

625 Liberty Ave, Suite 1700 Pittsburgh PA 15222 www.eqt.com

TEL: (412) 395-3699

R. Alex Bosiljevac Environmental Coordinator

December 5, 2016

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

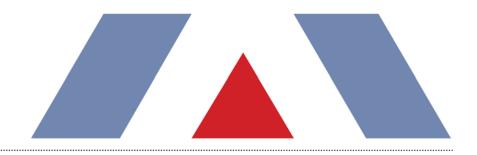
RE: G70-D General Permit Registration Application

EQT Production Company

OXF-160 Natural Gas Production Site

Permit No. R13-3011, Plant ID No. 017-00039

Dear Director Durham:


Enclosed are one (1) original hard copy and two (2) complete PDFs included on CD-ROM of a G70-D General Permit Registration Application for the OXF-160 natural gas production site. A legal advertisement will be published in Doddridge Independent the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely,

R. Alex Bosiljevac EQT Corporation

Enclosures

PROJECT REPORT

EQT Production OXF-160 Pad

G70-D Permit Application

TRINITY CONSULTANTS 4500 Brooktree Drive Suite 103 Wexford, PA 15090 (724) 935-2611

November 2016

Environmental solutions delivered uncommonly well

1. INTRODUCTION	4
1.1. FACILITY AND PROJECT DESCRIPTION	4
1.2. SOURCE STATUS	5
1.3. G70-D APPLICATION ORGANIZATION	5
2. SAMPLE EMISSION SOURCE CALCULATIONS	6
3. REGULATORY DISCUSSION	8
3.1. Prevention of Significant Deterioration Source Classification	8
3.2. Title V Operating Permit Program	8
3.3. New Source Performance Standards	8
3.3.1. NSPS Subparts D, Da, Db, and Dc – Steam Generating Units	9
3.3.2. NSPS Subparts K, Ka, and Kb – Storage Vessels for Petroleum Liquids/Volatile Organic Liquids	9
3.3.3. NSPS Subparts JJJJ – Stationary Spark Ignition Internal Combustion Engines	9
3.3.4. NSPS Subpart 0000 - Crude Oil and Natural Gas Production, Transmission, and Distribution	9
3.3.5. NSPS Subpart 0000a—Crude Oil and Natural Gas Facilities	9
3.3.6. Non-Applicability of All Other NSPS	10
3.4. National Emission Standards for Hazardous Air Pollutants	10
3.4.1. 40 CFR 63 Subpart HH – Oil and Natural Gas Production Facilities	11
3.4.2. 40 CFR 63 Subpart ZZZZ – Stationary Reciprocating Internal Engines	11
3.4.3. 40 CFR 63 Subpart JJJJJJ - Industrial, Commercial, and Institutional Boilers	11
3.5. West Virginia SIP Regulations	11
3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Hear Exchangers	t 11
3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Control	
to an Objectionable Odor	11
3.5.3. 45 CSR 6: Control of Air Pollution from the Combustion of Refuse	12
3.5.4. 45 CSR 16: Standards of Performance for New Stationary Sources	12
3.5.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Prepar Storage and Other Sources of Fugitive Particulate Matter	ration, 12
3.5.6. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks	12
3.5.7. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants	12
3.5.8. Non-Applicability of Other SIP Rules	12
4. G70-D APPLICATION FORMS	13
ATTACHMENT A: SINGLE SOURCE DETERMINATION	
ATTACHMENT B: SITING CRITERIA WAIVER (NOT APPLICABLE)	
ATTACHMENT C: BUSINESS CERTIFICATE	
ATTACHMENT D. PROCESS ELOW DIAGRAM	

ATTACHMENT E: PROCESS DESCRIPTION

ATTACHMENT F: PLOT PLAN
ATTACHMENT G: AREA MAP

ATTACHMENT H: G70-D SECTION APPLICABILITY FORM

ATTACHMENT I: EMISSION UNITS TABLE

ATTACHMENT J: FUGITIVE EMISSIONS SUMMARY SHEET

ATTACHMENT K: GAS WELL DATA SHEET

ATTACHMENT L: STORAGE VESSEL DATA SHEET

ATTACHMENT M: HEATERS DATA SHEET ATTACHMENT N: ENGINES DATA SHEET

ATTACHMENT O: TRUCK LOADING DATA SHEET

ATTACHMENT P: GLYCOL DEHYDRATOR DATA SHEET (NOT APPLICABLE)

ATTACHMENT Q: PNEUMATIC CONTROLLER DATA SHEET

ATTACHMENT R: PNEUMATIC PUMP DATA SHEET

ATTACHMENT S: AIR POLLUTION CONTROL DEVICE DATA SHEET

ATTACHMENT T: EMISSION CALCULATIONS
ATTACHMENT U: EMISSION SUMMARY SHEET

ATTACHMENT V: CLASS I LEGAL ADVERTISEMENT

ATTACHMENT W: GENERAL PERMIT REGISTRATION APPLICATION FEE

EQT Production Company (EQT) is submitting this Class II General Permit (G70-D) application to the West Virginia Department of Environmental Protection (WVDEP) for the construction and operation of new equipment at an natural gas production well pad, OXF-160, located in Doddridge County, West Virginia. The OXF-160 pad is currently operating under R13 permit number R13-3011.

1.1. FACILITY AND PROJECT DESCRIPTION

The OXF-160 pad is a natural gas production facility that currently consists of three (3) natural gas wells. Natural gas and liquids (including water and condensate) are extracted from deposits underneath the surface. Natural gas is transported from the well to a gas line for additional processing and compression, as necessary. The liquids produced are stored in storage vessels.

The OXF-160 pad currently consists of the following equipment:

- > Four (4) 210 barrel (bbl) storage tanks for condensate/water (produced fluids) controlled by one (1) existing combustor rated at 11.66 MMBtu/hr;
- > Four (4) line heaters, each rated at 1.54 MMBtu/hr (heat input);
- > Two (2) thermoelectric generators (TEGs), each rated at 0.013 MMBtu/hr (heat input);
- > Produced fluid truck loading; and
- > Associated piping and components.

This application seeks to permit the following equipment at the OXF-160 pad:

- > Four (4) new natural gas wells;
- > Six (6) new 400 barrel (bbl) storage tanks for condensate/water (produced fluids) to replace the existing tanks;
- > Five (5) line heaters for rated at 1.54 MMBtu/hr each(heat input);
- > One (1) low pressure separator and associated 1.00 MMBtu/hr line heater;
- > One (1) additional combustor rated at 19.22 MMBtu/hr;
- > One (1) vapor recovery unit (VRU) powered by a natural gas fired 275 horsepower (hp) engine; and
- > One (1) 140 bbl storage tank for sand and produced fluids from the sand separator (vapors from this tank may be controlled by combustors but are not represented as controlled in this application).

A process flow diagram is included as Attachment D. A comparison of the potential emissions of the proposed and existing equipment at the wellpad in comparison with G70-D emission limits is provided in Table 1. Facility emissions are well below the permit limits. Note that in accordance with condition 1.1.1. of the G70-D permit, fugitive emissions are not considered in determining eligibility of the permit.

Table 1 - Comparison of Wellpad Potential Emissions to G70-D Permit Emission Limits

Pollutant	Wellpad Potential Annual Emissions (tpy)	G70-D Maximum Annual Emission Limits (tpy)
Nitrogen Oxides	24.09	50
Carbon Monoxide	23.32	80
Volatile Organic Compounds	15.37	80
Particulate Matter – 10/2.5	6.53	20
Sulfur Dioxide	0.13	20
Individual HAP (n-hexane)1	0.73	8
Total HAP ¹	1.39	20

 $^{1. \} Includes \ fugitive \ emissions$

1.2. SOURCE STATUS

WVDEP must make stationary source determinations on a case-by-case basis using the guidance under the Clean Air Act (CAA) and EPA's and WVDEP's implementing regulations. The definition of stationary source in 40 CFR 51.166(b) includes the following:

"(6) Building, structure, facility, or installation means all of the pollutant emitting activities which belong to the same industrial grouping, are located on or more contiguous or adjacent properties, and are under control of the same person (or persons under common control)."

Other additional pollutant emitting facilities should be aggregated with the OXF-160 Pad for air permitting purposes if, and only if, all three elements of the "stationary source" definition above are fulfilled.

WVDEP determined that the OXF-160 pad is a separate stationary source when the current permit was issued. There are no Marcellus facilities within a quarter-mile radius of the OXF-160 Pad. The nearest wellpad, OXF-131, is located approximately 0.30 miles northeast of OXF-160. Therefore, the OXF-160 pad should continue to be considered a separate stationary source with respect to permitting programs, including Title V and Prevention of Significant Deterioration (PSD). As discussed in this application, the facility is a minor source of air emissions with respect to New Source Review (NSR) and Title V permitting.

1.3. G70-D APPLICATION ORGANIZATION

This West Virginia Code of State Regulations, Title 45 (CSR) Series 13 (45 CSR 13) G70-D permit application is organized as follows:

- > Section 2: Sample Emission Source Calculations;
- > Section 3: Regulatory Discussion;
- > Section 4: G70-D Application Form;
- > Attachment A: Single Source Determination;
- > Attachment B: Siting Criteria Waiver (Not Applicable);
- > Attachment C: Business Certificate:
- > Attachment D: Process Flow Diagram;
- > Attachment E: Process Description;
- Attachment F: Plot Plan;
- > Attachment G: Area Map;
- > Attachment H: G70-D Section Applicability Form;
- > Attachment I: Emission Units Table;
- Attachment J: Fugitive Emissions Summary Sheet;
- > Attachment K: Gas Well Data Sheet;
- > Attachment L: Storage Vessel Data Sheet;
- > Attachment M: Heaters Data Sheet;
- > Attachment N: Engines Data Sheet;
- > Attachment 0: Truck Loading Data Sheet:
- > Attachment P: Glycol Dehydrator Data Sheet (Not Applicable);
- > Attachment Q: Pneumatic Controller Data Sheet
- > Attachment R: Pneumatic Pump Data Sheet
- > Attachment S: Air Pollution Control Device Data Sheet;
- > Attachment T: Emission Calculations:
- > Attachment U: Emission Summary Sheet;
- > Attachment V: Class I Legal Advertisement; and
- > Attachment W: General Permit Registration Application Fee.

The characteristics of air emissions from the natural gas production operations, along with the methodology for calculating emissions, are briefly described in this section of the application. Detailed emission calculations are presented in Attachment S of this application.

Emissions from this project will result from natural gas combustion in the line heaters, combustors, as well as storage of organic liquids in storage tanks and loading of organic liquids into tank trucks. In addition, fugitive emissions will result from component leaks from the operation of the station. The methods by which emissions from each of these source types, as well as the existing source types, are calculated are summarized below.

- > Line Heaters and Enclosed Combustors: Potential emissions of criteria pollutants and hazardous air pollutants (HAPs) are calculated using U.S. EPA's AP-42 factors for natural gas external combustion. These calculations assume a site-specific heat content of natural gas. Greenhouse gas emissions are calculated according to 40 CFR 98 Subpart C.2
- **VRU Engines:** Potential emissions of oxides of nitrogen (NO_x), carbon monoxide (CO), and volatile organic compounds (VOC) are calculated using 40 CFR 60 Subpart JJJJ emissions factor standards. Remaining criteria pollutants and HAPs are calculated using U.S. EPA's AP-42 factors for natural gas fired engines.³ These calculations assume a specific heat content of natural gas from the closest wellpad. Greenhouse gas emissions are calculated according to 40 CFR 98 Subpart C.
- Fugitive Equipment Leaks: Emissions of VOC and HAPs from leaking equipment components have been estimated using facility estimated component counts and types along with emission factors from the Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017, November 1995. Emission factors used are based on average measured TOC from component types indicated. Greenhouse gas emissions from component leaks are calculated according to the procedures in 40 CFR 98 Subpart W.4 Pneumatic devices at the wellpad are intermittent bleed and are assumed to be in operation 1/3 of the year. Fuel cell emissions are calculated based on mass balance.
- Storage Tanks: Working, breathing and flashing emissions of VOC and HAPs from the storage tanks at the facility are calculated using Bryan Research & Engineering ProMax® Software. Controlled calculations assume an overall control efficiency (capture and destruction) of 95%. The throughput for the produced fluids tanks are based on the maximum annualized monthly condensate and produced water at the OXF-160 well pad (i.e., the maximum monthly throughput for the pad times 12) scaled up to seven wells. The composition for the analysis was from a sample taken at OXF-160. Emissions of VOC and HAPs from the sand separator tank are calculated using E&P TANK v2.0. The produced fluids throughput is calculated as follows: $Throughput\left(\frac{bbl}{day}\right) = \left(Condensate\ Throughput\ \left(\frac{bbl}{month}\right) + \left(Produced\ Water\ Throughput\ \left(\frac{bbl}{month}\right)\right)\right) * \frac{12\left(\frac{months}{year}\right)}{365\left(\frac{days}{year}\right)} X (7/3)$

$$Throughput \left(\frac{bbl}{day}\right) = \left(Condensate \ Throughput \left(\frac{bbl}{month}\right) + \left(Produced \ Water \ Throughput \left(\frac{bbl}{month}\right)\right)\right) * \frac{12 \frac{(months)}{year}}{365 \frac{(days)}{year}} \ X \ (7/3)$$

Tank Truck Loading: Uncontrolled emissions of VOC and HAPs from the loading of organic liquids from storage tanks to tank truck are calculated using Bryan Research Engineering ProMax® Software. Truck

¹U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 1.4, Natural Gas Combustion, Supplement D, July 1998.

² 40 CFR 98 Subpart C, General Stationary Fuel combustion Sources, Tables C-1 and C-2.

³ U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 3.2, Natural Gas-fired Reciprocating Engines, Supplement D, August 2000.

⁴ 40 CFR 98 Subpart W, Petroleum and Natural Gas Systems, Section 98.233(r), Population Count and Emission Factors.

	loading is controlled by the enclosed combustors. U.S. EPA's AP-42 Chapter 5 Section 2 factors were used for capture efficiency. ⁵
>	Haul Roads: Fugitive dust emitted from facility roadways has been estimated using projected vehicle miles traveled along with U.S. EPA's AP-42 factors for unpaved haul roads. ⁶

⁵ U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 5.2, Transportation And Marketing Of Petroleum Liquids, June 2008. ⁶ U.S. EPA, AP 42, Fifth Edition, Volume I, Section 13.2.2, Unpaved Roads, November 2006.

This section documents the applicability determinations made for Federal and State air quality regulations. In this section, applicability or non-applicability of the following regulatory programs is addressed:

- > Prevention of Significant Deterioration permitting;
- > Title V of the 1990 Clean Air Act Amendments;
- > New Source Performance Standards (NSPS);
- > National Emission Standards for Hazardous Air Pollutants (NESHAP); and
- > West Virginia State Implementation Plan (SIP) regulations.

This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-D permit application forms.

In addition to providing a summary of applicable requirements, this section of the application also provides non-applicability determinations for certain regulations, allowing the WVDEP to confirm that identified regulations are not applicable to the wellpad. Note that explanations of non-applicability are limited to those regulations for which there may be some question of applicability specific to the operations at the wellpad. Regulations that are categorically non-applicable are not discussed (e.g., NSPS Subpart J, Standards of Performance for Petroleum Refineries).

3.1. PREVENTION OF SIGNIFICANT DETERIORATION SOURCE CLASSIFICATION

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration. PSD regulations apply when a major source makes a change, such as installing new equipment or modifying existing equipment, and a significant increase in emissions results from the change. The wellpad is not a major source with respect to the PSD program since its potential emissions are below all the PSD thresholds. As such, PSD permitting is not triggered by this construction activity. EQT will monitor future construction activities at the site closely and will compare any future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

3.2. TITLE V OPERATING PERMIT PROGRAM

Title 40 of the Code of Federal Regulations Part 70 (40 CFR 70) establishes the federal Title V operating permit program. West Virginia has incorporated the provisions of this federal program in its Title V operating permit program in West Virginia CSR 45-30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP and 100 tpy of all other regulated pollutants. The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpad is not a major source for Title V purposes.

3.3. NEW SOURCE PERFORMANCE STANDARDS

New Source Performance Standards, located in 40 CFR 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best demonstrated technology as specified in the applicable provisions. Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, except where expressly noted. The following is a summary of applicability and non-applicability determinations for NSPS regulations of relevance to the wellpad. The following NSPS could potentially apply to the wellpad:

- > 40 CFR Part 60 Subparts D/Da/Db/Dc Steam Generating Units
- > 40 CFR Part 60 Subpart K/Ka/Kb Storage Vessels for Petroleum Liquids/Volatile Organic Liquids
- > 40 CFR Part 60 Subpart JJJJ Stationary Spark Ignition Internal Combustion Engines

- > 40 CFR Part 60 Subpart 0000 Crude Oil and Natural Gas Production, Transmission, and Distribution
- > 40 CFR Part 60 Subpart 0000a Crude Oil and Natural Gas Facilities

3.3.1. NSPS Subparts D, Da, Db, and Dc - Steam Generating Units

These subparts apply to steam generating units of various sizes, all greater than 10 MMBtu/hr. The proposed project does not include any steam generating units with a heat input greater than 10 MMbtu/hr, therefore the requirements of these subparts do not apply.

3.3.2. NSPS Subparts K, Ka, and Kb - Storage Vessels for Petroleum Liquids/Volatile Organic Liquids

These subparts apply to storage tanks of certain sizes constructed, reconstructed, or modified during various time periods. Subpart K applies to storage tanks constructed, reconstructed, or modified prior to 1978, and Subpart Ka applies to those constructed, reconstructed, or modified prior to 1984. Both Subparts K and Ka apply to storage tanks with a capacity greater than 40,000 gallons. Subpart Kb applies to volatile organic liquid (VOL) storage tanks constructed, reconstructed, or modified after July 23, 1984 with a capacity equal to or greater than 75 m 3 (\sim 19,813 gallons). All of the tanks at the wellpad have a capacity of 19,813 gallons or less. As such, Subparts K, Ka, and Kb do not apply to the storage tanks at the wellpad.

3.3.3. NSPS Subparts JJJJ - Stationary Spark Ignition Internal Combustion Engines

New Source Performance Standards 40 CFR Part 60 Subpart JJJJ (NSPS JJJJ) affects owners and operators of stationary spark ignition internal combustion engines (SI ICE) that commence construction, reconstruction or modification after June 12, 2006. Applicability dates are based on the date the engine was ordered by the operator. The proposed VRU engine at the well pad is a 4-stroke rich burn, spark ignition engine manufactured after January 1, 2011, and is subject to this subpart. EQT will operate the engine according to the manufacturer's recommended practices and demonstrate compliance with the requirements specified in 40 CFR §60.4244 (testing methods) and 40 CFR§60.4243 (maintenance plan/records and performance testing frequency) for noncertified affected SI ICE at the facility, which includes an initial performance test within 1 year of engine startup to demonstrate compliance with the regulation.

3.3.4. NSPS Subpart OOOO - Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart 0000, Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution, applies to affected facilities that commenced construction, reconstruction, or modification after August 23, 2011 and or before September 18, 2015. This NSPS was published in the Federal Register on August 16, 2012, and subsequently amended. The proposed project does not change applicability dates with respect to NSPS Subpart 0000 for existing equipment. Therefore, this subpart is not applicable to the proposed project. Note that EPA recently finalized 40 CFR 60 Subpart 0000a; applicability of Subpart 0000a is discussed in the following section.

3.3.5. NSPS Subpart OOOOa—Crude Oil and Natural Gas Facilities

Subpart 0000a, Standards of Standards of Performance for Crude Oil and Natural Gas Facilities, applies to affected facilities that commenced construction, reconstruction, or modification after September 18, 2015. The regulation was published final in the Federal Register on June 3, 2016. The rule includes provisions for the following facilities:

- > Hydraulically fractured wells;
- > Centrifugal compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- > Reciprocating compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;

- > Continuous bleed natural gas-driven pneumatic controllers with a bleed rate of > 6 scfh located in the production, gathering, processing, or transmission and storage segments (excluding natural gas processing plants);
- > Continuous bleed natural gas-driven pneumatic controllers located at natural gas processing plants;
- > Pneumatic pumps located in the production and processing segments;
- > Storage vessels located in the production, gathering, processing, or transmission and storage segments;
- > The collection of fugitive emissions components at a well site;
- > The collection of fugitive emissions components at a compressor station; and
- > Sweetening units located onshore that process natural gas produced from either onshore or offshore wells.

Based on the rule, the following paragraphs describe the applicability of the facilities to be located at the proposed facility.

40 CFR 60.5385 requires owners and operators of affected reciprocating compressors to change the rod packing prior to operating 26,000 hours or prior to 36 months since start up or the last packing replacement. However, according to §60.5365a, compressors located at well sites are not affected facilities under Subpart 0000a.

There are six (6) produced fluid storage vessels and one (1) sand separator storage vessel at the wellpad. The storage vessels at the facility will each have potential VOC emissions less than 6 tpy based on the permit application materials and enforceable limits to be included in the G70-D permit. As such, per 60.5365a(e), the tanks will not be storage vessel affected facilities under the rule.

The proposed well pad is an affected facility under 60.5365a(i). Therefore, EQT will be required to monitor all fugitive emission components (ex. connectors, flanges, etc.) with an optical gas imaging (OGI) device, and repair all sources of fugitive emissions in accordance with the rule. EQT must also develop a corporate-wide monitoring plan and a site specific monitoring plan (or one plan that incorporates all required elements), and conduct surveys on a semi-annual basis. EQT is also subject to the applicable recordkeeping and reporting requirements of the rule.

The new pneumatic controllers will potentially be subject to NSPS 0000a. Per 60.5365a(d)(1), a pneumatic controller affected facility is a single continuous bleed natural gas driven pneumatic controller operating at a natural gas bleed rate greater than 6 scfh. No pneumatic controllers installed will meet the definition of a pneumatic controller affected facility. Therefore, these units are not subject to the requirements of Subpart 0000a.

Per 60.5365a(h)(1), a pneumatic pump for well sites is defined as a single natural gas-driven diaphragm pump. The proposed wellpad will not include any pneumatic pump that meet this definition. As such, there will not be additional requirements regarding this type of equipment under Subpart 0000a.

3.3.6. Non-Applicability of All Other NSPS

NSPS are developed for particular industrial source categories. Other than NSPS developed for natural gas processing plants (Subparts 0000) and associated equipment (Subparts D-Dc and K-Kb), the applicability of a particular NSPS to the wellpad can be readily ascertained based on the industrial source category covered. All other NSPS are categorically not applicable to the proposed project.

3.4. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The wellpad is an Area (minor) source of HAP since its potential emissions of HAP are less than the 10/25 major source thresholds. NESHAP apply to sources in specifically regulated industrial source categories (Clean Air Act Section 112(d)) or on a case-by-case basis (Section 112(g)) for facilities not regulated as a specific industrial source type. Besides 40 CFR 63

Subpart A (NESHAP Subpart A), which is similar to 40 CFR 60 Subpart A (NSPS Subpart A), the following NESHAP could potentially apply to the wellpad:

- > 40 CFR Part 63 Subpart HH Oil and Natural Gas Production Facilities
- > 40 CFR Part 63 Subpart ZZZZ Stationary Reciprocating Internal Combustion Engines
- > 40 CFR Part 63 Subpart JJJJJJ Industrial, Commercial, and Institutional Boilers

The applicability of these NESHAP Subparts is discussed in the following sections.

3.4.1. 40 CFR 63 Subpart HH - Oil and Natural Gas Production Facilities

This standard contains requirements for both major and area sources of HAP. At area sources, the only affected source is a triethylene glycol dehydration unit (§63.760(b)(2)). The wellpad does not include a triethylene glycol dehydration unit; therefore the requirements of this subpart do not apply.

3.4.2. 40 CFR 63 Subpart ZZZZ - Stationary Reciprocating Internal Engines

This rule affects reciprocating internal combustion engines (RICE) located at a major and area sources of HAP. 40 CFR §63.6590(c) states that a new or reconstructed stationary RICE located at an area HAP source must meet the requirements of NESHAP Subpart ZZZZ by meeting the requirements of NSPS Subpart JJJJ. No further requirements apply for such engines under NESHAP Subpart ZZZZ. The OXF-160 well pad is a minor (area) source of hazardous air pollutants and the VRU engine is considered a new stationary RICE. Therefore, the requirements contained in §63.6590(c) are applicable. EQT will be in compliance with applicable requirements of 40 CFR 63 Subpart ZZZZ by meeting the applicable requirements of 40 CFR 60 Subpart IJJJ.

3.4.3. 40 CFR 63 Subpart JJJJJJ - Industrial, Commercial, and Institutional Boilers

This MACT standard applies to industrial, commercial, and institutional boilers of various sizes and fuel types at area sources. The line heaters are natural gas-fired and are specifically exempt from this subpart. Therefore, no sources at the wellpad are subject to any requirements under 40 CFR 63 Subpart JJJJJJ.

3.5. WEST VIRGINIA SIP REGULATIONS

The wellpad is potentially subject to regulations contained in the West Virginia Code of State Regulations, Chapter 45 (Code of State Regulations). The Code of State Regulations fall under two main categories, those regulations that are generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., PM standards for manufacturing equipment).

3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

45 CSR 2 applies to fuel burning units, defined as equipment burning fuel "for the primary purpose of producing heat or power by indirect heat transfer". The line heaters are fuel burning units and therefore must comply with this regulation. Per 45 CSR 2-3, opacity of emissions from units shall not exceed 10 percent.

3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

According to 45 CSR 4-3:

No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.

The wellpad is generally subject to this requirement. However, due to the nature of the process at the wellpad, production of objectionable odor from the wellpad during normal operation is unlikely.

3.5.3. 45 CSR 6: Control of Air Pollution from the Combustion of Refuse

45 CSR 6 applies to activities involving incineration of refuse, defined as "the destruction of combustible refuse by burning in a furnace designed for that purpose. For the purposes of this rule, the destruction of any combustible liquid or gaseous material by burning in a flare or flare stack, thermal oxidizer or thermal catalytic oxidizer stack shall be considered incineration." The enclosed combustors are incinerators and therefore must comply with this regulation. Per 45 CSR 6-4.3, opacity of emissions from this unit shall not exceed 20 percent, except as provided by 4.4. PM emissions from this unit will not exceed the levels calculated in accordance with 6-4.1.

3.5.4. 45 CSR 16: Standards of Performance for New Stationary Sources

45 CSR 16-1 incorporates the federal Clean Air Act (CAA) standards of performance for new stationary sources set forth in 40 CPR Part 60 by reference. As such, by complying with all applicable requirements of 40 CFR Part 60 at the wellpad, EQT will be complying with 45 CSR 16.

3.5.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage and Other Sources of Fugitive Particulate Matter

According to 45 CSR 17-3.1:

No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

Due to the nature of the activities at the wellpad, it is unlikely that fugitive particulate matter emissions will be emitted under normal operating conditions. However, EQT will take measures to ensure any fugitive particulate matter emissions will not cross the property boundary should any such emissions occur.

3.5.6. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks

45 CSR 21-28 applies to any fixed roof petroleum liquid storage tank with a capacity greater than 40,000 gallons. The capacity of each storage tank proposed for the wellpad is less than 40,000 gallons; therefore, 45 CSR 21-28 will not apply to the petroleum liquid storage tanks at this wellpad.

3.5.7. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants

45 CSR 34-1 incorporates the federal Clean Air Act (CAA) national emissions standards for hazardous air pollutants (NESHAPs) as set forth in 40 CPR Parts 61 and 63 by reference. As such, by complying with all applicable requirements of 40 CFR Parts 61 and 63 at the wellpad, EQT will be complying with 45 CSR 34. Note that there are no applicable requirements under 40 CFR Parts 61 and 63 for the wellpad.

3.5.8. Non-Applicability of Other SIP Rules

A thorough examination of the West Virginia SIP rules with respect to applicability at the wellpad reveals many SIP regulations that do not apply or impose additional requirements on operations. Such SIP rules include those specific to a particular type of industrial operation that is categorically not applicable to the wellpad.

The WVDEP permit application forms contained in this application include all applicable G70-D application forms including the required attachments.

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G70-D GENERAL PERMIT REGISTRATION APPLICATION

PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF NATURAL GAS PRODUCTION FACILITIES LOCATED AT THE WELL SITE

NATURAL GASTROL	OCTION FACIL	ITIES LOCATED AT THE WE	LL SITE	
⊠CONSTRUCTION (UPDATE) □MODIFICATION □RELOCATION		□CLASS I ADMINISTRATIVI □CLASS II ADMINISTRATIV		
SE	CTION I. GENER	RAL INFORMATION		
Name of Applicant (as registered with the V	VV Secretary of St	ate's Office): EQT Production	Company	
Federal Employer ID No. (FEIN): 25-0724	685			
Applicant's Mailing Address: 625 Liberty	Avenue, Suite 17	00		
City: Pittsburgh	State: PA		ZIP Code: 15222	
Facility Name: OXF-160 Pad				
Operating Site Physical Address: Upper Ru If none available, list road, city or town and		WV		
City: Oxford	Zip Code: 26421		County: Doddridge	
Latitude & Longitude Coordinates (NAD83 Latitude: 39.18169 Longitude: -80.79904	, Decimal Degrees	to 5 digits):		
SIC Code: 1311 DAQ Facility ID No. (For existing for		ing facilities)		
NAICS Code: 211111		017-00039		
C	ERTIFICATION O	OF INFORMATION		
This G70-D General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of the Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or unsigned G70-D Registration Application will be returned to the applicant. Furthermore, if the G70-D forms are not utilized, the application will be returned to the applicant. No substitution of forms is allowed.				
I hereby certify that Mike Gavin is an Authorized Representative and in that capacity shall represent the interest of the business (e.g., Corporation, Partnership, Limited Liability Company, Association Joint Venture or Sole Proprietorship) and may obligate and legally bind the business. If the business changes its Authorized Representative, a Responsible Official shall notify the Director of the Division of Air Quality immediately. I hereby certify that all information contained in this G70-D General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible.				
Responsible Official Signature Name and Title: Mike Gavin, Vice President Email: gavinm@eqt.com Phone: Date: 125110				
If applicable: Authorized Representative Signature: Name and Title: Email:	Phone: Date:	Fax:		
If applicable: Environmental Contact Name and Title: Alex Bosiljevac, Environm Email: ABosiljevac@eqt.com	ental Coordinator Date:	Phone: 412-395-3699	Fax: 412-395-7027	

Directions to the facility: From West Union, take US-50 west for 3 miles. Turn left onto Old U.S. 80 E for 1.9 miles, then turn left to continue onto County Route 21/Oxford Rd for 4.5 miles. Turn left onto South Fork of Hughes River for 3.5 miles, then turn right onto Upper Run. Access road will be on the right after about 0.8 miles.			
ATTACHMENTS AND SU	PPORTING DOCUMENTS		
I have enclosed the following required document	ts:		
Check payable to WVDEP - Division of Air Quality with the	appropriate application fee (per 45CSR13 and 45CSR22).		
☐ Check attached to front of application. ☐ I wish to pay by electronic transfer. Contact for payment (incl. name and email address): ☑ I wish to pay by credit card. Contact for payment (incl. name and email address): R. Alex Bosiljevac, abosiljevac@eqt.com ☑\$500 (Construction, Modification, and Relocation) ☐\$300 (Class II Administrative Update)			
⊠\$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ, OOOO a	nd/or OOOOa 1		
□\$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or H	H ²		
¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ. NSPS and NESHAP fees apply to new construction or if the source is being modified.			
☐ Responsible Official or Authorized Representative Signatu	re (if applicable)		
⊠ Single Source Determination Form (must be completed) –	Attachment A		
☐ Siting Criteria Waiver (if applicable) – Attachment B	□ Current Business Certificate – Attachment C		
□ Process Flow Diagram – Attachment D	□ Process Description – Attachment E		
□ Plot Plan – Attachment F	□ Area Map – Attachment G		
☑ G70-D Section Applicability Form – Attachment H			
⊠ Fugitive Emissions Summary Sheet – Attachment J			
☐ Gas Well Affected Facility Data Sheet (if applicable) – Att	achment K		
⊠ Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L			
⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M			
⊠ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N			
☐ Tanker Truck/Rail Car Loading Data Sheet (if applicable) – Attachment O			
☐ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P			
☑ Pneumatic Controllers Data Sheet – Attachment Q			
⊠ Pneumatic Pump Data Sheet - Attachment R			
☑ Air Pollution Control Device/Emission Reduction Device(sapplicable) – Attachment S	s) Sheet(s) (include manufacturer performance data sheet(s) if		
⊠ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment T			
□ Facility-wide Emission Summary Sheet(s) – Attachment U			
⊠ Class I Legal Advertisement - Attachment V			
☑ One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments			

OPERATING SITE INFORMATION

Briefly describe the proposed new operation and/or any change(s) to the facility: General permit application for an existing natural gas production well pad.

All attachments must be identified by name, divided into sections, and submitted in order.

ATTACHMENT A

Single Source Determination

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ¼ mile of each other.

Is there equeby SIC code	aipment and activities in the same industrial grouping (defined le)?
Yes ⊠	No 🗆
person/peo	1
Yes ⊠	No 🗆
share equip	ipment and activities located on the same site or on sites that oment and are within ¼ mile of each other?
Yes □	No ⊠

ATTACHMENT A: SINGLE SOURCE DETERMINATION MAP

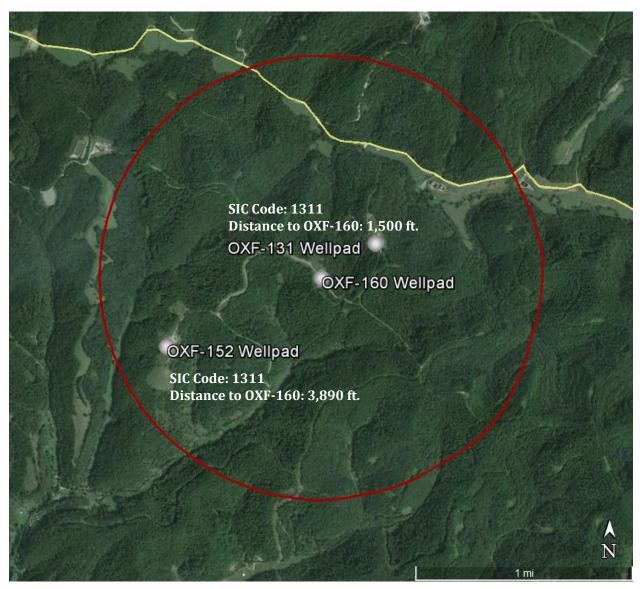


Figure 1 - Map of OXF-160 Location with 1 Mile Radius Circle

Coordinates:

Latitude: 39°10'53.31"N Longitude: 80°47'57.12"W

ATTACHMENT B

Siting Criteria Waiver (Not Applicable)

ATTACHMENT B - SITING CRITERIA WAIVER

If applicable, please complete this form and it must be notarized.

G70-D General Permit Siting Criteria Waiver

WV Division of Air Quality 300' Waiver

	I		Print Name	hereby
ac	cknowledge and	d agree that	General Permit Applicant's Nan	W1II
			at a natural gas produc 00' of my dwelling and	
				ent of Environmental Protection perate in such location.
		S	Signed:	
	Signature			Date
	Signature			Date
	Taker		orn before me this	-
			res:	
	SEAL		tary Public	

ATTACHMENT C

Business Certificate

ATTACHMENT C – CURRENT BUSINESS CERTIFICATE

If the applicant is a resident of West Virginia, the applicant should provide a copy of the current Business Registration Certificate issued to them from the West Virginia Secretary of State's Office. If the applicant is not a resident of the State of West Virginia, the registrant should provide a copy of the Certificate of Authority/Authority of LLC/Registration. This information is required for all sources to operate a business in West Virginia regardless of whether it is a construction, modification, or administrative update.

If you are a new business to West Virginia and have applied to the West Virginia Secretary of State's Office for a business license, please include a copy of your application.

Please note: Under the West Virginia Bureau of Employment Programs, 96CSR1, the DAQ may not grant, issue, or renew approval of any permit, general permit registration, or Certificate to Operate to any employing unit whose account is in default with the Bureau of Employment Programs Unemployment Compensation Division.

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: EQT PRODUCTION COMPANY 625 LIBERTY AVE 1700 PITTSBURGH, PA 15222-3114

BUSINESS REGISTRATION ACCOUNT NUMBER:

1022-8081

This certificate is issued on:

08/4/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

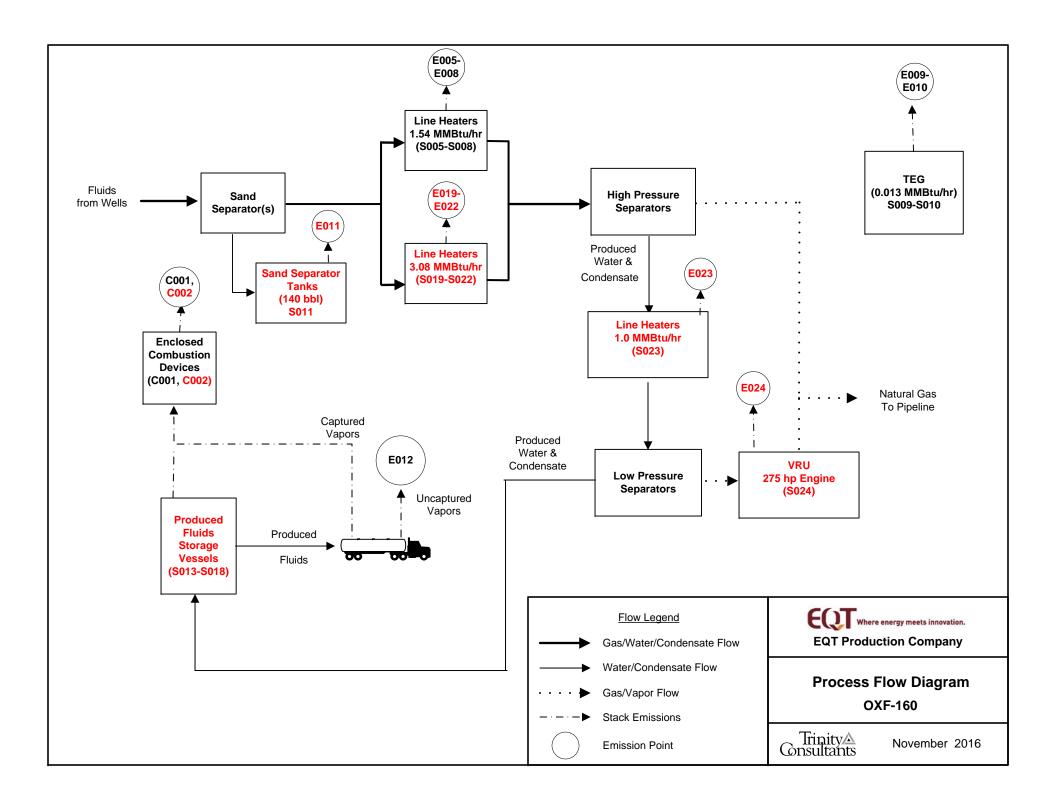
This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.3 L0553297664

ATTACHMENT D


Process Flow Diagram

ATTACHMENT D - PROCESS FLOW DIAGRAM

Provide a diagram or schematic that supplements the process description of the operation. The process flow diagram must show all sources, components or facets of the operation in an understandable line sequence of operation. The process flow diagram should include the emission unit ID numbers, the pollution control device ID numbers, and the emission point ID numbers consistent with references in other attachments of the application. For a proposed modification, clearly identify the process areas, emission units, emission points, and/or control devices that will be modified, and specify the nature and extent of the modification.

Use the following guidelines to ensure a complete process flow diagram:

- The process flow diagram shall logically follow the entire process from beginning to end.
- Identify each emission source and air pollution control device with proper and consistent emission unit identification numbers, emission point identification numbers, and control device identification numbers.
- The process flow lines may appear different for clarity. For example, dotted lines may be used for vapor flow and solid lines used for liquid flow and arrows for direction of flow.
- The process flow lines may be color coded. For example: new or modified equipment may be red; old or existing equipment may be blue; different stages of preparation such as raw material may be green; and, finished product or refuse, another color.

ATTACHMENT E

Process Description

ATTACHMENT E – PROCESS DESCRIPTION

Provide a detailed written description of the operation for which the applicant is seeking a permit. The process description is used in conjunction with the process flow diagram to provide the reviewing engineer a complete understanding of the activity at the operation. Describe in detail and order the complete process operation.

Use the following guidelines to ensure a complete Process Description:

- The process flow diagram should be prepared first and used as a guide when preparing the process description. The written description shall follow the logical order of the process flow diagram.
- All emission sources, emission points, and air pollution control devices must be included in the process description.
- When modifications are proposed, describe the modifications and the effect the changes will have on the emission sources, emission points, control devices and the potential emissions.
- Proper emission source ID numbers must be used consistently in the process description, the process flow diagram, the emissions calculations, and the emissions summary information provided.
- Include any additional information that may facilitate the reviewers understanding of the process operation.

The process description is required for all sources regardless of whether it is a construction, modification, or administrative update.

ATTACHMENT E: PROCESS DESCRIPTION

This G70-C Permit Application involves the installation of new equipment at an existing natural gas production wellpad (OXF-160). The proposed project will consist of four (4) new wells with the following equipment: six (6) 400 bbl produced fluid tanks, four (4) line heaters (each rated 3.08 MMbtu/hr), one enclosed combustor (rated 19.22 MMbtu/hr), one (1) low pressure separator with associated heater (rated 1.0 MMbtu/hr) and vapor recovery unit (VRU), and one (1) sand separator tank.

The incoming gas/liquid stream from the underground wells will pass through a sand separator, where sand, water, and residual solids are displaced and transferred to the sand separator tanks (S011). The gas stream will then pass through the line heaters (S005-S007 and S019-S022) to raise/maintain temperature. The stream will then pass through the high pressure (3 phase) separators, which will separate gas (natural gas from the separator is sent to the sales line) from liquids (condensate and produced water). The liquids will then pass through the low pressure separators, where it is heated (S023) to volatilize (flash off) lighter hydrocarbons and separate condensate and in the liquid stream. The flash gas from the liquids stream is recovered by the Vapor Recovery Unit (S024), which utilizes a natural gas-fired engine driven compressor to raise the pressure of the flash gas and route it back into the natural gas pipeline. The stabilized liquid stream (produced water and condensate) is then sent to produced fluids tank, (S013-S018).

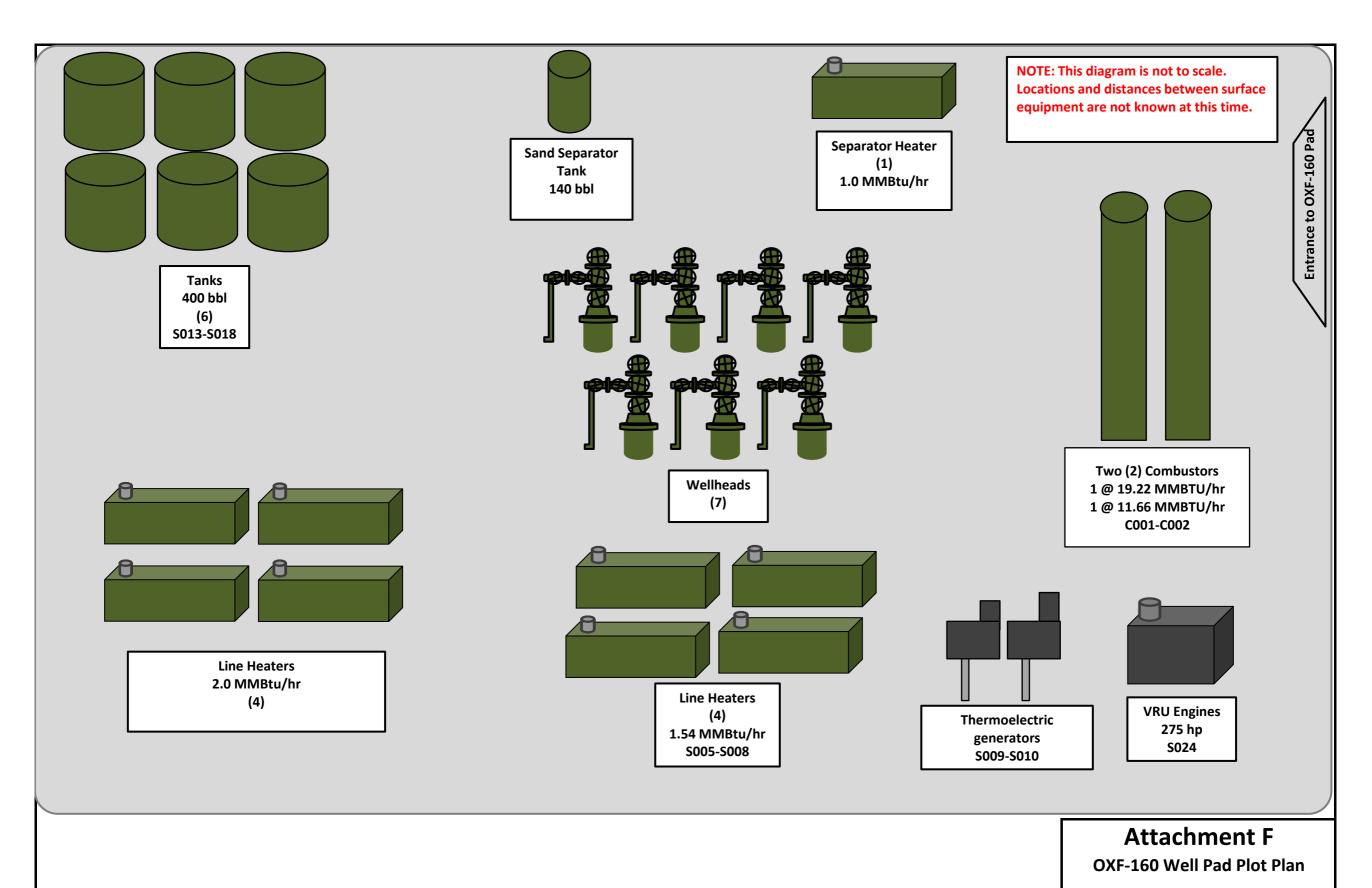
Emissions from the storage vessels are controlled by two enclosed combustors (C001, C002). Once the tanks are filled, the contents are loaded into trucks for transport. EQT utilizes vapor balancing in the truck loading operations, which means the vapors displaced by the filling of tanker trucks (S012) are routed back into the battery of tanks and ultimately to the combustors. Facility electricity is provided by fuel cells, which do not produce air emissions.

A process flow diagram is included as Attachment D.

ATTACHMENT F

Plot Plan

ATTACHMENT F - PLOT PLAN


Provide an accurately scaled and detailed Plot Plan showing the locations of all emission units, emission points, and air pollution control devices. Show all emission units, affected facilities, enclosures, buildings and plant entrances and exits from the nearest public road(s) as appropriate. Note height, width and length of proposed or existing buildings and structures.

A scale between 1"=10' and 1"=200' should be used with the determining factor being the level of detail necessary to show operation or plant areas, affected facilities, emission unit sources, transfer points, etc. An overall small scale plot plan (e.g., 1"=300') should be submitted in addition to larger scale plot plans for process or activity areas (e.g., 1"=50') if the plant is too large to allow adequate detail on a single plot plan. Process or activity areas may be grouped for the enlargements as long as sufficient detail is shown.

Use the following guidelines to ensure a complete Plot Plan:

- Facility name
- Company name
- Company facility ID number (for existing facilities)
- Plot scale, north arrow, date drawn, and submittal date.
- Facility boundary lines
- Base elevation
- Lat/Long reference coordinates from the area map and corresponding reference point elevation
- Location of all point sources labeled with proper and consistent source identification numbers

This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

ATTACHMENT G

Area Map

ATTACHMENT G - AREA MAP

Provide an Area Map showing the current or proposed location of the operation. On this map, identify plant or operation property lines, access roads and any adjacent dwelling, business, public building, school, church, cemetery, community or institutional building or public park within a 300' boundary circle of the collective emission units.

Please provide a 300' boundary circle on the map surrounding the proposed emission units collectively.

This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

ATTACHMENT G: AREA MAP

Figure 1 - Map of OXF-160 Location

UTM Northing (KM): 4,336.958 UTM Easting (KM): 517.357 Elevation: ~1,230 ft

ATTACHMENT H

G70-D Section Applicability Form

ATTACHMENT H - G70-D SECTION APPLICABILITY FORM

General Permit G70-D Registration Section Applicability Form

General Permit G70-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, pneumatic pumps, reciprocating internal combustion engines (RICEs), tank truck/rail car loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PER	MIT G70-D APPLICABLE SECTIONS
⊠ Section 5.0	Gas and Oil Well Affected Facility (NSPS, Subpart OOOO/OOOa)
⊠ Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹
□Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOa)
⊠ Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOoa and/or NESHAP Subpart HH
⊠ Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc
□Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOa)
□Section 11.0	Pneumatic Pump Affected Facility (NSPS, Subpart OOOOa)
⊠Section 12.0	Fugitive Emissions GHG and VOC Standards (NSPS, Subpart OOOOa)
⊠ Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines
⊠ Section 14.0	Tanker Truck/Rail Car Loading ²
□Section 15.0	Glycol Dehydration Units ³

¹ Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subparts OOOO or OOOOa control requirements or the applicable control device requirements of Section 8.

² Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.

³ Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

ATTACHMENT I

Emission Units Table

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s)6
S001	C001 - C002	Produced Fluid Storage Tank	2013	2013	400 bbl	Existing - To be removed	C001 - C002	
S002	C001 - C002	Produced Fluid Storage Tank	2013	2013	400 bbl	Existing - To be removed	C001 - C002	
S003	C001 - C002	Produced Fluid Storage Tank	2013	2013	400 bbl	Existing - To be removed	C001 - C002	
S004	C001 - C002	Produced Fluid Storage Tank	2013	2013	400 bbl	Existing - To be removed	C001 - C002	
S005	E005	Line Heater	2013	2013	1.54 MMBtu/hr	Existing; No change	None	
S006	E006	Line Heater	2013	2013	1.54 MMBtu/hr	Existing; No change	None	
S007	E007	Line Heater	2013	2013	1.54 MMBtu/hr	Existing; No change	None	
S008	E008	Line Heater	2013	2013	1.54 MMBtu/hr	Existing; No change	None	
S009	E009	Thermoelectric Generator	2013	2013	0.013 MMBtu/hr	Existing	None	
S010	E010	Thermoelectric Generator	2013	2013	0.013 MMBtu/hr	Existing	None	
S011	E011	Sand Separator Storage Tank	TBD	TBD	140 bbl	New	C001 – C002 (Optional)	
S012	E012 (Uncaptured) C001–C002 (Controlled, Captured)	Liquid Loading	2013	2013	22,897,000 gal/yr	Modified; Increase throughput	C001 - C002	
S013	C001 - C002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	C001 - C002	
S014	C001 - C002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	C001 - C002	
S015	C001 - C002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	C001 - C002	

S016	C001 - C002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	C001 - C002	
S017	C001 - C002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	C001 - C002	
S018	C001 - C002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	C001 - C002	
S019	E019	Line Heater	TBD	TBD	3.08 MMBtu/hr	New	None	
S020	E020	Line Heater	TBD	TBD	3.08 MMBtu/hr	New	None	
S021	E021	Line Heater	TBD	TBD	3.08 MMBtu/hr	New	None	
S022	E022	Line Heater	TBD	TBD	3.08 MMBtu/hr	New	None	
S023	E023	Line Heater	TBD	TBD	1.0 MMBtu/hr	New	None	
S024	E024	VRU Engine	TBD	TBD	275 hp	New	None	
C001	C001	Tank Combustor	2013	2013	11.66 MMBtu/hr	Existing; No change	NA	
C002	C002	Tank Combustor	TBD	TBD	19.22 MMBtu/hr	New	NA	
1			2 22 22					

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

When required by rule

4 New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation. ⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

ATTACHMENT J

Fugitive Emissions Summary Sheet

ATTACHMENT J – FUGITIVE EMISSIONS SUMMARY SHEET Sources of fugitive emissions may include loading operations, equipment leaks, blowdown emissions, etc. Use extra pages for each associated source or equipment if necessary. Source/Equipment: Fugitive Emissions Leak Detection ☐ Audible, visual, and ☑ Other (please describe) Will satisfy ☐ Infrared (FLIR) cameras ☐ None required Method Used olfactory (AVO) inspections condition 12.1.1 of the G70-D Closed Stream type Estimated Emissions (tpy) Component Source of Leak Factors Vent Count (gas, liquid, Type (EPA, other (specify)) VOC HAP GHG (methane, CO₂e) System etc.) □ Gas □ Yes U.S. EPA. Office of Air Quality Planning and Standards. Pumps ⊠ No 11 Protocol for Equipment Leak Emission Estimates. Table 2-1. □ Liquid 2.02 0.06 0.38 (EPA-453/R-95-017, 1995). □ Both ⊠ Gas ☐ Yes U.S. EPA. Office of Air Quality Planning and Standards. Valves ⊠ No 369 Protocol for Equipment Leak Emission Estimates. Table 2-1. ☐ Liquid 3.53 36.47 0.11 (EPA-453/R-95-017, 1995). □ Both ⊠ Gas ☐ Yes U.S. EPA. Office of Air Quality Planning and Standards. Safety Relief ⊠ No ☐ Liquid 25 Protocol for Equipment Leak Emission Estimates. Table 2-1. 4.08 0.13 3.59 Valves (EPA-453/R-95-017, 1995). □ Both ☐ Yes U.S. EPA. Office of Air Quality Planning and Standards. ☐ Gas Open Ended ⊠ No 27 ☐ Liquid 0.07 2.3E-3 6.03 Protocol for Equipment Leak Emission Estimates. Table 2-1. Lines (EPA-453/R-95-017, 1995). ⊠ Both □ Yes ☐ Gas Sampling ☐ Liquid ⊠ No 0 N/A Connections □ Both □ Yes ☐ Gas U.S. EPA. Office of Air Quality Planning and Standards. Connections ⊠ No Protocol for Equipment Leak Emission Estimates. Table 2-1. ☐ Liquid 0.15 17.86 1.626 4.77 (Not sampling) (EPA-453/R-95-017, 1995). ⊠ Both ☐ Gas ☐ Yes Compressors \square No 0 ☐ Liquid N/A □ Both ☐ Gas ☐ Yes □ No ☐ Liquid Flanges (included in connections) ------□ Both ☐ Yes ⊠ Gas Other1 ⊠ No 35 40 CFR 98 Subpart W ☐ Liquid 6.1 0.19 256.27 □ Both

Please provide an explanation of the sources of fugitive emissions (e.g. pigging operations, equipment blowdowns, pneumatic controllers, etc.):

Pneumatic Controller count is 'Other' category. An estimate of Miscellaneous Gas Venting emissions are included in the Emission Calculations and serve to include such sources as compressor venting, pigging, vessel blowdowns and other sources.

Please indicate if there are any closed vent bypasses (include component): N/A

¹ Other equipment types may include compressor seals, relief valves, diaphragms, drains, meters, etc.

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck/rail car loading, etc.) N/A

ATTACHMENT K

Gas Well Data Sheet

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device	Subject to OOOO or OOOOa?
4701706112	June 2013	June 2013	Green	Yes - 0000
4701706113	June 2013	June 2013	Green	Yes - 0000
4701706114	June 2013	June 2013	Green	Yes - 0000
TBD	TBD	TBD	TBD	Yes - 0000a
TBD	TBD	TBD	TBD	Yes - 0000a
TBD	TBD	TBD	TBD	Yes - 0000a
TBD	TBD	TBD	TBD	Yes - 0000a

Note: If future wells are planned and no API number is available please list as PLANNED.

If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

047 = State code. The state code for WV is 047.

001 = County Code. County codes are odd numbers, beginning with 001

(Barbour) and continuing to 109 (Wyoming).

00001= Well number. Each well will have a unique well number.

ATTACHMENT L

Storage Vessel Data Sheet

ATTACHMENT L - STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.

The following information is REQUIRED:

- ☑ Composition of the representative sample used for the simulation
- - \boxtimes Temperature and pressure (inlet and outlet from separator(s))
 - ⊠ Simulation-predicted composition
- ⊠ Resulting flash emission factor or flashing emissions from simulation
- □ Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name	2. Tank Name
OXF-160 Pad	Produced Fluid Tanks (water and condensate)
3. Emission Unit ID number	4. Emission Point ID number
S013-S018	C001-C002
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:
N/A (new tanks)	oximes New construction $oximes$ New stored material $oximes$ Other
Was the tank manufactured after August 23, 2011 and on or	☐ Relocation
before September 18, 2015?	
□ Yes □ No	
Was the tank manufactured after September 18, 2015?	
□ Yes □ No	
7A. Description of Tank Modification (if applicable) N/A	
7B. Will more than one material be stored in this tank? If so, a s	separate form must be completed for each material.
☐ Yes ⊠ No	
7C. Was USEPA Tanks simulation software utilized?	
☐ Yes	
If Yes, please provide the appropriate documentation and items	8-42 below are not required.

TANK INFORMATION

	8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.																	
700	8. Design Capacity (<i>specify barrets or gations</i>). Use the internal cross-sectional area multiplied by internal neight.																	
94	9A. Tank Internal Diameter (ft.) 12 9B. Tank Internal Height (ft.) 20																	
	A. Maximum Liquid He		20															
	10A. Maximum Liquid Height (ft.) 20 11B. Average Liquid Height (ft.) 10 11B. Average Vapor Space Height (ft.) 10								110									
	12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume". 400 bbls									710								
	13A. Maximum annual throughput (gal/yr) See attached 13B. Maximum daily throughput (gal/day) See attached																	
	emissions calculations for all throughput values emissions calculations for all throughput values																	
	14. Number of tank turnovers per year See attached 15. Maximum tank fill rate (gal/min) See attached emissions																	
	emissions calculations for all throughput values calculations for all throughput values																	
	16. Tank fill method □ Submerged □ Splash □ Bottom Loading																	
	17. Is the tank system a variable vapor space system? Yes No If yes (A) What is the values averaging consists of the gratery (sol)?																	
11 y	If yes, (A) What is the volume expansion capacity of the system (gal)? (B) What are the number of transfers into the system per year?																	
10	Type of tank (check all			ito tile sysi	tem per ye	zai :												
		mar app ertical		4-1	£1_4£		¢ □	1	e 🗆 -41-	()								
	Fixed Roof \boxtimes v	erticai	☐ horizo	ontai 🗀	flat roof	□ cone	rooi 🗀	dome roo	ı 🗆 otn	ner (describe)								
	E 15 15 5 6	_		c –														
	External Floating Roof		pontoon		double d	leck roof												
	Domed External (or Co																	
	Internal Floating Roof		vertical	column su	ipport [☐ self-sup	porting											
	Variable Vapor Space		lifter roo	of 🗆 dia	phragm													
	Pressurized		spherica	l □ cyl	indrical													
	Other (describe)																	
	,																	
<u> </u>																		
PRES	SURE/VACUUM CO	ONTRO	I. DATA															
	Check as many as appl		L Dilli	•														
		у.			□ Runtu	re Disc (no	ria)											
										☐ Does Not Apply ☐ Rupture Disc (psig)								
	☐ Inert Gas Blanket of ☐ Carbon Adsorption¹																	
5.7																		
			ce ¹ (vapo	r combusto	ors, flares	, thermal o		enclosed c	ombustors	3)								
\boxtimes	Conservation Vent (psi	g)		r combusto	ors, flares	, thermal o		enclosed c	ombustors	s)								
0.5	Conservation Vent (psi 5 oz Vacuum Setting	g) 14.4 o		r combusto	ors, flares	, thermal o		enclosed c	ombustors	5)								
0.5	Conservation Vent (psi	g) 14.4 o		r combusto	ors, flares	, thermal o		enclosed c	ombustors	;)								
0.5	Conservation Vent (psi 5 oz Vacuum Setting Emergency Relief Valv Vacuum Setting	g) 14.4 o e (psig) 14.4 oz	z Pressu	r combusto	ors, flares	, thermal o		enclosed c	ombustors	;)								
0.5	Conservation Vent (psi 5 oz Vacuum Setting Emergency Relief Valv	g) 14.4 o e (psig) 14.4 oz	z Pressu	r combusto	ors, flares	, thermal o		enclosed c	ombustors	s)								
0.5	Conservation Vent (psi 5 oz Vacuum Setting Emergency Relief Valv Vacuum Setting	g) 14.4 o e (psig) 14.4 oz Yes	z Pressu z Pressu No	r combusto	ors, flares ☐ Conde	, thermal o		enclosed c	ombustors	s)								
0.5	Conservation Vent (psi 5 oz Vacuum Setting Emergency Relief Valv Vacuum Setting Thief Hatch Weighted	g) 14.4 o e (psig) 14.4 oz Yes	z Pressu z Pressu No	r combusto	ors, flares ☐ Conde	, thermal o		enclosed c	ombustors	;)								
0.5 \(\sigma \) \(\sigma \)	Conservation Vent (psi 5 oz Vacuum Setting Emergency Relief Valv Vacuum Setting Thief Hatch Weighted omplete appropriate Air	g) 14.4 o e (psig) 14.4 oz 14.4 oz ☐ Yes ☐ Pollution	z Pressu z Pressu	r combusto	ors, flares Conde	, thermal o	oxidizers, c			;)								
0.5 \(\sigma \) \(\sigma \)	Conservation Vent (psi 5 oz Vacuum Setting Emergency Relief Valv Vacuum Setting Thief Hatch Weighted omplete appropriate Air	g) 14.4 o e (psig) 14.4 oz 14.4 oz ☐ Yes ☐ Pollution	z Pressu z Pressu Z No n Control	r combusto	ors, flares Conde	, thermal o	oxidizers, o			Estimation Method ¹								
0.5 \(\sigma \) \(\sigma \)	Conservation Vent (psi 5 oz Vacuum Setting Emergency Relief Valv Vacuum Setting Thief Hatch Weighted omplete appropriate Air	g) 14.4 o e (psig) 14.4 oz Tyes Pollution te (submi	z Pressu z Pressu Z No n Control	r combusto	ors, flares Conde	, thermal o	oxidizers, o	ne applicat	ion).									
0.5 \(\text{\tint{\text{\tint{\texi{\text{\text{\text{\ti}\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texit{\texi}\text{\text{\texi}\text{\text{\\xi}\tint{\text{\texi}\text{\text{\text{\text{\texi{\text{\texi}\text{\texi}\texit{\tex{	Conservation Vent (psi 5 oz Vacuum Setting Emergency Relief Valv Vacuum Setting Thief Hatch Weighted omplete appropriate Air	g) 14.4 o e (psig) 14.4 oz Tyes Pollution te (submi	z Pressu z Pressu d No n Control	r combusto	ors, flares Conde	, thermal o	oxidizers, o	ne applicat Total	ion).									
0.5 \(\sigma \) \(\sigma \)	Conservation Vent (psi 5 oz Vacuum Setting Emergency Relief Valv Vacuum Setting Thief Hatch Weighted omplete appropriate Air	g) 14.4 o e (psig) 14.4 oz ☐ Yes ☐ Pollution te (submi	z Pressu z Pressu z No n Control t Test Dat ng Loss tpy	r combustor ure Setting re Setting Device Sh a or Calcu Breathin	cors, flares Conde	ere or elsev Workin	where in the g Loss	ne applicat Total Emissio lb/hr	ion). ns Loss									
0.5 \(\sigma \) \(\sigma \)	Conservation Vent (psi 5 oz Vacuum Setting Emergency Relief Valv Vacuum Setting Thief Hatch Weighted omplete appropriate Air	g) 14.4 o e (psig) 14.4 oz ☐ Yes ☐ Pollution te (submi	z Pressu z Pressu z No n Control t Test Dat ng Loss tpy	r combustor ure Setting re Setting Device Sh a or Calcu Breathin	cors, flares Conde	thermal o	where in the g Loss	ne applicat Total Emissio lb/hr	ion). ns Loss									
0.5 \(\sigma \) \(\sigma \)	Conservation Vent (psi 5 oz Vacuum Setting Emergency Relief Valv Vacuum Setting Thief Hatch Weighted omplete appropriate Air	g) 14.4 o e (psig) 14.4 oz ☐ Yes ▷ Pollution te (submi	z Pressu z Pressu z No n Control t Test Dat ng Loss tpy	r combustor ure Setting re Setting Device Sh a or Calcu Breathin	cors, flares Conde	ere or elsev Workin	where in the g Loss	ne applicat Total Emissio lb/hr	ion). ns Loss									
0.5 \(\sigma \) \(\sigma \)	Conservation Vent (psi 5 oz Vacuum Setting Emergency Relief Valv Vacuum Setting Thief Hatch Weighted omplete appropriate Air	g) 14.4 o e (psig) 14.4 oz ☐ Yes ▷ Pollution te (submi	z Pressu z Pressu z No n Control t Test Dat ng Loss tpy	r combustor ure Setting re Setting Device Sh a or Calcu Breathin	cors, flares Conde	ere or elsev Workin	where in the g Loss	ne applicat Total Emissio lb/hr	ion). ns Loss									
0.5 \(\sigma \) \(\sigma \)	Conservation Vent (psi 5 oz Vacuum Setting Emergency Relief Valv Vacuum Setting Thief Hatch Weighted omplete appropriate Air	g) 14.4 o e (psig) 14.4 oz ☐ Yes ▷ Pollution te (submi	z Pressu z Pressu z No n Control t Test Dat ng Loss tpy	r combustor ure Setting re Setting Device Sh a or Calcu Breathin	cors, flares Conde	ere or elsev Workin	where in the g Loss	ne applicat Total Emissio lb/hr	ion). ns Loss									
0.5 \(\sigma \) \(\sigma \)	Conservation Vent (psi 5 oz Vacuum Setting Emergency Relief Valv Vacuum Setting Thief Hatch Weighted omplete appropriate Air	g) 14.4 o e (psig) 14.4 oz ☐ Yes ▷ Pollution te (submi	z Pressu z Pressu z No n Control t Test Dat ng Loss tpy	r combustor ure Setting re Setting Device Sh a or Calcu Breathin	cors, flares Conde	ere or elsev Workin	where in the g Loss	ne applicat Total Emissio lb/hr	ion). ns Loss									
0.5 \(\sigma \) \(\sigma \)	Conservation Vent (psi 5 oz Vacuum Setting Emergency Relief Valv Vacuum Setting Thief Hatch Weighted omplete appropriate Air	g) 14.4 o e (psig) 14.4 oz ☐ Yes ▷ Pollution te (submi	z Pressu z Pressu z No n Control t Test Dat ng Loss tpy	r combustor ure Setting re Setting Device Sh a or Calcu Breathin	cors, flares Conde	ere or elsev Workin	where in the g Loss	ne applicat Total Emissio lb/hr	ion). ns Loss									
0.5 \(\sigma \) \(\sigma \)	Conservation Vent (psi 5 oz Vacuum Setting Emergency Relief Valv Vacuum Setting Thief Hatch Weighted omplete appropriate Air	g) 14.4 o e (psig) 14.4 oz ☐ Yes ▷ Pollution te (submi	z Pressu z Pressu No n Control t Test Dat ng Loss tpy	r combustor ure Setting re Setting Device Sh a or Calcu Breathin	cors, flares Conde	ere or elsev Workin	where in the g Loss	ne applicat Total Emissio lb/hr	ion). ns Loss									
0.5 \(\text{\tint{\text{\tint{\texi{\text{\text{\text{\ti}\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texit{\texi}\text{\text{\texi}\text{\text{\\xi}\tint{\text{\texi}\text{\text{\text{\text{\texi{\text{\texi}\text{\texi}\texit{\tex{	Conservation Vent (psi 5 oz Vacuum Setting Emergency Relief Valv Vacuum Setting Thief Hatch Weighted omplete appropriate Air	g) 14.4 o e (psig) 14.4 oz ☐ Yes ▷ Pollution te (submi	z Pressu z Pressu No n Control t Test Dat ng Loss tpy	r combustor ure Setting re Setting Device Sh a or Calcu Breathin	cors, flares Conde	ere or elsev Workin	where in the g Loss	ne applicat Total Emissio lb/hr	ion). ns Loss									

 $^{^{1}\,}EPA=EPA\,Emission\,Factor, MB=Material\,\,Balance,\,SS=Similar\,Source,\,ST=Similar\,Source\,\,Test,\,Throughput\,\,Data,\,O=Other\,(specify)$

Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

TANK CONSTRUCTION AND OPERATION INFORM	ATION							
21. Tank Shell Construction:								
☐ Riveted ☐ Gunite lined ☐ Epoxy-coated riv	ets 🗵 (Other (describe) W	/elded	or riveted				
21A. Shell Color: Green		21B. Roof Color:		21C. Year	Last Painted: New			
		Green						
22. Shell Condition (if metal and unlined):								
22A. Is the tank heated? ☐ Yes ☒ No		22B. If yes, operatin	ng	22C. If yes, how is heat provided to tank?				
temperature:								
23. Operating Pressure Range (psig):								
Must be listed for tanks using VRUs with closed ve	ent syste	m.						
24. Is the tank a Vertical Fixed Roof Tank ? 24A. If yes, for dome 24B. If yes, for cone roof, provide slop								
⊠ Yes □ No		roof provide radius ((ft):	0.06				
_								
	not apply	y 🗵						
25A. Year Internal Floaters Installed:								
25B. Primary Seal Type (check one): Metallic (mecha	ınical) sh	oe seal 🔲 Liqui	id mou	nted resilie	ent seal			
☐ Vapor mounted	resilient	seal	er (desc	cribe):				
25C. Is the Floating Roof equipped with a secondary seal?	□ Yes	□ No						
25D. If yes, how is the secondary seal mounted? (check one		ioe □ Rim □	Oth	er (describe	e):			
	☐ Yes	□ No		`	<u>, </u>			
25F. Describe deck fittings:								
26. Complete the following section for Internal Floating Ro	oof Tanks		t annly					
26A. Deck Type: Bolted Welded		26B. For bolted of	* * *		construction:			
20A. Deck Type: Botted weided		Zob. Tor boiled	decks, j	provide deer	construction.			
26C. Deck seam. Continuous sheet construction:								
\square 5 ft. wide \square 6 ft. wide \square 7 ft. wide \square 5 x 7.	.5 ft. wid	e □ 5 x 12 ft. wio	ide 🗆	other (des	scribe)			
26D. Deck seam length (ft.): 26E. Area of deck (ft²):		26F. For column			26G. For column supported			
		tanks, # of column			tanks, diameter of column:			
27. Closed Vent System with VRU? ☐ Yes ☒ No								
28. Closed Vent System with Enclosed Combustor? 🗵 Yes	s ⊠ No							
SITE INFORMATION - Not Applicable: Tank calcul	ations p	erformed using P	ProMa	x software				
29. Provide the city and state on which the data in this sectio	n are base	d:						
30. Daily Avg. Ambient Temperature (°F):		31. Annual Avg.	. Maxin	num Temper	rature (°F):			
32. Annual Avg. Minimum Temperature (°F):		33. Avg. Wind S	Speed (r	mph):				
34. Annual Avg. Solar Insulation Factor (BTU/ft²-day):		35. Atmospheric						
LIQUID INFORMATION - Not Applicable: Tank cal	culation							
36. Avg. daily temperature range of bulk liquid (°F):		36A. Minimum (°F)		36B. Maxi				
37. Avg. operating pressure range of tank (psig):		37A. Minimum (psi			mum (psig):			
38A. Minimum liquid surface temperature (°F):		38B. Correspond			*			
39A. Avg. liquid surface temperature (°F):		39B. Corresponding vapor pressure (psia): 40B. Corresponding vapor pressure (psia):						
40A. Maximum liquid surface temperature (°F):		•	- 1		(psia):			
41. Provide the following for each liquid or gas to be stored	in the tank	. Add additional pag	ges ii ne	ecessary.				
41A. Material name and composition: 41B. CAS number:								
41C. Liquid density (lb/gal):								
41D. Liquid density (tb/gar). 41D. Liquid molecular weight (lb/lb-mole):								
41E. Vapor molecular weight (lb/lb-mole):								
41F. Maximum true vapor pressure (psia):								
41G. Maximum Reid vapor pressure (psia):								
41H. Months Storage per year.								
From: To:								
42. Final maximum gauge pressure and temperature prior to t	ransfer							
into tank used as inputs into flashing emission calculations.								

GENERAL INFORMATION (REOUIRED)

	ATION (REQUIRED)			
Bulk Storage Area Name	2. Tank Name			
OXF-160 Pad	Sand Separator Tank			
3. Emission Unit ID number	4. Emission Point ID number			
S011	E011			
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:			
Was the tank manufactured after August 23, 2011?	⊠ New construction □ New stored material			
⊠ Yes □ No	☐ Other (Low Pressure Tower) ☐ Relocation			
7A Description of Tank Medification (if applicable) N/A				
 7A. Description of Tank Modification (<i>if applicable</i>) N/A 7B. Will more than one material be stored in this tank? <i>If so, a a</i> 	conquete form must be completed for each material			
☐ Yes ☐ No	separate form must be completed for each material.			
7C. Was USEPA Tanks simulation software utilized?				
☐ Yes ☐ No				
If Yes, please provide the appropriate documentation and items	8-42 below are not required.			
J/ I				
TANK INFO	ORMATION			
8. Design Capacity (specify barrels or gallons). Use the interna	l cross-sectional area multiplied by internal height.			
140 bbls				
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.) 10			
10A. Maximum Liquid Height (ft.) 10	10B. Average Liquid Height (ft.) 5			
11A. Maximum Vapor Space Height (ft.) 10	11B. Average Vapor Space Height (ft.) 5			
12. Nominal Capacity (specify barrels or gallons). This is also				
13A. Maximum annual throughput (gal/yr) See attached	13B. Maximum daily throughput (gal/day) See attached			
emissions calculations for all throughput values	emissions calculations for all throughput values 15. Maximum tank fill rate (gal/min) See attached emissions			
14. Number of tank turnovers per year See attached emissions calculations for all throughput values 15. Maximum tank fill rate (gal/min) See attached calculations for all throughput values				
16. Tank fill method □ Submerged ☒ Splash	☐ Bottom Loading			
17. Is the tank system a variable vapor space system? ☐ Yes	⊠ No			
If yes, (A) What is the volume expansion capacity of the system				
(B) What are the number of transfers into the system per y				
18. Type of tank (check all that apply):				
	\square cone roof \square dome roof \square other (describe)			
☐ External Floating Roof ☐ pontoon roof ☐ double	deck roof			
☐ Domed External (or Covered) Floating Roof				
	□ self-supporting			
☐ Variable Vapor Space ☐ lifter roof ☐ diaphragm				
☐ Pressurized ☐ spherical ☐ cylindrical				
PRESSURE/VACUU	M CONTROL DATA			
19. Check as many as apply:				
	ure Disc (psig)			
☐ Inert Gas Blanket of ☐ Carb	on Adsorption ¹			
☐ Vent to Vapor Combustion Device¹ (vapor combustors, flare	s, thermal oxidizers, enclosed combustors)			
☐ Conservation Vent (psig) ☐ Cond	enser ¹			
Vacuum Setting Pressure Setting				
☐ Emergency Relief Valve (psig)				
Vacuum Setting Pressure Setting				
☐ Thief Hatch Weighted ☐ Yes ☐ No				
¹ Complete appropriate Air Pollution Control Device Sheet				

Material Name	Flashing Loss		Breathing Loss		Working Loss		Total Emissions Loss		Estimation Method ¹
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
		See att	ached En	nissions C	alculatio	n for all	values		

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

TANK CONSTRUCTION AND OPER	RATION INFORMATION								
21. Tank Shell Construction:									
\square Riveted \square Gunite lined \square Epoxy-coated rivets \boxtimes Other (describe) Welded									
21A. Shell Color: Gray	21B. Roof Color:	21B. Roof Color: Gray 21C. Year Last Painted: New							
22. Shell Condition (if metal and unlined):									
oximes No Rust $oximes$ Light Rust $oximes$ Dense Rust $oximes$ Not applicable									
22A. Is the tank heated? ☐ Yes ☒ No 22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank?									
23. Operating Pressure Range (psig):									
Must be listed for tanks using VRUs with closed vent system. 24. Is the tank a Vertical Fixed Roof Tank? 24A. If yes, for dome roof provide radius (ft): 24B. If yes, for cone roof, provide slop (ft/ft):									
24. Is the tank a Vertical Fixed Roof Ta ☐ Yes ⊠ No	ank? 24A. II yes, for do	me rooi provide radius (it):	24B. II ye	s, for cone roof, provide slop (ft/ft):					
25. Complete item 25 for Floating Roof	Tanks Does not ap	oly 🗵							
25A. Year Internal Floaters Installed:									
25B. Primary Seal Type (check one):	Metallic (mechanical)	shoe seal	unted resili	ent seal					
	Vapor mounted resilier	nt seal	scribe):						
25C. Is the Floating Roof equipped with	a secondary seal? Yes	□ No							
25D. If yes, how is the secondary seal m	ounted? (check one)	Shoe \square Rim \square Ot	her (describ	pe):					
25E. Is the floating roof equipped with a	weather shield?	□ No							
25F. Describe deck fittings:									
26. Complete the following section for I	nternal Floating Roof Tan	**	-						
26A. Deck Type: ☐ Bolted	☐ Welded	26B. For bolted decks	, provide dec	k construction:					
26C. Deck seam. Continuous sheet cons	struction:	<u>.</u>							
\square 5 ft. wide \square 6 ft. wide \square 7 f	it. wide \Box 5 x 7.5 ft. w	ide \Box 5 x 12 ft. wide \Box	other (de	escribe)					
26D. Deck seam length (ft.): 26E	. Area of deck (ft ²):	26F. For column supp	orted	26G. For column supported					
		tanks, # of columns:		tanks, diameter of column:					
27. Closed Vent System with VRU? □	Yes ⊠ No								
28. Closed Vent System with Enclosed C									
SITE INFORMATION - Not Applic		•	Tank softv	vare					
29. Provide the city and state on which the									
30. Daily Avg. Ambient Temperature (°l		31. Annual Avg. Max	_	erature (°F):					
32. Annual Avg. Minimum Temperature		33. Avg. Wind Speed							
34. Annual Avg. Solar Insulation Factor		35. Atmospheric Press	_						
LIQUID INFORMATION - Not App		ns performed using E&	P Tank so	ftware					
36. Avg. daily temperature range of bulk	36A. Minimum (°I	F):	36B. Max	imum (°F):					
liquid (°F):									

37. Avg. operating pressure range of tank	37A. Minimum (psig):			37B. Maximum (psig):		
(psig):						
38A. Minimum liquid surface temperature (°F):			38B. Corresponding vapor pressure (psia):			
39A. Avg. liquid surface temperature (°F):			39B. Corresponding vapor pressure (psia):			
40A. Maximum liquid surface temperature (°F):			40B. Corresponding vapor pressure (psia):			
41. Provide the following for each liquid or gas	to be stored in the tank.	Add add	itional pages if n	necessary.		
41A. Material name and composition:						
41B. CAS number:						
41C. Liquid density (lb/gal):						
41D. Liquid molecular weight (lb/lb-mole):						
41E. Vapor molecular weight (lb/lb-mole):						
41F. Maximum true vapor pressure (psia):						
41G. Maximum Reid vapor pressure (psia):						
41H. Months Storage per year.						
From: To:						
42. Final maximum gauge pressure and						
temperature prior to transfer into tank used as						
inputs into flashing emission calculations.						

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID #1	Status ²	Content ³	Volume ⁴						
	Not Applicable								

- 1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the well site. Tanks should be designated T01, T02, T03, etc. Enter storage tank Status using the following:
- 2.

EXIST Existing Equipment
NEW Installation of New Equipment

REM Equipment Removed

- Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc.
- Enter the maximum design storage tank volume in gallons.

ATTACHMENT M

Heaters Data Sheet

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr)4	Fuel Heating Value (BTU/scf) ⁵
S005	E005	Line Heater	2013	Existing; No change	1.54	~1,240
S006	E006	Line Heater	2013	Existing; No change	1.54	~1,240
S007	E007	Line Heater	2013	Existing; No change	1.54	~1,240
S008	E008	Line Heater	2013	Existing; No change	1.54	~1,240
S009	E009	Thermoelectric Generator	2013	Existing	0.013	~1,240
S010	E010	Thermoelectric Generator	2013	Existing	0.013	~1,240
S019	E019	Line Heater	TBD	New	3.08	~1,240
S020	E020	Line Heater	TBD	New	3.08	~1,240
S021	E021	Line Heater	TBD	New	3.08	~1,240
S022	E022	Line Heater	TBD	New	3.08	~1,240
S023	E023	Line Heater	TBD	New	1.0	~1,240

- Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

ATTACHMENT N

Engines Data Sheet (Not Applicable)

ATTACHMENT N - INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

Shan arso n	ise inis jorm	· I		T		I	
Emission Unit I	D#1		24				
Engine Manufacturer/Model Caterpillar/G3406							
Manufacturers Rated bhp/rpm		275					
Source Status ²		N	IS				
Date Installed/ Modified/Remov	ved/Relocated ³	TE	3D				
Engine Manufactured /Reconstruction Date ⁴		> Janua	ary 2011				
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵				□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources	
Engine Type ⁶		4SRB					
APCD Type ⁷ NSCR							
Fuel Type ⁸		PQNG					
H ₂ S (gr/100 scf))	(0				
Operating bhp/rpm		275					
BSFC (BTU/bhp-hr)		7,418					
Hourly Fuel Throughput		1,943 ft³/hr NA gal/hr		ft³/hr gal/hr		ft³/hr gal/hr	
Annual Fuel Throughput (Must use 8,760 hrs/yr unless emergency generator)		17 MMft³/yr NA gal/yr		MMft³/yr gal/yr		MMft³/yr gal/yr	
Fuel Usage or Hours of Operation Metered		Yes 🗵	No 🗆	Yes □	No 🗆	Yes □	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) 11	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
40 CFR 60 Subpart JJJJJ	NO _x	0.61	2.66				
40 CFR 60 Subpart JJJJJ	СО	1.21	5.31				
40 CFR 60 Subpart JJJJJ	VOC	0.47	2.04				
AP-42	SO ₂	<0.01	<0.01				
AP-42	PM ₁₀	0.04	0.17				
AP-42	Formaldehyde	0.04	0.17				
AP-42	Total HAPs	0.07	0.29				
40 CFR Part 98 Subpart C	GHG (CO ₂ e)	316	1,385				

Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion engine/generator engine located at the well site. Multiple engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-3, etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

² Enter the Source Status using the following codes:

NS Construction of New Source (installation) ES **Existing Source** MS Modification of Existing Source RS Relocated Source REM

Removal of Source

- Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- Enter the date that the engine was manufactured, modified or reconstructed.
- Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as

Provide a manufacturer's data sheet for all engines being registered.

Enter the Engine Type designation(s) using the following codes:

Two Stroke Lean Burn 4SRB Four Stroke Rich Burn

4SLB Four Stroke Lean Burn

Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

Air/Fuel Ratio

Screw-in Precombustion Chambers High Energy Ignition System SIPC HEIS

PSC Prestratified Charge LEC Low Emission Combustion

NSCR Rich Burn & Non-Selective Catalytic Reduction OxCat Oxidation Catalyst

SCR Lean Burn & Selective Catalytic Reduction

Enter the Fuel Type using the following codes:

Pipeline Quality Natural Gas RG Raw Natural Gas /Production Gas D Diesel PQ

Enter the Potential Emissions Data Reference designation using the following codes. Attach all reference data used.

Manufacturer's Data AP AP-42

GRI-HAPCalcTM OT GR Other (please list)

- Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the Emissions Summary Sheet.
- PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device

(Emission Unit ID# So	24, use extra pages as necessary)				
Air Pollution Control Device Manufacturer's Data Sheet included? Yes ⊠ No □					
⊠ NSCR	SCR				
Provide details of process control used for proper minute fuel injection	ing/control of reducing agent with gas stream: Sequential multi-par	rt			
Manufacturer: Caterpillar	Model #: G3408				
Design Operating Temperature: 1,600 °F	Design gas volume: scfm				
Service life of catalyst: 5,000	Provide manufacturer data? □Yes ⊠ No	Provide manufacturer data? □Yes ⊠ No			
Volume of gas handled: 444.9 acfm at 1,600 °F	Operating temperature range for NSCR/Ox Cat: From °F to °F				
Reducing agent used, if any:	Ammonia slip (ppm):				
Pressure drop against catalyst bed (delta P): 6 inches	of H ₂ O				
Provide description of warning/alarm system that protects unit when operation is not meeting design conditions:					
Is temperature and pressure drop of catalyst required to be monitored per 40CFR63 Subpart ZZZZ? ☐ Yes ☒ No					
How often is catalyst recommended or required to be replaced (hours of operation)?					
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT,					

ATTACHMENT O

Truck Loading Data Sheet

ATTACHMENT O – TANKER TRUCK/RAIL CAR LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks/rail cars. Use extra pages if necessary.

Truck/Rail Car Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck/rail car loadout are allowed:

- For tanker trucks/rail cars passing the MACT level annual leak test 99.2%
- For tanker trucks/rail cars passing the NSPS level annual leak test 98.7%
- For tanker trucks/rail cars not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking/rail car company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#: S012		Emission Point ID#: C001-C002, E012		Year Installed/Modified: N/A				
Emission Unit Description: Uncaptured losses from loading of produced fluids into tanker trucks								
			Loading A	Area Data				
Number of Pumps: 1	Numbe	r of Liquids	Loaded: 1		Max numb at one (1)		icks/rail cars loading	
Are tanker trucks/rail cars pressure tested for leaks at this or any other location? \square Yes \boxtimes No \square Not Relative Yes, Please describe:						☐ Not Required		
Provide description of closed vent system and any bypasses. Trucks utilize vapor recovery lines to route displaced vapors back into battery of tanks.								
Are any of the following truck/rail car loadout systems utilized? ☐ Closed System to tanker truck/rail car passing a MACT level annual leak test? ☐ Closed System to tanker truck/rail car passing a NSPS level annual leak test? ☐ Closed System to tanker truck/rail car not passing an annual leak test and has vapor return? Projected Maximum Operating Schedule (for rack or transfer point as a whole)								
Time	Jan – Ma			,			a whole	Oct - Dec
		Г	Apr - Jun		J	Jul – Sept		
Hours/day	Varies			ries		Varies		Varies
Days/week	Days/week 7		7			7		7
Bulk Liquid Data (use extra pages as necessary)								
Liquid Name	Pro	Produced Fluids						
Max. Daily Throughput (1000 gal/day)	calc	See attached emissions calculations for all throughput values						
Max. Annual Throughput calculation (1000 gal/yr)		ttached emissions culations for all oughput values						
Loading Method ¹		SP						
Max. Fill Rate (gal/min)		Varies						
Average Fill Time (min/loading)		Varies						
Max. Bulk Liquid Temperature (°F)	See	ProMax	results					
True Vapor Pressure ²	See	ProMax	results					
Cargo Vessel Condition	3	U						
Control Equipment or Method ⁴	(captur	VB, EC ed loadir	D ng losses)					

Max. Collection Efficiency (%)		70	
Max. Control	Efficiency	98	
Max.VOC Emission	Loading (lb/hr)	See attached emission calculations for breakdown	
Rate	Annual (ton/yr)	See attached emission calculations for breakdown	
Max.HAP Emission	Loading (lb/hr)	See attached emission calculations for breakdown	
Rate	Annual (ton/yr)	See attached emission calculations for breakdown	
Estimation Method ⁵		AP-42 Section 5.2 Methodology (via ProMax)	

1	BF	Bottom Fill	SP	Splash Fil	11		SUB	Submerged Fill
2	At maxir	num bulk liquid temperature		_				-
3	В	Ballasted Vessel	C	Cleaned			U	Uncleaned (dedicated service)
	O	Other (describe)						
4	List as a	many as apply (complete and s	ubmit app	ropriate A	Air Pollut	ion Conti	rol Device	Sheets)
	CA	Carbon Adsorption		VB	Dedicate	ed Vapor	Balance (closed system)
	ECD	Enclosed Combustion Device F F.		Flare	_			
	TO	Thermal Oxidization or Inci-	neration					
5	EPA	EPA Emission Factor in AP-	-42			MB	Materia	1 Balance
	TM	Test Measurement based upo	on test dat	ta submitt	al	O	Other (de	escribe)

ATTACHMENT P

Glycol Dehydrator Data Sheet (Not Applicable)

ATTACHMENT P – GLYCOL DEHYDRATION UNIT DATA SHEET - NOT APPLICABLE

Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI-GLYCalcTM input and aggregate report. Use extra pages if necessary.

determined by the pro emissions of benzene (1 ton per year), as d ration unit located wi np optimization plan	Dry Com 40CFR63 Section atural gas to the glyco accdures specified in section the glycol dehy etermined by the proof thin an Urbanized Arbeing utilized?	764(d)? Yes ol dehydration unit is \$\\$ 63.772(b)(1) of this \$\{\} \] orderation unit process \$\{\} \] cedures specified in \$\\$ ea (UA) or Urban Clu	ent APCD/ERD ³ : ear): No: If Yes, answeless than 85 thousands subpart. Yes Went to the atmosphe 63.772(b)(2) of this	d standard cubic No ere are less than 0.90					
ified/Removed ² : D ID# ³ : 0 scf): %) in: Wet Gas: ration unit exempt from the exempt from	Dry Com 40CFR63 Section atural gas to the glyco accdures specified in section the glycol dehy etermined by the proof thin an Urbanized Arbeing utilized?	Source Status ¹ : Regenerator Still Vo Fuel HV (BTU/scf): Operation (hours/ye) Gas: 764(d)? □ Yes ol dehydration unit is \$ \$63.772(b)(1) of this solution unit process ye dedures specified in \$ ea (UA) or Urban Clu	ent APCD/ERD ³ : ear): No: If Yes, answeless than 85 thousands subpart. Yes Went to the atmosphe 63.772(b)(2) of this	wer the following: d standard cubic No ere are less than 0.90 subpart. Yes					
ified/Removed ² : D ID# ³ : 0 scf): %) in: Wet Gas: ration unit exempt fro everage flowrate of na determined by the pro emissions of benzene (1 ton per year), as d ration unit located wi np optimization plan	Dry Com 40CFR63 Section attural gas to the glyco occdures specified in § from the glycol dehy letermined by the proceedation of the control o	Regenerator Still Vo Fuel HV (BTU/scf): Operation (hours/ye) Gas: 764(d)? Yes Il dehydration unit is 1863.772(b)(1) of this 27 dration unit process of cedures specified in § ea (UA) or Urban Clu	□ No: If Yes, answeless than 85 thousand subpart. □ Yes went to the atmosphe 63.772(b)(2) of this	d standard cubic No ere are less than 0.90 subpart. Yes					
D ID#3: 0 scf): %) in: Wet Gas: ration unit exempt fro everage flowrate of na determined by the pro emissions of benzene (1 ton per year), as d ration unit located wi	om 40CFR63 Section atural gas to the glyco occdures specified in section the glycol dehy letermined by the proceedary thin an Urbanized Arbeing utilized?	Fuel HV (BTU/scf): Operation (hours/ye) Gas: 764(d)? □ Yes ol dehydration unit is 8 863.772(b)(1) of this 9 dration unit process ye cedures specified in 8 ea (UA) or Urban Clu	□ No: If Yes, answeless than 85 thousand subpart. □ Yes went to the atmosphe 63.772(b)(2) of this	d standard cubic No ere are less than 0.90 subpart. Yes					
%) in: Wet Gas: ration unit exempt fro werage flowrate of na determined by the pro emissions of benzene (1 ton per year), as d ration unit located wi	om 40CFR63 Section atural gas to the glyco occdures specified in section the glycol dehy letermined by the proceedary thin an Urbanized Arbeing utilized?	Operation (hours/ye) Gas: 764(d)? □ Yes I dehydration unit is 18 §63.772(b)(1) of this 29 dration unit process of the cedures specified in § ea (UA) or Urban Clu	No: If Yes, answ less than 85 thousand subpart. □ Yes vent to the atmosphe 63.772(b)(2) of this	d standard cubic No ere are less than 0.90 subpart. Yes					
%) in: Wet Gas: ration unit exempt fro everage flowrate of na determined by the pro emissions of benzene (1 ton per year), as d ration unit located wi	om 40CFR63 Section atural gas to the glyco occdures specified in section the glycol dehy letermined by the proceedary thin an Urbanized Arbeing utilized?	Gas: 764(d)? Yes Yes Solution unit is larged and the solution unit process of the solution unit is larger than the solution unit process of the solution unit process of the solution unit process of the solution unit is larger than the solution unit process of the solution unit process	□ No: If Yes, answeless than 85 thousand subpart. □ Yes went to the atmosphe 63.772(b)(2) of this	d standard cubic No ere are less than 0.90 subpart. Yes					
ration unit exempt from the ex	om 40CFR63 Section atural gas to the glyco occdures specified in section the glycol dehy letermined by the proceedary thin an Urbanized Arbeing utilized?	764(d)? Yes ol dehydration unit is \$\\$ 63.772(b)(1) of this \$\{\} \] orderation unit process \$\{\} \] cedures specified in \$\\$ ea (UA) or Urban Clu	less than 85 thousand subpart. Yes Yes Yes Yes Yes Yes Yes Ye	d standard cubic No ere are less than 0.90 subpart. Yes					
ration unit exempt from the ex	om 40CFR63 Section atural gas to the glyco occdures specified in section the glycol dehy letermined by the proceedary thin an Urbanized Arbeing utilized?	764(d)? Yes ol dehydration unit is \$\\$ 63.772(b)(1) of this \$\{\} \] orderation unit process \$\{\} \] cedures specified in \$\\$ ea (UA) or Urban Clu	less than 85 thousand subpart. Yes Yes Yes Yes Yes Yes Yes Ye	d standard cubic No ere are less than 0.90 subpart. Yes					
everage flowrate of na determined by the pro emissions of benzene (1 ton per year), as d ration unit located wi	tural gas to the glyco ecedures specified in § from the glycol dehy etermined by the proc thin an Urbanized Ar-	ol dehydration unit is \$\\ \\$63.772(b)(1) of this \$\\ \gamma dration unit process vedures specified in \$\\ \\$ ea (UA) or Urban Clu	less than 85 thousand subpart. Yes Yes Yes Yes Yes Yes Yes Ye	d standard cubic No ere are less than 0.90 subpart. Yes					
determined by the pro emissions of benzene (1 ton per year), as d ration unit located wi np optimization plan	e from the glycol dehy etermined by the proc thin an Urbanized Ar- being utilized? Ye	§63.772(b)(1) of this addration unit process seedures specified in §	subpart. ☐ Yes vent to the atmosphe 63.772(b)(2) of this	□ No ere are less than 0.90 subpart. □ Yes					
ration unit located wi	thin an Urbanized Ar being utilized? □ Ye	ea (UA) or Urban Clu							
np optimization plan	being utilized? □ Ye		ster (UC)? Yes	□ No					
1 1		s 🗆 No							
ol dehydration unit ba	ick to the flame zone			Is a lean glycol pump optimization plan being utilized? Yes No					
	to the Hame Zone	Recycling the glycol dehydration unit back to the flame zone of the reboiler.							
Recycling the glycol dehydration unit back to the flame zone of the reboiler and mixed with fuel. \(\subseteq \text{ Yes} \subseteq \text{ No} \)									
What happens when temperature controller shuts off fuel to the reboiler? Still vent emissions to the atmosphere. Still vent emissions stopped with valve. Still vent emissions to glow plug.									
	_	nser or flash tank vap	ors						
				1.700					
Pollutants Controlled			Manufacturer's Guaranteed Control Efficiency (%)						
I	Emissio	ons Data		I					
Description	Calculation Methodology ⁵	PTE ⁶	Controlled Maximum Hourly Emissions (lb/hr)	Controlled Maximum Annual Emissions (tpy)					
		NO _x							
		СО							
Reboiler Vent		VOC							
		SO_2							
		PM ₁₀							
	Description unit band temperature controlled ions to the atmosphere ions stopped with value on the following equipment system that continued in the following equipment system that continued is a second of the following equipment system that continued is a second of the following equipment system that continued is a second of the following equipment system that controlled is a second of the following equipment is a second of the following equip	Description ol dehydration unit back to the flame zone of dehydration unit back to the flame zone of the dehydration unit back to the flame zone of the atmosphere. In temperature controller shuts off fuel to the dehydration stopped with valve. It is a stopped with valve. Control Device Control Device Calculation Methodology ⁵	Description Calculation Methodology Cool Reboiler Vent Cool Reboiler Vent Col dehydration unit back to the flame zone of the reboiler. Col dehydration unit back to the flame zone of the reboiler and minuse temperature controller shuts off fuel to the reboiler? Const to the atmosphere. Const to glow plug. Control Device Technical Data Calculation Manufacturer's NOx CO Reboiler Vent VOC SO2	Description Description Calculation Methodology ⁵ Cool Methodology ⁵ Reboiler Vent Reboiler Vent Did dehydration unit back to the flame zone of the reboiler. Did dehydration unit back to the flame zone of the reboiler and mixed with fuel. The reboiler shuts off fuel to the reboiler? Tons to the atmosphere. Tons to the atmosphere. Tons to glow plug. T					

			GHG (CO ₂ e)	
		GRI-GlyCalc TM	VOC	
		GRI-GlyCalc TM	Benzene	
	Glycol Regenerator Still Vent	GRI-GlyCalc TM	Toluene	
		GRI-GlyCalc TM	Ethylbenzene	
		GRI-GlyCalc TM	Xylenes	
		GRI-GlyCalc TM	n-Hexane	
	GRI-GlyCalc TM	VOC		
	Glycol Flash Tank	GRI-GlyCalc TM	Benzene	
Gly		GRI-GlyCalc TM	Toluene	
		GRI-GlyCalc TM	Ethylbenzene	
		GRI-GlyCalc TM	Xylenes	
		GRI-GlyCalc TM	n-Hexane	

1 Enter the Source Status using the following cod	1	Enter the Source	Status using	the following	codes:
---	---	------------------	--------------	---------------	--------

NS ES **Existing Source** Construction of New Source

MS Modification of Existing Source

- 2. Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or
- 3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number:

NΑ None CD Condenser FLFlare

CCCondenser/Combustion Combination TO Thermal Oxidizer Other (please list)

- Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent 4 and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the well site incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc.
- 5 Enter the Potential Emissions Data Reference designation using the following codes:

Manufacturer's Data MD ΑP AP-42

GR $GRI\text{-}GLYCalc^{TM}$ OT Other (please list)

Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs 6 per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

ATTACHMENT Q

Pneumatic Controller Data Sheet

ATTACHMENT Q – PNEUMATIC CONTROLLERS **DATA SHEET** Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015? ☐ Yes ⊠ No Please list approximate number. Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after **September 18, 2015?** No No Yes Please list approximate number. Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015? ☐ Yes ☐ No Please list approximate number. Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after September 18, 2015? Yes No. Please list approximate number.

ATTACHMENT R

Pneumatic Controller Data Sheet

ATTACHMENT R – PNEUMATIC PUMP DATA SHEET

Are there any natural gas-driven diaphragm pumps located at a well site that commenced construction, modification or reconstruction after September 18, 2015?

☐ Yes ☐ No

Please list.

Source ID#	Date	Pump Make/Model	Pump Size

ATTACHMENT S

Air Pollution Control Device Data Sheet

ATTACHMENT S – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.				
Emission Unit ID: Not Applicable	Make/Model:			
Primary Control Device ID:	Make/Model:			
Control Efficiency (%):	APCD/ERD Data Sheet Completed: ☐ Yes ☐ No			
Secondary Control Device ID:	Make/Model:			
Control Efficiency (%):	APCD/ERD Data Sheet Completed: ☐ Yes ☐ No			

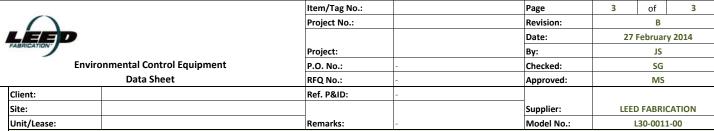
		(I	VAPOR COncluding Enclo			rs)	
			General In	formation			
Control De	evice ID#: C001 (ex	isting; no	o change);	Installation New		lodified	Relocated
Maximum ~7,850 scf	Rated Total Flow C			Maximum Heat Input mfg. spec 11.66 MM	(from sheet)	Design H 1,500 BT	leat Content 'U/scf
			Control Devic	e Informati	on		
⊠ Enclose	ed Combustion Dev l Oxidizer	ice	Type of Vapor Co		ntrol?		Ground Flare
	rer: LEED Fabricati closed Combustor 4			Hours of o	peration	per year? 8	3,760
List the em	nission units whose	emissions	s are controlled by this	vapor contr	ol device	(Emission	Point ID# E013-E018, E012)
Emission Unit ID#	Emission Source	Descriptio	on	Emission Unit ID#	Emissic	on Source l	Description
S013- S018	Produced Fluid Ta	anks					
S012	Liquid Loading						
If this	vapor combustor c	ontrols e	missions from more the	an six (6) em	ission un	its, please	attach additional pages.
Assist Typ	e (Flares only)		Flare Height	Tip	Diamete	er	Was the design per §60.18?
Steam Pressu	re Air		~25 feet		4 feet		☐ Yes ☐ No ☒ N/A Provide determination.
			Waste Gas l	Information			
Maximun	waste Gas Flow R (scfm)	tate 130	Heat Value of W Varies		eam	Exit Vel	ocity of the Emissions Stream Varies (ft/s)
	Provide an	attachme	ent with the characteri	stics of the v	vaste gas	stream to	be burned.
			Pilot Gas I	nformation			
Number	of Pilot Lights 1		Flow Rate to Pilot lame per Pilot ~50 scfh		nput per 1 5 BTU/h		Will automatic re-ignition be used? ☐ Yes ⊠ No
If automati	c re-ignition is use	d, please	describe the method.				
	me equipped with a f the flame?	monitor t	to detect the	If Yes, who	* *	⊠ Thermoo	*
			enance procedures req hed information on un		manufac	turer to ma	aintain the warranty. (If
			es	flame demoi	nstration	per §60.18	or §63.11(b) and

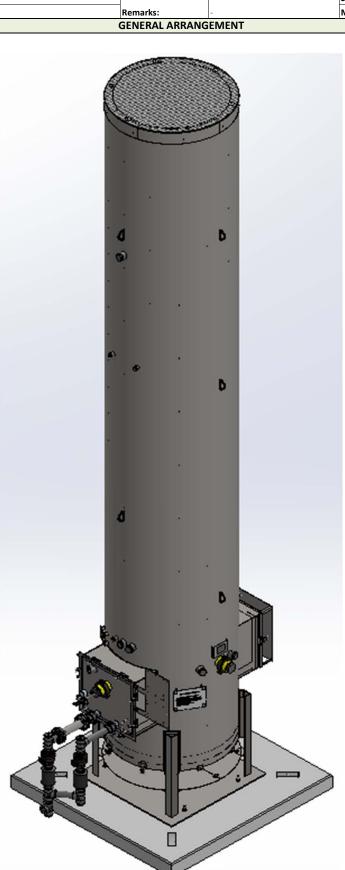
			VAPOR CO	MBUSTION					
		(In	cluding Enclo	sed Combusto	rs)				
			General In	formation					
Control Device ID#: C002 (new)				Installation Date: New N	Modified	Relocated			
Maximum Rated Tot ~12,812.5 scfh	al Flow Capa 307,500			Maximum Design Heat Input (from mfg. spec sheet) 19.22 MMBTU/hr Design Heat Content 1,500 BTU/scf					
			Control Devic	e Information					
☑ Enclosed Combu☐ Thermal Oxidizer			Type of Vapor Co			Ground Flare			
Manufacturer: LEED Model: Enclosed Co				Hours of operation	per year? 8	3,760			
List the emission un	its whose em	issions	are controlled by this	vapor control device	(Emission	Point ID# E013-E018, E012)			
Emission Unit ID#	Emission S	ource E	Description	Emission Unit ID#	Emissi	on Source Description			
S013-S018	Produced F	luid Ta	nks						
S012	Liquid Loa	ding							
If this vapor combustor controls emissions from more than six (6) emission units, please attach additional pages.									
Assist Type (Flares	only)		Flare Height	Tip Diamete	er	Was the design per §60.18?			
Steam Pressure	☐ Air ⊠ Non		~25 feet	4 feet	☐ Yes ☐ No ☒ N/A Provide determination.				
			Waste Gas 1	Information					
Maximum Waste G		130	Heat Value of W	aste Gas Stream BTU/ft ³	Exit Vel	ocity of the Emissions Stream Varies (ft/s)			
F	Provide an at	tachme	nt with the characteri	stics of the waste gas	stream to	be burned.			
			Pilot Gas I	nformation					
Number of Pilot I 1	Lights		Flow Rate to Pilot ame per Pilot ~50 scfh	Heat Input per 0.05 MMBTU		Will automatic re-ignition be used? ☐ Yes ⋈ No			
If automatic re-ignit	ion is used, p	lease d	lescribe the method.						
Is pilot flame equipp presence of the flam			o detect the No	If Yes, what type? □ □ Ultraviolet	⊠ Thermoo	*			
			enance procedures requed information on un		turer to ma	aintain the warranty. (If			
Additional informati Please attach copies performance testing.	of manufacti		s □ No ata sheets, drawings,	flame demonstration	per §60.18	or §63.11(b) and			

CONDENSER -	- Not Applicab	ole
General In	nformation	
Control Device ID#:	Installation Date: New N	Modified
Manufacturer:	Model:	Control Device Name:
Control Efficiency (%):		
Manufacturer's required temperature range for control efficie	ncy. °F	
Describe the warning and/or alarm system that protects against	st operation when uni	t is not meeting the design requirements:
Describe all operating ranges and maintenance procedures req	uired by the manufac	cturer to maintain the warranty.
Additional information attached? ☐ Yes ☐ No Please attach copies of manufacturer's data sheets.		
Is condenser routed to a secondary APCD or ERD? ☐ Yes ☐ No		

ADSORPTION SYST	EM – Not Applicable
General II	nformation
Control Device ID#:	Installation Date: ☐ New ☐ Modified ☐ Relocated
Manufacturer:	Model: Control Device Name:
Design Inlet Volume: scfm	Adsorbent charge per adsorber vessel and number of adsorber vessels:
Length of Mass Transfer Zone supplied by the manufacturer:	Adsorber diameter: ft Adsorber area: ft²
Adsorbent type and physical properties:	Overall Control Efficiency (%):
Working Capacity of Adsorbent (%):	
Operating	Parameters
Inlet volume: scfm @ °F	
Adsorption time per adsorption bed (life expectancy):	Breakthrough Capacity (lbs of VOC/100 lbs of adsorbent):
Temperature range of carbon bed adsorber. °F - °F	
Control Device	Technical Data
Pollutants Controlled	Manufacturer's Guaranteed Control Efficiency (%)
Describe the warning and/or alarm system that protects again	st operation when unit is not meeting the design requirements:
Has the control device been tested by the manufacturer and co	ertified?
Describe all operating ranges and maintenance procedures rec	uired by the manufacturer to maintain the warranty.
Additional information attached? ☐ Yes ☐ No Please attach copies of manufacturer's data sheets, drawings,	and performance testing.

	VAPOR REC	OVERY	UNIT	
	General In	nformation		
Emission U	Jnit ID#: S024	Installation New	n Date:	Relocated
	Device In	formation		
Manufactu Model: G3	rer: Caterpillar 406			
List the en	nission units whose emissions are controlled by this	vapor recov	very unit (Emission Po	int ID# NA)
Emission Unit ID#	Emission Source Description	Emission Unit ID#	Emission Source Des	scription
NA	Low Pressure Separator			
If this	vapor recovery unit controls emissions from more t	han six (6) e	mission units, please a	ittach additional pages.
	information attached? ⊠ Yes □ No ch copies of manufacturer's data sheets, drawings,	and perform	ance testing.	
The regists recovery u	ant may claim a capture and control efficiency of 9 nit.	95 % (which	accounts for 5% down	time) for the vapor
	ant may claim a capture and control efficiency of 9 8.1.2 of this general permit.	98% if the V	RU has a backup flare	that meet the requirements
The regists	ant may claim a capture and control efficiency of 9	98% if the V	RU has a backup VRU.	

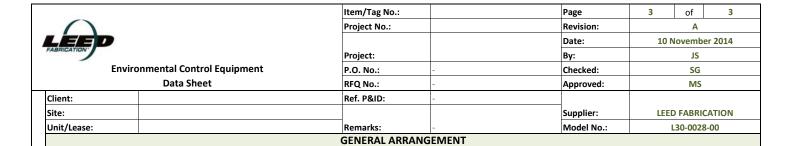

Battery Pack


Item/Tag No.:		Page	1	of	2
Project No.:		Revision:		В	
		Date:	27 1	ebruar	y 2014
Project:		Ву:		JS	
P.O. No.:	-	Checked:		SG	

-	FABRICATION"			Drainate			D	JS		
				Project:			By:			
	Enviro	mental Control Equipment		P.O. No.:	-		Checked:	SG		
		Data Sheet		RFQ No.:	-		Approved:	MS		
	Client:			Ref. P&ID:	-					
	Site:						Supplier:	LEED FABRICATION		
				4 _						
	Unit/Lease:			Remarks:	-		Model No.:	L30-0011-00		
				GENERAI						
1	Design Code:				NDE:			LEED Fabrication Standards		
2	Service:				Custo	mer Specs:		Yes		
		Standard Dual	C+ 40 III:-b Eff:	-! Cb	Custo	mer spees.		_=		
3	Description:	Standard Dua	Stage 48 High Effi					✓ No		
				PROCESS DA	ATA					
	00			Proces	ss Conditions:					
	Gas Composition:			mol %	Variable	Valu	e Un	its		
	Mathaus									
4	Methane				Flow Rate	Up to	+	cfd		
5	Ethane				Pressure	Up to	12 oz/	in2		
6	Propane				Temperature		0	F		
7	I-Butane				Nolecular Weight					
					cess/Waste Stream	✓ Gas		7 .::		
8	n-Butane							Liquid		
9	I-Pentane			Detail	ed Process Descripti	on / Process N	otes:			
10	n-Pentane			1. Tur	ndown 10:1. Based	on an expected	l normal operat	ing rate indicated above.		
11	n-Hexane			2. DRI	: 98 % operating at	design conditi	ons			
12	CO2			3. Bur	ner Pressure Drop: I	Vin. 0.10 oz/in	2			
13	N2									
14	Helium									
15	H₂O									
16	C7									
17	C8									
18	C9									
19	C10									
20	C11+									
21		TOTAL								
21		TOTAL								
	Other Components:			PPMV Availa	ble Utilities:					
22	H2S				Fuel / Pilot Gas		Min. 30psi	g Natural Gas /Propane 40-50 SCFF		
23	Benzene				Instrument Air		NA			
24	Toluene				Power		120 V / 60	Hz or Solar Power		
								112 01 30101 1 01101		
25	E-Benzene				Steam		NA			
26	Xylene				Purge Gas					
				DESIGN DA	TA					
27	Ambient Temperatures:			Noise	Performance Requi	rements:		Under 85 dBA		
28		Low, °F	-20	Struct	ural Design Code:					
			120		_			ACCE		
29		High, ⁰F	120	wina	Design Code:			ASCE		
	Design Conditions:	Pressure/Temperature								
31	Max. Relative Humidity,	%	90		Press	ure/Speed		100 mph		
32	Elevation (ASL), ft				Categ	ory				
	Area Classification:		Class I I	Div 2 Saism	ic Design Code:	· •	+			
										
34	Electrical Design Code:		NEC		Locat	ION				
		_		QUIPMENT SPEC	FICATION					
35	Туре:	☐ Elevated ✓	Enclosed	Equip	ment Design:					
36		Above Ground			Compo	nent	N	Naterial / Size / Rating / Other		
37			Multiple Stack	Burne						
	 		p.:= = 146K	Burne		+ C- : 5	+	204.00		
38		Portable / Trailer			Burner Tip / Assi			304 SS		
39					Burner	Body		Carbon Steel		
40	Smokeless By:	Steam .	Assist Air	Pilot						
41		Gas Assist 🗸	Staging		Pilot 1	Tip .		304 SS		
42			J J							
	Cha also	C-15 C			Pilot Lir	10(3)	+	Carbon Steel		
	Stack:	✓ Self Supporting			x / Stack					
44	Flare Burner:	□ Non-Smokeless ✓	Smokeless	Gas Assist	She	<u> </u>		Carbon Steel		
45	Pilot:	✓ Intermittent	Continuous		Pipir	ng		Carbon Steel		
		[] Land	Remote		Nozz			Carbon Steel		
46	Pilot Air Inspirator:	✓ Local					 			
	Pilot Air Inspirator:	✓ Local _	Vos /Thormosou	(مام	Flanges			Carbon Steel		
47	Pilot Air Inspirator: Pilot Flame Control:	No v	Yes (Thermocou	ple)						
47	·		Yes (Thermocou	ple)	Insulat			Blanket		
46 47 48 49	·		Yes (Thermocou			ion				
47 48	Pilot Flame Control:	□ No □	Inspirating Ignito		Insulat Insulatio	ion n Pins		Blanket		
47 48 49 50	Pilot Flame Control:	No V	Inspirating Ignito	or	Insulat Insulatio Refrac	ion n Pins tory		Blanket 304 SS NA		
47 48 49 50 51	Pilot Flame Control:	No V Flamefront Generator V Electronic V With Pilot Flame Control	Inspirating Ignito	or	Insulat Insulatio Refrac Refractory	cion n Pins tory Anchors		Blanket 304 SS NA NA		
47 48 49 50 51	Pilot Flame Control:	No V	Inspirating Ignito	or	Insulat Insulatio Refrac	cion n Pins tory Anchors		Blanket 304 SS NA		
47 48 49	Pilot Flame Control:	No V Flamefront Generator V Electronic V With Pilot Flame Control	Inspirating Ignito	or	Insulat Insulatio Refrac Refractory	cion n Pins tory Anchors Platforms		Blanket 304 SS NA NA		

Other

Environn ion: [iguration:	Data	Control Equipment a Sheet ermocouple Scanner		- - - - SPECIFICATION Auxiliary Equipment		Revision: Date: By: Checked: Approve Supplier: Model N	: d:	27 Febru J S M LEED FAB	B uary 2014 JS SG WS BRICATION 0011-00
ion: [Data	ermocouple	P.O. No.: RFQ No.: Ref. P&ID: Remarks:			By: Checked: Approved	d:	S N LEED FAB	JS SG MS BRICATION
ion: [Data	ermocouple	P.O. No.: RFQ No.: Ref. P&ID: Remarks:			By: Checked: Approved	d:	S N LEED FAB	JS SG MS BRICATION
ion: [Data	ermocouple	P.O. No.: RFQ No.: Ref. P&ID: Remarks:		t	Checked: Approved	d:	S N LEED FAB	SG MS BRICATION
ion: [Data	ermocouple	RFQ No.: Ref. P&ID: Remarks:		t.	Approved	d:	LEED FAB	MS BRICATION
	The	ermocouple 🗸 Ionization	Ref. P&ID: Remarks: EQUIPMENT		t.	Supplier:		LEED FAB	BRICATION
	_		Remarks: EQUIPMENT		t				
	_		EQUIPMENT		t				
	_		EQUIPMENT		t	Model N	0.:	L30-0	011-00
	_				t	ı			
	_		n Rod	Auxiliary Equipment	t				
guration:	UV	Scanner							
guration:					Valves			NA	
3					Blowers			NA	
					Dampers			NA	
					(O / Liquid Seal			NA	
				Flame / D	etonation Arrestor			Yes	
				Instrumentation & C	Controls				
				Solenoids	s / Shut-Off Valves		Check wi	th Sales for a	vailable config.
				FI	low Meters			NA	
		ь		C	alorimeter			NA	
					vitches/Transmitters			NA	
					ermocouples		Chack wi		vailable config.
		4 -				rc	CHECK WI		variable coming.
		2 3 4		remperature	Switches/Transmitte	13	Ch 1 ·	NA Na Calaa fan a	antiakte e e
					BMS		Check wi		vailable config.
		100			CEMS			NA	
					Other			NA	
			FARRICATION	AND INSPECTION					
ements	$\overline{}$	Skid Mounted Concrete Pa				ilamant l	-fo		
Cilicitis	- H					uipment I			
		Other			omponent		v	Neight / Dime	ensions
				Burner					
	<u> </u>	Vendor Standard		Burr	ner Assembly				
		Other. Specify:		Stack					
ification	✓	Vendor Standard		Sta	ck Assembly			48 " OD x 2!	5 ' H
		MTR			Pilot Tip				
	$\overline{\Box}$	Certificate of Compliance			ilot Line(s)				
	ᅳቨ	Other (Specify):			ck Assembly				
		Vendor Standard		Auxiliary Equipment					
								-	-
	<u> </u>	Radiography. Specify:			Blowers				
	<u> </u>	Ultrasonic. Specify:			(O / Liquid Seal				
	_ <u></u>	Liquid Penetrant.		Flame / D	etonation Arrestor				
		Magnetic Particles.			Skid				
		PMI. Specify:		Instrumentation & C	Controls				
		Other. Specify:			BMS				
ration	✓	Vendor Standard		Co	ontrol Panel				
		Other. Specify:							
				1					
r	<u> </u>			1					
•				1					
		ошег. эреспу:		1					
				1					
ites:									
r otes:		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Other. Specify:	Other. Specify: Vendor Standard	Other. Specify: Vendor Standard	Other. Specify: Vendor Standard	Other. Specify: Vendor Standard	Other. Specify: Vendor Standard	Other. Specify: Vendor Standard


Battery Pack

Item/Tag No.:		Page	1	of	3
Project No.:		Revision:		Α	
		Date:	10 N	ovemb	er 2014
Project:		Ву:		JS	
P.O. No.:	-	Checked:		SG	

	FABRICATION"			Project:				Ву:		JS			
	Enviro	omental Control Equipment		P.O. No.:		_		Checked	:	SG			
		Data Sheet		RFQ No.:		_		Approve		MS			
	Client:			Ref. P&ID:				Apriove		IVIS			
				Rei. PaiD:		-							
	Site:							Supplier		LEED FABRICATION			
	Unit/Lease:			Remarks:		-		Model N	No.: L30-0028-00				
				GEI	NERAL								
1	Design Code:					ND	E:		LI	EED Fabrication Standards			
2	Service:					Cus	tomer Specs:			Yes			
3	Description:	Standard Dual	Stage 60 High E	fficiency Combus	tor					✓ No			
				PROCE	ESS DAT	Ά							
				l o/	Process	Conditions:							
	Gas Composition:			mol %		Variable	Valu	e	Units	i .			
4	Methane					Flow Rate	Up to 3	300	Mscfe	4			
5	Ethane					Pressure	Up to		oz/in				
6	Propane				-	Temperature	0,10		°F				
7						lecular Weight							
	I-Butane					ess/Waste Stream	m			111			
8	n-Butane									Liquid			
9	I-Pentane						ption / Process N						
0	n-Pentane				_				operatin	g rate indicated above.			
1	n-Hexane						at design conditi : Min. 0.12 oz/in						
2	CO2								O BTII/s	CF unless specified by customer			
3	N2				Gas II		arue estiniateu	.o ve 130	0 0 1 0 / 3	or amess specified by customer			
4	Helium]								
5	H ₂ O												
6	C7												
7	C8												
8.	C9												
9	C10												
0	C11+				_								
1	C11.	TOTAL			_								
. 1	Other Components:	TOTAL		PPMV	Availabl	e Utilities:							
2	H2S			FFIVIV		uel / Pilot Gas		Min	20ncia l	Natural Gas /Propane 40-50 SCFH			
						nstrument Air			. Supsig i	Natural das / Proparie 40-50 3CFA			
3	Benzene				"			NA					
4	Toluene					Power			V / 60 H	z or Solar Power			
5	E-Benzene					Steam		NA					
6	Xylene					Purge Gas							
				DESIG	ON DAT			1					
7	Ambient Temperatures				Noise Performance Requirements:				Under 85 dBA				
8		Low, ^o F	-3	20	Structur	al Design Code:							
9		High, ⁰F	1	20	Wind De	esign Code:				ASCE			
0	Design Conditions:	Pressure/Temperature											
1	Max. Relative Humidity	,,%	g	90		Pre	ssure/Speed		100 mph				
2	Elevation (ASL), ft				<u></u>	Cat	egory						
3	Area Classification:		Class	I Div 2	Seismic	Design Code:							
4	Electrical Design Code:		N	IEC		Loc	ation						
				EQUIPMENT	ENT SPECIFICATION								
5	Туре:	☐ Elevated ✓ E	nclosed		Equipme	ent Design:							
6		Above Ground					onent		Ma	terial / Size / Rating / Other			
7		✓ Stack	Multiple Stack		Burner	•				•			
8		Portable / Trailer				Burner Tip / As	ssist Gas Burner			Stainless Steel			
9							er Body			Carbon Steel			
	Smokeless By:	Steam F	ssist Air		Pilot	Daille	2001						
1	•		taging			Dilo	t Tip			Stainless Steel			
2			raging .				Line(s)			Carbon Steel			
	Stack:	✓ Self Supporting			Eirak		LITE(3)			Carpon Steer			
			mokoloss F	7 Co- A	Firebox		11			Carlan Chil			
	Flare Burner:		mokeless [Gas Assist			nell			Carbon Steel			
	Pilot:	✓ Intermittent	Continuous		1		oing			Carbon Steel			
	Pilot Air Inspirator:	✓ Local	Remote	1. 2	1		zzles			Carbon Steel			
	Pilot Flame Control:	∐ No ✓	Yes (Thermoo	ouple)			nges			Carbon Steel			
8			1				lation			Blanket			
9	Pilot Ignition:	Flamefront Generator		nitor	ļ	Insulat	ion Pins			Stainless Steel			
0		☐ Electronic ✓	Automatic	Manual	ļ	Refra	actory			NA			
1		With Pilot Flame Control				Refractor	ry Anchors			NA			
2		With Auto Pilot Re-Ignition				Ladders an	ıd Platforms			NA			
3						Stack Sample	e Connections			Per EPA requirements			
	Pilot Ignition Backup:	Manual Specify: i.e F	iezo-Electric			Sight	Glass			2			

Other

				Item/Tag No.:			Page		2 of 3
				Project No.:			Revision:		Α
				.,			Date:		10 November 2014
9	FABRICATION"								
				Project:			Ву:		JS
	Environr	nental	Control Equipment	P.O. No.:		-	Checked:		SG
		Dat	ta Sheet	RFQ No.:		-	Approved	1:	MS
	Client						түргэгэ		
	Client:			Ref. P&ID:		=			
	Site:						Supplier:		LEED FABRICATION
	Unit/Lease:			Remarks:		_	Model No	o.:	L30-0028-00
				EQUIPMENT S	SPECIE				
		7 -					-		
	Flame Detection:	In	ermocouple	a ,	Auxiliar	y Equipment			
57		UV	' Scanner			Valves			NA
58	General Configuration:					Blowers			NA
59				F					
				-		Dampers			NA
60						Inlet KO / Liquid Seal			NA
61						Flame / Detonation Arrestor			Yes
62				Ī	Instrum	entation & Controls			
				Ė				Ole e el	The Color Color of the Land Co
63				-		Solenoids / Shut-Off Valves		Спеск	with Sales for available config.
64						Flow Meters		Check	with Sales for available config.
65						Calorimeter	1	· <u> </u>	NA
66				ļ		Pressure Switches/Transmitters		Check	with Sales for available config.
67				ŀ		·	1		
			F	Ļ		Thermocouples			with Sales for available config.
68				L	Т	emperature Switches/Transmitte	rs	Check	with Sales for available config.
69			X ::			BMS	Ţ	Check	with Sales for available config.
70			G	ļ		CEMS			NA
				}			+		
71				Ļ		Other			NA
72			1						
73									
74									
				-			+		
75									
				FABRICATION A	AND IN	SPECTION			
76	Special requirements		Skid Mounted Concrete Pad			Equ	ipment li	nfo	
77			Other			Component			Weight / Dimensions
			other		_	Component			Weight / Dimensions
78					Burner				
79	Inspection	\checkmark	Vendor Standard			Burner Assembly			
80			Other. Specify:		Stack				
81	Material Certification		Vendor Standard			Stack Assembly		6	60 " OD x 30 ' H. 7,000 Lbs
									00 00 x 30 11: 7,000 LDS
82			MTR			Pilot Tip			
83			Certificate of Compliance			Pilot Line(s)			
84			Other (Specify):			Concrete Pad			12'x12' 12". 21,600 Lbs
85	NDE	<u> </u>	Vendor Standard		Auviliar	y Equipment			,
				ť	Auxiliai				
86		Ш	Radiography. Specify:			Blowers			
87			Ultrasonic. Specify:			Inlet KO / Liquid Seal			
88			Liquid Penetrant.			Flame / Detonation Arrestor			
89		一一	Magnetic Particles.			Skid	1		
		+	-		lma*:-				
90		<u> </u>	PMI. Specify:		ınstrum	entation & Controls			
91			Other. Specify:			BMS			
92	Surface Preparation	V	Vendor Standard			Control Panel	T		
93		$-\Box$	Other. Specify:						
		- -							
94			Vendor Standard						
95		Ļ	Other. Specify:						
96	Finished Color	✓	Vendor Standard				T		
97			Other. Specify:						
98			. ,						
99									
	Additional Notes:								
Ī	1								
i									

ATTACHMENT T

Emission Calculations

ATTACHMENT T – EMISSIONS CALCULATIONS

Provide detailed potential to emit (PTE) emission calculations for criteria and hazardous air pollutants (HAPs) for each emission point identified in the application. For hazardous air pollutants and volatile organic compounds (VOCs), the speciated emission calculations must be included.

Use the following guidelines to ensure complete emission calculations:

- All emission sources and fugitive emissions are included in the emission calculations, as well as all methods used to calculate the emissions.
- Proper emission point identification numbers and APCD and ERD identification numbers are used consistently in the emission calculations that are used throughout the application.
- A printout of the emission summary sheets is attached to the registration application.
- Printouts of any modeling must be included with the emission calculations. The modeling printout must show all inputs/outputs or assumptions that the modeled emissions are based upon.
- If emissions are provided from the manufacturer, the manufacturer's documentation and/or certified emissions must also be included.
- The emission calculations results must match the emissions provided on the emissions summary sheet.
- If calculations are based on a compositional analysis of the gas, attach the laboratory analysis. Include the following information: the location that the sample was taken (and whether the sample was taken from the actual site or a representative site); the date the sample was taken; and, if the sample is considered representative, the reasons that it is considered representative (same gas field, same formation and depth, distance from actual site, etc.).
- Provide any additional clarification as necessary. Additional clarification or information is especially helpful when reviewing modeling calculations to assist the engineer in understanding the basis of assumptions and/or inputs.

Please follow specific guidance provided on the emissions summary sheet when providing the calculations.

Facility-Wide Emission Summary - Controlled

7 per pad Wells Storage Tanks 6 per pad Sand Separator Tank 1 per pad 7 per pad 2 per pad Line Heaters TEGs Dehy Reboiler 0 per pad 0 per pad Glycol Dehy 0 per pad 0 per pad 0 per pad 7 per pad 1 per pad 1 per pad 2 per pad 3,943 feet Dehy Drip Tank Dehy Combustor Compressor High Pressure Separator Low Pressure Separator Vapor Recovery Unit Tank Combustor Length of lease road

Carbon equivalent emissions (CO₂e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:

 $\begin{array}{ccc} & & & & & & & \\ \text{CO}_2 & & & & & & \\ \text{CH}_4 & & & & & & \\ \text{N}_2\text{O} & & & & & & \\ \end{array}$

Emission	Emission	Emission	NO	O _X	C	0	V	OC	S	02	PN	1 ₁₀	PN	M _{2.5}	C	:H ₄	C	0 ₂ e
Point ID #	Source ID#s	Source Description	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001-C002	S013-S018	Storage Vessels					0.64	2.81							0.42	1.84	10.51	46.03
C001-C002	S012	Captured Liquid Loading					1.69	0.44										
C001	C001	Tank Combustor	1.15	5.03	0.96	4.22	2.8E-04	1.2E-03	0.01	0.03	0.09	0.38	0.09	0.38	0.00	0.00	1,371.10	6,005.43
C002	C002	Tank Combustor	1.89	8.28	1.59	6.95	2.8E-04	1.2E-03	0.01	0.05	0.14	0.63	0.14	0.63	0.00	0.00	2,256.10	9,881.72
C001	S013-S018, S012, C001		1.15	5.03	0.96	4.22	1.16	1.63	0.01	0.03	0.09	0.38	0.09	0.38	0.21	0.92	1,376.36	6,028.45
C002	S013-S018, S012, C002		1.89	8.28	1.59	6.95	1.16	1.63	0.01	0.05	0.14	0.63	0.14	0.63	0.21	0.92	2,261.35	9,904.73
E005	S005	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	0.00	0.01	180.18	789.20
E006	S006	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	0.00	0.01	180.18	789.20
E007	S007	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	0.00	0.01	180.18	789.20
E008	S008	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	0.00	0.01	180.18	789.20
E009	S009	Thermoelectric Generator	1.2E-03	0.01	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	0.00	0.00	1.52	6.64
E010	S010	Thermoelectric Generator	1.2E-03	0.01	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	0.00	0.00	1.52	6.64
E019	S019	Line Heater	0.29	1.28	0.25	1.08	0.02	0.07	1.8E-03	7.7E-03	0.02	0.10	0.02	0.10	0.01	0.03	360.36	1,578.39
E020	S020	Line Heater	0.29	1.28	0.25	1.08	0.02	0.07	1.8E-03	7.7E-03	0.02	0.10	0.02	0.10	0.01	0.03	360.36	1,578.39
E021	S021	Line Heater	0.29	1.28	0.25	1.08	0.02	0.07	1.8E-03	7.7E-03	0.02	0.10	0.02	0.10	0.01	0.03	360.36	1,578.39
E022	S022	Line Heater	0.29	1.28	0.25	1.08	0.02	0.07	1.8E-03	7.7E-03	0.02	0.10	0.02	0.10	0.01	0.03	360.36	1,578.39
E023	S023	Line Heater	0.10	0.42	0.08	0.35	0.01	0.02	5.7E-04	2.5E-03	0.01	0.03	0.01	0.03	0.00	0.01	117.12	512.98
E011	S011	Sand Separator Tank					0.06	0.24							0.02	0.09	0.53	2.33
E024	S024	VRU Engine	0.61	2.66	1.21	5.31	0.47	2.04	1.2E-03	0.01	0.04	0.17	0.04	0.17	0.00	0.02	316.12	1,384.59
E012	S012	Uncaptured Liquid Loading					36.13	9.39										
		Fugitives						20.64								12.82		357.00
		Haul Roads										4.72		0.47				
Facility Total	_	<u> </u>	5.50	24.09	5.32	23.32	39.09	36.01	0.03	0.13	0.41	6.53	0.41	2.27	0.49	14.96	6,236.69	27,673.70
Facility Total (excludi	ing fugitive emissions)		5.50	24.09	5.32	23.32	39.09	15.37	0.03	0.13	0.41	1.80	0.41	1.80	0.49	2.14	6,236.69	27,316.71

Facility-Wide Emission Summary - Controlled

Emission	Emission	Emission	Forma	dehyde	Ben	zene	Tol	uene	Ethylb	enzene	Xyl	enes	n-He	exane	Total	BTEX	Tota	al HAP
Point ID #	Source ID#s	Source Description	lb/hr	tpy														
C001-C002	S013-S018	Storage Vessels			9.4E-04	4.1E-03	1.9E-03	8.3E-03	9.2E-05	4.0E-04	1.0E-03	4.5E-03	0.01	0.05	4.0E-03	0.02	0.02	0.08
C001-C002	S012	Captured Liquid Loading			1.3E-03	3.3E-04	1.5E-03	3.9E-04	6.7E-05	1.7E-05	7.3E-04	1.9E-04	0.03	0.01	3.6E-03	9.3E-04	0.04	0.01
C001	C001	Tank Combustor																
C002	C002	Tank Combustor																
C001	S013-S018, S012, C001				1.1E-03	2.2E-03	1.7E-03	4.3E-03	8.0E-05	2.1E-04	8.8E-04	2.3E-03	0.02	0.03	3.8E-03	0.01	0.03	0.04
C002	S013-S018, S012, C002				1.1E-03	2.2E-03	1.7E-03	4.3E-03	8.0E-05	2.1E-04	8.8E-04	2.3E-03	0.02	0.03	3.8E-03	0.01	0.03	0.04
E005	S005	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	8.1E-06	3.5E-05	2.8E-03	0.01
E006	S006	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	8.1E-06	3.5E-05	2.8E-03	0.01
E007	S007	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	8.1E-06	3.5E-05	2.8E-03	0.01
E008	S008	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	8.1E-06	3.5E-05	2.8E-03	0.01
E009	S009	Thermoelectric Generator	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	6.8E-08	3.0E-07	2.3E-05	1.0E-04
E010	S010	Thermoelectric Generator	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	6.8E-08	3.0E-07	2.3E-05	1.0E-04
E019	S019	Line Heater	2.2E-04	9.6E-04	6.2E-06	2.7E-05	1.0E-05	4.4E-05					5.3E-03	0.02	1.6E-05	7.1E-05	5.5E-03	0.02
E020	S020	Line Heater	2.2E-04	9.6E-04	6.2E-06	2.7E-05	1.0E-05	4.4E-05					5.3E-03	0.02	1.6E-05	7.1E-05	5.5E-03	0.02
E021	S021	Line Heater	2.2E-04	9.6E-04	6.2E-06	2.7E-05	1.0E-05	4.4E-05					5.3E-03	0.02	1.6E-05	7.1E-05	5.5E-03	0.02
E022	S022	Line Heater	2.2E-04	9.6E-04	6.2E-06	2.7E-05	1.0E-05	4.4E-05					5.3E-03	0.02	1.6E-05	7.1E-05	5.5E-03	0.02
E023	S023	Line Heater	7.1E-05	3.1E-04	2.0E-06	8.8E-06	3.2E-06	1.4E-05					1.7E-03	0.01	5.2E-06	2.3E-05	1.8E-03	0.01
E011	S011	Sand Separator Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	< 0.01	< 0.01	1.0E-03	3.0E-03
E024	S024	VRU Engine	0.04	0.18	3.2E-03	1.4E-02	1.1E-03	5.0E-03	5.1E-05	2.2E-04	4.0E-04	1.7E-03			4.8E-03	0.02	6.6E-02	2.9E-01
E012	S012	Uncaptured Liquid Loading			0.03	0.01	0.03	0.01	1.4E-03	3.7E-04	1.6E-02	4.1E-03	0.66	0.17	0.08	0.02	0.83	0.22
		Fugitives				0.01		0.02		< 0.01		0.01		0.35		0.04	< 0.01	0.64
		Haul Roads																
Facility Total		<u> </u>	0.04	0.19	0.03	0.03	0.04	0.04	1.7E-03	1.0E-03	0.02	0.02	0.74	0.73	0.09	0.10	0.99	1.39
Facility Total (excluding	g fugitive emissions)		0.04	0.19	3.2E-02	0.03	3.7E-02	2.2E-02	1.7E-03	1.0E-03	1.8E-02	1.1E-02	0.74	0.38	0.09	0.06	0.99	0.75

Produced Fluids Storage Vessels

Potential Throughput Operational Hours 8,760 hrs/yr 4,997 bbl/month Maximum Condensate Throughput¹ Maximum Produced Water Throughput¹ 40,434 bbl/month

Overall Control Efficiency of Combustor 95%

Storage Tanks - Uncontrolled

	Breathing		Wor	rking	Flas	hing	Total Emissions		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Methane	< 0.001	< 0.001	< 0.001	< 0.001	8.408	36.827	8.408	36.827	
Ethane	< 0.001	< 0.001	< 0.001	< 0.001	6.739	29.519	6.739	29.519	
Propane	0.065	0.284	0.880	3.856	5.222	22.873	6.167	27.013	
Isobutane	0.013	0.056	0.165	0.722	1.049	4.597	1.227	5.375	
n-Butane	0.027	0.119	0.352	1.540	2.317	10.149	2.696	11.809	
Isopentane	0.008	0.037	0.108	0.471	0.704	3.085	0.820	3.593	
n-Pentane	0.008	0.033	0.097	0.426	0.656	2.872	0.760	3.331	
n-Hexane	0.002	0.011	0.031	0.137	0.208	0.911	0.242	1.059	
Cyclohexane	1.4E-04	0.001	0.002	0.008	0.019	0.081	0.020	0.090	
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
n-Heptane	0.003	0.012	0.035	0.153	0.243	1.062	0.280	1.227	
n-Octane	0.001	0.003	0.010	0.043	0.070	0.305	0.080	0.352	
n-Nonane	1.9E-04	0.001	0.002	0.011	0.018	0.079	0.021	0.090	
n-Decane	1.8E-04	0.001	0.002	0.010	0.017	0.073	0.019	0.084	
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Triethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Isohexane	0.004	0.017	0.050	0.221	0.329	1.441	0.383	1.679	
3-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Neohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Benzene	4.8E-05	2.1E-04	0.002	0.008	0.017	0.075	0.019	0.083	
Toluene	9.5E-05	4.1E-04	0.002	0.008	0.036	0.157	0.038	0.165	
Ethylbenzene	5.0E-06	2.2E-05	7.2E-05	3.1E-04	0.002	800.0	0.002	800.0	
m-Xylene	5.6E-05	2.4E-04	0.001	0.003	0.020	0.087	0.021	0.090	
Isooctane	3.4E-04	0.001	0.004	0.019	0.030	0.131	0.035	0.152	
Total VOC Emissions:	0.13	0.58	1.74	7.64	10.96	47.99	12.83	56.20	
Total HAP Emissions:	3.0E-03	0.01	0.04	0.18	0.31	1.37	0.36	1.56	

¹ Uncontrolled emissions calculation using Promax (sum of produced water and condensate). Non-methane emissions are taken from the tank emissions stencil. Methane emissions are taken from the flash stream composition. 2 Composition of condensate from OXF-160 sample from 7/16/2013.

¹ Based on the current liquid permit limits (13,084,000 gal) scaled up to new total number of wells at the pad (7 wells).

Produced Fluids Storage Vessels

Storage Tanks - Controlled

		Breathing		Working		hing	Total Emissions		
	lb/hr	tpy			lb/hr	tpy	lb/hr	tpy	
Methane	<0.001	<0.001	<0.001	<0.001	0.420	1.841	0.420	1.841	
Ethane	< 0.001	< 0.001	< 0.001	< 0.001	0.337	1.476	0.337	1.476	
Propane	0.003	0.014	0.044	0.193	0.261	1.144	0.308	1.351	
sobutane	0.001	0.003	0.008	0.036	0.052	0.230	0.061	0.269	
n-Butane	0.001	0.006	0.018	0.077	0.116	0.507	0.135	0.590	
sopentane	4.2E-04	0.002	0.005	0.024	0.035	0.154	0.041	0.180	
n-Pentane	3.8E-04	0.002	0.005	0.021	0.033	0.144	0.038	0.167	
n-Hexane	1.2E-04	0.001	0.002	0.007	0.010	0.046	0.012	0.053	
Cyclohexane	6.8E-06	3.0E-05	8.7E-05	3.8E-04	0.001	0.004	0.001	0.004	
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
n-Heptane	1.4E-04	0.001	0.002	0.008	0.012	0.053	0.014	0.061	
n-Octane	3.9E-05	1.7E-04	4.9E-04	0.002	0.003	0.015	0.004	0.018	
n-Nonane	9.7E-06	4.3E-05	1.2E-04	0.001	0.001	0.004	0.001	0.005	
n-Decane	8.8E-06	3.8E-05	1.1E-04	4.9E-04	0.001	0.004	0.001	0.004	
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Oodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Friethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
sohexane	2.0E-04	0.001	0.003	0.011	0.016	0.072	0.019	0.084	
3-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Veohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Benzene	2.4E-06	1.0E-05	9.0E-05	4.0E-04	0.001	0.004	0.001	0.004	
Toluene	4.7E-06	2.1E-05	9.0E-05	3.9E-04	0.002	0.008	0.002	0.008	
Ethylbenzene	2.5E-07	1.1E-06	3.6E-06	1.6E-05	8.9E-05	3.9E-04	9.2E-05	4.0E-04	
n-Xylene	2.8E-06	1.2E-05	3.8E-05	1.7E-04	0.001	0.004	0.001	0.005	
sooctane	1.7E-05	7.5E-05	2.2E-04	0.001	0.001	0.007	0.002	0.008	
Total VOC Emissions:	6.6E-03	0.03	0.09	0.38	0.55	2.40	0.64	2.81	
Total HAP Emissions:	1.5E-04	6.6E-04	2.0E-03	8.8E-03	1.6E-02	0.07	0.02	0.08	

Sand Separator Tank

Throughput Parameter	Value	Units
Tank Capacity	4,200	gallons
Operational Hours	8,760	hrs/yr
Throughput	200	bbl/month
Percent Produced Water	50%	
Total Produced Water Throughput	100	bbl/month

 $^{^{1}}$ Conservatively assumes 2 turnovers/month of sand and produced water.

Description	Potential Throughput (gal/yr)
Produced Water and Sand	100,800

Sand Separator Tank (140 bbl) - Uncontrolled (Per tank) 2,3

Constituent	Total En lb/hr	nissions ¹ tpy
Methane	0.021	0.093
Ethane	0.030	0.131
Propane	0.027	0.119
Isobutane	0.005	0.024
n-Butane	0.012	0.052
Isopentane	0.004	0.016
n-Pentane	0.003	0.014
Hexanes	0.001	0.004
Heptanes	0.001	0.005
Octane	< 0.001	0.001
Nonane	< 0.001	< 0.001
Decane	< 0.001	< 0.001
Benzene	< 0.001	< 0.001
Toluene	< 0.001	< 0.001
Ethylbenzene	< 0.001	< 0.001
Xylenes	< 0.001	< 0.001
n-Hexane	0.001	0.003
2,2,4-Trimethylpentane	< 0.001	< 0.001
Total HC Emissions:	0.106	0.463
Total VOC Emissions:	0.055	0.240
Total HAP Emissions:	0.001	0.003

² E&P TANK 2.0 calculates working, breathing and flashing losses and reports the sum as one total.

³ E&P TANK v2.0 emission calculations are based on OXF-160 condensate sample from 7/16/2013.

Sand Separator Tank

Sand Separator Tank (140 bbl) - Controlled (Per tank)

	Total Emissions				
Constituent	lb/hr	tpy			
Methane	0.021	0.093			
Ethane	0.030	0.131			
Propane	0.027	0.119			
Isobutane	0.005	0.024			
n-Butane	0.012	0.052			
Isopentane	0.004	0.016			
n-Pentane	0.003	0.014			
Hexanes	0.001	0.004			
Heptanes	0.001	0.005			
Octane	< 0.001	0.001			
Nonane	< 0.001	< 0.001			
Decane	< 0.001	< 0.001			
Benzene	< 0.001	< 0.001			
Toluene	< 0.001	< 0.001			
Ethylbenzene	< 0.001	< 0.001			
Xylenes	< 0.001	< 0.001			
n-Hexane	0.001	0.003			
2,2,4-Trimethylpentane	< 0.001	< 0.001			
Total Emissions:	0.106	0.464			
Total VOC Emissions:	0.055	0.240			
Total HAP Emissions:	0.001	0.003			

VRU Engine

Engine Information:

Manufacturer:	Caterpilllar
Model No.:	G3406
Engine ID	S024
Stroke Cycle:	4-stroke
Type of Burn:	Rich
Rated Horsepower (bhp):	275

Engine Fuel Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Specific Fuel Consumption (Btu/bhp-hr):	7,418
Maximum Fuel Consumption at 100% Load (scf/hr):	1,943
Heat Input (MMBtu/hr):	2.04
Potential Fuel Consumption (MMBtu/yr):	17,870
Max. Fuel Consumption at 100%(MMscf/hr):	0.0019
Max. Fuel Consumption (MMscf/yr):	17.0
Max. Annual Hours of Operation (hr/yr):	8,760

Engine Emissions Data:

Pollutant	Emission Units		Maximum Emis		Estimation Basis / Emission
ronutant	Factor	Omts	lbs/hr	tpy	Factor Source
NO _X	1.00	g/bhp-hr	0.61	2.66	40 CFR 60, Subpart JJJJ, Table 1
VOC (excludes HCHO)	0.70	g/bhp-hr	0.42	1.86	40 CFR 60, Subpart JJJJ, Table 1
VOC (includes HCHO)			0.47	2.04	VOC + HCHO
co	2.00	g/bhp-hr	1.21	5.31	40 CFR 60, Subpart JJJJ, Table 1
SO_X	0.001	lb/MMBtu	< 0.01	< 0.01	AP-42, Table 3.2-3 (Aug-2000)
PM_{10}	0.02	lb/MMBtu	0.04	0.17	AP-42, Table 3.2-3 (Aug-2000)
PM _{2.5}	0.02	lb/MMBtu	0.04	0.17	AP-42, Table 3.2-3 (Aug-2000)
Formaldehyde (HCHO)	0.02	lb/MMBtu	0.04	0.18	AP-42, Table 3.2-3 (Aug-2000)
GHG (CO ₂ e)	See Tal	ole Below	316	1,385	40 CFR 98, Tables C-1 & C-2
Other (Total HAP)	See Tal	ole Below	0.07	0.29	AP-42, Table 3.2-3 (Aug-2000)

Notes:

- 1. PM_{10} and $PM_{2.5}$ are total values (filterable + condensable).
- 2. GHG (CO₂e) is carbon dioxide equivalent, which is the summation of CO₂ (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).
- 3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

VRU Engine

Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations:

Pollutant	Emission	Units		Potential sions	Estimation Basis / Emission	
	Factor		lbs/hr	tpy	Factor Source	
GHGs:						
CO_2	521.00	g/bhp-hr	315.87	1383.51	Manufac Spec	
CH ₄	0.001	kg/MMBtu	4.5E-03	2.0E-02	40 CFR 98, Table C-2	
N_2O	0.0001	kg/MMBtu	4.5E-04	2.0E-03	40 CFR 98, Table C-2	
GHG (CO ₂ e)			316	1,385		
Organic HAPs:						
1,1,2,2-Tetrachloroethane	2.53E-05	lb/MMBtu	5.2E-05	2.3E-04	AP-42, Table 3.2-3 (Aug-2000)	
1,1,2-Trichloroethane	1.53E-05	lb/MMBtu	3.1E-05	1.4E-04	AP-42, Table 3.2-3 (Aug-2000)	
1,3-Butadiene	6.63E-04	lb/MMBtu	1.4E-03	5.9E-03	AP-42, Table 3.2-3 (Aug-2000)	
1,3-Dichloropropene	1.27E-05	lb/MMBtu	2.6E-05	1.1E-04	AP-42, Table 3.2-3 (Aug-2000)	
Acetaldehyde	2.79E-03	lb/MMBtu	5.7E-03	2.5E-02	AP-42, Table 3.2-3 (Aug-2000)	
Acrolein	2.63E-03	lb/MMBtu	5.4E-03	2.3E-02	AP-42, Table 3.2-3 (Aug-2000)	
Benzene	1.58E-03	lb/MMBtu	3.2E-03	1.4E-02	AP-42, Table 3.2-3 (Aug-2000)	
Carbon Tetrachloride	1.77E-05	lb/MMBtu	3.6E-05	1.6E-04	AP-42, Table 3.2-3 (Aug-2000)	
Chlorobenzene	1.29E-05	lb/MMBtu	2.6E-05	1.2E-04	AP-42, Table 3.2-3 (Aug-2000)	
Chloroform	1.37E-05	lb/MMBtu	2.8E-05	1.2E-04	AP-42, Table 3.2-3 (Aug-2000)	
Ethylbenzene	2.48E-05	lb/MMBtu	5.1E-05	2.2E-04	AP-42, Table 3.2-3 (Aug-2000)	
Ethylene Dibromide	2.13E-05	lb/MMBtu	4.3E-05	1.9E-04	AP-42, Table 3.2-3 (Aug-2000)	
Methanol	3.06E-03	lb/MMBtu	6.2E-03	2.7E-02	AP-42, Table 3.2-3 (Aug-2000)	
Methylene Chloride	4.12E-05	lb/MMBtu	8.4E-05	3.7E-04	AP-42, Table 3.2-3 (Aug-2000)	
Naphthalene	9.71E-05	lb/MMBtu	2.0E-04	8.7E-04	AP-42, Table 3.2-3 (Aug-2000)	
РАН	1.41E-04	lb/MMBtu	2.9E-04	1.3E-03	AP-42, Table 3.2-3 (Aug-2000)	
Styrene	1.19E-05	lb/MMBtu	2.4E-05	1.1E-04	AP-42, Table 3.2-3 (Aug-2000)	
Toluene	5.58E-04	lb/MMBtu	1.1E-03	5.0E-03	AP-42, Table 3.2-3 (Aug-2000)	
Vinyl Chloride	7.18E-06	lb/MMBtu	1.5E-05	6.4E-05	AP-42, Table 3.2-3 (Aug-2000)	
Xylene	1.95E-04	lb/MMBtu	4.0E-04	1.7E-03	AP-42, Table 3.2-3 (Aug-2000)	
Total HAP			0.07	0.29		

Tank Combustor

Source Designation:	C001
Pilot Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Pilot Rating (MMBtu/hr)	0.05
Combustor Rating (MMBtu/hr) ¹	11.66
Combustor Rating (Mscfd) ¹	188.38
Combustor Rating (scf/hr)	7849.17
Pilot Fuel Consumption (scf/hr):	50.00
Potential Annual Hours of Operation (hr/yr):	8,760

¹ Maximum heat input for 48" model from Leed Enclosed Combustor Operations Manual

Enclosed Combustor Emissions

	Emission Factors ²	Comb	oustor	Pi	lot	To	tal
Pollutant	(lb/MMBtu)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
NO_x	0.10	1.14	5.01	5.1E-03	0.02	1.15	5.03
CO	0.08	0.96	4.21	4.3E-03	0.02	0.96	4.22
VOC	5.4E-03			2.8E-04	1.2E-03	0.00	0.00
SO_2	5.9E-04	0.01	0.03	3.1E-05	1.4E-04	0.01	0.03
PM/PM ₁₀	0.01	0.09	0.38	3.9E-04	1.7E-03	0.09	0.38
CO ₂	117.00	1364.189	5975.146	6.14	26.90	1370.33	6002.05
CH ₄	2.2E-03			1.2E-04	5.1E-04	0.00	0.00
N_2O	2.2E-04	2.6E-03	0.01	1.2E-05	5.1E-05	2.6E-03	0.01

² Emission factors from AP-42 Ch. 1.4 for natural gas combustion were used as they were determined to be most representative of the process. Ch. 5.3 (Natural Gas Processing) was consulted, however, factors contained there are appropriate for amine gas sweetening processes, which is not the case at the wellpad. Also, Ch. 13.5 (Industrial Flares) was consulted, but since the control device in this case is an enclosed combustor vs. an elevated flare, these factors were also determined to be inappropriate.

Combustor Maximum Loading:

7849.17 scf	lb-mol	20.43 lb	_=	422.65 lb/hr
hr	379 5 ccf	lh-mol		

Tank Combustor

Source Designation:	C002
Pilot Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Pilot Rating (MMBtu/hr)	0.05
Combustor Rating (MMBtu/hr) ¹	19.22
Combustor Rating (Mscfd) ¹	188.38
Combustor Rating (scf/hr)	7849.17
Pilot Fuel Consumption (scf/hr):	50.00
Potential Annual Hours of Operation (hr/yr):	8,760

¹ Maximum heat input for 60" model from Leed Enclosed Combustor Operations Manual

Enclosed Combustor Emissions

	Emission						
	Factors ²	Comb	oustor	Pil	ot	To	tal
Pollutant	(lb/MMBtu)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
NO_x	0.10	1.88	8.25	5.1E-03	0.02	1.89	8.28
CO	0.08	1.58	6.93	4.3E-03	0.02	1.59	6.95
VOC	5.4E-03			2.8E-04	1.2E-03	0.00	0.00
SO_2	5.9E-04	0.01	0.05	3.1E-05	1.4E-04	0.01	0.05
PM/PM ₁₀	0.01	0.14	0.63	3.9E-04	1.7E-03	0.14	0.63
CO_2	117.00	2248.688	9849.254	6.14	26.90	2254.83	9876.16
CH ₄	2.2E-03			1.2E-04	5.1E-04	0.00	0.00
N_2O	2.2E-04	4.2E-03	0.02	1.2E-05	5.1E-05	4.2E-03	0.02

² Emission factors from AP-42 Ch. 1.4 for natural gas combustion were used as they were determined to be most representative of the process. Ch. 5.3 (Natural Gas Processing) was consulted, however, factors contained there are appropriate for amine gas sweetening processes, which is not the case at the wellpad. Also, Ch. 13.5 (Industrial Flares) was consulted, but since the control device in this case is an enclosed combustor vs. an elevated flare, these factors were also determined to be inappropriate.

Combustor Maximum Loading:

7849.17 scf	lb-mol	20.43 lb	_=	422.65 lb/hr
hr	379 5 ccf	lh-mol		

Thermoelectric Generators

Source Designation:	S009-S010
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Heat Input (MMBtu/hr) 1	0.013
Fuel Consumption (MMscf/hr):	1.23E-05
Potential Annual Hours of Operation (hr/yr):	8,760

¹ Global Themorelectric specification sheet states 311 ft³/day at 1000 BTU/ft³.

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ^{2, 5}	(lb/hr) ³	(tons/yr) ⁴	
NO_x	100	1.2E-03	0.01	
со	84	1.0E-03	4.5E-03	
voc	5.5	6.8E-05	3.0E-04	
SO ₂	0.6	7.4E-06	3.2E-05	
PM Total	7.6	9.4E-05	4.1E-04	
PM Condensable	5.7	7.0E-05	3.1E-04	
PM ₁₀ (Filterable)	1.9	2.3E-05	1.0E-04	
PM _{2.5} (Filterable)	1.9	2.3E-05	1.0E-04	
Lead	5.00E-04	6.2E-09	2.7E-08	
CO ₂	116.9	1.51	6.64	
CH ₄	2.21E-03	2.9E-05	1.3E-04	
N_2O	2.21E-04	2.9E-06	1.3E-05	

EQT Production, LLC Company Name: Facility Name: OXF 160 Wellpad **Project Description:** G70-D Application

Thermoelectric Generators

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ²	(lb/hr) ³	(tons/yr) ⁴	
HAPs:				
2-Methylnaphthalene	2.4E-05	3.0E-10	1.3E-09	
3-Methylchloranthrene	1.8E-06	2.2E-11	9.7E-11	
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.0E-10	8.6E-10	
Acenaphthene	1.8E-06	2.2E-11	9.7E-11	
Acenaphthylene	1.8E-06	2.2E-11	9.7E-11	
Anthracene	2.4E-06	3.0E-11	1.3E-10	
Benz(a)anthracene	1.8E-06	2.2E-11	9.7E-11	
Benzene	2.1E-03	2.6E-08	1.1E-07	
Benzo(a)pyrene	1.2E-06	1.5E-11	6.5E-11	
Benzo(b)fluoranthene	1.8E-06	2.2E-11	9.7E-11	
Benzo(g,h,i)perylene	1.2E-06	1.5E-11	6.5E-11	
Benzo(k)fluoranthene	1.8E-06	2.2E-11	9.7E-11	
Chrysene	1.8E-06	2.2E-11	9.7E-11	
Dibenzo(a,h) anthracene	1.2E-06	1.5E-11	6.5E-11	
Dichlorobenzene	1.2E-03	1.5E-08	6.5E-08	
Fluoranthene	3.0E-06	3.7E-11	1.6E-10	
Fluorene	2.8E-06	3.5E-11	1.5E-10	
Formaldehyde	7.5E-02	9.3E-07	4.1E-06	
Hexane	1.8E+00	2.2E-05	9.7E-05	
Indo(1,2,3-cd)pyrene	1.8E-06	2.2E-11	9.7E-11	
Naphthalene	6.1E-04	7.5E-09	3.3E-08	
Phenanthrene	1.7E-05	2.1E-10	9.2E-10	
Pyrene	5.0E-06	6.2E-11	2.7E-10	
Toluene	3.4E-03	4.2E-08	1.8E-07	
Arsenic	2.0E-04	2.5E-09	1.1E-08	
Beryllium	1.2E-05	1.5E-10	6.5E-10	
Cadmium	1.1E-03	1.4E-08	5.9E-08	
Chromium	1.4E-03	1.7E-08	7.6E-08	
Cobalt	8.4E-05	1.0E-09	4.5E-09	
Manganese	3.8E-04	4.7E-09	2.1E-08	
Mercury	2.6E-04	3.2E-09	1.4E-08	
Nickel	2.1E-03	2.6E-08	1.1E-07	
Selenium	2.4E-05	3.0E-10	1.3E-09	
Total HAP		2.3E-05	1.0E-04	

² Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

³ Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

⁴ Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).
⁵ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Line Heaters

Source Designation:	S005-S008
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Heat Input (MMBtu/hr)	1.54
Fuel Consumption (MMscf/hr):	1.47E-03
Potential Annual Hours of Operation (hr/yr):	8,760

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ^{1, 4}	(lb/hr) ²	(tons/yr) ³	
NO_x	100	0.15	0.64	
CO	84	0.12	0.54	
voc	5.5	0.01	0.04	
SO_2	0.6	8.8E-04	3.9E-03	
PM Total	7.6	0.01	0.05	
PM Condensable	5.7	0.01	0.04	
PM ₁₀ (Filterable)	1.9	2.8E-03	0.01	
PM _{2.5} (Filterable)	1.9	2.8E-03	0.01	
Lead	5.00E-04	7.3E-07	3.2E-06	
CO ₂	117.0	180.00	788.38	
CH ₄	2.21E-03	3.4E-03	1.5E-02	
N_2O	2.21E-04	3.4E-04	1.5E-03	

EQT Production, LLC Company Name: Facility Name: OXF 160 Wellpad **Project Description:** G70-D Application

Line Heaters

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³	
HAPs:				
2-Methylnaphthalene	2.4E-05	3.5E-08	1.5E-07	
3-Methylchloranthrene	1.8E-06	2.6E-09	1.2E-08	
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.3E-08	1.0E-07	
Acenaphthene	1.8E-06	2.6E-09	1.2E-08	
Acenaphthylene	1.8E-06	2.6E-09	1.2E-08	
Anthracene	2.4E-06	3.5E-09	1.5E-08	
Benz(a)anthracene	1.8E-06	2.6E-09	1.2E-08	
Benzene	2.1E-03	3.1E-06	1.3E-05	
Benzo(a)pyrene	1.2E-06	1.8E-09	7.7E-09	
Benzo(b)fluoranthene	1.8E-06	2.6E-09	1.2E-08	
Benzo(g,h,i)perylene	1.2E-06	1.8E-09	7.7E-09	
Benzo(k)fluoranthene	1.8E-06	2.6E-09	1.2E-08	
Chrysene	1.8E-06	2.6E-09	1.2E-08	
Dibenzo(a,h) anthracene	1.2E-06	1.8E-09	7.7E-09	
Dichlorobenzene	1.2E-03	1.8E-06	7.7E-06	
Fluoranthene	3.0E-06	4.4E-09	1.9E-08	
Fluorene	2.8E-06	4.1E-09	1.8E-08	
Formaldehyde	7.5E-02	1.1E-04	4.8E-04	
Hexane	1.8E+00	2.6E-03	1.2E-02	
Indo(1,2,3-cd)pyrene	1.8E-06	2.6E-09	1.2E-08	
Naphthalene	6.1E-04	8.9E-07	3.9E-06	
Phenanthrene	1.7E-05	2.5E-08	1.1E-07	
Pyrene	5.0E-06	7.3E-09	3.2E-08	
Toluene	3.4E-03	5.0E-06	2.2E-05	
Arsenic	2.0E-04	2.9E-07	1.3E-06	
Beryllium	1.2E-05	1.8E-08	7.7E-08	
Cadmium	1.1E-03	1.6E-06	7.1E-06	
Chromium	1.4E-03	2.1E-06	9.0E-06	
Cobalt	8.4E-05	1.2E-07	5.4E-07	
Manganese	3.8E-04	5.6E-07	2.4E-06	
Mercury	2.6E-04	3.8E-07	1.7E-06	
Nickel	2.1E-03	3.1E-06	1.3E-05	
Selenium	2.4E-05	3.5E-08	1.5E-07	
Total HAP		2.8E-03	1.2E-02	

 $^{^{\}rm 1}$ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

³ Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb). ⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Line Heaters

Source Designation:	S019-S022
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Heat Input (MMBtu/hr)	3.08
Fuel Consumption (MMscf/hr):	2.93E-03
Potential Annual Hours of Operation (hr/yr):	8,760

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ^{1, 4}	(lb/hr) ²	(tons/yr) ³	
NO _x	100	0.29	1.28	
со	84	0.25	1.08	
VOC	5.5	0.02	0.07	
SO ₂	0.6	1.8E-03	7.7E-03	
PM Total	7.6	0.02	0.10	
PM Condensable	5.7	0.02	0.07	
PM ₁₀ (Filterable)	1.9	0.01	0.02	
PM _{2.5} (Filterable)	1.9	0.01	0.02	
Lead	5.00E-04	1.5E-06	6.4E-06	
CO ₂	117.0	359.99	1576.76	
CH ₄	2.21E-03	6.8E-03	3.0E-02	
N ₂ O	2.21E-04	6.8E-04	3.0E-03	

EQT Production, LLC Company Name: Facility Name: OXF 160 Wellpad **Project Description:** G70-D Application

Line Heaters

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³	
HAPs:				
2-Methylnaphthalene	2.4E-05	7.0E-08	3.1E-07	
3-Methylchloranthrene	1.8E-06	5.3E-09	2.3E-08	
7,12-Dimethylbenz(a)anthracene	1.6E-05	4.7E-08	2.1E-07	
Acenaphthene	1.8E-06	5.3E-09	2.3E-08	
Acenaphthylene	1.8E-06	5.3E-09	2.3E-08	
Anthracene	2.4E-06	7.0E-09	3.1E-08	
Benz(a)anthracene	1.8E-06	5.3E-09	2.3E-08	
Benzene	2.1E-03	6.2E-06	2.7E-05	
Benzo(a)pyrene	1.2E-06	3.5E-09	1.5E-08	
Benzo(b)fluoranthene	1.8E-06	5.3E-09	2.3E-08	
Benzo(g,h,i)perylene	1.2E-06	3.5E-09	1.5E-08	
Benzo(k)fluoranthene	1.8E-06	5.3E-09	2.3E-08	
Chrysene	1.8E-06	5.3E-09	2.3E-08	
Dibenzo(a,h) anthracene	1.2E-06	3.5E-09	1.5E-08	
Dichlorobenzene	1.2E-03	3.5E-06	1.5E-05	
Fluoranthene	3.0E-06	8.8E-09	3.9E-08	
Fluorene	2.8E-06	8.2E-09	3.6E-08	
Formaldehyde	7.5E-02	2.2E-04	9.6E-04	
Hexane	1.8E+00	5.3E-03	2.3E-02	
Indo(1,2,3-cd)pyrene	1.8E-06	5.3E-09	2.3E-08	
Naphthalene	6.1E-04	1.8E-06	7.8E-06	
Phenanthrene	1.7E-05	5.0E-08	2.2E-07	
Pyrene	5.0E-06	1.5E-08	6.4E-08	
Toluene	3.4E-03	1.0E-05	4.4E-05	
Arsenic	2.0E-04	5.9E-07	2.6E-06	
Beryllium	1.2E-05	3.5E-08	1.5E-07	
Cadmium	1.1E-03	3.2E-06	1.4E-05	
Chromium	1.4E-03	4.1E-06	1.8E-05	
Cobalt	8.4E-05	2.5E-07	1.1E-06	
Manganese	3.8E-04	1.1E-06	4.9E-06	
Mercury	2.6E-04	7.6E-07	3.3E-06	
Nickel	2.1E-03	6.2E-06	2.7E-05	
Selenium	2.4E-05	7.0E-08	3.1E-07	
Total HAP		5.5E-03	2.4E-02	

 $^{^{\}rm 1}$ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

³ Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb). ⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Line Heaters

Source Designation:	S023
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Heat Input (MMBtu/hr)	1.00
Fuel Consumption (MMscf/hr):	9.52E-04
Potential Annual Hours of Operation (hr/yr):	8,760

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ^{1, 4}	(lb/hr) ²	(tons/yr) ³	
NO _x	100	0.10	0.42	
СО	84	0.08	0.35	
VOC	5.5	0.01	0.02	
SO ₂	0.6	5.7E-04	2.5E-03	
PM Total	7.6	0.01	0.03	
PM Condensable	5.7	0.01	0.02	
PM ₁₀ (Filterable)	1.9	1.8E-03	0.01	
PM _{2.5} (Filterable)	1.9	1.8E-03	0.01	
Lead	5.00E-04	4.8E-07	2.1E-06	
CO ₂	117.0	117.00	512.45	
CH ₄	2.21E-03	2.2E-03	9.7E-03	
N ₂ O	2.21E-04	2.2E-04	9.7E-04	

EQT Production, LLC Company Name: Facility Name: OXF 160 Wellpad **Project Description:** G70-D Application

Line Heaters

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³	
HAPs:				
2-Methylnaphthalene	2.4E-05	2.3E-08	1.0E-07	
3-Methylchloranthrene	1.8E-06	1.7E-09	7.5E-09	
7,12-Dimethylbenz(a)anthracene	1.6E-05	1.5E-08	6.7E-08	
Acenaphthene	1.8E-06	1.7E-09	7.5E-09	
Acenaphthylene	1.8E-06	1.7E-09	7.5E-09	
Anthracene	2.4E-06	2.3E-09	1.0E-08	
Benz(a)anthracene	1.8E-06	1.7E-09	7.5E-09	
Benzene	2.1E-03	2.0E-06	8.8E-06	
Benzo(a)pyrene	1.2E-06	1.1E-09	5.0E-09	
Benzo(b)fluoranthene	1.8E-06	1.7E-09	7.5E-09	
Benzo(g,h,i)perylene	1.2E-06	1.1E-09	5.0E-09	
Benzo(k)fluoranthene	1.8E-06	1.7E-09	7.5E-09	
Chrysene	1.8E-06	1.7E-09	7.5E-09	
Dibenzo(a,h) anthracene	1.2E-06	1.1E-09	5.0E-09	
Dichlorobenzene	1.2E-03	1.1E-06	5.0E-06	
Fluoranthene	3.0E-06	2.9E-09	1.3E-08	
Fluorene	2.8E-06	2.7E-09	1.2E-08	
Formaldehyde	7.5E-02	7.1E-05	3.1E-04	
Hexane	1.8E+00	1.7E-03	7.5E-03	
Indo(1,2,3-cd)pyrene	1.8E-06	1.7E-09	7.5E-09	
Naphthalene	6.1E-04	5.8E-07	2.5E-06	
Phenanthrene	1.7E-05	1.6E-08	7.1E-08	
Pyrene	5.0E-06	4.8E-09	2.1E-08	
Toluene	3.4E-03	3.2E-06	1.4E-05	
Arsenic	2.0E-04	1.9E-07	8.3E-07	
Beryllium	1.2E-05	1.1E-08	5.0E-08	
Cadmium	1.1E-03	1.0E-06	4.6E-06	
Chromium	1.4E-03	1.3E-06	5.8E-06	
Cobalt	8.4E-05	8.0E-08	3.5E-07	
Manganese	3.8E-04	3.6E-07	1.6E-06	
Mercury	2.6E-04	2.5E-07	1.1E-06	
Nickel	2.1E-03	2.0E-06	8.8E-06	
Selenium	2.4E-05	2.3E-08	1.0E-07	
Total HAP		1.8E-03	7.9E-03	

 $^{^{\}rm 1}$ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

³ Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb). ⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

EQT Production, LLC OXF 160 Wellpad **Company Name:** Facility Name: **Project Description:** G70-D Application

Liquid Loading

Throughput Capture Efficiency Control Efficiency 22,897,000 gal/yr 70% non-tested tanker trucks 98% Combustor destruction efficiency

Liquid Loading Emissions

	Uncontrolle	Uncontrolled Emissions		d Emissions	Controlled Emissions	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Propane	60.121	15.632	18.036	4.689	0.842	0.219
Isobutane	11.524	2.996	3.457	0.899	0.161	0.042
n-Butane	24.552	6.383	7.366	1.915	0.344	0.089
Isopentane	7.549	1.963	2.265	0.589	0.106	0.027
n-Pentane	6.816	1.772	2.045	0.532	0.095	0.025
n-Hexane	2.200	0.572	0.660	0.172	0.031	0.008
Cyclohexane	0.122	0.032	0.037	0.010	0.002	0.000
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
n-Heptane	2.448	0.636	0.734	0.191	0.034	0.009
n-Octane	0.692	0.180	0.208	0.054	0.010	0.003
n-Nonane	0.174	0.045	0.052	0.014	0.002	0.001
n-Decane	0.157	0.041	0.047	0.012	0.002	0.001
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Triethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Isohexane	3.533	0.918	1.060	0.276	0.049	0.013
3-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Neohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Benzene	0.090	0.023	0.027	0.007	0.001	0.000
Toluene	0.108	0.028	0.032	0.008	0.002	0.000
Ethylbenzene	0.005	0.001	0.001	0.000	0.000	0.000
m-Xylene	0.052	0.014	0.016	0.004	0.001	0.000
Isooctane	0.305	0.079	0.091	0.024	0.004	0.001
Total VOC Emissions:	120.447	31.316	36.134	9.395	1.686	0.438
Total HAP Emissions:	2.759	0.717	0.828	0.215	0.039	0.010

 $^{^{\}rm 1}$ Uncontrolled emissions calculation using Promax (sum of produced water and condensate). $^{\rm 2}$ Hourly emissions assume two hours of loading per day, five days per week.

Fugitive Emissions

Fugitive Emissions from Component Leaks

Facility Equipment Type ¹	Valves	Connectors	Open-Ended Lines	Pressure Relief Devices
Wellhead	8	38	0.5	0
Separators	1	6	0	0
Meters/Piping	12	45	0	0
Compressors	12	57	0	0
In-line heaters	14	65	2	1
Dehydrators	24	90	2	2

¹ Table W-1B to Subpart W of Part 98 —Default Average Component Counts for Major Onshore Natural Gas Production

Fugitive VOC/Total Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Weight Fraction VOC	Weight Fraction HAP	VOC Emissions ³ (tpy)	HAP Emissions ³ (tpy)
Pumps	Light Liquid	0.01990	11	2.02	1.00	0.03	2.02	0.06
Compressor	Gas	0.22800	0		0.17	0.01		
Valves	Gas	0.00597	369	21.27	0.17	0.01	3.53	0.11
Pressure Relief Valves	Gas	0.10400	25	24.60	0.17	0.01	4.08	0.13
Open-Ended Lines	All	0.00170	27	0.44	0.17	0.01	0.07	2.3E-03
Connectors	All	0.00183	1,626	28.73	0.17	0.01	4.77	0.15
Intermittent Pneumatic Devices ⁴	Gas	13.5	35				6.17	0.19
	•		Emission Totals:	77.07			20.64	0.64

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates*. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. The pneumatic controller value is from 40 CFR 98 Subpart W, Table W-1A (units of scf/hr/component). Pneumatic assumes operation 1/3 of the year.

² Assumes one pump for each tank and one meter per wellhead. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic devices assume 5 per well. A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions VOC/HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % VOC/HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP ÷ 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton)

Fugitive Emissions

Fugitive Specific HAP Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Benzene Emissions ³ (tpy)	Toluene Emissions ³ (tpy)	Ethylbenzene Emissions ³ (tpy)	Xylene Emissions ³ (tpy)	n-Hexane Emissions ⁴ (tpy)
Pumps	Light Liquid	0.01990	11	2.02	1.5E-04	3.6E-04	< 0.01	2.1E-04	0.01
Compressor	Gas	0.22800	0						
Valves	Gas	0.00597	369	21.27	1.6E-03	3.8E-03	< 0.01	2.2E-03	0.07
Pressure Relief Valves	Gas	0.10400	25	24.60	1.9E-03	4.4E-03	< 0.01	2.6E-03	0.08
Open-Ended Lines	All	0.00170	27	0.44	3.4E-05	8.0E-05	< 0.01	4.6E-05	1.4E-03
Connectors	All	0.00183	1,626	28.73	2.2E-03	0.01	< 0.01	3.0E-03	0.09
Intermittent Pneumatic Devices ⁴	Gas	13.5	35		2.8E-03	0.01	< 0.01	3.9E-03	0.11
			Emission Totals:	77.07	0.01	0.02	<0.01	0.01	0.35

¹ U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. The pneumatic controller value is from 40 CFR 98 Subpart W, Table W-1A. Pneumatic assumes operation 1/3 of the year.

GHG Fugitive Emissions from Component Leaks

		GHG Emission			
	Component	Factor ¹	CH ₄ Emissions ^{2,3}	CO ₂ Emissions ^{2,3}	CO ₂ e Emissions ⁴
Component	Count	scf/hr/component	(tpy)	(tpy)	(tpy)
Pumps	11	0.01	0.02	1.0E-04	0.38
Compressor	0	4.17			
Valves	369	0.027	1.46	0.01	36.47
Pressure Relief Devices	25	0.04	0.14	9.7E-04	3.59
Open-Ended Lines	27	0.061	0.24	1.6E-03	6.03
Connectors	1,626	0.003	0.71	4.8E-03	17.86
Intermittent Pneumatic Devices	35	6	10.25	0.07	256.27
	Γotal		12.82	0.09	320.60

¹ Population emission factors for gas service in the Eastern U.S. from Table W-1A of Subpart W - Default Whole Gas Emission Factors for Onshore Production , 40 CFR 98, Subpart W (table W-6 for compressor). Pneumatic assumes operation 1/3 of the year.

79% CO₂: 0.20%

Carbon Dioxide (CO₂):

25

Methane (CH₄):

² Assumes one pump for each tank and one meter per wellhead. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic devices assume 5 per well. A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % HAP + 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton)

² Calculated in accordance with Equations W-32a, W-35 and W-36 in Subpart W of 40 CFR 98. See footnote 4 above for sample calculation.

³ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP + 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton) Mole fractions of CH₄ and CO₂ based on gas analysis:

⁴ Carbon equivalent emissions (CO₂e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:

Fugitive Emissions

Fugitive Emissions from Fuel Cells

Source	Number of Units	CO ₂ Emissions Per Unit (tpy)	Total CO ₂ Emissions (tpy)	Total CO ₂ e Emissions (tpy)
Natural Gas Source	2	7.96	15.92	15.92
Propane Gas Source	2	10.24	20.47	20.47
Total	_	7.96	36.39	36.39

Reaction for Fuel (Cells is as	follows:
---------------------	-------------	----------

Natural Gas		Propane	Molecular Weights:	Molecular Weights:			Molar Volume		
CH4 + 2 (O2+3.76N2) = CO2 + 2H2O + 7.52N2		C3H8 + 5 (O2+3.76N2) = 3CO2 + 4H2O + 18.8N2	CH ₄	16	g/g-mol	22.41 l/g-	-mol		
			C ₃ H ₈	44	g/g-mol				
Natural Gas Fuel Flow Rate	7	liters/min for 1350 watts (from engineering design)	CO ₂	44	g/g-mol				
Natural Gas Mole Ratio	1	mol CO2/mol fuel							
Propane Gas Fuel Flow Rate	3	liters/min for 1350 watts (from engineering design)							
Propane Gas Mole Ratio	3	mol CO2/mol fuel							

Potential CO_2 (tpy) = Flow Rate of Fuel (liters/min) ÷ Molar Volume (L/g-mol) x mole ratio (mol CO_2 /mol fuel) x Molecular Weight of CO_2 (g/g-mol) x 60 min/hr x 8,760 hr/yr ÷ (453.6 g/lb) ÷ (2,000 lb/ton)

Haul Roads

Estimated Potential Road Fugitive Emissions

Unpaved Road Emissions

Unpaved Roads: E (lb/VMT) = $k(s/12)^a(W/3)^b$)*[(365-p)/365]

	PM	PM_{10}	$PM_{2.5}$	
k Factor (lb/VMT)	4.9	1.5	0.15	AP-42 Table 13.2.2-2 (Final, 11/06)
Silt content, s	4.8	%		AP-42 Table 13.2.2-1 (11/06), for Sand and Gravel Processing
Number of Rain Days, p	150			AP-42 Figure 13.2.1-2
a	0.7	0.9	0.9	AP-42 Table 13.2.2-2 (Final, 11/06)
b	0.45	0.45	0.45	AP-42 Table 13.2.2-2 (Final, 11/06)

Description	Weight of Empty Truck (tons)	Weight of Truck w/ Max Load (tons)	Mean Vehicle Weight (tons)	Length of Unpaved Road Traveled (mile)	Trips Per Year	Mileage Per Year	Control (%)	I PM	Emissions (tpy PM ₁₀) PM _{2.5}
Liquids Hauling Employee Vehicles	20 3	40 3	30 3	0.75 0.75	5,724 200	8,550 299	0 0	18.31 0.23	4.67 0.06	0.47 0.01
Total Potential Emissions	8							18.54	4.72	0.47

EQT Production, LLC OXF 160 Wellpad **Company Name:** Facility Name: **Project Description:** G70-D Application

Gas Analysis

OXF 121 Gas Analysis - 512425 5/20/2013 1,240 Note: A co Sample Location: Sample Date: HHV (Btu/scf):

Note: A conservatively low BTU content of 1,050 was used for calculations.

Constituent	Natural Gas Stream Speciation (Mole %)	Molecular Weight	Molar Weight	Average Weight Fraction	Natural Gas Stream Speciation (Wt. %)
Carbon Dioxide	0.195	44.01	0.09	0.00	0.420
Nitrogen	0.532	28.01	0.15	0.01	0.729
Methane	78.965	16.04	12.67	0.62	61.983
Ethane	13.780	30.07	4.14	0.20	20.278
Propane	4.195	44.10	1.85	0.09	9.053
Isobutane	0.507	58.12	0.29	0.01	1.442
n-Butane	1.013	58.12	0.59	0.03	2.881
Isopentane	0.249	72.15	0.18	0.01	0.879
n-Pentane	0.239	72.15	0.17	0.01	0.844
Cyclopentane	< 0.001	70.1	0.0	0.0	0.000
n-Hexane	0.073	86.18	0.06	0.00	0.308
Cyclohexane	0.011	84.16	0.01	0.00	0.045
Other Hexanes	0.113	86.18	0.10	0.00	0.477
Heptanes	0.079	100.21	0.08	0.00	0.387
Methylcyclohexane	< 0.001	98.19	0.00	0.00	0.000
2,2,4-Trimethylpentane	0.031	114.23	0.04	0.00	0.173
Benzene*	0.002	78.11	0.00	0.00	0.008
Toluene*	0.004	92.14	0.00	0.00	0.018
Ethylbenzene*	< 0.001	106.17	0.00	0.00	0.000
Xylenes*	0.002	106.16	0.00	0.00	0.010
C8 + Heavies	0.010	130.80	0.01	0.00	0.064
Totals	100.000		20.43	1.00	100

TOC (Total)	99.27	98.85
VOC (Total)	6.53	16.59
HAP (Total)	0.11	0.52

20160310_EQT_0XF160_Sand Separator Tank. txt

```
********************
     Project Setup Information
************************
Project File : \\tsclient\Z\Client\EQT Corporation\West Virginia\WV Wells\163901.0058 WV Wells 2016\0XF 160\03 Draft\20160310_0XF-160 G70-C Application
\Att S Emission Calcs\01 E&P TANK\20160310_EQT_0XF160_Sand Separator Tank.ept
Flowsheet Selection : Oil Tank with Separator Calculation Method : RVP Distillation Control Efficiency : 0.0% Known Separator Stream : Low Pressure Oil
Entering Air Composition : No
Filed Name
                          : OXF-160 Wellpad
Well ID
                          : Sand Separator Tank
                           : Condensate Analysis from OXF-160
Date
                           : 2016.03.10
*************************
     Data Input
*******************
Separator Pressure : 407.00[psig]
Separator Temperature : 60.00[F]
Ambient Pressure : 14.70[psia]
Ambient Temperature : 55.00[F]
C10+ SG : 0.8004
C10+ SG
C10+ MW
                          : 206.984
-- Low Pressure Oil
          Component mol %
                                 0.0000
          H2S
   1
                                 0.0000
   2
          02
                                0.0770
   3
          C02
   4
          N2
                                0.0000
   5
          C1
                                11. 2090
          C2
   6
                                 8.5530
   7
          C3
                                 7.3260
   8
          i -C4
                                 1.9200
   9
          n-C4
                                 5.3270
   10
          i -C5
                                 3.0530
   11
          n-C5
                                 3.8030
   12
                                 3.4440
          C6
   13
          C7
                                11.4510
                                10.4960
   14
          C8
   15
          C9
                                 7.4320
          C10+
                                20. 2320
   16
                                 0. 1360
0. 7270
   17
          Benzene
   18
          Tol uene
   19
                                 0. 1120
          E-Benzene
          Xyl enes
   20
                                 1. 2580
                                 3.4200
   21
          n-C6
          224Trimethylp
                                 0.0240
```

Page 1

20160310_EQT_0XF160_Sand Separator Tank.txt

-- Sales Oil

Production Rate : 0.1[bbl/day]
Days of Annual Operation : 365 [days/year]
API Gravity : 59.11
Reid Vapor Pressure : 10.60[psia]

Calculation Results

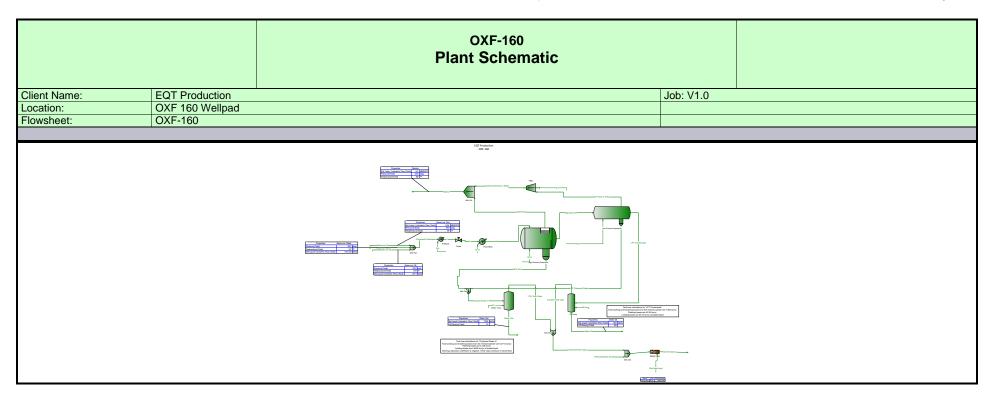
-- Emission Summary

Item	1	Uncontrolled [ton/yr]	Uncontrolled [Ib/hr]	Controlled [ton/yr]	Controlled [Ib/hr] E&P TANK
Page Total Total VOCs,	HC	0. 000 0. 463 0. 371	0. 000 0. 106 0. 085	0. 000 0. 463 0. 371	0. 000 0. 106 0. 085
VOCs,		0. 240	0. 055	0. 240	0. 055

Uncontrolled Recovery Info.

Vapor	30. 6200 x1E-3	[MSCFD]
HC Vapor	30. 5400 x1E-3	[MSCFD]
GOR	306. 20	[SCF/bbl]

-- Emission Composition


					·
No	Component	Uncontrolled [ton/yr]	Uncontrolled [lb/hr]	Controlled [ton/yr]	Controlled [Ib/hr]
1	H2S	0.000	0. 000	0. 000	0.000
2	02	0.000	0.000	0. 000	0.000
3	C02	0. 002	0.000	0. 002	0.000
4	N2	0.000	0.000	0.000	0.000
5	C1	0. 093	0. 021	0. 093	0. 021
6	C2	0. 131	0. 030	0. 131	0. 030
7	C3	0. 119	0. 027	0. 119	0. 027
8	i -C4	0. 024	0. 005	0. 024	0. 005
9	n-C4	0. 052	0. 012	0. 052	0. 012
10	i -C5	0. 016	0. 004	0. 016	0. 004
11	n-C5	0. 014	0. 003	0. 014	0. 003
12	C6	0. 004	0. 001	0. 004	0. 001
13	C7	0. 005	0. 001	0. 005	0. 001
14	C8	0. 001	0. 000	0. 001	0. 000
15	C9	0. 000	0. 000	0. 000	0.000
16	C10+	0. 000	0. 000	0. 000	0. 000
17	Benzene	0.000	0.000	0.000	0.000
18	Tol uene	0. 000	0. 000	0. 000	0. 000
19	E-Benzene	0. 000	0. 000	0. 000	0.000
20	Xyl enes	0. 000	0. 000	0. 000	0. 000
21	n-C6	0. 003	0. 001	0. 003	0. 001
22	224Trimethylp	0. 000	0. 000	0. 000	0. 000
	Total	0. 464	0. 106	0. 464	0. 106

-- Stream Data

LP Oil Flash Oil Sale Oil Flash Gas W&S Gas No. Component MW

	60310_EQT_0	OXF160_San	d Separato	r Tank. txt		
Total Emissions		mol %	mol %	mol %	mol %	mol %
mol % 1 H2S	34. 80	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000 2 02	32.00	0. 0000	0.0000	0.0000	0.0000	0.0000
0.0000 3 C02	44. 01	0. 0770	0. 0059	0.0000	0. 2698	0. 2496
0. 2686 4 N2	28. 01	0.0000	0.0000	0.0000	0.0000	0.0000
0. 0000 5 C1	16. 04	11. 2090	0. 2680	0.0000	40. 8883	11. 3545
39. 1114 6 C2	30. 07	8. 5530	1. 3068	0. 1435	28. 2096	49. 4331
29. 4865 7 C3	44. 10	7. 3260	3. 4365	2. 9127	17. 8768	25. 1133
18. 3122 8 i -C4	58. 12	1. 9200	1. 5837	1. 5460	2. 8322	3. 1435
2. 8509 9 n-C4	58. 12	5. 3270	5. 0689	5. 0335	6. 0271	6. 5353
6. 0576 10 i -C5	72. 15	3. 0530	3. 6399	3. 6903	1. 4610	1. 5547
1. 4666 11 n-C5	72. 15	3. 8030	4. 7160	4. 7958	1. 3264	1. 4132
1. 3317 12 C6	86. 16	3. 4440	4. 5810	4. 6824	0. 3596	0. 3865
0. 3613 13 C7	100. 20	11. 4510	15. 5442	15. 9108	0. 3475	0. 3781
0. 3493 14 C8	114. 23	10. 4960	14. 3336	14. 6777	0. 0859	0. 0949
0. 0865 15 C9	128. 28	7. 4320	10. 1651	10. 4103	0. 0180	0. 0217
0. 0182 16 C10+	206. 98	20. 2320	27. 6903	28. 3596	0. 0001	0. 0001
0.0001 17 Benzene	78. 11	0. 1360	0. 1824	0. 1865	0. 0102	0. 0110
0. 0102 18 Tol uene	92. 13	0. 7270	0. 9902	1. 0138	0. 0130	0. 0143
0. 0131 19 E-Benzene	106. 17	0. 1120	0. 1531	0. 1568	0.0006	0. 0006
0. 0006 20 Xyl enes	106. 17	1. 2580	1. 7198	1. 7612	0. 0054	0. 0060
0. 0054 21 n-C6	86. 18	3. 4200	4. 5820	4. 6858	0. 2679	0. 2890
0.2692 22 224Trimethylp 0.0006	114. 24	0. 0240	0. 0326	0. 0334	0.0006	0. 0006
0.0006						
MW 31.55		98. 67	123. 54	125. 63	31. 22	36. 74
Stream Mole Ratio		1. 0000	0. 7307	0. 7134	0. 2693	0. 0172
0. 2866 Heati ng Val ue 1836. 86	[BTU/SCF]				1818. 91	2117. 27
Gas Gravi ty 1.09	[Gas/Air]				1. 08	1. 27
Bubble Pt. @ 100F	[psi a]	438. 80	29. 37	13. 19		
Page 2					E8	&P TANK
RVP @ 100F	[psi a]	107. 09	16. 29	10. 94		

20160310_EQT_0XF160_Sand Separator Tank. txt Spec. Gravity @ 100F 0.660 0.689 0.691

Process Streams Report All Streams

Tabulated by Total Phase

Client Name: **EQT Production** Job: V1.0 Location: Flowsheet: OXF 160 Wellpad OXF-160

Connections

	Combined Flash Vapor	Pipeline	Reservoir Gas	Reservoir Oil	Reservoir Water
From Block	MIX-100	MIX-101			
To Block	MIX-105		MIX-102	MIX-102	MIX-102

Stream Composition							
Mole Fraction	Combined Flash Vapor	Pipeline	Reservoir Gas	Reservoir Oil	Reservoir Water		
Nitrogen	0.00173398	0.00527783	0.00532 *	0 *	0 *		
Methane	0.00173398	0.785533	0.78965 *	0.11209 *	0 *		
CO2	0.0105261	0.00193151	0.76965	0.00077 *	0 *		
Ethane	0.0105261	0.00193131	0.00195	0.08553 *	0 *		
Propane	0.129479	0.0425334	0.1378	0.06333	0 *		
Isobutane	0.0205859	0.00518606	0.00507 *	0.0192 *	0 *		
n-Butane	0.0205659	0.00518606	0.00307	0.0192	0 *		
Isopentane	0.0437098	0.00258298	0.00249 *	0.03053 *	0 *		
n-Pentane	0.0109661	0.00250298	0.00249	0.03803 *	0 *		
n-Hexane	0.00303005	0.00231478	0.00239	0.03603	0 *		
Methylcyclopentane	0.00303003	0.000779996	0.00073	0.0342	0 *		
Benzene	0.000215718	2.5474E-05	2E-05 *	0.00136 *	0 *		
Cyclohexane	0.000213718	5.34363E-05	0.00011 *	0.00136	0 *		
n-Heptane	0.00252479	0.000975612	0.00011	0.11451 *	0 *		
n-Octane	0.00314164	0.000975612	3E-05 *	0.11451			
n-Nonane	0.00082381	8.96602E-05	3E-05 4E-05 *		0 * 0 *		
	0.00019417			0.07432 *			
n-Decane		9.72059E-05	3E-05 *	0.20232 *	0 *		
n-Undecane Dodecane	0	0	0 *	0 *	0 *		
Water	0.015027	•	0 *	0 *	0 *		
		0.00216388	-	-	1 "		
Triethylene Glycol	0	0	0 *	0 *	0 *		
Oxygen	0	0	0 *	0 *	0 *		
Argon	0	0	0 *	0 *	0 *		
Carbon Monoxide	0	0	0 *	0 *	0 *		
Cyclopentane	0 00 170 17	0	0 *		0 *		
Isohexane	0.0047047	0.00113983	0.00113 *	0.03444 *	0 *		
3-Methylpentane	0	0	0 *	0 *	0 *		
Neohexane	0	0	0 *	0 *	0 *		
2,3-Dimethylbutane	0	0	0 *	0 *	0 *		
Methylcyclohexane	0	0	0 *	0 *	0 *		
Isooctane	0.000319079	9.72047E-05	0.00031 *	0.00024 *	0 *		
Decane, 2-Methyl-	0	0	0 *	0 *	0 *		
Toluene	0.000389268	5.50538E-05	4E-05 *	0.00727 *	0 *		
m-Xylene	0.000189813	3.29019E-05	2E-05 *	0.01258 *	0 *		
Ethylbenzene	1.68252E-05	2.92552E-06	0 *	0.00112 *	0 *		

	Combined Flash Vapor	Pipeline	Reservoir Gas	Reservoir Oil	Reservoir Water
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Nitrogen	0.0490849	151.122	151.172 *	0 *	0 *
Methane	8.40976	12880.7	12849.9 *	39.8419 *	0 *
CO2	0.468116	86.8858	87.0512 *	0.750826 *	0 *
Ethane	6.7481	4247.97	4203.03 *	56.9824 *	0 *
Propane	5.76944	1917.04	1876.38 *	71.5756 *	0 *
Isobutane	1.20907	308.096	298.912 *	24.7255 *	0 *
n-Butane	2.68818	617.845	597.235 *	68.6005 *	0 *
Isopentane	0.846338	190.483	182.231 *	48.8043 *	0 *
n-Pentane	0.799501	185.454	174.913 *	60.7936 *	0 *
n-Hexane	0.263859	68.7039	63.8116 *	65.2998 *	0 *
Methylcyclopentane	0	0	0 *	0 *	0 *
Benzene	0.0170271	2.03385	1.58468 *	2.35374 *	0 *
Cyclohexane	0.0214717	4.59669	9.39052 *	0 *	0 *

Process Streams Report All Streams Tabulated by Total Phase

EQT Production Job: V1.0 Client Name: OXF 160 Wellpad OXF-160

Location: Flowsheet:

	Combined Flash Vapor	Pipeline	Reservoir Gas	Reservoir Oil	Reservoir Water
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
n-Heptane	0.318126	99.9216	80.2966 *	254.227 *	0 *
n-Octane	0.0950911	36.5	3.47608 *	265.644 *	0 *
n-Nonane	0.0251649	11.7539	5.2039 *	211.195 *	0 *
n-Decane	0.0242606	14.1367	4.32976 *	637.808 *	0 *
n-Undecane	0	0	0 *	0 *	0 *
Dodecane	0	0	0 *	0 *	0 *
Water	0.273559	39.8457	0 *	0 *	19427.8 *
Triethylene Glycol	0	0	0 *	0 *	0 *
Oxygen	0	0	0 *	0 *	0 *
Argon	0	0	0 *	0 *	0 *
Carbon Monoxide	0	0	0 *	0 *	0 *
Cyclopentane	0	0	0 *	0 *	0 *
Isohexane	0.409688	100.399	98.7769 *	65.758 *	0 *
3-Methylpentane	0	0	0 *	0 *	0 *
Neohexane	0	0	0 *	0 *	0 *
2,3-Dimethylbutane	0	0	0 *	0 *	0 *
Methylcyclohexane	0	0	0 *	0 *	0 *
Isooctane	0.0368308	11.3493	35.9195 *	0.607419 *	0 *
Decane, 2-Methyl-	0	0	0 *	0 *	0 *
Toluene	0.0362433	5.18483	3.73848 *	14.8415 *	0 *
m-Xylene	0.0203631	3.57033	2.1538 *	29.5913 *	0 *
Ethylbenzene	0.00180501	0.317461	0 *	2.63452 *	0 *

	Combined Flash Vapor	Pipeline	Reservoir Gas	Reservoir Oil	Reservoir Water
Volumetric Flow	ft^3/h	ft^3/h	ft^3/h	gpm	gpm
Nitrogen	0.651936	80.8223	47.2569	0	0
Methane	194.298	11185.2	6011.26	0.255447	0
CO2	3.93022	25.7741	12.7251	0.00111086	0
Ethane	82.5458	1680.81	713.312	0.245055	0
Propane	47.8212	447.775	138.199	0.268708	0
Isobutane	7.56396	48.1717	9.53992	0.0865813	0
n-Butane	16.794	91.7302	13.4371	0.233193	0
Isopentane	4.23746	19.4598	-0.329696	0.155728	0
n-Pentane	3.99859	18.28	-1.04684	0.192582	0
n-Hexane	1.09725	4.39315	-1.64272	0.196285	0
Methylcyclopentane	0	0	0	0	0
Benzene	0.078535	0.170652	-0.0221441	0.00523079	0
Cyclohexane	0.0916714	0.322866	-0.199771	0	0
n-Heptane	1.13062	3.92384	-3.06402	0.737824	0
n-Octane	0.294591	0.81213	-0.146923	0.744026	0
n-Nonane	0.0689213	0.0802962	-0.208329	0.575604	0
n-Decane	0.0595065	-0.0690641	-0.129152	1.70697	0
n-Undecane	0	0	0	0	0
Dodecane	0	0	0	0	0
Water	5.62056	29.7885	0	0	38.8964
Triethylene Glycol	0	0	0	0	0
Oxygen	0	0	0	0	0
Argon	0	0	0	0	0
Carbon Monoxide	0	0	0	0	0
Cyclopentane	0	0	0	0	0
Isohexane	1.70638	6.89385	-2.01282	0.199703	0
3-Methylpentane	0	0	0	0	0
Neohexane	0	0	0	0	0
2,3-Dimethylbutane	0	0	0	0	0
Methylcyclohexane	0	0	0	0	0
Isooctane	0.114735	0.388713	-1.19629	0.0017227	0
Decane, 2-Methyl-	0	0	0	0	0
Toluene	0.140752	0.273411	-0.116375	0.0332788	0
m-Xylene	0.0681959	0.117096	-0.0783298	0.0664651	0

^{*} User Specified Values
? Extrapolated or Approximate Values

Process Streams Report All Streams Tabulated by Total Phase Job: V1.0

Client Name: **EQT Production** Location: Flowsheet: OXF 160 Wellpad OXF-160

	Combined Flash Vapor	Pipeline	Reservoir Gas	Reservoir Oil	Reservoir Water
Volumetric Flow	ft^3/h	ft^3/h	ft^3/h	gpm	gpm
Ethylbenzene	0.00604891	0.0108359	0	0.00590066	0

Stream Properties									
Property	Units	Combined Flash Vapor	Pipeline	Reservoir Gas	Reservoir Oil	Reservoir Water			
Temperature	°F	69.8033	97.9829	75 *	75 *	75 *			
Pressure	psig	0.625	400	700 *	700 *	700 *			
Mole Fraction Vapor		1	1	0.999641	0	0			
Mole Fraction Light Liquid		0	0	0.000358505	1	1			
Mole Fraction Heavy Liquid		0	0	0	0	0			
Molecular Weight	lb/lbmol	28.2345	20.5296	20.436	86.7479	18.0153			
Mass Density	lb/ft^3	0.0766308	1.53784	2.98888	41.9564	62.2722			
Molar Flow	lbmol/h	1.0105	1022.13	1014.36	22.1566	1078.41			
Mass Flow	lb/h	28.5311	20984	20729.5	1922.04	19427.8			
Vapor Volumetric Flow	ft^3/h	372.319	13645.1	6935.53	45.8103	311.982			
Liquid Volumetric Flow	gpm	46.4189	1701.21	864.69	5.71142	38.8964			
Std Vapor Volumetric Flow	MMSCFD	0.00920328	9.30916	9.23844	0.201793	9.82171			
Specific Gravity		0.974861	0.708833		0.672712	0.998448			
API Gravity					76.4041	9.91415			
Enthalpy	Btu/h	-40449.5	-3.49713E+07	-3.50225E+07	-1.86742E+06	-1.32476E+08			
Net Ideal Gas Heating Value	Btu/ft^3	1477.89	1120.15	1117.56	4418.75	0			
Net Liquid Heating Value	Btu/lb	19746.1	20645.7	20695.2	19174.9	-1059.76			
Std Liquid Volumetric Flow	sgpm	0.140916	123.381	122.38 *	5.8625 *	38.8376 *			

Process Streams Report All Streams **Tabulated by Total Phase EQT Production** Job: V1.0 Client Name: Location: OXF 160 Wellpad Flowsheet: OXF-160 **Connections** Sales Oil **Water Out** From Block Water Tanks Oil Tanks To Block Stream Composition Sales Oil **Water Out Mole Fraction** 2.49595E-07 3.66151E-08 Nitrogen 1.99482E-05 Methane 0.000930407 CO2 2.58246E-05 9.0875E-06 Ethane 0.0108952 6.1571E-06 7.78448E-07 Propane 0.0365805 0.0158386 4.36306E-08 Isobutane n-Butane 0.0500571 1.84633E-07 0.0353519 Isopentane 1.64453E-08 0.044031 n-Pentane 3.24102E-09 n-Hexane 0.0448337 6.56357E-10 Methylcyclopentane 0.00150126 7.38367E-07 Benzene 0.00364223 7.37313E-09 Cyclohexane n-Heptane 0.150198 3.36089E-10 n-Octane 0.130766 1.18753E-11 n-Nonane 0.102487 2.75606E-12 2.38121E-13 n-Decane 0.283526 n-Undecane Dodecane 0 0 Water 4.38205E-05 0.999962 Triethylene Glycol 0 0 0 Oxygen 0 Argon 0 0 Carbon Monoxide 0 0 Cyclopentane 0 0 0.0475042 1.59392E-09 Isohexane 3-Methylpentane 0 0 Neohexane 0 0 2,3-Dimethylbutane 0 0 Methylcyclohexane 0 0 0.0141385 4.29828E-11 Isooctane Decane, 2-Methyl-0 0.00923718 Toluene 1.10866E-06 0.0170124 3.38973E-07 m-Xylene Ethylbenzene 0.00139807 4.13532E-08 **Water Out** Sales Oil **Mass Flow** lb/h lb/h Nitrogen 0.000108844 0.00110389 Methane 0.232351 0.34441 0.0176922 0.43042 CO2 Ethane 5.09986 0.199249 0.0369425 25.11 Propane Isobutane 14.3305 0.00272919 n-Butane 45.2907 0.0115492 39.7048 0.00127695 Isopentane 49.4526 n-Pentane 0.000251658 60.1436 6.0873E-05 n-Hexane Methylcyclopentane 0 0.0620712 Benzene 1.82546 Cyclohexane 4.77169 0.000667815 234.284 3.62436E-05 n-Heptane 232.525 1.45989E-06 n-Octane n-Nonane 204.619 3.80421E-07

^{*} User Specified Values

Process Streams Report All Streams Tabulated by Total Phase

Job: V1.0 Client Name: **EQT Production** Location: Flowsheet: OXF 160 Wellpad OXF-160

	Sales Oil	Water Out	
Mass Flow	lb/h	lb/h	
n-Decane	627.977	3.64626E-08	
n-Undecane	0	0	
Dodecane	0	0	
Water	0.0122891	19387.7	
Triethylene Glycol	0	0	
Oxygen	0	0	
Argon	0	0	
Carbon Monoxide	0	0	
Cyclopentane	0	0	
Isohexane	63.726	0.000147826	
3-Methylpentane	0	0	
Neohexane	0	0	
2,3-Dimethylbutane	0	0	
Methylcyclohexane	0	0	
Isooctane	25.1408	5.28409E-06	
Decane, 2-Methyl-	0	0	
Toluene	13.249	0.109937	
m-Xylene	28.1157	0.03873	
Ethylbenzene	2.31053	0.00472489	
		_	

	Sales Oil	Water Out	
Volumetric Flow	gpm	gpm	
Nitrogen	3.37604E-07	2.94817E-06	
Methane	0.00131517	0.00168319	
CO2	2.00488E-05	0.000673236	
Ethane	0.0204348	0.000666006	
Propane	0.0909346	0.000105654	
Isobutane	0.0494202	7.13762E-06	
n-Butane	0.151568	2.98256E-05	
Isopentane	0.126344	3.07026E-06	
n-Pentane	0.156084	6.06257E-07	
n-Hexane	0.181527	1.39386E-07	
Methylcyclopentane	0	0	
Benzene	0.00405356	0.000115751	
Cyclohexane	0.0122092	1.34909E-06	
n-Heptane	0.686506	8.02909E-08	
n-Octane	0.659896	3.13218E-09	
n-Nonane	0.566559	7.96872E-10	
n-Decane	1.71099	7.51687E-11	
n-Undecane	0	0	
Dodecane	0	0	
Water	-1.8979E-05	38.8101	
Triethylene Glycol	0	0	
Oxygen	0	0	
Argon	0	0	
Carbon Monoxide	0	0	
Cyclopentane	0	0	
Isohexane	0.194463	3.38975E-07	
3-Methylpentane	0	0	
Neohexane	0	0	
2,3-Dimethylbutane	0	0	
Methylcyclohexane	0	0	
Isooctane	0.0724671	1.12203E-08	
Decane, 2-Methyl-	0	0	
Toluene	0.029983	0.000202942	
m-Xylene	0.0640642	7.0916E-05	
Ethylbenzene	0.00525841	8.60545E-06	

Process Streams Report All Streams Tabulated by Total Phase EQT Production Job: V1.0 Client Name: Location: Flowsheet: OXF 160 Wellpad OXF-160

Stream Properties								
Property	Units	Sales Oil	Water Out					
Temperature	°F	70 *	70					
Pressure	psig	0.625	0.625					
Mole Fraction Vapor		0	0					
Mole Fraction Light Liquid		1	1					
Mole Fraction Heavy Liquid		0	0					
Molecular Weight	lb/lbmol	107.789	18.0157					
Mass Density	lb/ft^3	43.7279	62.28					
Molar Flow	lbmol/h	15.5669	1076.22					
Mass Flow	lb/h	1677.94	19388.9					
Vapor Volumetric Flow	ft^3/h	38.3723	311.318					
Liquid Volumetric Flow	gpm	4.78408	38.8137					
Std Vapor Volumetric Flow	MMSCFD	0.141777	9.8018					
Specific Gravity		0.701116	0.998573					
API Gravity		68.9669	10.0027					
Enthalpy	Btu/h	-1.56059E+06	-1.32342E+08					
Net Ideal Gas Heating Value	Btu/ft^3	5462.64	0.0399889					
Net Liquid Heating Value	Btu/lb	19073.6	-1058.85					
Std Liquid Volumetric Flow	sgpm	4.79603	38.7625					

Process Streams Report Stream: Combined Flash Vapor Phases Grouped by Columns

Client Name: **EQT Production** Job: V1.0 OXF 160 Wellpad OXF-160 Modified: 11:44 AM, 10/30/2015 Status: Solved 12:48 PM, 10/12/2016 Location: Flowsheet:

Connections

From: MIX-100 To: MIX-105

	U	U	•	ч	μ	U	3	ш	ш	U	ı	ı
_				_	7				_	_		

Total	Vapor		•
	0.0457698		
	0.0116085		
0.0109661	0.0109661		
0.00303005	0.00303005		
0	0		
0.000215718	0.000215718		
0.000252479	0.000252479		
0.00314184	0.00314184		
0.00082381	0.00082381		
0.00019417	0.00019417		
0.000168738	0.000168738		
0	0		
0	0		
0.015027	0.015027		
0	0		
0	0		
0	0		
0	0		
0	0		
0.0047047	0.0047047		
0	0		
0	0		
0			
	-		
	0.000010010		
_			
	1.68252E-05		
	0.00173398 0.518769 0.0105261 0.222087 0.129479 0.0205859 0.0457698 0.0116085 0.0109661 0.00303005 0 0.000215718 0.000252479 0.00314184 0.00082381 0.000168738 0 0 0 0.015027 0 0 0 0 0	0.00173398 0.00173398 0.518769 0.518769 0.0105261 0.0105261 0.222087 0.222087 0.129479 0.129479 0.0205859 0.0205859 0.0457698 0.0457698 0.0116085 0.0116085 0.0109661 0.0109661 0.00330005 0 0 0 0.000215718 0.000215718 0.000252479 0.000252479 0.00314184 0.00314184 0.00019417 0.00019417 0.000168738 0.000168738 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00173398 0.00173398 0.518769 0.518769 0.0105261 0.0105261 0.222087 0.222087 0.129479 0.129479 0.0457698 0.0457698 0.0457698 0.0457698 0.0116085 0.0116085 0.0109661 0.0109661 0.0033005 0 0 0 0.000215718 0.000215718 0.000314184 0.00314184 0.000314184 0.00314184 0.00019417 0.00019417 0.00018738 0.000168738 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

	Total	Vapor		
Mass Flow	lb/h	lb/h		
Nitrogen	0.0490849	0.0490849		
Methane	8.40976	8.40976		
CO2	0.468116	0.468116		
Ethane	6.7481	6.7481		
Propane	5.76944	5.76944		
Isobutane	1.20907	1.20907		
n-Butane	2.68818	2.68818		
Isopentane	0.846338	0.846338		
n-Pentane	0.799501	0.799501		
n-Hexane	0.263859	0.263859		
Methylcyclopentane	0	0		
Benzene	0.0170271	0.0170271		
Cyclohexane	0.0214717	0.0214717		
n-Heptane	0.318126	0.318126		
n-Octane	0.0950911	0.0950911		
n-Nonane	0.0251649	0.0251649		
n-Decane	0.0242606	0.0242606		
n-Undecane	0	0		

Process Streams Report Stream: Combined Flash Vapor Phases Grouped by Columns

Client Name: **EQT Production** Job: V1.0 Location:

OXF 160 Wellpad OXF-160 Modified: 11:44 AM, 10/30/2015 Status: Solved 12:48 PM, 10/12/2016 Flowsheet:

Mass Flow	Total lb/h	Vapor lb/h		
Dodecane	0	0		
Water	0.273559	0.273559		
Triethylene Glycol	0	0		
Oxygen	0	0		
Argon	0	0		
Carbon Monoxide	0	0		
Cyclopentane	0	0		
Isohexane	0.409688	0.409688		
3-Methylpentane	0	0		
Neohexane	0	0		
2,3-Dimethylbutane	0	0		
Methylcyclohexane	0	0		
Isooctane	0.0368308	0.0368308		
Decane, 2-Methyl-	0	0		
Toluene	0.0362433	0.0362433		
m-Xylene	0.0203631	0.0203631		
Ethylbenzene	0.00180501	0.00180501		
	•			

Volumetric Flow	Total ft^3/h	Vapor ft^3/h	
Nitrogen	0.651936	0.651936	
Methane	194.298	194.298	
CO2	3.93022	3.93022	
Ethane	82.5458	82.5458	
Propane	47.8212	47.8212	
Isobutane	7.56396	7.56396	
n-Butane	16.794	16.794	
Isopentane	4.23746	4.23746	
n-Pentane	3.99859	3.99859	
n-Hexane	1.09725	1.09725	
Methylcyclopentane	0	0	
Benzene	0.078535	0.078535	
Cyclohexane	0.0916714	0.0916714	
n-Heptane	1.13062	1.13062	
n-Octane	0.294591	0.294591	
n-Nonane	0.0689213	0.0689213	
n-Decane	0.0595065	0.0595065	
n-Undecane	0	0	
Dodecane	0	0	
Water	5.62056	5.62056	
Triethylene Glycol	0	0	
Oxygen	0	0	
Argon	0	0	
Carbon Monoxide	0	0	
Cyclopentane	0	0	
Isohexane	1.70638	1.70638	
3-Methylpentane	0	0	
Neohexane	0	0	
2,3-Dimethylbutane	0	0	
Methylcyclohexane	0	0	
Isooctane	0.114735	0.114735	
Decane, 2-Methyl-	0	0	
Toluene	0.140752	0.140752	
m-Xylene	0.0681959	0.0681959	
Ethylbenzene	0.00604891	0.00604891	

Properties							
Property	Units	Total	Vapor				
Temperature	°F	69.8033	69.8033				
Pressure	psig	0.625	0.625				

Process Streams Report Stream: Combined Flash Vapor Phases Grouped by Columns

Client Name: **EQT Production** Job: V1.0

OXF 160 Wellpad OXF-160 Modified: 11:44 AM, 10/30/2015 Status: Solved 12:48 PM, 10/12/2016 Location: Flowsheet:

Properties							
Property	Units	Total	Vapor				
Mole Fraction Vapor	•	1	1				
Mole Fraction Light Liquid		0	0				
Mole Fraction Heavy Liquid		0	0				
Molecular Weight	lb/lbmol	28.2345	28.2345				
Mass Density	lb/ft^3	0.0766308	0.0766308				
Molar Flow	lbmol/h	1.0105	1.0105				
Mass Flow	lb/h	28.5311	28.5311				
Vapor Volumetric Flow	ft^3/h	372.319	372.319				
Liquid Volumetric Flow	gpm	46.4189	46.4189				
Std Vapor Volumetric Flow	MMSCFD	0.00920328	0.00920328				
Specific Gravity		0.974861	0.974861				
API Gravity							
Enthalpy	Btu/h	-40449.5	-40449.5				
Net Ideal Gas Heating Value	Btu/ft^3	1477.89	1477.89				
Net Liquid Heating Value	Btu/lb	19746.1	19746.1				
Std Liquid Volumetric Flow	sgpm	0.140916	0.140916				

Process Streams Report Stream: Pipeline Phases Grouped by Columns

Client Name: **EQT Production** Job: V1.0 Location:

OXF 160 Wellpad OXF-160 Modified: 12:56 PM, 4/7/2015 Status: Solved 12:48 PM, 10/12/2016 Flowsheet:

Connections

From: MIX-101 To: --

Composition							
	Total	Vapor					
Mole Fraction		-					
Nitrogen	0.00527783	0.00527783					
Methane	0.785533	0.785533					
CO2	0.00193151	0.00193151					
Ethane	0.138215	0.138215					
Propane	0.0425334	0.0425334					
Isobutane	0.00518606	0.00518606					
n-Butane	0.0104	0.0104					
Isopentane	0.00258298	0.00258298					
n-Pentane	0.00251478	0.00251478					
n-Hexane	0.000779996	0.000779996					
Methylcyclopentane	0	0					
Benzene	2.5474E-05	2.5474E-05					
Cyclohexane	5.34363E-05	5.34363E-05					
n-Heptane	0.000975612	0.000975612					
n-Octane	0.000312617	0.000312617					
n-Nonane	8.96602E-05	8.96602E-05					
n-Decane	9.72059E-05	9.72059E-05					
n-Undecane	0	0					
Dodecane	0	0					
Water	0.00216388	0.00216388					
Triethylene Glycol	0	0					
Oxygen	0	0					
Argon	0	0					
Carbon Monoxide	0	0					
Cyclopentane	0	0					
Isohexane	0.00113983	0.00113983					
3-Methylpentane	0	0					
Neohexane	0	0					
2,3-Dimethylbutane	0	0					
Methylcyclohexane	0	0					
Isooctane	9.72047E-05	9.72047E-05					
Decane, 2-Methyl-	0	0					
Toluene	5.50538E-05	5.50538E-05					
V 1	0.000405.05	0.000405.05	1				

		.,	
Mass Flow	Total Ib/h	Vapor lb/h	
Nitrogen	151.122	151.122	
Methane	12880.7	12880.7	
CO2	86.8858	86.8858	
Ethane	4247.97	4247.97	
Propane	1917.04	1917.04	
Isobutane	308.096	308.096	
n-Butane	617.845	617.845	
Isopentane	190.483	190.483	
n-Pentane	185.454	185.454	
n-Hexane	68.7039	68.7039	
Methylcyclopentane	0	0	
Benzene	2.03385	2.03385	
Cyclohexane	4.59669	4.59669	
n-Heptane	99.9216	99.9216	
n-Octane	36.5	36.5	
n-Nonane	11.7539	11.7539	
n-Decane	14.1367	14.1367	
n-Undecane	0	0	

3.29019E-05

2.92552E-06

3.29019E-05

2.92552E-06

m-Xylene

Ethylbenzene

Process Streams Report Stream: Pipeline Phases Grouped by Columns

Client Name: **EQT Production** Job: V1.0

OXF 160 Wellpad OXF-160 Location:

Modified: 12:56 PM, 4/7/2015 Status: Solved 12:48 PM, 10/12/2016 Flowsheet:

Mass Flow	Total lb/h	Vapor lb/h	
Dodecane	0	0	
Water	39.8457	39.8457	
Triethylene Glycol	0	0	
Oxygen	0	0	
Argon	0	0	
Carbon Monoxide	0	0	
Cyclopentane	0	0	
Isohexane	100.399	100.399	
3-Methylpentane	0	0	
Neohexane	0	0	
2,3-Dimethylbutane	0	0	
Methylcyclohexane	0	0	
Isooctane	11.3493	11.3493	
Decane, 2-Methyl-	0	0	
Toluene	5.18483	5.18483	
m-Xylene	3.57033	3.57033	
Ethylbenzene	0.317461	0.317461	
		<u> </u>	
	Tatal	1/	

	Total	Vapor		
Volumetric Flow	ft^3/h	ft^3/h		
Nitrogen	80.8223	80.8223		
Methane	11185.2	11185.2		
CO2	25.7741	25.7741		
Ethane	1680.81	1680.81		
Propane	447.775	447.775		
Isobutane	48.1717	48.1717		
n-Butane	91.7302	91.7302		
Isopentane	19.4598	19.4598		
n-Pentane	18.28	18.28		
n-Hexane	4.39315	4.39315		
Methylcyclopentane	0	0		
Benzene	0.170652	0.170652		
Cyclohexane	0.322866	0.322866		
n-Heptane	3.92384	3.92384		
n-Octane	0.81213	0.81213		
n-Nonane	0.0802962	0.0802962		
n-Decane	-0.0690641	-0.0690641		
n-Undecane	0	0		
Dodecane	0	0		
Water	29.7885	29.7885		
Triethylene Glycol	0	0		
Oxygen	0	0		
Argon	0	0		
Carbon Monoxide	0	0		
Cyclopentane	0	0		
Isohexane	6.89385	6.89385		
3-Methylpentane	0	0		
Neohexane	0	0		
2,3-Dimethylbutane	0	0		
Methylcyclohexane	0	0		
Isooctane	0.388713	0.388713		
Decane, 2-Methyl-	0	0		
Toluene	0.273411	0.273411		
m-Xylene	0.117096	0.117096		
Ethylbenzene	0.0108359	0.0108359		

	Properties								
Property	Units	Total	Vapor						
Temperature	°F	97.9829	97.9829						
Pressure	psig	400	400						

Process Streams Report Stream: Pipeline Phases Grouped by Columns EQT Production Client Name: Job: V1.0 Modified: 12:56 PM, 4/7/2015 Status: Solved 12:48 PM, 10/12/2016 OXF 160 Wellpad OXF-160 Location: Flowsheet:

Properties Properties Properties								
Property	Units	Total	Vapor					
Mole Fraction Vapor		1	1					
Mole Fraction Light Liquid		0	0					
Mole Fraction Heavy Liquid		0	0					
Molecular Weight	lb/lbmol	20.5296	20.5296					
Mass Density	lb/ft^3	1.53784	1.53784					
Molar Flow	lbmol/h	1022.13	1022.13					
Mass Flow	lb/h	20984	20984					
Vapor Volumetric Flow	ft^3/h	13645.1	13645.1					
Liquid Volumetric Flow	gpm	1701.21	1701.21					
Std Vapor Volumetric Flow	MMSCFD	9.30916	9.30916					
Specific Gravity		0.708833	0.708833					
API Gravity								
Enthalpy	Btu/h	-3.49713E+07	-3.49713E+07					
Net Ideal Gas Heating Value	Btu/ft^3	1120.15	1120.15					
Net Liquid Heating Value	Btu/lb	20645.7	20645.7					
Std Liquid Volumetric Flow	sgpm	123.381	123.381					

Process Streams Report Stream: Reservoir Gas

Phases Grouped by Columns

Client Name: **EQT Production** Job: V1.0 OXF 160 Wellpad OXF-160 Modified: 12:38 PM, 10/12/2016 Status: Solved 12:48 PM, 10/12/2016 Location: Flowsheet:

Connections

From: --To: MIX-102

Composition								
Mole Fraction	Total	Vapor	Light Liquid					
Nitrogen	0.00532 *	0.00532172	0.000514159					
Methane	0.78965 *	0.789862	0.000314139					
CO2	0.78905	0.00195032	0.00106852					
Ethane	0.1378 *	0.00193032	0.00100832					
Propane	0.04195 *	0.041921	0.122817					
Isobutane	0.04195	0.0050607	0.0310149					
n-Butane	0.01013 *	0.0101035	0.0840527					
	0.00249 *	0.0101035	0.0840527					
Isopentane		0.00247593						
n-Pentane	0.00239 *		0.0496599					
n-Hexane	0.00073 *	0.000715426	0.0413684					
Methylcyclopentane	0 *	0	0					
Benzene	2E-05 *	1.96029E-05	0.00112737					
Cyclohexane	0.00011 *	0.000107443	0.00723965					
n-Heptane	0.00079 *	0.000753337	0.103018					
n-Octane	3E-05 *	2.67433E-05	0.00911076					
n-Nonane	4E-05 *	3.02768E-05	0.0271517					
n-Decane	3E-05 *	1.73577E-05	0.0352812					
n-Undecane	0 *	0	0					
Dodecane	0 *	0	0					
Water	0 *	0	0					
Triethylene Glycol	0 *	0	0					
Oxygen	0 *	0	0					
Argon	0 *	0	0					
Carbon Monoxide	0 *	0	0					
Cyclopentane	0 *	0	0					
Isohexane	0.00113 *	0.00111304	0.0484257					
3-Methylpentane	0 *	0	0					
Neohexane	0 *	0	0					
2,3-Dimethylbutane	0 *	0	0					
Methylcyclohexane	0 *	0	0					
Isooctane	0.00031 *	0.000296469	0.0380405					
Decane, 2-Methyl-	0 *	0	0					
Toluene	4E-05 *	3.79848E-05	0.00565914					
m-Xylene	2E-05 *	1.7478E-05	0.00705233					
Ethylbenzene	0 *	0	0					
Euryhoonizono				1				

	Total	Vapor	Light Liquid	
Mass Flow	lb/h	lb/h	lb/h	
Nitrogen	151.172 *	151.167	0.00523785	
Methane	12849.9 *	12848.7	1.16006	
CO2	87.0512 *	87.0341	0.0171009	
Ethane	4203.03 *	4201.43	1.6056	
Propane	1876.38 *	1874.41	1.96944	
Isobutane	298.912 *	298.257	0.655544	
n-Butane	597.235 *	595.459	1.77657	
Isopentane	182.231 *	181.137	1.0945	
n-Pentane	174.913 *	173.61	1.30294	
n-Hexane	63.8116 *	62.5152	1.29641	
Methylcyclopentane	0 *	0	0	
Benzene	1.58468 *	1.55265	0.0320237	
Cyclohexane	9.39052 *	9.16895	0.22157	
n-Heptane	80.2966 *	76.5427	3.75388	
n-Octane	3.47608 *	3.09762	0.378459	
n-Nonane	5.2039 *	3.93752	1.26637	
n-Decane	4.32976 *	2.50426	1.8255	
n-Undecane	0 *	0	0	

Process Streams Report Stream: Reservoir Gas Phases Grouped by Columns

Client Name: **EQT Production** Job: V1.0

OXF 160 Wellpad OXF-160 Modified: 12:38 PM, 10/12/2016 Status: Solved 12:48 PM, 10/12/2016 Location: Flowsheet:

Mass Flow	Total lb/h	Vapor lb/h	Light Liquid lb/h	
Dodecane	0 *	0	0	
Water	0 *	0	0	
Triethylene Glycol	0 *	0	0	
Oxygen	0 *	0	0	
Argon	0 *	0	0	
Carbon Monoxide	0 *	0	0	
Cyclopentane	0 *	0	0	
Isohexane	98.7769 *	97.2594	1.51757	
3-Methylpentane	0 *	0	0	
Neohexane	0 *	0	0	
2,3-Dimethylbutane	0 *	0	0	
Methylcyclohexane	0 *	0	0	
Isooctane	35.9195 *	34.3393	1.58019	
Decane, 2-Methyl-	0 *	0	0	
Toluene	3.73848 *	3.54886	0.189618	
m-Xylene	2.1538 *	1.88153	0.272272	
Ethylbenzene	0 *	0	0	

		Light Liquid		
-1.64272	-1.67308	0.00378543		
0	0	0		
-0.0221441	-0.022681	6.69331E-05		
-0.199771	-0.204026	0.000530509		
-3.06402	-3.1481	0.010482		
-0.146923	-0.155051	0.00101333		
-0.208329	-0.234678	0.00328512		
-0.129152	-0.166349	0.00463764		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
-2.01282	-2.04882	0.00448829		
0	0	0		
0	0	0		
0	0	0		
0	0	0		
-1.19629	-1.23079	0.00430227		
0	0	0		
-		0.000395494		
	-0.0221441 -0.199771 -3.06402 -0.146923 -0.208329 -0.129152 0 0 0 0 0 -0 0 -2.01282 0 0 -1.19629	47.2569 47.2567 6011.26 6011.18 12.7251 12.7248 713.312 713.25 138.199 138.137 9.53992 9.52126 13.4371 13.3883 -0.329696 -0.357349 -1.04684 -1.07945 -1.64272 -1.67308 0 0 -0.0221441 -0.022681 -0.199771 -0.204026 -3.06402 -3.1481 -0.146923 -0.155051 -0.208329 -0.234678 -0.129152 -0.166349 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	47.2569 47.2567 2.44102E-05 6011.26 6011.18 0.00904997 12.7251 12.7248 3.24079E-05 713.312 713.25 0.00762021 138.199 138.137 0.00772532 9.53992 9.52126 0.00232624 13.4371 13.3883 0.00608265 -0.329696 -0.357349 0.00344763 -1.04684 -1.07945 0.00406489 -1.64272 -1.67308 0.00378543 0 0 0 0 -0.0221441 -0.022681 6.69331E-05 -0.199771 -0.204026 0.000530509 -3.06402 -3.1481 0.010482 -0.146923 -0.155051 0.00101333 -0.208329 -0.234678 0.00328512 -0.129152 -0.166349 0.00463764 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td>47.2569 47.2567 2.44102E-05 6011.26 6011.18 0.00904997 12.7251 12.7248 3.24079E-05 713.312 713.25 0.00762021 138.199 138.137 0.00772532 9.53992 9.52126 0.00232624 13.4371 13.3883 0.00608265 -0.329696 -0.357349 0.00344763 -1.04684 -1.07945 0.00406489 -1.64272 -1.67308 0.00378543 0 0 0 -0.0221441 -0.022681 6.69331E-05 -0.199771 -0.204026 0.000530509 -3.06402 -3.1481 0.010482 -0.146923 -0.155051 0.00101333 -0.208329 -0.234678 0.00328512 -0.129152 -0.166349 0.00463764 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <</td>	47.2569 47.2567 2.44102E-05 6011.26 6011.18 0.00904997 12.7251 12.7248 3.24079E-05 713.312 713.25 0.00762021 138.199 138.137 0.00772532 9.53992 9.52126 0.00232624 13.4371 13.3883 0.00608265 -0.329696 -0.357349 0.00344763 -1.04684 -1.07945 0.00406489 -1.64272 -1.67308 0.00378543 0 0 0 -0.0221441 -0.022681 6.69331E-05 -0.199771 -0.204026 0.000530509 -3.06402 -3.1481 0.010482 -0.146923 -0.155051 0.00101333 -0.208329 -0.234678 0.00328512 -0.129152 -0.166349 0.00463764 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <

	Properties Properties Properties									
Property	Units	Total	Vapor	Light Liquid						
Temperature	°F	75 *	75	75	·					
Pressure	psig	700 *	700	700						

Process Streams Report Stream: Reservoir Gas Phases Grouped by Columns

EQT Production Client Name: Job: V1.0

Modified: 12:38 PM, 10/12/2016 Status: Solved 12:48 PM, 10/12/2016 Location: Flowsheet: OXF 160 Wellpad OXF-160

	Properties									
Property	Units	Total	Vapor	Light Liquid						
Mole Fraction Vapor	•	0.999641	1	0						
Mole Fraction Light Liquid		0.000358505	0	1						
Mole Fraction Heavy Liquid		0	0	0						
Molecular Weight	lb/lbmol	20.436	20.4217	60.2793						
Mass Density	lb/ft^3	2.98888	2.98598	36.9689						
Molar Flow	lbmol/h	1014.36	1014	0.363655						
Mass Flow	lb/h	20729.5	20707.6	21.9209						
Vapor Volumetric Flow	ft^3/h	6935.53	6934.94	0.592954						
Liquid Volumetric Flow	gpm	864.69	864.616	0.0739268						
Std Vapor Volumetric Flow	MMSCFD	9.23844	9.23513	0.00331203						
Specific Gravity			0.705105	0.592744						
API Gravity				103.274						
Enthalpy	Btu/h	-3.50225E+07	-3.4999E+07	-23554.7						
Net Ideal Gas Heating Value	Btu/ft^3	1117.56	1116.84	3103.87						
Net Liquid Heating Value	Btu/lb	20695.2	20696.6	19391.9						
Std Liquid Volumetric Flow	sgpm	122.38 *	122.304	0.0757943						

Process Streams Report Stream: Reservoir Oil

Phases Grouped by Columns

Client Name: **EQT Production** Job: V1.0 OXF 160 Wellpad OXF-160 Modified: 12:47 PM, 10/12/2016 Status: Solved 3:30 PM, 10/10/2016 Location: Flowsheet:

Connections

From: --To: MIX-102

	C	וע	ш	μ	U	3	ш		U		J
- 1				П			•	. 1.		•	

Composition							
Mole Fraction	Total	Light Liquid					
Nitrogen	0 *	0					
Methane	0.11209 *	0.11209	+				
CO2	0.00077 *		+	- 			
Ethane	0.00077	0.08553					
Propane	0.07326 *	0.07326 0.0192					
Isobutane	0.0192 *		+				
n-Butane	0.05327 *						
Isopentane	0.03053 *	0.03053					
n-Pentane	0.03803 *	0.03803					
n-Hexane	0.0342 *	0.0342					
Methylcyclopentane	0 *	0					
Benzene	0.00136 *	0.00136					
Cyclohexane	0 *	0					
n-Heptane	0.11451 *	0.11451					
n-Octane	0.10496 *	0.10496					
n-Nonane	0.07432 *	0.07432					
n-Decane	0.20232 *	0.20232					
n-Undecane	0 *	0					
Dodecane	0 *	0					
Water	0 *	0					
Triethylene Glycol	0 *	0					
Oxygen	0 *	0					
Argon	0 *	0					
Carbon Monoxide	0 *	0					
Cyclopentane	0 *	0					
Isohexane	0.03444 *	0.03444					
3-Methylpentane	0 *	0					
Neohexane	0 *	0					
2,3-Dimethylbutane	0 *	0					
Methylcyclohexane	0 *	0					
Isooctane	0.00024 *	0.00024					
Decane, 2-Methyl-	0 *	0					
Toluene	0.00727 *	0.00727					
m-Xylene	0.01258 *	0.01258	+				
Ethylbenzene	0.00112 *	0.00112					
	Total	Light Liquid					
	iotai	Light Liquid					

	Total	Light Liquid		
Mass Flow	lb/h	lb/h		
Nitrogen	0 *	0		
Methane	39.8419 *	39.8419		
CO2	0.750826 *	0.750826		
Ethane	56.9824 *	56.9824		
Propane	71.5756 *	71.5756		
Isobutane	24.7255 *	24.7255		
n-Butane	68.6005 *	68.6005		
Isopentane	48.8043 *	48.8043		
n-Pentane	60.7936 *	60.7936		
n-Hexane	65.2998 *	65.2998		
Methylcyclopentane	0 *	0		
Benzene	2.35374 *	2.35374		
Cyclohexane	0 *	0		
n-Heptane	254.227 *	254.227		
n-Octane	265.644 *	265.644		
n-Nonane	211.195 *	211.195		
n-Decane	637.808 *	637.808		
n-Undecane	0 *	0		

Process Streams Report Stream: Reservoir Oil Phases Grouped by Columns

Client Name: **EQT Production** Job: V1.0 Location:

OXF 160 Wellpad OXF-160 Modified: 12:47 PM, 10/12/2016 Status: Solved 3:30 PM, 10/10/2016 Flowsheet:

Mass Flow	Total lb/h	Light Liquid lb/h	
Dodecane	0 *	0	
Water	0 *	0	
Triethylene Glycol	0 *	0	
Oxygen	0 *	0	
Argon	0 *	0	
Carbon Monoxide	0 *	0	
Cyclopentane	0 *	0	
Isohexane	65.758 *	65.758	
3-Methylpentane	0 *	0	
Neohexane	0 *	0	
2,3-Dimethylbutane	0 *	0	
Methylcyclohexane	0 *	0	
Isooctane	0.607419 *	0.607419	
Decane, 2-Methyl-	0 *	0	
Toluene	14.8415 *	14.8415	
m-Xylene	29.5913 *	29.5913	
Ethylbenzene	2.63452 *	2.63452	

	Total	Light Liquid		
Volumetric Flow	gpm	gpm		
Nitrogen	0	0		
Methane	0.255447	0.255447		
CO2	0.00111086	0.00111086		
Ethane	0.245055	0.245055		
Propane	0.268708	0.268708		
Isobutane	0.0865813	0.0865813		
n-Butane	0.233193	0.233193		
Isopentane	0.155728	0.155728		
n-Pentane	0.192582	0.192582		
n-Hexane	0.196285	0.196285		
Methylcyclopentane	0	0		
Benzene	0.00523079	0.00523079		
Cyclohexane	0	0		
n-Heptane	0.737824	0.737824		
n-Octane	0.744026	0.744026		
n-Nonane	0.575604	0.575604		
n-Decane	1.70697	1.70697		
n-Undecane	0	0		
Dodecane	0	0		
Water	0	0		
Triethylene Glycol	0	0		
Oxygen	0	0		
Argon	0	0		
Carbon Monoxide	0	0		
Cyclopentane	0	0		
Isohexane	0.199703	0.199703		
3-Methylpentane	0	0		
Neohexane	0	0		
2,3-Dimethylbutane	0	0		
Methylcyclohexane	0	0		
Isooctane	0.0017227	0.0017227		
Decane, 2-Methyl-	0	0		
Toluene	0.0332788	0.0332788		
m-Xylene	0.0664651	0.0664651		
Ethylbenzene	0.00590066	0.00590066		

	Properties Properties Properties								
Property	Units	Total	Light Liquid						
Temperature	÷	75 *	75						
Pressure	psig	700 *	700						

Process Streams Report Stream: Reservoir Oil Phases Grouped by Columns EQT Production Client Name: Job: V1.0 Modified: 12:47 PM, 10/12/2016 Status: Solved 3:30 PM, 10/10/2016 OXF 160 Wellpad OXF-160 Location: Flowsheet:

Properties								
Property	Units	Total	Light Liquid					
Mole Fraction Vapor	•	0	0					
Mole Fraction Light Liquid		1	1					
Mole Fraction Heavy Liquid		0	0					
Molecular Weight	lb/lbmol	86.7479	86.7479					
Mass Density	lb/ft^3	41.9564	41.9564					
Molar Flow	lbmol/h	22.1566	22.1566					
Mass Flow	lb/h	1922.04	1922.04					
Vapor Volumetric Flow	ft^3/h	45.8103	45.8103					
Liquid Volumetric Flow	gpm	5.71142	5.71142					
Std Vapor Volumetric Flow	MMSCFD	0.201793	0.201793					
Specific Gravity		0.672712	0.672712					
API Gravity		76.4041	76.4041					
Enthalpy	Btu/h	-1.86742E+06	-1.86742E+06					
Net Ideal Gas Heating Value	Btu/ft^3	4418.75	4418.75					
Net Liquid Heating Value	Btu/lb	19174.9	19174.9					
Std Liquid Volumetric Flow	sgpm	5.8625 *	5.8625					

Process Streams Report Stream: Reservoir Water

Phases Grouped by Columns

Client Name: **EQT Production** Job: V1.0 OXF 160 Wellpad OXF-160 Modified: 12:40 PM, 10/12/2016 Status: Solved 12:45 PM, 10/12/2016 Location: Flowsheet:

Connections

From: --To: MIX-102

	U	U	ш	ч	μ	U	3	11	ш	J		l
_				•	_		-	-	_		_	Ε

	Total	Light Liquid		·
Mole Fraction				
Nitrogen	0 *	0		
Methane	0 *	0		
CO2	0 *	0		
Ethane	0 *	0		
Propane	0 *	0		
Isobutane	0 *	0		
n-Butane	0 *	0		
Isopentane	0 *	0		
n-Pentane	0 *	0		
n-Hexane	0 *	0		
Methylcyclopentane	0 *	0		
Benzene	0 *	0		
Cyclohexane	0 *	0		
n-Heptane	0 *	0		
n-Octane	0 *	0		
n-Nonane	0 *	0		
n-Decane	0 *	0		
n-Undecane	0 *	0		
Dodecane	0 *	0		
Water	1 *	1		
Triethylene Glycol	0 *	0		
Oxygen	0 *	0		
Argon	0 *	0		
Carbon Monoxide	0 *	0		
Cyclopentane	0 *	0		
Isohexane	0 *	0		
3-Methylpentane	0 *	0		
Neohexane	0 *	0		
2,3-Dimethylbutane	0 *	0		
Methylcyclohexane	0 *	0		
Isooctane	0 *	0		
Decane, 2-Methyl-	0 *	0		
Toluene	0 *	0		
m-Xylene	0 *	0		
Ethylbenzene	0 *	0		

	Total	Light Liquid		
Mass Flow	lb/h	lb/h		
Nitrogen	0 *	0		
Methane	0 *	0		
CO2	0 *	0		
Ethane	0 *	0		
Propane	0 *	0		
Isobutane	0 *	0		
n-Butane	0 *	0		
Isopentane	0 *	0		
n-Pentane	0 *	0		
n-Hexane	0 *	0		
Methylcyclopentane	0 *	0		
Benzene	0 *	0		
Cyclohexane	0 *	0		
n-Heptane	0 *	0		
n-Octane	0 *	0		
n-Nonane	0 *	0		
n-Decane	0 *	0	·	
n-Undecane	0 *	0		

Process Streams Report Stream: Reservoir Water Phases Grouped by Columns

Client Name: **EQT Production** Job: V1.0 Location:

OXF 160 Wellpad OXF-160 Modified: 12:40 PM, 10/12/2016 Status: Solved 12:45 PM, 10/12/2016 Flowsheet:

Mass Flow	Total lb/h	Light Liquid lb/h	
Dodecane	0 *	0	
Water	19427.8 *	19427.8	
Triethylene Glycol	0 *	0	
Oxygen	0 *	0	
Argon	0 *	0	
Carbon Monoxide	0 *	0	
Cyclopentane	0 *	0	
Isohexane	0 *	0	
3-Methylpentane	0 *	0	
Neohexane	0 *	0	
2,3-Dimethylbutane	0 *	0	
Methylcyclohexane	0 *	0	
Isooctane	0 *	0	
Decane, 2-Methyl-	0 *	0	
Toluene	0 *	0	
m-Xylene	0 *	0	
Ethylbenzene	0 *	0	

Volumetric Flow		Light Liquid		
) II.	gpm	gpm		
Nitrogen	0	0	"	·
Methane	0	0		
CO2	0	0		
Ethane	0	0		
Propane	0	0		
Isobutane	0	0		
n-Butane	0	0		
Isopentane	0	0		
n-Pentane	0	0		
n-Hexane	0	0		
Methylcyclopentane	0	0		
Benzene	0	0		
Cyclohexane	0	0		
n-Heptane	0	0		
n-Octane	0	0		
n-Nonane	0	0		
n-Decane	0	0		
n-Undecane	0	0		
Dodecane	0	0		
Water	38.8964	38.8964		
Triethylene Glycol	0	0		
Oxygen	0	0		
Argon	0	0		
Carbon Monoxide	0	0		
Cyclopentane	0	0		
Isohexane	0	0		
3-Methylpentane	0	0		
Neohexane	0	0		
2,3-Dimethylbutane	0	0		
Methylcyclohexane	0	0		
Isooctane	0	0		
Decane, 2-Methyl-	0	0		
Toluene	0	0		
m-Xylene	0	0		
Ethylbenzene	0	0		

Properties Properties Properties								
Property	Units	Total	Light Liquid					
Temperature	٠Ę	75 *	75					
Pressure	psig	700 *	700					

Process Streams Report Stream: Reservoir Water Phases Grouped by Columns

Client Name: **EQT Production** Job: V1.0

Modified: 12:40 PM, 10/12/2016 Status: Solved 12:45 PM, 10/12/2016 Location: Flowsheet: OXF 160 Wellpad OXF-160

Properties Properties Properties						
Property	Units	Total	Light Liquid			
Mole Fraction Vapor	·	0	0			
Mole Fraction Light Liquid		1	1			
Mole Fraction Heavy Liquid		0	0			
Molecular Weight	lb/lbmol	18.0153	18.0153			
Mass Density	lb/ft^3	62.2722	62.2722			
Molar Flow	lbmol/h	1078.41	1078.41			
Mass Flow	lb/h	19427.8	19427.8			
Vapor Volumetric Flow	ft^3/h	311.982	311.982			
Liquid Volumetric Flow	gpm	38.8964	38.8964			
Std Vapor Volumetric Flow	MMSCFD	9.82171	9.82171			
Specific Gravity		0.998448	0.998448			
API Gravity		9.91415	9.91415			
Enthalpy	Btu/h	-1.32476E+08	-1.32476E+08			
Net Ideal Gas Heating Value	Btu/ft^3	0	0			
Net Liquid Heating Value	Btu/lb	-1059.76	-1059.76			
Std Liquid Volumetric Flow	sgpm	38.8376 *	38.8376			

Process Streams Report Stream: Sales Oil

Phases Grouped by Columns

Client Name: **EQT Production** Job: V1.0 OXF 160 Wellpad OXF-160 Modified: 4:18 PM, 5/12/2015 Status: Solved 12:48 PM, 10/12/2016 Location: Flowsheet:

Connections

From: Oil Tanks To: --

Composition					
	Total	Light Liquid			
Mole Fraction					
Nitrogen	2.49595E-07	2.49595E-07			
Methane	0.000930407	0.000930407			
CO2	2.58246E-05	2.58246E-05			
Ethane	0.0108952	0.0108952			
Propane	0.0365805	0.0365805			
Isobutane	0.0158386	0.0158386			
n-Butane	0.0500571	0.0500571			
Isopentane	0.0353519	0.0353519			
n-Pentane	0.044031	0.044031			
n-Hexane	0.0448337	0.0448337			
Methylcyclopentane	0	0			
Benzene	0.00150126	0.00150126			
Cyclohexane	0.00364223	0.00364223			
n-Heptane	0.150198	0.150198			
n-Octane	0.130766	0.130766			
n-Nonane	0.102487	0.102487			
n-Decane	0.283526	0.283526			
n-Undecane	0	0			
Dodecane	0	0			
Water	4.38205E-05	4.38205E-05			
Triethylene Glycol	0	0			
Oxygen	0	0			
Argon	0	0			
Carbon Monoxide	0	0			
Cyclopentane	0	0			
Isohexane	0.0475042	0.0475042			
3-Methylpentane	0	0			
Neohexane	0	0			
2,3-Dimethylbutane	0	0			
Methylcyclohexane	0	0			
Isooctane	0.0141385	0.0141385			
Decane, 2-Methyl-	0	0			
Toluene	0.00923718	0.00923718			
m-Xylene	0.0170124	0.0170124			
Ethylbenzene	0.00139807	0.00139807			

	T-1-1	I toda (I toda)	•	
Mass Flow	Total lb/h	Light Liquid lb/h		
Nitrogen	0.000108844	0.000108844		
Methane	0.232351	0.232351		
CO2	0.0176922	0.0176922		
Ethane	5.09986	5.09986		
Propane	25.11	25.11		
Isobutane	14.3305	14.3305		
n-Butane	45.2907	45.2907		
Isopentane	39.7048	39.7048		
n-Pentane	49.4526	49.4526		
n-Hexane	60.1436	60.1436		
Methylcyclopentane	0	0		
Benzene	1.82546	1.82546		
Cyclohexane	4.77169	4.77169		
n-Heptane	234.284	234.284		
n-Octane	232.525	232.525		
n-Nonane	204.619	204.619		
n-Decane	627.977	627.977		
n-Undecane	0	0		

Process Streams Report Stream: Sales Oil Phases Grouped by Columns Client Name: **EQT Production** Job: V1.0 OXF 160 Wellpad OXF-160 Modified: 4:18 PM, 5/12/2015 Status: Solved 12:48 PM, 10/12/2016 Location: Flowsheet:

Mass Flow	Total lb/h	Light Liquid lb/h		
Dodecane	0	0		
Water	0.0122891	0.0122891		
Triethylene Glycol	0	0		
Oxygen	0	0		
Argon	0	0		
Carbon Monoxide	0	0		
Cyclopentane	0	0		
Isohexane	63.726	63.726		
3-Methylpentane	0	0		
Neohexane	0	0		
2,3-Dimethylbutane	0	0		
Methylcyclohexane	0	0		
Isooctane	25.1408	25.1408		
Decane, 2-Methyl-	0	0		
Toluene	13.249	13.249		
m-Xylene	28.1157	28.1157		
Ethylbenzene	2.31053	2.31053		

	Total	Light Liquid	
Volumetric Flow	gpm	gpm	
Nitrogen	3.37604E-07	3.37604E-07	•
Methane	0.00131517	0.00131517	
CO2	2.00488E-05	2.00488E-05	
Ethane	0.0204348	0.0204348	
Propane	0.0909346	0.0909346	
Isobutane	0.0494202	0.0494202	
n-Butane	0.151568	0.151568	
Isopentane	0.126344	0.126344	
n-Pentane	0.156084	0.156084	
n-Hexane	0.181527	0.181527	
Methylcyclopentane	0	0	
Benzene	0.00405356	0.00405356	
Cyclohexane	0.0122092	0.0122092	
n-Heptane	0.686506	0.686506	
n-Octane	0.659896	0.659896	
n-Nonane	0.566559	0.566559	
n-Decane	1.71099	1.71099	
n-Undecane	0	0	
Dodecane	0	0	
Water	-1.8979E-05	-1.8979E-05	
Triethylene Glycol	0	0	
Oxygen	0	0	
Argon	0	0	
Carbon Monoxide	0	0	
Cyclopentane	0	0	
Isohexane	0.194463	0.194463	
3-Methylpentane	0	0	
Neohexane	0	0	
2,3-Dimethylbutane	0	0	
Methylcyclohexane	0	0	
Isooctane	0.0724671	0.0724671	
Decane, 2-Methyl-	0	0	
Toluene	0.029983	0.029983	
m-Xylene	0.0640642	0.0640642	
Ethylbenzene	0.00525841	0.00525841	
	•		

	Properties Properties Properties				
Property Units Total Light Liquid					
Temperature	°F	70 *	70		
Pressure	psig	0.625	0.625		

Process Streams Report Stream: Sales Oil Phases Grouped by Columns EQT Production Client Name: Job: V1.0 Modified: 4:18 PM, 5/12/2015 Status: Solved 12:48 PM, 10/12/2016 OXF 160 Wellpad OXF-160 Location: Flowsheet:

Properties Properties						
Property	Units	Total	Light Liquid			
Mole Fraction Vapor	•	0	0			
Mole Fraction Light Liquid		1	1			
Mole Fraction Heavy Liquid		0	0			
Molecular Weight	lb/lbmol	107.789	107.789			
Mass Density	lb/ft^3	43.7279	43.7279			
Molar Flow	lbmol/h	15.5669	15.5669			
Mass Flow	lb/h	1677.94	1677.94			
Vapor Volumetric Flow	ft^3/h	38.3723	38.3723			
Liquid Volumetric Flow	gpm	4.78408	4.78408			
Std Vapor Volumetric Flow	MMSCFD	0.141777	0.141777			
Specific Gravity		0.701116	0.701116			
API Gravity		68.9669	68.9669			
Enthalpy	Btu/h	-1.56059E+06	-1.56059E+06			
Net Ideal Gas Heating Value	Btu/ft^3	5462.64	5462.64			
Net Liquid Heating Value	Btu/lb	19073.6	19073.6			
Std Liquid Volumetric Flow	sgpm	4.79603	4.79603			

Process Streams Report Stream: Water Out Phases Grouped by Columns

Client Name: **EQT Production** Job: V1.0 OXF 160 Wellpad OXF-160 Modified: 3:19 PM, 4/7/2015 Status: Solved 12:48 PM, 10/12/2016 Location: Flowsheet:

Connections

From: Water Tanks To: --

	Comp	osition	
	Total	Light Liquid	
Mole Fraction			
Nitrogen	3.66151E-08	3.66151E-08	
Methane	1.99482E-05	1.99482E-05	
CO2	9.0875E-06	9.0875E-06	
Ethane	6.1571E-06	6.1571E-06	
Propane	7.78448E-07	7.78448E-07	
Isobutane	4.36306E-08	4.36306E-08	
n-Butane	1.84633E-07	1.84633E-07	
Isopentane	1.64453E-08	1.64453E-08	
n-Pentane	3.24102E-09	3.24102E-09	
n-Hexane	6.56357E-10	6.56357E-10	
Methylcyclopentane	0	0	
Benzene	7.38367E-07	7.38367E-07	
Cyclohexane	7.37313E-09	7.37313E-09	
n-Heptane	3.36089E-10	3.36089E-10	
n-Octane	1.18753E-11	1.18753E-11	
n-Nonane	2.75606E-12	2.75606E-12	
n-Decane	2.38121E-13	2.38121E-13	
n-Undecane	0	0	
Dodecane	0	0	
Water	0.999962	0.999962	
Triethylene Glycol	0	0	
Oxygen	0	0	
Argon	0	0	
Carbon Monoxide	0	0	
Cyclopentane	0	0	
Isohexane	1.59392E-09	1.59392E-09	
3-Methylpentane	0	0	
Neohexane	0	0	
2,3-Dimethylbutane	0	0	
Methylcyclohexane	0	0	
Isooctane	4.29828E-11	4.29828E-11	
Decane, 2-Methyl-	0	0	
Toluene	1.10866E-06	1.10866E-06	
m-Xylene	3.38973E-07	3.38973E-07	
Ethylbenzene	4.13532E-08	4.13532E-08	

			• • • • • • • • • • • • • • • • • • • •
	Total	Light Liquid	
Mass Flow	lb/h	lb/h	
Nitrogen	0.00110389	0.00110389	
Methane	0.34441	0.34441	
CO2	0.43042	0.43042	
Ethane	0.199249	0.199249	
Propane	0.0369425	0.0369425	
Isobutane	0.00272919	0.00272919	
n-Butane	0.0115492	0.0115492	
Isopentane	0.00127695	0.00127695	
n-Pentane	0.000251658	0.000251658	
n-Hexane	6.0873E-05	6.0873E-05	
Methylcyclopentane	0	0	
Benzene	0.0620712	0.0620712	
Cyclohexane	0.000667815	0.000667815	
n-Heptane	3.62436E-05	3.62436E-05	
n-Octane	1.45989E-06	1.45989E-06	
n-Nonane	3.80421E-07	3.80421E-07	
n-Decane	3.64626E-08	3.64626E-08	
n-Undecane	0	0	

Process Streams Report Stream: Water Out Phases Grouped by Columns

Client Name: **EQT Production** Job: V1.0

OXF 160 Wellpad OXF-160 Location:

Modified: 3:19 PM, 4/7/2015 Status: Solved 12:48 PM, 10/12/2016 Flowsheet:

Mass Flow	Total lb/h	Light Liquid lb/h	
Dodecane	0	0	
Water	19387.7	19387.7	
Triethylene Glycol	0	0	
Oxygen	0	0	
Argon	0	0	
Carbon Monoxide	0	0	
Cyclopentane	0	0	
Isohexane	0.000147826	0.000147826	
3-Methylpentane	0	0	
Neohexane	0	0	
2,3-Dimethylbutane	0	0	
Methylcyclohexane	0	0	
Isooctane	5.28409E-06	5.28409E-06	
Decane, 2-Methyl-	0	0	
Toluene	0.109937	0.109937	
m-Xylene	0.03873	0.03873	
Ethylbenzene	0.00472489	0.00472489	

	Total	Light Liquid		
Volumetric Flow	gpm	gpm		
Nitrogen	2.94817E-06	2.94817E-06		
Methane	0.00168319	0.00168319		
CO2	0.000673236	0.000673236		
Ethane	0.000666006	0.000666006		
Propane	0.000105654	0.000105654		
Isobutane	7.13762E-06	7.13762E-06		
n-Butane	2.98256E-05	2.98256E-05		
Isopentane	3.07026E-06	3.07026E-06		
n-Pentane	6.06257E-07	6.06257E-07		
n-Hexane	1.39386E-07	1.39386E-07		
Methylcyclopentane	0	0		
Benzene	0.000115751	0.000115751		
Cyclohexane	1.34909E-06	1.34909E-06		
n-Heptane	8.02909E-08	8.02909E-08		
n-Octane	3.13218E-09	3.13218E-09		
n-Nonane	7.96872E-10	7.96872E-10		
n-Decane	7.51687E-11	7.51687E-11		
n-Undecane	0	0		
Dodecane	0	0		
Water	38.8101	38.8101		
Triethylene Glycol	0	0		
Oxygen	0	0		
Argon	0	0		
Carbon Monoxide	0	0		
Cyclopentane	0	0		
Isohexane	3.38975E-07	3.38975E-07		
3-Methylpentane	0	0		
Neohexane	0	0		
2,3-Dimethylbutane	0	0		
Methylcyclohexane	0	0		
Isooctane	1.12203E-08	1.12203E-08		
Decane, 2-Methyl-	0	0		
Toluene	0.000202942	0.000202942		
m-Xylene	7.0916E-05	7.0916E-05		
Ethylbenzene	8.60545E-06	8.60545E-06		

	Properties Properties Properties				
Property Units Total Light Liquid					
Temperature	°F	70	70		
Pressure	psig	0.625	0.625		

		Process Streams Report Stream: Water Out Phases Grouped by Columns		
Client Name:	EQT Production		Job: V1.0	
Location:	OXF 160 Wellpa	d	Modified: 3:	:19 PM, 4/7/2015
Flowsheet:	OXF-160		Status: Solv	ved 12:48 PM, 10/12/2016

Properties Properties							
Units	Total	Light Liquid					
•	0	0					
	1	1					
	0	0					
lb/lbmol	18.0157	18.0157					
lb/ft^3	62.28	62.28					
lbmol/h	1076.22	1076.22					
lb/h	19388.9	19388.9					
ft^3/h	311.318	311.318					
gpm	38.8137	38.8137					
MMSCFD	9.8018	9.8018					
	0.998573	0.998573					
	10.0027	10.0027					
Btu/h	-1.32342E+08	-1.32342E+08					
Btu/ft^3	0.0399889	0.0399889					
Btu/lb	-1058.85	-1058.85					
sgpm	38.7625	38.7625					
	Ib/Ibmol Ib/ft^3 Ibmol/h Ib/h ft^3/h gpm MMSCFD Btu/h Btu/ft^3 Btu/lb	Units Total 0 1 0 1 0 18.0157 lb/ft^3 62.28 lbmol/h 1076.22 lb/h 19388.9 ft^3/h 311.318 gpm 38.8137 MMSCFD 9.8018 0.998573 10.0027 Btu/h -1.32342E+08 Btu/ft^3 0.0399889 Btu/lb -1058.85	Units Total Light Liquid 0 0 0 1 1 1 0 0 0 Ib/Ibmol 18.0157 18.0157 Ib/ft^3 62.28 62.28 Ibmol/h 1076.22 1076.22 Ib/h 19388.9 19388.9 ft^3/h 311.318 311.318 gpm 38.8137 38.8137 MMSCFD 9.8018 9.8018 0.998573 0.998573 0.998573 10.0027 10.0027 Btu/h -1.32342E+08 -1.32342E+08 Btu/ft^3 0.0399889 0.0399889 Btu/lb -1058.85 -1058.85				

Environments Report

Client Name: EQT Production Job: V1.0
Location: OXF 160 Wellpad

Project-Wide Constants

Atmospheric Pressure	14.6959 psia	Ideal Gas Reference Pressure	14.6959 psia
Ideal Gas Reference Temperature	60 °F	Ideal Gas Reference Volume	379.484 ft^3/lbmol
Liquid Reference Temperature	60 °F		

Environment [Electrolytic NRTL-PR]

Environment Settings

 Number of Poynting Intervals
 0
 Phase Tolerance
 0.01

 Gibbs Excess Model
 77 °F
 Emulsion Enabled
 False

 Evaluation Temperature

Components								
Component Name	Component Name Henry's Law Phase Component Name Henry's Law Phase							
	Component	Initiator		Component	Initiator			
Nitrogen	True	False	2,3,5-Trimethylhexane	False	False			
Methane	True	False	2,2-Dimethylheptane	False	False			
CO2	True	False	2,4-Dimethylheptane	False	False			
Ethane	True	False	2,2,3-Trimethylhexane	False	False			
Propane	False	False	cis-1,2-Dimethylcyclohexane	False	False			
Isobutane	False	False	2,6-Dimethylheptane	False	False			
n-Butane	False	False	n-Propylcyclopentane	False	False			
Isopentane	False	False	Cis,cis-1,3,5-Trimethylcyclohexane	False	False			
n-Pentane	False	False	2,5-Dimethylheptane	False	False			
Neohexane	False	False	3,5-Dimethylheptane	False	False			
2,3-Dimethylbutane	False	False	Ethylcyclohexane	False	False			
Cyclopentane	False	False	2,3,3-Trimethylhexane	False	False			
Isohexane	False	False	3,3-Dimethylheptane	False	False			
3-Methylpentane	False	False	1,1,4-Trimethylcyclohexane	False	False			
n-Hexane	False	False	4,4-Dimethylheptane	False	False			
2,2-Dimethylpentane	False	False	2-Methyl-4-Ethylhexane	False	False			
Methylcyclopentane	False	False	2,3,4-Trimethylhexane	False	False			
2,4-Dimethylpentane	False	False	Ethylbenzene	False	False			
2,2,3-Trimethylbutane	False	False	2,3-Dimethylheptane	False	False			
Benzene	False	False	Cis,trans-1,3,5-Trimethylcyclohexane	False	False			
3,3-Dimethylpentane	False	False	3,3,4-Trimethylhexane	False	False			
Cyclohexane	False	False	m-Xylene	False	False			
2-Methylhexane	False	False	p-Xylene	False	False			
2,3-Dimethylpentane	False	False	3,4-Dimethylheptane	False	False			
1,1-Dimethylcyclopentane	False	False	2-Methyloctane	False	False			
3-Methylhexane	False	False	4-Methyloctane	False	False			
trans-1,3-Dimethylcyclopentane	False	False	3-Methyloctane	False	False			
cis-1,3-Dimethylcyclopentane	False	False	Cis,trans-1,2,4-Trimethylcyclohexane	False	False			
3-Ethylpentane	False	False	o-Xylene	False	False			
trans-1,2-Dimethylcyclopentane	False	False	1,1,2-Trimethylcyclohexane	False	False			
Isooctane	False	False	n-Nonane	False	False			
n-Heptane	False	False	2,4-Dimethyloctane	False	False			
Methylcyclohexane	False	False	Cyclohexane, 1-Ethyl-1-Methyl-	False	False			
1,1,3-Trimethylcyclopentane	False	False	2,5-Dimethyloctane	False	False			
2,2-Dimethylhexane	False	False	Isopropylbenzene	False	False			
cis-1,2-Dimethylcyclopentane	False	False	2,2-Dimethyloctane	False	False			
2,5-Dimethylhexane	False	False	Isopropylcyclohexane	False	False			
2,4-Dimethylhexane	False	False	Cyclooctane	False	False			
Ethylcyclopentane	False	False	2,6-Dimethyloctane	False	False			
2,2,3-Trimethylpentane	False	False	n-Butylcyclopentane	False	False			
Trans, cis-1,2,4-Trimethylcyclopentane	False	False	n-Propylcyclohexane	False	False			
3,3-Dimethylhexane	False	False	3,3-Dimethyloctane	False	False			
Trans,cis-1,2,3-Trimethylcyclopentane	False	False	3,5-Dimethyloctane	False	False			
2,3,4-Trimethylpentane	False	False	2,7-Dimethyloctane	False	False			
Toluene	False	False	n-Propylbenzene	False	False			
2,3-Dimethylhexane	False	False	3,6-Dimethyloctane	False	False			
		False False	m-Ethyltoluene	False False	False			
1,1,2-Trimethylcyclopentane	False		,					
2,3,3-Trimethylpentane	False	False	p-Ethyltoluene	False	False			

^{*} User Specified Values

Environments Report Job: V1.0 Client Name: **EQT Production** Location: OXF 160 Wellpad

Components							
Component Name	Henry's Law Component	Phase Initiator	Component Name	Henry's Law Component	Phase Initiator		
2-Methyl-3-Ethylpentane	False	False	2,3-Dimethyloctane	False	False		
2-Methylheptane	False	False	4-Methylnonane	False	False		
4-Methylheptane	False	False	5-Methylnonane	False	False		
3,4-Dimethylhexane	False	False	1,3,5-Trimethylbenzene	False	False		
3-Methylheptane	False	False	2-Methylnonane	False	False		
3-Ethylhexane	False	False	3-Ethyloctane	False	False		
cis-1,3-Dimethylcyclohexane	False	False	1-Methyl-2-Ethylbenzene	False	False		
Cis,trans-1,2,4-Trimethylcyclopentane	False	False	3-Methylnonane	False	False		
trans-1,4-Dimethylcyclohexane	False	False	1,3-Diethylbenzene	False	False		
2,2,5-Trimethylhexane	False	False	Isobutylbenzene	False	False		
1,1-Dimethylcyclohexane	False	False	n-Decane	False	False		
trans-1-Ethyl-3-Methylcyclopentane	False	False	1,2,4-Trimethylbenzene	False	False		
cis-1-ethyl-3-methylcyclopentane	False	False	tert-Butylbenzene	False	False		
trans-1-Ethyl-2-Methylcyclopentane	False	False	Isobutylcyclohexane	False	False		
2,2,4-Trimethylhexane	False	False	n-Undecane	False	False		
1-Ethyl-1-Methylcyclopentane	False	False	Water	False	True		
Cycloheptane	False	False	Ethylene Glycol	False	True		
n-Octane	False	False	Triethylene Glycol	False	True		
trans-1,2-Dimethylcyclohexane	False	False	Carbon Monoxide	True	False		
trans-1,3-Dimethylcyclohexane	False	False	NaOH	False	True		
cis-1,4-Dimethylcyclohexane	False	False	HCI	True	True		
Isopropylcyclopentane	False	False					

Electrolytic Reactions						
Dissociation of HCI	CIH = H+ + CI-					
Dissociation of Sodium Hydroxide	HNaO = HO- + Na+					
Dissociation of Water	H2O = H+ + HO-					
First Dissociation of CO2	CO2 + H2O = (CHO3)- + H+					
Second Dissociation of CO2	(CHO3)-= H++ (CO3)2-					

Physical Property Method Sets							
Liquid Molar Volume	COSTALD	Overall Package	Electrolytic NRTL - PR				
Stability Calculation	Peng-Robinson	Vapor Package	Peng-Robinson				
Light Liquid Package	Electrolytic NRTL	Heavy Liquid Package	Electrolytic NRTL				

Environment [SRK Environment]							
Environment Settings							
Number of Poynting Intervals	0	Phase Tolerance	0.01				
Gibbs Excess Model	77 °F	Emulsion Enabled	False				
Evaluation Temperature							
Freeze Out Temperature	10 °F						
Threshold Difference							

Components						
Component Name	Henry's Law	Phase	Component Name	Henry's Law	Phase	
	Component	Initiator		Component	Initiator	
Nitrogen	False	False	Dodecane	False	False	
Methane	False	False	Water	False	True	
CO2	False	False	Triethylene Glycol	False	True	
Ethane	False	False	Oxygen	False	False	
Propane	False	False	Argon	False	False	
Isobutane	False	False	Carbon Monoxide	False	False	

		Eı	nvironm	ents Report			
Client Name:	EQT Production				Job: V1.0	•	
Location:	OXF 160 Wellpad						
				onents			
Component Name		Henry's Law Component	Phase Initiator	Component Name		Henry's Law Component	Phase Initiator
n-Butane		False	False	Cyclopentane		False	False
Isopentane		False	False	Isohexane		False	False
n-Pentane		False	False	3-Methylpentane		False	False
n-Hexane		False	False	Neohexane		False	False
Methylcyclopentane		False	False	2,3-Dimethylbutane		False	False
Benzene		False	False	Methylcyclohexane		False	False
Cyclohexane		False	False	Isooctane		False	False
n-Heptane		False	False	Decane, 2-Methyl-		False	False
n-Octane		False	False	Toluene		False	False
n-Nonane		False	False	m-Xylene		False	False
n-Decane		False	False	Ethylbenzene		False	False
n-Undecane		False	False				

Physical Property Method Sets						
Liquid Molar Volume	COSTALD	Overall Package	SRK			
Stability Calculation	SRK	Vapor Package	SRK			
Light Liquid Package	SRK	Heavy Liquid Package	SRK			

Simulation Initiated on 10/20/2016 4:09:34 PM **Calculator Report** Client Name: **EQT Production** Job: V1.0 Location: OXF 160 Wellpad **Heat Input Required** Source Code CV1 = HV*FV Calculated Variable [CV1] ProMax:ProMax!Project!Flowsheets!OXF-160!QStreams!Pilot Heat Input!Energy Rate Source Moniker Value 566728 Unit Measured Variable [FV] Source Moniker ProMax:ProMax!Project!Flowsheets!OXF-160!PStreams!Combined Flash Vapor!Phases!Vapor!Properties!Std Vapor Volumetric Value 383.47 Unit Measured Variable [HV] Source Moniker ProMax:ProMax!Project!Flowsheets!OXF-160!PStreams!Combined Flash Vapor!Analyses!Combustion Analysis 1!Properties!Volumetric Net Ideal Gas Heating Value Value 1477.89 Unit Remarks Simple Solver 1 **Source Code** Residual Error (for Condensate_Flowrate) = 1-Cond/164 Calculated Variable [Condensate_Flowrate] Source Moniker ProMax:ProMax!Project!Flowsheets!OXF-160!PStreams!Reservoir Gas!Phases!Total!Properties!Std Liquid Volumetric Flow Value 4195.89 Unit Measured Variable [Cond] ProMax:ProMax!Project!Flowsheets!OXF-160!PStreams!Sales Oil!Phases!Total!Properties!Liquid Volumetric Flow Source Moniker 164.025 Value Unit **Solver Properties** Status: Solved Error -0.000155151 Iterations 13 Calculated Value Max Iterations 122.38 sgpm 20 Lower Bound Weighting 1 sgpm

Remark

Upper Bound

Step Size

Algorithm

Is Minimizer

Simple Solver	2
Source Code	

Priority

Group

Solver Active

Skip Dependency Check

sgpm

sgpm

False

Default

Residual Error (for Water_Flow_Rate) = 1-Water/1329

0

Active

False

User Specified Values ? Extrapolated or Approximate Values

omalation milator on roy	20/2010 1100:011 111	20.0.0.0			. 252 - 2
		Calcul	ator Report		
Ol' (N	FOT D. I. II			111140	
Client Name:	EQT Production			Job: V1.0	
Location:	OXF 160 Wellpad				
		Optional attendance in	Lie DMeter Floor D	-4-7	
		Calculated varia	ble [Water_Flow_R	atej	
Source Moniker	ProMax:ProMax!P	roject!Flowsheets!OXF-160!PS	Streams!Reservoir Water!	!Phases!Total!Pro	pperties!Std Liquid Volumetric Flow
Value	1331.57				
Unit					
			\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
		Measurea	Variable [Water]		
Source Moniker	ProMax:ProMax!P	roject!Flowsheets!OXF-160!PS	Streams!Water Out!Phase	es!Total!Propertie	s!Std Liquid Volumetric Flow
Value	1329				
Unit					
		Calan	r Droperties		Status: Solved
			r Properties		
Error		-8.59451E-09	Iterations		13
Calculated Value		38.8376 sgpm	Max Iterations		20
Lower Bound		sgpm	Weighting		1
Upper Bound		sgpm	Priority		0
Step Size		sgpm	Solver Active		Active
Is Minimizer		False	Group		Active
Algorithm			Skip Dependency	Chock	False
Algorithm		Derault	Skip Dependency	Check	raise
			e Specifier 1 urce Code		
CV1 = O2Reqd * 3.0	0 / O2Frac				
		Calculate	d Variable [CV1]		
Source Moniker	ProMax:ProMax!P	roject!Flowsheets!OXF-160!Ps	Streams!Combustion Air!	Phases!Total!Pro	perties!Molar Flow
Value	46.476	,			
Unit					
Offic					
		Measured \	/ariable [O2Reqd]		
Source Moniker	ProMax:ProMax!P	roject!Flowsheets!OXF-160!PS	Streams!Combined Flash	Vapor!Analyses!	Combustion Analysis
	1!Properties!Requ	ired Combustion Oxygen		•	-
Value	3.24511			-	
Unit					
		Measured \	Variable [O2Frac]		
Source Moniker	ProMax:ProMax!P	roject!Flowsheets!OXF-160!P\$	Streams!Combustion Air!F	Phases!Total!Cor	nposition!Mole Fraction!Oxygen
Value	0.20947	•			
Unit					
- · · · ·					
Damari -					
Remarks					
		Circon I	o Crocifier 2		
			e Specifier 3		
		Sou	ırce Code		
CV1 = Pin		300	55 5545		
O V I = [7][]					
		Calculate	d Variable [CV1]		
Source Moniker	ProMax:ProMavID	roject!Flowsheets!OXF-160!PS		s to SalesiPhase	sITotallPropertiesIPressure
		TOJOULI TOWOTIOOLO:O/XI - TOU!FC	Januario. Joinpiesseu Ga	o to Galosti Hase	o. rotain roportios:i rossuic
	TUU				
* User Specified Values	400	DroA	Max 4.0.16071.0		Licensed to Trinity Consultants, Inc. and Affili

		Calculator Report		
Client Name:	EQT Production		Job: V1.0	
Location:	OXF 160 Wellpa	ad		
	·			
Unit				
		Measured Variable [Pin]		
Source Moniker	ProMax:ProMa	ax!Project!Flowsheets!OXF-160!PStreams!Sales Gas!Phases!To	tal!Propertie	s!Pressure
Value	400			
Unit				
Remarks				

Simulation Initiated on 1	0/20/2016 4:09:34 PM	20161010	_EQT_ OXF 160.pmx		Page 1 of 4
		User Valu	ue Sets Report		
Client Name:	EQT Production			Job: V1.0	
Location:	OXF 160 Wellpad				
			Losses.53		
		User Valu	ie [ShellLength]		
* Parameter		20 ft	Upper Bound		ft
* Lower Bound		0 ft	* Enforce Bounds	Fal	se
* Parameter			ue [ShellDiam]		<u> </u>
* Lower Bound		12 ft 0 ft	Upper Bound * Enforce Bounds	Fal	ft
Eower Boaria		O II	Emoroc Boards	1 4	
		Hear Valu	ue [BreatherVP]		
* Parameter		0.3 psig	Upper Bound		psig
Lower Bound		psig	* Enforce Bounds	Fal	
		1 - 3			
		User Value	e [BreatherVacP]		
Parameter		-0.7 psig	Upper Bound		psig
Lower Bound		psig	* Enforce Bounds	Fal	
		User Valu	e [DomeRadius]		
Parameter		ft	Upper Bound		ft
Lower Bound		ft	* Enforce Bounds	Fal	se
		User Va	lue [OpPress]		
Parameter		0 psig	Upper Bound		psig
Lower Bound		psig	* Enforce Bounds	Fal	se
			[AvgPercentLiq]		
Parameter		50 %	Upper Bound		%
Lower Bound		%	* Enforce Bounds	Fal	se
		Haan Value	[MauDanaanti in]		
. Danamatan			[MaxPercentLiq]		0/
Parameter Lower Bound		90 %	Upper Bound * Enforce Bounds	Fal	% Iso
Lower Bound		/0	Efficice Boulius	ı al	<u>5e</u>
		Hear Val	uo [AnnNotTD]		
Parameter		170.839 bbl/day	ue [AnnNetTP] Upper Bound		bbl/day
Lower Bound		0 bbl/day	* Enforce Bounds	Fal	
		User V	alue [OREff]		
Parameter		0 %	Upper Bound		%
Lower Bound		%	* Enforce Bounds	Fal	
		User Valu	e [AtmPressure]		
Parameter		14.2535 psia	Upper Bound		psia
Lower Bound		psia	* Enforce Bounds	Fal	
		User Value	[MaxLiqSurfaceT]		
Parameter		61.4758 °F	Upper Bound		°F
Lower Bound		°F	* Enforce Bounds	Fal	se
			ie [TotalLosses]		
Parameter		7.94157 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds	Fal	se
			[WorkingLosses]		
* Parameter		2.45484 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds	Fal	se

		User Val	ue Sets Report		
Client Name:	EQT Production			Job: V1.0	
Location:	OXF 160 Wellpa	d		000. 11.0	
		User Value	[StandingLosses]		
* Parameter		0.192351 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		Hear Value	[RimSealLosses]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		., .,			
* Parameter		User Value 0 ton/yr	[WithdrawalLoss] Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		·			
			[LoadingLosses]		
* Parameter Lower Bound		30.7303 ton/yr ton/yr	Upper Bound * Enforce Bounds		ton/yr False
Lower Bouria		tonyi	Efficice Bourius		raise
		User Value [DeckFittingLosses]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		Hear Value	[DeckSeamLosses]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		Ha an Walana	FFI and the of the second		
* Parameter		42.9328 ton/yr	[FlashingLosses] Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
			[GasMoleWeight]		
* Parameter Lower Bound		0.0527663 kg/mol kg/mol	Upper Bound * Enforce Bounds		kg/mol False
Lower Board		Kg/IIIOI	Emoroc Bounds		Taise
Remarks					
This User Value Se	et was programmat	cally generated. GUID={5524Al	B8C-40B1-4354-9DD7-EED6	5770BF87}	
			Losses.331		
* 5			ue [ShellLength]		
* Parameter * Lower Bound		20 ft 0 ft	Upper Bound * Enforce Bounds		ft False
		,			. 4100
			lue [ShellDiam]		
* Parameter		12 ft	Upper Bound		ft
* Lower Bound		0 ft	* Enforce Bounds		False
		User Val	ue [BreatherVP]		
* Parameter		0.3 psig	Upper Bound		psig
Lower Bound		psig	* Enforce Bounds		False
		11 57 1	- ID(l)/ D1		
* Parameter		-0.7 psig	e [BreatherVacP] Upper Bound		psig
Lower Bound		-0.7 psig psig	* Enforce Bounds		False

			'		
		User Val	ue Sets Report		
Client Name:	EQT Production			Job: V1.0	
Location:	OXF 160 Wellpad				
		Harry Val	[D		
Parameter		User valu	ue [DomeRadius] Upper Bound		ft
Lower Bound		ft	* Enforce Bounds		False
Lower Board			Emerce Bounds		T diod
		User V	alue [OpPress]		
* Parameter		0 psig	Upper Bound		psig
Lower Bound		psig	* Enforce Bounds		False
			e [AvgPercentLiq]		
* Parameter		50 %	Upper Bound		%
Lower Bound		%	* Enforce Bounds		False
		Hoor Vol.	o [May Dargant] in]		
* Parameter		90 %	e [MaxPercentLiq] Upper Bound		%
Lower Bound		90 % %	* Enforce Bounds		False
		User Va	lue [AnnNetTP]		
* Parameter		1337.75 bbl/day	Upper Bound		bbl/day
* Lower Bound		0 bbl/day	* Enforce Bounds		False
			Value [OREff]		
* Parameter		0 %	Upper Bound		%
Lower Bound		%	* Enforce Bounds		False
		Hoor Val	ue [AtmPressure]		
* Parameter		14.2535 psia	Upper Bound		psia
Lower Bound		psia	* Enforce Bounds		False
		·			
		User Value	[MaxLiqSurfaceT]		
* Parameter		75.9425 °F	Upper Bound		°F
Lower Bound		°F	* Enforce Bounds		False
			ue [TotalLosses]		
* Parameter		0.271397 ton/yr	Upper Bound * Enforce Bounds		ton/yr False
Lower Bound		ton/yr	Ellioice Boulius		raise
		Hear Value	e [WorkingLosses]		
* Parameter		0.0904658 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		User Value	[StandingLosses]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
* 5			e [RimSealLosses]		
* Parameter		0 ton/yr	Upper Bound * Enforce Bounds		ton/yr
Lower Bound		ton/yr	Enlorce bounds		False
		Hear Value	[WithdrawalLoss]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
. , , , , , ,					27.2.2
		User Value	e [LoadingLosses]		
* Parameter		0.636489 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False

Client Name: Location:	EQT Production OXF 160 Wellpa		llue Sets Report	Job: V1.0	
		User Value	[DeckFittingLosses]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		User Value	[DeckSeamLosses]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		User Valu	ie [FlashingLosses]		
* Parameter		5.12786 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		User Valu	ie [GasMoleWeight]		
* Parameter		0.0457789 kg/mol	Upper Bound		kg/mol
Lower Bound		kg/mol	* Enforce Bounds		False
Remarks					
This User Value Set	was programmati	ically generated. GUID={23417	7019-6BCF-4B6A-8C2C-C51E3	F9510A8}	

Certificate of Analysis

Number: 2030-13050229-003A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Station Name: 512425

RM-GAS

Sampled By: Sample Of:

Gas

Sample Date:

05/20/2013 13:15

May 29, 2013

Sample Conditions: 379 psig Method: GPA 2286

Cylinder No: Analyzed:

Sample Point: Submeter GAS

Station Location: EQT Production

05/29/2013 13:24:38 by CC

Analytical Data

			Allalyti	our butu		
Components	Mol. %	Wt. %	GPM at 14.73 psia	A		
Nitrogen	0.532	0.729		GPM TOTAL C2+	5.661	
Carbon Dioxide	0.195	0.420				
Methane	78.965	61.996				
Ethane	13.780	20.278	3.697			
Propane	4.195	9.053	1.159			
Iso-Butane	0.507	1.442	0.166			
n-Butane	1.013	2.881	0.320			
Iso-Pentane	0.249	0.879	0.091			
n-Pentane	0.239	0.844	0.087			
i-Hexanes	0.113	0.461	0.045			
n-Hexane	0.073	0.304	0.030			
Benzene	0.002	0.008	0.001			
Cyclohexane	0.011	0.044	0.004			
i-Heptanes	0.057	0.266	0.025			
n-Heptane	0.022	0.106	0.010			
Toluene	0.004	0.017	0.001			
i-Octanes	0.031	0.168	0.015			
n-Octane	0.003	0.017	0.002			
Ethylbenzene	NIL	NIL	NIL			
Xylenes	0.002	0.007	0.001			
i-Nonanes	0.003	0.027	0.002			
n-Nonane	0.001	0.006	0.001			
Decane Plus	0.003	0.047	0.004			
	100.000	100.000	5.661			

Certificate of Analysis Number: 2030-13050229-003A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

May 29, 2013

Station Name: 512425

Station Location: EQT Production

Sample Point: Submeter

Cylinder No: Analyzed:

GAS

05/29/2013 13:24:38 by CC

Sampled By:

RM-GAS

Sample Of:

Gas

05/20/2013 13:15 Sample Date:

Sample Conditions: 379 psig Method:

GPA 2286

Physical Properties C10+ Total Calculated Molecular Weight 20.43 163.67

GPA 2172-09 Calculation:

Calculated Gross BTU per ft3 @ 14.73 psia & 60°F

Real Gas Dry BTU 8669.4 1239.6 Water Sat. Gas Base BTU 1218.5 8518.5 Relative Density Real Gas 0.7077 5.6511 Compressibility Factor 0.9966

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Certificate of Analysis

Number: 2030-13050229-003A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

May 29, 2013

Station Name: 512425

Station Location: EQT Production

Sample Point: Submeter

Cylinder No: Analyzed:

GAS

05/29/2013 13:24:38 by CC

Sampled By:

RM-GAS

Sample Of:

Sample Date:

05/20/2013 13:15

Sample Conditions: 379 psig Method:

GPA 2286

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.73 psia			
Nitrogen	0.532	0.729		GPM TOTAL C2+	5.661	
Carbon Dioxide	0.195	0.420		GPM TOTAL C3+	1.964	
Methane	78.965	61.996		GPM TOTAL iC5+	0.319	
Ethane	13.780	20.278	3.697			
Propane	4.195	9.053	1.159			
Iso-butane	0.507	1,442	0.166			
n-Butane	1.013	2.881	0.320			
Iso-pentane	0.249	0.879	0.091			
n-Pentane	0.239	0.844	0.087			
Hexanes Plus	0.325	1.478	0.141			
	100.000	100.000	5.661			
Physical Properties			Total	C6+		
Relative Density Real	Gas		0.7077	3.2076		
Calculated Molecular			20.43	92.90		
Compressibility Factor	r		0.9966			
GPA 2172-09 Calcula	tion:					
Calculated Gross BT	U per ft3 @	14.73 psi	a & 60°F			
Real Gas Dry BTU		The same test and the same same same same same same same sam	1239.6	5071.5		
Water Sat. Gas Base I	BTU		1218.5	4983.2		
Comments: H2O Mc	01% : 1.740	; Wt% : 1.5	38			

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Certificate of Analysis

Number: 2030-13050229-003A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

May 29, 2013

Station Name: 512425

Station Location: EQT Production

Sample Point: Submeter

Cylinder No: Analyzed: 05/29/2013 13:24:38 by CC

GAS

Sampled By:

RM-GAS

Sample Of:

Gas

Sample Date:

05/20/2013 13:15

Sample Conditions: 379 psig Method:

GPA 2286

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.73 psia			
Nitrogen	0.532	0.729		GPM TOTAL C2+	5.661	
Carbon Dioxide	0.195	0.420		GPM TOTAL C3+	1.964	
Methane	78.965	61.995		GPM TOTAL iC5+	0.319	
Ethane	13.780	20.278	3.697			
Propane	4.195	9.053	1.159			
Iso-Butane	0.507	1.442	0.166			
n-Butane	1.013	2.882	0.320			
Iso-Pentane	0.249	0.879	0.091			
n-Pentane	0.239	0.844	0.087			
Hexanes	0.186	0.765	0.075			
Heptanes Plus	0.139	0.713	0.066			
	100.000	100.000	5.661			
Physical Properties	3		Total	C7+		
Relative Density Rea	al Gas		0.7077	3.5343		
Calculated Molecula			20.43	102.36		
Compressibility Factor	or		0.9966			
GPA 2172-09 Calcu	lation:					
Calculated Gross B	TU per ft ³ @	14.73 psia	& 60°F			
Real Gas Dry BTU			1239.6	5520.5		
Water Sat. Gas Base	e BTU		1218.5	5424.5		
Comments: H2O M	/lol% : 1.740	; Wt% : 1.5	38			

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

13050229

Gas Analytical Services, Inc.

P.O. Box 1028, Bridgeport, WV 26330 205 Water Street, Stonewood, WV 26301 (304) 623-0020 fax: (304) 624-8076 email: lab@gasana.com

Referred to: Southern Petroleum Labs

4790 NE Evangeline Thruway

Carencro, LA 70520 attn: Patti Petro

Date: 5/21/2013

Testing Requested

** SCF Base Conditions: P_b 14.73 psia / T_b: 60 Df

						Extended		
	Client	Location	Date of	Sulfur	Total Sulfur	Hydrocarbon	Hydrocarbon	Gas
			Collection	Speciation (GPA-2199)	(GPA-2199)	C1C10 (GPA-2286)	Dewpoint	Temperature
1	EQT Production	512507	5/20/2013			х		
2	EQT Production	512541	5/20/2013			x		
3	EQT Production	512425	5/20/2013			х		
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14							7	
15						,	/ /	
16						1	4	

Please email results to: lab@gasana.com

Submitted by: Alan Ball, Lab Technician

Stonewood, WV Laboratory

Received by:

5/29/03

100		Date of Collection	13
	Gas Analytical Services	Time of Callection: 12:00	PM
	Tolenhone: 304-623-0020	Meter ID Number: 5/250	7
	205 Water Street Stonewood, WV 2020	Meter ID Number.	
, GL	FOT		
	company Name: EQ 7	N. Carlotte	
	29mbie oggian		
	Sample Pressure: 313 psi.	3600	
	Sample Type:	er Alternative Fuel Source A	Analysis
	Wellnead	4 to 1 to 100 to	
	Sampled By:	etained from the source indicated above	
		ANALYSIS SENOL	771
	RESULTS to Bob Gum		
	X 2507 C3	On Chana and	A 3
	(a ² a light	3050229-001	
			, i
Land.	9. 1/1-2		24
Amalaa	tical Services Date of Co	lection: 5 150 1/3	
	LIGHT OCI VIOCO		
	phone: 304-623-0020 Time of Co Water Street	llection: 10:308 M	
	newood, WV 26301 Meter ID N	umber:	Two controls of the control of the c
mpany Name	EGT PROSUCTION	020	
mple Source	5/2 451		24
	22/		
mple Pressur	re: DO psi.	+1-2-1942	
:mple Type: Nellhead	Subproter	Fuel	
	KONDIE Most	190	
mpled By: — Who decla	ares that this sample was obtained from the sou	rce indicated above.	1 4
mments:	EXTENDED APA	LY518	* *
TW. BO	b Eym.		A
	qua	OD A	
*	d and	100	
W	4		
	*		
		The second secon	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3
	LConvices	Date of Collection:	n
G	as Analytical Services	Time of Collection: 1:15	
	Telephone: 304-020	Meter ID Number:	-
	Stonewood, Wy 26301	eduction	- 1
	company Name:		
Section 1	7/0 /00		
E II	Sample Source: 279 psi.		
8	Sample Pressure:	□ Alternative Fuel □ Source Anal	lysis
	Sample Type:	Alternative	
副務局	Wellhead Summerer DNNIS MOL	and from the source indicated above.	
	Sampled By: Who declares that this sample was obtain	ANALYSIS	_
	Comments: EXTEPARA	p	013/
A SHEET MAN	ATTP: BOD GUM		Curi
MOS MARKET STREET	4411		

LAFAYETTE AREA LABORATORY

4790 N.E. EVANGELINE THRUWAY CARENCRO, LA 70520 PHONE (337) 896-3055 FAX (337) 896-3077

Certificate of Analysis:

13070241-001A

Company:

Gas Analytical Services

Well:

513173 OXF 160 Pad

Field:

EQT Production

Sample of:

Liquid-Spot 407 @ N.G.

Conditions: Sampled by:

RM-GAS

Sample date: Remarks:

7/16/2013 Cylinder No.: GAS

Remarks:

For:

Gas Analytical Services

Alan Bali

PO Box 1028

Bridgeport, WV, 26330

Report Date:

8/1/2013

Analysis: (GPA 2186M)	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %
Nitrogen	0.000	28.013	0.000	0.8094	0.000
Methane	11.209	16.043	1.819	0.3000	4.208
Carbon Dioxide	0.077	44.010	0.034	0.8180	0.029
Ethane	8.553	30.070	2.602	0.3562	5.064
Propane	7.326	44.097	3.268	0.5070	4.468
Iso-butane	1.920	58.123	1.129	0.5629	1.391
N-butane	5.327	58.123	3.132	0.5840	3.720
Iso-pentane	3.053	72.150	2.228	0.6244	2.475
N-pentane	3.803	72.150	2.776	0.6311	3.051
i-Hexanes	3.444	86.177	2.968	0.6795	3.109
n-Hexane	3.420	85.701	2.983	0.6640	3.096
2,2,4 trimethylpentane	0.024	114.231	0.028	0.6967	0.028
Benzene	0.136	78.114	0.091	0.8846	0.084
Heptanes	11.451	98.096	11.403	0.7017	11.277
Toluene	0.727	92.141	0.580	0.8719	0.542
Octanes	10.496	107.788	11.657	0.7511	10.759
E-benzene	0.112	106.167	0.050	0.8718	0.096
M-,O-,P-xylene	1.258	106.167	1.348	0.8731	1.082
Nonanes	7.432	122.846	9.540	0.7596	8.810
Decanes Plus	20.232	206.984	42.364	0.8004	36.711
	100.000	3.	100.000		100.000

Calculated Values	Total Sample	Decanes Plus
Specific Gravity at 60 °F	0.6936	0.8004
Api Gravity at 60 °F	72.508	45.286
Molecular Weight	98.853	206.984
Pounds per Gallon (in Vacuum)	5.783	6.673
Pounds per Gallon (in Air)	5.777	6.666
Cu. Ft. Vapor per Gallon @ 14.73 psia	22.251	12.207

Southern Petroleum Laboratories, Inc.

4790 N.E. EVANGELINE THRUWAY CARENCRO, LA 70520 PHONE (337) 896-3055 FAX (337) 896-3077

Certificate of Analysis: 13070241-001A

Company:

Gas Analytical Services

For:

Gas Analytical Services

Well:

513173 OXF 160 Pad

Alan Ball

Field:

EQT Production

Sample of:

Liquid-Spot

PO Box 1028

Conditions:

407 @ N.G.

Bridgeport, WV, 26330

Sampled by:

RM-GAS

Report Date:

8/1/2013

Sample date:

7/16/2013

Remarks: Remarks:

Cylinder No.: GAS

Analysis: (GPA 2103M)	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %
Nitrogen	0.000	28.013	0.000	0.8094	0.000
Methane	11.209	16.043	1.819	0.3000	4.208
Carbon Dioxide	0.077	44.010	0.034	0.8180	0.029
Ethane	8.553	30.070	2.602	0.3562	5.064
Propane	7.326	44.097	3.268	0.5070	4.468
Iso-butane	1.920	58.123	1.129	0.5629	1.391
N-butane	5.327	58.123	3.132	0.5840	3.720
Iso-pentane	3.053	72.150	2.228	0.6244	2.475
N-pentane	3.803	72.150	2.776	0.6311	3.051
Hexanes	6.864	85.701	5.951	0.6653	6.205
Heptanes Plus	51.868	98.096	77.061	0.7017	69.389
	100.000	:	100.000		100.000

Calculated Values	Total Sample	Heptanes Plus
Specific Crowity at 60 95	0.6036	0.7720
Specific Gravity at 60 °F	0.6936	0.7720
Api Gravity at 60 °F	72.508	51.783
Molecular Weight	98.853	146.867
Pounds per Gallon (in Vacuum)	5.783	6.437
Pounds per Gallon (in Air)	5.777	6.430
Cu. Ft. Vapor per Gallon @ 14.73 psia	22.251	16.670
Standing-Katz Density (lb. / ft ³)		

Southern Petroleum Laboratories, Inc.

Certificate of Analysis

Number: 2030-13070241-001A

Carencro Laboratory
4790 NE Evangeline Thruway
Carencro, LA 70520

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Station Name: 513173 OXF 160 Pad

Station Location: EQT Production Sample Point: Wellhead Cylinder No: GAS Sampled By:

RM-GAS

Sample Of:

Liquid Spot

July 31, 2013

Sample Date:

07/16/2013 09:15

Sample Conditions: 407 psig

Analytical Data

Test	Method	Result	Units	Detection Limit	Lab Tech.	Analysis Date
Color Visual	Proprietary	L STRAW			AR	07/30/2013
API Gravity @ 60° F	ASTM D-5002	60.54	<u> </u>		AR	07/30/2013
Specific Gravity @ 60/60° F	ASTM D-5002	0.7368			AR	07/30/2013
Density @ 60° F	ASTM D-5002	0.7361	g/ml		AR	07/30/2013
Shrinkage Factor	Proprietary	0.8882			AR	07/30/2013
Flash Factor	Proprietary	252.7311 Ci	u. Ft./S.T. Bbl		AR	07/30/2013

Gas Analytical Services, Inc.

P.O. Box 1028, Bridgeport, WV 26330 205 Water Street, Stonewood, WV 26301 (304) 623-0020 fax: (304) 624-8076 email: lab@gasana.com

Referred to: Southern Petroleum Labs

4790 NE Evangeline Thruway Carencro, LA 70520 attn: Patti Petro

Date: 7/16/2013

Testing Requested

** SCF Base Conditions: P_b 14.73 psia / T_b: 60 Df

	Gas	Dewpoint Temperature																	
	Hydrocarbon	C1C10 Dewpoint															<	/	
Extended	Hydrocarbon	C1C10	(GPA-2286)	×															
	Total Sulfur		(GPA-2199)																
	Sulfur	Speciation	(GPA-2199)																
	Date of	Collection	- 1	7/16/2013	9.9		111		111	and the same of th	111		Ш						
	Location			513173 Oxford 160 Pad															
	Client			EQT Production						160									
			-	-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16

Please email results to: lab@gasana.com

Alan Ball, Lab Technician Stonewood, WV Laboratory Submitted by:

Received by

ig .	The second secon
Gas Analytical Services Telephone: 304-623-0020 205 Water Street Stonewood, WV 26301	Time of Collection: 7-16-13 Time of Collection: 9:15 Am Meter ID Number: 5/3/73
Company Name:	11.000
Sample Source: 5/3/7	Analysis Type
Sample Pressure: 407	psi. Standard Extended
	Sample Ster Meter
Sampled By: Rowle MonRo Who declares that this sample was ob	otained from the source indicated above.
Comments: SEND RESU	ilts To Fil Sciullo,
REGINA HENRY, MICH	hael Hodge

1307 6241-00 1A

ATTACHMENT U

Emission Summary Sheet

ATTACHMENT U – FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Use extra pages if necessary.

Emission	N	O _x	C	CO	VO)C	S	O_2	PN	I_{10}	PM	1 _{2.5}		CH ₄	GHG	(CO ₂ e)
Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001 (S013- S018, S012, C001)	1.15	5.03	0.96	4.22	1.16	1.63	0.01	0.03	0.09	0.38	0.09	0.38	0.21	0.92	1,376.36	6,028.45
C002 (S013- S018, S012, C002)	1.89	8.28	1.59	6.95	1.16	1.63	0.01	0.05	0.14	0.63	0.14	0.63	0.21	0.92	2,261.35	9,904.73
E005 (S005)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E- 04	3.9E- 03	0.01	0.05	0.01	0.05	0.00	0.01	180.18	789.20
E006 (S006)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E- 04	3.9E- 03	0.01	0.05	0.01	0.05	0.00	0.01	180.18	789.20
E007 (S007)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E- 04	3.9E- 03	0.01	0.05	0.01	0.05	0.00	0.01	180.18	789.20
E008	0.15	0.64	0.12	0.54	0.01	0.04	8.8E- 04	3.9E- 03	0.01	0.05	0.01	0.05	0.00	0.01	180.18	789.20
E009	1.2E- 03	0.01	1.0E- 03	4.5E- 03	6.8E- 05	3.0E- 04	7.4E- 06	3.2E- 04	9.4E- 05	4.1E- 04	9.4E- 05	4.1E- 04	0.00	0.00	1.52	6.64
E010	1.2E- 03	0.01	1.0E- 03	4.5E- 03	6.8E- 05	3.0E- 04	7.4E- 06	3.2E- 04	9.4E- 05	4.1E- 04	9.4E- 05	4.1E- 04	0.00	0.00	1.52	6.64
E019 (S019)	0.29	1.28	0.25	1.08	0.02	0.07	1.8E- 03	7.7E- 03	0.02	0.10	0.02	0.10	0.01	0.03	360.36	1,578.39
E020 (S020)	0.29	1.28	0.25	1.08	0.02	0.07	1.8E- 03	7.7E- 03	0.02	0.10	0.02	0.10	0.01	0.03	360.36	1,578.39
E021 (S021)	0.29	1.28	0.25	1.08	0.02	0.07	1.8E- 03	7.7E- 03	0.02	0.10	0.02	0.10	0.01	0.03	360.36	1,578.39
E022 (S022)	0.29	1.28	0.25	1.08	0.02	0.07	1.8E- 03	7.7E- 03	0.02	0.10	0.02	0.10	0.01	0.03	360.36	1,578.39
E023 (S023)	0.10	0.42	0.08	0.35	0.01	0.02	5.7E- 04	2.5E- 03	0.01	0.03	0.01	0.03	0.00	0.01	117.12	512.98
E011 (S011)					0.06	0.24							0.02	0.09	0.53	2.33

E024 (S024)	0.61	2.66	1.21	5.31	0.47	2.04	0.00	0.01	0.04	0.17	0.04	0.17	0.00	0.02	316.12	1,384.59
E012 (S012)					36.13	9.39										
Fugitives						20.64								12.82		357.00
Haul Roads										4.72		0.47				
Facility Total	5.50	24.09	5.32	23.32	39.09	36.01	0.03	0.13	0.41	6.53	0.41	2.27	0.49	14.96	6,236.69	27,673.70
Facility Total (excl. fugitives)	5.50	24.09	5.32	23.32	39.09	15.37	0.03	0.13	0.41	1.80	0.41	1.80	0.49	2.14	6.236.69	27,316.71

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT U – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Use extra pages if necessary.

					1 0									
Emission Point ID#	Formaldehyde		Ben	zene	Toli	uene	Ethylb	enzene	Xyl	enes	Не	exane	Total	HAPs
Emission Form 1D#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001 (S013-S018, S012, C001)			1.1E-03	1.2E-02	1.7E-03	4.3E-03	8.0E-05	2.3E-03	8.8E-04	2.3E-03	0.02	0.03	0.03	0.04
C002 (S013-S018, S012, C002)			1.1E-03	1.2E-02	1.7E-03	4.3E-03	8.0E-05	2.3E-03	8.8E-04	2.3E-03	0.02	0.03	0.03	0.04
E005 (S005)	1.1E- 04	4.8E- 04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E- 03	0.01	2.8E- 03	0.01
E006 (S006)	1.1E- 04	4.8E- 04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E- 03	0.01	2.8E- 03	0.01
E007 (S007)	1.1E- 04	4.8E- 04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E- 03	0.01	2.8E- 03	0.01
E008 (S008)	1.1E- 04	4.8E- 04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E- 03	0.01	2.8E- 03	0.01
E009 (S009)	9.3E- 07	4.1E- 06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E- 05	9.7E-05	2.3E- 05	1.0E- 04
E010 (S010)	9.3E- 07	4.1E- 06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E- 05	9.7E-05	2.3E- 05	1.0E- 04
E019 (S019)	2.2E- 04	9.6E- 04	6.2E-06	2.7E-05	1.0E-05	4.4E-05					5.3E- 02	0.02	5.5E- 03	0.02
E020 (S020)	2.2E- 04	9.6E- 04	6.2E-06	2.7E-05	1.0E-05	4.4E-05					5.3E- 02	0.02	5.5E- 03	0.02
E021 (S021)	2.2E- 04	9.6E- 04	6.2E-06	2.7E-05	1.0E-05	4.4E-05					5.3E- 02	0.02	5.5E- 03	0.02
E022 (S022)	2.2E- 04	9.6E- 04	6.2E-06	2.7E-05	1.0E-05	4.4E-05					5.3E- 02	0.02	5.5E- 03	0.02
E023 (S023)	7.1E- 05	3.1E- 04	2.0E-06	8.8E-06	3.2E-06	1.4E-05					1.7E- 03	0.01	1.8E- 03	0.01
E011 (S011)			0.0E+00	1.0E- 03	0.0E+00	1.0E- 03	3.0E- 03							
E024 (S024)	0.04	0.18	3.2E-03	1.4E-02	1.1E-03	5.0E-03	5.1E-05	2.2E-04	4.0E-04	1.7E-03			6.6E- 02	2.9E- 01
E012 (S012)			0.03	0.01	0.03	0.01	1.4E-03	3.7E-04	1.6E-02	4.1E-03	0.66	0.17	0.83	0.22
Fugitives				0.01		0.02		0.0E+00		0.01		0.35		0.64

Haul Roads														
Facility Total	0.04	0.19	0.03	0.03	0.04	0.04	1.7E-03	1.0E-03	0.02	0.02	0.74	0.73	0.99	1.39
Facility Total (excl. fugitives)	0.04	0.19	3.2E-02	0.03	3.7E-02	2.2E-02	1.7E-03	1.0E-03	1.8E-02	1.1E-02	0.74	0.38	0.99	0.75

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT V

Class I Legal Advertisement

ATTACHMENT V – CLASS I LEGAL ADVERTISEMENT

Publication of a proper Class I legal advertisement is a requirement of the G70-D registration process. In the event the applicant's legal advertisement fails to follow the requirements of 45CSR13, Section 8 or the requirements of Chapter 59, Article 3, of the West Virginia Code, the application will be considered incomplete and no further review of the application will occur until this is corrected.

The applicant, utilizing the format for the Class I legal advertisement example provided on the following page, shall have the legal advertisement appear a minimum of one (1) day in the newspaper most commonly read in the area where the facility exists or will be constructed. The notice must be published no earlier than five (5) working days of receipt by this office of your application. The original affidavit of publication must be received by this office no later than the last day of the public comment period.

The advertisement shall contain, at a minimum, the name of the applicant, the type and location of the source, the type and amount of air pollutants that will be discharged (excluding fugitive emissions), the nature of the permit being sought, the proposed start-up date for the source, and a contact telephone number for more information.

The location of the source should be as specific as possible starting with: 1.) the street address of the source; 2.) the nearest street or road; 3.) the nearest town or unincorporated area, 4.) the county, and 5.) latitude and longitude coordinates in decimal format.

Types and amounts of pollutants discharged **must include** all regulated pollutants (Nitrogen Oxides, Carbon Monoxide, Particulate Matter-2.5, Particulate Matter-10, Volatile Organic Compounds, Sulfur Dioxide, Carbon Dioxide Equivalents, Methane, Formaldehyde, Benzene, Toluene, Ethylbenzene, Xylenes, Hexane, Total Hazardous Air Pollutants and their potential to emit or the permit level being sought in units of tons per year.

In the event the 30th day is a Saturday, Sunday, or legal holiday, the comment period will be extended until 5:00 p.m. on the following regularly scheduled business day.

A list of qualified newspapers that are eligible to publish legal ads may be found:

http://www.sos.wv.gov/elections/resource/Documents/Qualified%20Newspapers.pdf

RECOMMENDED PUBLIC NOTICE TEMPLATE

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-D General Permit Registration for an existing natural gas production facility OXF-160 located on Upper Run Road, near Oxford, in Doddridge County, West Virginia. The latitude and longitude coordinates are: 39.18169 N, -80.79904 W.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Pollutant	Emissions in tpy (tons per year)
NOx	24.09
СО	23.32
VOC	15.37
SO ₂	0.13
PM	6.53
Formaldehyde	0.19
Benzene	0.03
Toluene	0.04
Ethylbenzene	0.001
Xylene	0.02
n-Hexane	0.73
Total HAPs	1.39
Carbon Dioxide Equivalent (CO₂e)	s 26,637.31

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated this the (Day) day of (Month), 2016.

By: EQT Production Company Mike Gavin, Vice President 625 Liberty Ave Suite 1700 Pittsburgh, PA 15222

ATTACHMENT W

General Permit Registration Application Fee