625 Liberty Ave, Suite 1700 Pittsburgh PA t5222 www.eqt.com

TEL: (412) 395-3699 FAX: (412) 395-2156

Alex Bosiljevac Environmental Coordinator

April 26, 2016

CERTIFIED MAIL # 7015 1660 0000 9399 6086

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

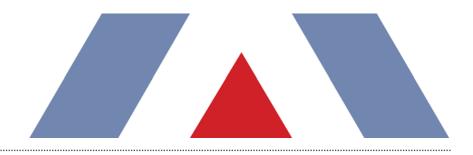
RE: R13 Permit Application

EQT Production Company

OXF-149/150 Natural Gas Production Site

Facility ID No. 017-00040

Dear Mr. Durham,


Enclosed are two electronic copies and one original hard copy of a proposed application for an R13 Air Permit for the OXF-149/150 Natural Gas Production Well Site. The site currently operates under a G70-A General Air Permit (G70-A013A). Please note that this application satisfies a requirement in Consent Order CO-R13-E-2016-04, in which EQT Production Company is required to submit an application with the equipment specified in the consent order. A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely,

Alex Bosiljevad EQT Corporation

Enclosures

PROJECT REPORT

EQT Production OXF 149-150 Wellpad

R-13 Permit Application

TRINITY CONSULTANTS 4500 Brooktree Drive Suite 103 Wexford, PA 15090 (724) 935-2611

April 2016

Environmental solutions delivered uncommonly well

TABLE OF CONTENTS

1. INTRODUCTION	3
1.1. Facility and Project Description	3
1.2. Source Status	3
1.3. R-13 application Organization	4
2. SAMPLE EMISSION SOURCE CALCULATIONS	5
3. R-13 APPLICATION FORMS	6
ATTACHMENT A: BUSINESS CERTIFICATE	
ATTACHMENT B: MAP	
ATTACHMENT C: INSTALLATION AND START UP SCHEDULE	
ATTACHMENT D: REGULATORY DISCUSSION	
ATTACHMENT E: PLOT PLAN	
ATTACHMENT F: DETAILED PROCESS FLOW DIAGRAM	
ATTACHMENT G: PROCESS DESCRIPTION	
ATTACHMENT I: EMISSION UNITS TABLE	
ATTACHMENT J: EMISSION POINTS DATA SUMMARY SHEET	
ATTACHMENT K: FUGITIVE EMISSIONS DATA SUMMARY SHEET	
ATTACHMENT L: EMISSIONS UNIT DATA SHEETS	
ATTACHMENT M: AIR POLLUTION CONTROL DEVICES	
ATTACHMENT N: SUPPORTING EMISSION CALCULATIONS	
ATTACHMENT O: MONITORING/RECORDKEEPING/REPORTING/TESTING PLANS	
ATTACHMENT P: LEGAL AD	

EQT Production Company (EQT) is submitting this construction permit application (R-13) to the West Virginia Department of Environmental Protection (WVDEP) for the construction and operation of new equipment at existing natural gas production well pads, OXF 149 and OXF-150, located in Doddridge County, West Virginia. The wellpads are currently permitted under General Permit G70-A031A.

1.1. FACILITY AND PROJECT DESCRIPTION

The OXF-149 and OXF-150 wellpads are existing natural gas production facilities. Natural gas and liquids (including water and condensate) are extracted from deposits underneath the surface. Natural gas is transported from the wells to a gas line for additional processing and compression, as necessary. The liquids produced are stored in storage vessels:

The OXF-149 and OXF 150 pads currently consist of the following equipment

- > Twelve (12) 400 barrel (bbl) storage tanks for condensate/water(produced fluids) controlled by two(2) combustors, each rated at 11.66 MMBtu/hr;
- > One (1) line heater, rated at 0.77 MMbtu/hr heat input;
- > Nine (9) line heaters, each rated at 1.54 MMbtu/hr heat input;
- > Four (4) thermoelectric generators (TEGs), each rated at 0.013 MMBtu/hr heat input;
- > Two (2) 140 bbl storage tanks for sand and produced fluids from the sand separator (vapors from these tanks may be controlled by combustors but are not represented as controlled in this application);
- > Produced fluid truck loading; and
- > Associated piping and components.

As part of this application, EQT seeks to permit the following equipment at the OXF-149 and OXF-150 pad:

> Two (2) new combustors rated at 11.66 MMbtu/hr each.

Additionally, EQT requests that the department consolidate all existing equipment and their requirements under the current G70-A137A permit in the proposed R-13 permit. The facility will not qualify for the current issued G-70B permit due to the total combustor size that exceed the G70-B permit requirements.

A process flow diagram is included as Attachment F.

1.2. SOURCE STATUS

WVDEP must make stationary source determinations on a case-by-case basis using the guidance under the Clean Air Act (CAA) and EPA's and WVDEP's implementing regulations. The definition of stationary source in 40 CFR 51.166(b) includes the following:

"(6) Building, structure, facility, or installation means all of the pollutant emitting activities which belong to the same industrial grouping, are located on or more contiguous or adjacent properties, and are under control of the same person (or persons under common control)."

OXF 149 and 150 are separate wellpads that are functionally independent of each other. The pads are separated by approximately 0.5 miles and the production of each wellpad is independent of the other. WVDEP had previously determined that the OXF149 and OXF 150 wellpad should be aggregated as a single stationary source since both sites share a common loading battery area. Although the loading battery storage tanks have been removed, both wellpads will continue to be considered a single stationary source with respect to permitting programs, including Title V and Prevention of Significant Deterioration (PSD). As discussed in this application, the facility is a minor source of air emissions with respect to New Source Review (NSR) and Title V Permitting.

1.3. R-13 APPLICATION ORGANIZATION

This West Virginia Code of State Regulations, Title 45 (CSR) Series 13 (45 CSR 13) R-13 permit application is organized as follows:

- > Section 2: Sample Emission Source Calculations;
- > Section 3: R-13 and Permission to Commence Construction Application Forms;
- > Attachment A: Business Certificate;
- > Attachment B: Map;
- > Attachment C: Installation and Start Up Schedule;
- > Attachment D: Regulatory Discussion;
- > Attachment E: Plot Plan;
- > Attachment F: Detailed Process Flow Diagram;
- > Attachment G: Process Description;
- > Attachment I: Emission Units Table;
- > Attachment J: Emission Points Data Summary Sheet;
- > Attachment K: Fugitive Emissions Data Summary Sheet;
- > Attachment L: Emissions Unit Data Sheets;
- > Attachment M: Air Pollution Control Device Sheets:
- > Attachment N: Supporting Emission Calculations;
- > Attachment 0: Monitoring/Recordkeeping/Reporting/Testing Plans
- > Attachment P: Legal Ad

The characteristics of air emissions from the natural gas production operations, along with the methodology for calculating emissions, are briefly described in this section of the application. Detailed emission calculations are presented in Attachment N of this application.

Emissions from this project will result from natural gas combustion in the line heaters, combustors and TEGs, as well as storage of organic liquids in storage tanks and loading of organic liquids into tank trucks. In addition, fugitive emissions will result from component leaks from the operation of the station. The methods by which emissions from each of these source types, as well as the existing source types, are calculated are summarized below.

- > Line Heaters, Enclosed Combustors and TEGs: Potential emissions of criteria pollutants and hazardous air pollutants (HAPs) are calculated using U.S. EPA's AP-42 factors for natural gas external combustion. These calculations assume a site-specific heat content of natural gas. Greenhouse gas emissions are calculated according to 40 CFR 98 Subpart C.2
- > **Fugitive Equipment Leaks:** Emissions of VOC and HAPs from leaking equipment components have been estimated using facility estimated component counts and types along with emission factors from the *Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017, November 1995.* Emission factors used are based on average measured TOC from component types indicated. Greenhouse gas emissions from component leaks are calculated according to the procedures in 40 CFR 98 Subpart W.³ Pneumatic devices at the wellpads are intermittent bleed and are assumed to be in operation 1/3 of the year.
- > **Storage Tanks:** Working, breathing and flashing emissions of VOC and HAPs from the storage tanks at the facility are calculated using Bryan Research & Engineering ProMax® Software. Controlled calculations assume an overall control efficiency (capture and destruction) of 98%. The throughput for the produced fluids tanks are based on the maximum annualized monthly condensate and produced water at the OXF 149-150 well pad (i.e., the maximum monthly throughput for the pad times 12), and includes a safety factor of 1.3. The composition for the analysis was from a sample taken at OXF-150. Emissions of VOC and HAPs from the sand separator tank are calculated using E&P TANK v2.0. The produced fluids throughput is calculated as follows:

$$Throughput \ \left(\frac{bbl}{day}\right) = \left(Condensate \ Throughput \ \left(\frac{bbl}{month}\right) + \left(Produced \ Water \ Throughput \ \left(\frac{bbl}{month}\right)\right)\right) * \frac{12\left(\frac{months}{year}\right)}{365\left(\frac{days}{year}\right)} \times 1.3$$

- > Tank Truck Loading: Uncontrolled emissions of VOC and HAPs from the loading of organic liquids from storage tanks to tank truck are calculated using Bryan Research Engineering ProMax® Software. Truck loading is controlled by the enclosed combustors. U.S. EPA's AP-42 Chapter 5 Section 2 factors were used for capture efficiency.⁴
- > **Haul Roads:** Fugitive dust emitted from facility roadways has been estimated using projected vehicle miles traveled along with U.S. EPA's AP-42 factors for unpaved haul roads.⁵

¹U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 1.4, Natural Gas Combustion, Supplement D, July 1998.

² 40 CFR 98 Subpart C, *General Stationary Fuel combustion Sources*, Tables C-1 and C-2.

³ 40 CFR 98 Subpart W, Petroleum and Natural Gas Systems, Section 98.233(r), Population Count and Emission Factors.

⁴ U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 5.2, Transportation And Marketing Of Petroleum Liquids, June 2008.

⁵ U.S. EPA, AP 42, Fifth Edition, Volume I, Section 13.2.2, Unpaved Roads, November 2006.

The WVDEP permit application forms contained in this application include all applicable R-13 application forms including the required attachments.

DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57th Street, SE Charleston, WV 25304 (304) 926-0475 www.dep.wv.gov/dag	,	APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)					
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNO	OWN): PLEASE CHECK	PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY):					
☐ CONSTRUCTION ☐ MODIFICATION ☐ RELOCATION		ATIVE AMENDMENT					
☐ CLASS I ADMINISTRATIVE UPDATE ☐ TEMPORARY		T MODIFICATION OVE IS CHECKED, INCLUDE TITLE V REVISION					
☐ CLASS II ADMINISTRATIVE UPDATE ☐ AFTER-THE-FA		AS ATTACHMENT S TO THIS APPLICATION					
FOR TITLE V FACILITIES ONLY: Please refer to "Title V (Appendix A, "Title V Permit Revision Flowchart") and a							
Sec	tion I. General						
Name of applicant (as registered with the WV Secretar EQT Production Company	y of State's Office):	2. Federal Employer ID No. <i>(FEIN):</i> 25-0724685					
3. Name of facility (if different from above):		4. The applicant is the:					
OXF 149-150 Wellpad		☐ OWNER ☐ OPERATOR ☒ BOTH					
5A. Applicant's mailing address: 625 Liberty Avenue, Suite 1700 Pittsburgh, PA 15222	5B. Facility's pres Co Rte 11/4 West Union	sent physical address:					
West Virginia Business Registration. Is the applicant If YES, provide a copy of the Certificate of Incorpora change amendments or other Business Registration C If NO, provide a copy of the Certificate of Authority/A amendments or other Business Certificate as Attachn	ation/Organization/Lim Certificate as Attachme Authority of L.L.C./Reg	lited Partnership (one page) including any name nt A.					
7. If applicant is a subsidiary corporation, please provide t	he name of parent corp	oration: EQT Corporation					
8. Does the applicant own, lease, have an option to buy or	r otherwise have contro	of the proposed site? 🛛 YES 🔲 NO					
- If YES , please explain: Applicant owns the site							
 If NO, you are not eligible for a permit for this source. 							
9. Type of plant or facility (stationary source) to be const administratively updated or temporarily permitted crusher, etc.): Natural Gas Production Wellsite							
11A. DAQ Plant ID No. (for existing facilities only): 017-00040		SR13 and 45CSR30 (Title V) permit numbers s process (for existing facilities only):					

12A.

- For Modifications, Administrative Updates or Temporary permits at an existing facility, please provide directions to the
 present location of the facility from the nearest state road;
- For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state
 road. Include a MAP as Attachment B.

OXF-149:

From Charleston take 1-77 north to exit 176. Go east on US Route 50 approximately 40.6 miles. Take a right on Arnolds Creek Road (Co. Rt. 11). Go approximately 0.7 miles and turn left on Punkin Center Road (Co. Rt. 11/4) (Note that Google maps calls this "Left Fork Run Rd" but signage says "Punkin Center Road"). Continue for approximately 3.3 miles (road turns to dirt after 3.1 miles) and veer left to an access gate. After going through gate go 0.4 miles on the access road. At that point the road turns hard to the left with a split going up a steep hill on the right. Take the steep hill and go approximately 0.3 miles to the well pad.

OXF-150:

information as Attachment D.

From Charleston take 1-77 north to exit 176. Go east on US Route 50 approximately 40.6 miles. Take a right on Arnolds Creek Road (Co. Rt. 11). Go approximately 0.7 miles and turn left on Punkin Center Road (Co. Rt. 11/4) (Note google maps calls this "Left Fork Run Rd" but signage says "Punkin Center Road"). Continue for approximately 3.3 miles (road turns to dirt after 3.1 miles) and veer left to an access gate. After going through gate go 0.5 miles and cross a stream on the access road. After crossing the stream continue approximately 1.1 miles to the well pad.

miles to the well pad.		
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:
	West Union	Doddridge
12.E. UTM Northing (KM):	12F. UTM Easting (KM):	12G. UTM Zone: 17
OXF-149:	OXF-149:	
Northing (KM): 4,341.348	Easting (KM): 517.205	
OXF-150:	OXF-150:	
Northing (KM): 4,341.558	Easting (KM): 518.021	
13. Briefly describe the proposed change(s) at	the facility:	
 EQT is proposing to install two (2) additional end 14A. Provide the date of anticipated installation If this is an After-The-Fact permit application change did happen: 	or change: Upon permit issuance	14B. Date of anticipated Start-Up if a permit is granted:
14C. Provide a Schedule of the planned Install application as Attachment C (if more than	-	of the units proposed in this permit
15. Provide maximum projected Operating Sch Hours Per Day 24 Days Per W	•	application:
16. Is demolition or physical renovation at an ex	xisting facility involved?	NO
17. Risk Management Plans. If this facility is s	ubject to 112(r) of the 1990 CAAA, or will I	become subject due to proposed
changes (for applicability help see www.epa.	gov/ceppo), submit your Risk Manageme	nt Plan (RMP) to U. S. EPA Region III.
18. Regulatory Discussion. List all Federal an	d State air pollution control regulations tha	at you believe are applicable to the
proposed process (if known). A list of possible	e applicable requirements is also included	in Attachment S of this application
(Title V Demait Devision Information) Discussion	P 1994 1 1 1 4 4	() () () () () () ()

(Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance (if known). Provide this

	Section II. Additional attachm	ents and	supporting documents.							
19.	19. Include a check payable to WVDEP – Division of Air Quality	with the app	ropriate application fee (per 45CSR22 and							
4	45CSR13).									
20.	20. Include a Table of Contents as the first page of your application package.									
21.	21. Provide a Plot Plan , e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as Attachment E (Refer to Plot Plan Guidance).									
- I	 Indicate the location of the nearest occupied structure (e.g. c 	hurch, schoo	ol, business, residence).							
22.	 Provide a Detailed Process Flow Diagram(s) showing each device as Attachment F. 	ch proposed	or modified emissions unit, emission point and control							
23.	23. Provide a Process Description as Attachment G.									
	 Also describe and quantify to the extent possible all chan 	ges made to	the facility since the last permit review (if applicable).							
AII	All of the required forms and additional information can be found or	under the Per	mitting Section of DAQ's website, or requested by phone.							
24.	24. Provide Material Safety Data Sheets (MSDS) for all mater	ials processe	ed, used or produced as Attachment H.							
- I	 For chemical processes, provide a MSDS for each compound 	d emitted to	the air.							
25.	25. Fill out the Emission Units Table and provide it as Attach	ment I.								
26.	26. Fill out the Emission Points Data Summary Sheet (Table	1 and Table	e 2) and provide it as Attachment J.							
27.	27. Fill out the Fugitive Emissions Data Summary Sheet and	provide it as	Attachment K.							
28.	28. Check all applicable Emissions Unit Data Sheets listed be	elow:								
⊠ı	□ Bulk Liquid Transfer Operations □ Haul Road Emis	sions	☐ Quarry							
	☐ Chemical Processes ☐ Hot Mix Asphalt	Plant	Solid Materials Sizing, Handling and Storage							
	☐ Concrete Batch Plant ☐ Incinerator		Facilities							
	☐ Grey Iron and Steel Foundry ☐ Indirect Heat Ex	changer	Storage Tanks ■ Contact Tanks □ Contact Tanks □							
\boxtimes	☐ General Emission Unit, specify: Thermoelectric Generator									
Fill	Fill out and provide the Emissions Unit Data Sheet(s) as Attac	hment L.								
29.	29. Check all applicable Air Pollution Control Device Sheets	listed below:								
	☐ Absorption Systems ☐ Baghouse		☐ Flare							
	☐ Adsorption Systems ☐ Condenser		☐ Mechanical Collector							
	Afterburner Electrostation	c Precipitato	r ☐ Wet Collecting System							
	Other Collectors, specify Enclosed Combustors									
Fill	Fill out and provide the Air Pollution Control Device Sheet(s)	as Attachm	ent M.							
30.	 Provide all Supporting Emissions Calculations as Attach Items 28 through 31. 	nment N, or	attach the calculations directly to the forms listed in							
31.	 Monitoring, Recordkeeping, Reporting and Testing Plant testing plans in order to demonstrate compliance with the papplication. Provide this information as Attachment O. 									
A	Please be aware that all permits must be practically enforce measures. Additionally, the DAQ may not be able to accep are proposed by the applicant, DAQ will develop such plans	t all measure	es proposed by the applicant. If none of these plans							
32.	32. Public Notice. At the time that the application is submitted	d, place a Cl	ass I Legal Advertisement in a newspaper of general							
	circulation in the area where the source is or will be located	(See 45CSF	R§13-8.3 through 45CSR§13-8.5 and Example Legal							
	Advertisement for details). Please submit the Affidavit of	Publication	as Attachment P immediately upon receipt.							
33.	33. Business Confidentiality Claims. Does this application in	clude confid	ential information (per 45CSR31)?							
	☐ YES ⊠ NO									
A	If YES , identify each segment of information on each page segment claimed confidential, including the criteria under 4.	5CSR§31-4.	1, and in accordance with the DAQ's "Precautionary							

Section III. Certification of Information

34. Authority/Delegation of Authority. Only required when someone other than the responsible official signs the application. Check applicable Authority Form below:									
☐ Authority of Corporation or Other Business	☐ Authority of Par	rtnership							
Authority of Governmental Agency	☐ Authority of Lim	•	ership						
Submit completed and signed Authority Form as Attachment R.									
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.									
35A. Certification of Information. To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.									
Certification of Truth, Accuracy, and Comp	leteness								
I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.									
Compliance Certification Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements SIGNATURE DATE: (Please use blue ink) 35B. Printed name of signee: Kenneth Kirk 35C. Title: Executive Vice President									
35D. E-mail: kkirk@eqt.com	36E. Phone:		36F. FAX:						
36A. Printed name of contact person (if differe	nt from above): Alex Bo	siljevac	36B. Title: Environmental Coordinator						
36C, E-mail: abosiljevac@eqt.com	36D. Phone: 412-395-	3699	36E FAX:	412-395-3699					
PLEASE CHECK ALL APPLICABLE ATTACHMEN	ITS INCLUDED WITH THIS	PERMIT APPLICATION	ON:						
☑ Attachment A: Business Certificate ☑ Attachment K: Fugitive Emissions Data Summary Sheet ☑ Attachment B: Map(s) ☑ Attachment L: Emissions Unit Data Sheet(s) ☑ Attachment C: Installation and Start Up Schedule ☑ Attachment M: Air Pollution Control Device Sheet(s) ☑ Attachment D: Regulatory Discussion ☑ Attachment N: Supporting Emissions Calculations ☑ Attachment E: Plot Plan ☑ Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans ☑ Attachment F: Detailed Process Flow Diagram(s) ☑ Attachment P: Public Notice ☑ Attachment G: Process Description ☐ Attachment Q: Business Conflidential Claims ☑ Attachment H: Material Safety Data Sheets (MSDS) ☐ Attachment R: Authority Forms ☑ Attachment S: Title V Permit Revision Information ☑ Attachment S: Title V Permit Revision Information ☑ Attachment J: Emission Points Data Summary Sheet ☑ Application Fee									
Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section, at the									

FOR AGENCY USE ONLY – IF THIS IS A TITLE V SOURCE:
☐ Forward 1 copy of the application to the Title V Permitting Group and:
☐ For Title V Administrative Amendments:
☐ NSR permit writer should notify Title V permit writer of draft permit,
☐ For Title V Minor Modifications:
☐ Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,
☐ NSR permit writer should notify Title V permit writer of draft permit.
☐ For Title V Significant Modifications processed in parallel with NSR Permit revision:
☐ NSR permit writer should notify a Title V permit writer of draft permit,
☐ Public notice should reference both 45CSR13 and Title V permits,
☐ EPA has 45 day review period of a draft permit.
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

ATTACHMENT A

Business Certificate

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: EQT PRODUCTION COMPANY 625 LIBERTY AVE 1700 PITTSBURGH, PA 15222-3114

BUSINESS REGISTRATION ACCOUNT NUMBER:

1022-8081

This certificate is issued on:

08/4/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.3 L0553297664

ATTACHMENT B

Map

ATTACHMENT B

Figure 1 - Map of OXF-149 and OXF-150 Locations

OXF-149

UTM Northing (KM): 4,341.348 UTM Easting (KM): 517.205 Elevation: ∼1,250 ft

OXF-150

 $\begin{array}{lll} \text{UTM Northing (KM):} & 4,341.558 \\ \text{UTM Easting (KM):} & 518.021 \\ \text{Elevation:} & \sim 1,270 \text{ ft} \end{array}$

ATTACHMENT C

Installation and Start Up Schedule

ATTACHMENT C

Schedule of Planned Installation and Start-Up

Proposed Unit	Date of Installation
Enclosed Combustor - Rated at 11.66	2016
MMBtu/hr - C003	
Enclosed Combustor - Rated at 11.66	2016
MMBtu/hr - C004	

ATTACHMENT D

Regulatory Discussion

ATTACHMENT D - REGULATORY APPLICABILITY

This section documents the applicability determinations made for Federal and State air quality regulations. The monitoring, recordkeeping, reporting, and testing plan is presented in Attachment O. In this section, applicability or non-applicability of the following regulatory programs is addressed:

- > Prevention of Significant Deterioration (PSD) permitting;
- > Title V of the 1990 Clean Air Act Amendments;
- > New Source Performance Standards (NSPS);
- > National Emission Standards for Hazardous Air Pollutants (NESHAP); and
- > West Virginia State Implementation Plan (SIP) regulations.

This review is presented to supplement and/or add clarification to the information provided in the WVDEP R13 permit application forms, which fulfill the requirement to include citations and descriptions of applicable statutory and administrative code requirements.

In addition to providing a summary of applicable requirements, this section of the application also provides non-applicability determinations for certain regulations, allowing the WVDEP to confirm that identified regulations are not applicable to the wellpads. Note that explanations of non-applicability are limited to those regulations for which there may be some question of applicability specific to the operations at the wellpads. Regulations that are categorically non-applicable are not discussed (e.g., NSPS Subpart J, Standards of Performance for Petroleum Refineries).

Prevention of Significant Deterioration (PSD) Source Classification

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD) and new and modified sources of non-attainment pollutants under Non-Attainment New Source Review (NNSR). PSD and NNSR regulations apply when a major source makes a change, such as installing new equipment or modifying existing equipment, and a significant increase in emissions results from the change. The wellpads will remain a minor source with respect to the NSR program after the project since potential emissions are below all the NNSR/PSD thresholds. As such, NNSR/PSD permitting is not triggered by this construction activity. EQT will monitor future construction activities at the site closely and will compare any future increase in emissions with the NSR/PSD thresholds to ensure these activities will not trigger this program.

Title V Operating Permit Program

Title 40 of the Code of Federal Regulations Part 70 (40 CFR 70) establishes the federal Title V operating permit program. West Virginia has incorporated the provisions of this federal program in its Title V operating permit program in West Virginia Code of State Regulations (CSR) 45-30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP, and 100 tpy of all other regulated pollutants.¹. The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpads are not a major source for Title V purposes.

New Source Performance Standards

New Source Performance Standards (NSPS), located in 40 CFR 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best demonstrated technology as specified in the applicable

¹ On June 23, 2014, the U.S Supreme Court decision in the case of *Utility Air Regulatory Group v. EPA* effectively changed the permitting procedures for GHGs under the PSD and Title V programs.

provisions. Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, except where expressly noted. The following is a summary of applicability and non-applicability determinations for NSPS regulations of relevance to the wellpads. The following NSPS could potentially apply to the wellpad:

- > 40 CFR Part 60 Subparts D/Da/Db/Dc Steam Generating Units
- > 40 CFR Part 60 Subpart K/Ka/Kb Storage Vessels for Petroleum Liquids/Volatile Organic Liquids
- > 40 CFR Part 60 Subpart 0000 Crude Oil and Natural Gas Production, Transmission, and Distribution
- > 40 CFR Part 60 Subpart 0000a Crude Oil and Natural Gas Facilities

NSPS Subparts D, Da, Db, and Dc - Steam Generating Units

These subparts apply to steam generating units of various sizes, all greater than 10 MMBtu/hr. The proposed project does not include any steam generating units with a heat input greater than 10 MMbtu/hr, therefore the requirements of these subparts do not apply.

NSPS Subpart K, Ka, and Kb - Storage Vessels for Petroleum Liquids/Volatile Organic Liquids

These subparts apply to storage tanks of certain sizes constructed, reconstructed, or modified during various time periods. Subpart K applies to storage tanks constructed, reconstructed, or modified prior to 1978, and Subpart Ka applies to those constructed, reconstructed, or modified prior to 1984. Both Subparts K and Ka apply to storage tanks with a capacity greater than 40,000 gallons. Subpart Kb applies to volatile organic liquid (VOL) storage tanks constructed, reconstructed, or modified after July 23, 1984 with a capacity equal to or greater than 75 $\,\mathrm{m}^3$ (\sim 19,813 gallons). All of the tanks at the wellpads have a capacity of 19,813 gallons or less. As such, Subparts K, Ka, and Kb do not apply to the storage tanks at the wellpads.

NSPS Subpart OOOO—Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart 0000, Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution, applies to affected facilities that commenced construction, reconstruction, or modification after August 23, 2011 (see clarification below regarding dates). This NSPS was published in the Federal Register on August 16, 2012, and subsequently amended. Although there are sources proposed to be installed that could potentially be subject to this regulation, due to the anticipated installation dates, they will not be subject to the rule. This is due to the most recent proposed developments related to the rule, which are the inclusion of an end date for applicability to Subpart 0000 (September 18, 2015) and the promulgation of 40 CFR 60 Subpart 0000a.² The potential applicability of Subpart 0000a is discussed in the following section.

NSPS Subpart 0000a—Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart OOOOa, Standards of Standards of Performance for Crude Oil and Natural Gas Facilities, will apply to affected facilities that commenced construction, reconstruction, or modification after September 18, 2015. This regulation has yet to be finalized. The currently proposed version of the rule includes provisions for the following facilities:

- > Hydraulically fractured wells:
- > Centrifugal compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- > Reciprocating compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- > Continuous bleed natural gas-driven pneumatic controllers with a bleed rate of > 6 scfh located in the production, gathering, processing, or transmission and storage segments (excluding natural gas processing plants);
- > Continuous bleed natural gas-driven pneumatic controllers located at natural gas processing plants;

² September 18, 2015 publication in Federal Register: https://www.federalregister.gov/articles/2015/09/18/2015-21023/oiland-natural-gas-sector-emission-standards-for-new-and-modified-sources

- > Pneumatic pumps located in the production, gathering, processing, or transmission and storage segments;
- > Storage vessels located in the production, gathering, processing, or transmission and storage segments;
- > The collection of fugitive emissions components at a well site;
- > The collection of fugitive emissions components at a compressor station; and
- > Sweetening units located onshore that process natural gas produced from either onshore or offshore wells.

There are twelve (12) produced fluid storage vessels and two (2) sand separator storage vessels at the wellpads. These tanks were installed prior to the applicability date of 0000a. Furthermore, the storage vessels at both facilities will each have potential VOC emissions less than 6 tpy based on the permit application materials and enforceable limits to be included in the R-13 permit. As such, per 60.5365a(e), the tanks will not be storage vessel affected facilities under the rule.

Note that the proposed changes to the well pad do not meet the definition of modification under 60.5365a(i)(3)(i). Therefore, EQT will be not be subject to the leak detection and repair program under 0000a.

The pneumatic controllers will potentially subject to NSPS 0000a. Per 60.5365a(d)(1), a pneumatic controller affected facility is a single continuous bleed natural gas driven pneumatic controller operating at a natural gas bleed rate greater than 6 scfh. No pneumatic controllers installed will meet the definition of a pneumatic controller affected facility. Therefore, these units are not subject to the requirements of Subpart 0000a.

Non-Applicability of All Other NSPS

NSPS are developed for particular industrial source categories. Other than NSPS developed for natural gas processing plants (Subpart 0000) and the applicability of a particular NSPS to the wellpads can be readily ascertained based on the industrial source category covered. All other NSPS are categorically not applicable to the proposed project.

National Emission Standards for Hazardous Air Pollutants (NESHAP)

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The wellpads are an Area (minor) source of HAP since its potential emissions of HAP are less than the 10/25 major source thresholds. NESHAP apply to sources in specifically regulated industrial source categories (Clean Air Act Section 112(d)) or on a case-by-case basis (Section 112(g)) for facilities not regulated as a specific industrial source type. Besides 40 CFR 63 Subpart A (NESHAP Subpart A), which is similar to 40 CFR 60 Subpart A (NSPS Subpart A), the following NESHAP could potentially apply to the wellpads:

- > 40 CFR Part 63 Subpart HH Oil and Natural Gas Production Facilities
- > 40 CFR Part 63 Subpart JJJJJJ Industrial, Commercial, and Institutional Boilers

NESHAP Subpart HH — Oil and Natural Gas Production Facilities

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The wellpads do not include a triethylene glycol dehydration unit; therefore the requirements of this subpart do not apply.

NESHAP Subpart JJJJJJ - Industrial, Commercial, and Institutional Boilers

This MACT standard applies to industrial, commercial, and institutional boilers of various sizes and fuel types at area sources. The line heaters at the wellpads are natural gas-fired and is specifically exempt from this subpart. Therefore, no sources at the wellpads are subject to any requirements under this subpart.

West Virginia SIP Regulations

The wellpads are potentially subject to regulations contained in the West Virginia Code of State Regulations, Chapter 45 (Code of State Regulations). The Code of State Regulations fall under two main categories, those regulations that are generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., PM standards for manufacturing equipment).

45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

45 CSR 2 applies to fuel burning units, defined as equipment burning fuel "for the primary purpose of producing heat or power by indirect heat transfer". The TEGs and line heaters are fuel burning units and therefore must comply with this regulation. Per 45 CSR 2-3, opacity of emissions from units shall not exceed 10 percent.

45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

According to 45 CSR 4-3:

No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.

The wellpads are generally subject to this requirement. However, due to the nature of the process at the wellpads, production of objectionable odor from the wellpads during normal operation are unlikely.

45 CSR 6: To Prevent and Control the Air Pollution from the Combustion of Refuse

45 CSR 6 applies to activities involving incineration of refuse, defined as "the destruction of combustible refuse by burning in a furnace designed for that purpose. For the purposes of this rule, the destruction of any combustible liquid or gaseous material by burning in a flare or flare stack, thermal oxidizer or thermal catalytic oxidizer stack shall be considered incineration." The enclosed combustors are incinerators and therefore must comply with this regulation. Per 45 CSR 6-4.3, opacity of emissions from this unit shall not exceed 20 percent, except as provided by 4.4. PM emissions from this unit will not exceed the levels calculated in accordance with 6-4.1.

45 CSR 16: Standards of Performance for New Stationary Sources

45 CSR 16-1 incorporates the federal Clean Air Act (CAA) standards of performance for new stationary sources set forth in 40 CPR Part 60 by reference. As such, by complying with all applicable requirements of 40 CFR Part 60 at the wellpads, EQT will be complying with 45 CSR 16.

45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage and Other Sources of Fugitive Particulate Matter

According to 45 CSR 17-3.1:

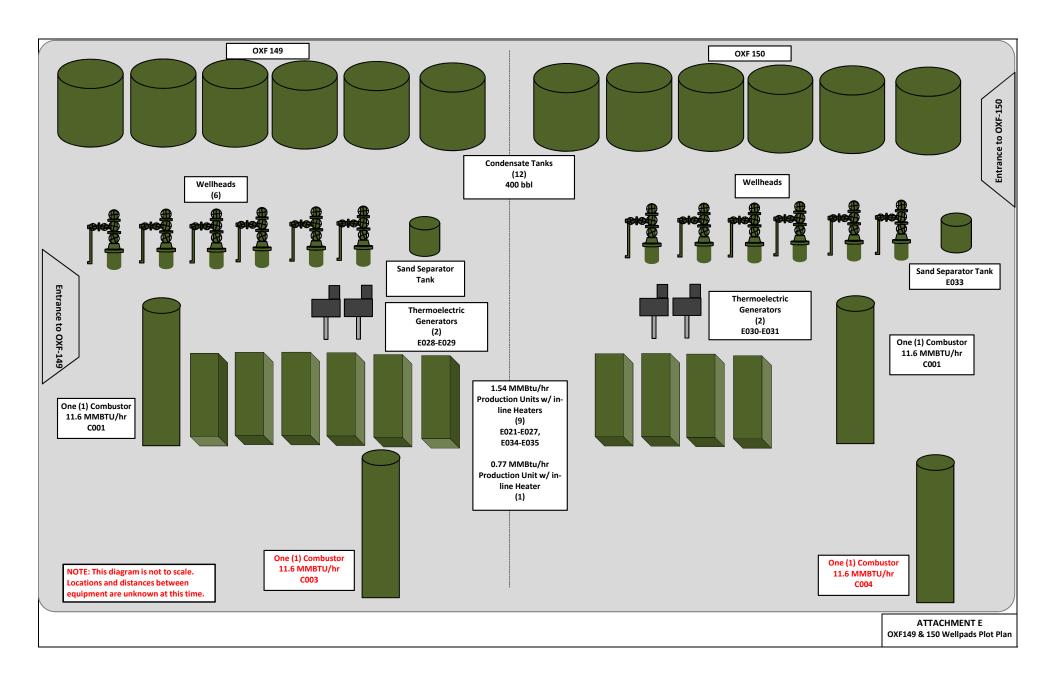
No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

Due to the nature of the activities at the wellpads, it is unlikely that fugitive particulate matter emissions will be emitted under normal operating conditions. However, EQT will take measures to ensure any fugitive particulate matter emissions will not cross the property boundary should any such emissions occur.

45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks

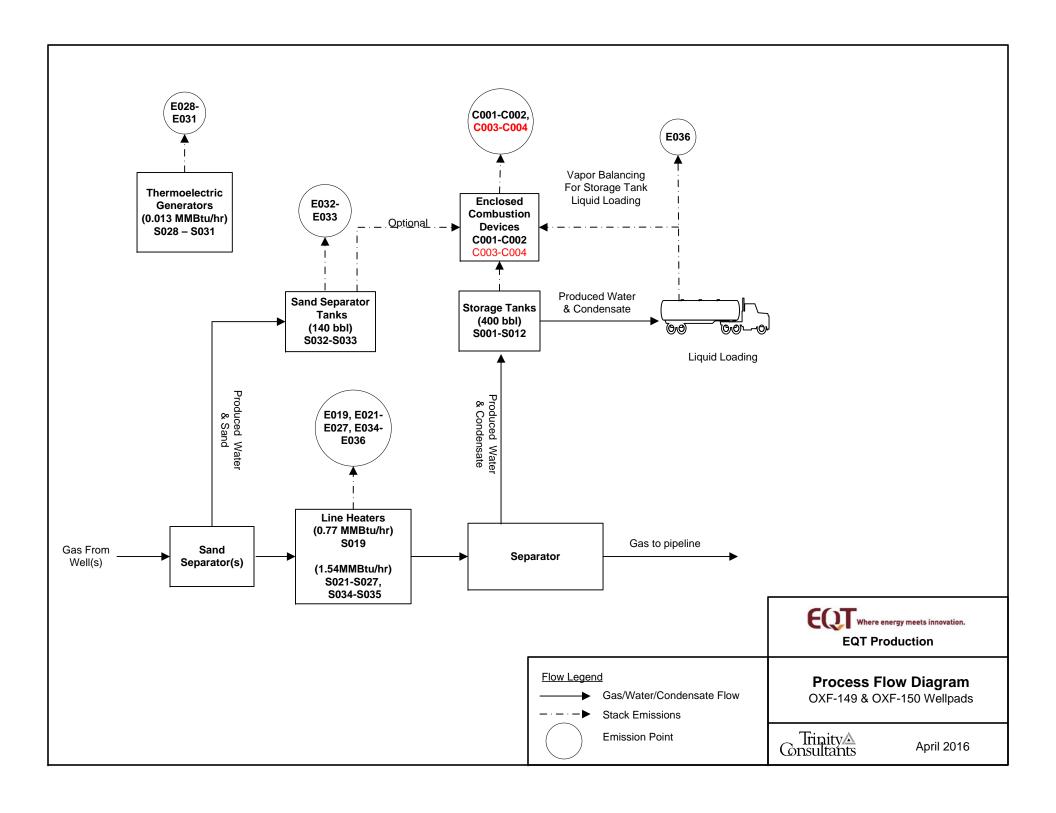
45 CSR 21-28 applies to any fixed roof petroleum liquid storage tank with a capacity greater than 40,000 gallons. The capacity of each storage tank at the wellpads are less than 40,000 gallons; therefore, 45 CSR 21-28 will not apply to the petroleum liquid storage tanks at the wellpads.

45 CSR 34: Emissions Standards for Hazardous Air Pollutants


45 CSR 34-1 incorporates the federal Clean Air Act (CAA) national emissions standards for hazardous air pollutants (NESHAPs) as set forth in 40 CPR Parts 61 and 63 by reference. As noted above, no NESHAP are applicable.

Non-Applicability of Other SIP Rules

A thorough examination of the West Virginia SIP rules with respect to applicability at the wellpads reveal many SIP regulations that do not apply or impose additional requirements on operations. Such SIP rules include those specific to a particular type of industrial operation that is categorically not applicable to the wellpads.


ATTACHMENT E

Plot Plan

ATTACHMENT F

Detailed Process Flow Diagram

ATTACHMENT G

Process Description

ATTACHMENT G: PROCESS DESCRIPTION

This R-13 permit application involves the permitting of two (2) combustors (C003-C004) at an existing natural gas production wellpads (OXF 149-150). OXF-149 and 150 are currently authorized under general permit G70-A031A.

The wellpads consist of twelve wells (12) each with the same basic operation. The incoming gas/liquid stream from the underground well will pass through a sand separator, where sand, water, and residual solids are displaced and transferred to the sand separator tanks (S032-S033). The gas stream will then pass through a line heater (S019, S021-S027, S034-S035) to raise/maintain temperature. The stream will then pass through a high pressure (3 phase) separator, which will separate gas (natural gas from the separator is sent to the sales line) from liquids (condensate and produced water). The produced water and condensate will be sent to the produced fluids tanks (S001-S012).

Emissions from the storage vessels are controlled by an enclosed combustor (C001-C004). Once the tanks are filled, the contents are loaded into trucks for transport. EQT utilizes vapor balancing in the truck loading operations, which means the vapors displaced by the filling of tanker trucks (S036) are routed back into the battery of tanks and ultimately to the combustor. Facility electricity is provided by thermoelectric generators (S028-S031)

A process flow diagram is included as Attachment F.

ATTACHMENT I

Emission Units Table

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

					_	
Emissio n Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
S001	C001, C002, C003, C004	Produced Liquid Tank	2015	400 BBL	Existing, No Change	C001-C004
S002	C001, C002, C003, C004	Produced Liquid Tank	2015	400 BBL	Existing, No Change	C001-C004
S003	C001, C002, C003, C004	Produced Liquid Tank	2015	400 BBL	Existing, No Change	C001-C004
S004	C001, C002, C003, C004	Produced Liquid Tank	2015	400 BBL	Existing, No Change	C001-C004
S005	C001, C002, C003, C004	Produced Liquid Tank	2015	400 BBL	Existing, No Change	C001-C004
S006	C001, C002, C003, C004	Produced Liquid Tank	2015	400 BBL	Existing, No Change	C001-C004
S007	C001, C002, C003, C004	Produced Liquid Tank	2015	400 BBL	Existing, No Change	C001-C004
S008	C001, C002, C003, C004	Produced Liquid Tank	2015	400 BBL	Existing, No Change	C001-C004
S009	C001, C002, C003, C004	Produced Liquid Tank	2015	400 BBL	Existing, No Change	C001-C004
S010	C001, C002, C003, C004	Produced Liquid Tank	2015	400 BBL	Existing, No Change	C001-C004
S011	C001, C002, C003, C004	Produced Liquid Tank	2015	400 BBL	Existing, No Change	C001-C004
S012	C001, C002, C003, C004	Produced Liquid Tank	2015	400 BBL	Existing, No Change	C001-C004
S019	E019	Line Heater	2011	0.77 MMBtu/hr	Existing, No Change	None
S021	E021	Line Heater	2014	1.54 MMBtu/hr	Existing, No Change	None
S022	E022	Line Heater	2014	1.54 MMBtu/hr	Existing, No Change	None
S023	E023	Line Heater	2014	1.54 MMBtu/hr	Existing, No Change	None

Emission	Units	Table
	03	/2007

S024	E024	Line Heater	2014	1.54 MMBtu/hr	Existing, No Change	None
S025	E025	Line Heater	2014	1.54 MMBtu/hr	Existing, No Change	None
S026	E026	Line Heater	2014	1.54 MMBtu/hr	Existing, No Change	None
S027	E027	Line Heater	2014	1.54 MMBtu/hr	Existing, No Change	None
S028	E028	Thermoelectric Generators	2011-2014	0.013 MMBtu/hr	Existing, No Change	None
S029	E029	Thermoelectric Generators	2011-2014	0.013 MMBtu/hr	Existing, No Change	None
S030	E030	Thermoelectric Generators	2011-2014	0.013 MMBtu/hr	Existing, No Change	None
S031	E031	Thermoelectric Generators	2011-2014	0.013 MMBtu/hr	Existing, No Change	None
S032	E032	Sand Separator Tank	2015	140 bbl	Existing, No Change	None
S033	E033	Sand Separator Tank	2015	140 bbl	Existing, No Change	None
S034	E034	Line Heater	2014	1.54 MMBtu/hr	Existing, No Change	None
S035	E035	Line Heater	2014	1.54 MMBtu/hr	Existing, No Change	None
S036	E036 (Uncaptured) C001-C004 (Controlled, Captured)	Liquid Loading	2015	21,324,030 gal/yr	Modified; Increased throughput	C001-C004
C001	C001	Enclosed Combustor	2015	11.66 MMBtu/hr	Existing, No Change	None
C002	C002	Enclosed Combustor	2015	11.66 MMBtu/hr	Existing, No Change	None
C003	C003	Enclosed Combustor	TBD	11.66 MMBtu/hr	New	None
C004	C004	Enclosed Combustor	TBD	11.66 MMBtu/hr	New	None
	1	ı	1		L.	

¹ For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation. ³ New, modification, removal

⁴ For <u>Control Devices</u> use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

ATTACHMENT J

Emission Points Data Summary Sheet

Attachment J EMISSION POINTS DATA SUMMARY SHEET

						Т	able 1:	Emissions Da	ata							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Ve Through (Must mat Units Ta	Emission Unit Vented brough This Point ust match Emission Units Table & Plot Plan)		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Fime for ion Unit emical ses only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Pote Uncor	Maximum Potential Uncontrolled Emissions ⁴		kimum tential trolled ssions ⁵	Emission Form or Phase (At exit conditions,	Est. Method Used ⁶	Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	` & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Solid, Liquid or Gas/Vapor)			
C001	Vert Stack	S001- S012, S036	Condensate tanks, liquid loading	C001	Enclosed Combustor			NO _X CO VOC SO ₂ PM ₁₀ PM _{2.5} CO ₂ e HAP Toluene n-hexane	1.15 0.96 40.35 0.01 0.09 0.09 1,574 1.57 0.08 1.20	5.03 4.22 130.48 0.03 0.38 0.38 6,896 5.28 0.31 3.99	1.15 0.96 0.81 0.01 0.09 0.09 1,375 0.03 <0.01	5.03 4.22 2.61 0.03 0.38 0.38 6,023 0.11 0.01	Gas	BRE ProMax		
C002	Vert Stack	S001- S012, S036	Condensate tanks, liquid loading	C002	Enclosed Combustor			NO _X CO VOC SO ₂ PM ₁₀ PM _{2.5} CO ₂ e HAP Toluene n-hexane	1.26 1.15 0.96 40.35 0.01 0.09 0.09 1.574 1.57 0.08 1.20	5.03 4.22 130.48 0.03 0.38 0.38 6,896 5.28 0.31 3.99	1.15 0.96 0.81 0.01 0.09 0.09 1,375 0.03 <0.01 0.02	5.03 4.22 2.61 0.03 0.38 0.38 6,023 0.11 0.01 0.08	Gas	BRE ProMax		
C003	Vert Stack	S001- S012, S036	Condensate tanks, liquid loading	C003	Enclosed Combustor			NOx CO VOC SO ₂ PM ₁₀ PM _{2.5} CO ₂ e HAP Toluene n-hexane	1.20 1.15 0.96 40.35 0.01 0.09 0.09 1,574 1.57 0.08 1.20	5.03 4.22 130.48 0.03 0.38 0.38 6,896 5.28 0.31 3.99	1.15 0.96 0.81 0.01 0.09 0.09 1,375 0.03 <0.01	5.03 4.22 2.61 0.03 0.38 0.38 6,023 0.11 0.01 0.08	Gas	BRE ProMax		
C004	Vert Stack	S001- S012, S036	Condensate tanks, liquid loading	C004	Enclosed Combustor			NO _X CO VOC SO ₂ PM ₁₀ PM _{2.5} CO ₂ e HAP Toluene n-hexane	1.15 0.96 40.35 0.01 0.09 0.09 1,574 1.57 0.08 1.20	5.03 4.22 130.48 0.03 0.38 0.38 6,896 5.28 0.31 3.99	1.15 0.96 0.81 0.01 0.09 0.09 1,375 0.03 <0.01	5.03 4.22 2.61 0.03 0.38 0.38 6,023 0.11 0.01 0.08	Gas	BRE ProMax		

E021-E035 (each)	Vert Stack	S021- S035	Line Heaters	N/A	N/A		$\begin{array}{c} NO_X \\ CO \\ VOC \\ SO_2 \\ PM_{10} \\ PM_{2.5} \\ CO_2e \\ HAP \end{array}$	0.15 0.12 0.01 <0.01 0.01 0.01 180 <0.01	0.64 0.54 0.04 <0.01 0.05 0.05 789 0.01	0.15 0.12 0.01 <0.01 0.01 0.01 180 <0.01	0.64 0.54 0.04 <0.01 0.05 0.05 789 0.01	Gas	AP-42	
E019	Vert Stack	S019	Line Heater	N/A	N/A		NO _X CO VOC SO ₂ PM ₁₀ PM _{2.5} CO ₂ e HAP	0.07 0.06 <0.01 <0.01 0.01 0.01 90 <0.01	0.32 0.27 0.02 <0.01 0.02 0.02 395 0.01	0.07 0.06 <0.01 <0.01 0.01 0.01 90 <0.01	0.32 0.27 0.02 <0.01 0.02 0.02 395 0.01	Gas	AP-42	
E028-E031 (each)	Vert Stack	S029- S031	TEG	N/A	N/A		NO _X CO₂e	<0.01 1.52	0.01 6.64	<0.01 1.52	0.01 6.64	Gas	AP-42	
E032-E033 (each)	Vert Stack	S032- S033	Sand Trap tank	N/A	N/A		VOC CO ₂ e HAP	0.07 0.50 <0.01	0.32 2.20 0.01	0.07 0.50 <0.01	0.32 2.20 0.01	Gas	E&P Tank	
E036	Fug	S036	Uncaptured liquid loading	N/A	N/A		VOC HAP	19.24 0.03	5.00 0.01	19.24 0.03	5.00 0.01	Gas	BRE ProMax	

^{*}Note – Only pollutants with controlled emissions > 0.01 tpy are presented in this table.

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

- ¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.
- ² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).
- ³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂, H₂O, N₂, O₂, and Noble Gases.
- ⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- ⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- 6 Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).
- Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment J EMISSION POINTS DATA SUMMARY SHEET

			Table 2: Rele	ease Parame	ter Data			
Emission	Inner	Inner Exit Gas			Emission Point Elevation (ft)		UTM Coordinates (km)	
Point ID No. (Must match Emission Units Table)	Diameter (ft.)	Temp. (°F)	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting

¹ Give at operating conditions. Include inerts. ² Release height of emissions above ground level.

ATTACHMENT K

Fugitive Emissions Data Summary Sheet

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	☐ Yes ☐ No (no change to existing)
	☐ If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	☐ Yes ☐ No
	$\begin{tabular}{l} \hline \end{tabular} If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET. \\ \hline \end{tabular}$
3.)	Will there be Liquid Loading/Unloading Operations?
	⊠ Yes □ No
	$\ \square$ If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	☐ Yes ☑ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	⊠ Yes □ No
	$\hfill \square$ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	☐ Yes ☐ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	☐ Yes ☐ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions mmary."

Page 1 of 2 Revision 2/11

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants - Chemical Name/CAS 1		Maximum Potential Uncontrolled Emissions ²		Maximum Potential Controlled Emissions ³	
	Chemical Name/CAS	lb/hr ton/yr		lb/hr	lb/hr ton/yr	
Haul Road/Road Dust Emissions Paved Haul Roads	NA					-
Unpaved Haul Roads	PM PM ₁₀ PM _{2.5}		23.71 6.04 0.60		23.71 6.04 0.60	С
Storage Pile Emissions	NA					
Loading/Unloading Operations (Uncaptured Emissions)	VOC HAP Benzene Toluene Ethylbenzene Xylene n-hexane	19.24 0.67 0.01 0.03 <0.01 0.01 0.53	5.00 0.18 <0.01 0.01 <0.01 <0.01 0.14			В
Wastewater Treatment Evaporation & Operations	NA					
Equipment Leaks	VOC HAP CO ₂ e Benzene Toluene Ethylbenzene Xylene n-hexane	N/A	35.06 1.09 541.51 0.01 0.03 <0.01 0.04 0.59	N/A	35.06 1.09 541.51 0.01 0.03 <0.01 0.04 0.59	А
General Clean-up VOC Emissions	NA					
Other	NA					

A -Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017, Table 2-1, November 1995. 40 CFR 98 Subpart W.

Page 2 of 2 Revision 2/11

B- Bryan Research Engineering ProMax Software C – AP-42 Chapter 13

- ¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.
- ² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- ³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- ⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Page 2 of 2 Revision 2/11

ATTACHMENT L

Emissions Unit Data Sheet

Attachment L **EMISSIONS UNIT DATA SHEET** STORAGE TANKS

Provide the following information for each new or modified bulk liquid storage tank as shown on the Equipment List Form and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

USING US EPA's TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

I. GENERAL INFORMATION (required)

Bulk Storage Area Name

2 Tank Name

1. Buik Glorage Area Name	Z. Tank Namo
OXF 149 -150 Wellpad	Produced Fluid Tanks (Water and Condensate)
5 = quipinoni idenimiedilen itel (de deeigned en	4. Emission Point Identification No. (as assigned on
Equipment List Form)	Equipment List Form)
S001 – S012	C001-C004
5. Date of Commencement of Construction (for existing	tanks) 2015
6. Type of change	lew Stored Material
7. Description of Tank Modification (if applicable)	
Not Applicable	
7A. Does the tank have more than one mode of operation	? ☐ Yes ☐ No
(e.g. Is there more than one product stored in the tank	
7B. If YES, explain and identify which mode is covered	d by this application (Note: A separate form must be
completed for each mode).	
7C. Provide any limitations on source operation affecting	emissions, any work practice standards (e.g. production
variation, etc.):	
None	
II. TANK INFORM	ATION (required)
O. Desire Occasi (acces la temple de cellent). Her	the Setund on a second on a Research
8. Design Capacity (specify barrels or gallons). Use height.	the internal cross-sectional area multiplied by internal
	0 bbls
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)
12	20
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)
20	10
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)
10	10
12. Nominal Capacity (specify barrels or gallons). This is	s also known as "working volume" and considers design
liquid levels and overflow valve heights.	400
<u> </u>	+00
Dogo (1 of 5 Pavision 02/2007

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)
See attached emissions calculations for all throughput values	See attached emissions calculations for all throughput values
14. Number of Turnovers per year (annual net throughpu	
	ulations for all throughput values
15. Maximum tank fill rate (gal/min) See attached emis	sions calculations for all throughput values
16. Tank fill method ☐ Submerged	
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
18. Type of tank (check all that apply):	
⊠ Fixed Roof <u>x</u> vertical <u></u> horizontal	flat roof dome roof dome roof
other (describe)	
 ☐ External Floating Roof ☐ Domed External (or Covered) Floating Roof 	double deck roof
☐ Internal Floating Roof vertical column su	upport self-supporting
☐ Variable Vapor Space ☐ lifter roof	
Pressurized spherical cylindrical	l ·
Underground	
Other (describe)	
	ATION (optional if providing TANKS Summary Sheets)
19. Tank Shell Construction:	d rivete
Riveted Gunite lined Epoxy-coated 20A. Shell Color Green 20B. Roof Colo	T ·
21. Shell Condition (if metal and unlined):	2001 Four Last's arrived Them
⊠ No Rust ☐ Light Rust ☐ Dense R	ust Not applicable
22A. Is the tank heated? ☐ YES ☐ NO	
22B. If YES, provide the operating temperature (°F)	
22C. If YES, please describe how heat is provided to t	ank.
23. Operating Pressure Range (psig):	
24. Complete the following section for Vertical Fixed Ro	of Tanks Does Not Apply
24A. For dome roof, provide roof radius (ft)	
24B. For cone roof, provide slope (ft/ft) 0.06	
25. Complete the following section for Floating Roof Tail	nks Does Not Apply
25A. Year Internal Floaters Installed:	
25B. Primary Seal Type:	Shoe Seal Liquid Mounted Resilient Seal
(check one)	lient Seal
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO
25D. If YES, how is the secondary seal mounted? (che	eck one)
25E. Is the Floating Roof equipped with a weather ship	eld? YES NO

25F. Describe deck fittings; indicat	e the number of ea	ch type of fitting:	
		S HATCH	
BOLT COVER, GASKETED:	UNBOLTED COV		UNBOLTED COVER, UNGASKETED:
BOLT COVER, GASKETED:	AUTOMATIC GAU UNBOLTED COV	JGE FLOAT WELL ER, GASKETED:	UNBOLTED COVER, UNGASKETED:
BUILT-UP COLUMN – SLIDING COVER, GASKETED:			PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:
PIP COLUMN – SLIDING COVER, G		R WELL PIPE COLUMN –	SLIDING COVER, UNGASKETED:
SLIDING COVER, GASKETED:	GAUGE-HATCH	I/SAMPLE PORT SLIDING COVER	, UNGASKETED:
WEIGHTED MECHANICAL ACTUATION, GASKETED:			SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)
WEIGHTED MECHANICAL ACTUAT		BREAKER WEIGHTED MECH	ANICAL ACTUATION, UNGASKETED:
WEIGHTED MECHANICAL ACTUAT		; VENT WEIGHTED MECH.	ANICAL ACTUATION, UNGASKETED:
OPEN:	DECK DRAIN (3-	INCH DIAMETER) 90% CLOSED:	
1-INCH DIAMETER:	STUB	! DRAIN	
OTHER (DESCR	RIBE, ATTACH ADI	DITIONAL PAGES	IF NECESSARY)

26. Complete the following section for Internal Floating R	Roof Tanks 🔀 Does Not Apply
26A. Deck Type:	
26B. For Bolted decks, provide deck construction:	
26C. Deck seam:	
☐ Continuous sheet construction 5 feet wide ☐ Continuous sheet construction 6 feet wide	
Continuous sheet construction 7 feet wide	
☐ Continuous sheet construction 5 × 7.5 feet wide ☐ Continuous sheet construction 5 × 12 feet wide	
Other (describe)	
	T
26D. Deck seam length (ft)	26E. Area of deck (ft²)
For column supported tanks:	26G. Diameter of each column:
26F. Number of columns:	
	if providing TANKS Summary Sheets) performed using ProMax Software
27. Provide the city and state on which the data in this se	ection are based.
28. Daily Average Ambient Temperature (°F)	
29. Annual Average Maximum Temperature (°F)	
30. Annual Average Minimum Temperature (°F)	
31. Average Wind Speed (miles/hr)	
32. Annual Average Solar Insulation Factor (BTU/(ft²-day	/))
33. Atmospheric Pressure (psia)	
V. LIQUID INFORMATION (optional	if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid:	
34A. Minimum (°F)	34B. Maximum (°F)
35. Average operating pressure range of tank:	
35A. Minimum (psig)	35B. Maximum (psig)
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)
39. Provide the following for each liquid or gas to be stor	ed in tank. Add additional pages if necessary.
39A. Material Name or Composition	
39B. CAS Number	
39C. Liquid Density (lb/gal)	
39D. Liquid Molecular Weight (lb/lb-mole)	
39E. Vapor Molecular Weight (lb/lb-mole)	

Maximum Vapor Press	sure				
39F. True (psia) 39G. Reid (psia)					
Months Storage per Y	ear				
39H. From					
39I. To					
	VI. EMISSIONS A	ND CONTRO	OL DEVICI	E DATA (required)	
☐ Carbon Adsorp ☐ Condenser¹ ☐ Conservation \ Vacuum S ☐ Emergency Re ☐ Inert Gas Bland ☐ Insulation of Ta ☐ Liquid Absorpti ☐ Refrigeration o ☐ Rupture Disc () ☐ Vent to Vapor () ☐ Other¹ (describ	/ent (psig) Setting 0.5 oz elief Valve (psig) 14.4 o ket of enk with ion (scrubber) ¹ f Tank psig) Combustion Device ¹ pe):	Foz (Vacuum s	Pressure So		
Complete applo	Shale All Foliution Conti	tol Device 2	neet.		
				or elsewhere in the ap	plication).
41. Expected Emissio	n Rate (submit Test Dat	ta or Calcula	tions here	1	1
			tions here	or elsewhere in the ap Annual Loss (lb/yr)	plication). Estimation Method¹
41. Expected Emissio	n Rate (submit Test Dat	ta or Calcula	tions here	Annual Loss	1
41. Expected Emissio Material Name & CAS No. See attached Emissions	n Rate (submit Test Dat	ta or Calcula	tions here	Annual Loss	1
41. Expected Emissio Material Name & CAS No. See attached Emissions	n Rate (submit Test Dat	ta or Calcula	tions here	Annual Loss	1
41. Expected Emissio Material Name & CAS No. See attached Emissions	n Rate (submit Test Dat	ta or Calcula	tions here	Annual Loss	1
41. Expected Emissio Material Name & CAS No. See attached Emissions	n Rate (submit Test Dat	ta or Calcula	tions here	Annual Loss	
41. Expected Emissio Material Name & CAS No. See attached Emissions	n Rate (submit Test Dat	ta or Calcula	tions here	Annual Loss	
41. Expected Emissio Material Name & CAS No. See attached Emissions	n Rate (submit Test Dat	ta or Calcula	tions here	Annual Loss	
41. Expected Emissio Material Name & CAS No. See attached Emissions	n Rate (submit Test Dat	ta or Calcula	tions here	Annual Loss	1
41. Expected Emissio Material Name & CAS No. See attached Emissions	n Rate (submit Test Dat	ta or Calcula	tions here	Annual Loss	1

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

[⊠] Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Attachment L Emission Unit Data Sheet

(INDIRECT HEAT EXCHANGER)

S019

Control Device ID No. (must match List Form): None

Equipment Information

1. Manufacturer:	Model No. Serial No.
3. Number of units: 1	4. Use Produces heat
5. Rated Boiler Horsepower: NA hp	6. Boiler Serial No.:
7. Date constructed: 2011	8. Date of last modification and explain: NA
9. Maximum design heat input per unit:	10. Peak heat input per unit:
0.77 ×10 ⁶ BTU/hr	0.77 ×10 ⁶ BTU/hr
11. Steam produced at maximum design output: NA - no steam LB/hr psig 13. Type of firing equipment to be used: Pulverized coal Spreader stoker Oil burners Natural Gas Burner Others, specify 15. Type of draft: Forced Induced	12. Projected Operating Schedule: Hours/Day 24 Days/Week 7 Weeks/Year 52 14. Proposed type of burners and orientation: Vertical Front Wall Opposed Tangential Others, specify 16. Percent of ash retained in furnace: NA % 18. Percent of carbon in flash: NA %
·	Vent Data
Stack of	Vent Data
19. Inside diameter or dimensions: ft.	20. Gas exit temperature: °F
21. Height: ft.	22. Stack serves: This equipment only
23. Gas flow rate: ft³/min	Other equipment also (submit type and rating of all other equipment exhausted through this
24. Estimated percent of moisture: %	stack or vent)

Fuel Requirements

25.	Туре	Fuel Oil No.	Natural Gas	Gas (other, specify)	Coal, Type:	Other:
	Quantity (at Design Output)	@60°F	732 ft³/hr	ft³/hr	TPH	
	Annually	×10³ gal	6.42 ×10 ⁶ ft ³ /yr	×10 ⁶ ft ³ /hr	tons	
	Sulfur	Maximum: wt. % Average: wt. %	neg gr/100 ft ³	gr/100 ft ³	Maximum: wt. %	
	Ash (%)				Maximum	
	BTU Content	BTU/Gal. Lbs/Gal.@60°F	1,216 BTU/ft³	BTU/ft³	BTU/lb	
	Source	150/ Gail. © 00 1				
	Supplier					
	Halogens (Yes/No)		No			
	List and Identify Metals		NA			
26.	Gas burner mode o ☐ Manual ☐ Automatic full n	☐ Aut	omatic hi-low	27. Gas burner mar 28. Oil burner manu		
29.	9. If fuel oil is used, how is it atomized?					
	Fuel oil preheated:			31. If yes, indicate to		°F
		ated theoretical ail feet (ACF) per uni °F.	t of fuel:	or combustion of the	e fuel or mixture of the contract of the contr	of fuels described
33.	Emission rate at ra	•	PSIA, TBD lb/hr	76 HIC	Jisture	
		actually required for	or combustion of	the fuel described:	%	
			Coal Chara			
35.	Seams:					
36.	Proximate analysis	,	Fixed Carbon: Moisture: Ash:		% of Sulfur: % of Volatile Matter:	:

Emissions Stream

Pollutant	Pounds per Hour lb/hr	grain/ACF	@ °F	PSIA
CO	0.06			
Hydrocarbons	< 0.01			
NOx	0.07			
Pb	<0.01			
PM ₁₀	0.01			
SO ₂	< 0.01			
VOCs	< 0.01			
Other (specify) CO ₂ e	90.09			
. What quantities of polluta	ants will be emitted from t	he boiler after contro	ls?	
Pollutant	Pounds per Hour lb/hr	grain/ACF	@ °F	PSIA
СО	0.06			
CO Hydrocarbons	0.06			
Hydrocarbons	<0.01			
Hydrocarbons NO _x	<0.01			
Hydrocarbons NO _x Pb	<0.01 0.07 <0.01			
Hydrocarbons NOx Pb PM ₁₀	<0.01 0.07 <0.01 0.01			
Hydrocarbons NOx Pb PM ₁₀ SO ₂	<0.01 0.07 <0.01 0.01 <0.01			
Hydrocarbons NOx Pb PM ₁₀ SO ₂ VOCs	<0.01 0.07 <0.01 0.01 <0.01 <0.01			
Hydrocarbons NOx Pb PM ₁₀ SO ₂ VOCs	<0.01 0.07 <0.01 0.01 <0.01 <0.01			
Hydrocarbons NOx Pb PM ₁₀ SO ₂ VOCs	<0.01 0.07 <0.01 0.01 <0.01 <0.01			
Hydrocarbons NOx Pb PM ₁₀ SO ₂ VOCs	<0.01 0.07 <0.01 0.01 <0.01 <0.01 90.09	trol equipment be dis	posed of?	

	Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.
	MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device.
	Monitor fuel usage throughput (scf/yr)
	TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device. None
	RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring.
	Maintain records of fuel throughput (scf/yr)
	REPORTING: Please describe the proposed frequency of reporting of the recordkeeping.
	None
13.	Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.
	N/A

Attachment L Emission Unit Data Sheet

(INDIRECT HEAT EXCHANGER)

S021-S027, S034-S035

Control Device ID No. (must match List Form): None

Equipment Information

1. Manufa	cturer:		2.	Model No. Serial No.		
3. Number	of units: 9		4.	Use Produces heat		
5. Rated B	oiler Horsepower: NA	hp	6.	Boiler Serial No.:		
7. Date co	nstructed: 2014-2015		8.	Date of last modification and explain	n: NA	
9. Maximu	m design heat input per u	nit:	10.	Peak heat input per unit:		
	1.54	×10 ⁶ BTU/hr		1.54	×10 ⁶ BTU/hr	
	NA - no steam	LB/hr psig		Projected Operating Schedule: Hours/Day 24 Days/Week 7 Weeks/Year 52 Proposed type of burners and orien	tation:	
	Pulverized coal Spreader stoker Dil burners Natural Gas Burner Others, specify	eu.	14.	☐ Vertical ☐ Front Wall ☐ Opposed ☐ Tangential ☐ Others, specify	lation.	
15. Type of	draft:] Induced	16.	Percent of ash retained in furnace:	NA 9	%
17. Will flas	h be reinjected? Ye	es 🛭 No	18.	Percent of carbon in flash:	NA %	%
		Stack or '	Vent	Data		
19. Inside d	iameter or dimensions:	ft.	20.	Gas exit temperature:	o	'F
21. Height:	ft.		22.	Stack serves: This equipment only		
23. Gas flow	v rate: ft	³ /min		Other equipment also (submit t all other equipment exhaust		
24. Estimate	ed percent of moisture:	%		stack or vent)		

Fuel Requirements

25.	Туре	Fuel Oil No.	Natural Gas	Gas (other, specify)	Coal, Type:	Other:
	Quantity (at Design Output)	@60°F	1465 ft ³ /hr	ft³/hr	TPH	
	Annually	×10³ gal	12.84 ×10 ⁶ ft ³ /yr	×10 ⁶ ft ³ /hr	tons	
	Sulfur	Maximum: wt. % Average: wt. %	neg gr/100 ft ³	gr/100 ft ³	Maximum: wt. %	
	Ash (%)				Maximum	
	BTU Content	BTU/Gal. Lbs/Gal.@60°F	1,216 BTU/ft ³	BTU/ft ³	BTU/lb	
	Source	LDS/Gail.@00 1				
	Supplier					
	Halogens (Yes/No)		No			
	List and Identify Metals		NA			
26. Gas burner mode of control: Manual Automatic hi-low Automatic full modulation Automatic on-off 27. Gas burner manufacture: 28. Oil burner manufacture:						
29.	29. If fuel oil is used, how is it atomized? Compressed Air Rotary Cup Other, specify					
30.	Fuel oil preheated:	☐ Yes [⊠ No	31. If yes, indicate t	emperature:	°F
	32. Specify the calculated theoretical air requirements for combustion of the fuel or mixture of fuels described above actual cubic feet (ACF) per unit of fuel:					
33.	@ Emission rate at ra	°F, ited capacity:	PSIA, TBD lb/hr	70 HIC	oisture	
	Percent excess air			the fuel described:	%	
			Coal Chara	cteristics		
35.	Seams:					
36. Proximate analysis (dry basis): % of Fixed Carbon: % of Sulfur: % of Moisture: % of Volatile Matter: % of Ash:						

Emissions Stream

Pollutant	Pounds per Hour lb/hr	grain/ACF	@ °F	PSIA
СО	0.12			
Hydrocarbons	0.01			
NOx	0.15			
Pb	< 0.01			
PM ₁₀	0.01			
SO ₂	< 0.01			
VOCs	0.01			
Other (specify) CO ₂ e	180.18			
What quantities of polluta	1	he boiler after contro	ls?	
Pollutant	Pounds per Hour lb/hr	grain/ACF	@ °F	PSIA
СО	0.12			
Hydrocarbons	0.01			
Hydrocarbons NO _x	0.01 0.15			
NOx	0.15			
NO _x	0.15 <0.01			
NOx Pb PM ₁₀	0.15 <0.01 0.01			
NOx Pb PM ₁₀ SO ₂	0.15 <0.01 0.01 <0.01			
NOx Pb PM ₁₀ SO ₂ VOCs	0.15 <0.01 0.01 <0.01 0.01			
NOx Pb PM ₁₀ SO ₂ VOCs	0.15 <0.01 0.01 <0.01 0.01 180.18	trol equipment be dis	posed of?	

	Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.
	MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device.
	Monitor fuel usage throughput (scf/yr)
	TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device. None
	RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring.
	Maintain records of fuel throughput (scf/yr)
	REPORTING: Please describe the proposed frequency of reporting of the recordkeeping.
	None
13.	Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.
	N/A

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name

2. Tank Name

OXF 149 -150 Wellpad	Sand Separator Tanks				
3. Tank Equipment Identification No. (as assigned on Equipment List Form)	Equipment List Form)				
S032-S033	E032-E033				
5. Date of Commencement of Construction (for existing	tanks) 2015				
6. Type of change	New Stored Material				
7. Description of Tank Modification (if applicable) Not Applicable					
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan					
7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode).					
variation, etc.):	emissions, any work practice standards (e.g. production				
None					
II. TANK INFORMATION (required)					
8. Design Capacity (specify barrels or gallons). Use height.	the internal cross-sectional area multiplied by internal				
14	40 bbls				
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)				
10	10				
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)				
10	5				
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)				
10	6				
12. Nominal Capacity (specify barrels or gallons). This liquid levels and overflow valve heights.	is also known as "working volume" and considers design				
Page	1 of 5 Revision 03/2007				

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)				
See attached emissions calculations for all throughput values	See attached emissions calculations for all throughput values				
14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume)					
~ See attached emissions calculations for all throughput values					
15. Maximum tank fill rate (gal/min) See attached emis	sions calculations for all throughput values				
16. Tank fill method					
17. Complete 17A and 17B for Variable Vapor Space Tai	nk Systems				
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year				
18. Type of tank (check all that apply):					
 ∑ Fixed Roofvertical _x horizontal 	flat roof cone roof dome roof				
other (describe)	<u> </u>				
External Floating Roof pontoon roof	double deck roof				
□ Domed External (or Covered) Floating Roof					
☐ Internal Floating Roof vertical column su					
☐ Variable Vapor Space ☐ lifter roof ☐	·				
Pressurized spherical cylindrical					
Underground					
Other (describe)					
III. TANK CONSTRUCTION & OPERATION INFORMA	ATION (optional if providing TANKS Summary Sheets)				
19. Tank Shell Construction: ☐ Riveted ☐ Gunite lined ☐ Epoxy-coated rivets ☒ Other (describe) Welded					
20A. Shell Color Gray 20B. Roof Color	T .				
21. Shell Condition (if metal and unlined):					
	ust				
22A. Is the tank heated? ☐ YES ☐ NO					
22B. If YES, provide the operating temperature (°F)					
22C. If YES, please describe how heat is provided to to	ank.				
23. Operating Pressure Range (psig):					
24. Complete the following section for Vertical Fixed Ro	of Tanks				
24A. For dome roof, provide roof radius (ft)					
24B. For cone roof, provide slope (ft/ft)					
25. Complete the following section for Floating Roof Tai	nks				
25A. Year Internal Floaters Installed:					
25B. Primary Seal Type: ☐ Metallic (Mechanical) (check one) ☐ Vapor Mounted Resil	<u> </u>				
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO				
25D. If YES, how is the secondary seal mounted? (che					
25E. Is the Floating Roof equipped with a weather ship	eld?				

25F. Describe deck fittings; indicat	e the number of ea	ch type of fitting:				
ACCESS HATCH						
BOLT COVER, GASKETED:	UNBOLTED COV		UNBOLTED COVER, UNGASKETED:			
BOLT COVER, GASKETED:	AUTOMATIC GAU UNBOLTED COV	JGE FLOAT WELL ER, GASKETED:	UNBOLTED COVER, UNGASKETED:			
BUILT-UP COLUMN – SLIDING COVER, GASKETED:			PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:			
PIP COLUMN – SLIDING COVER, G		R WELL PIPE COLUMN –	SLIDING COVER, UNGASKETED:			
GAUGE-HATCH/SAMPLE PORT SLIDING COVER, GASKETED: SLIDING COVER, UNGASKETED:						
WEIGHTED MECHANICAL ACTUATION, GASKETED:			SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)			
WEIGHTED MECHANICAL ACTUAT	VACUUM BREAKER WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:					
RIM VENT WEIGHTED MECHANICAL ACTUATION GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:						
OPEN:	DECK DRAIN (3-	INCH DIAMETER) 90% CLOSED:				
STUB DRAIN 1-INCH DIAMETER:						
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)						

26. Complete the following section for Internal Floating Roof Tanks ☐ Does Not Apply							
26A. Deck Type: Bolted Welded							
26B. For Bolted decks, provide deck construction:	B. For Bolted decks, provide deck construction:						
26C. Deck seam:							
☐ Continuous sheet construction 5 feet wide ☐ Continuous sheet construction 6 feet wide							
Continuous sheet construction 7 feet wide							
☐ Continuous sheet construction 5 × 7.5 feet wide ☐ Continuous sheet construction 5 × 12 feet wide	Continuous sheet construction 5 × 7.5 feet wide						
Other (describe)							
	T						
26D. Deck seam length (ft)	26E. Area of deck (ft²)						
For column supported tanks: 26F. Number of columns:	26G. Diameter of each column:						
	I if providing TANKS Summary Sheets)						
	erformed using E&P Tanks Software						
27. Provide the city and state on which the data in this so	ection are based.						
28. Daily Average Ambient Temperature (°F)							
29. Annual Average Maximum Temperature (°F)							
30. Annual Average Minimum Temperature (°F)							
31. Average Wind Speed (miles/hr)							
32. Annual Average Solar Insulation Factor (BTU/(ft²-day	y))						
33. Atmospheric Pressure (psia)							
V. LIQUID INFORMATION (optional	if providing TANKS Summary Sheets)						
34. Average daily temperature range of bulk liquid:							
34A. Minimum (°F)	34B. Maximum (°F)						
35. Average operating pressure range of tank:							
35A. Minimum (psig)	35B. Maximum (psig)						
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)						
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)						
38A. Maximum Liquid Surface Temperature (°F) 38B. Corresponding Vapor Pressure (psia)							
39. Provide the following for each liquid or gas to be stor	red in tank. Add additional pages if necessary.						
39A. Material Name or Composition							
39B. CAS Number							
39C. Liquid Density (lb/gal)							
39D. Liquid Molecular Weight (lb/lb-mole)							
39E. Vapor Molecular Weight (lb/lb-mole)							

Maximum Vapor Press 39F. True (psia) 39G. Reid (psia) Months Storage per Yo 39H. From 39I. To						
	VI. EMISSIONS A	ND CONTR	OL DEVIC	E DATA (required)		
VI. EMISSIONS AND CONTROL DEVICE DATA (required) 40. Emission Control Devices (check as many as apply): ☑ Does Not Apply ☐ Carbon Adsorption¹ ☐ Condenser¹ ☐ Conservation Vent (psig) Vacuum Setting						
41. Expected Emission	n Rate (submit Test Da	ta or Calcula	tions here	or elsewhere in the app	olication).	
Material Name & CAS No.	Breathing Loss (lb/hr)	Working Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
See attached Emissions Calculation						

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

[⊠] Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Attachment L **EMISSIONS UNIT DATA SHEET GENERAL**

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Fauinment List Form): \$028-\$031

identification Number (as assigned on Equipment List Form). 5026-5031
Name or type and model of proposed affected source:
Thermoelectric generators – 0.013 MMBtu/hr (consists of 4 identical units)
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
NA
IVA
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Does not produce any materials. Electrical generation from natural gas.
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
Combustion of natural gas

The identification number which appears here must correspond to the air pollution control device identification number appearing on the List Form.

6.	Combustion Data (if applicable):						
	a) Type and amount in appropriate units of fuel(s) to be burned:						
N	Natural gas – 12.3 scf/hr						
	(b) Chemical analysis of p and ash:	roposed fuel(s), exc	cluding coal, in	cluding maxim	um percent sulfur		
Na	atural gas						
	(c) Theoretical combustion	n air requirement (A	CF/unit of fue	el):			
	Unknown @		°F and		psia.		
	(d) Percent excess air:	Unknown					
	(e) Type and BTU/hr of burners and all other firing equipment planned to be used: One (1) 0.013 MMBtu/hr natural gas fired burner per unit						
	(f) If coal is proposed as a source of fuel, identify supplier and seams and give sizing of the coal as it will be fired:						
NA	A						
	(g) Proposed maximum design heat input: 0.013 (each) × 10 ⁶ BTU/hr.						
7.	Projected operating sched	ule:					
Ηοι	urs/Day 24	Days/Week	7	Weeks/Year	52		

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:					
@	@ °F and p					
a.	NOx	1.2E-3	lb/hr	grains/ACF		
b.	SO ₂	7.4E-6	lb/hr	grains/ACF		
C.	СО	1.0E-3	lb/hr	grains/ACF		
d.	PM ₁₀	2.3E-5	lb/hr	grains/ACF		
e.	Hydrocarbons	6.8E-5	lb/hr	grains/ACF		
f.	VOCs	6.8E-5	lb/hr	grains/ACF		
g.	Pb	6.2E-9	lb/hr	grains/ACF		
h.	Specify other(s)		İ			
	CO ₂ e	1.51	lb/hr	grains/ACF		
	НАР	2.3E-5	lb/hr	grains/ACF		
	Formaldehyde	9.3E-7	lb/hr	grains/ACF		
			lb/hr	grains/ACF		

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

with the proposed operating parameters. For compliance with the proposed emissions limited in the proposed emissions are compliance with the proposed emissions.	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate nits.
MONITORING	RECORDKEEPING
Fuel throughput (scf/yr)	Fuel Throughput (scf/yr)
REPORTING None	TESTING None
	E PROCESS PARAMETERS AND RANGES THAT ARE STRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROPMONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECTOR RECORD KEEPING.	DPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMIS POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
10. Describe all operating ranges and mainter maintain warranty See attached manufacturer's specification sheet	nance procedures required by Manufacturer to

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on Equipment List Form):					
1. Loading Area Name: Produced Liquids (Condensate and Produced Water) -S036					
2. Type of cargo as apply):	vessels accommo		or transfer point	(check as many	
			II TAIIK CAIS	41 Talik Hucks	
3. Loading Rack	or Transfer Point				
Number of pur	mps	1	1		
Number of liqu	uids loaded	1	1		
vessels, tank	nber of marine trucks, tank cars, loading at one tim	e 1			
4. Does ballastin ☐ Yes	Does ballasting of marine vessels occur at this loading area? ☐ Yes ☐ No ☒ Does not apply				
5. Describe cleaning location, compounds and procedure for cargo vessels using this transfer point:					
6. Are cargo vessels pressure tested for leaks at this or any other location? ☐ Yes ☑ No If YES, describe:					
7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):					
Maximum	Jan Mar.	Apr June	July - Sept.	Oct Dec.	
hours/day	Varies	Varies	Varies	Varies	
days/week	7	7	7	7	

8. Bulk Liquid Data (add pages as necessary):							
Pump ID No.		NA					
Liquid Name		Produced	Liquids (Condensat	e and Pr	oduced '	Water)
Max. daily thr	oughput (1000 gal/day)	See A	ttached en	nission cal	culations	for all v	alues
Max. annual t	hroughput (1000 gal/yr)	See att	ached emi	ssion calcu	ılations	for all va	lues
Loading Meth	od ¹	SP					
Max. Fill Rate	(gal/min)	Varies					
Average Fill T	ime (min/loading)	Varies					
Max. Bulk Liq	uid Temperature (°F)	See P	roMax resi	alts			
True Vapor P	ressure ²	See Pr	oMax resu	lts			
Cargo Vessel Condition ³		Unkno	wn				
Control Equipment or Method ⁴		VB, E	CD -(Cap	tured loadi	ng losse	s)	
Minimum control efficiency (%)		70%	Capture/ 9	8% control	efficien	су	
Maximum	Loading (lb/hr)	See att	ached emi	ssions calc	ulations	for brea	kdown
Emission Rate	Annual (lb/yr)	See atta	ched emis	sions calcu	ılations	for break	down
Estimation Method ⁵		Bryan	Research	Engineerin	g Proma	x Softw	are
¹ BF = Bottom Fill SP = Splash Fill SUB = Submerged Fill							
² At maximum bulk liquid temperature							
³ B = Ballasted Vessel, C = Cleaned, U = Uncleaned (dedicated service), O = other (describe)							
List as many as apply (complete and submit appropriate <i>Air Pollution Control Device Sheets</i>):CA = Carbon Adsorption							
⁵ EPA = EPA Emission Factor as stated in AP-42 MB = Material Balance							

TM = Test Measurement based upon test data submittal O = other (describe)

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

a monthly and rolling twelve month total.	RECORDKEEPING nroughput of loaded liquids at site (gal/yr) on monthly and rolling twelve month total.
REPORTING TE	ESTING
None No	None

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

ATTACHMENT M

Air Pollution Control Devices

Attachment M Air Pollution Control Device Sheet

(FLARE SYSTEM)

Control Device ID No. (must match Emission Units Table): C001(2014), C002 (2015)

Equipment Information

1.	Manufacturer: LEED Fabrication Model No. Enclosed Combustor 48"	2. Method: ☐ Elevated flare ☐ Ground flare ☐ Other ☐ Describe Enclosed Combustion ☐ Device
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state	em with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.
4.	Method of system used: ☐ Steam-assisted ☐ Air-assisted	☐ Pressure-assisted ☐ Non-assisted
5.	Maximum capacity of flare: $ \sim 130 \qquad \text{scf/min} \\ \sim 7,850 \qquad \text{scf/hr} $	6. Dimensions of stack: Diameter ft. Height ft.
7.	Estimated combustion efficiency: (Waste gas destruction efficiency) Estimated: 98 % Minimum guaranteed: 98 %	8. Fuel used in burners: ☑ Natural Gas ☐ Fuel Oil, Number ☐ Other, Specify:
9.	Number of burners: Rating: 11.66 MMBTU/hr	11. Describe method of controlling flame:
10.	Will preheat be used? ☐ Yes ☐ No	
12.	Flare height: 25 ft	14. Natural gas flow rate to flare pilot flame per pilot light: scf/min
13.	Flare tip inside diameter: 4 ft	~50 scf/hr
	Number of pilot lights: One (1) Total 0.05 MMBTU/hr If automatic re-ignition will be used, describe the met	16. Will automatic re-ignition be used? ☐ Yes ☐ No
17.	il automatic re-ignition will be used, describe the met	niod.
	Other, Describe:	☐ No -Red era with monitoring control room
19.	Hours of unit operation per year: 8760	

Page 1 of 3

			Steam I	njed	tion	
20.	Will steam injection be used	d? ☐ Yes	⊠ No	21.	Steam pressure Minimum Expected: Design Maximum:	PSIG
22.	Total Steam flow rate:		LB/hr	23.	Temperature:	°F
24.	Velocity		ft/sec	1	Number of jet streams	
	Diameter of steam jets:		in	1	Design basis for steam inje	ected: steam/LB hydrocarbon
28.	How will steam flow be con	trolled if steam	injection is	s use	ed?	
	Cha	aracteristics o	f the Was	te G	as Stream to be Burned	
29.	Name	Quar Grains of H			Quantity (LB/hr, ft ³ /hr, etc)	Source of Material
		See	attached e	miss	ions calculations	
			122		1.5%	
30.	30. Estimate total combustible to flare: 422			LB/hr		
31	(Maximum mass flow rate of Estimated total flow rate to	· ·	130	o he	scfm	iary fuel etc:
٠	Louinatou total now rato to	_	~ 422	0 00	burnou, burnor guoco, duxii	iary raoi, oto
32.	Give composition of carrier	gases:				
33.	Temperature of emission st	ream: °F		34.	Identify and describe all au	xiliary fuels to be burned. BTU/scf
	Heating value of emission s					BTU/scf
		BTU/ft ³				BTU/scf
	Mean molecular weight of e		n:			BTU/scf
	WWV = Valles 10/10 III					BTU/scf
	Temperature of flare gas:	°F		1	Flare gas flow rate:	scf/min
	Flare gas heat content:	BTU/ft ³			Flare gas exit velocity:	scf/min
	Maximum rate during emer					scf/min
	Maximum rate during emer Describe any air pollution reheating, gas humidification	control device				BTU/min es (e.g., gas cooling, gas
42.	Describe the collection mat	erial disposal s	system:			
43.	Have you included <i>Flare C</i>	ontrol Device	in the Emis	ssion	ns Points Data Summary Sho	eet?

44. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.				
MONITORING:	ŗ	RECORDKEEPING:		
	of pilot flame (temperature)			
using a thermocouple	<u> </u>	Maintain records of the times and duration of all periods where the pilot flame was absent Maintain records of visible emission opacity tests		
DEDODTINO.		TEOTIMO.		
REPORTING: None		TESTING: Conduct a Method 22 opacity test as required		
MONITORING:		ocess parameters and ranges that are proposed to be compliance with the operation of this process equipment		
RECORDKEEPING: REPORTING:	Please describe the proposed red	cordkeeping that will accompany the monitoring. nissions testing for this process equipment on air pollution		
TESTING:	Please describe any proposed emissions testing for this process equipment on air pollution control device.			
45. Manufacturer's Gua VOC – 100% HAP – 100%	aranteed Capture Efficiency for eac	ch air pollutant.		
46. Manufacturer's Gua VOC – 98% HAP – 98%	aranteed Control Efficiency for eac	h air pollutant.		
47. Describe all operation	ng ranges and maintenance proce	edures required by Manufacturer to maintain warranty.		

Attachment M Air Pollution Control Device Sheet

(FLARE SYSTEM)

Control Device ID No. (must match Emission Units Table): C003-C004 (New)

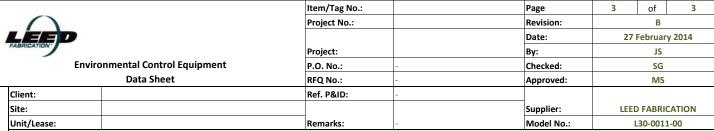
Equipment Information

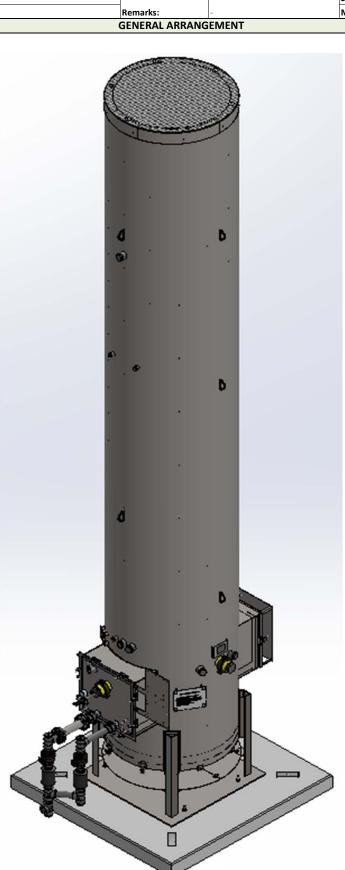
1.	Manufacturer: LEED Fabrication Model No. Enclosed Combustor 48"	2. Method: ☐ Elevated flare ☐ Ground flare ☐ Other ☐ Describe Enclosed Combustion ☐ Device
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state	em with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.
4.	Method of system used: ☐ Steam-assisted ☐ Air-assisted	☐ Pressure-assisted ☐ Non-assisted
5.	Maximum capacity of flare: $ \sim 130 \qquad \text{scf/min} \\ \sim 7,850 \qquad \text{scf/hr} $	6. Dimensions of stack: Diameter ft. Height ft.
7.	Estimated combustion efficiency: (Waste gas destruction efficiency) Estimated: 98 % Minimum guaranteed: 98 %	8. Fuel used in burners: ☑ Natural Gas ☐ Fuel Oil, Number ☐ Other, Specify:
9.	Number of burners: Rating: 11.66 MMBTU/hr	11. Describe method of controlling flame:
10.	Will preheat be used? ☐ Yes ☐ No	
12.	Flare height: 25 ft	14. Natural gas flow rate to flare pilot flame per pilot light: scf/min
13.	Flare tip inside diameter: 4 ft	~50 scf/hr
	Number of pilot lights: One (1) Total 0.05 MMBTU/hr If automatic re-ignition will be used, describe the met	16. Will automatic re-ignition be used? ☐ Yes ☐ No
17.	il automatic re-ignition will be used, describe the met	niod.
	Other, Describe:	☐ No -Red era with monitoring control room
19.	Hours of unit operation per year: 8760	

Page 1 of 3

			Steam I	njec	tion	
20.	Will steam injection be used	d? ☐ Yes	⊠ No	21.	Steam pressure Minimum Expected: Design Maximum:	PSIG
22.	Total Steam flow rate:		LB/hr	23.	Temperature:	°F
24.	Velocity		ft/sec	t		
	·		in	1	Design basis for steam inje	
28.	How will steam flow be con	trolled if steam	injection is	s use	ed?	
	Cha	aracteristics o	f the Was	te G	as Stream to be Burned	
29.	Name				Quantity (LB/hr, ft ³ /hr, etc)	Source of Material
Ì		See a	attached e	miss	ions calculations	
00	Figure 1 (1)		422		I D/L	
30.						
31	,	· ,		o be		iary fuel etc :
•		•			January January Gassay auran	,
32.	Give composition of carrier	gases:				
33.	•			34.	Identify and describe all au	xiliary fuels to be burned. BTU/scf
						BTU/scf
						BTU/scf
			า:			BTU/scf
	WWV = Valles 10/10 III	JIC				BTU/scf
		°F		 		scf/min
	Minimum Expected: Design Maximum: 22. Total Steam flow rate: 23. Temperature: 24. Velocity 25. Number of jet streams 26. Diameter of steam jets: 27. Design basis for steam injected: LB steam/LB hydrocarbo 28. How will steam flow be controlled if steam injection is used? Characteristics of the Waste Gas Stream to be Burned 29. Name Quantity Quantity Grains of H ₂ S/100 ft ³ Quantity (LB/hr, ft ³ hr, etc) Source of Materia 29. Name Grains of H ₂ S/100 ft ³ (LB/hr, ft ³ hr, etc) Source of Materia 30. Estimate total combustible to flare: (Maximum mass flow rate of waste gas) 130 scfm 31. Estimated total flow rate of flare including materials to be burned, carrier gases, auxiliary fuel, etc.: VOC ~ 422 32. Give composition of carrier gases: 33. Temperature of emission stream: 70 °F Heating value of emission stream: Varies BTU/ft ³ Mean molecular weight of emission stream: MW = Varies Ib/Ib-mole 35. Temperature of flare gas: °F 36. Flare gas flow rate: Sct/min 37. Flare gas heat content: BTU/ft ³ 38. Flare gas exit velocity: Sct/min 40. Maximum rate during emergency for one major piece of equipment or process unit: Sct/min 41. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, reheating, gas humidification): 42. Describe the collection material disposal system:					
42.	Describe the collection mat	erial disposal s	ystem:			
43.	Have you included <i>Flare C</i>	ontrol Device	in the Emis	ssion	s Points Data Summary She	eet?

Please propose mor		and Testing ting in order to demonstrate compliance with the proposed r to demonstrate compliance with the proposed emissions
MONITORING:	ı	RECORDKEEPING:
	of pilot flame (temperature)	
using a thermocouple	<u> </u>	Maintain records of the times and duration of all periods where the pilot flame was absent Maintain records of visible emission opacity tests
DEDODTINO.		TEOTINO.
REPORTING: None		TESTING: Conduct a Method 22 opacity test as required
MONITORING:		ocess parameters and ranges that are proposed to be e compliance with the operation of this process equipment
RECORDKEEPING: REPORTING:	Please describe the proposed red	cordkeeping that will accompany the monitoring. nissions testing for this process equipment on air pollution
TESTING:		nissions testing for this process equipment on air pollution
45. Manufacturer's Gua VOC – 100% HAP – 100%	aranteed Capture Efficiency for eac	ch air pollutant.
46. Manufacturer's Gua VOC – 98% HAP – 98%	aranteed Control Efficiency for eac	h air pollutant.
47. Describe all operation	ng ranges and maintenance proce	edures required by Manufacturer to maintain warranty.


Battery Pack


Item/Tag No.:		Page	1	of	2
Project No.:		Revision:		В	
		Date:	27 1	ebruar	y 2014
Project:		Ву:		JS	
P.O. No.:	-	Checked:		SG	

-	FABRICATION"			Drainate			D	IC
	Enviro				-		Checked:	SG
		Data Sheet		RFQ No.:	-		Approved:	MS
	Client:			Ref. P&ID:	-			
							Cumplion	LEED EARRICATION
				4 _				
	Unit/Lease:				-		Model No.:	L30-0011-00
				GENERAI				
1	Design Code:				NDE:			LEED Fabrication Standards
2	Service:				Custo	mar Snacs:		□ Vos
		Standard Dual	C+ 40 III:-b Eff:	-! Cbt	Custo	mer spees.		_=
3	Description:	Standard Dua	Stage 48 High Emi					✓ NO
				PROCESS DA	ATA			
	00			Proces	ss Conditions:			
	Gas Composition:			mol %	Variable	Valu	e Un	its
	Mathaus							
4	ivietnane						+	ста
5	Ethane				Pressure	Up to	12 oz/	in2
6	Propane				Temperature		0	F
7	I-Butane				Aolecular Weight			
						[] C		7 .::
8		Environmental Control Equipment P.O. No.2 -						
9	I-Pentane			Detail	ed Process Descripti	on / Process N	otes:	
10	n-Pentane			1. Tur	ndown 10:1. Based	on an expected	l normal operat	ing rate indicated above.
11	n-Hexane			2. DRI	: 98 % operating at	design conditi	ons	
12				3. Bur	ner Pressure Drop: I	Vin. 0.10 oz/in	2	
13	N2							
14	Helium							
15	H ₂ O							
16			P.O. No.:					
17								
18	C9							
19	C10							
20	C11+							
21		TOTAL						
21		IOTAL					Checked: SG Approved: MS Supplier: LEED FABRICATION Model No.: L30-0011-00 LEED Fabrication Standards Specs: Yes No Value Units Up to 140 Mscfd Up to 12 oz/in2 oF carbon Steel Carbon Steel Carb	
	Project:							
22	H2S				Fuel / Pilot Gas		Min. 30psi	g Natural Gas /Propane 40-50 SCFF
23	Benzene				Instrument Air		NA	
24	Toluene				Power		120 V / 60	Hz or Solar Power
								112 01 30101 1 01101
25							NA	
26	Xylene				Purge Gas			
				DESIGN DA	TA			
27	Ambient Temperatures:			Noise	Performance Requi	rements:		Under 85 dBA
28			-20	Struct	ural Design Code:			
					_			ACCE
29			120	wina	Design Code:			ASCE
31	Max. Relative Humidity,	%	90		Press	ure/Speed		100 mph
32	Elevation (ASL), ft				Cate	ory		
			Class I I	Div 2 Saism		· •	+	
								
34	Electrical Design Code:					ION		
		_		QUIPMENT SPEC	FICATION			
35	Туре:	☐ Elevated ✓	Enclosed	Equip	ment Design:			
36		Above Ground			Compo	nent	N	Naterial / Size / Rating / Other
37			Multiple Stack	Ruraa				
	 		p.:= = 146K	Burne		+ C- : 5	+	204.00
38		☐ FULTABLE / Trailer						
39					Burner	Body		Carbon Steel
40	Smokeless By:	Steam .	Assist Air	Pilot				
41		☐ Gas Assist 🗸	Staging		Pilot 1	Tip .		304 SS
42			J J					
	Cha also	C-15 C				10(3)	+	Carbon Steer
					x / Stack			
44	Flare Burner:	☐ Non-Smokeless ✓	Smokeless	Gas Assist	She	<u> </u>		Carbon Steel
45	Pilot:	✓ Intermittent	Continuous		Pipir	ng		Carbon Steel
			Remote					
46	Pilot Air Inspirator:	✓ Local					 	
	Pilot Air Inspirator:		Vos /Thormosou	(مام		C)	1	Carpon Steel
47	Pilot Air Inspirator: Pilot Flame Control:		Yes (Thermocou	ple)				
47	·		Yes (Thermocou	ple)				
46 47 48 49	·	□ No □			Insulat	ion		Blanket
47 48	Pilot Flame Control:	No V	Inspirating Ignito	or	Insulat Insulatio	ion n Pins		Blanket 304 SS
47 48 49 50	Pilot Flame Control:	No V	Inspirating Ignito	or	Insulat Insulatio Refrac	ion n Pins tory		Blanket 304 SS NA
47 48 49 50 51	Pilot Flame Control:	No V Flamefront Generator V Electronic V With Pilot Flame Control	Inspirating Ignito	or	Insulat Insulatio Refrac Refractory	cion n Pins tory Anchors		Blanket 304 SS NA NA
47 48 49 50 51	Pilot Flame Control:	No V Flamefront Generator V Electronic V With Pilot Flame Control	Inspirating Ignito	or	Insulat Insulatio Refrac Refractory	cion n Pins tory Anchors		Blanket 304 SS NA NA
47 48 49	Pilot Flame Control:	No V Flamefront Generator V Electronic V With Pilot Flame Control	Inspirating Ignito	or	Insulat Insulatio Refrac Refractory Ladders and	cion n Pins tory Anchors Platforms		Blanket 304 SS NA NA NA

Other

					Item/Tag No	.:		Page		2	of	3
					Project No.:			Revision	1:		В	
	LEED							Date:		27 Fel	bruary 20:	14
	FABRICATION .				Project:			Ву:			JS	
	Environ	mental	Control Equipm	ent	P.O. No.:		-	Checked	d:		SG	
			a Sheet		RFQ No.:		-	Approve			MS	-
	Client:				Ref. P&ID:		-	търгот				
	Site:				ilen i Gizi			Supplier		LEED E	ABRICATION	ON
	Unit/Lease:				Remarks:			Model N			0-0011-00	
	Offic/ Lease.				EQUIPMENT	SDECIE	ICATION	Wiodel	10	L30	-0011-00	
= 6	Flame Detection:	Пты	ormoogunlo	✓ Ionization Ro		1						
	Flame Detection:	=	ermocouple	V TOTIIZATIOTI RC	ou	Auxiliai	ry Equipment					
57	C	UV	Scanner				Valves			NA		
	General Configuration:						Blowers			NA		
59			Comme				Dampers			NA	k .	
60							Inlet KO / Liquid Seal			NA	l .	
61							Flame / Detonation Arrestor			Yes	;	
62						Instrum	nentation & Controls					
63							Solenoids / Shut-Off Valves		Check	with Sales for	available	e config.
64							Flow Meters			NA		
65				0			Calorimeter			NA		
66							Pressure Switches/Transmitters			NA		
67							Thermocouples		Check	with Sales for		e config.
68			0: :-			—	Temperature Switches/Transmitte	ers	J	NA		
69			2 3	4		 	BMS		Chack	with Sales for		a config
70				*		 			CHECK			. comig.
70 71			1000	1			CEMS Other			NA NA		
				, m			Other			NA	-	
72			FIFT.									
73												
74			0									
75												
					FABRICATION	AND IN						
76	Special requirements	<u> </u>		✓ Concrete Pad			Eq	uipment	Info			
77			Other				Component			Weight / Dir	mensions	
78			-			Burner						
79	Inspection		Vendor Standard				Burner Assembly					
80			Other. Specify:			Stack						
81	Material Certification	✓	Vendor Standard				Stack Assembly			48 " OD x	25 ' H	
82			MTR				Pilot Tip					
83			Certificate of Cor	npliance			Pilot Line(s)					
84			Other (Specify):				Stack Assembly					
85	NDE	✓	Vendor Standard			Auxilia	ry Equipment					
86			Radiography. Spe	cify:			Blowers					
87			Ultrasonic. Speci	fy:			Inlet KO / Liquid Seal					
88			Liquid Penetrant.				Flame / Detonation Arrestor					
89			Magnetic Particles	S.			Skid					-
90			PMI. Specify:			Instrum	nentation & Controls					
91			Other. Specify:				BMS					
92	Surface Preparation	<u> </u>	Vendor Standard				Control Panel					
93	<u> </u>	$\overline{\Box}$	Other. Specify:									
94	Paint System		Vendor Standard									
95	·		Other. Specify:									
96	Finished Color		Vendor Standard									
97			Other. Specify:									
98			zanzar opoury.									
99												
	Additional Notes:								<u> </u>			
	Additional Notes.											
	i											

§ MMBTU/hr values are calculated based on 1500 BTU/scf gas

		Pressure			
Flare Size	# of Orifices (N)	(OZ/in²)	m³/s	mSCFD	MMBTU/hr
18	2	1	0.0021	6.34	0.39
18	2	2	0.0029	8.97	0.56
18	2	3	0.0036	10.99	0.68
18	2	4	0.0042	12.69	0.78
18	2	5	0.0046	14.18	0.88
18	2	6	0.0051	15.54	0.96
18	2	7	0.0055	16.78	1.04
18	2	8	0.0059	17.94	1.11
18	2	9	0.0062	19.03	1.18
18	2	10	0.0066	20.06	1.24
18	2	11	0.0069	21.04	1.30
18	2	12	0.0072	21.97	1.36
18	2	13	0.0075	22.87	1.42
18	2	14	0.0078	23.73	1.47
18	2	15	0.0081	24.57	1.52
18	2	16	0.0083	25.37	1.57
18	2	17	0.0086	26.15	1.62
18	2	18	0.0088	26.91	1.67
24	4	1	0.0042	12.69	0.78
24	4	2	0.0059	17.94	1.11
24	4	3	0.0072	21.97	1.36
24	4	4	0.0083	25.37	1.57
24	4	5	0.0093	28.37	1.76
24	4	6	0.0102	31.08	1.92
24	4	7	0.0110	33.56	2.08
24	4	8	0.0118	35.88	2.22
24	4	9	0.0125	38.06	2.35
24	4	10	0.0131	40.12	2.48
24	4	11	0.0138	42.08	2.60
24	4	12	0.0144	43.95	2.72
24	4	13	0.0150	45.74	2.83
24	4	14	0.0156	47.47	2.94
24	4	15	0.0161	49.13	3.04
24	4	16	0.0166	50.75	3.14
24	4	17	0.0171	52.31	3.24
24	4	18	0.0176	53.82	3.33
36	10	1	0.0104	31.72	1.96
36	10	2	0.0147	44.85	2.78
36	10	3	0.0180	54.93	3.40

36	10	4	0.0208	63.43	3.92
36	10	5	0.0232	70.92	4.39
36	10	6	0.0255	77.69	4.81
36	10	7	0.0275	83.91	5.19
36	10	8	0.0294	89.71	5.55
36	10	9	0.0312	95.15	5.89
36	10	10	0.0329	100.29	6.21
36	10	11	0.0345	105.19	6.51
36	10	12	0.0360	109.87	6.80
36	10	13	0.0375	114.35	7.08
36	10	14	0.0389	118.67	7.34
36	10	15	0.0403	122.83	7.60
36	10	16	0.0416	126.86	7.85
36	10	17	0.0429	130.77	8.09
36	10	18	0.0441	134.56	8.33
48	14	1	0.0146	44.40	2.75
48	14	2	0.0206	62.79	3.89
48	14	3	0.0252	76.91	4.76
48	14	4	0.0291	88.80	5.49
48	14	5	0.0325	99.29	6.14
48	14	6	0.0356	108.76	6.73
48	14	7	0.0385	117.48	7.27
48	14	8	0.0412	125.59	7.77
48	14	9	0.0437	133.21	8.24
48	14	10	0.0460	140.41	8.69
48	14	11	0.0483	147.27	9.11
48	14	12	0.0504	153.81	9.52
48	14	13	0.0525	160.09	9.91
48	14	14	0.0545	166.14	10.28
48	14	15	0.0564	171.97	10.64
48	14	16	0.0582	177.61	10.99
48	14	17	0.0600	183.07	11.33
48	14	18	0.0617	188.38	11.66

ATTACHMENT N

Supporting Emission Calculations

Facility-Wide Emission Summary - Controlled

Wells	12
Storage Tanks	12
Sand Separator Tank	2
Line Heaters	10
TEGs	4
Dehy Reboiler	0
Glycol Dehy	0
Dehy Drip Tank	0
Dehy Combustor	0
Compressor	0
High Pressure Separator	12
Low Pressure Separator	0
Vapor Recovery Unit	0
Tank Combustor	4
Length of lease road	5,410

Carbon equivalent emissions (CO₂e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:

 $\begin{array}{ccc} \text{CO}_2 & 1 \\ \text{CH}_4 & 25 \\ \text{N}_2 \text{O} & 298 \end{array}$

feet

Emission	Emission	Emission	N	0 _x	C	:0	V	OC .	S	O_2	PN	M ₁₀	PN	1 _{2.5}	CO	0 ₂ e
Point ID #	Source ID#s	Source Description	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001-C002, C003-C004	S001-S012	Storage Vessels					2.33	10.20							16.26	71.23
C001-C002, C003-C004	S036	Captured Liquid Loading					0.90	0.23								
C001	C001	Tank Combustor	1.15	5.03	0.96	4.22	2.8E-04	1.2E-03	0.01	0.03	0.09	0.38	0.09	0.38	1,371.10	6,005.43
C002	C002	Tank Combustor	1.15	5.03	0.96	4.22	2.8E-04	1.2E-03	0.01	0.03	0.09	0.38	0.09	0.38	1,371.10	6,005.43
C003	C003	Tank Combustor	1.15	5.03	0.96	4.22	2.8E-04	1.2E-03	0.01	0.03	0.09	0.38	0.09	0.38	1,371.10	6,005.43
C004	C004	Tank Combustor	1.15	5.03	0.96	4.22	2.8E-04	1.2E-03	0.01	0.03	0.09	0.38	0.09	0.38	1,371.10	6,005.43
C001	S001-S012, S036, C001		1.15	5.03	0.96	4.22	0.81	2.61	0.01	0.03	0.09	0.38	0.09	0.38	1,375.17	6,023.24
C002	S001-S012, S036, C002		1.15	5.03	0.96	4.22	0.81	2.61	0.01	0.03	0.09	0.38	0.09	0.38	1,375.17	6,023.24
C003	S001-S012, S036, C003		1.15	5.03	0.96	4.22	0.81	2.61	0.01	0.03	0.09	0.38	0.09	0.38	1,375.17	6,023.24
C004	S001-S012, S036, C004		1.15	5.03	0.96	4.22	0.81	2.61	0.01	0.03	0.09	0.38	0.09	0.38	1,375.17	6,023.24
E021	S021	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E022	S022	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E023	S023	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E024	S024	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E025	S025	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E026	S026	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E027	S027	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E034	S034	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E035	S035	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E019	S019	Line Heater	0.07	0.32	0.06	0.27	4.0E-03	0.02	4.4E-04	1.9E-03	0.01	0.02	0.01	0.02	90.09	394.60
E028	S028	TEG	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	1.52	6.64
E029	S029	TEG	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	1.52	6.64
E030	S030	TEG	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	1.52	6.64
E031	S031	TEG	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	1.52	6.64
E032	S032	Sand Separator Tank					0.07	0.32							0.50	2.20
E033	S033	Sand Separator Tank					0.07	0.32							0.50	2.20
E036	S036	Uncaptured Liquid Loading					19.24	5.00								
		Fugitives						35.06								541.51
		Haul Roads										6.04		0.60		
Facility Total			5.99	26.24	5.03	22.04	22.70	51.49	0.04	0.16	0.46	8.04	0.46	2.60	7,219.47	32,162.81
Facility Total (excluding fugitive	ve emissions)		5.99	26.24	5.03	22.04	3.45	11.43	0.04	0.16	0.46	1.99	0.46	1.99	7,219.47	31,621.30
P 1 1 1 1	. 10.01 1 1 1 1 1	ital number of combustors (i.e. Comb	. D I				. 11	10	1 / [1	C 1	. 1. 1		3 77		, .	

^{1.} Emissions routed to combustors are divided evenly by the total number of combustors (i.e., Combustor Point Emissions = [storage tanks emissions + captured loading emissions] / [number of combustors] + combustor emissions). However, emissions can be routed to either combustors.

Company Name: <u>EOT Production, LLC</u>
Facility Name: <u>OXF 149-150 Pad</u>
Project Description: <u>R13 Application</u>

Facility-Wide Emission Summary - Controlled

Emission	Emission	Emission	Formal	dehyde	Ben	zene	Tolu	iene	Ethylb	enzene	Xyl	enes	n-He	xane	Tota	l HAP
Point ID #	Source ID#s	Source Description	lb/hr	tpy												
C001-C002, C003-C004	S001-S012	Storage Vessels			2.6E-03	1.1E-02	5.5E-03	2.4E-02	2.5E-04	1.1E-03	2.3E-03	9.9E-03	0.07	0.31	0.09	0.41
C001-C002, C003-C004	S036	Captured Liquid Loading			6.2E-04	1.6E-04	1.2E-03	3.2E-04	6.0E-05	1.6E-05	5.4E-04	1.4E-04	0.02	0.01	0.03	0.01
C001	C001	Tank Combustor														
C002	C002	Tank Combustor														
C003	C003	Tank Combustor														
C004	C004	Tank Combustor														
C001	S001-S012, S036, C001				8.0E-04	2.9E-03	1.7E-03	6.1E-03	7.7E-05	2.8E-04	7.0E-04	2.5E-03	0.02	0.08	0.03	0.11
C002	S001-S012, S036, C002				8.0E-04	2.9E-03	1.7E-03	6.1E-03	7.7E-05	2.8E-04	7.0E-04	2.5E-03	0.02	0.08	0.03	0.11
C003	S001-S012, S036, C003				8.0E-04	2.9E-03	1.7E-03	6.1E-03	7.7E-05	2.8E-04	7.0E-04	2.5E-03	0.02	0.08	0.03	0.11
C004	S001-S012, S036, C004				8.0E-04	2.9E-03	1.7E-03	6.1E-03	7.7E-05	2.8E-04	7.0E-04	2.5E-03	0.02	0.08	0.03	0.11
E021	S021	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E022	S022	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E023	S023	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E024	S024	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E025	S025	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E026	S026	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E027	S027	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E034	S034	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E035	S035	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E019	S019	Line Heater	5.5E-05	2.4E-04	1.5E-06	6.7E-06	2.5E-06	1.1E-05					1.3E-03	0.01	1.4E-03	0.01
E028	S028	TEG	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-04
E029	S029	TEG	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-04
E030	S030	TEG	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-04
E031	S031	TEG	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-04
E032	S032	Sand Separator Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	2.0E-03	1.0E-02
E033	S033	Sand Separator Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	2.0E-03	1.0E-02
E036	S036	Uncaptured Liquid Loading			0.01	3.5E-03	0.03	0.01	1.3E-03	3.3E-04	1.2E-02	3.0E-03	0.53	0.14	0.67	0.17
		Fugitives				0.01		0.03		< 0.01		0.02		0.59		1.09
		Haul Roads														
Facility Total	<u> </u>	<u> </u>	1.0E-03	4.6E-03	0.02	0.03	0.03	0.07	1.6E-03	1.4E-03	0.01	0.03	0.66	1.16	0.83	1.83
Facility Total (excluding fugitive	ve emissions)		1.0E-03	4.6E-03	3.2E-03	0.01	6.8E-03	2.5E-02	3.1E-04	1.1E-03	2.8E-03	1.0E-02	0.12	0.43	0.16	0.56

^{1.} Emissions routed to combustors are divided evenly by the total number of combustors (i.e., Combustor Point Emissions = [storage tanks emissions + captured loading emissions] / [number of combustors] + combustor emissions). However, emissions can be routed to either combustor.

Produced Fluids Storage Vessels

Potential Throughput Operational Hours 8,760 hrs/yr Maximum Condensate Throughput¹ 3,772 bbl/month Maximum Produced Water Throughput¹ 38,538 bbl/month

Overall Control Efficiency of Combustor 98%

Storage Tanks - Uncontrolled

	Brea	thing	Wor	rking	Flas	hing	Total E	nissions
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Methane	< 0.001	< 0.001	< 0.001	< 0.001	32.526	142.465	32.526	142.465
Ethane	< 0.001	< 0.001	< 0.001	< 0.001	37.878	165.907	37.878	165.907
Propane	0.340	1.489	0.497	2.175	42.055	184.200	42.891	187.864
Isobutane	0.081	0.357	0.119	0.521	11.100	48.620	11.301	49.498
n-Butane	0.184	0.804	0.268	1.175	25.457	111.500	25.909	113.479
Isopentane	0.070	0.306	0.102	0.447	9.870	43.230	10.042	43.983
n-Pentane	0.067	0.291	0.097	0.426	9.539	41.780	9.702	42.497
n-Hexane	0.023	0.103	0.034	0.150	3.516	15.400	3.574	15.653
Cyclohexane	0.001	0.007	0.002	0.010	0.262	1.146	0.265	1.162
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
n-Heptane	0.026	0.113	0.038	0.165	4.164	18.240	4.228	18.518
n-Octane	0.008	0.036	0.012	0.052	1.363	5.971	1.383	6.059
n-Nonane	0.002	0.007	0.002	0.011	0.293	1.282	0.297	1.300
n-Decane	0.002	0.009	0.003	0.013	0.356	1.560	0.361	1.581
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Triethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Isohexane	0.036	0.158	0.053	0.230	5.299	23.210	5.388	23.598
3-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Neohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Benzene	0.001	0.003	0.001	0.004	0.128	0.559	0.129	0.565
Toluene	0.001	0.005	0.002	0.007	0.273	1.195	0.276	1.207
Ethylbenzene	5.7E-05	2.5E-04	8.3E-05	3.6E-04	0.012	0.054	0.012	0.054
m-Xylene	0.001	0.002	0.001	0.003	0.111	0.488	0.113	0.494
Isooctane	0.004	0.017	0.006	0.024	0.612	2.680	0.621	2.721
Total VOC Emissions:	0.85	3.71	1.24	5.41	114.41	501.11	116.49	510.23
Total HAP Emissions:	3.0E-02	0.13	0.04	0.19	4.65	20.38	4.72	20.69

¹ Uncontrolled emissions calculation using Promax (sum of produced water and condensate). Non-methane emissions are taken from the tank emissions stencil. Methane emissions are taken from the flash stream composition.

² Composition of condensate from OXF-149 sample from 04/29/2013.

¹ Based on the highest monthly throughput recorded at the site (July 2015). Includes a safety factor of 30%.

Produced Fluids Storage Vessels

Storage Tanks - Controlled

		thing	Wor	king	Flas	U	Total En	
	lb/hr	tpy			lb/hr	tpy	lb/hr	tpy
Methane	< 0.001	< 0.001	<0.001	< 0.001	0.651	2.849	0.651	2.849
Ethane	< 0.001	< 0.001	< 0.001	< 0.001	0.758	3.318	0.758	3.318
Propane	0.007	0.030	0.010	0.044	0.841	3.684	0.858	3.757
sobutane	0.002	0.007	0.002	0.010	0.222	0.972	0.226	0.990
-Butane	0.004	0.016	0.005	0.024	0.509	2.230	0.518	2.270
sopentane	0.001	0.006	0.002	0.009	0.197	0.865	0.201	0.880
-Pentane	0.001	0.006	0.002	0.009	0.191	0.836	0.194	0.850
-Hexane	4.7E-04	0.002	0.001	0.003	0.070	0.308	0.071	0.313
yclohexane	3.0E-05	1.3E-04	4.4E-05	1.9E-04	0.005	0.023	0.005	0.023
lethylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
-Heptane	0.001	0.002	0.001	0.003	0.083	0.365	0.085	0.370
-Octane	1.6E-04	0.001	2.4E-04	0.001	0.027	0.119	0.028	0.121
-Nonane	3.4E-05	1.5E-04	4.9E-05	2.2E-04	0.006	0.026	0.006	0.026
-Decane	3.9E-05	1.7E-04	5.7E-05	2.5E-04	0.007	0.031	0.007	0.032
-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Oodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
riethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
yclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
sohexane	0.001	0.003	0.001	0.005	0.106	0.464	0.108	0.472
-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
leohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
ecane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
enzene	1.2E-05	5.1E-05	1.7E-05	7.5E-05	0.003	0.011	0.003	0.011
'oluene	2.3E-05	1.0E-04	3.4E-05	1.5E-04	0.005	0.024	0.006	0.024
thylbenzene	1.1E-06	5.0E-06	1.7E-06	7.2E-06	2.5E-04	0.001	2.5E-04	0.001
n-Xylene	1.0E-05	4.4E-05	1.5E-05	6.5E-05	0.002	0.010	0.002	0.010
sooctane	7.6E-05	3.3E-04	1.1E-04	4.9E-04	0.012	0.054	0.012	0.054
otal VOC Emissions:	1.7E-02	0.07	0.02	0.11	2.29	10.02	2.33	10.20
otal HAP Emissions:	5.9E-04	2.6E-03	8.6E-04	3.8E-03	9.3E-02	0.41	0.09	0.41

Sand Separator Tank

Throughput Parameter	Value	Units
Tank Capacity	5,880	gallons
Operational Hours	8,760	hrs/yr
Throughput	280	bbl/month
Percent Produced Water	50%	
Total Produced Water Throughput	140	bbl/month

 $^{^{1}}$ Conservatively assumes 2 turnovers/month of sand and produced water.

Description	Potential Throughput (gal/yr)
Produced Water and Sand	141,120

Sand Separator Tank (140 bbl) - Uncontrolled (Per tank) 2,3

Constituent	Total Em lb/hr	nissions ¹ tpy
Methane	0.020	0.088
Ethane	0.032	0.140
Propane	0.033	0.143
Isobutane	0.008	0.035
n-Butane	0.017	0.073
Isopentane	0.006	0.026
n-Pentane	0.005	0.022
Hexanes	0.002	0.007
Heptanes	0.002	0.007
Octane	< 0.001	0.002
Nonane	< 0.001	< 0.001
Decane	< 0.001	< 0.001
Benzene	< 0.001	< 0.001
Toluene	< 0.001	< 0.001
Ethylbenzene	< 0.001	< 0.001
Xylenes	< 0.001	< 0.001
n-Hexane	0.001	0.005
2,2,4-Trimethylpentane	< 0.001	< 0.001
Total HC Emissions:	0.126	0.552
Total VOC Emissions:	0.074	0.323
Total HAP Emissions:	0.002	0.010

 $^{^2\,\}mathrm{E\&P}$ TANK 2.0 calculates working, breathing and flashing losses and reports the sum as one total.

³ E&P TANK v2.0 emission calculations are based on 4/29/2013 condensate sample from OXF-149 wellpad

Sand Separator Tank

Sand Separator Tank (140 bbl) - Controlled (Per tank)

	Total Emissions		
Constituent	lb/hr	tpy	
Methane	0.020	0.088	
Ethane	0.032	0.140	
Propane	0.033	0.143	
Isobutane	0.008	0.035	
n-Butane	0.017	0.073	
Isopentane	0.006	0.026	
n-Pentane	0.005	0.022	
Hexanes	0.002	0.007	
Heptanes	0.002	0.007	
Octane	< 0.001	0.002	
Nonane	< 0.001	< 0.001	
Decane	< 0.001	< 0.001	
Benzene	< 0.001	< 0.001	
Toluene	< 0.001	< 0.001	
Ethylbenzene	< 0.001	< 0.001	
Xylenes	< 0.001	< 0.001	
n-Hexane	0.001	0.005	
2,2,4-Trimethylpentane	<0.001	< 0.001	
Total Emissions:	0.126	0.550	
Total VOC Emissions:	0.074	0.323	
Total HAP Emissions:	0.002	0.010	

Tank Combustor

Source Designation:	C001 & C002, C003 &C004
Pilot Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Pilot Rating (MMBtu/hr)	0.05
Combustor Rating (MMBtu/hr) ¹	11.66
Combustor Rating (Mscfd) ¹	188.38
Combustor Rating (scf/hr)	7849.17
Pilot Fuel Consumption (scf/hr):	50.00
Potential Annual Hours of Operation (hr/yr):	8,760

¹ Maximum heat input for 48" model from Leed Enclosed Combustor Operations Manual

Enclosed Combustor Emissions

	Emission Factors ²	Comb	oustor	Pi	lot	To	tal
Pollutant	(lb/MMBtu)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
NO_x	0.10	1.14	5.01	5.1E-03	0.02	1.15	5.03
CO	0.08	0.96	4.21	4.3E-03	0.02	0.96	4.22
VOC	5.4E-03			2.8E-04	1.2E-03	0.00	0.00
SO ₂	5.9E-04	0.01	0.03	3.1E-05	1.4E-04	0.01	0.03
PM/PM ₁₀	0.01	0.09	0.38	3.9E-04	1.7E-03	0.09	0.38
CO ₂	117.00	1364.189	5975.146	6.14	26.90	1370.33	6002.05
CH ₄	2.2E-03			1.2E-04	5.1E-04	0.00	0.00
N ₂ O	2.2E-04	2.6E-03	0.01	1.2E-05	5.1E-05	2.6E-03	0.01

² Emission factors from AP-42 Ch. 1.4 for natural gas combustion were used as they were determined to be most representative of the process. Ch. 5.3 (Natural Gas Processing) was consulted, however, factors contained there are appropriate for amine gas sweetening processes, which is not the case at the wellpad. Also, Ch. 13.5 (Industrial Flares) was consulted, but since the control device in this case is an enclosed combustor vs. an elevated flare, these factors were also determined to be inappropriate.

Combustor Maximum Loading:

7849.17 scf	lb-mol	20.43 lb	= 422.65 lb/hr
hr	379.5 scf	lb-mol	-

Line Heaters

Source Designation:	S021-S027, S034-S035
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Heat Input (MMBtu/hr)	1.54
Fuel Consumption (MMscf/hr):	1.47E-03
Potential Annual Hours of Operation (hr/yr):	8,760

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ^{1, 4}	(lb/hr) ²	(tons/yr) ³	
NO_x	100	0.15	0.64	
со	84	0.12	0.54	
voc	5.5	0.01	0.04	
SO_2	0.6	8.8E-04	3.9E-03	
PM Total	7.6	0.01	0.05	
PM Condensable	5.7	0.01	0.04	
PM ₁₀ (Filterable)	1.9	2.8E-03	0.01	
PM _{2.5} (Filterable)	1.9	2.8E-03	0.01	
Lead	5.00E-04	7.3E-07	3.2E-06	
CO_2	117.0	180.00	788.38	
CH ₄	2.21E-03	3.4E-03	1.5E-02	
N_2O	2.21E-04	3.4E-04	1.5E-03	

EQT Production, LLC Company Name: Facility Name: OXF 149-150 Pad **Project Description:** R13 Application

Line Heaters

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³	
HAPs:				
2-Methylnaphthalene	2.4E-05	3.5E-08	1.5E-07	
3-Methylchloranthrene	1.8E-06	2.6E-09	1.2E-08	
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.3E-08	1.0E-07	
Acenaphthene	1.8E-06	2.6E-09	1.2E-08	
Acenaphthylene	1.8E-06	2.6E-09	1.2E-08	
Anthracene	2.4E-06	3.5E-09	1.5E-08	
Benz(a)anthracene	1.8E-06	2.6E-09	1.2E-08	
Benzene	2.1E-03	3.1E-06	1.3E-05	
Benzo(a)pyrene	1.2E-06	1.8E-09	7.7E-09	
Benzo(b)fluoranthene	1.8E-06	2.6E-09	1.2E-08	
Benzo(g,h,i)perylene	1.2E-06	1.8E-09	7.7E-09	
Benzo(k)fluoranthene	1.8E-06	2.6E-09	1.2E-08	
Chrysene	1.8E-06	2.6E-09	1.2E-08	
Dibenzo(a,h) anthracene	1.2E-06	1.8E-09	7.7E-09	
Dichlorobenzene	1.2E-03	1.8E-06	7.7E-06	
Fluoranthene	3.0E-06	4.4E-09	1.9E-08	
Fluorene	2.8E-06	4.1E-09	1.8E-08	
Formaldehyde	7.5E-02	1.1E-04	4.8E-04	
Hexane	1.8E+00	2.6E-03	1.2E-02	
Indo(1,2,3-cd)pyrene	1.8E-06	2.6E-09	1.2E-08	
Naphthalene	6.1E-04	8.9E-07	3.9E-06	
Phenanthrene	1.7E-05	2.5E-08	1.1E-07	
Pyrene	5.0E-06	7.3E-09	3.2E-08	
Toluene	3.4E-03	5.0E-06	2.2E-05	
Arsenic	2.0E-04	2.9E-07	1.3E-06	
Beryllium	1.2E-05	1.8E-08	7.7E-08	
Cadmium	1.1E-03	1.6E-06	7.1E-06	
Chromium	1.4E-03	2.1E-06	9.0E-06	
Cobalt	8.4E-05	1.2E-07	5.4E-07	
Manganese	3.8E-04	5.6E-07	2.4E-06	
Mercury	2.6E-04	3.8E-07	1.7E-06	
Nickel	2.1E-03	3.1E-06	1.3E-05	
Selenium	2.4E-05	3.5E-08	1.5E-07	
Total HAP		2.8E-03	1.2E-02	

 $^{^{\}rm 1}$ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

³ Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb). ⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Line Heater

Source Designation:	S019
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Heat Input (MMBtu/hr)	0.77
Fuel Consumption (MMscf/hr):	7.33E-04
Potential Annual Hours of Operation (hr/yr):	8,760

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ^{1, 4}	(lb/hr) ²	(tons/yr) ³	
NO _x	100	0.07	0.32	
со	84	0.06	0.27	
VOC	5.5	4.0E-03	0.02	
SO_2	0.6	4.4E-04	1.9E-03	
PM Total	7.6	0.01	0.02	
PM Condensable	5.7	4.2E-03	0.02	
PM ₁₀ (Filterable)	1.9	1.4E-03	0.01	
PM _{2.5} (Filterable)	1.9	1.4E-03	0.01	
Lead	5.00E-04	3.7E-07	1.6E-06	
CO ₂	117.0	90.00	394.19	
CH ₄	2.21E-03	1.7E-03	7.4E-03	
N ₂ O	2.21E-04	1.7E-04	7.4E-04	

EQT Production, LLC Company Name: Facility Name: OXF 149-150 Pad **Project Description:** R13 Application

Line Heater

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
HAPs:			
2-Methylnaphthalene	2.4E-05	1.8E-08	7.7E-08
3-Methylchloranthrene	1.8E-06	1.3E-09	5.8E-09
7,12-Dimethylbenz(a)anthracene	1.6E-05	1.2E-08	5.1E-08
Acenaphthene	1.8E-06	1.3E-09	5.8E-09
Acenaphthylene	1.8E-06	1.3E-09	5.8E-09
Anthracene	2.4E-06	1.8E-09	7.7E-09
Benz(a)anthracene	1.8E-06	1.3E-09	5.8E-09
Benzene	2.1E-03	1.5E-06	6.7E-06
Benzo(a)pyrene	1.2E-06	8.8E-10	3.9E-09
Benzo(b)fluoranthene	1.8E-06	1.3E-09	5.8E-09
Benzo(g,h,i)perylene	1.2E-06	8.8E-10	3.9E-09
Benzo(k)fluoranthene	1.8E-06	1.3E-09	5.8E-09
Chrysene	1.8E-06	1.3E-09	5.8E-09
Dibenzo(a,h) anthracene	1.2E-06	8.8E-10	3.9E-09
Dichlorobenzene	1.2E-03	8.8E-07	3.9E-06
Fluoranthene	3.0E-06	2.2E-09	9.6E-09
Fluorene	2.8E-06	2.1E-09	9.0E-09
Formaldehyde	7.5E-02	5.5E-05	2.4E-04
Hexane	1.8E+00	1.3E-03	5.8E-03
Indo(1,2,3-cd)pyrene	1.8E-06	1.3E-09	5.8E-09
Naphthalene	6.1E-04	4.5E-07	2.0E-06
Phenanthrene	1.7E-05	1.2E-08	5.5E-08
Pyrene	5.0E-06	3.7E-09	1.6E-08
Toluene	3.4E-03	2.5E-06	1.1E-05
Arsenic	2.0E-04	1.5E-07	6.4E-07
Beryllium	1.2E-05	8.8E-09	3.9E-08
Cadmium	1.1E-03	8.1E-07	3.5E-06
Chromium	1.4E-03	1.0E-06	4.5E-06
Cobalt	8.4E-05	6.2E-08	2.7E-07
Manganese	3.8E-04	2.8E-07	1.2E-06
Mercury	2.6E-04	1.9E-07	8.3E-07
Nickel	2.1E-03	1.5E-06	6.7E-06
Selenium	2.4E-05	1.8E-08	7.7E-08
Total HAP		1.4E-03	6.1E-03

 $^{^{\}rm 1}$ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

³ Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb). ⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Thermoelectric Generators

Source Designation:	S028-S031
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Heat Input (MMBtu/hr) ¹	0.013
Fuel Consumption (MMscf/hr):	1.23E-05
Potential Annual Hours of Operation (hr/yr):	8,760

¹ Global Themorelectric specification sheet states 311 ft³/day at 1000 BTU/ft³.

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ^{2, 5}	(lb/hr) ³	(tons/yr) ⁴
NO _x	100	1.2E-03	0.01
со	84	1.0E-03	4.5E-03
VOC	5.5	6.8E-05	3.0E-04
SO_2	0.6	7.4E-06	3.2E-05
PM Total	7.6	9.4E-05	4.1E-04
PM Condensable	5.7	7.0E-05	3.1E-04
PM ₁₀ (Filterable)	1.9	2.3E-05	1.0E-04
PM _{2.5} (Filterable)	1.9	2.3E-05	1.0E-04
Lead	5.00E-04	6.2E-09	2.7E-08
CO ₂	116.9	1.51	6.64
CH ₄	2.21E-03	2.9E-05	1.3E-04
N_2O	2.21E-04	2.9E-06	1.3E-05

EQT Production, LLC Company Name: OXF 149-150 Pad Facility Name: **Project Description:** R13 Application

Thermoelectric Generators

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential 1	Emissions
Pollutant	(lb/MMscf) ²	(lb/hr) ³	(tons/yr) ⁴
HAPs:			
2-Methylnaphthalene	2.4E-05	3.0E-10	1.3E-09
3-Methylchloranthrene	1.8E-06	2.2E-11	9.7E-11
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.0E-10	8.6E-10
Acenaphthene	1.8E-06	2.2E-11	9.7E-11
Acenaphthylene	1.8E-06	2.2E-11	9.7E-11
Anthracene	2.4E-06	3.0E-11	1.3E-10
Benz(a)anthracene	1.8E-06	2.2E-11	9.7E-11
Benzene	2.1E-03	2.6E-08	1.1E-07
Benzo(a)pyrene	1.2E-06	1.5E-11	6.5E-11
Benzo(b)fluoranthene	1.8E-06	2.2E-11	9.7E-11
Benzo(g,h,i)perylene	1.2E-06	1.5E-11	6.5E-11
Benzo(k)fluoranthene	1.8E-06	2.2E-11	9.7E-11
Chrysene	1.8E-06	2.2E-11	9.7E-11
Dibenzo(a,h) anthracene	1.2E-06	1.5E-11	6.5E-11
Dichlorobenzene	1.2E-03	1.5E-08	6.5E-08
Fluoranthene	3.0E-06	3.7E-11	1.6E-10
Fluorene	2.8E-06	3.5E-11	1.5E-10
Formaldehyde	7.5E-02	9.3E-07	4.1E-06
Hexane	1.8E+00	2.2E-05	9.7E-05
Indo(1,2,3-cd)pyrene	1.8E-06	2.2E-11	9.7E-11
Naphthalene	6.1E-04	7.5E-09	3.3E-08
Phenanthrene	1.7E-05	2.1E-10	9.2E-10
Pvrene	5.0E-06	6.2E-11	2.7E-10
Toluene	3.4E-03	4.2E-08	1.8E-07
Arsenic	2.0E-04	2.5E-09	1.1E-08
Beryllium	1.2E-05	1.5E-10	6.5E-10
Cadmium	1.1E-03	1.4E-08	5.9E-08
Chromium	1.4E-03	1.7E-08	7.6E-08
Cobalt	8.4E-05	1.0E-09	4.5E-09
Manganese	3.8E-04	4.7E-09	2.1E-08
Mercury	2.6E-04	3.2E-09	1.4E-08
Nickel	2.1E-03	2.6E-08	1.1E-07
Selenium	2.4E-05	3.0E-10	1.3E-09
Total HAP		2.3E-05	1.0E-04

² Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

³ Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

⁴ Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).
⁵ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

EQT Production, LLC OXF 149-150 Pad **Company Name:** Facility Name: **Project Description:** R13 Application

Liquid Loading

21,324,030 gal/yr 70% non-tested tanker trucks 98% Combustor destruction efficiency Throughput Capture Efficiency Control Efficiency

Liquid Loading Emissions

		d Emissions		d Emissions		l Emissions
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Propane	25.773	6.701	7.732	2.010	0.361	0.094
Isobutane	6.173	1.605	1.852	0.482	0.086	0.022
n-Butane	13.919	3.619	4.176	1.086	0.195	0.051
Isopentane	5.300	1.378	1.590	0.413	0.074	0.019
n-Pentane	5.042	1.311	1.513	0.393	0.071	0.018
n-Hexane	1.780	0.463	0.534	0.139	0.025	0.006
Cyclohexane	0.113	0.029	0.034	0.009	0.002	4.1E-04
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
n-Heptane	1.955	0.508	0.587	0.153	0.027	0.007
n-Octane	0.618	0.161	0.186	0.048	0.009	0.002
n-Nonane	0.128	0.033	0.038	0.010	0.002	4.7E-04
n-Decane	0.148	0.039	0.045	0.012	0.002	0.001
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Triethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Isohexane	2.725	0.709	0.818	0.213	0.038	0.010
3-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Neohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Benzene	0.044	0.012	0.013	0.003	0.001	1.6E-04
Toluene	0.087	0.023	0.026	0.007	0.001	3.2E-04
Ethylbenzene	0.004	0.001	0.001	3.3E-04	6.0E-05	1.6E-05
m-Xylene	0.038	0.010	0.012	0.003	0.001	1.4E-04
Isooctane	0.289	0.075	0.087	0.023	0.004	0.001
Total VOC Emissions:	64.139	16.676	19.242	5.003	0.898	0.233
Total HAP Emissions:	2.243	0.583	0.673	0.175	0.031	0.008

 $^{^{\}rm 1}$ Uncontrolled emissions calculation using Promax (sum of produced water and condensate). $^{\rm 2}$ Hourly emissions assume two hours of loading per day, five days per week.

Fugitive Emissions

Fugitive Emissions from Component Leaks

Facility Equipment Type ¹	Valves	Connectors	Open-Ended Lines	Pressure Relief Devices
Wellhead	8	38	0.5	0
Separators	1	6	0	0
Meters/Piping	12	45	0	0
Compressors	12	57	0	0
In-line heaters	14	65	2	1
Dehydrators	24	90	2	2

¹ Table W-1B to Subpart W of Part 98 —Default Average Component Counts for Major Onshore Natural Gas Production

Fugitive VOC/Total Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Weight Fraction VOC	Weight Fraction HAP	VOC Emissions ³ (tpy)	HAP Emissions ³ (tpy)
Pumps	Light Liquid	0.01990	21	4.04	1.00	0.03	4.04	0.13
Compressor	Gas	0.22800	0		0.17	0.01		
Valves	Gas	0.00597	588	33.90	0.17	0.01	5.62	0.18
Pressure Relief Valves	Gas	0.10400	43	43.18	0.17	0.01	7.16	0.22
Open-Ended Lines	All	0.00170	39	0.64	0.17	0.01	0.11	3.3E-03
Connectors	All	0.00183	2,577	45.54	0.17	0.01	7.55	0.24
Intermittent Pneumatic Devices ⁴	Gas	13.5	60				10.58	0.33
			Emission Totals:	127.29			35.06	1.09

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates*. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. The pneumatic controller value is from 40 CFR 98 Subpart W, Table W-1A. Pneumatic assumes operation 1/3 of the year.

² Assumes one pump for each tank and one meter per wellhead. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic devices assume 5 per well. A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions VOC/HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % VOC/HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP ÷ 100 ÷ 379 (scf/lb-mol) + 2,000 (lb/ton)

Fugitive Emissions

Fugitive Specific HAP Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Benzene Emissions ³ (tpy)	Toluene Emissions ³ (tpy)	Ethylbenzene Emissions ³ (tpy)	Xylene Emissions ³ (tpy)	n-Hexane Emissions ⁴ (tpy)
Pumps	Light Liquid	0.01990	21	4.04	3.1E-04	7.3E-04	< 0.01	4.2E-04	0.01
Compressor	Gas	0.22800	0				< 0.01		
Valves	Gas	0.00597	588	33.90	2.6E-03	0.01	< 0.01	3.5E-03	0.10
Pressure Relief Valves	Gas	0.10400	43	43.18	3.3E-03	0.01	< 0.01	4.5E-03	0.13
Open-Ended Lines	All	0.00170	39	0.64	4.9E-05	1.2E-04	< 0.01	6.7E-05	2.0E-03
Connectors	All	0.00183	2,577	45.54	3.5E-03	0.01	< 0.01	4.7E-03	0.14
Intermittent Pneumatic Devices ⁴	Gas	13.5	60		4.9E-03	0.01	< 0.01	0.01	0.20
			Emission Totals:	127.29	0.01	0.03	<0.01	0.02	0.59

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates*. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. The pneumatic controller value is from 40 CFR 98 Subpart W, Table W-1A. Pneumatic assumes operation 1/3 of the year.

GHG Fugitive Emissions from Component Leaks

		GHG Emission			
		Factor ¹	CH ₄ Emissions ^{2,3}	CO ₂ Emissions ^{2,3}	CO ₂ e Emissions ⁴
Component	Component Count	(scf/hr/component)	(tpy)	(tpy)	(tpy)
Pumps	21	0.01	0.03	2.1E-04	0.77
Compressor	0	4.17			
Valves	588	0.027	2.32	0.02	58.12
Pressure Relief Devices	43	0.04	0.25	1.7E-03	6.30
Open-Ended Lines	39	0.061	0.35	2.4E-03	8.71
Connectors	2,577	0.003	1.13	0.01	28.30
Intermittent Pneumatic Devices	60	6	17.57	0.12	439.31
	Total		21.65	0.15	541.51

¹ Population emission factors for gas service in the Eastern U.S. from Table W-IA of Subpart W - Default Whole Gas Emission Factors for Onshore Production , 40 CFR 98, Subpart W (Table W-6 for compressor). Pneumatic assumes operation 1/3 of the year.

CH₄: 79% CO₂: 0.20

Carbon Dioxide (CO_2): 1 Methane (CH_4): 25

² Assumes one pump for each tank and one meter per wellhead. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic devices assume 5 per well. A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % HAPx 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % HAP + 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton)

² Calculated in accordance with Equations W-32a, W-35 and W-36 in Subpart W of 40 CFR 98. See footnote 4 above for sample calculation.

³ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP \div 100 \div 379 (scf/lb-mol) \div 2,000 (lb/ton) Mole fractions of CH₄ and CO₂ based on gas analysis:

⁴ Carbon equivalent emissions (CO₂e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:

 Company Name:
 EQT Production, LLC

 Facility Name:
 OXF 149-150 Pad

 Project Description:
 R13 Application

Haul Roads

Estimated Potential Road Fugitive Emissions

Unpaved Road Emissions

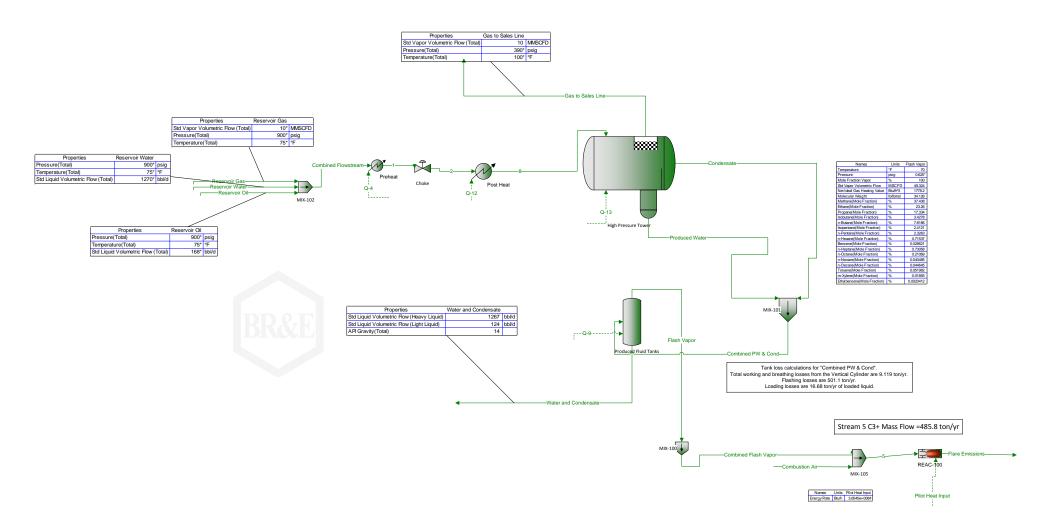
Unpaved Roads: E (lb/VMT) = $k(s/12)^a(W/3)^b$)*[(365-p)/365]

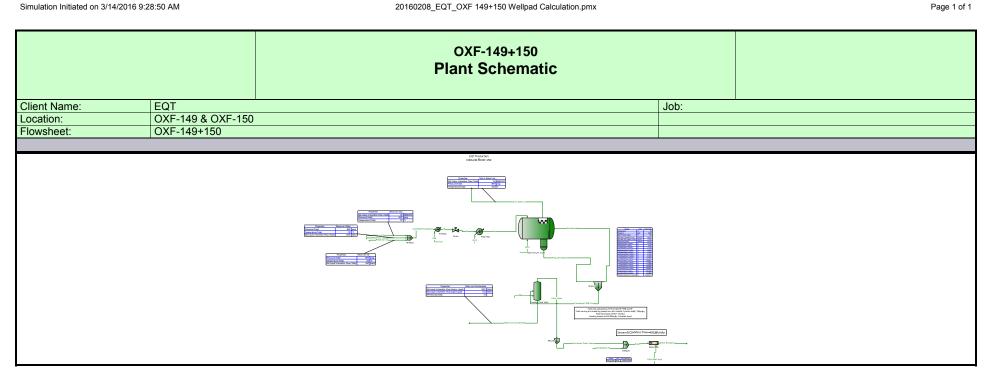
	PM	PM_{10}	$PM_{2.5}$	
k Factor (lb/VMT)	4.9	1.5	0.15	AP-42 Table 13.2.2-2 (Final, 11/06)
Silt content, s	4.8	%		AP-42 Table 13.2.2-1 (11/06), for Sand and Gravel Processing
Number of Rain Days, p	150			AP-42 Figure 13.2.1-2
a	0.7	0.9	0.9	AP-42 Table 13.2.2-2 (Final, 11/06)
b	0.45	0.45	0.45	AP-42 Table 13.2.2-2 (Final, 11/06)

Description	Weight of Empty Truck (tons)	Weight of Truck w/ Max Load (tons)	Mean Vehicle Weight (tons)	Length of Unpaved Road Traveled (mile)	Trips Per Year	Mileage Per Year	Control (%)	PM	Emissions (tpy)	PM _{2.5}
Liquids Hauling Employee Vehicles	20 3	40 3	30 3	1.02 1.02	5,331 200	10,925 410	0	23.40 0.31	5.96 0.08	0.60 0.01
Total Potential Emissions	-							23.71	6.04	0.60

EQT Production, LLC OXF 149-150 Pad **Company Name:** Facility Name: **Project Description:** R13 Application

Gas Analysis


OXF 121 Gas Analysis 5/29/2013 Sample Location: Sample Date: HHV (Btu/scf):


1,216 Note: A conservatively low BTU content of 1,050 was used for calculations.

Constituent	Natural Gas Stream Speciation (Mole %)	Molecular Weight	Molar Weight	Average Weight Fraction	Natural Gas Stream Speciation (Wt. %)
Carbon Dioxide	0.195	44.01	0.09	0.00	0.420
Nitrogen	0.532	28.01	0.15	0.01	0.729
Methane	78.965	16.04	12.67	0.62	61.983
Ethane	13.780	30.07	4.14	0.20	20.278
Propane	4.195	44.10	1.85	0.09	9.053
Isobutane	0.507	58.12	0.29	0.01	1.442
n-Butane	1.013	58.12	0.59	0.03	2.881
Isopentane	0.249	72.15	0.18	0.01	0.879
n-Pentane	0.239	72.15	0.17	0.01	0.844
Cyclopentane	< 0.001	70.1	0.0	0.0	0.000
n-Hexane	0.073	86.18	0.06	0.00	0.308
Cyclohexane	0.011	84.16	0.01	0.00	0.045
Other Hexanes	0.113	86.18	0.10	0.00	0.477
Heptanes	0.079	100.21	0.08	0.00	0.387
Methylcyclohexane	< 0.001	98.19	0.00	0.00	0.000
2,2,4-Trimethylpentane	0.031	114.23	0.04	0.00	0.173
Benzene*	0.002	78.11	0.00	0.00	0.008
Toluene*	0.004	92.14	0.00	0.00	0.018
Ethylbenzene*	< 0.001	106.17	0.00	0.00	0.000
Xylenes*	0.002	106.16	0.00	0.00	0.010
C8 + Heavies	0.010	130.80	0.01	0.00	0.064
Totals	100.000		20.43	1.00	100

TOC (Total)	99.27	98.85
VOC (Total)	6.53	16.59
HAP (Total)	0.11	0.52

EQT Production OXF-149 & OXF 150

Process Streams Report All Streams

Tabulated by Total Phase

Job:

Client Name: EQT Location: Flowsheet: OXF-149 & OXF-150 OXF-149+150

Connections									
Combined Combined PW Gas to Sales Produced Reservoir Gas Flash Vapor & Cond Line Water									
From Block	MIX-100	MIX-101	High Pressure Tower	High Pressure Tower					
To Block MIX-105 Produced Fluid MIX-101 MIX-10 Tanks									

Stream Composition								
	Combined Flash Vapor	Combined PW & Cond	Gas to Sales Line	Produced Water	Reservoir Gas			
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h			
Nitrogen	0.152553	0.153424	163.48	0.0437854	163.633 *			
Methane	32.5263	33.0585	13907	6.88403	13909.1 *			
CO2	1.04138	1.18231	93.8014	0.776139	94.2271 *			
Ethane	37.8784	40.809	4558.55	2.13904	4549.5 *			
Propane	41.3963	53.0927	2043.17	0.812763	2031.06 *			
Isobutane	10.7898	18.6058	329.84	0.0454229	323.552 *			
n-Butane	24.6107	50.2999	660.691	0.213556	646.467 *			
Isopentane	9.4248	36.2826	210.894	0.0364354	197.253 *			
n-Pentane	9.08972	43.9108	200.737	0.03524	189.331 *			
n-Hexane	3.33864	47.6195	78.0221	0.00514269	69.0718 *			
Methylcyclopentane	0	0	0	0	0 *			
Benzene	0.121077	1.87341	2.73195	0.0811374	1.71531 *			
Cyclohexane	0.248089	4.45968	5.70493	0.00521384	10.1646 *			
n-Heptane	3.96462	173.744	111.909	0.00454275	86.9156 *			
n-Octane	1.3034	188.772	45.261	0.00151923	3.76262 *			
n-Nonane	0.281205	131.285	11.9371	0.00101834	5.63286 *			
n-Decane	0.344018	519.113	18.6465	0.000975721	4.68668 *			
n-Undecane	0	0	0	0	0 *			
Dodecane	0	0	0	0	0 *			
Water	2.31798	18478.2	51.2454	18477.9	0 *			
Triethylene Glycol	0	0	0	0	0 *			
Oxygen	0	0	0	0	0 *			
Argon	0	0	0	0	0 *			
Carbon Monoxide	0	0	0	0	0 *			
Cyclopentane	0	0	0	0	0 *			
Isohexane	5.03049	52.6222	113.25	0.00859367	106.919 *			
3-Methylpentane	0	0	0	0	0 *			
Neohexane	0	0	0	0	0 *			
2,3-Dimethylbutane	0	0	0	0	0 *			
Methylcyclohexane	0	0	0	0	0 *			
Isooctane	0.581602	23.4826	15.9741	0.000135761	38.8804 *			
Decane, 2-Methyl-	0	0	0	0	0 *			
Toluene	0.259387	12.9971	6.95827	0.151714	4.04665 *			
m-Xylene	0.106653	20.8996	3.65058	0.0633808	2.33134 *			
Ethylbenzene	0.0117361	1.91424	0.387001	0.00630266	0 *			

	Combined Flash Vapor	Combined PW & Cond	Gas to Sales Line	Produced Water	Reservoir Gas
Volumetric Flow	ft^3/h	gpm	ft^3/h	gpm	ft^3/h
Nitrogen	2.032	0.000550142	89.7741	0.000120041	41.4668
Methane	752.986	0.213923	12434.2	0.0344292	5015.35
CO2	8.75572	0.00187466	28.7302	0.00123958	9.95737
Ethane	463.501	0.181578	1869.76	0.00728171	500.335
Propane	342.765	0.206089	498.07	0.00236202	64.538
Isobutane	67.3515	0.0672811	54.4977	0.000120584	0.384116
n-Butane	153.358	0.176183	103.362	0.000559622	-6.54661
Isopentane	47.0104	0.11901	22.8535	8.88298E-05	-5.72225
n-Pentane	45.2779	0.142853	21.1235	8.60696E-05	-6.21306
n-Hexane	13.8043	0.146594	5.44757	1.19317E-05	-3.39274
Methylcyclopentane	0	0	0	0	0

^{*} User Specified Values ? Extrapolated or Approximate Values

Process Streams Report All Streams Tabulated by Total Phase

Job:

Client Name: EQT OXF-149 & OXF-150 OXF-149+150 Location:

Flowsheet:

	Combined	Combined PW	Gas to Sales	Produced	Reservoir Gas
Volumetric Flow	Flash Vapor ft^3/h	& Cond gpm	Line ft^3/h	Water gpm	ft^3/h
Benzene	0.555959	0.00420267	0.242947	0.000153102	-0.0722475
Cyclohexane	1.05399	0.0115215	0.434112	1.06606E-05	-0.467609
n-Heptane	13.9908	0.515307	4.94501	1.01931E-05	-5.29476
n-Octane	4.00171	0.539428	1.20684	3.30057E-06	-0.252608
n-Nonane	0.761948	0.364595	0.130439	2.15964E-06	-0.417402
n-Decane	0.833476	1.41436	-0.0183503	2.03626E-06	-0.364296
n-Undecane	0	0	0	0	0
Dodecane	0	0	0	0	0
Water	47.6824	37.1761	39.1537	37.1763	0
Triethylene Glycol	0	0	0	0	0
Oxygen	0	0	0	0	0
Argon	0	0	0	0	0
Carbon Monoxide	0	0	0	0	0
Cyclopentane	0	0	0	0	0
Isohexane	20.8352	0.163825	8.38099	1.99699E-05	-4.70031
3-Methylpentane	0	0	0	0	0
Neohexane	0	0	0	0	0
2,3-Dimethylbutane	0	0	0	0	0
Methylcyclohexane	0	0	0	0	0
Isooctane	1.79806	0.0681145	0.617486	2.91991E-07	-2.04722
Decane, 2-Methyl-	0	0	0	0	0
Toluene	1.00095	0.0295161	0.402543	0.000283282	-0.227243
m-Xylene	0.354253	0.0475582	0.134626	0.000117366	-0.149181
Ethylbenzene	0.0390252	0.00434397	0.0149868	1.16085E-05	0

	Combined	Combined PW	Gas to Sales	Produced	Reservoir Gas
	Flash Vapor	& Cond	Line	Water	
Mole Fraction					
Nitrogen	0.00100554	5.25351E-06	0.00529227	1.52307E-06	0.00532 *
Methane	0.374377	0.00197667	0.786152	0.000418146	0.78965 *
CO2	0.00436925	2.57696E-05	0.00193288	1.7185E-05	0.00195 *
Ethane	0.232604	0.00130184	0.137483	6.93195E-05	0.1378 *
Propane	0.173345	0.00115494	0.0420195	1.79608E-05	0.04195 *
Isobutane	0.0342782	0.000307063	0.0051464	7.61533E-07	0.00507 *
n-Butane	0.0781856	0.00083013	0.0103086	3.58035E-06	0.01013 *
Isopentane	0.0241206	0.000482381	0.0026508	4.92097E-07	0.00249 *
n-Pentane	0.0232631	0.000583799	0.00252313	4.75951E-07	0.00239 *
n-Hexane	0.00715371	0.000530057	0.000821064	5.81518E-08	0.00073 *
Methylcyclopentane	0	0	0	0	0 *
Benzene	0.000286213	2.30058E-05	3.17174E-05	1.01219E-06	2E-05 *
Cyclohexane	0.000544314	5.08302E-05	6.14738E-05	6.03686E-08	0.00011 *
n-Heptane	0.00730584	0.00166324	0.00101282	4.41773E-08	0.00079 *
n-Octane	0.00210692	0.0015852	0.000359329	1.296E-08	3E-05 *
n-Nonane	0.000404849	0.000981888	8.4405E-05	7.73706E-09	4E-05 *
n-Decane	0.000446455	0.00349972	0.000118848	6.6824E-09	3E-05 *
n-Undecane	0	0	0	0	0 *
Dodecane	0	0	0	0	0 *
Water	0.0237582	0.983874	0.00257963	0.999467	0 *
Triethylene Glycol	0	0	0	0	0 *
Oxygen	0	0	0	0	0 *
Argon	0	0	0	0	0 *
Carbon Monoxide	0	0	0	0	0 *
Cyclopentane	0	0	0	0	0 *
Isohexane	0.0107788	0.000585743	0.00119179	9.71744E-08	0.00113 *
3-Methylpentane	0	0	0	0	0 *
Neohexane	0	0	0	0	0 *
2,3-Dimethylbutane	0	0	0	0	0 *
Methylcyclohexane	0	0	0	0	0 *
Isooctane	0.00094015	0.000197194	0.000126819	1.15813E-09	0.00031 *
Decane, 2-Methyl-	0	0	0	0	0 *

Licensed to Trinity Consultants, Inc. and Affiliates

^{*} User Specified Values
? Extrapolated or Approximate Values

Process Streams Report All Streams Tabulated by Total Phase Job: Client Name: EQT OXF-149 & OXF-150 OXF-149+150 Location: Flowsheet:

	Combined Flash Vapor	Combined PW & Cond	Gas to Sales Line	Produced Water	Reservoir Gas
Mole Fraction					
Toluene	0.00051982	0.000135309	6.84862E-05	1.6045E-06	4E-05 *
m-Xylene	0.000185498	0.000188833	3.11834E-05	5.81745E-07	2E-05 *
Ethylbenzene	2.0412E-05	1.72956E-05	3.30577E-06	5.78494E-08	0 *

Stream Properties									
Property	Units	Combined Flash Vapor	Combined PW & Cond	Gas to Sales Line	Produced Water	Reservoir Gas			
Temperature	°F	70	100	100 *	100	75 *			
Pressure	psig	0.625	390	390 *	390	900 *			
Mole Fraction Vapor		1	0	1	0	0.999974			
Mole Fraction Light Liquid		0	0.0156144	0	1	2.61384E-05			
Mole Fraction Heavy Liquid		0	0.984386	0	0	0			
Molecular Weight	lb/lbmol	34.1265	19.1216	20.5259	18.0167	20.436			
Mass Density	lb/ft^3	0.0928855	59.7508	1.49069	61.9279	4.00958			
Mass Flow	lb/h	184.819	19934.4	22633.9	18489.3	22438.3			
Vapor Volumetric Flow	ft^3/h	1989.75	333.625	15183.5	298.561	5596.17			
Liquid Volumetric Flow	gpm	248.073	41.5948	1893	37.2232	697.704			
Std Vapor Volumetric Flow	MMSCFD	0.0493242	9.49476	10.043	9.34651	10 *			
Std Liquid Volumetric Flow	sgpm	0.827281	41.3779	133.032	37.0037	132.468			
Specific Gravity		1.1783	0.958021	0.708703	0.992927				
API Gravity			14.9402		10.0523				
Net Ideal Gas Heating Value	Btu/ft^3	1778.22	71.1004	1119.5	0.565722	1117.55			
Net Liquid Heating Value	Btu/lb	19633.4	417.425	20637.2	-1047.23	20695.2			

Remarks

			All S	reams Report treams by Total Phase		
Client Name:	EQT				Job:	
Location:	OXF-149 & OXF	-150			300.	
Flowsheet:	OXF-149+150	-100				
T TOWOTIOOL.	0741 110 100					
			0			
				ections		
			Reservoir Oil			
From Block						
To Block			MIX-102			
			Stream C	omposition		
			Reservoir Oil			
Mass Flow			lb/h			
Nitrogen			0 *			
Methane			30.9666 *			
CO2			0.756584 *			
Ethane			49.8611 *			
Propane			65.2018 *			
Isobutane			24.8931 *			
n-Butane			64.5245 *			
Isopentane n-Pentane			49.9236 * 55.3163 *			
n-Hexane			56.5697 *			
Methylcyclopentane			0 *			
Benzene			2.89005 *			
Cyclohexane			0 *			
n-Heptane			198.737 *			
n-Octane			230.27 *			
n-Nonane			137.589 *			
n-Decane			533.072 *			
n-Undecane			0 *			
Dodecane			0 *			
Water			0 *			
Triethylene Glycol			0 *			
Oxygen			0 *			
Argon			0 *			
Carbon Monoxide			0 *			
Cyclopentane			0 *			
Isohexane			58.953 *			
3-Methylpentane Neohexane			0 * 0 *			
2,3-Dimethylbutane			0 *			
Methylcyclohexane			0 *			
Isooctane			0.576317 *			
Decane, 2-Methyl-			0 *			
Toluene			15.9087 *			
m-Xylene			22.2189 *			
Ethylbenzene			2.30124 *			
			Reservoir Oil		·	
Volumetric Flow			gpm			
Nitrogen			0			
Methane			0.197346			
CO2			0.0011232			
Ethane			0.213586			
Propane			0.243926			
Isobutane			0.0868506			
n-Butane			0.218623			
Isopentane n-Pentane			0.158777 0.174707			
n-Hexane			0.174707			
Methylcyclopentane			0.109579			
Benzene			0.00641442			
Cyclohexane			0.00041442			
n-Heptane			0.575298			
n-Octane			0.643396			
n-Nonane			0.374138			

n-Nonane

			All S	reams Report treams by Total Phase		
Client Name:	EQT				Job:	
Location:	OXF-149 & OX	F-150				
Flowsheet:	OXF-149+150					
			Reservoir Oil			
Volumetric Flow			gpm			
n-Decane			1.4235			
n-Undecane			0			
Dodecane			0			
Water			0			
Triethylene Glycol			0			
Oxygen			0			
Argon			0			
Carbon Monoxide			0			
Cyclopentane			0			
Isohexane			0.178501			
3-Methylpentane			0			
Neohexane			0			
2,3-Dimethylbutane			0			
Methylcyclohexane			0			
Isooctane			0.00162932			
Decane, 2-Methyl-			0			
Toluene			0.0356234			
m-Xylene			0.0498409			
Ethylbenzene			0.00514668			
			Reservoir Oil			
Mole Fraction						
I			1	.1		1

	Reservoir Oil	
Mole Fraction		
Nitrogen	0 *	
Methane	0.1033 *	
CO2	0.00092 *	
Ethane	0.08874 *	
Propane	0.07913 *	
Isobutane	0.02292 *	
n-Butane	0.05941 *	
Isopentane	0.03703 *	
n-Pentane	0.04103 *	
n-Hexane	0.03513 *	
Methylcyclopentane	0 *	
Benzene	0.00198 *	
Cyclohexane	0 *	
n-Heptane	0.10614 *	
n-Octane	0.10788 *	
n-Nonane	0.05741 *	
n-Decane	0.2005 *	
n-Undecane	0 *	
Dodecane	0 *	
Water	0 *	
Triethylene Glycol	0 *	
Oxygen	0 *	
Argon	0 *	
Carbon Monoxide	0 *	
Cyclopentane	0 *	
Isohexane	0.03661 *	
3-Methylpentane	0 *	
Neohexane	0 *	
2,3-Dimethylbutane	0 *	
Methylcyclohexane	0 *	
Isooctane	0.00027 *	
Decane, 2-Methyl-	0 *	
Toluene	0.00924 *	
m-Xylene	0.0112 *	
Ethylbenzene	0.00116 *	

			All S	reams Report treams by Total Phase			
Client Name:	EQT				Job:		
Location:	OXF-149 & OXF	F-150					
Flowsheet:	OXF-149+150						
			Stream	Properties			
Property		Units	Reservoir Oil			<u>, </u>	<u> </u>
Temperature		°F	75 '	*	·	•	<u> </u>
Pressure		psig	900 '	*			
Mole Fraction Vapor			0				
Mole Fraction Light L	_iquid		1				
Mole Fraction Heavy	Liquid		0				
Molecular Weight		lb/lbmol	85.6527				
Mass Density		lb/ft^3	41.9391				
Mass Flow		lb/h	1600.53				
Vapor Volumetric Flo)W	ft^3/h	38.1632				
Liquid Volumetric Flo		gpm	4.75801				
Std Vapor Volumetric		MMSCFD	0.170188				
Std Liquid Volumetric	c Flow	sgpm	4.9 '	•			
Specific Gravity			0.672435				
API Gravity			76.5036				
Net Ideal Gas Heatin		Btu/ft^3	4363.51				
Net Liquid Heating V	alue	Btu/lb	19177.2				

Remarks

Simulation initiated on 3/14	1/2016 9:28:50 AM		0160208_EQT_OXF	Page 1 of 1							
			Energy S	Stream Rep	oort						
Client Name:	EQT	QT Job:									
Location:	OXF-149 & OXF-150										
Flowsheet:	OXF-149+150										
Energy Streams											
Energy Stream		Energy Rate		Power	F	rom Block		To Block			
Pilot Heat Input	3.6	5455E+06 * Btu/l	h 14	136.29 * hp				REAC-100			
Remarks											

Client Name	FOT	ı	User Valı	ue Sets Report	Lab						
Client Name: Location:	EQT OXF-149 & OXF-1	150			Job:						
Tank Losses.53											
User Value [ShellLength]											
* Parameter		20		Upper Bound		ft					
* Lower Bound		0	ft	* Enforce Bounds		False					
User Value [ShellDiam]											
* Parameter		12		Upper Bound		ft					
* Lower Bound		0		* Enforce Bounds		False					
* Parameter		0.875	nsig	ue [BreatherVP] Upper Bound		psig					
Lower Bound		0.070	psig	* Enforce Bounds		False					
* Parameter		-0.0375	User Value	e [BreatherVacP] Upper Bound		neig					
Lower Bound		-0.0373	psig	* Enforce Bounds		psig False					
				e [DomeRadius]							
Parameter Lower Bound			ft	Upper Bound * Enforce Bounds		ft False					
Lower Board				Emerce Bearing		raioo					
			User Va	lue [OpPress]							
* Parameter Lower Bound		0	psig	Upper Bound * Enforce Bounds		psig False					
Lower Bouria			psig	Lilloice Boullus		i disc					
			User Value	[AvgPercentLiq]							
* Parameter		50		Upper Bound		%					
Lower Bound			%	* Enforce Bounds		False					
			User Value	[MaxPercentLiq]							
* Parameter		90	%	Upper Bound		%					
Lower Bound			%	* Enforce Bounds		False					
			User Val	ue [AnnNetTP]							
* Parameter		1426.11	bbl/day	Upper Bound		bbl/day					
* Lower Bound		0	bbl/day	* Enforce Bounds		False					
			llear \	/alue [OREff]							
* Parameter		0		Upper Bound		%					
Lower Bound			%	* Enforce Bounds		False					
			Heer Velv	a [AtmaDuagayura]							
* Parameter		14.2535	psia	e [AtmPressure] Upper Bound		psia					
Lower Bound		11.2000	psia	* Enforce Bounds		False					
* Parameter			<mark>Jser Value</mark> °F	[MaxLiqSurfaceT] Upper Bound		°F					
Lower Bound		00.7091	°F	* Enforce Bounds		False					
User Value [TotalLosses]											
* Parameter Lower Bound		9.11877	ton/yr ton/yr	Upper Bound * Enforce Bounds		ton/yr False					
Londi Bound			.5111 y1	Zilloroo Bourido		. aloc					
User Value [WorkingLosses]											
* Parameter		0.451098	ton/yr	Upper Bound		ton/yr					
Lower Bound			ton/yr	* Enforce Bounds		False					

		User Val	ue Sets Report			
Client Name:	EQT			Job:	<u> </u>	
Location:	OXF-149 & OXF	-150				
		User Value	[StandingLosses]			
* Parameter		0.3088 ton/yr	Upper Bound		ton/yr	
Lower Bound		ton/yr	* Enforce Bounds		False	
		·				
		User Value	[RimSealLosses]			
* Parameter		0 ton/yr	Upper Bound		ton/yr	
Lower Bound		ton/yr	* Enforce Bounds		False	
	User Value [WithdrawalLoss]					
* Parameter		0 ton/yr	Upper Bound		ton/yr	
Lower Bound		ton/yr	* Enforce Bounds		False	
Lower Bouria		torn yr	Emoree Bearies		1 4130	
		Lleer Velue	II andinglasses			
* D			[LoadingLosses]		An or loss	
* Parameter		16.6766 ton/yr	Upper Bound		ton/yr	
Lower Bound		ton/yr	* Enforce Bounds		False	
			DeckFittingLosses]			
* Parameter		0 ton/yr	Upper Bound		ton/yr	
Lower Bound		ton/yr	* Enforce Bounds		False	
		User Value	[DeckSeamLosses]			
* Parameter		0 ton/yr	Upper Bound		ton/yr	
Lower Bound		ton/yr	* Enforce Bounds		<u>False</u>	
		User Value	[FlashingLosses]			
* Parameter		501.071 ton/yr	Upper Bound		ton/yr	
Lower Bound		ton/yr	* Enforce Bounds		False	
		Ţ				
		User Value	[GasMoleWeight]			
* Parameter		0.0553619 kg/mol	Upper Bound		kg/mol	
Lower Bound		kg/mol	* Enforce Bounds		False	
LOWEI DOUILG		Kg/IIIOI	Lilloree Bourius		1 disc	
Remarks						
Remarks This User Value Set was programmatically generated. GUID={5524AB8C-40B1-4354-9DD7-EED65770BF87}						

* Project Setup Information

Project File : \\tsclient\\Z\Client\\EQT Corporation\\West Virginia\\WV Wells\\163901.0058 WV Wells \2016\\OXF

149-150\02 Draft\2016-0307 OXF 149-150 Wellpad Application\Attachment N - Emission

Calculations\20160310_DRAFT_EQT_OXF14-150_Sand Sep Tank.ept

Flowsheet Selection : Oil Tank with Separator

Calculation Method : RVP Distillation

Control Efficiency : 0.0%

Known Separator Stream : Low Pressure Oil

Entering Air Composition: No

Filed Name : OXF 149 & OXF 150 Well Name : Sand Separator Tank

Well ID : OXF-149 Condensate Sample

Date : 2016.03.10

* Data Input

Separator Pressure : 320.00[psig]
Separator Temperature : 60.00[F]
Ambient Pressure : 14.70[psia]
Ambient Temperature : 70.00[F]

C10+ SG : 0.8024 C10+ MW : 210.576

-- Low Pressure Oil -----

No.	Component	mol %
1	H2S	0.0000
2	O2	0.0000
3	CO2	0.0920
4	N2	0.0000
5	C1	10.3300
6	C2	8.8740
7	C3	7.9130
8	i-C4	2.2920
9	n-C4	5.9410
10	i-C5	3.7030
11	n-C5	4.1030
12	C6	3.6610
13	C7	10.6140
14	C8	10.7880
15	C9	5.7410
16	C10+	20.0500
17	Benzene	0.1980
18	Toluene	0.9240
19	E-Benzene	0.1160
20	Xylenes	1.1200
21	n-C6	3.5130

-- Sales Oil -----

Production Rate : 0.1[bbl/day]

Days of Annual Operation: 365 [days/year]

API Gravity : 56.11

Reid Vapor Pressure : 10.60[psia]

* Calculation Results

-- Emission Summary ------

Item	Uncontrol	led Uncontr	olled Cont	rolled C	ontrolled
	[ton/yr] [[lb/hr] [to	on/yr] [ll	b/hr]	
Page 1					E&P TANK
Total HAPs	0.010	0.002	0.010	0.002	
Total HC	0.552	0.126	0.552	0.126	
VOCs, C2+	0.464	0.106	0.464	0.106	
VOCs, C3+	0.323	0.074	0.323	0.074	

Uncontrolled Recovery Info.

Vapor 33.7500 x1E-3 [MSCFD] HC Vapor 33.6500 x1E-3 [MSCFD] GOR 337.50 [SCF/bbl]

-- Emission Composition -----

	onent Unc		Uncontrolled	Controlled	Controlled
1				lb/hr]	
1 H2S	0.000	0.000	0.000	0.000	
2 O2	0.000	0.000	0.000	0.000	
3 CO2	0.002	0.000	0.002	0.000	
4 N2	0.000	0.000	0.000	0.000	
5 C1	0.088	0.020	0.088	0.020	
6 C2	0.140	0.032	0.140	0.032	
7 C3	0.143	0.033	0.143	0.033	
8 i-C4	0.035	0.008	0.035	0.008	
9 n-C4	0.073	0.017	0.073	0.017	
10 i-C5	0.026	0.006	0.026	0.006	
11 n-C5	0.022	0.005	0.022	0.005	
12 C6	0.007	0.002	0.007	0.002	
13 C7	0.007	0.002	0.007	0.002	
14 C8	0.002	0.000	0.002	0.000	
15 C9	0.000	0.000	0.000	0.000	
16 C10+	0.000	0.000	0.000	0.000	
17 Benzen	e 0.000	0.000	0.000	0.000	
18 Toluene		0.000	0.000	0.000	
19 E-Benz	ene 0.000			0.000	
20 Xylenes		0.000	0.000	0.000	
21 n-C6	0.005	0.001	0.005	0.001	
	methylp 0.00				
Total	0.550	0.126	0.550	0.126	

```
-- Stream Data -----
No. Component
                 MW
                         LP Oil Flash Oil Sale Oil Flash Gas W&S Gas Total Emissions
                mol %
                       mol %
                               mol %
                                      mol %
                                              mol %
                                                     mol %
1 H2S
              34.80 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
                    0.0000 \quad 0.0000 \quad 0.0000 \quad 0.0000 \quad 0.0000
2 O2
             32.00
3 CO2
                     0.0920 0.0060 0.0001 0.3030 0.2695 0.3013
              44.01
4 N2
             28.01
                    0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 C1
             16.04
                    10.3300 0.2188 0.0000 35.1483 9.8854 33.8466
                    8.8740 1.1428 0.1436 27.8504 45.2926 28.7492
6 C2
             30.07
7 C3
             44.10
                    7.9130 3.1683 2.6468 19.5591 26.2078 19.9017
8 i-C4
                    2.2920 1.7024 1.6483 3.7393 4.0924 3.7575
              58.12
9 n-C4
              58.12
                    5.9410 5.2118 5.1424 7.7308 8.2786 7.7590
10 i-C5
              72.15
                     3.7030 4.3039 4.3484 2.2280 2.3393 2.2337
11 n-C5
              72.15
                    4.1030 5.0206 5.0902 1.8508 1.9436 1.8556
              86.16
                    3.6610 4.9381 5.0373 0.5262 0.5556 0.5277
12 C6
13 C7
              100.20 10.6140 14.7477 15.0702 0.4677 0.4983 0.4692
              14 C8
15 C9
              128.28 5.7410 8.0709 8.2530 0.0222 0.0259 0.0224
16 C10+
               210.58 20.0500 28.2185 28.8572 0.0001 0.0001 0.0001
               78.11
                      0.1980 0.2703 0.2759 0.0206 0.0219 0.0207
17 Benzene
                      0.9240 \quad 1.2905 \quad 1.3191 \quad 0.0244 \quad 0.0261 \quad 0.0245
               92.13
18 Toluene
                 106.17  0.1160  0.1629  0.1666  0.0009  0.0010  0.0009
19 E-Benzene
20 Xylenes
               21 n-C6
                     3.5130 4.7873 4.8865 0.3851 0.4077 0.3862
              86.18
22 224Trimethylp
               114.24 0.0270 0.0376 0.0384 0.0009 0.0010 0.0009
                         124.65 126.60 33.83
                                              38.71
 MW
                   98.36
                                                     34.09
 Stream Mole Ratio
                       1.0000 0.7105 0.6948 0.2895 0.0157 0.3052
                                        1957.33 2221.01 1970.91
 Heating Value
               [BTU/SCF]
  Gas Gravity
                                           1.34
               [Gas/Air]
                                     1.17
                                                 1.18
  Bubble Pt. @ 100F [psia] 412.67 26.87 13.10
Page 2------ E&P TANK
             [psia] 105.20 15.66
  RVP @ 100F
                                     10.93
  Spec. Gravity @ 100F
                       0.659
                              0.690
                                     0.691
```


4790 N.E. EVANGELINE THRUWAY CARENCRO, LA 70520 PHONE (337) 896-3055 FAX (337) 896-3077

Certificate of Analysis:

13050027-001A

Company:

Gas Analytical Services

For:

Gas Analytical Services

Well: Field: Oxford 149 Pad **EQT Midstream** Alan Ball

Sample of:

PO Box 1028

Conditions:

Condensate 320 @ N.G.

Sampled by:

RM-GAS

Bridgeport, WV, 26330

Sample date:

4/29/2013

Report Date:

5/13/2013

Remarks:

Cylinder No.: GAS

Remarks:

Well 512480

Analysis: (GPA 2186M)	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %
Nitrogen	0.000	28.013	0.000	0.8094	0.000
Methane	10.330	16.043	1.686	0.3000	3.891
Carbon Dioxide	0.092	44.010	0.041	0.8180	0.035
Ethane	8.874	30.070	2.715	0.3562	5.271
Propane	7.913	44.097	3.551	0.5070	4.842
Iso-butane	2.292	58.123	1.356	0.5629	1.666
N-butane	5.941	58.123	3.514	0.5840	4.162
lso-pentane	3.703	72.150	2.719	0.6244	3.011
N-pentane	4.103	72.150	3.013	0.6311	3.302
i-Hexanes	3.661	86.177	3.170	0.6795	3.308
n-Hexane	3.513	85.648	3.083	0.6640	3.191
2,2,4 trimethylpentane	0.027	114.231	0.030	0.6967	0.031
Benzene	0.198	78.114	0.144	0.8846	0.123
Heptanes	10.614	97.459	10.576	0.7048	10.397
Toluene	0.924	92.141	0.795	0.8719	0.690
Octanes	10.788	107.237	11.986	0.7433	11.205
E-benzene	0.116	106.167	0.054	0.8718	0.100
M-,O-,P-xylene	1.120	106.167	1.207	0.8731	0.966
Nonanes	5.741	121.906	7.394	0.7646	6.765
Decanes Plus	20.050	210.576	42.966	0.8024	37.044
	100.000	-	100.000	-	100.000

Calculated Values	Total Sample	Decanes Plus
Specific Gravity at 60 °F	0.6917	0.8024
Api Gravity at 60 °F	73.054	44.854
Molecular Weight	98.266	210.576
Pounds per Gallon (in Vacuum)	5.767	6.690
Pounds per Gallon (in Air)	5.761	6.682
Cu. Ft. Vapor per Gallon @ 14.73 psia	22.324	12.028

4790 N.E. EVANGELINE THRUWAY CARENCRO, LA 70520 PHONE (337) 896-3055 FAX (337) 896-3077

Certificate of Analysis:

13050027-001A

Company:

Gas Analytical Services

For:

Gas Analytical Services

Well:

Oxford 149 Pad

Alan Ball

Field:

EQT Midstream

PO Box 1028

Sample of:

Condensate

O DOX 1020

Conditions:

320 @ N.G.

Bridgeport, WV, 26330

Sampled by: Sample date:

RM-GAS 4/29/2013

Report Date:

5/13/2013

Remarks:

Cylinder No.: GAS

Remarks:

Well 512480

Analysis: (GPA 2103M)	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %
Nitrogen	0.000	28.013	0.000	0.8094	0.000
Methane	10.330	16.043	1.686	0.3000	3.891
Carbon Dioxide	0.092	44.010	0.041	0.8180	0.035
Ethane	8.874	30.070	2.715	0.3562	5.271
Propane	7.913	44.097	3.551	0.5070	4.842
lso-butane	2.292	58.123	1.356	0.5629	1.666
N-butane	5.941	58.123	3.514	0.5840	4.162
lso-pentane	3.703	72.150	2.719	0.6244	3.011
N-pentane	4.103	72.150	3.013	0.6311	3.302
Hexanes	7.174	85.648	6.253	0.6655	6.499
Heptanes Plus	49.578	97.459	75.152	0.7048	67.321
		_			
	100.000		100.000		100.000

Calculated Values	Total Sample	Heptanes Plus	
Specific Gravity at 60 °F	0.6917	0.7740	
Api Gravity at 60 °F	73.054	51.311	
Molecular Weight	98.266	148.955	
Pounds per Gallon (in Vacuum)	5.767	6.453	
Pounds per Gallon (in Air)	5.761	6.446	
Cu. Ft. Vapor per Gallon @ 14.73 psia	22.324	16.479	
Standing-Katz Density (lb. / ft³)			

Number: 2030-13050027-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Station Name: Oxford 149 Pad Station Location: EQT Midstream

Cylinder No:

GAS

May 07, 2013

Sampled By:

RM-GAS

Sample Of:

Condensate

Spot

Sample Date:

04/29/2013 12:30

Sample Conditions: 320 psig

Analytical Data

Test	Method	Result	Units	Detection Lab Limit Tech.	Analysis Date
Color-Visual	Proprietary	STRAW	0-0	AR	05/07/2013
API Gravity @ 60° F	ASTM D-5002	60.09	<u>-</u>	AR	05/07/2013
Specific Gravity @ 60/60° F	ASTM D-5002	0.7386	_	AR	05/07/2013
Density @ 60° F	ASTM D-5002	0.7378	g/ml	AR	05/07/2013
Shrinkage Factor	Proprietary	0.8679	•	AR	05/07/2013
Flash Factor	Proprietary	263.1562	Cu. Ft./S.T. Bbl	AR	05/07/2013

Hydrocarbon Laboratory Manager

Quality Assurance:

4790 N.E. EVANGELINE THRUWAY CARENCRO, LA 70520 PHONE (337) 896-3055 FAX (337) 896-3077

Certificate of Analysis:

13050027-002A

Company:

Gas Analytical Services

For:

Gas Analytical Services

Well:

Pad 150

Alan Ball

Field:

EQT Midstream

PO Box 1028

Sample of:

Condensate

Conditions:

316 @ N.G.

Bridgeport, WV, 26330

Sampled by:

RM-GAS 4/29/2013

Report Date:

5/13/2013

Sample date: Remarks:

Cylinder No.: GAS

Remarks:

Well 512475

Analysis: (GPA 2186M)	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %
Nitrogen	0.000	28.013	0.000	0.8094	0.000
Methane	14.611	16.043	2.591	0.3000	5.857
Carbon Dioxide	0.104	44.010	0.051	0.8180	0.042
Ethane	8.607	30.070	2.861	0.3562	5.441
Propane	7.492	44.097	3.652	0.5070	4.879
Iso-butane	2.107	58.123	1.354	0.5629	1.630
N-butane	5.523	58.123	3.549	0.5840	4.118
Iso-pentane	3.340	72.150	2.664	0.6244	2.891
N-pentane	3.833	72.150	3.057	0.6311	3.283
i-Hexanes	3.582	86.177	3.371	0.6795	3.447
n-Hexane	3.376	85.668	3.218	0.6640	3.265
2,2,4 trimethylpentane	0.023	114.231	0.030	0.6967	0.029
Benzene	0.148	78.114	0.103	0.8846	0.099
Heptanes	10.220	97.761	11.096	0.7032	10.696
Toluene	0.780	92.141	0.635	0.8719	0.620
Octanes	11.958	108.185	14.599	0.7465	13.211
E-benzene	0.106	106.167	0.055	0.8718	0.097
M-,O-,P-xylene	1.104	106.167	1.296	0.8731	1.014
Nonanes	6.903	122.870	9.668	0.7602	8.714
Decanes Plus	16.183	202.077	36.150	0.7990	30.667
	100.000		100.000	-	100.000

Calculated Values	Total Sample	Decanes Plus
Specific Gravity at 60 °F	0.6778	0.7990
Api Gravity at 60 °F	77.272	45.591
Molecular Weight	90.462	202.077
Pounds per Gallon (in Vacuum)	5.651	6.662
Pounds per Gallon (in Air)	5.645	6.654
Cu. Ft. Vapor per Gallon @ 14.73 psia	23.760	12.481

4790 N.E. EVANGELINE THRUWAY CARENCRO, LA 70520 PHONE (337) 896-3055 FAX (337) 896-3077

Certificate of Analysis:

13050027-002A

Company:

Gas Analytical Services

For:

Gas Analytical Services

Well:

Pad 150

Alan Ball

Field:

EQT Midstream

Sample of:

Condensate

PO Box 1028

Conditions:

316 @ N.G.

Bridgeport, WV, 26330

Sampled by: Sample date: **RM-GAS** 4/29/2013

Report Date:

5/13/2013

Remarks:

Cylinder No.: GAS

Remarks:

Well 512475

Analysis: (GPA 2103M)	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %
Nitrogen	0.000	28.013	0.000	0.8094	0.000
Methane	14.611	16.043	2.591	0.3000	5.857
Carbon Dioxide	0.104	44.010	0.051	0.8180	0.042
Ethane	8.607	30.070	2.861	0.3562	5.441
Propane	7.492	44.097	3.652	0.5070	4.879
Iso-butane	2.107	58.123	1.354	0.5629	1.630
N-butane	5.523	58.123	3.549	0.5840	4.118
Iso-pentane	3.340	72.150	2.664	0.6244	2.891
N-pentane	3.833	72.150	3.057	0.6311	3.283
Hexanes	6.958	85.668	6.589	0.6654	6.712
Heptanes Plus	47.425	97.761	73.632	0.7032	65.147
		-		55 S M	
	100.000		100.000		100.000

Calculated Values	Total Sample	Heptanes Plus
Specific Gravity at 60 °F	0.6778	0.7677
Api Gravity at 60 °F	77.272	52.809
Molecular Weight	90.462	140.452
Pounds per Gallon (in Vacuum)	5.651	6.401
Pounds per Gallon (in Air)	5.645	6.394
Cu. Ft. Vapor per Gallon @ 14.73 psia	23.760	17.334
Standing-Katz Density (lb. / ft ³)		

Number: 2030-13050027-002A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Alan Ball **Gas Analytical Services** PO Box 1028

Bridgeport, WV 26330

Station Location: EQT Midstream

Station Name: Pad 150

Cylinder No: GAS Sampled By:

RM-GAS

Sample Of:

Condensate

Spot

Sample Date:

04/29/2013 11:30

May 07, 2013

Sample Conditions: 316 psig

Analytical Data

Test	Method	Result	Units	Detection Lai Limit Tec	
Color-Visual	Proprietary	STRAW		AR	05/07/2013
API Gravity @ 60° F	ASTM D-5002	61.86	0	AR	05/07/2013
Specific Gravity @ 60/60° F	ASTM D-5002	0.8713		AR	05/07/2013
Density @ 60° F	ASTM D-5002	0.8705	g/ml	AR	05/07/2013
Shrinkage Factor	Proprietary	0.8281	•	AR	05/07/2013
Flash Factor	Proprietary	255.8535 C	u. Ft./S.T. Bbl	AR	05/07/2013

Pari L. Pero Hydrocarbon Laboratory Manager

Quality Assurance:

Number: 2030-13050229-003A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Station Name: 512425

RM-GAS

Sampled By: Sample Of:

Gas

Sample Date:

05/20/2013 13:15

May 29, 2013

Sample Conditions: 379 psig Method: GPA 2286

Cylinder No: Analyzed:

Sample Point: Submeter GAS

Station Location: EQT Production

05/29/2013 13:24:38 by CC

Analytical Data

Analytical Data						
Components	Mol. %	Wt. %	GPM at 14.73 psia	A		
Nitrogen	0.532	0.729		GPM TOTAL C2+	5.661	
Carbon Dioxide	0.195	0.420				
Methane	78.965	61.996				
Ethane	13.780	20.278	3.697			
Propane	4.195	9.053	1.159			
Iso-Butane	0.507	1.442	0.166			
n-Butane	1.013	2.881	0.320			
Iso-Pentane	0.249	0.879	0.091			
n-Pentane	0.239	0.844	0.087			
i-Hexanes	0.113	0.461	0.045			
n-Hexane	0.073	0.304	0.030			
Benzene	0.002	0.008	0.001			
Cyclohexane	0.011	0.044	0.004			
i-Heptanes	0.057	0.266	0.025			
n-Heptane	0.022	0.106	0.010			
Toluene	0.004	0.017	0.001			
i-Octanes	0.031	0.168	0.015			
n-Octane	0.003	0.017	0.002			
Ethylbenzene	NIL	NIL	NIL			
Xylenes	0.002	0.007	0.001			
i-Nonanes	0.003	0.027	0.002			
n-Nonane	0.001	0.006	0.001			
Decane Plus	0.003	0.047	0.004			
	100.000	100.000	5.661			
	100.000	.00.000	0.001			

Certificate of Analysis Number: 2030-13050229-003A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

May 29, 2013

Station Name: 512425

Station Location: EQT Production

Sample Point: Submeter

Cylinder No: Analyzed:

GAS

05/29/2013 13:24:38 by CC

Sampled By:

RM-GAS

Sample Of:

Gas

05/20/2013 13:15 Sample Date:

Sample Conditions: 379 psig Method:

GPA 2286

Physical Properties C10+ Total Calculated Molecular Weight 20.43 163.67

GPA 2172-09 Calculation:

Calculated Gross BTU per ft3 @ 14.73 psia & 60°F

Real Gas Dry BTU 8669.4 1239.6 Water Sat. Gas Base BTU 1218.5 8518.5 Relative Density Real Gas 0.7077 5.6511 Compressibility Factor 0.9966

Hydrocarbon Laboratory Manager

Quality Assurance:

Number: 2030-13050229-003A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

May 29, 2013

Station Name: 512425

Station Location: EQT Production

Sample Point: Submeter

Cylinder No: Analyzed:

GAS

05/29/2013 13:24:38 by CC

Sampled By:

RM-GAS

Sample Of:

Sample Date:

05/20/2013 13:15

Sample Conditions: 379 psig Method:

GPA 2286

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.73 psia			
Nitrogen	0.532	0.729		GPM TOTAL C2+	5.661	
Carbon Dioxide	0.195	0.420		GPM TOTAL C3+	1.964	
Methane	78.965	61.996		GPM TOTAL iC5+	0.319	
Ethane	13.780	20.278	3.697			
Propane	4.195	9.053	1.159			
Iso-butane	0.507	1,442	0.166			
n-Butane	1.013	2.881	0.320			
Iso-pentane	0.249	0.879	0.091			
n-Pentane	0.239	0.844	0.087			
Hexanes Plus	0.325	1.478	0.141			
	100.000	100.000	5.661			
Physical Properties			Total	C6+		
Relative Density Real	Gas		0.7077	3.2076		
Calculated Molecular			20.43	92.90		
Compressibility Factor			0.9966			
GPA 2172-09 Calcula	ation:					
Calculated Gross BT	U per ft3 @	14.73 psi	a & 60°F			
Real Gas Dry BTU			1239.6	5071.5		
Water Sat. Gas Base BTU			1218.5	4983.2		
Comments: H2O Mc	01% : 1.740	; Wt% : 1.5	38			

Hydrocarbon Laboratory Manager

Quality Assurance:

Number: 2030-13050229-003A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

May 29, 2013

Station Name: 512425

Station Location: EQT Production

Sample Point: Submeter

Cylinder No: Analyzed: 05/29/2013 13:24:38 by CC

GAS

Sampled By:

RM-GAS

Sample Of:

Gas

Sample Date:

05/20/2013 13:15

Sample Conditions: 379 psig Method:

GPA 2286

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.73 psia			
Nitrogen	0.532	0.729		GPM TOTAL C2+	5.661	
Carbon Dioxide	0.195	0.420		GPM TOTAL C3+	1.964	
Methane	78.965	61.995		GPM TOTAL iC5+	0.319	
Ethane	13.780	20.278	3.697			
Propane	4.195	9.053	1.159			
Iso-Butane	0.507	1.442	0.166			
n-Butane	1.013	2.882	0.320			
Iso-Pentane	0.249	0.879	0.091			
n-Pentane	0.239	0.844	0.087			
Hexanes	0.186	0.765	0.075			
Heptanes Plus	0.139	0.713	0.066			
	100.000	100.000	5.661			
Physical Properties Total			C7+			
Relative Density Rea	al Gas		0.7077	3.5343		
Calculated Molecula			20.43	102.36		
Compressibility Factor		0.9966				
GPA 2172-09 Calcu	lation:					
Calculated Gross B	TU per ft ³ @	14.73 psia	& 60°F			
Real Gas Dry BTU			1239.6	5520.5		
Water Sat. Gas Base BTU			1218.5	5424.5		
Comments: H2O N	/lol% : 1.740	; Wt% : 1.5	38			

Hydrocarbon Laboratory Manager

Quality Assurance:

ATTACHMENT O

Monitoring/Recordkeeping/Reporting/Testing Plans

ATTACHMENT O: MONITORING, RECORDING, REPORTING, AND TESTING PLANS

EQT requests that the currently applicable G70-A permit conditions be transferred to the R13 permit, as no changes are being proposed that would add new conditions.

ATTACHMENT P

Legal Ad

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a modification permit (R-13) for an existing natural gas production wellpad operation (OXF-149 and OXF-1450 wellpads), currently permitted under G70-A031A. The facility is located off of County Route 11/4 in Doddridge County, West Virginia approximately 5 miles Southwest of West Union, WV at 39.221247, -80.800687 (OXF-149) and 39.223119, -80.791219 (OXF-150).

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Particulate Matter (PM) = 1.99 tpy
Sulfur Dioxide (SO2) = 0.16 tpy
Volatile Organic Compounds (VOC) = 11.43 tpy
Carbon Monoxide (CO) = 22.04 tpy
Nitrogen Oxides (NOx) = 26.24 tpy
Hazardous Air Pollutants (HAPs) = 1.83 tpy
Greenhouse Gases (CO2e) = 31,621.30 tpy

This facility is currently in operation and seeks to add two (2) enclosed combustors at the wellpad. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this XX day of XX, 2016.

By: EQT Production Company
Kenneth Kirk, Executive Vice President
625 Liberty Avenue Suite 1700
Pittsburgh, PA 15222