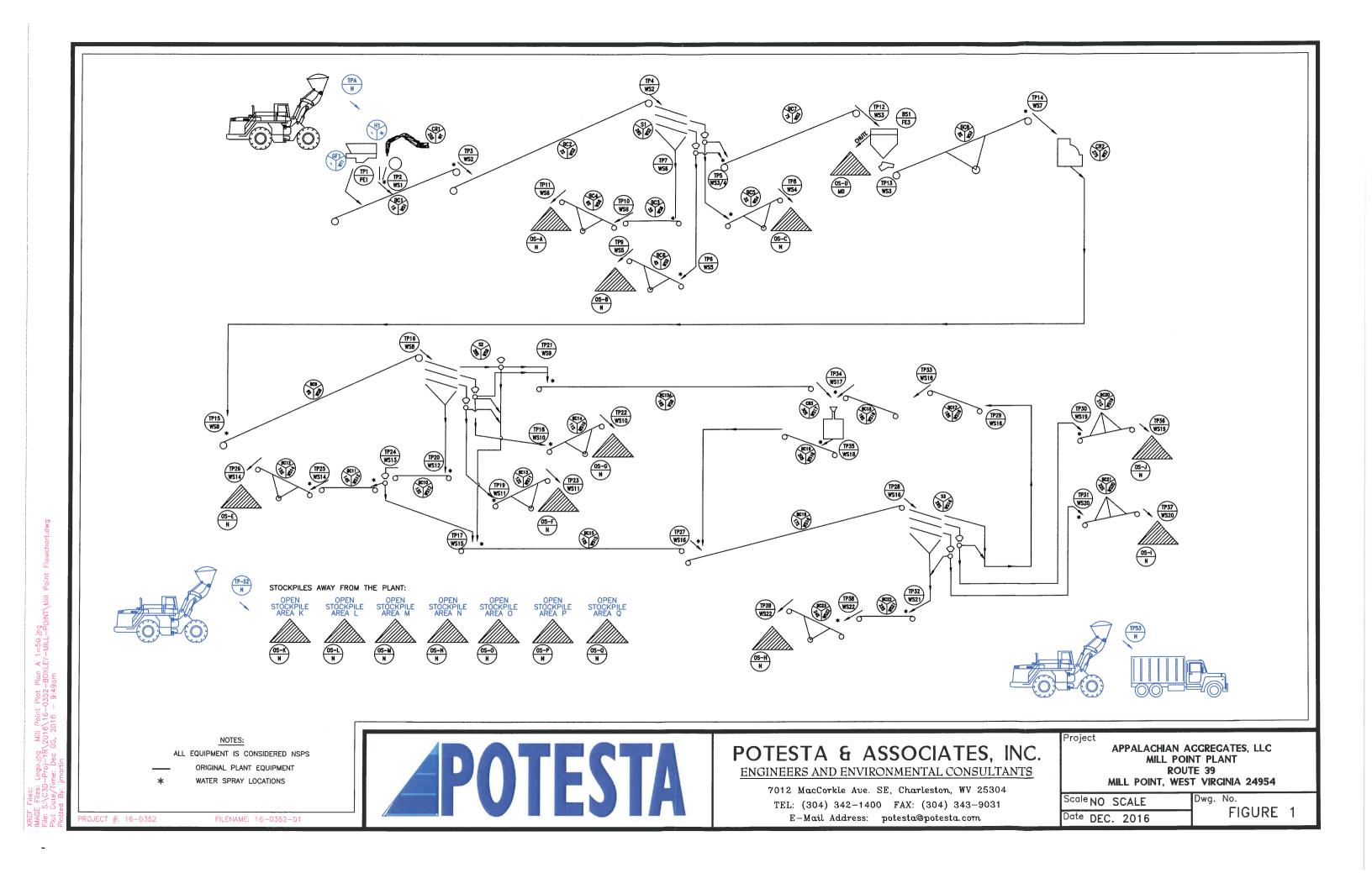
Agricultural Lime Plant:

A front-end loader will feed material into (2) 25 ton feed bins, LPBIN1 (TP40) and LPBIN2 (TP41). Belt feeders LPBC1 (TP42) and LPBC2 (TP43) transfer the material onto belt conveyor LPBC3 (TP44, TP45). Belt conveyor LPBC3 (TP46) transfers material into a cage mill crusher LPCR1. The cage mill crusher LPCR1 (TP47) discharges into a screw conveyor LPSC1 that feeds a bucket elevator LPBE1 (TP48). The bucket elevator LPBE1 discharges material onto a vibrating screen LPVS1 (TP49). The vibrating screen LPVS1 transfers material into a screw conveyor LPSC2 (TP50). The screw conveyor LPSC2 (TP51) discharges agricultural lime into a stockpile FES-A located in a fully enclosed building. A front end loader loads agricultural lime into trucks for shipping off-site. A baghouse will be utilized to control fugitive emissions from this plant.

ATTACHMENT C

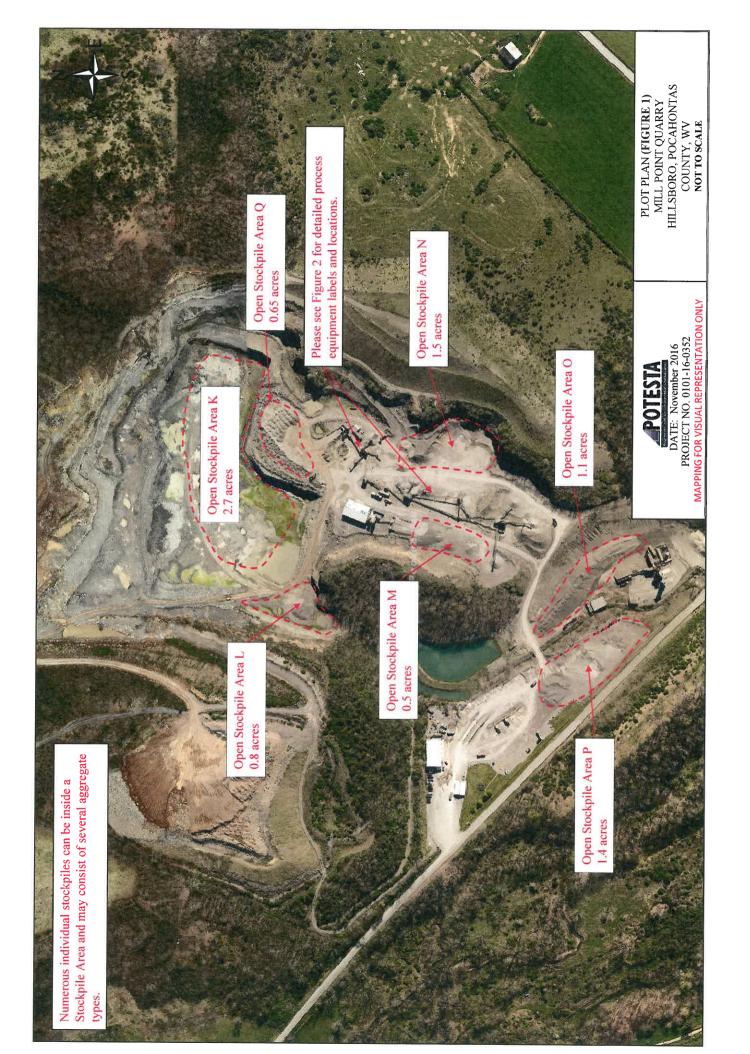
DESCRIPTION OF FUGITIVE EMISSIONS


ATTACHMENT C


DESCRIPTION OF FUGITIVE EMISSIONS

Fugitive emissions from the facility include particulate emissions from haulroads, stockpiles, and work areas. The haulroad surfaces are coarse gravel and are used by trucks, endloaders, and company personnel. Water is applied to the haulroads as needed via a water truck. Water is also applied to the work areas around the stockpiles and plant by the water truck to control particulate emissions. The stockpiles will be controlled by the water truck as needed. Usually, the stockpiles contain a sufficient amount of moisture from upstream water sprays to minimize particulate emissions. The water sprays and water supply lines will be protected from freezing (winterized) by the use of thermal protection: insulation and/or heat taping of exposed areas as needed. In the event that the thermal protection or other methods of winterizing do not prevent freezing, additives may be mixed into the water for freeze proofing.

ATTACHMENT D


PROCESS FLOW DIAGRAM

ATTACHMENT E

PLOT PLAN

DATE: November 2016 PROJECT NO. 0101-16-0352 MAPPING FOR VISUAL REPRESENTATION ONLY PLOT PLAN **(FIGURE 2)** MILL POINT QUARRY HILLSBORO, POCAHONTAS COUNTY, WV

NOT TO SCALE

ATTACHMENT F

AREA MAP

DATE: October 2016

PROJECT NO. 0101-16-0352

MAPPING FOR VISUAL REPRESENTATION ONLY

AREA MAP MILL POINT PLANT MILL POINT, POCAHONTAS COUNTY, WV NOT TO SCALE

ATTACHMENT G

EQUIPMENT DATA SHEETS AND REGISTRATION SECTION APPLICABILITY FORM

General Permit G40-C Registration Section Applicability Form

General Permit G40-C allows qualified registrants to seek registration for a variety of sources. These sources include nonmetallic mineral processing plants which include crushers, screens, transfer points (loading, unloading, etc.), open stockpiles, bins, haulroads, reciprocating internal combustion engine driven compressors, emergency standby generators, and tanks. All registered facilities will be subject to Sections 1.0, 1.1, 2.0, 3.0 and 4.0.

General Permit G40-C allows the registrant to choose which sections of the permit that they wish to seek registration under. Therefore, please mark which sections that you are applying for registration under. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

Section 5 ¹	Nonmetallic Mineral Processing Operations	\boxtimes
Section 6	Standards of Performance for Nonmetallic Mineral Processing Plants	\boxtimes
	that Commenced Construction, Reconstruction or Modification after	_
	August 31, 1983 but before April 22, 2008 (40CFR60 Subpart OOO)	
Section 7	Standards of Performance for Nonmetallic Mineral Processing Plants	\boxtimes
	that Commenced Construction, Reconstruction or Modification on	
	or after April 22, 2008. (40CFR60 Subpart OOO)	
Section 8 ²	Reciprocating Internal Combustion Engines (R.I.C.E.)	
Section 9	Tanks	
Section 10	Standards of Performance for Stationary Compression Ignition Internal	
	Combustion Engines (40CFR60 Subpart IIII)	_
Section 11	Standards of Performance for Stationary Spark Ignition Internal	
	Combustion Engines (40CFR60 Subpart JJJJ)	

1 Affected facilities that are subject to Section 5 may also be subject to Sections 6 and 7. Therefore, if the applicant is seeking registration under multiple sections, they will need to select all applicable sections.

2 Affected facilities that are subject to Section 8 may also be subject to Sections 10 or 11. Therefore, if the applicant is seeking registration under multiple sections, they will need to select all applicable sections.

CRUSHING AND SCREENING AFFECTED SOURCE SHEET

Source Identification Number ¹		CR1	CR2	CR3	S 1	S2	S3
Type of Crusher or Screen ²		JC	IMP	IMP	TD	TD	TD
Make, Model No., Se	rial No. ³	Cedar Rapids	Telsmith	ISC	Cedar Rapids	Cedar Rapids	Cedar Rapids
Date of Construction, Rec or Modification (Mont		1998	1999	1998	1998	1998	2001
Maximum Throughput ⁵	tons/hour	600	600	400	600	600	1,000
	tons/year	5,256,000	5,256,000	3,504,000	5,256,000	5,256,000	8,760,000
Material sized from	n/to: ⁶	+12"/0	-12"/0	-4"/0	NA	NA	NA
Average Moisture Con	tent $(\%)^7$	2	2	2	2	2	2
Control Device ID N	umber ⁸	WT/WS1	WS7/WS8	WS17/WS18	WS2	WS8	WS16
	height (ft)						
	diameter (ft)						
Baghouse Stack	volume (ACFM)						
Parameters ⁹	exit temp (F)						
	UTM Coordinat es						
	hours/day	24	24	24	24	24	24
Maximum Operating Schedule ¹⁰	days/year	365	365	365	365	365	365
Schedule	hours/year	8,760	8,760	8,760	8,760	8,760	8,760

Enter the appropriate Source Identification Number for each crusher and screen. For example, in the case of an operation which incorporates multiple crushers, the crushers should be designated CR-1, CR-2, CR-3 etc. beginning with the breaker or primary crusher. Multiple screens should be designated S-1, S-2, S-3 1. etc.

2. Describe types of crushers and screens using the following codes:

HM	Hammermill	SS	Stationary	Screen	DR	Dou	ible Roll Crusher	
SD	Single Deck Screen		BM	Ball Mill		DD	Double-Deck Screen	
RB	Rotary Breaker		TD	Triple Deck Screen		JC	Jaw Crusher	
GC	Gyratory Crusher		OT	Other CC	2	Cone Crush	er IMP Impact Crusher	
Enter the make model number and serial number of the grusher/corport								

3. el number, and serial number of the crusher/screen

Enter the date that each crusher and screen was constructed, reconstructed, or modified.

4. 5. 6. Enter the maximum throughput for each crusher and screen in tons per hour and tons per year.

Describe the nominal material size reduction (e.g. +2"/ -3/8").

7. 8. Enter the average percent moisture content of the material processed. Enter the appropriate Control Device Identification Number for each crusher and screen. Refer to Table A - Control Device Listing and Control Device Identification Number Instructions in the Reference Document for Control Device ID prefixes and numbering

9. Enter the appropriate stack parameters if a baghouse control device is used.

Enter the maximum operating schedule for each crusher and screen in hours per day, days per year and hours per year. 10.

CRUSHING AND SCREENING AFFECTED SOURCE SHEET CON'T

Source Ider	ntification Number ¹	GF1 (Grizzly Feeder)	LPCR1	LPVS1		
Type of C	Crusher or Screen ²	NA	СМ	DD		
Make, Moo	lel No., Serial No. ³	NA	Steadman	Midwestern	 	
	uction, Reconstruction, tion (Month/Year) ⁴	2016	2013	2013		
Maximum	tons/hour	600	50	50	 1	
Throughput ⁵	tons/year	5,256,000	438,000	438,000	 	
Material	l sized from/to: ⁶	-5" passthrough	-1 ½" / 1/8"	NA		
Average Mo	visture Content (%) ⁷	2	1	1		
Control De	evice ID Number ⁸	Wet	CS- BH1&2	CS-BH3		
	height (ft)					
Baghouse	diameter (ft)					
Stack	volume (ACFM)					
Parameters ⁹	exit temp (F)					
	UTM Coordinates					
Maximum	hours/day	24	24	24		
Operating	days/year	365	365	365	 	
Schedule ¹⁰	hours/year	8,760	8,760	8,760		

- 1. Enter the appropriate Source Identification Number for each crusher and screen. For example, in the case of an operation which incorporates multiple crushers, the crushers should be designated CR-1, CR-2, CR-3 etc. beginning with the breaker or primary crusher. Multiple screens should be designated S-1, S-2, S-3 etc.
- 2. Describe types of crushers and screens using the following codes:

HM	Hammermill	SS	Stationary Screen	DR	Double Roll Crusher
SD	Single Deck Screen	BM	Ball Mill	DD	Double-Deck Screen
RB	Rotary Breaker	TD	Triple Deck Screen	JC	Jaw Crusher
GC	Gyratory Crusher	OT	Other		

- 3. Enter the make, model number, and serial number of the crusher/screen.
- 4. Enter the date that each crusher and screen was constructed, reconstructed, or modified.
- 5. Enter the maximum throughput for each crusher and screen in tons per hour and tons per year.
- 6. Describe the nominal material size reduction (e.g. +2"/ -3%").
- 7. Enter the average percent moisture content of the material processed.
- 8. Enter the appropriate Control Device Identification Number for each crusher and screen. Refer to Table A Control Device Listing and Control Device Identification Number Instructions in the Reference Document for Control Device ID prefixes and numbering.
- 9. Enter the appropriate stack parameters if a baghouse control device is used.
- 10. Enter the maximum operating schedule for each crusher and screen in hours per day, days per year and hours per year.

CRUSHING AND SCREENING AFFECTED SOURCE SHEET CON'T CONVEYING AFFECTED SOURCE SHEET

Source Identification Number ¹	Date of Construction, Reconstruction , or Modification	Type of Material	Size of Material		n Material er Rate ⁵	Average Moisture Content	Control Device ⁷
	(Month/Year) ²	Handled ³	Handled ⁴	tons/hour	tons/year	(%) ⁶	
BC1	1998	Aggregate	0"- 12"	600	5,256,000	2	WS
BC2	1998	Aggregate	0"- 12"	600	5,256,000	2	WS
BC3	1998	Aggregate	0"- 1 1/2"	150	1,314,000	2	WS
BC4	1998	Aggregate	0"- 1 1/2"	150	1,314,000	2	WS
BC5	1998	Aggregate	0"-11/2"	250	2,190,000	2	WS
BC6	1998	Aggregate	1/2"- 3"	150	1,314,000	2	WS
BC7	1998	Aggregate	0"- 12"	600	5,256,000	2	WS
BC8	1998	Aggregate	0"- 12"	600	5,256,000	2	WS
BC9	1998	Aggregate	0"- 4"	600	5,256,000	2	WS
BC10	1998	Aggregate	0"- 3/4"	200	1,752,000	2	WS
BC11	1998	Aggregate	0"- 3/4"	200	1,752,000	2	WS
BC12	1998	Aggregate	0"- 3/4"	200	1,752,000	2	WS
BC13	1998	Aggregate	1 1/2"- 3/4"	200	1,752,000	2	WS
BC14	1998	Aggregate	1/2"- 3"	200	1,752,000	2	WS
BC15	1998	Aggregate	0"- 4"	600	5,256,000	2	WS
BC15A	2011	Aggregate	0"- 4"	400	3,504,000	2	WS
BC16	2001	Aggregate	0"- 4"	1,000	8,760,000	2	WS

1. Enter the appropriate Source Identification Number for each conveyor using the following codes. For example, multiple belt conveyors should be designated BC-1, BC-2, BC-3 etc. Transfer points are considered emission points, not sources, and should not be included in the *Conveying Affected Source Sheet*. Transfer Point Identification Numbers shall be assigned in the *Emission Calculation Sheet*.

BC	Belt Conveyor	BE	Bucket Elevator	DL	Drag-link Conveyor
PS	Pneumatic System	SC	Screw Conveyor	VC	Vibrating Conveyor
OT	0.1				0

OT Other

2. Enter the date that each crusher and screen was constructed, reconstructed, or modified.

3. Enter the type of material being handled - Raw Material (RM) Sized Material (SM) Refuse (R) Other (O)

4. Enter the nominal size of the material being conveyed (e.g. sized material- ³/₄" x 0). If more than one material is handled by the listed conveyor, list each material and enter the appropriate data for each material.

5. Enter the maximum material transfer rate for each conveyor in tons per hour and tons per year.

6. Enter the average percent moisture content of the conveyed material.

7. Enter the control device for the conveyor. PE - Partial Enclosure (example 3/4 hoop), FE - Full Enclosure, N-None

Source Identification Number ¹	Date of Construction, Reconstruction , or	Type of Material	Size of Material		n Material er Rate ⁵	Average Moisture Content	Control Device ⁷
	Modification (Month/Year) ²	Handled ³	Handled ⁴	tons/hour	tons/year	$(\%)^6$	
BC17	1998	Aggregate	1/2"- 4"	400	3,504,000	2	WS
BC18	1998	Aggregate	1/2"- 4"	400	3,504,000	2	WS
BC19	1998	Aggregate	0" - 2"	400	3,504,000	2	WS
BC20	1998	Aggregate	1/2" - 1"	300	2,628,000	2	WS
BC21	1998	Aggregate	1/2" - 3/16"	200	1,752,000	2	WS
BC22	1998	Aggregate	0"- 1/2"	500	4,380,000	2	WS
BC23	1998	Aggregate	0"- 1/2"	500	4,380,000	2	WS
		Ag	ricultural Lime I	Plant		· ·	
LPBC1	2006	Aggregate	0"- 1 1/2"	400	3,500,000	1	FE
LPBC2	2005	Aggregate	0"-11/2"	400	3,500,000	1	FE
LPBC3	2005	Aggregate	0"- 1 1/2"	600	3,500,000	1	WS
LPSC1	2005	Aggregate	0"- 1/8"	600	3,500,000	1	BH2
LPBE1	2005	Aggregate	0"- 1/8"	600	3,500,000	1	BH3
LPSC2	2014	Aggregate	0"- 1/8"	600	3,500,000	1	BH5

CONVEYING AFFECTED SOURCE SHEET CON'T

1. Enter the appropriate Source Identification Number for each conveyor using the following codes. For example, multiple belt conveyors should be designated BC-1, BC-2, BC-3 etc. Transfer points are considered emission points, not sources, and should not be included in the *Conveying Affected Source Sheet*. Transfer Point Identification Numbers shall be assigned in the *Emission Calculation Sheet*.

BC	Belt Conveyor	BE	Bucket Elevator	DL	Drag-link Conveyor
PS	Pneumatic System	SC	Screw Conveyor	VC	Vibrating Conveyor
OT	Other		-		5 5

2. Enter the date that each crusher and screen was constructed, reconstructed, or modified.

3. Enter the type of material being handled - Raw Material (RM) Sized Material (SM) Refuse (R) Other (O)

4. Enter the nominal size of the material being conveyed (e.g. sized material- ³/₄" x 0). If more than one material is handled by the listed conveyor, list each material and enter the appropriate data for each material.

5. Enter the maximum material transfer rate for each conveyor in tons per hour and tons per year.

6. Enter the average percent moisture content of the conveyed material.

7. Enter the control device for the conveyor. PE - Partial Enclosure (example 3/4 hoop), FE - Full Enclosure, N - None

Source Identification Number ¹	OS-A	OS-B	OS-C	OS-D	OS-E	OS-F
Type of Material Stored ²	Sized Material	Sized Material	Sized Material	Sized Material	Sized Material	Sized Material
Average Moisture Content (%) ³	2	2	2	2	2	2
Maximum Yearly Storage Throughput (tons) ⁴	1,314,000	1,314,000	2,190,000	438,000	1,752,000	1,752,000
Maximum Storage Capacity (tons) ⁵	7,000	7,000	7,000	7,000	7,000	7,000
Maximum Base Area (ft ²) ⁶	11,236	11,236	11,236	11,236	11,236	11,236
Maximum Pile Height (ft) ⁷	40	40	40	40	40	40
Method of Material Load-in ⁸	MC	МС	МС	МС	MC	МС
Load-in Control Device Identification Number ⁹	SW-WS	SW-WS	SW-WS	SW-WS	SW-WS	SW-WS
Storage Control Device Identification Number ⁹	None	None	None	None	None	None
Method of Material Load-out ⁸	FE	FE	FE	FE	FE	FE
Load-out Control Device Identification Number ⁹	None	None	None	None	None	None

Enter the appropriate Source Identification Number for each storage activity using the following codes. For example, if the facility utilizes 1. three storage bins, four open stockpiles and one storage building (full enclosure), the Source Identification Numbers should be BS-1, BS-2, and BS-3; OS-1, OS-2, OS-3, and OS-4; and SB-1, respectively.

- BS Bin or Storage Silo (full enclosure)
- E3 Enclosure (three sided enclosure)
- Open Stockpile
- SB Storage Building (full enclosure)
- OS SF Stockpiles with wind fences
- Describe the type of material stored or stockpiled. (e.g. sized material, raw material, refuse, etc).
- 3. Enter the average percent moisture content of the stored material.
- 4. Enter the maximum yearly storage throughput for each storage activity.
- 5. Enter the maximum storage capacity for each storage activity in tons (e.g. silo capacity, maximum stockpile size, etc.)

OT

- 6. For stockpiles, enter the maximum stockpile base area.
- For stockpiles, enter the maximum stockpile height. 7.
- 8. Enter the method of load-in or load-out to/from stockpiles or bins using the following codes:
- CS Clamshell Fixed Height Chute from Bins FC

2.

SS Stationary Conveyor/Stacker ST Stacking Tube

Other

- TC Telescoping Chute from Bins
- FE Front Endloader MC Mobile Conveyor/Stacker
- Under-pile or Under-Bin Reclaim Conveyor UC RC Rake or Bucket Reclaim Conveyor
- TD Truck Dump PC Pneumatic Conveyor/Stacker
 - OT Other <u>RS Radial Stacker</u>
- Enter the appropriate Control Device Identification Number for each storage activity. Refer to Table A Control Device Listing and Control 9. Device Identification Number Instructions in the Reference Document for Control Device ID prefixes and numbering.

Source Identification Number ¹	OS-G	OS-H	OS-I	OS-J	OS-K	OS-L
Type of Material Stored ²	Sized Material	Sized Material	Sized Material	Sized Material	Sized Material	Sized Material
Average Moisture Content (%) ³	2	2	2	2	2	2
Maximum Yearly Storage Throughput (tons) ⁴	1,752,000	4,380,000	1,752,000	2,628,000	671,000	671,000
Maximum Storage Capacity (tons) ⁵	7,000	7,000	7,000	7,000	163,000	48,500
Maximum Base Area (ft ²) ⁶	11,236	11,236	,236 11,236 11,236		117,613	34,848
Maximum Pile Height (ft) ⁷	40	40	40	40	40	40
Method of Material Load-in ⁸	МС	МС	МС	МС	TD	TD
Load-in Control Device Identification Number ⁹	SW-WS	SW-WS	SW-WS	SW-WS	None	None
Storage Control Device Identification Number ⁹	None	None	None	None	WT	WT
Method of Material Load-out ⁸	FE	FE	FE	FE	FE	FE
Load-out Control Device Identification Number ⁹	None	None	None	None	None	None

1. Enter the appropriate Source Identification Number for each storage activity using the following codes. For example, if the facility utilizes three storage bins, four open stockpiles and one storage building (full enclosure), the Source Identification Numbers should be BS-1, BS-2, and BS-3; OS-1, OS-2, OS-3, and OS-4; and SB-1, respectively.

- BS Bin or Storage Silo (full enclosure)
- E3 Enclosure (three sided enclosure)
- SB Storage Building (full enclosure)
- SF Stockpiles with wind fences

Open Stockpile

- OT Other <u>RS Radial Stacker</u>
- 2. Describe the type of material stored or stockpiled. (e.g. sized material, raw material, refuse, etc).
- 3. Enter the average percent moisture content of the stored material.
- 4. Enter the maximum yearly storage throughput for each storage activity.
- 5. Enter the maximum storage capacity for each storage activity in tons (e.g. silo capacity, maximum stockpile size, etc.)
- 6. For stockpiles, enter the maximum stockpile base area.
- 7. For stockpiles, enter the maximum stockpile height.
- 8. Enter the method of load-in or load-out to/from stockpiles or bins using the following codes:
 - CS Clamshell FC Fixed Height Chute from Bins

OS

SS Stationary Conveyor/Stacker ST Stacking Tube

- ST Stacking Tube TC Telescoping Chute from Bins
- FE Front Endloader MC Mobile Conveyor/Stacker
- TD Truck Dump
- UC Under-pile or Under-Bin Reclaim Conveyor RC Rake or Bucket Reclaim Conveyor
- PC Pneumatic Conveyor/Stacker OT Other
- 9. Enter the appropriate Control Device Identification Number for each storage activity. Refer to Table A Control Device Listing and Control Device Identification Number Instructions in the Reference Document for Control Device ID prefixes and numbering.

Source Identification Number ¹	OS-M	OS-N	OS-O	OS-P	OS-Q	OS-R (Remove)
Type of Material Stored ²	Sized Material	Sized Material	Sized Material	Sized Material	Sized Material	Sized Material
Average Moisture Content (%) ³	2	2	2	2	2	2
Maximum Yearly Storage Throughput (tons) ⁴	671,000	671,000	671,000	671,000	671,000	313,133
Maximum Storage Capacity (tons) ⁵	31,000	91,000	66,000	85,000	40,000	20,000
Maximum Base Area (ft ²) ⁶	21,780	65,340	47,916	60,984	28,314	14,000
Maximum Pile Height (ft) ⁷	40	40	40	40	40	40
Method of Material Load-in ⁸	TD	TD	TD	TD	TD	TD
Load-in Control Device Identification Number ⁹	None	None	None	None	None	None
Storage Control Device Identification Number ⁹	WT	WT	WT	WT	WT	WT
Method of Material Load-out ⁸	FE	FE	FE	FE	FE	FE
Load-out Control Device Identification Number ⁹	None	None	None	None	None	None

1. Enter the appropriate Source Identification Number for each storage activity using the following codes. For example, if the facility utilizes three storage bins, four open stockpiles and one storage building (full enclosure), the Source Identification Numbers should be BS-1, BS-2, and BS-3; OS-1, OS-2, OS-3, and OS-4; and SB-1, respectively.

- BS Bin or Storage Silo (full enclosure)
- E3 Enclosure (three sided enclosure)
- SB Storage Building (full enclosure) OT Other
- SF Stockpiles with wind fences

Open Stockpile

- Describe the type of material stored or stockpiled. (e.g. sized material, raw material, refuse, etc).
- 3. Enter the average percent moisture content of the stored material.
- 4. Enter the maximum yearly storage throughput for each storage activity.
- 5. Enter the maximum storage capacity for each storage activity in tons (e.g. silo capacity, maximum stockpile size, etc.)
- 6. For stockpiles, enter the maximum stockpile base area.
- 7. For stockpiles, enter the maximum stockpile height.
- 8. Enter the method of load-in or load-out to/from stockpiles or bins using the following codes:
 - CS Clamshell FC Fixed Height Chute from Bins

OS

2

- SS Stationary Conveyor/Stacker ST Stacking Tube
- TC Telescoping Chute from Bins
- FE Front Endloader MC Mobile Conveyor/Stacker
- TD Truck Dump
- UC Under-pile or Under-Bin Reclaim Conveyor RC Rake or Bucket Reclaim Conveyor
- PC Pneumatic Conveyor/Stacker OT Other

9. Enter the appropriate Control Device Identification Number for each storage activity. Refer to Table A - Control Device Listing and Control Device Identification Number Instructions in the Reference Document for Control Device ID prefixes and numbering.

Source Identification Number ¹	OS-S (Remove)	OS-T (Remove)	OS-U (Remove)	OS-V (Remove)	OS-W (Remove)	OS-X (Remove)
Type of Material Stored ²	Sized Material	Sized Material	Sized Material	Sized Material	Sized Material	Sized Material
Average Moisture Content (%) ³	2	2	2	2	2	2
Maximum Yearly Storage Throughput (tons) ⁴	313,133	313,133	313,133	313,133	313,133	313,133
Maximum Storage Capacity (tons) ⁵	14,000	50,000	50,000	50,000	50,000	50,000
Maximum Base Area (ft ²) ⁶	10,000	30,000	30,000	30,000	30,000	30,000
Maximum Pile Height (ft) ⁷	40	40	40	40	40	40
Method of Material Load-in ⁸	TD	TD	TD	TD	TD	TD
Load-in Control Device Identification Number ⁹	None	None	None	None	None	None
Storage Control Device Identification Number ⁹	WT	WT	WT	WT	WT	WT
Method of Material Load-out ⁸	FE	FE	FE	FE	FE	FE
Load-out Control Device Identification Number ⁹	None	None	None	None	None	None

- 1. Enter the appropriate Source Identification Number for each storage activity using the following codes. For example, if the facility utilizes three storage bins, four open stockpiles and one storage building (full enclosure), the Source Identification Numbers should be BS-1, BS-2, and BS-3; OS-1, OS-2, OS-3, and OS-4; and SB-1, respectively.
 - BS Bin or Storage Silo (full enclosure)
- E3 Enclosure (three sided enclosure)

Telescoping Chute from Bins

- OS Open Stockpile
- SB Storage Building (full enclosure)
- SF Stockpiles with wind fences
- Describe the type of material stored or stockpiled. (e.g. sized material, raw material, refuse, etc).
- 3. Enter the average percent moisture content of the stored material.
- 4. Enter the maximum yearly storage throughput for each storage activity.
- 5. Enter the maximum storage capacity for each storage activity in tons (e.g. silo capacity, maximum stockpile size, etc.)

TC

TD

OT

- 6. For stockpiles, enter the maximum stockpile base area.
- For stockpiles, enter the maximum stockpile height.
 Enter the method of load-in or load-out to/from stoc
- Enter the method of load-in or load-out to/from stockpiles or bins using the following codes:
- CS Clamshell

UC

2.

SS Stationary Conveyor/Stacker ST Stacking Tube

Other

- FC Fixed Height Chute from Bins FE Front Endloader
- MC Mobile Conveyor/Stacker
 - Under-pile or Under-Bin Reclaim Conveyor
 - veyor PC Pneumatic Conveyor/Stacker OT Other
- RC Rake or Bucket Reclaim Conveyor
- 9. Enter the appropriate Control Device Identification Number for each storage activity. Refer to Table A Control Device Listing and Control Device Identification Number Instructions in the Reference Document for Control Device ID prefixes and numbering.

Truck Dump

West Virginia Department of Environmental Protection • Division of Air Quality

Source Identification Number ¹	OS-Y (Remove)	FES-A	BS1	LPBIN1	LPBIN2	H1
Type of Material Stored ²	Sized Material	Sized Material - Lime	Sized Material	Raw Material - Lime	Raw Material - Lime	Raw Material
Average Moisture Content (%) ³	2	1	2	1	1	2
Maximum Yearly Storage Throughput (tons) ⁴	313,133	438,000	5,256,000	219,000	219,000	5,256,000
Maximum Storage Capacity (tons) ⁵	50,000	4,000	100	25	25	75
Maximum Base Area (ft ²) ⁶	30,000	6,000	NA	NA	NA	NA
Maximum Pile Height (ft) ⁷	40	22	NA	NA	NA	NA
Method of Material Load-in ⁸	TD	SC	SS	FE	FE	FE
Load-in Control Device Identification Number ⁹	None	SL-FE	WS	None	None	None
Storage Control Device Identification Number ⁹	WT	SW-FE	None	None	None	None
Method of Material Load-out ⁸	FE	FE	SS	SS	SS	SS
Load-out Control Device Identification Number ⁹	None	None	WS	WS	WS	None

1. Enter the appropriate Source Identification Number for each storage activity using the following codes. For example, if the facility utilizes three storage bins, four open stockpiles and one storage building (full enclosure), the Source Identification Numbers should be BS-1, BS-2, and BS-3; OS-1, OS-2, OS-3, and OS-4; and SB-1, respectively.

- BS Bin or Storage Silo (full enclosure) E3 Enclosure (three sided enclosure)
- OS Open Stockpile

- SB Storage Building (full enclosure)
- SF Stockpiles with wind fences OT Other

2. Describe the type of material stored or stockpiled. (e.g. sized material, raw material, refuse, etc).

- 3. Enter the average percent moisture content of the stored material.
- 4. Enter the maximum yearly storage throughput for each storage activity.
- 5. Enter the maximum storage capacity for each storage activity in tons (e.g. silo capacity, maximum stockpile size, etc.)
- 6. For stockpiles, enter the maximum stockpile base area.
- 7. For stockpiles, enter the maximum stockpile height.
- 8. Enter the method of load-in or load-out to/from stockpiles or bins using the following codes:
 - CS Clamshell FC Fixed Height Chute from Bins

Front Endloader

FE

MC

- SS Stationary Conveyor/Stacker
- ST Stacking Tube
 - TC Telescoping Chute from Bins TD Truck Dump
- TD Truck Dump Conveyor PC Pneumatic Conveyor/Stacker
- UC Under-pile or Under-Bin Reclaim Conveyor
- RC Rake or Bucket Reclaim Conveyor

Mobile Conveyor/Stacker

- OT Other
- 9. Enter the appropriate Control Device Identification Number for each storage activity. Refer to Table A Control Device Listing and Control Device Identification Number Instructions in the Reference Document for Control Device ID prefixes and numbering.

HAULROAD EMISSIONS

Include G40-C Emission Calculation Spreadsheet indicating haulroad emissions, or submit calculations indicating assumptions made to substantiate emission values.

Emission Source		Uncontrolled Emissions (PM/PM10/PM2.5)*		Emissions D/PM2.5)*	
	Hourly (lb/hr)	Annual (tpy)	Hourly (lb/hr)	Annual (tpy)	
Stone to Plant	67.02/19.78	293.54/86.64	20.11/19.78	88.06/25.99	
Stock Trucks	108.12/31.91	203.27/60.00	32.44/31.91	60.98/18.00	
Front End Loaders	16.85/4.97	73.81/21.79	5.06/1.49	22.14/6.54	
Trucking Stone Off-Site	433.58/127.98	1,874.11/553.16	130.08/38.39 562.23/165.95		
*The G40B emission calcul	ation spreadsheet p	provided by the D	AQ does not calcu	ulate PM2.5.	

ENGINE DATA SI	HEET
----------------	------

Source Ider	ntification Number ¹	GE	2N-3				
Engine Man	ufacturer and Model	CAT	3512				
Manufactur	er's Rated bhp/rpm	1616/1800					
Soι	arce Status ²	Ι	ES				
	d/Modified/Removed onth/Year) ³	19	997				
Engine Manufactu	ared/Reconstruction Date ⁴	May	1995				
Ignition Engine accounts IIII?	Stationary Compression ording to 40CFR60 Subpart (Yes or No) ⁵	١	lo				
Engine according	Stationary Spark Ignition to 40CFR60 Subpart JJJJ? 'es or No) ⁶	Ν	No				
	Engine Type ⁷	Ν	JA				
	APCD Type ⁸	Ν	JA				
Engine	Fuel Type ⁹	2	FO				
Engine, Fuel and	H ₂ S (gr/100 scf)	Ν	JA				
Combustion Data	Operating bhp/rpm	1616	5/1800				
Duiu	BSFC (Btu/bhp-hr)	0.35 lt	o/bhp-hr				
	Fuel throughput (ft ³ /hr)	81.63	gal/hr				
	Fuel throughput (MMft ³ /yr)	Ν	JA				
	Operation (hrs/yr)	2,	600				
Reference ¹⁰	Potential Emissions ¹¹	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
	NO _X	37.90	49.27				
	СО	8.47	11.01				
	VOC	0.74	0.96				
	SO ₂	NA	NA				
	PM ₁₀	1.21	1.57				
	Formaldehyde	NA	NA				
<u> </u>							

1. Enter the appropriate Source Identification Number for each reciprocating internal combustion compressor/generator engine located at the facility. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Emergency Generator engines should be designated EG-1, EG-2, EG-3 etc. If more than three (3) engines exist, please use additional sheets.

2. Enter the Source Status using the following codes:

- NS Construction of New Source (installation)
- MS Modification of Existing Source
- ES Existing Source
- RS Removal of Source

- 3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.
- 4. Enter the date that the engine was manufactured, modified or reconstructed.
- 5. Is the engine a certified stationary compression ignition internal combustion engine according to 40CFR60 Subpart IIII. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4210 as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

7. Enter the Engine Type designation(s) using the following codes:

LB2S	Lean Burn Two Stroke	RB4S	Rich Burn Four Stroke
LB4S	Lean Burn Four Stroke		

8. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

	A/F	Air/Fuel Ratio	IR	Ignition Retard
	HEIS	High Energy Ignition System	SIPC	Screw-in Precombustion Chambers
	PSC	Prestratified Charge	LEC	Low Emission Combustion
	NSCR	Rich Burn & Non-Selective Catalytic Reduction	SCR	Lean Burn & Selective Catalytic Reduction
9.	Enter the F PQ 2FO	Fuel Type using the following codes: Pipeline Quality Natural Gas #2 Fuel Oil	RG LPG	Raw Natural Gas Liquid Propane Gas

10. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this

Compressor/Generator Data Sheet(s).

MD	Manufacturer's Data	AP	AP-42	
GR	GRI-HAPCalc TM	OT	Other	(please list)

11. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

Source ID $\#^1$	Status ²	Content ³	Volume ⁴	Dia ⁵	Throughput ⁶	Orientation ⁷	Liquid Height ⁸
T01	EXIST	Diesel	10,000	18	90,000	HORZ	6
T02	EXIST	Diesel	10,000	18	90,000	HORZ	6
		e oil, hydraulic or not listed here.	oil, and used oil	tanks o	n the property	which are relate	ed to equipment

STORAGE TANK DATA SHEET

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the facility. Tanks should be designated T01, T02, T03, etc.

2. Enter storage tank Status using the following:

EXIST Existing Equipment

NEW Installation of New Equipment

REM Equipment Removed

3. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, etc.

4. Enter storage tank volume in gallons.

5. Enter storage tank diameter in feet.

6. Enter storage tank throughput in gallons per year.

7. Enter storage tank orientation using the following:

VERT Vertical Tank

8. Enter storage tank average liquid height in feet.

HORZ Horizontal Tank

ATTACHMENT H

AIR POLLUTION CONTROL DEVICE SHEETS

BAGHOUSE AIR POLLUTION CONTROL DEVICE SHEET

Complete a Baghouse Air Pollution Control Device Sheet for each baghouse control device.

- 1. Baghouse Control Device Identification Number: BH1
- 2. Manufacturer's name and model identification: Donaldson 108MBT8
- 3. Number of compartments in baghouse: 108
- 4. Number of compartments online during normal operation and conditions: 108
- 5. Gas flow rate into baghouse: ______ACFM @____Ambient °F and _____OPSIA
- 6. Total cloth area: 1,383 ft²
- 7. Operating air to cloth ratio: <u>5.42</u> ft/min
- 8. Filter media type: Polyester
- 9. Stabilized static pressure drop across baghouse: 2-4 inches H₂O
- 10. Baghouse operation is:
 - X Continuous

 Automatic
 Intermittent
- 11. Method used to clean bags:
 - \Box Shaker X Pulse jet \Box Reverse jet \Box Other
- 12. Emission rate of particulate matter entering and exiting baghouse at maximum design operating conditions:

Entering baghouse: <u>330</u> lb/hr and <u>5</u> grains/ACF

Exiting baghouse: <u>0.129</u> lb/hrand <u>0.002</u> grains/ACF

- 13. Guaranteed minimum baghouse collection efficiency: <u>99.9</u> %
- 14. Provide a written description of the capture system (e.g. hooding and ductwork arrangement), size of ductwork and hoods and air volume, capacity and operating horsepower of fan:

Capture system consists of (1) hood mounted to a screw conveyor tapering to a 16" duct; (2) 5" round pickup point on top of cage mill inlet chute; (3) 5" pickup point on bucket elevator; and (4) 7" round pickup point on top of the vibrating screen. All ducts are sized for 2,500 to 4,000 fpm transport velocity. The total system capacity is 7,500 fpm.

15. Describe the method of disposal for the collected material:

Collected material discharges through rotary air back into the product stream.

ATTACHMENT I

EMISSIONS CALCULATIONS

POTESTA & ASSOCIATES, INC. Project No. 0101-16-0352

By: JJD	Checked By: ADM
Date: 11/28/2016	Date: 11/29/16

Facility FIE*							
Pollutant	Uncontrolled		Controlled				
Tonutant	lb/hr	tpy	lb/hr	tpy			
PM	764.44	3,042.00	213.56	835.85			
PM10	243.79	973.48	67.56	262.61			
NOx	37.90	49.27	37.90	49.27			
СО	8.47	11.01	8.47	11.01			
VOC	0.74	0.96	0.74	0.96			

Facility PTE*

* Includes diesel engine emissions for GEN-3 from Attachment G of permit application G40-C051A.

INPUTS

Include all information for each emission source and transfer point as listed in the permit application.

Name of applicant: Name of plant:

Page 1
Aggregrate Industries LLC
Mill Point Plant

1. CRUSHING AND SCREENING (including all primary and secondary crushers and screens)

1a. PRIMARY CRUSHING

Primary Crusner	Description	Maximum Material Processing Capacity		Control Device	Control Efficiency
ID Number	·····	HAI	IPY	ID Number	%
CRT	Cedar Rapids Jaw Crusher	600	5,256,000	PE/WS1	90
			0,200,000	T ENVOT	

10. SECONDARY AND TERHARY CRUSHING

Secondary & Lertiary Crusher ID	Description		Maximum Material Processing Capacity		Control Efficiency
				ID Number	%
	Telsmith Horizontal Impact Crusher	600	5,256,000	PE/WS8	90
CR3	ISC Vertical Impact Crusher	400	3,504,000	PE/WS17	90
LPCR1	Steadman Cage Mill Crusher	50	438,000	CS-BH	99
			<u> </u>		

TC. SCREENING

Secondary & Lertiary	Description	1	m Material ng Capacity	Control Device	Control Efficiency
Crusher ID	-	ТРН	I IPÝ	ID Number	%
51					
S2	Cedar Rapids Triple Deck Screen	600	5,256,000	PE/WS1	90
	Cedar Rapids Triple Deck Screen	600	5,256,000	PE/WS8	90
S3	Cedar Rapids Triple Deck Screen	1,000	8,760,000	PE/WS16	90
LPVS1	Midwestern Double Deck Screen	50	438,000	CS-BH	99
		_		┢───┥	
			·		
			<u> </u>		
				1	
			<u> </u>		

k =	Particle Size Multiplier (dimensionless)			PM 0.74	PM-10	ה
<u>U</u> =	Mean Wind Speed (mph)			0.74	0.55	
<u> </u>	Mean Wind Opeed (mpn)			/	_	
Transfer	Transfer Point Description	Material	1	Maximum	Control	Control
Point	Include ID Numbers of all conveyors,	Moisture	г	ransfer Rate	Device	Efficienc
ID No.	crushers, screens, stockpiles, etc. involved	Content %	TPH	TPY	ID Number	%
					IB Humber	70
'PA	Loader to Hopper/Grizzly Feeder	2	600	5,256,000	N	0
P1	Grizzly Feeder to CR1 or BC1	2	600	5,256,000	WT1	90
P2	CR1 to BC1	2	600	5,256,000	PE/WS1	90
P3	BC1 to BC2	2	600	5,256,000	WS2	90
<u>P4</u>	BC2 to S1	2	600	5,256,000	WS2	90
P5	S1 to BC5 or BC15A	2	600	5,256,000	WS3/4	90
P6	S1 to BC6	2	150	1,314,000	WS5	90
P7 P8	S1 to BC3	2	150	1,314,000	WS6	90
P0 P9	BC5 to OS-C BC6 to OS-B	2	250	2,190,000	WS4	90
P10	BC3 to BC4	2	150	1,314,000	WS5	90
P11	BC3 to BC4 BC4 to OS-A	2	150	1,314,000	WS6	90
P12	BC7 to BS1	2	150	1,314,000	WS6 WS3	90
P13	BS1 to BC8	2	600 600			90
P14	BC8 to CR2	2	600	5,256,000	WS3 WS7	<u>90</u> 90
P15	CR2 to BC9	2	600	5,256,000	PE/WS8	90
P16	BC9 to S2	2	600	5,256,000	WS8	90
P17	S1 to BC15	2	600	5,256,000	WS15	
P18	S2 to BC14	2	200	1,752,000	WS15	90 90
P19	S2 to BC13	2	200	1,752,000	WS10 WS11	90
P20	S2 to BC10	2	200	1,752,000	WS12	90
P21	S2 to BC15A	2	400	3,504,000	WS8	90
P22	BC14 to OS-G	2	200	1,752,000	WS10	90
P23	BC13 to OS-F	2	200	1,752,000	WS10	90
P24	BC10 to BC11 or BC15	2	200	1,752,000	WS13	90
P25	BC11 to BC12	2	200	1,752,000	WS13 WS14	90
P26	BC12 to OS-E	2	200	1,752,000	WS14	90
P27	BC15 to BC16	2	1,000	8,760,000	WS16	90
P28	BC16 to S3	2	1,000	8,760,000	WS16	90
P29	S3 to BC17	2	400	3,504,000	WS16	90
P30	S3 to BC20	2	300	2,628,000	WS19	90
P31	S3 to BC21	2	200	1,752,000	WS20	90
P32	S3 to BC22	2	200	1,752,000	WS21	90
P33	BC17 to BC18	2	400	3,504,000	WS16	90
P34	BC15A and BC18 to CR3	2	400	3,504,000	WS17	90
P35	CR3 to BC19	2	400	3,504,000	PE/WS18	90
P36	BC20 to OS-J	2	300	2,628,000	WS19	90
P37	BC21 to OS-I	2	200	1,752,000	WS20	90
P38	BC22 to BC23	2	500	4,380,000	WS22	90
P39	BC23 to OS-H	2	500	4,380,000	WS22	90
P40	Front End Loader to LPBin1	1	50	438,000	UD-FE	80
P41	Front End Loader to LPBin2	1	50	438,000	UD-FE	80
P42	LPBin1 to LPBC1	1	50	438,000	UD-FE	80
P43	LPBin2 to LPBC2	1	50	438,000	UD-FE	80
P44	LPBC1 to LPBC3	1	50	438,000	WS23	90
P45	LPBC2 to LPBC3	1	50	438,000	WS24	90
P46	LPBC3 to LPCR1	1	50	438,000	CS-BH	99
P47	LPCR1 to LPSC1	1	50	438,000	CS-BH	99
P48	LPSC1 to LPBE1	1	50	438,000	CS-BH	99
P49	LPBE1 to LPVS1	1	50	438,000	TC-BH	99
P50	LPVS1 to LPSC2	1	50	438,000	CS-BH	99
P51	LPSC2 to Building	1	50	438,000	SL-FE	80
P52	Loader to Satellite Stockpile Areas	2	600	1,314,000	N	0
P53	Loader to Truck	2	600	5,256,000	N	0
P54	Lime Plant Loadout	1	50	438,000	N	0

Page 2

3. WIND EROSION OF STOCKPILES (including all stockpiles of raw coal, clean coal, coal refuse, etc.)

p =	number of days per year with precipitation >0.01 inch	157
f =	percentage of time that the unobstructed wind speed	20
	exceeds 12 mph at the mean pile height	

Source	Stockpile	Silt	Stockpile	Control	Control
ID No.	Description	Content of	base area	Device	Efficiency
		Material %	Max. sqft	ID Number	%
OS-A	OS-A	3	11,236	N	0
OS-B, C, E	OS-B, OS-C, OS-D	1	33,708	N	0
OS-E	OS-E	4	11,236	N	0
OS-F, G	OS-F, OS-G	1	22,472	N	0
OS-H	OS-H	10	11,236	N	0
OS-I, J	OS-I, OS-J	1	22,472	N	0
OS-K	OS-K	10	117,613	N	0
OS-L	OS-L	10	34,848	N	0
OS-M	OS-M	10	21,780	N	0
OS-N	OS-N	10	65,340	N	0
OS-O	OS-O	10	47,916	N	0
OS-P, Q	OS-P, Q	10	89,298	N	0
FES-A	Lime	0.1	6,000	SL-FE	80

4. UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

s =	silt content of road surface material (%)	10
p =	number of days per year with precipitation >0.01 inch	157
M _{dry} =	surface material moisture content (%) - dry conditions	0.2

	· · · · · · · · · · · · · · · · · · ·	Number	Mean	Mean	Miles	Maximum	Maximum	Control	Control
Item	Description	of	Vehicle	Vehicle	per	Trips Per	Trips Per	Device	Efficiency
Number		wheels	Weight(tons)	Speed (mph)	Trip	Hour	Year	ID Number	%
1	Stone to Plant	6	116	15	0.25	12	########	WT1	70
2	Stock Trucks	6	116	15	1.21	4	15,040	WT1	70
3	Front End Loaders	4	62	15	1	1	8,760	WT1	70
4	Trucking Stone Off-Site	10	25	15	1.21	32	#######	WT1	70
5									
6									
7									
8									

5. INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

sL =	road surface silt loading, (g/ft^2)	70	
P =	number of days per year with precipitation >0.01 inch	157	ĺ

ltem Number	Description	Mean Vehicle	Miles per	Maximum Trips Per	Maximum Trips Per	Control Device	Control Efficiency
Number		Weight (tons)	Trip	Hour	Year	ID Number	%
1							
2							
3							
4							
5							
6							
7							
8							

Page 3

EMISSIONS SUMMARY				
		Name of applicant: Name of plant:	Aggregrate Indust Mill Point Plant	ries LLC
Particulate Matter or PM (for 4	I5CSR14 Maj	or Source Determi	nation)	
Γ	Unce	ontrolled PM	Contr	olled PM
Į	lb/hr	TPY	lb/hr	TPY
	FUGI	TIVE EMISSIONS		<u> </u>
Stockpile Emissions	5.17	22.63	5.17	22.63
Unpaved Haulroad Emissions	625.58	2,444.73	187.67	733.42
Paved Haulroad Emissions	0.00	0.00	0.00	0.00
Fugitive Emissions Total	630.74	2,467.36	192.84	756.04
<u> </u>	POINT S	OURCE EMISSIONS		
Equipment Emissions	63.12	276.47	6.18	27.05
Transfer Point Emissions	69.37	296.61	13.34	51.19
Point Source Emissions Total*	132.49	573.07	19.51	78.24
ote: Point Source Total Controlled PM TPY e				70.24
			(
a silita Emissiana Tatal				
Facility Potential to Emit (P	, ,	,	212.35 =	
Facility Emissions Total Facility Potential to Emit (P Based on Point Source Total controlled PM TP articulate Matter under 10 microne	TE) (Base	eline Emissions)	ENTER ON LINE 26 O	78.2
Facility Potential to Emit (P	TE) (Base Y emissions from ab	eline Emissions) ^{bove)} 45CSR30 Major Source	ENTER ON LINE 26 O	78.2
Facility Potential to Emit (P Based on Point Source Total controlled PM TP	TE) (Base Y emissions from ab	eline Emissions)	ENTER ON LINE 26 O	78.2 F APPLICATION
Facility Potential to Emit (P Based on Point Source Total controlled PM TP	TE) (Base PY emissions from ab , or PM-10 (for 4 Uncor Ib/hr	eline Emissions) hove) 45CSR30 Major Source htrolled PM-10	= ENTER ON LINE 26 OF Determination)	78.2
Facility Potential to Emit (P Based on Point Source Total controlled PM TP articulate Matter under 10 microns	TE) (Base PY emissions from ab , or PM-10 (for 4 Uncor Ib/hr	eline Emissions) sove) 45CSR30 Major Source htrolled PM-10 TPY	= ENTER ON LINE 26 OF Determination)	78.2 F APPLICATION
Facility Potential to Emit (P Based on Point Source Total controlled PM TP articulate Matter under 10 microns	TE) (Base Y emissions from ab , or PM-10 (for 4 Uncor Ib/hr FUGIT	eline Emissions) Nove) 45CSR30 Major Source Atrolled PM-10 TPY TVE EMISSIONS	= ENTER ON LINE 26 OF Determination) Contro Ib/hr	F APPLICATION
Facility Potential to Emit (P Based on Point Source Total controlled PM TP articulate Matter under 10 microns	TE) (Base Y emissions from ab , or PM-10 (for 4 Uncor Ib/hr FUGIT 2.43	eline Emissions) hove) 45CSR30 Major Source htrolled PM-10 TPY TVE EMISSIONS 10.63	= ENTER ON LINE 26 OF Determination) Contro Ib/hr 2.43	78.2 F APPLICATION
Facility Potential to Emit (P Based on Point Source Total controlled PM TP articulate Matter under 10 microns Stockpile Emissions Jnpaved Haulroad Emissions Paved Haulroad Emissions	TE) (Base Y emissions from at , or PM-10 (for 4 Uncor Ib/hr FUGIT 2.43 184.65	eline Emissions) pove) 45CSR30 Major Source htrolled PM-10 TPY TVE EMISSIONS 10.63 721.59	= ENTER ON LINE 26 OF Determination) Contro Ib/hr 2.43 55.39	78.2 F APPLICATION
Facility Potential to Emit (P Based on Point Source Total controlled PM TP articulate Matter under 10 microns	TE) (Base Y emissions from ab , or PM-10 (for 4 Uncor Ib/hr FUGIT 2.43 184.65 0.00 187.07	eline Emissions) hove) 45CSR30 Major Source htrolled PM-10 TPY TVE EMISSIONS 10.63 721.59 0.00	= ENTER ON LINE 26 OF Determination) Contro Ib/hr 2.43 55.39 0.00	78.2 F APPLICATION Diled PM-10 TPY 10.63 216.48 0.00
Facility Potential to Emit (P Based on Point Source Total controlled PM TP articulate Matter under 10 microns Stockpile Emissions Jnpaved Haulroad Emissions Paved Haulroad Emissions Fugitive Emissions Total	TE) (Base Y emissions from ab , or PM-10 (for 4 Uncol Ib/hr FUGIT 2.43 184.65 0.00 187.07 POINT S 22.70	eline Emissions) hove) 45CSR30 Major Source htrolled PM-10 TPY TVE EMISSIONS 10.63 721.59 0.00 732.22	= ENTER ON LINE 26 OF Determination) Contro Ib/hr 2.43 55.39 0.00	78.2 F APPLICATION Diled PM-10 TPY 10.63 216.48 0.00
Facility Potential to Emit (P' Based on Point Source Total controlled PM TP articulate Matter under 10 microns Stockpile Emissions Jnpaved Haulroad Emissions Paved Haulroad Emissions Eugitive Emissions Total	TE) (Base Y emissions from ab , or PM-10 (for 4 Uncon Ib/hr FUGIT 2.43 184.65 0.00 187.07 POINT S	eline Emissions) hove) 45CSR30 Major Source Atrolled PM-10 TPY TVE EMISSIONS 10.63 721.59 0.00 732.22 OURCE EMISSIONS	= ENTER ON LINE 26 Of Determination) Contro Ib/hr 2.43 55.39 0.00 57.82	78.2 F APPLICATION Diled PM-10 TPY 10.63 216.48 0.00 227.11
Facility Potential to Emit (P Based on Point Source Total controlled PM TP articulate Matter under 10 microns Stockpile Emissions Jnpaved Haulroad Emissions Paved Haulroad Emissions Fugitive Emissions Total	TE) (Base Y emissions from ab , or PM-10 (for 4 Uncol Ib/hr FUGIT 2.43 184.65 0.00 187.07 POINT S 22.70	Pline Emissions) hove) 45CSR30 Major Source 45CSR30 Major Source 10 TPY IVE EMISSIONS 10.63 721.59 0.00 732.22 OURCE EMISSIONS 99.40 140.29	= ENTER ON LINE 26 OF Determination) Contro Ib/hr 2.43 55.39 0.00 57.82 2.22 6.31	78.2 F APPLICATION Diled PM-10 TPY 10.63 216.48 0.00 227.11 9.72 24.21
Facility Potential to Emit (P Based on Point Source Total controlled PM TP articulate Matter under 10 microns Stockpile Emissions Unpaved Haulroad Emissions Paved Haulroad Emissions Fugitive Emissions Total Equipment Emissions Fransfer Point Emissions	TE) (Base Y emissions from ab , or PM-10 (for 4 Uncou Ib/hr FUGIT 2.43 184.65 0.00 187.07 POINT S 22.70 32.81 55.50	Pline Emissions) hove) 45CSR30 Major Source 45CSR30 Major Source 10 TPY IVE EMISSIONS 10.63 721.59 0.00 732.22 OURCE EMISSIONS 99.40 140.29 239.69	= ENTER ON LINE 26 OF Determination) Contro Ib/hr 2.43 55.39 0.00 57.82 2.22 6.31 8.53	78.2 F APPLICATION Diled PM-10 TPY 10.63 216.48 0.00 227.11 9.72
Facility Potential to Emit (P Based on Point Source Total controlled PM TP articulate Matter under 10 microns Stockpile Emissions Unpaved Haulroad Emissions Paved Haulroad Emissions Fugitive Emissions Total Equipment Emissions Point Source Emissions Total*	TE) (Base Y emissions from ab , or PM-10 (for 4 Uncou Ib/hr FUGIT 2.43 184.65 0.00 187.07 POINT S 22.70 32.81 55.50	Pline Emissions) hove) 45CSR30 Major Source 45CSR30 Major Source 10 TPY IVE EMISSIONS 10.63 721.59 0.00 732.22 OURCE EMISSIONS 99.40 140.29 239.69	= ENTER ON LINE 26 OF Determination) Contro Ib/hr 2.43 55.39 0.00 57.82 2.22 6.31 8.53	78.2 F APPLICATION Diled PM-10 TPY 10.63 216.48 0.00 227.11 9.72 24.21

1. Emissions From CRUSHING AND SCREENING

Page 1

Primary		P	M	PM-10				
Crusher	Unco	ntrolled	Cont	rolled	Unco	ntrolled	Cont	rolled
ID Number	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	I TP
CR1	1.200	5.256	0.120	0.526	0.600	2.628	0.060	0.20
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
								Sec. 1
TOTAL	1.200	5.256	0.120	0.526	0.600	2.628	0.060	0.26
,		PM						and and
Secondary		P	M		PM	-10		
& Tertiary	Uncontrolled		Controlled		Uncontrolled		Controlled	
Crusher ID	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TP
the second s								
CR2	3.240	14.191	0.324	1.419	1.440	6.307	0.144	0.6
CR3	3.240 2.160	14.191 9.461	0.324	1.419 0.946	1.440 0.960	6.307 4.205	0.144	
								0.42
CR3	2.160	9.461	0.216	0.946	0.960	4.205	0.096	0.42
CR3 LPCR1	2.160 0.270	9.461 1.183	0.216 0.003	0.946 0.012	0.960 0.120	4.205 0.526	0.096	0.42
CR3 LPCR1 0	2.160 0.270 0.000	9.461 1.183 0.000	0.216 0.003 0.000	0.946 0.012 0.000	0.960 0.120 0.000	4.205 0.526 0.000	0.096 0.001 0.000	0.42
CR3 LPCR1 0 0	2.160 0.270 0.000 0.000	9.461 1.183 0.000 0.000	0.216 0.003 0.000 0.000	0.946 0.012 0.000 0.000	0.960 0.120 0.000 0.000	4.205 0.526 0.000 0.000	0.096 0.001 0.000 0.000	0.42 0.00 0.00 0.00 0.00
CR3 LPCR1 0 0 0 0	2.160 0.270 0.000 0.000 0.000	9.461 1.183 0.000 0.000 0.000	0.216 0.003 0.000 0.000 0.000	0.946 0.012 0.000 0.000 0.000	0.960 0.120 0.000 0.000 0.000	4.205 0.526 0.000 0.000 0.000	0.096 0.001 0.000 0.000 0.000	0.42 0.00 0.00 0.00 0.00
CR3 LPCR1 0 0 0 0 0	2.160 0.270 0.000 0.000 0.000 0.000	9.461 1.183 0.000 0.000 0.000 0.000 0.000	0.216 0.003 0.000 0.000 0.000 0.000	0.946 0.012 0.000 0.000 0.000 0.000	0.960 0.120 0.000 0.000 0.000 0.000	4.205 0.526 0.000 0.000 0.000 0.000	0.096 0.001 0.000 0.000 0.000 0.000	0.42 0.00 0.00 0.00 0.00 0.00 0.00
CR3 LPCR1 0 0 0 0 0 0 0	2.160 0.270 0.000 0.000 0.000 0.000 0.000	9.461 1.183 0.000 0.000 0.000 0.000 0.000 0.000	0.216 0.003 0.000 0.000 0.000 0.000 0.000	0.946 0.012 0.000 0.000 0.000 0.000 0.000	0.960 0.120 0.000 0.000 0.000 0.000 0.000	4.205 0.526 0.000 0.000 0.000 0.000 0.000 0.000	0.096 0.001 0.000 0.000 0.000 0.000 0.000	0.42 0.00 0.00 0.00 0.00 0.00 0.00
CR3 LPCR1 0 0 0 0 0 0 0	2.160 0.270 0.000 0.000 0.000 0.000 0.000 0.000	9.461 1.183 0.000 0.000 0.000 0.000 0.000 0.000	0.216 0.003 0.000 0.000 0.000 0.000 0.000 0.000	0.946 0.012 0.000 0.000 0.000 0.000 0.000 0.000	0.960 0.120 0.000 0.000 0.000 0.000 0.000 0.000 0.000	4.205 0.526 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.096 0.001 0.000 0.000 0.000 0.000 0.000 0.000	0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CR3 LPCR1 0 0 0 0 0 0 0 0 0	2.160 0.270 0.000 0.000 0.000 0.000 0.000 0.000 0.000	9.461 1.183 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.216 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.946 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.960 0.120 0.000 0.000 0.000 0.000 0.000 0.000 0.000	4.205 0.526 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.096 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.63 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1c. Screening

		P	М	PM-10				
Screen	Únco	ntrolled	Con	trolled	Unco	ntrolled	Controlled	
ID Number	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TP
S1	15.000	65.700	1.500	6.570	5.220	22.864	0.522	2.28
S2	15.000	65.700	1.500	6.570	5.220	22.864	0.522	2.28
S3	25.000	109.500	2.500	10.950	8.700	38.106	0.870	3.8
LPVS1	1.250	5.475	0.013	0.055	0.435	1.905	0.004	0.0
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
TOTAL	56.250	246.375	5.513	24.145	19.575	85.739	1.918	8.40
				2		00.700	1.010	0.40
Crushing		PI	M			PM-10		
and	Uncor	ntrolled	Cont	rolled	Uncor	ntrolled	Cont	rolled
Screening	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TP
TOTAL	63,120	276.466	6.175	27.047	22.605	00.404	0.000	0.70
	03.120	210.400	0.1/5	27.047	22.695	99.404	2.220	9.72

_

source: AP42, Fifth Edition, Revised 08/2004 (lb/ton of material throughput)

PM	
Primary Crushing	0.002
Tertiary Crushing	0.0054
Screening	0.025

PM-10	
Primary Crushing	0.001
Tertiary Crushing	0.0024
Screening	0.0087

2. Emissions From TRANSFER POINTS

Transfer		PM	·		PM-10				
Point	Unco	ntrolled	Controlle	Controlled		trolled	Controlled		
ID No.	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	
ТРА	2.200	9.638	2.200	9.638	1.041	4.558	1.041	4.558	
TP1	2.200	9.638	0.220	0.964	1.041	4.558	0.104	0.456	
TP2	2.200	9.638	0.220	0.964	1.041	4.558	0.104	0.456	
P3	2.200	9.638	0.220	0.964	1.041	4.558	0.104	0.456	
P4	2.200	9.638	0.220	0.964	1.041	4.558	0.104	0.456	
P5	2.200	9.638	0.220	0.964	1.041	4.558	0.104	0.456	
P6	0.550	2.409	0.055	0.241	0.260	1.140	0.026	0.430	
P7	0.550	2.409	0.055	0.241	0.260	1.140	0.026	0.114	
P8	0.917	4.016	0.092	0.402	0.434	1.899	0.043	0.114	
P9	0.550	2.409	0.055	0.241	0.260	1.140	0.045	0.130	
P10	0.550	2.409	0.055	0.241	0.260	1.140	0.026	0.114	
P11	0.550	2.409	0.055	0.241	0.260	1.140	0.020	0.114	
P12	2.200	9.638	0.220	0.964	1.041	4.558	0.104		
P13	2.200	9.638	0.220	0.964	1.041	4.558	0.104	0.456	
P14	2.200	9.638	0.220	0.964	1.041	4.558	0.104	0.456	
P15	2.200	9.638	0.220	0.964	1.041	4.558		0.456	
P16	2.200	9.638	0.220	0.964	1.041	4.558	0.104	0.456	
P17	2.200	9.638	0.220						
P18	0.733	3.213		0.964	1.041	4.558	0.104	0.456	
P10 P19	0.733		0.073	0.321	0.347	1.519	0.035	0.152	
P20		3.213	0.073	0.321	0.347	1.519	0.035	0.152	
	0.733	3.213	0.073	0.321	0.347	1.519	0.035	0.152	
P21	1.467	6.425	0.147	0.643	0.694	3.039	0.069	0.304	
P22	0.733	3.213	0.073	0.321	0.347	1.519	0.035	0.152	
P23	0.733	3.213	0.073	0.321	0.347	1.519	0.035	0.152	
P24	0.733	3.213	0.073	0.321	0.347	1.519	0.035	0.152	
P25	0.733	3.213	0.073	0.321	0.347	1.519	0.035	0.152	
P26	0.733	3.213	0.073	0.321	0.347	1.519	0.035	0.152	
P27	3.667	16.063	0.367	1.606	1.735	7.597	0.173	0.760	
P28	3.667	16.063	0.367	1.606	1.735	7.597	0.173	0.760	
P29	1.467	6.425	0.147	0.643	0.694	3.039	0.069	0.304	
P30	1.100	4.819	0.110	0.482	0.520	2.279	0.052	0.228	
P31	0.733	3.213	0.073	0.321	0.347	1.519	0.035	0.152	
P32	0.733	3.213	0.073	0.321	0.347	1.519	0.035	0.152	
P33	1.467	6.425	0.147	0.643	0.694	3.039	0.069	0.304	
P34	1.467	6.425	0.147	0.643	0.694	3.039	0.069	0.304	
P35	1.467	6.425	0.147	0.643	0.694	3.039	0.069	0.304	
P36	1.100	4.819	0.110	0.482	0.520	2.279	0.052	0.228	
P37	0.733	3.213	0.073	0.321	0.347	1.519	0.035	0.152	
P38	1.834	8.031	0.183	0.803	0.867	3.799	0.087	0.380	
P39	1.834	8.031	0.183	0.803	0.867	3.799	0.087	0.380	
P40	0.484	2.120	0.097	0.424	0.229	1.002	0.046	0.200	
P41	0.484	2.120	0.097	0.424	0.229	1.002	0.046	0.200	
P42	0.484	2.120	0.097	0.424	0.229	1.002	0.046	0.200	
P43	0.484	2.120	0.097	0.424	0.229	1.002	0.046	0.200	
P44	0.484	2.120	0.048	0.212	0.229	1.002	0.023	0.100	
P45	0.484	2.120	0.048	0.212	0.229	1.002	0.023	0.100	
P46	0.484	2.120	0.005	0.021	0.229	1.002	0.002	0.010	
P47	0.484	2.120	0.005	0.021	0.229	1.002	0.002	0.010	
P48	0.484	2.120	0.005	0.021	0.229	1.002	0.002	0.010	
P49	0.484	2.120	0.005	0.021	0.229	1.002	0.002	0.010	
P50	0.484	2.120	0.005	0.021	0.229	1.002	0.002	0.010	
P51	0.484	2.120	0.097	0.424	0.229	1.002	0.046	0.200	

2. Emissions From TRANSFER POINTS (continued)

Point ID No. Uncontrolled ID/hr Controlled TPY Uncontrolled ID/hr Uncontrolled TPY Controlled ID/hr Controlled TPY TP52 2.200 2.409 2.200 2.409 1.041 1.140 1.041 1.140 TP53 2.200 9.638 2.200 9.638 1.041 4.558 TP54 0.484 2.120 0.484 2.120 0.229 1.002 1.227 1.227 1.227 1.227 1.227 1.227 1.227 <th></th> <th></th> <th>PM</th> <th></th> <th></th> <th>1</th> <th>PM-</th> <th>10</th> <th></th>			PM			1	PM-	10	
ID No. Ib/hr TPY Ib/hr	Point	Unco	ntrolled	Controlle	d	Lincon		olled	
TP52 2.200 2.409 2.200 9.638 1.041 1.140 1.041 1.140 TP53 2.200 9.638 1.041 4.558 1.041 4.558 TP54 0.484 2.120 0.484 2.120 0.229 1.002 0.229 1.002 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 TOTALS 69.369 296.606 13.338 51.190 32.809 140.287 6.308 24.212 Source: PP42, Fifth Edition, Revised 11/2006 13.2.4 Aggregate Handling and Storage Piles Emissions From Batch Drop E k*(0.0032)* [(U/5)^1.3]/[(M/2)^1.4] = pounds/ton Where: PM emitol 0.74 0.35 U = Mean Wind Speed (mph) M 0.74 0.35 M = Material Moisture Content (%)									
TP53 2.200 9.638 2.200 9.638 1.041 4.558 1.041 4.558 IP54 0.484 2.120 0.484 2.120 0.229 1.002 0.229 1.002 0 0.000 <th></th> <th></th> <th></th> <th>10/11</th> <th></th> <th></th> <th></th> <th>10/11</th> <th></th>				10/11				10/11	
TP54 0.484 2.120 0.484 2.120 0.229 1.002 0.229 1.002 0 0.000 $0.$		2.200	2.409	2.200	2.409	1.041	1.140	1.041	1.140
0 0.000 0.					9.638	1.041	4.558	1.041	4.558
TOTALS 69.369 296.606 13.338 51.190 32.809 140.287 6.308 24.212 Source: RP42, Fifth Edition, Revised 11/2006 33.2.809 140.287 6.308 24.212 Source: RP42, Fifth Edition, Revised 11/2006 13.338 51.190 32.809 140.287 6.308 24.212 Source: Revised 11/2006 Image: State of the state of					2.120	0.229	1.002	0.229	1.002
Source: NP42, Fifth Edition, Revised 11/2006 3.2.4 Aggregate Handling and Storage Piles Emissions From Batch Drop $\xi = k^*(0.0032)^*[(U/5)^*1.3]/[(M/2)^*1.4] = pounds/ton Vhere: PM PM PM-10 k = Particle Size Multiplier (dimensionless) U = Mean Wind Speed (mph) M = Material Moisture Content (%) xssumptions: $	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AP42, Fifth Edition, Revised 11/2006 I3.2.4 Aggregate Handling and Storage Piles Emissions From Batch Drop $E = k^*(0.0032) * [(U/5)^1.3]/[(M/2)^1.4] = pounds/ton Where: PM PM-10 k = Particle Size Multiplier (dimensionless) U = Mean Wind Speed (mph) M = Material Moisture Content (%) Assumptions: $	TOTALS	69.369	296.606	13.338	51.190	32.809	140.287	6.308	24.212
Where:PMPM-10 $k =$ Particle Size Multiplier (dimensionless) 0.74 0.35 $U =$ Mean Wind Speed (mph) 0.74 0.35 $W =$ Material Moisture Content (%)Assumptions: Assumptions:Assumptions:Assumptions:Assumptions:Colspan=Assumptions:Colspan=Assumptions:Colspan=Assumptions:Colspan=Colspan=Assumptions:Colspan=Colspan=Assumptions:Colspan=Assumptions:Colspan=Assumptions:Colspan=Assumptions:Colspan=Colspan=Assumptions:Colspan=Colspan=Colspan=Colspan=Colspan=Colspan=Colspan=Colspan="2">Colspan=Colspan=Colspan=Colspan=Colspan=Colspan=Colspan=Colspan=Colspan=	AP42, Fifth 13.2.4 Ag	gregate Har	ndling and Sto						
k = Particle Size Multiplier (dimensionless) 0.74 0.35 U = Mean Wind Speed (mph) 0.35 M = Material Moisture Content (%) Assumptions: - - Particle size multiplier or PM (< or equal to 30um))32) * [(U/5))^1.3]/[(M/2)^1	.4] = pound	ls/ton			DU 40	
U = Mean Wind Speed (mph) M = Material Moisture Content (%) Assumptions:		Darticle Si	ize Multiplier /	dimonoionlos	>>				
M = Material Moisture Content (%) Assumptions: Assumptions: Cor PM (< or equal to 30um) k = 0.74 For PM-10 (< or equal to 10um) k = 0.35 Emission Factor For PM E= \$I\$88*(0.0032)*((((Inputs!\$I\$72)/5)^1.3)/(((Inputs!G78+0.000000001)/2)^1 For PM E= \$J\$88*(0.0032)*((((Inputs!\$I\$72)/5)^1.3)/(((Inputs!G78+0.000000001)/2)^1 For PM-10 E= \$J\$88*(0.0032)*((((Inputs!\$I\$72)/5)^1.3)/(((Inputs!G78+0.000000001)/2)^1 For PM-10 E= \$J\$88*(0.0032)*((((Inputs!\$I\$72)/5)^1.3)/(((Inputs!G78+0.000000001)/2)^1 For Ib/hr [Ib/ton]*[ton/hr] = [Ib/hr]					5)		0.74	0.35	
Assumptions: C - Particle size multiplier For PM (< or equal to 30um) k = 0.74 For PM-10 (< or equal to 10um) k = 0.35 Emission Factor For PM E= \$I\$88*(0.0032)*((((Inputs!\$I\$72)/5)^1.3)/(((Inputs!G78+0.000000001)/2)^1 Elb/ton For PM-10 E= \$J\$88*(0.0032)*((((Inputs!\$I\$72)/5)^1.3)/(((Inputs!G78+0.000000001)/2)^1 Elb/ton For Ib/hr [Ib/ton]*[ton/hr] = [Ib/hr]									
For PM E= \$I\$88*(0.0032)*((((Inputs!\$I\$72)/5)^1.3)/(((Inputs!G78+0.000000001)/2)^1 =Ib/ton E= \$J\$88*(0.0032)*((((Inputs!\$I\$72)/5)^1.3)/(((Inputs!G78+0.000000001)/2)^1 For PM-10 E= \$J\$88*(0.0032)*((((Inputs!\$I\$72)/5)^1.3)/(((Inputs!G78+0.000000001)/2)^1 =Ib/ton E= \$J\$88*(0.0032)*((((Inputs!\$I\$72)/5)^1.3)/(((Inputs!G78+0.000000001)/2)^1 For Ib/hr [Ib/ton]*[ton/hr] = [Ib/hr]	For PM-10	(< or equal							
<pre>=lb/ton =lb/hr [lb/ton]*[ton/hr] = [lb/hr]</pre>	or PM	Factor	E= \$	i\$88*(0.0032)	*((((Inputs!\$I	\$72)/5)^1.3)	/(((Inputs!G7	78+0.000000	0001)/2)^1.4
			E= \$	J\$88*(0.0032))*((((Inputs!\$	I\$ 72)/5)^1.3)/(((Inputs!G	78+0.00000	0001)/2)^1.·
For Tons/year [lb/ton]*[ton/yr]*[ton/2000]b] = [ton/yr]	For Ib/hr		[lb/ton]*[ton/h	r] = [lb/hr]					
	or Tons/y	/ear	[lb/ton]*[ton/y	r]*[ton/2000lb]] = [ton/yr]				

3. Emissions From WIND EROSION OF STOCKPILES

Stockpile		PN	Л		PM-10				
ID No.	Uncor	ntrolled	Controlled		Uncor	ntrolled	Controlled		
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	
OS-A	0.043	0.189	0.043	0.189	0.020	0.089	0.020	0.089	
OS-B, C,	0.043	0.189	0.043	0.189	0.020	0.089	0.020	0.089	
OS-E	0.057	0.252	0.057	0.252	0.027	0.118	0.027	0.118	
OS-F, G	0.029	0.126	0.029	0.126	0.014	0.059	0.014	0.059	
OS-H	0.144	0.630	0.144	0.630	0.068	0.296	0.068	0.296	
OS-I, J	0.029	0.126	0.029	0.126	0.014	0.059	0.014	0.059	
OS-K	1.505	6.591	1.505	6.591	0.707	3.098	0.707	3.098	
OS-L	0.446	1.953	0.446	1.953	0.210	0.918	0.210	0.918	
OS-M	0.279	1.220	0.279	1.220	0.131	0.574	0.131	0.574	
OS-N	0.836	3.661	0.836	3.661	0.393	1.721	0.393	1.721	
OS-O	0.613	2.685	0.613	2.685	0.288	1.262	0.288	1.262	
OS-P, Q	1.142	5.004	1.142	5.004	0.537	2.352	0.537	2.352	
TOTALS	5.166	22.625	5.166	22.625	2.428	10.634	2.428	10.634	

Source: Air Pollution Engineering Manual

Storage Pile Wind Erosion (Active Storage)

E = 1.7*[s/1.5]*[(365-p)/235]*[f/15] = (lb/day/acre)

Where:

s =	silt content of material
p=	number of days with >0.01 inch of precipitation per year
f =	percentage of time that the unobstructed wind speed
	exceeds 12 mph at the mean pile height

Emission Factors For PM

For PM	E=(1.7)*((Inputs!F147)/1.5)*((365-Inputs!I139)/235)*((Inputs!I140)/15)
For PM-10	E=0.47*(1.7)*((Inputs!F147)/1.5)*((365-Inputs!I139)/235)*((Inputs!I140)/15)
For lb/hr	[lb/day/acre]*[day/24hr]*[base area of pile (acres)] = lb/hr
For Ton/yr	[lb/day/acre]*[365day/yr]*[Ton/2000lb]*[base area of pile (acres)] = Ton/yr

4. Emissions From UNPAVED HAULROADS

Item		P	M			PM-	10	
No.	Uncor	ntrolled	Contr	olled	Uncon	trolled	Cont	rolled
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	67.02	202.54	20.44	00.00	40.70	00.04		
		293.54	20.11	88.06	19.78	86.64	5.93	25.99
2	108.12	203.27	32.44	60.98	31.91	60.00	9.57	18.00
3	16.85	73.81	5.06	22.14	4.97	21.79	1.49	6.54
4	433.58	1874.11	130.08	562.23	127.98	553.16	38.39	165.95
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OTALS	625.58	2444.73	187.67	733.42	184.65	721.59	55.39	216.48

Source: AP42, Fifth Edition, Revised 11/2006

13.2.2 Unpaved Roads

Emission Estimate For Unpaved Haulroads at Industrial Sites (equation 1)

E= k*((s/12)^a)*((W/3)^b) =lb/vmt

Where:

		PM	PM-10
k =	particle size multiplier	4.90	1.50
a =	empirical constant	0.7	0.9
b =	empirical constant	0.45	0.45

Emission Factors					
For PM	E=	((\$I\$35)*(((Inputs!\$I\$163)/12)^(\$I\$36))*(((Inputs!H171)/3)^\$I\$37))			
For PM-10	E=	((\$J\$35)*(((Inputs!\$I\$163)/12)^(\$J\$36))*(((Inputs!H171)/3)^\$J\$37))			
For lb/hr	(lb/vmt)*(ı	miles per trip)*(Max trips per hour)			
For Ton/yr	(lb/vmt)*(r	(lb/vmt)*(miles per trip)*(Max trips per year)*(1/2000)			

5. Emissions From INDUSTRIAL PAVED HAULROADS

Item		PI	M			PM	-10	
No.	Uncont	rolled	Contr	rolled	Uncont	trolled	Contr	rolled
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OTALS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Source:

AP42, Fifth Edition, Revised 11/2006 13.2.1 PAVED ROADS

Emission Estimate For Paved Haulroads

E = [k * (sL/2)^0.65 * (W/3)^1.5 - C] * (1 - (P/4*N) = lb / Vehicle Mile Traveled (VMT)

Where:

where.				PM	PM-10
k =	particle siz	e multiplier		0.082	0.016
sL =		ce silt loadin	g, (g/ft^2)	70	
P =			ar with precipitation >0.01 inch	157	
N =	number of	days in ave	raging period	365	
C=	factor for e	xhaust, brai	ke wear and tire wear	0.00047	0.00047
Emission For PM For PM- For Ib/hr For Ton/y	10		(\$I\$34*(((\$I\$35)/2)^0.65)*(((Inputs!0 (\$J\$34)*(((\$I\$35)/2)^0.65)*(((Inputs niles per trip)*(Max trips per hour) niles per trip)*(Max trips per year)*(1/2	!G190)/3)^1.	

ATTACHMENT J

CLASS I LEGAL ADVERTISEMENT

.

ATTACHMENT J

AIR QUALITY PERMIT NOTICE

Notice of Application

Notice is given that Appalachian Aggregates, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality for a Modification to General Permit Registration G40-C051A for Mill Point Quarry to install a new grizzly feeder and hopper. The facility is located off of WV-55 E near Hillsboro in Pocahontas County, West Virginia. The latitude and longitude coordinates are: 38.162674, -80.180870.

The applicant re-calculated facility emissions and estimate the new potential to emit will be: PM of 834.27 tons per year (tpy); PM10 of 261.87 tpy; NOx or 49.27 tpy; CO of 11.01 tpy; and VOC of 0.96 tpy.

The new grizzly feeder and hopper are anticipated to be installed on the 11th day of January, 2017. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304 for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the (Insert Date) day of December, 2016.

By: Appalachian Aggregates, LLC John Wilkinson Vice President 21071 Midland Trail Lewisburg, West Virginia 24901

ATTACHMENT K

ELECTRONIC SUBMITTAL

ATTACHMENT L

GENERAL PERMIT REGISTRATION APPLICATION FEE

General Permit Levels Construction, Modification, Relocation, Administrative Update

Stations), G35-A (Natural Gas Compressor Stations with Flares/Glycol Dehydration Units), G40-C (Nonmetallic Minerals Class II General Permits - G10-D (Coal Preparation and Handling), G20-B (Hot Mix Asphalt), G30-D (Natural Gas Compressor Processing), G50-B (Concrete Batch Plant), G60-C (Emergency Generators)

Class I General Permit - G33-A (Spark Ignition Internal Combustion Engines 25 HP-500 HP), G65-C (Emergency Generators)

General Permit	Public Notice	Review Period	Review Period Application Fee	Criteria	Application Type
		as per 45CSR13			4
Class II General Permit	30 days	45 days	\$500 + applicable	6 lb/hr and 10 tpy of any regulated air pollutant	Registration Application
(Construction)	(applicant)		NSPS fees	OR 144 lb/day of any regulated air pollutant, OR)
				2 lb/hr of any hazardous air pollutant OR 5 tpy of	
				aggregated HAP OR 45CSR27 TAP (10%)	
				increase if above BAT triggers or increase to	
				BAT triggers) or subject to applicable standard or	
				rule, but subject to specific eligibility	
			Î	requirements	
Class II General Permit	30 days	45 days	\$500 + applicable	Same as Class II General Permit (Construction)	Registration Application
(Modification)	(applicant		NSPS fees	but subject to specific eligibility requirements	warmand de a service a company
Administrative Update	None	60 days	None	Decrease in emissions or permanent removal of	Registration Application
(Class I)				equipment OR more stringent requirements or	or Written Request
				change in MRR that is equivalent or superior	
Administrative Update	30 days	60 days	\$300 + applicable	No change in emissions or an increase less than	Registration Application
(Class II)	(applicant)		NSPS fees	Class II Modification levels)
Relocation	30 days	45 days	\$500 + applicable	No emissions increase or change in facility Registration Application	Registration Application
	(applicant)		NSPS fees	design or equipment	1
Class I General Permit	None	45 days	\$250	Same as Class II General Permit (Construction) Registration Application	Registration Application
				but subject to specific eligibility requirements	

ATTACHMENT O

EMISSIONS SUMMARY SHEETS

G40-C Nonmetallic Mineral Processing Plants

8
of
0

	EM	EMISSION SU	SUMMA	RY SHEI	MMARY SHEET FOR CRITERIA POLLUTANTS	RITERL	A POLLU	JTANTS		
1							Registratic	Registration Number (Agency Use) G40-C	tey Use) G40-C	
		Potenti	Potential Emissions (lbs/hr)	(lbs/hr)			Potent	Potential Emissions (tons/yr)	(tons/yr)	
	NO _X	C0	VOC	SO_2	PM_{10}	NOX	CO	VOC	SO ₂	PM_{10}
					6.31					24.21
-					0.30					1.32
					1.92					8.40
					2.43					10.63
					55.39					216.48
	37.90	8.47	0.74	NA	1.21	49.27	11.01	96.0	NA	1.57
	37.90	8.47	0.74		67.56	49.27	11.01	0.96		262.61

	Processing Plants	
	PI	
	ing	
	cess	
	roc	
	al F	
	Mineral F	
	Vonmetallic I	
7)	leta	
ġ		
G40-I	ž	

2
0
4
0
2
\circ

EMISSION SUMMARY SHEET FOR HAZARDOUS/TOXIC POLLUTANTS	Registration Number (Agency Use) G40-C	Potential Emissions (tons/yr)	Formalde- hyde								
			n- Hexane								
			Xylenes								
			Toluene								
			Ethyl- benzene								
			Benzene								
		Potential Emissions (lbs/hr)	Formalde- hyde								
			n- Hexane								
			Xylenes								
			Toluene								
			Ethyl- benzene								
			Benzene								
			Source ID No.								