SWN PRODUCTION COMPANY, LLC

SAMUEL HUBBARD PAD

CLASS I ADMINISTRATIVE UPDATE APPLICATION

SUBMITTED TO WVDEP DIVISION OF AIR QUALITY NOVEMBER 2016

TABLE OF CONTENTS

TABLE OF CONTEN	тѕі
INTRODUCTION	
Equipment Desc	ription1
Proposed Emissi	ons1
WVDEP APPLICATI	ON FOR NSR PERMIT
ATTACHMENT A:	BUSINESS REGISTRATION CERTIFICATE
ATTACHMENT B:	MAPS10
ATTACHMENT C:	INSTALLATION/START-UP SCHEDULE12
ATTACHMENT D:	REGULATORY DISCUSSION
ATTACHMENT E:	PLOT PLAN
ATTACHMENT F:	PROCESS FLOW DIAGRAM
ATTACHMENT G:	PROCESS DESCRIPTION
ATTACHMENT I:	EMISSION UNITS TABLE
ATTACHMENT J:	EMISSION POINTS DATA SUMMARY SHEET24
ATTACHMENT K:	FUGITIVE EMISSIONS DATA SUMMARY SHEET
ATTACHMENT L:	EMISSION UNIT DATA SHEETS
ATTACHMENT M:	AIR POLLUTION CONTROL DEVICE SHEET
ATTACHMENT N:	SUPPORTING EMISSIONS CALCULATIONS65
APPENDIX A:	SUPPORT DOCUMENTS

INTRODUCTION

SWN Production Company, LLC (SWN), submits the enclosed application for a Class I Update to Permit No. R13-2983B. SWN proposes to remove the existing permitted 23.6-hp Kubota DG972-E2 flash gas compressor engine (EU-ENG1) and revise tank emissions. As a result of these changes, truck loading, combustor, fugitive, and haulroad emissions have also been updated. This project involves the removal of equipment and a decrease in emissions; therefore, it qualifies as a Class I Administrative Update.

Equipment Description

Permitted and proposed equipment includes two (2) 1.0-mmBtu/hr natural gas-fired GPU burners (EU-GPU1 and EU-GPU2), one (1) 0.5-mmBtu/hr natural gas-fired heater treater (EU-HT1), two (2) 1.5-mmBtu/hr line heaters (EU-LH1 and EU-LH2), six (6) 400-bbl condensate storage tanks (collectively known as EU-TANKS-COND), six (6) 400-bbl produced water storage tanks (collectively known as EU-TANKS-PW), condensate truck loading (EU-LOAD-COND), produced water truck loading (EU-LOAD-PW), one (1) 15.0-mmBtu/hr vapor combustor (APC-COMB-TKLD) with one (1) 50-SCFH natural gas-fired pilot (EU-PILOT), associated fugitive emissions (EU-FUG), and fugitive haul road emissions (EU-HR).

Note that other small storage tanks may be present on site (i.e., methanol, lube oil) but are considered de minimis sources per Table 45-13B and are not addressed further in this application.

Proposed Emissions

Emissions calculations for the project are presented in Attachment N. All other equipment will remain as permitted and are not addressed further in this application.

Condensate tank emissions were calculated in the EPA TANKS 4.0.9d model using Gasoline RVP 15 as the tank contents. Although produced water storage tanks contain primarily water, a profile was created in EPA TANKS 4.0.9d assuming 1% of the total throughput as condensate and 99% as water to provide a conservative emissions estimate of the trace hydrocarbons that may be entrained in the water. Flashing emissions were calculated using ProMax process simulation software. Condensate loading has been calculated using the properties from EPA TANKS 4.0.9d and process simulation. Tank emissions are routed to a vapor combustor with 100% capture efficiency and 98% destruction efficiency.

Fugitive emissions were calculated with a component count by equipment type from a similar facility, and representative extended gas and liquids analyses. Fugitive haul road emissions were calculated using EPA/AP-42 methodologies.

Greenhouse gas emissions were calculated with the latest EPA factors and manufacturer data when available. Documents used as references for the emissions calculations, including AP-42 and EPA emission factor references, gas and liquids analyses, process simulation results, and EPA TANKS 4.0.9d Emissions Report are included in Appendix A.

The following changes are included in this application:

- One (1) 23.6-hp Kubota DG972 compressor engine that was previously authorized has been removed from the equipment representation.
- The condensate throughput estimate has been revised from 150 bbl/d to 120 bbl/d.
- The produced water throughput estimate has been revised from 50 bbl/d to 9 bbl/d.
- The condensate flash emission factor has been revised from 8.64 lb/bbl to 23.52 lb/bbl based on an updated process simulation report.
- The produced water flash emission factor has been revised from 0.01 lb/bbl to 0.0262 lb/bbl based on an updated process simulation report.
- The tank vapor capture efficiency has been revised from 98% to 100%.
- Truck loading emissions have been revised based on the change in condensate and produced water composition and throughput.
- Fugitive component counts have been revised based on the equipment changes.
- Fugitive haulroad estimates have been revised based on the change in condensate and produced water throughput.

WVDEP APPLICATION FOR NSR PERMIT

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALIT 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.dep.wv.gov/daq			TLE V PE	TFOR NSR PERMIT AND RMIT REVISION TIONAL)			
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF		PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY)					
				—			
	E-FACT			ED, INCLUDE TITLE V REVISION NT S TO THIS APPLICATION			
FOR TITLE V FACILITIES ONLY: Please refer to "Title (Appendix A, "Title V Permit Revision Flowchart") an							
Se	ection	I. General					
 Name of applicant (as registered with the WV Secre SWN Production Company, LLC 	etary of Si	tate's Office):	2. Federal 26-4388	Employer ID No. <i>(FEIN):</i> 727			
3. Name of facility (if different from above):			4. The applicant is the:				
Samuel Hubbard Pad	<u> </u>		OWNER OPERATOR BOTH				
5A. Applicant's mailing address: 10000 Energy Drive Spring, TX 77389		5B. Facility's present physical address: Brooke County, West Virginia – near the town of Wellsburg					
 6. West Virginia Business Registration. Is the application of the Certificate of Incorporation of the Certificate of Incorporation of the Certificate of Incorporation of the Certificate of Authority amendments or other Business Certificate as Attace 	oration/C n Certific ty/Autho	Drganization/Limi ate as Attachmen rity of L.L.C./Reg	ted Partners at A.	hip (one page) including any name			
7. If applicant is a subsidiary corporation, please provid	le the nar	me of parent corpo	ration: South	western Energy			
8. Does the applicant own, lease, have an option to buy	y or other	wise have control	of the propos	ed site? 🛛 YES 🗌 NO			
 If YES, please explain: SWN is leasing the la 	and on wh	nich the site is cons	structed				
 If NO, you are not eligible for a permit for this source 	ce.						
 9. Type of plant or facility (stationary source) to be co administratively updated or temporarily permitte crusher, etc.): Oil and natural gas production well pad 							
11A. DAQ Plant ID No. (for existing facilities only): 009-00106	a	ist all current 45CS associated with this 213-2983B	SR13 and 450 process (for	CSR30 (Title V) permit numbers existing facilities only):			

All of the required forms and additional information can be	found under the Permitting Section of D	AQ's website, or requested by phone.								
12A.										
 For Modifications, Administrative Updates or Tempresent location of the facility from the nearest state 		please provide directions to the								
For Construction or Relocation permits , please p road. Include a MAP as Attachment B .	rovide directions to the proposed new s	site location from the nearest state								
From I-70 take exit 1A to SR-2 North. Travel SR-2 North 3.1 miles on SR-27 to CR-18 ,(North View Rd), and turn	n for 15.7 miles to SR-27, (10 St - Was left on CR-18. Travel 0.3 mile to access	hington Pike), and turn right. Travel road on right.								
12B. New site address (if applicable):	12C. Nearest city or town:	12D. County:								
364 North View Road	Wellsburg	Brooke								
12.E. UTM Northing (KM): 4,459.740	12F. UTM Easting (KM): 538.35053	12G. UTM Zone: 17T								
13. Briefly describe the proposed change(s) at the facilit With this application, SWN requests to remove one engi combustor, fugitive, and haulroad emissions have also be	ne and revise tank emissions. As a reseen updated.	sult of these changes, truck loading,								
	 14A. Provide the date of anticipated installation or change: Immediately upon permit issuance If this is an After-The-Fact permit application, provide the date upon which the proposed change did happen: / / 14B. Date of anticipated Start-Up if a permit is granted: N/A – Existing sources subject of permit action 									
14C. Provide a Schedule of the planned Installation of/ application as Attachment C (if more than one unit	•	units proposed in this permit								
15. Provide maximum projected Operating Schedule of Hours Per Day 24 Days Per Week	activity/activities outlined in this applica 7 Weeks Per Year 52	ation:								
16. Is demolition or physical renovation at an existing fac	cility involved? 🗌 YES 🛛 🕅 NO									
17. Risk Management Plans. If this facility is subject to	112(r) of the 1990 CAAA, or will becom	ne subject due to proposed								
changes (for applicability help see www.epa.gov/cepp	o), submit your Risk Management Pla	n (RMP) to U. S. EPA Region III.								
18. Regulatory Discussion. List all Federal and State a	ir pollution control regulations that you	believe are applicable to the								
proposed process (if known). A list of possible applica	ble requirements is also included in Att	achment S of this application								
(Title V Permit Revision Information). Discuss applica	bility and proposed demonstration(s) of	compliance (if known). Provide this								
information as Attachment D.										
Section II. Additional atta	achments and supporting d	ocuments.								
 Include a check payable to WVDEP – Division of Air 45CSR13). 	Quality with the appropriate applicatior	1 fee (per 45CSR22 and								
20. Include a Table of Contents as the first page of you	r application package.									
 Provide a Plot Plan, e.g. scaled map(s) and/or sketc source(s) is or is to be located as Attachment E (Re 		rty on which the stationary								
 Indicate the location of the nearest occupied structure 	(e.g. church, school, business, residen	ce).								
22. Provide a Detailed Process Flow Diagram(s) show device as Attachment F.	ving each proposed or modified emissio	ns unit, emission point and control								
23. Provide a Process Description as Attachment G.										
 Also describe and quantify to the extent possible a 										
All of the required forms and additional information can be	found under the Permitting Section of DA	AQ's website, or requested by phone.								
24. Provide Material Safety Data Sheets (MSDS) for al	I materials processed, used or produce	d as Attachment H.								
- For chemical processes, provide a MSDS for each co	mpound emitted to the air.									

25. Fill out the Emission Units Table a	Ind provide it as Attachment I.							
26. Fill out the Emission Points Data S	Summary Sheet (Table 1 and Ta	ble 2) and provide it as Attachment J.						
27. Fill out the Fugitive Emissions Dat	a Summary Sheet and provide it	as Attachment K.						
28. Check all applicable Emissions Un	it Data Sheets listed below:							
Bulk Liquid Transfer Operations	🛛 Haul Road Emissions	Quarry						
Chemical Processes	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage						
Concrete Batch Plant	Incinerator	Facilities						
Grey Iron and Steel Foundry								
General Emission Unit, specify:								
Fill out and provide the Emissions Unit								
29. Check all applicable Air Pollution C	control Device Sheets listed belc							
Absorption Systems	Baghouse	☐ Flare (VAPOR COMBUSTOR)						
Adsorption Systems	Condenser	Mechanical Collector						
Afterburner	Electrostatic Precipita	tor Uvet Collecting System						
Other Collectors, specify								
Fill out and provide the Air Pollution Co	ntrol Device Sheet(s) as Attach	ment M.						
30. Provide all Supporting Emissions Items 28 through 31.	Calculations as Attachment N, o	or attach the calculations directly to the forms listed in						
	e compliance with the proposed er	proposed monitoring, recordkeeping, reporting and missions limits and operating parameters in this permit						
	nay not be able to accept all measu	ther or not the applicant chooses to propose such ures proposed by the applicant. If none of these plans de them in the permit.						
32. Public Notice. At the time that the	application is submitted, place a	Class I Legal Advertisement in a newspaper of general						
circulation in the area where the sou	urce is or will be located (See 45C	SR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>						
Advertisement for details). Please	submit the Affidavit of Publicati	on as Attachment P immediately upon receipt.						
33. Business Confidentiality Claims.	Does this application include con	idential information (per 45CSR31)?						
	⊠ NO							
	ding the criteria under 45CSR§31-	mitted as confidential and provide justification for each 4.1, and in accordance with the DAQ's <i>"Precautionary</i> <i>Instructions</i> as Attachment Q.						
S	ection III. Certification of	of Information						
34. Authority/Delegation of Authority. Check applicable Authority Form b		ther than the responsible official signs the application.						
Authority of Corporation or Other Bus	iness Entity	Authority of Partnership						
Authority of Governmental Agency		Authority of Limited Partnership						
Submit completed and signed Authority	/ Form as Attachment R.							

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

35A. **Certification of Information.** To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

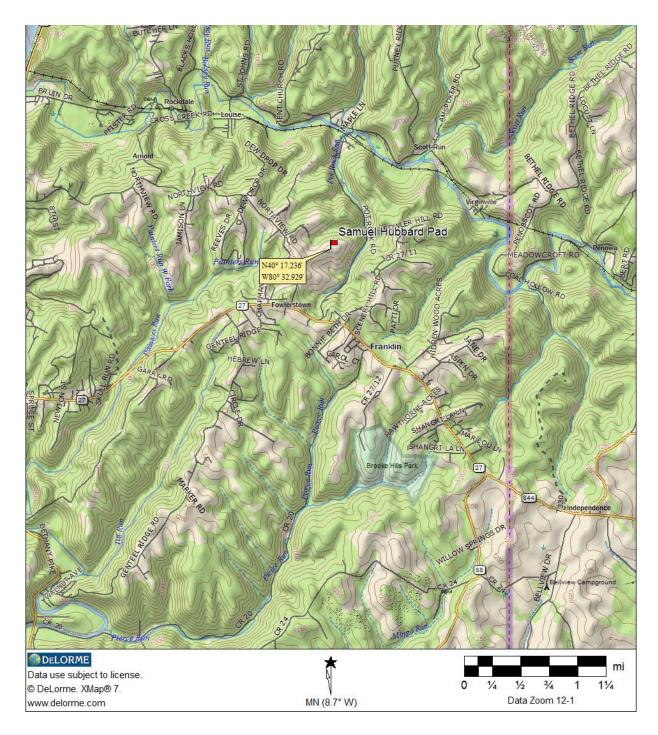
SIGNATURE Calla Contraction (Please)	DATE: <u>12-14-16</u> (Please use blue ink)	
35B. Printed name of signee: Carla Suszkows	ki	35C. Title: P.E., Regulatory Manager
35D. E-mail: Carla_Suszkowski@SWN.com	36E. Phone: 832-796-1000	36F. FAX: 405-849-3102
36A. Printed name of contact person (if differe	nt from above):	36B. Title:
36C. E-mail:	36D. Phone:	36E. FAX:

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDE	D WITH THIS PERMIT APPLICATION:
	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information Application with the signature(s) to the DAQ, Permitting Section, at the application. Please DO NOT fax permit applications.
FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:	
Forward 1 copy of the application to the Title V Permitting	g Group and:
For Title V Administrative Amendments:	
NSR permit writer should notify Title V permit write	er of draft permit,
For Title V Minor Modifications:	
Title V permit writer should send appropriate notifi	ication to EPA and affected states within 5 days of receipt,
NCD normit writer abould notify Title V normit write	ar of droft a avmit

NSR permit writer should notify Title V permit writer of draft permit.

□ For Title V Significant Modifications processed in parallel with NSR Permit revision:

- □ NSR permit writer should notify a Title V permit writer of draft permit,
- Device a public notice should reference both 45CSR13 and Title V permits,


EPA has 45 day review period of a draft permit.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

ATTACHMENT A: BUSINESS REGISTRATION CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION SSUED TO SWN[®]PRODUCTION COMPANY, LLC 5400D BIG TYLER RD CHARLESTON, WV 25313-1103 RÉGISTRATION ACCOUNT NUMBE 2307-3731 is certificate is issued on: 12/8/2014 UNE This certificate, is issued by accordance:With Chapter U.I. Article 12, of the West Virginia Code in 51 -)|| 7451 The person of organization identified on this certificate is registered to conduct business in the State of West-Virginia at the location above. This certificate is not transferrable and must be displayed at the location for which issued This certificate shall be permanent until cessation of the business for, which the certificate of registratio was granted or until it is suspended, revoked or carrcelled by the Tax Commissioner. Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required. TRAVELING/STREET-VENDORS: Must carry a copy of this certificate in every Vehicle, operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia? atL006 v.4 L1180094016

ATTACHMENT B: MAPS

SWN Production Company, LLC Samuel Hubbard Pad Attachment B: Area Map November 2016

ATTACHMENT C: INSTALLATION/START-UP SCHEDULE

No new installation is proposed in this application.

ATTACHMENT D: REGULATORY DISCUSSION

<u>STATE</u>

45 CSR 13 - PERMITS FOR CONSTRUCTION, MODIFICATION, RELOCATION AND OPERATION OF STATIONARY SOURCES OF AIR POLLUTANTS, NOTIFICATION REQUIREMENTS, ADMINISTRATIVE UPDATES, TEMPORARY PERMITS, GENERAL PERMITS, AND PROCEDURES FOR EVALUATION:

Potential emissions associated with the proposed project are less than the minor source construction or modification permit thresholds of 6 pounds per hour (pph) AND 10 tons per year (tpy) of any regulated air pollutant OR 144 pounds per day (ppd) of any regulated air pollutant OR 2 pph OR 5 tpy of aggregated hazardous air pollutants (HAP) OR 45 CSR 27 toxic air pollutant (TAP) (10% increase if above BAT triggers or increase to Best Available Technology (BAT) triggers). This project results in a decrease in emissions and removal of equipment therefore it qualifies as a Class I Administrative Amendment.

45 CSR 22 - AIR QUALITY MANAGEMENT FEE PROGRAM:

The facility will be required to maintain a valid Certificate to Operate on the premises.

45 CSR 30 - REQUIREMENTS FOR OPERATING PERMITS:

Emissions from the facility do not exceed major source thresholds; therefore, this rule does not apply.

FEDERAL

40 CFR PART 60 SUBPART KB—STANDARDS OF PERFORMANCE FOR VOLATILE ORGANIC LIQUID STORAGE VESSELS (INCLUDING PETROLEUM LIQUID STORAGE VESSELS) FOR WHICH CONSTRUCTION, RECONSTRUCTION, OR MODIFICATION COMMENCED AFTER JULY 23, 1984

The affected facility to which this Subpart applies is each storage vessel with a capacity greater than or equal to 75 cubic meters (m³) that is used to store volatile organic liquids (VOL) for which construction, reconstruction, or modification is commenced after July 23, 1984. The tanks at this facility were constructed after the effective date of this Subpart but are less than 75 m³ (which equals approximately 471 bbl); therefore, this Subpart does not apply.

40 CFR PART 60 SUBPART KKK - STANDARDS OF PERFORMANCE FOR STATIONARY FOR EQUIPMENT LEAKS OF VOC FROM ONSHORE NATURAL GAS PROCESSING PLANTS:

The facility is not considered an affected source (natural gas processing plant) and is therefore not subject to this Subpart.

40 CFR PART 60 SUBPART IIII - STANDARDS OF PERFORMANCE FOR STATIONARY COMPRESSION IGNITION INTERNAL COMBUSTION ENGINES:

The facility does not contain the affected source (diesel-fired engine) and is therefore not subject to this Subpart.

40 CFR PART 60 SUBPART JJJJ - STANDARDS OF PERFORMANCE FOR STATIONARY SPARK IGNITION INTERNAL COMBUSTION ENGINES:

The facility does not contain the affected source (natural gas-fired engine) and is therefore not subject to this Subpart.

40 CFR PART 60 SUBPART OOOO - STANDARDS OF PERFORMANCE FOR CRUDE OIL AND NATURAL GAS PRODUCTION, TRANSMISSION, AND DISTRIBUTION:

The emission sources affected by this Subpart include well completions, pneumatic controllers, equipment leaks from natural gas processing plants, sweetening units at natural gas processing plants, reciprocating compressors, centrifugal compressors and storage vessels which are constructed, modified or reconstructed after August 23, 2011 and before September 18, 2015.

Pneumatic controllers affected by this Subpart include continuous bleed, natural gas-driven pneumatic controllers with a natural gas bleed rate greater than 6 SCFH. No pneumatic devices with a continuous bleed greater than 6 SCFH are installed or in service at this facility.

Storage vessels affected by this Subpart include those with VOC emissions greater than 6 TPY. Emissions from the storage vessels at this facility are less than 6 TPY each.

40 CFR PART 60 SUBPART OOOOA - STANDARDS OF PERFORMANCE FOR CRUDE OIL AND NATURAL GAS FACILITIES FOR WHICH CONSTRUCTION, MODIFICATION, OR RECONSTRUCTION COMMENCED AFTER SEPTEMBER 18, 2015:

The emission sources affected by this Subpart include well completions, centrifugal compressors, reciprocating compressors, pneumatic controllers, storage vessels, fugitive sources at well sites, fugitive sources at compressor stations, pneumatic pumps, equipment leaks from natural gas processing plants and sweetening units at natural gas processing plants

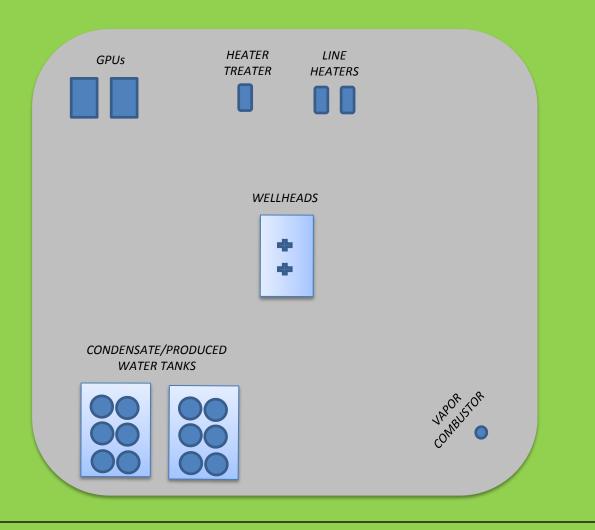
which are constructed, modified or reconstructed after September 18, 2015. The emission sources at this facility were manufactured prior to the effective date of this Subpart and are not subject.

40 CFR PART 63 SUBPART HH - NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES FROM OIL AND NATURAL GAS PRODUCTION FACILITIES:

The site is a minor (area) source of hazardous air pollutants. This Subpart applies to affected emission points that are located at facilities that are major and area sources of HAP, and either process, upgrade, or store hydrocarbon liquids prior to custody transfer or that process, upgrade, or store natural gas prior to entering the natural gas transmission and storage source category. For purposes of this Subpart natural gas enters the natural gas transmission and storage source category after the natural gas processing plant, if present. The facility is a minor (area) source of HAP; however, there is no triethylene glycol (TEG) dehydration unit present at the facility and therefore this Subpart does not apply.

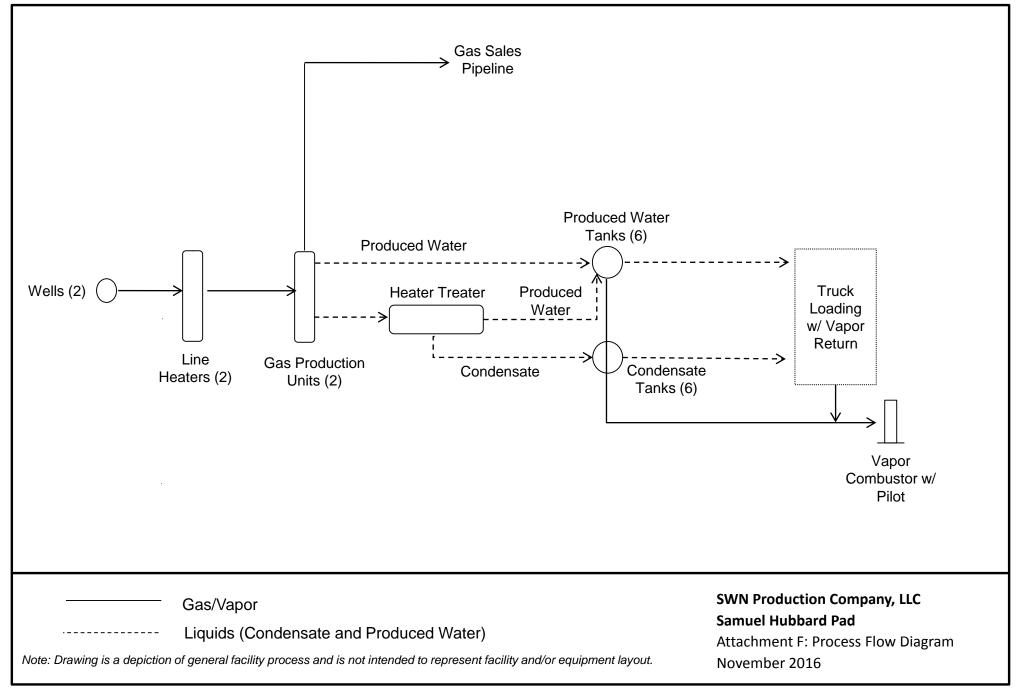
40 CFR PART 63 SUBPART HHH - NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES FROM NATURAL TRANSMISSION AND STORAGE FACILITIES:

The facility is not a natural gas transmission and storage facility and is therefore not subject to this Subpart.


40 CFR PART 63 SUBPART ZZZZ - NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES FROM STATIONARY RECIPROCATING INTERNAL COMBUSTION ENGINES - AREA SOURCE:

The original rule, published on February 26, 2004, initially affected new (constructed or reconstructed after December 19, 2002) reciprocating internal combustion engines (RICE) with a site-rating greater than 500 brake horsepower (HP) located at a major source of HAP emissions. On January 18, 2008, EPA published an amendment that promulgated standards for RICE constructed or reconstructed after June 12, 2006 with a site rating less than or equal to 500 HP located at major sources, and for engines constructed and reconstructed after June 12, 2006 located at area sources. On August 10, 2010, EPA published another amendment that promulgated standards for existing (constructed or reconstructed before June 12, 2006) RICE at area sources and existing RICE (constructed or reconstructed before June 12, 2006) with a site rating of less than or equal to 500 HP at major sources.

Owners and operators of new or reconstructed engines at area sources must meet the requirements of Subpart ZZZZ by complying with either 40 CFR Part 60 Subpart IIII (for CI engines) or 40 CFR Part 60 Subpart JJJJ (for SI engines). Based on emission calculations, this facility is a minor source of HAP. The facility does not contain any affected sources and is therefore not subject to this Subpart.


ATTACHMENT E: PLOT PLAN

Please note that the simple plot plan provided is only a representation of production/emissions equipment to be installed. Actual location specifications and equipment placement are not to scale.

<u>NOTE</u>: Image is only a representation of production/emissions equipment to be installed. Actual location specifications and equipment placement are not to scale. SWN Production Company, LLC Samuel Hubbard Pad Figure 2: Simple Plot Plan November 2016

ATTACHMENT F: PROCESS FLOW DIAGRAM

ATTACHMENT G: PROCESS DESCRIPTION

The facility is an oil and natural gas exploration and production facility, responsible for the production of condensate and natural gas. Storage of condensate and produced water will also occur on-site. A description of the facility process is as follows: Condensate, gas and water come from the two (2) wellheads to the line heaters then the production units, where the first stage of separation occurs. Produced water is sent to the produced water tanks while condensate is sent to the heater treater. Produced water from the heater treater flows into the produced water storage tanks. Condensate flows into the condensate storage tanks.

The natural gas stream exits the facility for transmission via pipeline. Condensate and produced water are transported offsite via truck. Loading emissions are controlled with vapor return, which has at least 70% capture efficiency, and are routed to the vapor combustor for at least 98% destruction efficiency. Working, breathing and flashing vapors from the condensate and produced water storage tanks are routed to the vapor combustor with a 100% capture efficiency to be burned with at least 98% combustion efficiency. The vapor combustor has one (1) natural gas-fired pilot to ensure a constant flame for combustion.

A process flow diagram reflecting facility operations is shown in Attachment F.

ATTACHMENT I: EMISSION UNITS TABLE

Attachment I Emission Units Table (includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)											
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴					
EU-ENG1	EP-ENG1	Kubota DG972-E2 Engine	2013	23.6-hp	Removal	N/A					
EU-GPU1	EP-GPU1	GPU Burner	2013	1.0- mmBtu/hr	N/A	N/A					
EU-GPU2	EP-GPU2	GPU Burner	2013	1.0- mmBtu/hr	N/A	N/A					
EU-HT1	EP-HT1	Heater Treater	2013	0.5- mmBtu/hr	N/A	N/A					
EU-LH1	EP-LH1	Line Heater	2013	1.5- mmBtu/hr	N/A	N/A					
EU-LH2	EP-LH2	Line Heater	2013	1.5- mmBtu/hr	N/A	N/A					
EU-TANKS- COND	EP-TANKS- COND	Six (6) Condensate Tanks	2013	400-bbl each	Modification	APC-COMB- TKLD					
EU-TANKS-PW	EP-TANKS-PW	Six (6) Produced Water Tanks	2013	400-bbl each	Modification	APC-COMB- TKLD					
EU-LOAD- COND	EP-LOAD- COND	Condensate Truck Loading	2013	1,839,600 gal/yr	Modification	Vapor Return and APC-COMB TKLD					
EU-LOAD- PW	EP-LOAD- PW	Produced Water Truck Loading	2013	137,970 gal/yr	Modification	Vapor Return and APC-COMB TKLD					
APC-COMB- TKLD	APC-COMB- TKLD	Vapor Combustor	2013	15.0- mmBtu/hr	Modification	N/A					
EU-PILOT	EP-PILOT	Vapor Combustor Pilot	2013	50-SCFH	N/A	N/A					
EU-FUG	EP-FUG	Fugitive Emissions	2013	N/A	Modification	N/A					
EU-HR	EP-HR	Fugitive Haul Road Emissions	2013	N/A	Modification	N/A					

³New, modification, removal
 ⁴For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

ATTACHMENT J: EMISSION POINTS DATA SUMMARY SHEET

Attachment J EMISSION POINTS DATA SUMMARY SHEET

							Table	1: Emissions	Data						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emissio n Point Type ¹	Emissio Vent Througl Poi <i>(Must r</i> <i>Emission</i> Table & P	ted h This nt <i>match</i> n Units	Control (Must Emissio	Ilution Device match on Units Plot Plan)	Emissi <i>(ch</i> e	ïme for on Unit mical ses only)	All Regulated Pollutants - Chemical Name/CAS ³ (<i>Speciate VOCs</i> & <i>HAPS</i>)	Maximum Uncon Emiss	trolled	Con	n Potential trolled sions ⁵	Emission Form or Phase (At exit condition s, Solid, Liquid or	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vap or)		
EP-GPU1	Upward vertical stack	EU- GPU1	GPU Burner	N/A	None	N/A	N/A	NOx CO VOC SO ₂ PM ₁₀ PM Total n-Hexane Formaldehyde Benzene Toluene Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 0.11\\ 0.09\\ 0.01\\ <0.01\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 116.98\\ <0.01\\ <0.01\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.48\\ 0.39\\ 0.03\\ <0.01\\ 0.03\\ 0.04\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ 512.36\\ 0.01\\ <0.01\\ <0.01\end{array}$	N/A	N/A	Gas/Vapor	O = AP-42	N/A
EP-GPU2	Upward vertical stack	EU- GPU2	GPU Burner	N/A	None	N/A	N/A	NOx CO VOC SO ₂ PM ₁₀ PM Total n-Hexane Formaldehyde Benzene Toluene Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 0.11\\ 0.09\\ 0.01\\ <0.01\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 116.98\\ <0.01\\ <0.01\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.48\\ 0.39\\ 0.03\\ <0.01\\ 0.03\\ 0.04\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 512.36\\ 0.01\\ <0.01\\ <0.01\end{array}$	N/A	N/A	Gas/Vapor	O = AP-42	N/A

EP-HT1	Upward vertical stack	EU- HT1	Heater Treater	N/A	None	N/A	N/A	NOx CO VOC SO ₂ PM ₁₀ PM Total n-Hexane Formaldehyde Benzene Toluene Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 0.06\\ 0.05\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 58.49\\ <0.01\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.26\\ 0.22\\ 0.01\\ <0.01\\ 0.02\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 256.18\\ <0.01\\ <0.01\\ <0.01\\ \end{array}$	N/A	N/A	Gas/Vapor	O = AP-42	N/A
EP-LH1	Upward vertical stack	EU-LH1	Line Heater	N/A	None	N/A	N/A	NOx CO VOC SO ₂ PM ₁₀ PM Total n-Hexane Formaldehyde Benzene Toluene Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 0.17\\ 0.14\\ 0.01\\ <0.01\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 175.47\\ <0.01\\ <0.01\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.74\\ 0.61\\ 0.04\\ <0.01\\ 0.06\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ 768.54\\ 0.01\\ <0.01\\ <0.01\end{array}$	N/A	N/A	Gas/Vapor	O = AP-42	N/A
EP-LH2	Upward vertical stack	EU-LH2	Line Heater	N/A	None	N/A	N/A	NOx CO VOC SO ₂ PM ₁₀ PM Total n-Hexane Formaldehyde Benzene Toluene Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 0.17\\ 0.14\\ 0.01\\ <0.01\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 175.47\\ <0.01\\ <0.01\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.74\\ 0.61\\ 0.04\\ <0.01\\ 0.04\\ 0.06\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ 768.54\\ 0.01\\ <0.01\\ <0.01\end{array}$	N/A	N/A	Gas/Vapor	0 = AP-42	N/A
EP- LOAD- COND*	Fugitive	EU- LOAD- COND	Condensate Truck Loading	-	Vapor Return and APC-COMB-TKLD	N/A	N/A	VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane	N/A	$\begin{array}{c} 6.21 \\ 0.34 \\ < 0.01 \\ 0.02 \\ 0.02 \\ 0.10 \\ < 0.01 \\ 0.02 \end{array}$	N/A	$\begin{array}{c} 1.86\\ 0.10\\ <0.01\\ 0.01\\ 0.01\\ 0.03\\ <0.01\\ 0.01\end{array}$	Gas/Vapor	0 = AP-42	N/A

EP- LOAD- PW*	Fugitive	EU- LOAD-PW	Produced Water Truck Loading	-	Vapor Return and APC-COMB-TKLD	N/A	N/A	VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane	N/A	$\begin{array}{c} 0.47\\ 0.03\\ <0.01\\ <0.01\\ <0.01\\ 0.01\\ <0.01\\ 0.01\\ \end{array}$	N/A	$\begin{array}{c} 0.14\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\end{array}$	Gas/Vapor	O = AP-42	N/A
APC-COMB- TKLD	Upward vertical stack(s)	EU- TANKS- COND, EU- TANKS- PW, EU- LOAD- COND, EU- LOAD- PW, APC- COMB- TKLD, EU-PILOT	Vapor Combustor	-	None	N/A	N/A	NOx CO PM VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 2.08 \\ 4.13 \\ 0.05 \\ 170.68 \\ 9.42 \\ 0.12 \\ 0.62 \\ 0.61 \\ 2.85 \\ 1,759.95 \\ 0.03 \\ < 0.01 \end{array}$	9.11 18.11 0.22 526.34 29.03 0.35 1.90 1.86 8.77 7,708.57 0.15 0.01	$\begin{array}{c} 2.08 \\ 4.13 \\ 0.05 \\ 2.40 \\ 0.13 \\ < 0.01 \\ 0.01 \\ 0.01 \\ 1.759.95 \\ 0.03 \\ < 0.01 \end{array}$	9.11 18.11 0.22 10.51 0.57 0.01 0.04 0.04 0.18 7,708.57 0.15 0.01	Gas/Vapor	O = AP-42, Mass Balance, EPA TANKS 4.0.9d/ ProMax	N/A
EP-FUG	Fugitive	EU-FUG	Fugitive Components	-	None	N/A	N/A	VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane	N/A	$\begin{array}{c} 2.59 \\ 0.12 \\ < 0.01 \\ 0.01 \\ 0.03 \\ 0.01 \\ 1.60 \end{array}$	N/A	N/A	Gas/Vapor	O = EPA-453/ R-95-017	N/A
EP-HR	Fugitive	EU-HR	Fugitive Haul Road Emissions	-	None	N/A	N/A	PM Total PM ₁₀ PM _{2.5}	0.32 0.08 0.01	1.02 0.24 0.03	N/A	N/A	Gas/Vapor	O = AP-42	N/A

* "Controlled emissions" are the 30% uncaptured emissions.

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂O, N₂O, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb

VOC/20 minute batch).

⁶ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment J EMISSION POINTS DATA SUMMARY SHEET

			Table 2: Rele	ease Parame	ter Data				
Emission	Inner Diameter		Exit Gas		Emission Point El	evation (ft)	UTM Coordinates (km)		
Point ID No. (Must match Emission Units Table)	No. (ft.) Te Must match Emission (Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting	
EP-GPU1	1.0 (est.)	500 (est.)	~992.4	~21.1	~1,193	10.75	4,459.74000	535.35053	
EP-GPU2	1.0 (est.)	500 (est.)	~992.4	~21.1	~1,193	10.75	4,459.74000	535.35053	
EP-HT1	0.7	450 (est.)	~13,067	~277.3	~1,193	10	4,459.74000	535.35053	
EP-LH1	1.0 (est.)	500 (est.)	Unknown	Unknown	~1,193	10 (est.)	4,459.74000	535.35053	
EP-LH2	1.0 (est.)	500 (est.)	Unknown	Unknown	~1,193	10 (est.)	4,459.74000	535.35053	
EP-TANKS- COND	N/A	Ambient	N/A	N/A	~1,193	20	4,459.74000	535.35053	
EP-TANKS- PW	N/A	Ambient	N/A	N/A	~1,193	20	4,459.74000	535.35053	
EP-LOAD- COND	N/A	Ambient	N/A	N/A	~1,193	3 (est.)	4,459.74000	535.35053	

Emission	Inner		Exit Gas		Emission Point El	evation (ft)	UTM Coordina	tes (km)
Point ID No. (Must match Emission Units Table)	o. (ft.) Temp. match ision (°F)		Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting
EP-LOAD-PW	N/A	Ambient	N/A	N/A	~1,193	3 (est.)	4,459.74000	535.35053
APC-COMB- TKLD	5.5	1,000 (est.)	Unknown	Unknown	~1,193	30	4,459.74000	535.35053
EP-PILOT	N/A	N/A	Unknown	Unknown	~1,193	N/A	4,459.74000	535.35053
EP-FUG	N/A	Ambient	N/A	N/A	~1,193	N/A	4,459.74000	535.35053
EP-HR	N/A	Ambient	N/A	N/A	~1,193	N/A	4,459.74000	538.35053
		Note:	In lieu of equipment UTM	coordinates, site U	TM coordinates provid	led.	•	

¹ Give at operating conditions. Include inerts. ² Release height of emissions above ground level.

Note:

**Stack parameters for GPUs, heater treater and line heaters are estimated based on typical equipment configurations but may vary.

ATTACHMENT K: FUGITIVE EMISSIONS DATA SUMMARY SHEET

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS						
1.)	Will there be haul road activities?						
	Yes No						
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.						
2.)	Will there be Storage Piles?						
	□ Yes						
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.						
3.)	Will there be Liquid Loading/Unloading Operations?						
	Yes No						
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.						
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?						
	□ Yes						
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.						
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?						
	Yes INO						
	☑ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.						
6.)	Will there be General Clean-up VOC Operations?						
	□ Yes						
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.						
7.)	Will there be any other activities that generate fugitive emissions?						
	□ Yes						
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.						
If you answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions Summary."							

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹	Maximum Potential Uncontrolled Emissions ²		Maximum Potential Controlled Emissions ³		Est. Method Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads		lb/hr	ton/yr	lb/hr	ton/yr	
Unpaved Haul Roads	PM Total PM ₁₀ PM _{2.5}	0.32 0.08 0.01	1.02 0.24 0.03	N/A	N/A	0 – AP-42 13.2.2
Storage Pile Emissions						
Loading/Unloading Operations - Condensate	VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane	Does not apply	6.21 0.34 <0.01 0.02 0.02 0.10 <0.01 0.02	Does not apply	1.86 0.10 <0.01 0.01 0.03 <0.01 0.01	0 – AP-42 5.2-4 / API 5-12
Loading/Unloading Operations – Produced Water	VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane	Does not apply	0.47 0.03 <0.01 <0.01 <0.01 0.01 <0.01 0.01	Does not apply	0.14 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0 – AP-42 5.2-4 / API 5-12
Wastewater Treatment Evaporation & Operations						

Equipment Leaks	VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane	Does not apply	2.59 0.12 <0.01 0.01 0.03 0.01 1.60	Does not apply	N/A	0 – EPA- 453/R- 95-017
General Clean-up VOC Emissions						
Other						

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Note: Greenhouse Gas (GHG) emissions were calculated using EPA Mandatory Reporting Rule and 2009 API Compendium guidance. With the exception of fugitive emissions (which are calculated by mass balance), emissions calculation methodologies are intended to calculate metric tons (tonnes) for the purposes of emissions reporting to EPA. These values were converted to tons for consistency with other pollutants.

ATTACHMENT L: EMISSION UNIT DATA SHEETS

- EUDS STORAGE TANK(S): CONDENSATE
- EUDS STORAGE TANK(S): PRODUCED WATER
- EUDS BULK LIQUID TRANSFER OPERATIONS CONDENSATE
- EUDS BULK LIQUID TRANSFER OPERATIONS PRODUCED WATER
- EUDS CHEMICAL PROCESS (LEAK SOURCES)
- EUDS FUGITIVE EMISSIONS FROM HAUL ROADS

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name
Condensate Storage	Six (6) 400-bbl Condensate Storage Tanks
3. Tank Equipment Identification No. (as assigned on Equipment List Form) EU-TANKS-COND	 Emission Point Identification No. (as assigned on Equipment List Form) EP-TANKS-COND
5. Date of Commencement of Construction (for existing	tanks) 2013
6. Type of change I New Construction I	New Stored Material 🛛 🛛 Other Tank Modification
7. Description of Tank Modification (if applicable)	
Update throughput, flash factor, and capture efficiency.	
7A. Does the tank have more than one mode of operatio (e.g. Is there more than one product stored in the tar	k?)
7B. If YES, explain and identify which mode is covere completed for each mode).	ed by this application (Note: A separate form must be
7C. Provide any limitations on source operation affecting variation, etc.):	emissions, any work practice standards (e.g. production
Not applicable	
II. TANK INFORM	IATION (required)
height.	the internal cross-sectional area multiplied by internal s (per tank)
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)
12	20
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)
19	10
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)
20	10
12. Nominal Capacity (specify barrels or gallons). This liquid levels and overflow valve heights. 16,074.56 gallons (per	is also known as "working volume" and considers design EPA TANKS 4.0.9d)

13A. Maximum annual throughput (gal/yr) 1,839,600 (Total for all tanks)	13B. Maximum daily throughput (gal/day)
1,657,000 (10tal 10t all talks)	5,040 (Total for all tanks)
	*Rolling daily throughput total not to exceed maximum annual throughput.
14. Number of Turnovers per year (annual net throughput	
114.44 (Total for all tanks,	per EPA TANKS 4.0.9d)
15. Maximum tank fill rate (gal/min) Unknown	
16. Tank fill method Submerged	Splash 🗌 Bottom Loading
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems 🛛 Does Not Apply
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
 18. Type of tank (check all that apply): ☑ Fixed Roof ☑ vertical horizontal other (describe) 	flat roof 🛛 cone roof dome roof
External Floating Roofpontoon roof	double deck roof
Domed External (or Covered) Floating Roof	
Internal Floating Roof vertical column su	
Variable Vapor Space lifter roof	
Pressurizedsphericalcylindrical Underground	
Other (describe)	
	ATION (optional if providing TANKS Summary Sheets)
Refer to enclosed TANKS Summary Sheet.	
19. Tank Shell Construction:	
Riveted Gunite lined Epoxy-coated	
20A. Shell Color 20B. Roof Colo	or 20C. Year Last Painted
21. Shell Condition (if metal and unlined):	
□ No Rust □ Light Rust □ Dense R 22A. Is the tank heated? □ YES □ NO	ust 🗌 Not applicable
22B. If YES, provide the operating temperature (°F)	
22C. If YES, please describe how heat is provided to t	ank.
23. Operating Pressure Range (psig):	
24. Complete the following section for Vertical Fixed Ro	oof Tanks Does Not Apply
24A. For dome roof, provide roof radius (ft)	
24B. For cone roof, provide slope (ft/ft)	
25. Complete the following section for Floating Roof Ta	nks Does Not Apply
25A. Year Internal Floaters Installed:	
25B.Primary Seal Type:Image: Metallic (Mechanical)(check one)Image: Vapor Mounted Resil	
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO

25D. If YES, how is the secondary	seal mounted? (che	eck one) 🗌 Sho	e Rim Other (describe):			
25E. Is the Floating Roof equipped with a weather shield?						
25F. Describe deck fittings; indicat	e the number of eac	ch type of fitting:				
	ACCESS	S НАТСН				
BOLT COVER, GASKETED:	UNBOLTED COV	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:			
AUTOMATIC GAUGE FLOAT WELL						
BOLT COVER, GASKETED:	UNBOLTED COV		UNBOLTED COVER, UNGASKETED:			
		N WELL	<u> </u>			
BUILT-UP COLUMN – SLIDING COVER, GASKETED:		IMN – SLIDING	PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:			
		RWELL	<u> </u>			
PIP COLUMN – SLIDING COVER, G			SLIDING COVER, UNGASKETED:			
	GAUGE-HATCH	/SAMPLE PORT				
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:			
	ROOF LEG OR	HANGER WELL				
WEIGHTED MECHANICAL ACTUATION, GASKETED:	WEIGHTED ACTUATION, UNG		SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)			
		BREAKER				
VACUUM BREAKER WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:						
RIM VENT						
WEIGHTED MECHANICAL ACTUAT		WEIGHTED MECHANICAL ACTUATION, UNGASKETED:				
DECK DRAIN (3-INCH DIAMETER)						
OPEN: 90% CLOSED:						
	STUB	DRAIN				
1-INCH DIAMETER:						
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)						

26. Complete the following section for Internal Floating I	Roof Tanks 🛛 Does Not Apply				
26A. Deck Type: Delted Welded					
26B. For Bolted decks, provide deck construction:					
26C. Deck seam:					
 Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide 					
Continuous sheet construction 7 feet wide					
Continuous sheet construction 5×7.5 feet wide Continuous sheet construction 5×12 feet wide					
Other (describe)					
26D. Deck seam length (ft)	26E. Area of deck (ft ²)				
For column supported tanks: 26F. Number of columns:	26G. Diameter of each column:				
	if providing TANKS Summary Sheets)				
27. Provide the city and state on which the data in this s					
Refer to enclosed TANKS Summary Sheet.					
28. Daily Average Ambient Temperature (°F)					
29. Annual Average Maximum Temperature (°F)					
30. Annual Average Minimum Temperature (°F)					
31. Average Wind Speed (miles/hr)					
32. Annual Average Solar Insulation Factor (BTU/(ft2.da	y))				
33. Atmospheric Pressure (psia)					
V. LIQUID INFORMATION (optional	if providing TANKS Summary Sheets)				
34. Average daily temperature range of bulk liquid: Re	fer to enclosed TANKS Summary Sheet.				
34A. Minimum (°F)	34B. Maximum (°F)				
35. Average operating pressure range of tank:					
35A. Minimum (psig)	35B. Maximum (psig)				
36A. Minimum Liquid Surface Temperature (°F) 36B. Corresponding Vapor Pressure (psia)					
37A. Average Liquid Surface Temperature (°F)	A. Average Liquid Surface Temperature (°F) 37B. Corresponding Vapor Pressure (psia)				
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)				
39. Provide the following for each liquid or gas to be sto	red in tank. Add additional pages if necessary.				
39A. Material Name or Composition					
39B. CAS Number					
39C. Liquid Density (lb/gal)					
39D. Liquid Molecular Weight (lb/lb-mole)					
39E. Vapor Molecular Weight (lb/lb-mole)					

Maximum Vapor Press 39F. True (psia)	sure						
39G. Reid (psia)							
Months Storage per Y	ear						
39H. From							
39I. To							
VI. EMISSIONS AND CONTROL DEVICE DATA (required)							
40. Emission Control	Devices (check as many	/ as apply):	Does No	t Apply			
Carbon Adsorp	otion ¹						
Condenser ¹							
Conservation \	/ent (psig)						
Vacuum S	Setting		Pressure Se	etting			
Emergency Re	elief Valve (psig)						
Inert Gas Blan	ket of						
Insulation of Ta	ank with						
Liquid Absorpti							
Refrigeration o							
Rupture Disc (
Vent to Incinera							
☐ Von to moment		r					
— 、	, ,		Sheet				
¹ Complete appropriate Air Pollution Control Device Sheet.							
41 Expected Emissio	41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).						
-	i			-			
41. Expected Emissio Material Name & CAS No.	n Rate (submit lest Dat Breathing Loss (lb/hr)	a or Calcula Workin Amount		or elsewhere in the ap Annual Loss (Ib/yr)	plication).		
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name
Produced Water Storage	Six (6) 400-bbl Produced Water Storage Tanks
3. Tank Equipment Identification No. (as assigned on Equipment List Form) EU-TANKS-PW	 Emission Point Identification No. (as assigned on Equipment List Form) EP-TANKS-PW
5. Date of Commencement of Construction (for existing	tanks) 2013
6. Type of change New Construction	New Stored Material 🛛 🛛 Other Tank Modification
 Description of Tank Modification (if applicable) Update throughput, flash factor, and capture efficieny. 	
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)
7B. If YES, explain and identify which mode is covere completed for each mode).	ed by this application (Note: A separate form must be
7C. Provide any limitations on source operation affecting variation, etc.):	emissions, any work practice standards (e.g. production
Not applicable	
II. TANK INFORM	ATION (required)
height.	the internal cross-sectional area multiplied by internal s (per tank)
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)
12	20
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)
19	10
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)
20	10
 Nominal Capacity (specify barrels or gallons). This liquid levels and overflow valve heights. 16,074.56 gallons (per 1) 	is also known as "working volume" and considers design EPA TANKS 4.0.9d)

13A. Maximum annual throughput (gal/yr) 137,970 (Total for all tanks)	13B. Maximum daily throughput (gal/day)
	378 (Total for all tanks)
	*Rolling daily throughput total not to exceed maximum annual throughput.
14. Number of Turnovers per year (annual net throughpu	. ,
47.68 (Total for all tanks,	per EPA TANKS 4.0.9d)
15. Maximum tank fill rate (gal/min) Unknown	
16. Tank fill method Submerged	Splash Bottom Loading
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems 🛛 Does Not Apply
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
18. Type of tank (check all that apply):	
Fixed Roof Vertical horizontal horizontal	flat roof 🛛 🖾 cone roof 🔄 dome roof
External Floating Roofpontoon roof	double deck roof
Domed External (or Covered) Floating Roof	
Internal Floating Roof vertical column su	··· <u> </u>
□ Variable Vapor Space lifter roof	
Pressurizedsphericalcylindrica	
Underground Other (describe)	
Refer to enclosed TANKS Summary Sheet.	ATION (optional if providing TANKS Summary Sheets)
19. Tank Shell Construction:	
Riveted Gunite lined Epoxy-coate	
20A. Shell Color 20B. Roof Colo	r 20C. Year Last Painted
21. Shell Condition (if metal and unlined):	
□ No Rust □ Light Rust □ Dense R 22A. Is the tank heated? □ YES □ NO	ust 🗌 Not applicable
22B. If YES, provide the operating temperature (°F)	
22C. If YES, please describe how heat is provided to t	ank.
23. Operating Pressure Range (psig):	
24. Complete the following section for Vertical Fixed Ro	of Tanks Does Not Apply
24A. For dome roof, provide roof radius (ft)	
24B. For cone roof, provide slope (ft/ft)	
25. Complete the following section for Floating Roof Ta	nks 🗌 Does Not Apply
25A. Year Internal Floaters Installed:	
25B. Primary Seal Type:	Shoe Seal
(check one) Vapor Mounted Resil	
25C. Is the Floating Roof equipped with a Secondary	Seal? YES NO

25D. If YES, how is the secondary	seal mounted? (che	eck one) 🗌 Sho	e Rim Other (describe):			
25E. Is the Floating Roof equipped with a weather shield?						
25F. Describe deck fittings; indicat	e the number of eac	ch type of fitting:				
	ACCESS	S НАТСН				
BOLT COVER, GASKETED:	UNBOLTED COV	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:			
AUTOMATIC GAUGE FLOAT WELL						
BOLT COVER, GASKETED:	UNBOLTED COV		UNBOLTED COVER, UNGASKETED:			
		N WELL	<u> </u>			
BUILT-UP COLUMN – SLIDING COVER, GASKETED:		IMN – SLIDING	PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:			
		RWELL	<u> </u>			
PIP COLUMN – SLIDING COVER, G			SLIDING COVER, UNGASKETED:			
	GAUGE-HATCH	/SAMPLE PORT				
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:			
	ROOF LEG OR	HANGER WELL				
WEIGHTED MECHANICAL ACTUATION, GASKETED:	WEIGHTED ACTUATION, UNG		SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)			
		BREAKER				
VACUUM BREAKER WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:						
RIM VENT						
WEIGHTED MECHANICAL ACTUAT		WEIGHTED MECHANICAL ACTUATION, UNGASKETED:				
DECK DRAIN (3-INCH DIAMETER)						
OPEN: 90% CLOSED:						
	STUB	DRAIN				
1-INCH DIAMETER:						
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)						

26. Complete the following section for Internal Floating I	Roof Tanks 🛛 Does Not Apply				
26A. Deck Type: Delted Welded					
26B. For Bolted decks, provide deck construction:					
26C. Deck seam:					
 Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide 					
Continuous sheet construction 7 feet wide					
Continuous sheet construction 5×7.5 feet wide Continuous sheet construction 5×12 feet wide					
Other (describe)					
26D. Deck seam length (ft)	26E. Area of deck (ft ²)				
For column supported tanks: 26F. Number of columns:	26G. Diameter of each column:				
R	if providing TANKS Summary Sheets)				
27. Provide the city and state on which the data in this s					
Refer to enclosed TANKS Summary Sheet.					
28. Daily Average Ambient Temperature (°F)					
29. Annual Average Maximum Temperature (°F)					
30. Annual Average Minimum Temperature (°F)					
31. Average Wind Speed (miles/hr)					
32. Annual Average Solar Insulation Factor (BTU/(ft2.da	y))				
33. Atmospheric Pressure (psia)					
V. LIQUID INFORMATION (optional	if providing TANKS Summary Sheets)				
34. Average daily temperature range of bulk liquid: Re	fer to enclosed TANKS Summary Sheet.				
34A. Minimum (°F)	34B. Maximum (°F)				
35. Average operating pressure range of tank:					
35A. Minimum (psig)	35B. Maximum (psig)				
36A. Minimum Liquid Surface Temperature (°F) 36B. Corresponding Vapor Pressure (psia)					
37A. Average Liquid Surface Temperature (°F)	A. Average Liquid Surface Temperature (°F) 37B. Corresponding Vapor Pressure (psia)				
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)				
39. Provide the following for each liquid or gas to be sto	red in tank. Add additional pages if necessary.				
39A. Material Name or Composition					
39B. CAS Number					
39C. Liquid Density (lb/gal)					
39D. Liquid Molecular Weight (lb/lb-mole)					
39E. Vapor Molecular Weight (lb/lb-mole)					

Maximum Vapor Pres	sure						
39F. True (psia)							
<u>39G. Reid (psia)</u> Months Storage per Y	oar						
39H. From	Cai						
39I. To							
VI. EMISSIONS AND CONTROL DEVICE DATA (required)							
40. Emission Control	Devices (check as many			· · ·			
Carbon Adsorp	otion ¹						
Condenser ¹							
Conservation \	/ent (psig)						
Vacuum S			Pressure Se	etting			
	lief Valve (psig)			0			
Inert Gas Blan	u e ,						
Insulation of Ta							
Liquid Absorpti							
Refrigeration o	, ,						
Rupture Disc (
Vent to Inciner	,						
☐ Venit to moment		r					
	· ·		Sheet				
¹ Complete appropriate Air Pollution Control Device Sheet.							
41 Expected Emissio	n Rate (submit Test Dat	a or Calcul	ations hara	or elsowhere in the an	nlication)		
-	n Rate (submit Test Dat			-	plication).		
41. Expected Emissio Material Name & CAS No.	n Rate (submit Test Dat Breathing Loss (Ib/hr)		ations here og Loss Units	or elsewhere in the ap Annual Loss (Ib/yr)	plication).		
Material Name &	Breathing Loss	Workin	ig Loss	Annual Loss			
Material Name & CAS No.	Breathing Loss	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹		

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on Equipment List Form): EU-LOAD-COND						
1. Loading Area Name: Condensate Truck Loading						
2. Type of cargo vessels accommodated at this rack or transfer point (check as many as apply):						
3. Loading Rack or Transfer Point Data:						
Number of pumps	One (1)					
Number of liquids loaded	One (1)					
Maximum number of marine vessels, tank trucks, tank cars, and/or drums loading at one time	One (1)					
4. Does ballasting of marine vessels occ	cur at this loading area?					
5. Describe cleaning location, compount transfer point:	ds and procedure for cargo vessels using this					
Point is kept clear. Scotches are provided. Lines kept in good working order and tested periodically.						
 6. Are cargo vessels pressure tested for leaks at this or any other location? Yes If YES, describe: 						
Vessel pressure tested in accordance with DOT requirements, if applicable.						

7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):						
Maximum	Maximum Jan Mar. Apr June July - Sept. Oct Dec.					
hours/day	24	24	24	24		
days/week 5 5 5 5				5		
weeks/quarter	13	13	13	13		

8. Bulk Liquid	8. Bulk Liquid Data (add pages as necessary):				
Pump ID No.		N/A			
Liquid Name		Condensate			
Max. daily throug	ghput (1000 gal/day)	5.04			
Max. annual thro	oughput (1000 gal/yr)	1,839.6			
Loading Method	1	SUB			
Max. Fill Rate (g	al/min)	125			
Average Fill Tim	e (min/loading)	~60			
Max. Bulk Liquid Temperature (°F)		50.33			
True Vapor Pres	ssure ²	7.6845			
Cargo Vessel Co	ondition ³	U			
Control Equipme	ent or Method ⁴	O = Vapor Return w/ Combustion Controls			
Minimum control	l efficiency (%)	70% Capture / 98% Combustion / 69% Overall			
Maximum Loading (lb/hr) Emission Rate		15.19			
	Annual (lb/yr)	3,720 (based on 1.86 tons/year)			
Estimation Meth	od ⁵	EPA			

¹ BF = Bottom Fill SP = Splash Fill SUB = Submerged Fill

² At maximum bulk liquid temperature

 3 B = Ballasted Vessel, C = Cleaned, U = Uncleaned (dedicated service), O = other (describe)

⁴ List as many as apply (complete and submit appropriate *Air Pollution Control Device Sheets*):CA = Carbon Adsorption
 Condensation
 Condensation
 CC = Scrubber (Absorption)CRA = Compressor-Refrigeration-Absorption
 CRC = Compression-Refrigeration-Condensation
 VB = Dedicated Vapor Balance (closed system)
 O = other (descibe)

 ⁵ EPA = EPA Emission Factor as stated in AP-42 MB = Material Balance TM = Test Measurement based upon test data submittal O = other (describe)

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING Captured loading emissions shall be routed to the vapor combustor(s). The combustor(s) shall be operated in accordance with existing permit requirements.	RECORDKEEPING As currently permitted
REPORTING As currently permitted	TESTING As currently permitted

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

 Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty Not applicable

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on Equipment List Form): EU-LOAD-PW						
1. Loading Area Name: Produced Water T	1. Loading Area Name: Produced Water Truck Loading					
2. Type of cargo vessels accommodated at this rack or transfer point (check as many as apply):						
Drums Marine Vessels	Rail Tank Cars Tank Trucks					
3. Loading Rack or Transfer Point Data:						
Number of pumps	One (1)					
Number of liquids loaded	One (1)					
Maximum number of marine vessels, tank trucks, tank cars, and/or drums loading at one time	One (1)					
4. Does ballasting of marine vessels occ	cur at this loading area?					
5. Describe cleaning location, compoun transfer point:	ds and procedure for cargo vessels using this					
Point is kept clear. Scotches are provided. I periodically.	ines kept in good working order and tested					
6. Are cargo vessels pressure tested for leaks at this or any other location?						
Vessel pressure tested in accordance with DO	OT requirements, if applicable.					

7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):							
Maximum Jan Mar. Apr June July - Sept. Oct Dec.							
hours/day	24	24	24	24			
days/week	5	5	5				
weeks/quarter	13	13	13	13			

8. Bulk Liquid	8. Bulk Liquid Data (add pages as necessary):				
Pump ID No.		N/A			
Liquid Name		Produced Water			
Max. daily throug	ghput (1000 gal/day)	0.378			
Max. annual thro	oughput (1000 gal/yr)	137.97			
Loading Method	1	SUB			
Max. Fill Rate (gal/min)		125			
Average Fill Time (min/loading)		~60			
Max. Bulk Liquid Temperature (°F)		50.33			
True Vapor Pres	ssure ²	7.6845			
Cargo Vessel Co	ondition ³	U			
Control Equipme	ent or Method ⁴	O = Vapor Return w/ Combustion Controls			
Minimum contro	l efficiency (%)	70% Capture / 98% Combustion / 69% Overall			
Maximum Loading (lb/hr) Emission Rate		15.19			
Annual (lb/yr)		279.39 (based on 0.14 tons/year)			
Estimation Meth	od ⁵	EPA			

¹ BF = Bottom Fill SP = Splash Fill SUB = Submerged Fill

² At maximum bulk liquid temperature

 3 B = Ballasted Vessel, C = Cleaned, U = Uncleaned (dedicated service), O = other (describe)

⁴ List as many as apply (complete and submit appropriate *Air Pollution Control Device Sheets*):CA = Carbon Adsorption
 Condensation
 Condensation
 CC = Scrubber (Absorption)CRA = Compressor-Refrigeration-Absorption
 CRC = Compression-Refrigeration-Condensation
 VB = Dedicated Vapor Balance (closed system)
 O = other (descibe)

 ⁵ EPA = EPA Emission Factor as stated in AP-42 MB = Material Balance TM = Test Measurement based upon test data submittal O = other (describe)

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING Captured loading emissions shall be routed to the vapor combustor(s). The combustor(s) shall be operated in accordance with existing permit requirements.	RECORDKEEPING As currently permitted
REPORTING	TESTING
As currently permitted	As currently permitted

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty Not applicable

Attachment L EMISSIONS UNIT DATA SHEET CHEMICAL PROCESS

	chemical processes please fill out t plementary forms that have been o		(see below) that apply. Please check all				
	Emergency Vent Summary Sheet						
	Chemical process area name and Components in natural gas and lig	l equipment ID number (as shown in <i>Ec</i> ht liquid service (EU-FUG)	quipment List Form)				
	Standard Industrial Classification (1311	Codes (SICs) for process(es)					
	 List raw materials and attach MSDSs Previously submitted. Natural gas and condensate 						
	List Products and Maximum Produ		1				
Des	cription and CAS Number	Maximum Hourly (lb/hr)	Maximum Annual (ton/year)				
Not a	applicable						
5.	Complete the Emergency Vent Su	ummary Sheet for all emergency relief of	devices.				
	6. Complete the Leak Source Data Sheet and describe below or attach to application the leak detection or maintenance program to minimize fugitive emissions. Include detection instruments, calibration gases or methods, planned inspection frequency, and record-keeping, and similar pertinent information. If subject to a rule requirement (e.g. 40CFR60, Subpart VV), please list those here.						
Stan prog	The facility is not a natural gas processing plant (SIC 1321) and is therefore not subject to New Source Performance Standards (NSPS) Subpart KKK or Subpart OOOO requirements for a leak detection and repair (LDAR) monitoring program.						
00	No well at the facility was completed after 9/18/2015 and the site is not subject to NSPS OOOOa LDAR for production sites.						
	. Clearly describe below or attach to application Accident Procedures to be followed in the event of an accidental spill or release.						
	In the event of an accidental spill or re immediate steps to stop the spill or re	elease, personnel will be protected, emergen elease will be implemented.	ncy response personnel will be notified and				

 sheets (MSDS) may be used) outlining the current chemical entity emitted to the air. If these composite sheet is not required. Include data such as teratogenicity, irritation, and other known or sus unknown, and provide references. 8B. Describe any health effects testing or epidemic conducted by the company or required under TS in the environment of any emission (e.g. pesticite) 9. Waste Products - Waste products status: (If 	3B. Describe any health effects testing or epidemiological studies on these compounds that are being or may be conducted by the company or required under TSCA, RCRA or other federal regulations. Discuss the persistence in the environment of any emission (e.g. pesticides, etc.).					
Hazardous Waste Section of WVDEP, OAQ at 9A. Types and amounts of wastes to be disposed:	(304) 926-3647.)					
9B. Method of disposal and location of waste disposed.	al facilities:					
Carrier:	Phone:					
9C. Check here if approved USEPA/State Hazardou						
10. Maximum and Projected Typical Operating Sche	edule for process or project as a who	ble (circle appropriate units).				
circle units: (hrs/day) (hr/batch) (day	ys), (batches/day), (batches/week)	(days/yr), (weeks/year)				
10A. Maximum						
10B. Typical						
11. Complete a Reactor Data Sheet for each reactor	or in this chemical process.					
12. Complete a Distillation Column Data Sheet for e	each distillation column in this chem	ical process.				
 Proposed Monitoring, Recordkeeping, Report Please propose monitoring, recordkeeping, and operating parameters. Please propose testing in limits. MONITORING 	reporting in order to demonstrate co					
As currently permitted	As currently permitted					
REPORTING	TESTING					
As currently permitted	As currently permitted As currently permitted					
MONITORING. Please list and describe the proces order to demonstrate compliance with the operation of						
RECORDKEEPING. Please describe the proposed recordkeeping that will accompany the monitoring.						
REPORTING. Please describe the proposed frequency of reporting of the recordkeeping.						
TESTING. Please describe any proposed emissions						
14. Describe all operating ranges and maintenance	14. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty					

Not applicable

LEAK SOURCE DATA SHEET

Source Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (days) ³	Estimated Annual Emission Rate (Ib/yr) ⁴
Pumps ⁵	light liquid VOC ^{6,7}	0	N/A	N/A	0
	heavy liquid VOC ⁸				
	Non-VOC ⁹				
Valves ¹⁰	Gas VOC	32	N/A	N/A	760
	Light Liquid VOC	61	N/A	N/A	2,860
	Heavy Liquid VOC				
	Non-VOC				
Safety Relief Valves ¹¹	Gas VOC	16	N/A	N/A	740
	Non VOC				
Open-ended Lines ¹²	VOC	0	N/A	N/A	0
	Non-VOC				
Sampling Connections ¹³	VOC	0	N/A	N/A	0
Connections	Non-VOC				
Compressors	VOC	0	N/A	N/A	0
	Non-VOC				
Flanges	VOC	133 (Gas), 238 (LL)	N/A	N/A	280 (Gas), 500 (LL)
	Non-VOC				
Other	VOC	0	N/A	N/A	0
	Non-VOC				

¹⁻¹³ See notes on the following page. Note: Component counts taken by equipment type at representative facility and made site-specific according to the number of each equipment type at this site.

Notes for Leak Source Data Sheet

- 1. For VOC sources include components on streams and equipment that contain greater than 10% w/w VOC, including feed streams, reaction/separation facilities, and product/by-product delivery lines. Do not include certain leakless equipment as defined below by category.
- By monitoring frequency, give the number of sources routinely monitored for leaks, using a portable detection device that measures concentration in ppm. Do not include monitoring by visual or soap-bubble leak detection methods. "M/Q(M)/Q/SA/A/O" means the time period between inspections as follows:

Monthly/Quarterly, with Monthly follow-up of repaired leakers/Quarterly/Semi-annual/Annually/Other (specify time period)

If source category is not monitored, a single zero in the space will suffice. For example, if 50 gas-service valves are monitored quarterly, with monthly follow-up of those repaired, 75 are monitored semi-annually, and 50 are checked bimonthly (alternate months), with non checked at any other frequency, you would put in the category "valves, gas service:" 0/50/0/75/0/50 (bimonthly).

- 3. Give the average number of days, after a leak is discovered, that an attempt will be made to repair the leak.
- 4. Note the method used: MB material balance; EE engineering estimate; EPA emission factors established by EPA (cite document used); O other method, such as in-house emission factor (specify).
- 5. Do not include in the equipment count sealless pumps (canned motor or diaphragm) or those with enclosed venting to a control device. (Emissions from vented equipment should be included in the estimates given in the Emission Points Data Sheet.)
- 6. Volatile organic compounds (VOC) means the term as defined in 40 CFR 51.100 (s).
- 7. A light liquid is defined as a fluid with vapor pressure equal to or greater than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if 20% w/w or more of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a light liquid.
- 8. A heavy liquid is defined as a fluid with a vapor pressure less than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if less than 20% w/w of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a heavy liquid.
- 9. LIST CO, H₂S, mineral acids, NO, NO₂, SO₃, etc. DO NOT LIST CO₂, H₂, H₂O, N₂, O₂, and Noble Gases.
- 10. Include all process valves whether in-line or on an open-ended line such as sample, drain and purge valves. Do not include safety-relief valves, or leakless valves such as check, diaphragm, and bellows seal valves.
- 11. Do not include a safety-relief valve if there is a rupture disk in place upstream of the valve, or if the valve vents to a control device.
- 12 Open-ended lines include purge, drain and vent lines. Do not include sampling connections, or lines sealed by plugs, caps, blinds or second valves.
- 13. Do not include closed-purge sampling connections.

Attachment L FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPF	VED HAULROADS (including all	equipmer	it tranic inv	roivea in pr	ocess, nau	i trucks, en	aloader	s, etc.)	
k =	Particle size multiplier	4.90 1.50							
s =	Silt content of road surface mate	erial (%)				3.9		3.9	
p =	Number of days per year with pr	recipitatio	on >0.01 i	in.		150		150	
ltem Numbe	LIASCRIDTION			Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maximu Trips p Year	per Device ID	Control Efficiency (%)
1	Light Vehicles	4	2	10	0.84	2	1,91	7 N/A	N/A
2	Medium Trucks	10	15	10	0.84	1	767	'N/A	N/A
3	Heavy Trucks	18	23.5	10	0.84	1	1,15	0 N/A	N/A
4									
5									
6									
7									
8									

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

Source: AP-42 Fifth Edition – 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$ Ib/Vehicle Mile Traveled (VMT)

Where:

k =	Particle size multiplier	4.90	1.50
s =	Silt content of road surface material (%)	3.9	3.9
S =	Mean vehicle speed (mph)	10	10
W =	Mean vehicle weight (tons)	13.7	13.7
w =	Mean number of wheels per vehicle	11	11
p =	Number of days per year with precipitation >0.01 in.	150	150

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: [Ib ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

SUMMARY OF UNPAVED HAULROAD EMISSIONS

	PM				PM-10			
Item No.	Uncontrolled		Controlled		Uncontrolled		Controlled	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	0.12	0.38	-	-	0.03	0.09	-	-
2	0.12	0.38	-	-	0.03	0.09	-	-
3	0.08	0.26	-	-	0.02	0.06	-	-
4								
5								
6								
7								
8								
TOTALS	0.32	1.02	-	-	0.08	0.24	-	-

Note: Minimum one-per-day average pick-up trucks and service trucks even if tanker truck not required every day. Per EPA BID calculations, all emissions based on average trips. Estimated maximum hourly, daily and yearly trips provided for information only.

FUGITIVE EMISSIONS FROM PAVED HAULROADS – Not Applicable

n = Number of traffic lanes s = Surface material silt content (%) L = Surface dust loading (lb/mile)	l =	Industrial augmentation factor (dimensionless)	
	n =	Number of traffic lanes	
L = Surface dust loading (lb/mile)	s =	Surface material silt content (%)	
	L =	Surface dust loading (lb/mile)	

INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

Item Number	Description	Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1							
2							
3							
4							
5							
6							
7							
8							

Source: AP-42 Fifth Edition – 11.2.6 Industrial Paved Roads

$$\mathsf{E} = 0.077 \times \mathsf{I} \times (4 \div \mathsf{n}) \times (\mathsf{s} \div 10) \times (\mathsf{L} \div 1000) \times (\mathsf{W} \div 3)^{0.7} =$$

lb/Vehicle Mile Traveled (VMT)

Where:

l =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface meterial silt content (%)	
L =	Surface dust loading (lb/mile)	
W =	Average vehicle weight (tons)	

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: [Ib ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

SUMMARY OF PAVED HAULROAD EMISSIONS

Itom No.	Uncon	trolled	Conti	rolled
Item No.	lb/hr	TPY	lb/hr	TPY
1				
2				
3				
4				
5				
6				
7				
8				
TOTALS				

ATTACHMENT M: AIR POLLUTION CONTROL DEVICE SHEET

APCDS – COMBUSTOR

VAPOR COMBUSTOR SPECIFICATION SHEET

Attachment M **Air Pollution Control Device Sheet** (FLARE VAPOR COMBUSTOR SYSTEM*)

Control Device ID No. (must match Emission Units Table): APC-COMB-TKLD

	Equipment	Information
1.	Manufacturer: MRW Technologies, Inc. Model No. TBF-5.5-30-147000	 Method: Elevated flare Ground flare Other Describe: Vapor Combustor
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state I	m with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.
4.	Method of system used: Not applicable	Pressure-assisted Non-assisted
5. *B	Maximum capacity of flare vapor combustor: ~102 scf/min ~6,125 scf/hr Based on 147,000 scfd	6. Dimensions of stack: Diameter 5.5 ft. Height 30 ft.
7.	Estimated combustion efficiency: (Waste gas destruction efficiency) Estimated: <u>>98%</u> Minimum guaranteed: 98%	 8. Fuel used in burners: Natural Gas Fuel Oil, Number Other, Specify:
9.	Number of burners:	11. Describe method of controlling flame:
10.	Rating: 15 mmBTU/hr	The pilot is monitored via flame rod.
12.	. Flare Vapor Combustor height: 30 ft	14. Natural gas flow rate to flare pilot flame per pilot light: ~ 0.83 scf/min
13.	. Flare tip inside diameter: N/A ft	≤ 50 scf/hr
15.	. Number of pilot lights: Total $1 \leq 45,250$ BTU/hr	16. Will automatic re-ignition be used? ⊠ Yes □ No
17.		automatically attempt to relight the pilot. If the re- ve will automatically close and a local and remote
18.	. Is pilot flame equipped with a monitor? ⊠ Yes If yes, what type? ☐ Thermocouple ☐ Infra- ☐ Ultra Violet ☐ Cam ⊠ Other, Describe: Flame rod	☐ No -Red era with monitoring control room
19.	. Hours of unit operation per year: 8,760	

	Steam I	njection	
20. Will steam injection be used?	Yes 🛛 No	21. Steam pressure Minimum Expected: Design Maximum:	PSIG
22. Total Steam flow rate:	LB/hr	23. Temperature:	°F
24. Velocity	ft/sec	25. Number of jet streams	
26. Diameter of steam jets:	in	27. Design basis for steam injected: LB steam/LE	3 hydrocarbon
28. How will steam flow be controlled if s	steam injection is		

Characteristics of the Waste Gas Stream to be Burned 29. Quantity Quantity Source of Material Name Grains of H₂S/100 ft³ (LB/hr, ft³/hr, etc) See Vapor Combustor Calculations in Attachment N 30. Estimate total combustible to flare vapor combustor: 120.05 lb/hr VOC LB/hr or ACF/hr ~102 (Maximum mass flow rate of waste gas) scfm 31. Estimated total flow rate to flare vapor combustor including materials to be burned, carrier gases, auxiliary fuel, etc.: 120.05 lb/hr VOC LB/hr or ACF/hr 32. Give composition of carrier gases: 34. Identify and describe all auxiliary fuels to be burned. 33. Temperature of emission stream: BTU/scf ~1.000 °F Not applicable BTU/scf Heating value of emission stream: 2.450 BTU/ft³ BTU/scf Mean molecular weight of emission stream: BTU/scf MW = lb/lb-mole BTU/scf 35. Temperature of flare vapor combustor gas: ~1,000 °F 36. Flare Vapor combustor gas flow rate: ~102 scf/min 37. Flare-Vapor combustor gas heat content: 38. Flare Vapor combustor gas exit velocity: 2,450 BTU/ft3 scf/min scf/min 39. Maximum rate during emergency for one major piece of equipment or process unit: 40. Maximum rate during emergency for one major piece of equipment or process unit: BTU/min

41. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):

42. Describe the collection material disposal system: $N\!/\!A$

43. Have you included *Flare Vapor Combustor Control Device* in the Emissions Points Data Summary Sheet? Yes

Please propose m	g parameters. Please propose	and Testing eporting in order to demonstrate compliance with the testing in order to demonstrate compliance with the
MONITORING:		RECORDKEEPING:
As currently permitted		As currently permitted
REPORTING:		TESTING:
As currently permitted		As currently permitted
MONITORING:		ocess parameters and ranges that are proposed to be strate compliance with the operation of this process
RECORDKEEPING: REPORTING:		cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air
TESTING:	•	emissions testing for this process equipment on air
45. Manufacturer's Gua 100% (per WVDI	aranteed Capture Efficiency for eac EP guidance)	ch air pollutant.
46. Manufacturer's Gua ≥98%	aranteed Control Efficiency for eac	h air pollutant.
47. Describe all operati	ng ranges and maintenance proce	edures required by Manufacturer to maintain warranty.

Notes:

*Although a vapor combustor is not considered a flare by design, the function is consistent in that it combusts a waste stream for the purpose controlling emissions. Since there is not APCDS specifically for this device, the APCDS for Flare Systems most accurately reflects the characteristics of this control device.

**Assuming <50 SCFH pilot fuel consumption and 905 Btu/scf fuel heating value.

Tank Battery Flare Specification Sheet MRW Technologies, Inc. Flare Model Number: TBF-5.5-30-147000

Expected Destruction Removal Efficiency (DRE):

98% or Greater of Non-Methane Hydrocarbons

5.5-foot Diameter 30-Foot Overall Height

15 MMBTU/HR

147,000 SCFD

2450 BTU/SCF

MRW Electric Ignition

2" Enardo

Continuous

50 SCFH or Less

Design Heat Input:

Unit Size:

Design Flow Rates:

Design Heat Content:

Waste Gas Flame Arrestor:

Pilot Type:

Pilot Operation (Continuous/Intermittent):

Pilot Fuel Consumption:

Pilot Monitoring Device:

Automatic Re-Ignition:

Remote Alarm Indication:

Included

Flame Rod

Included

Description of Control Scheme:

The flare pilot is monitored via flame rod. If the pilot flame is lost, the control system will automatically attempt to relight the pilot. If the reignition attempt fails, the pilot solenoid valve will automatically close and a local & remote alarm signal will be generated to indicate loss of pilot flame.

 C
 O
 M
 B
 U
 S
 T
 I
 O
 N
 S
 Y
 S
 T
 E
 M
 S

 1910 West C Street, Jenks, OK 74037
 • tel: 918.299.8877
 • fax: 918.299.8870
 • email: mrw@mrw-tech.com

ATTACHMENT N: SUPPORTING EMISSIONS CALCULATIONS

EXAMPLE CALCULATIONS

g/hp-hr Emission Factors:

Emission Factor (g/hp-hr) * Engine Rating (hp) * 1 lb/453.6 g = lb/hr

lb/mmBtu Emission Factors:

Emission Factor (lb/mmBtu) * Engine Rating (hp) * Fuel Use (Btu/hp-hr) * 1 mmBtu/1000000 Btu = lb/hr

Emission Factor (lb/mmBtu) * Combustor Rating (mmBtu/hr) = lb/hr

Ib/mmscf Emission Factors:

Emission Factor (lb/mmscf) * Heater Rating (mmBtu/hr) * 1/Fuel Heating Value (Btu/scf) = lb/hr

kg/mmBtu Emission Factors:

Emission Factor (kg/mmBtu) * Engine Rating (hp) * Fuel Use (Btu/hp-hr) * 2.20462 lb/kg * 1 mmBtu/1000000 Btu = lb/hr

Emission Factor (kg/mmBtu) * Heater Rating (mmBtu/hr) * 2.20462 lb/kg = lb/hr

Emissions with Capture and Control Systems:

Uncontrolled Emissions = Potential to Emit without Capture and/or Control

Uncaptured Emissions = Uncontrolled Emissions * (1 – Capture Efficiency %)

Controlled Emissions = Captured Emissions * (1 – Control Efficiency %)

Fugitives:

TOC Emission Factor (lb/hr/source) * Number of Sources * VOC wt% = lb/hr VOC

Tons per Year (TPY) Conversion:

lb/hr * Hours/Year * 1 ton/2000 lb = TPY

Tonnes/Year * 1.10231131 = TPY

SWN Production Company, LLC Samuel Hubbard Pad Summary of Criteria Air Pollutant Emissions

Equipment	Unit ID	N	Ox	(0	Total	VOC ¹	S	02	PM Total Ib/hr	Total ²
Equipment	Unit ID	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
23.6-hp Kubota DG972-E2 Engine - Remove	EU-ENG1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.0-mmBtu/hr GPU Burner	EU-GPU1	0.11	0.48	0.09	0.39	0.01	0.03	<0.01	<0.01	0.01	0.04
1.0-mmBtu/hr GPU Burner	EU-GPU2	0.11	0.48	0.09	0.39	0.01	0.03	<0.01	<0.01	0.01	0.04
0.5-mmBtu/hr Heater Treater	EU-HT1	0.06	0.26	0.05	0.22	<0.01	0.01	<0.01	<0.01	<0.01	0.02
1.5-mmBtu/hr Line Heater	EU-LH1	0.17	0.74	0.14	0.61	0.01	0.04	<0.01	<0.01	0.01	0.06
1.5-mmBtu/hr Line Heater	EU-LH2	0.17	0.74	0.14	0.61	0.01	0.04	<0.01	<0.01	0.01	0.06
Six (6) 400-bbl Condensate Tanks Routed to Vapor Combustor - Revise	EU-TANKS- COND	-	-	-	-	*	*	-	-	-	-
Six (6) 400-bbl Produced Water Tanks Routed to Vapor Combustor - Revise	EU-TANKS-PW	-	-	-	-	*	*	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor - Revise	EU-LOAD- COND	-	-	-	-	0.42	1.86	-	-	-	-
Produced Water Truck Loading w/ Vapor Return Routed to Combustor - Revise	EU-LOAD-PW	-	-	-	-	0.03	0.14	-	-	-	-
15.0-mmBtu/hr Vapor Combustor - Revise	APC-COMB- TKLD	2.07	9.07	4.13	18.09	2.40	10.51	-	-	0.05	0.22
Vapor Combustor Pilot	EU-PILOT	0.01	0.04	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fugitive Emissions - Revise	EU-FUG	-	-	-	-	0.59	2.59	-	-	-	-
Fugitive Haul Road Emissions - Revise	EU-HR	-	-	-	-	-	-	-	-	0.32	1.02
Post-Modification Allowa	ble Emissions =	2.70	11.81	4.64	20.33	3.48	15.25	<0.01	0.02	0.42	1.44
Current Permit Allowa	ble Emissions =	3.01	13.17	10.19	44.64	3.92	17.22	<0.01	0.02	0.47	1.66
Net Allowa	ble Emissions =	(0.31)	(1.36)	(5.55)	(24.31)	(0.45)	(1.97)	(0.00)	(0.00)	(0.05)	(0.22)

Notes:

¹ Total VOC includes all constituents heavier than Propane (C3+), including hazardous air pollutants (HAP). Speciated HAP presented in following table.

SWN Production Company, LLC Samuel Hubbard Pad Summary of Hazardous Air Pollutants

						Estimated Em	issions (lb/hr)				
Equipment	Unit ID	Acetalde- hyde	Acrolein	Benzene	Ethyl- benzene	Formalde- hyde	Methanol	n-Hexane	Toluene	Xylenes	Total HAP
23.6-hp Kubota DG972-E2 Engine - Remove	EU-ENG1	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00
1.0-mmBtu/hr GPU Burner	EU-GPU1	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
1.0-mmBtu/hr GPU Burner	EU-GPU2	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
0.5-mmBtu/hr Heater Treater	EU-HT1	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
1.5-mmBtu/hr Line Heater	EU-LH1	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
1.5-mmBtu/hr Line Heater	EU-LH2	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
Six (6) 400-bbl Condensate Tanks Routed to Vapor Combustor - Revise	EU-TANKS- COND	-	-	*	*	-	-	*	*	*	*
Six (6) 400-bbl Produced Water Tanks Routed to Vapor Combustor - Revise	EU-TANKS-PW	-	-	*	*	-	-	*	*	*	*
Condensate Truck Loading w/ Vapor Return Routed to Combustor - Revise	EU-LOAD- COND	-	-	<0.01	<0.01	-	-	0.02	<0.01	0.01	0.03
Produced Water Truck Loading w/ Vapor Return Routed to Combustor - Revise	EU-LOAD-PW	-	-	<0.01	<0.01	-	-	<0.01	<0.01	<0.01	<0.01
15.0-mmBtu/hr Vapor Combustor - Revise	APC-COMB- TKLD	-	-	<0.01	0.01	-	-	0.13	0.01	0.04	0.19
Vapor Combustor Pilot	EU-PILOT	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
Fugitive Emissions - Revise	EU-FUG	-	-	<0.01	<0.01	-	-	0.03	<0.01	0.01	0.04
Fugitive Haul Road Emissions - Revise	EU-HR	-	-	-	-	-	-	-	-	-	-
Post-Modification Allowal	ble Emissions =	0.00	0.00	<0.01	0.01	<0.01	0.00	0.19	0.01	0.05	0.27
Current Permit Allowal	ble Emissions =	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	0.20	0.01	0.06	0.29
Net Allowal	ble Emissions =	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.00)	(0.00)	(0.02)

Continued on Next Page

SWN Production Company, LLC Samuel Hubbard Pad Summary of Hazardous Air Pollutants (Continued)

						Estimated En	nissions (TPY)				
Equipment	Unit ID	Acetalde- hyde	Acrolein	Benzene	Ethyl- benzene	Formalde- hyde	Methanol	n-Hexane	Toluene	Xylenes	Total HAP
23.6-hp Kubota DG972-E2 Engine - Remove	EU-ENG1	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00
1.0-mmBtu/hr GPU Burner	EU-GPU1	-	-	<0.01	-	<0.01	-	0.01	<0.01	-	0.01
1.0-mmBtu/hr GPU Burner	EU-GPU2	-	-	<0.01	-	<0.01	-	0.01	<0.01	-	0.01
0.5-mmBtu/hr Heater Treater	EU-HT1	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
1.5-mmBtu/hr Line Heater	EU-LH1	-	-	<0.01	-	<0.01	-	0.01	<0.01	-	0.01
1.5-mmBtu/hr Line Heater	EU-LH2	-	-	<0.01	-	<0.01	-	0.01	<0.01	-	0.01
Six (6) 400-bbl Condensate Tanks Routed to Vapor Combustor - Revise	EU-TANKS- COND	-	-	*	*	-	-	*	*	*	*
Six (6) 400-bbl Produced Water Tanks Routed to Vapor Combustor - Revise	EU-TANKS-PW	-	-	*	*	-	-	*	*	*	*
Condensate Truck Loading w/ Vapor Return Routed to Combustor - Revise	EU-LOAD- COND	-	-	<0.01	0.01	-	-	0.10	0.01	0.03	0.15
Produced Water Truck Loading w/ Vapor Return Routed to Combustor - Revise	EU-LOAD-PW	-	-	<0.01	<0.01	-	-	0.01	<0.01	<0.01	0.01
15.0-mmBtu/hr Vapor Combustor - Revise	APC-COMB- TKLD	-	-	0.01	0.04	-	-	0.57	0.04	0.18	0.83
Vapor Combustor Pilot	EU-PILOT	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
Fugitive Emissions - Revise	EU-FUG	-	-	<0.01	0.01	-	-	0.12	0.01	0.03	0.16
Fugitive Haul Road Emissions - Revise	EU-HR	-	-	-	-	-	-	-	-	-	-
Post-Modification Allowal	ble Emissions =	0.00	0.00	0.01	0.05	<0.01	0.00	0.84	0.05	0.24	1.20
Current Permit Allowal	ble Emissions =	<0.01	<0.01	0.01	0.05	0.02	<0.01	0.87	0.05	0.25	1.27
Net Allowal	ble Emissions =	(0.00)	(0.00)	(0.00)	(0.00)	(0.02)	(0.00)	(0.03)	(0.00)	(0.01)	(0.07)

SWN Production Company, LLC Samuel Hubbard Pad Summary of Greenhouse Gas Emissions - Metric Tons per Year (Tonnes)

Equipment	Unit ID	Carbon Die	oxide (CO ₂)	Methar	ne (CH ₄)	Methane (C	H ₄) as CO _{2 Eq.}	Nitrous C	xide (N ₂ O)	Nitrous Oxide	(N ₂ O) as CO _{2 Eq.}	Total CO	2 + CO _{2 Eq.} 1
Equipment		lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr
23.6-hp Kubota DG972-E2 Engine - Remove	EU-ENG1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.0-mmBtu/hr GPU Burner	EU-GPU1	116.98	464.80	<0.01	0.01	0.06	0.22	<0.01	<0.01	0.07	0.26	117.10	465.28
1.0-mmBtu/hr GPU Burner	EU-GPU2	116.98	464.80	<0.01	0.01	0.06	0.22	<0.01	<0.01	0.07	0.26	117.10	465.28
0.5-mmBtu/hr Heater Treater	EU-HT1	58.49	232.40	<0.01	<0.01	0.03	0.11	<0.01	<0.01	0.03	0.13	58.55	232.64
1.5-mmBtu/hr Line Heater	EU-LH1	175.47	697.21	<0.01	0.01	0.08	0.33	<0.01	<0.01	0.10	0.39	175.65	697.93
1.5-mmBtu/hr Line Heater	EU-LH2	175.47	697.21	<0.01	0.01	0.08	0.33	<0.01	<0.01	0.10	0.39	175.65	697.93
Six (6) 400-bbl Condensate Tanks Routed to Vapor Combustor - Revise ²	EU-TANKS- COND	-	-	-	-	-	-	-	-	-	-	-	-
Six (6) 400-bbl Produced Water Tanks Routed to Vapor Combustor - Revise ²	EU-TANKS-PW	-	-	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor - Revise	EU-LOAD-COND	<0.01	<0.01	<0.01	0.01	0.04	0.15	-	-	-	-	0.04	0.15
Produced Water Truck Loading w/ Vapor Return Routed to Combustor - Revise	EU-LOAD-PW	<0.01	<0.01	<0.01	<0.01	0.02	0.07	-	-	-	-	0.02	0.07
15.0-mmBtu/hr Vapor Combustor - Revise	APC-COMB- TKLD	1,754.66	6,972.07	0.03	0.13	0.83	3.28	<0.01	0.01	0.99	3.92	1,756.47	6,979.27
Vapor Combustor Pilot	EU-PILOT	5.29	21.03	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	0.01	5.30	21.05
Fugitive Emissions - Revise	EU-FUG	<0.01	0.01	0.37	1.45	9.25	36.29	-	-	-	-	9.25	36.29
Fugitive Haul Road Emissions - Revise	EU-HR	-	-	-	-	-	-	-	-	-	-	-	-
Post-Modification Allow	able Emissions =	2,403.33	9,549.53	0.42	1.64	10.44	41.00	<0.01	0.02	1.35	5.36	2,415.13	9,595.89

Notes:

¹ CO₂ Equivalent = Pollutant times GWP multiplier. 40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier (100-Year Time Horizon): CO₂ = 1, CH₄ = 25, N₂O = 298

² Per API Compendium (2009) Chapter 5: Because most of the CH₄ and CO₂ emissions from storage tanks occur as a result of flashing (which is controlled by the vapor combustor in this case), working and breathing loss emissions of these gases are very small in production and virtually non-existent in the downstream segments. Vapors from the tanks are routed to the vapor combustor at this site. Therefore, GHG emissions from the condensate and produced water tanks are assumed to be negligible.

SWN Production Company, LLC Samuel Hubbard Pad Summary of Greenhouse Gas Emissions - Short Tons per Year (Tons)

Equipment	Unit ID	Carbon Di	oxide (CO ₂)	Methar	ne (CH ₄)	Methane (C	H ₄) as CO _{2 Eq.}	Nitrous O	xide (N ₂ O)	Nitrous Oxide	(N ₂ O) as CO _{2 Eq.}	Total CO	2 + CO _{2 Eq.} ¹
Equipment	Unit ID	lb/hr	tons/yr ²	lb/hr	tons/yr ²	lb/hr	tons/yr	lb/hr	tons/yr ²	lb/hr	tons/yr	lb/hr	tons/yr
23.6-hp Kubota DG972-E2 Engine - Remove	EU-ENG1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.0-mmBtu/hr GPU Burner	EU-GPU1	116.98	512.36	<0.01	0.01	0.06	0.24	<0.01	<0.01	0.07	0.29	117.10	512.89
1.0-mmBtu/hr GPU Burner	EU-GPU2	116.98	512.36	<0.01	0.01	0.06	0.24	<0.01	<0.01	0.07	0.29	117.10	512.89
0.5-mmBtu/hr Heater Treater	EU-HT1	58.49	256.18	<0.01	<0.01	0.03	0.12	<0.01	<0.01	0.03	0.14	58.55	256.44
1.5-mmBtu/hr Line Heater	EU-LH1	175.47	768.54	<0.01	0.01	0.08	0.36	<0.01	<0.01	0.10	0.43	175.65	769.33
1.5-mmBtu/hr Line Heater	EU-LH2	175.47	768.54	<0.01	0.01	0.08	0.36	<0.01	<0.01	0.10	0.43	175.65	769.33
Six (6) 400-bbl Condensate Tanks Routed to Vapor Combustor - Revise ³	EU-TANKS- COND	-	-	-	-	-	-	-	-	-	-	-	-
Six (6) 400-bbl Produced Water Tanks Routed to Vapor Combustor - Revise ³	EU-TANKS-PW	-	-	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor - Revise	EU-LOAD-COND	<0.01	<0.01	<0.01	0.01	0.04	0.16	-	-	-	-	0.04	0.16
Produced Water Truck Loading w/ Vapor Return Routed to Combustor - Revise	EU-LOAD-PW	<0.01	<0.01	<0.01	<0.01	0.02	0.07	-	-	-	-	0.02	0.07
15.0-mmBtu/hr Vapor Combustor - Revise	APC-COMB- TKLD	1,754.66	7,685.39	0.03	0.14	0.83	3.62	<0.01	0.01	0.99	4.32	1,756.47	7,693.33
Vapor Combustor Pilot	EU-PILOT	5.29	23.18	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	0.01	5.30	23.21
Fugitive Emissions - Revise	EU-FUG	<0.01	0.01	0.37	1.60	9.25	40.00	-	-	-	-	9.25	40.01
Fugitive Haul Road Emissions - Revise	EU-HR	-	-	-	-	-	-	-	-	-	-	-	-
Post-Modification Allow	able Emissions =	2,403.33	10,526.55	0.42	1.81	10.44	45.19	<0.01	0.02	1.35	5.91	2,415.13	10,577.66

Notes:

¹ CO₂ Equivalent = Pollutant times GWP multiplier. 40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier (100-Year Time Horizon): CO₂ = 1, CH₄ = 25, N₂O = 298

² EPA and API GHG calculation methodologies calculate emissions in metric tons (tonnes). These values have been converted to short tons for consistency with permitting threshold units.

³ Per API Compendium (2009) Chapter 5: Because most of the CH₄ and CO₂ emissions from storage tanks occur as a result of flashing (which is controlled by the vapor combustor in this case), working and breathing loss emissions of these gases are very small in production and virtually nonexistent in the downstream segments. Vapors from the tanks are routed to the vapor combustor at this site. Therefore, GHG emissions from the condensate and produced water tanks are assumed to be negligible.

SWN Production Company, LLC Samuel Hubbard Pad Storage Tank Emissions - Criteria Air Pollutants

Tank Information

Unit ID: Contents: ¹	EU-TANKS-COND Condensate	<u>EU-TANKS-PW</u> Produced Water
Number of Tanks: ²	6	6
Capacity (bbl) - Per Tank:	400	400
Capacity (gal) - Per Tank:	16,800	16,800
Total Throughput (bbl/yr):	43,800	3,285
Total Throughput (gal/yr):	1,839,600	137,970
Total Throughput (bbl/d):	120	9.0
Tank Flashing Emission Factor (lb/bbl):	23.52	0.03
Total Working Losses (lb/yr):	7,905.17	1,382.64
Breathing Losses per Tank (lb/yr):	1,424.69	1,424.69
Tank Vapor Capture Efficiency:	100%	100%
Captured Vapors Routed to:	Vapor Combustor	Vapor Combustor

Uncontrolled Storage Tank Emissions

Unit ID:

EU-TANKS-PW

Emissions	lb/hr	TPY	lb/hr	TPY
Working Losses	0.90	3.95	0.16	0.69
Breathing Losses	0.16	0.71	0.16	0.71
Flashing Losses ³	117.60	515.09	0.01	0.04
Total VOC =	118.66	519.75	0.33	1.44

EU-TANKS-COND

SWN Production Company, LLC Samuel Hubbard Pad Storage Tank Emissions - Criteria Air Pollutants (Continued)

Controlled Storage Tank Emissions

Unit ID:	<u>EU-TAN</u>	KS-COND	<u>EU-TAN</u>	<u>IKS-PW</u>
Emissions	lb/hr	TPY	lb/hr	TPY
Working Losses	0.02	0.08	<0.01	0.01
Breathing Losses	<0.01	0.01	<0.01	0.01
Flashing Losses	2.35	10.30	<0.01	<0.01
Total VOC =	2.37	10.40	0.01	0.03
Per Tank =	0.40	1.73	<0.01	<0.01

Notes:

¹ Produced water tanks assumed to contain 99% produced water and 1% condensate, but emissions were calculated assuming the entire throughput is condensate as a conservative estimate as requested by the WVDEQ.

² SWN requests to combine working, breathing and flashing emissions from each tank type to be combined into one emissions point with a total throughput limit rather than an individual tank limit.

³ Flashing calculated using Promax process simulation. Reports located in Appendix A. Uncontrolled tank working/breathing/flashing emissions are routed to a vapor combustor with 100% capture efficiency.

Total Annual Emissions (TPY) = Tank Working + Breathing + Flashing Emissions (TPY) * (1 - Combustion Efficiency (%))

SWN Production Company, LLC Samuel Hubbard Pad Storage Tank Emissions - Hazardous Air Pollutants

Uncontrolled Storage Tank Emissions

EU-TANKS-COND

EU-TANKS-PW

Pollutant	lb/hr	ТРҮ	lb/hr	TPY
Total VOC = ¹	118.66	519.75	0.33	1.44
n-Hexane	6.55	28.69	0.02	0.08
Benzene	0.08	0.35	<0.01	<0.01
Toluene	0.43	1.88	<0.01	0.01
Ethylbenzene	0.42	1.84	<0.01	0.01
Xylenes	1.98	8.67	0.01	0.02
Total HAP =	9.46	41.43	0.03	0.11

Controlled Storage Tank Emissions²

Unit ID:

Unit ID:

EU-TANKS-COND

EU-TANKS-PW

Pollutant	lb/hr	ТРҮ	lb/hr	ТРҮ
Total VOC = ¹	2.37	10.40	0.01	0.03
n-Hexane	0.13	0.57	<0.01	<0.01
Benzene	<0.01	0.01	<0.01	<0.01
Toluene	0.01	0.04	<0.01	<0.01
Ethylbenzene	0.01	0.04	<0.01	<0.01
Xylenes	0.04	0.17	<0.01	<0.01
Total HAP =	0.19	0.83	<0.01	<0.01

SWN Production Company, LLC Samuel Hubbard Pad Storage Tank Emissions - Hazardous Air Pollutants (Continued)

Estimated HAP Composition (% by Weight)³

Pollutant	Wt%
n-Hexane	5.523%
Benzene	0.069%
Toluene	0.360%
Ethylbenzene	0.357%
Xylenes	1.668%
Total HAP =	7.977%

Notes:

¹ VOC emissions calculated in Criteria Air Pollutant calculations.

² Uncontrolled tank working/breathing/flashing emissions are routed to a vapor combustor with 100% capture efficiency.

³ Speciated liquids analysis located in Fugitive Emissions Calculations. HAP weight % calculated as % of total hydrocarbons in the sample. All HAP assumed to volatilize from liquids for most conservative emissions estimate.

SWN Production Company, LLC Samuel Hubbard Pad Condensate Truck Loading Emissions - Criteria and Hazardous Air Pollutants

Loading Information

Unit ID:	EU-LOAD-COND
Fill Method:	Submerged
Type of Service:	Dedicated
Mode of Operation:	Normal
Saturation Factor:	0.6
Em. Factor (lb/1000 gal): ¹	6.75
Throughput (1000 gal):	1,839.600
Control Type:	Vapor Return/Combustion
Vapor Capture Efficiency: ²	70%
Average Fill Rate (gal/hr):	7,500
Captured Vapors Routed to:	Vapor Combustor

7.6845 = P, True vapor pressure of liquid loaded (max. psia)		
60 = M, Molecular weight of vapor (lb/lb-mol)		
50.33 = T, Temperature of bulk liquid loaded (average °F)		
510.33 = T, Temperature of bulk liquid loaded (°F + 460 = °R)		

Uncontrolled Loading Emissions³

Pollutant	Max. Ib/hr	Avg. lb/hr	TPY
VOC =	50.63	1.42	6.21
n-Hexane	2.80	0.08	0.34
Benzene	0.03	<0.01	<0.01
Toluene	0.18	0.01	0.02
Ethylbenzene	0.18	0.01	0.02
Xylenes	0.84	0.02	0.10
Total HAP ⁴ =	4.04	0.11	0.50

SWN Production Company, LLC Samuel Hubbard Pad Condensate Truck Loading Emissions - Criteria and Hazardous Air Pollutants (Continued)

Uncaptured Loading Emissions³

Pollutant	Max. Ib/hr	Avg. lb/hr	ТРҮ
VOC =	15.19	0.42	1.86
n-Hexane	0.84	0.02	0.10
Benzene	0.01	<0.01	<0.01
Toluene	0.05	<0.01	0.01
Ethylbenzene	0.05	<0.01	0.01
Xylenes	0.25	0.01	0.03
Total HAP ⁴ =	1.21	0.03	0.15

Notes:

¹ AP-42 5.2-4 Eq.1: Loading Loss (lb/1000 gal) = 12.46 *S*P*M/T. Properties based on TANKS 4.0.9d.

² Uncontrolled emissions that are captured by the collection system are routed to a vapor combustor. Per AP-42 5.2-6, 70% capture efficiency can be assumed for trucks not subject to NSPS. Uncaptured emissions shown represent those not captured by the collection system or controlled by the vapor combustor.

³ Maximum lb/hr based on average hourly truck loading rate. Average lb/hr based on TPY conversion assuming continuous operation.

⁴ Speciated liquids analysis located in Fugitive Emissions Calculations. HAP weight % calculated as % of total hydrocarbons in the sample. All HAP assumed to volatilize from liquids for most conservative emissions estimate.

Pollutant	Wt%
n-Hexane	5.523%
Benzene	0.069%
Toluene	0.360%
Ethylbenzene	0.357%
Xylenes	1.668%
Total HAP =	7.977%

SWN Production Company, LLC Samuel Hubbard Pad Condensate Truck Loading Emissions - Greenhouse Gases

Loading Information

Unit ID:	EU-LOAD-COND
Fill Method:	Submerged
Type of Service:	Dedicated
Mode of Operation:	Normal
TOC Em. Factor (tonne/10 ⁶ gal): ¹	0.91
Throughput (10 ⁶ gal):	1.83960
Control Type:	Vapor Return/Combustion
Vapor Capture Efficiency: ²	70.00%
Average Fill Rate (gal/hr):	7,500
Captured Vapors Routed to:	Vapor Combustor

ProMax CH ₄ wt% =	1.16334%
$ProMax CO_2 wt\% =$	0.04278%

Uncontrolled Loading Emissions^{3, 4}

Pollutant	Max. lb/hr	Avg. Ib/hr	tonnes/yr	tons/yr
CH ₄	0.18	<0.01	0.02	0.02
CH ₄ as CO ₂ e	4.38	0.12	0.49	0.54
CO ₂	0.01	<0.01	<0.01	<0.01
Total CO ₂ + CO ₂ e =	4.38	0.12	0.49	0.54

SWN Production Company, LLC Samuel Hubbard Pad Condensate Truck Loading Emissions - Greenhouse Gases (Continued)

Uncaptured Loading Emissions^{3, 4}

Pollutant	Max. Ib/hr	Avg. lb/hr	tonnes/yr	tons/yr
CH ₄	0.05	<0.01	0.01	0.01
CH ₄ as CO ₂ e	1.31	0.04	0.15	0.16
CO ₂	<0.01	<0.01	<0.01	<0.01
Total CO ₂ + CO ₂ e =	1.31	0.04	0.15	0.16

API Compendium Table 5-12

Loading Type	Emission Factor (tonne TOC/10 ⁶ gal)
Rail/Truck - Submerged Loading - Dedicated Normal Service	0.91
Rail/Truck - Submerged Loading - Vapor Balance Service	1.51
Rail/Truck - Splash Loading - Dedicated Normal Service	
Rail/Truck - Splash Loading - Vapor Balance Service	1.51
Marine Loading - Ships/Ocean Barges	0.28
Marine Loading - Barges	0.45

Notes:

¹ API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Gas Industry, Table 5-12.

² Uncontrolled emissions that are captured by the collection system are routed to a vapor combustor. Per AP-42 5.2-6, 70% capture efficiency can be assumed for trucks not subject to NSPS. Uncaptured emissions shown represent those not captured by the collection system or controlled by the vapor combustor.

³ Maximum lb/hr based on average hourly truck loading rate. Average lb/hr based on TPY conversion assuming continuous operation.

 4 CO₂e = CO₂ equivalent (Pollutant times GWP multiplier):

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: $CO_2 = 1$, $CH_4 = 25$

SWN Production Company, LLC Samuel Hubbard Pad Produced Water Truck Loading Emissions - Criteria and Hazardous Air Pollutants

Loading Information

Unit ID:	EU-LOAD-PW
Fill Method:	Submerged
Type of Service:	Dedicated
Mode of Operation:	Normal
Saturation Factor:	0.6
Em. Factor (lb/1000 gal): ¹	6.75
Throughput (1000 gal):	137.970
Control Type:	Vapor Return/Combustion
Vapor Capture Efficiency: ²	70%
Average Fill Rate (gal/hr):	7,500
Captured Vapors Routed to:	Vapor Combustor

7.6845	= P, True vapor pressure of liquid loaded (max. psia)
60	= M, Molecular weight of vapor (lb/lb-mol)
50.33	= T, Temperature of bulk liquid loaded (average °F)
510.33	= T, Temperature of bulk liquid loaded (°F + 460 = °R)

Uncontrolled Loading Emissions³

Pollutant	Max. Ib/hr	Avg. lb/hr	TPY
VOC =	50.63	0.11	0.47
n-Hexane	2.80	0.01	0.03
Benzene	0.03	<0.01	<0.01
Toluene	0.18	<0.01	<0.01
Ethylbenzene	0.18	<0.01	<0.01
Xylenes	0.84	<0.01	0.01
Total HAP ⁴ =	4.04	0.01	0.04

SWN Production Company, LLC Samuel Hubbard Pad Produced Water Truck Loading Emissions - Criteria and Hazardous Air Pollutants (Continued)

Uncaptured Loading Emissions³

Pollutant	Max. Ib/hr	Avg. lb/hr	TPY
VOC =	15.19	0.03	0.14
n-Hexane	0.84	<0.01	0.01
Benzene	0.01	<0.01	<0.01
Toluene	0.05	<0.01	<0.01
Ethylbenzene	0.05	<0.01	<0.01
Xylenes	0.25	<0.01	<0.01
Total HAP ⁴ =	1.21	<0.01	0.01

Notes:

¹ AP-42 5.2-4 Eq.1: Loading Loss (lb/1000 gal) = 12.46 *S*P*M/T. Properties based on 100% condensate.

² Uncontrolled emissions that are captured by the collection system are routed to a vapor combustor. Per AP-42 5.2-6, 70% capture efficiency can be assumed for trucks not subject to NSPS. Uncaptured emissions shown represent those not captured by the collection system or controlled by the vapor combustor.

³ Maximum lb/hr based on average hourly truck loading rate. Average lb/hr based on TPY conversion assuming continuous operation.

⁴ Speciated liquids analysis located in Fugitive Emissions Calculations. HAP weight % calculated as % of total hydrocarbons in the sample. All HAP assumed to volatilize from liquids for most conservative emissions estimate.

Pollutant	Wt%
n-Hexane	5.523%
Benzene	0.069%
Toluene	0.360%
Ethylbenzene	0.357%
Xylenes	1.668%
Total HAP =	7.977%

SWN Production Company, LLC Samuel Hubbard Pad Produced Water Truck Loading Emissions - Greenhouse Gases

Loading Information

Unit ID:	EU-LOAD-PW
Fill Method:	Submerged
Type of Service:	Dedicated
Mode of Operation:	Normal
TOC Em. Factor (tonne/10 ⁶ gal): ¹	0.91
Throughput (10 ⁶ gal):	0.1380
Control Type:	Vapor Return/Combustion
Vapor Capture Efficiency: ²	70.00%
Average Fill Rate (gal/hr):	7,500
Captured Vapors Routed to:	Vapor Combustor

ProMax CH ₄ wt% =	7.19691%
$ProMax CO_2 wt\% =$	0.17414%

Uncontrolled Loading Emissions^{3, 4}

Pollutant	Max. Ib/hr	Avg. lb/hr	tonnes/yr	tons/yr
CH ₄	1.08	<0.01	0.01	0.01
CH ₄ as CO ₂ e	27.07	0.06	0.23	0.25
CO ₂	0.03	<0.01	<0.01	<0.01
Total CO ₂ + CO ₂ e =	27.10	0.06	0.23	0.25

SWN Production Company, LLC Samuel Hubbard Pad Produced Water Truck Loading Emissions - Greenhouse Gases (Continued)

Uncaptured Loading Emissions^{3, 4}

Pollutant	Max. Ib/hr	Avg. lb/hr	tonnes/yr	tons/yr
CH ₄	0.32	<0.01	<0.01	<0.01
CH ₄ as CO ₂ e	8.12	0.02	0.07	0.07
CO ₂	0.01	<0.01	<0.01	<0.01
Total $CO_2 + CO_2e =$	8.13	0.02	0.07	0.07

API Compendium Table 5-12

Loading Type	Emission Factor (tonne TOC/10 ⁶ gal)
Rail/Truck - Submerged Loading - Dedicated Normal Service	0.91
Rail/Truck - Submerged Loading - Vapor Balance Service	1.51
Rail/Truck - Splash Loading - Dedicated Normal Service	
Rail/Truck - Splash Loading - Vapor Balance Service	1.51
Marine Loading - Ships/Ocean Barges	0.28
Marine Loading - Barges	0.45

Notes:

¹ API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Gas Industry, Table 5-12.

² Uncontrolled emissions that are captured by the collection system are routed to a vapor combustor. Per AP-42 5.2-6, 70% capture efficiency can be assumed for trucks not subject to NSPS. Uncaptured emissions shown represent those not captured by the collection system or controlled by the vapor combustor.

³ Maximum lb/hr based on average hourly truck loading rate. Average lb/hr based on TPY conversion assuming continuous operation.

 4 CO₂e = CO₂ equivalent (Pollutant times GWP multiplier):

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: $CO_2 = 1$, $CH_4 = 25$

SWN Production Company, LLC Samuel Hubbard Pad Vapor Combustor Emissions Calculations - Criteria and Hazardous Air Pollutants

Criteria and Hazardous Air Pollutant Emissions

		Emission	Total Capture	ed Emissions ²	Combustor Destruction Efficiency		Emissions (Post- Combustion)
Unit ID	Pollutant	Factors ¹	lb/hr	TPY	%	lb/hr	TPY
	NOx	0.138	-	_	-	2.07	9.07
APC-COMB-TKLD	со	0.2755	-		-	4.13	18.09
	PM	7.6	-		-	0.05	0.22
	VOC	Mass Balance	120.05	525.87	98.00%	2.40	10.51
	n-Hexane	Mass Balance	6.63	29.03	98.00%	0.13	0.57
	Benzene	Mass Balance	0.08	0.35	98.00%	<0.01	0.01
	Toluene	Mass Balance	0.44	1.90	98.00%	0.01	0.04
	Ethylbenzene	Mass Balance	0.42	1.86	98.00%	0.01	0.04
	Xylenes	Mass Balance	2.00	8.77	98.00%	0.04	0.18

Notes:

¹ Although a vapor combustor is not considered a flare by design, the function is consistent in that it combusts a waste stream for the purpose of reducing emissions; therefore, flare emission factors for NOx and CO were used to provide the most accurate emissions estimates. Although the combustor is designed to be smokeless, PM emissions have been estimated using AP-42 Table 1.4-1 factor (lb/mmscf) for a conservative estimate.

Hours per Year: Number of Combustors: 8,760 1 15.0 mmBtu/hr per Combustor

NOx and CO emission factors (lb/mmBtu): *TCEQ Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers:* High Btu waste streams (>1,000 Btu/scf) based on heat input to each combustor =

15.0 mmBtu/hr Total Heat Input

² Total captured emissions are based on 100% capture efficiency from storage tanks and 70% capture efficiency from truck loading with 98% destruction efficiency from the vapor combustor based on 8,760 hours of operation per year. Uncaptured vapors reported at the loading emission unit. Captured emissions from sources controlled by VOC combustor shown in following tables.

SWN Production Company, LLC

Samuel Hubbard Pad

Vapor Combustor Emissions Calculations - Criteria and Hazardous Air Pollutants (Continued)

	Captured VOC Emissions			
Source	lb/hr	ТРҮ		
Condensate Storage Tanks	118.66	519.75		
Produced Water Storage Tanks	0.33	1.44		
Condensate Truck Loading	0.99	4.35		
Produced Water Truck Loading	0.07	0.33		
Total VOC =	120.05	525.87		

	Captured HAP Emissions (lb/hr)						
Source	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes		
Condensate Storage Tanks	6.55	0.08	0.43	0.42	1.98		
Produced Water Storage Tanks	0.02	<0.01	<0.01	<0.01	0.01		
Condensate Truck Loading	0.05	<0.01	<0.01	<0.01	0.02		
Produced Water Truck Loading	<0.01	<0.01	<0.01	<0.01	<0.01		
Total HAP =	6.63	0.08	0.44	0.42	2.00		

	Captured HAP Emissions (TPY)						
Source	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes		
Condensate Storage Tanks	28.69	0.35	1.88	1.84	8.67		
Produced Water Storage Tanks	0.08	<0.01	0.01	0.01	0.02		
Condensate Truck Loading	0.24	<0.01	0.02	0.02	0.07		
Produced Water Truck Loading	0.02	<0.01	<0.01	<0.01	0.01		
Total HAP =	29.03	0.35	1.90	1.86	8.77		

SWN Production Company, LLC Samuel Hubbard Pad Vapor Combustor Emissions Calculations - Greenhouse Gases

Equipment Information

Unit ID:	APC-COMB-TKLD
Description:	Vapor Combustor
Number of Combustors:	1
Burner Design Capacity (mmBtu/hr):	15.0
Stream HHV (Btu/scf):	2,450
Annual Throughput (mmscf):	53.63
Annual Operating Hours:	8,760

Greenhouse Gas (GHG) Emissions

Pollutant	lb/hr	tonnes/yr	tons/yr
CO ₂	1,754.66	6,972.07	7,685.39
CH ₄	0.03	0.13	0.14
N ₂ O	<0.01	0.01	0.01
CH ₄ as CO ₂ e	0.83	3.28	3.62
N ₂ O as CO ₂ e	0.99	3.92	4.32
Total CO ₂ + CO ₂ e =	1,756.47	6,979.27	7,693.33

40 CFR 98 Tables C-1 and C-2 Emission Factors (kg/mmBtu)¹

Carbon Dioxide (CO ₂)	53.06
Methane (CH ₄)	1.00E-03
Nitrous Oxide (N ₂ O)	1.00E-04

Notes:

¹ $CO_2e = CO_2$ equivalent (Pollutant times GWP multiplier):

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: $CO_2 = 1$, $CH_4 = 25$, $N_2O = 298$

SWN Production Company, LLC Samuel Hubbard Pad Fugitive Emissions Calculations - Criteria and Hazardous Air Pollutants and Greenhouse Gases

Equipment Information

Source Type/Service	Number of Sources ¹	Em. Factor (lb/hr/source) ²	Control Efficiency	TOC lb/hr	TOC TPY	VOC Wt %
Valves - Gas	32	9.92E-03	0.00%	0.32	1.40	27.42%
Flanges - Gas	133	8.60E-04	0.00%	0.11	0.48	27.42%
Relief Valves - Gas	16	1.94E-02	0.00%	0.31	1.36	27.42%
		Total TOC (Gas	Components) =	0.74	3.24	-
Valves - Light Oil	61	5.51E-03	0.00%	0.34	1.49	97.19%
Flanges - Light Oil	238	2.43E-04	0.00%	0.06	0.26	97.19%
Total TOC (Liquid Components) =				0.40	1.75	-

VOC and Greenhouse Gas Emissions

Source Type/Service	VOC		C	CH₄		CO ₂	
Source Type/Service	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	
Valves - Gas	0.09	0.38	0.16	0.69	<0.01	<0.01	
Flanges - Gas	0.03	0.14	0.05	0.24	<0.01	<0.01	
Relief Valves - Gas	0.09	0.37	0.15	0.67	<0.01	<0.01	
Components in Gas Service =	0.20	0.89	0.36	1.59	<0.01	0.01	
Valves - Light Oil	0.33	1.43	<0.01	0.01	<0.01	<0.01	
Flanges - Light Oil	0.06	0.25	<0.01	<0.01	<0.01	<0.01	
Components in Liquid Service =	0.39	1.70	0.00	0.01	<0.01	<0.01	
Total (Gas + Liquid Components) =	0.59	2.59	0.37	1.60	<0.01	0.01	

Hazardous Air Pollutant (HAP) Emissions (lb/hr)

Source Type/Service	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes	2,2,4-Tri.	Total
Valves - Gas	<0.01	<0.01	<0.01	<0.01	<0.01	0.00	<0.01
Flanges - Gas	<0.01	<0.01	<0.01	<0.01	<0.01	0.00	<0.01
Relief Valves - Gas	<0.01	<0.01	<0.01	<0.01	<0.01	0.00	<0.01
Components in Gas Service =	<0.01	<0.01	<0.01	<0.01	<0.01	0.00	0.01
Valves - Light Oil	0.02	<0.01	<0.01	<0.01	0.01	0.00	0.03
Flanges - Light Oil	<0.01	<0.01	<0.01	<0.01	<0.01	0.00	<0.01
Components in Liquid Service =	0.02	<0.01	<0.01	<0.01	0.01	0.00	0.03
Total (Gas + Liquid Components) =	0.03	<0.01	<0.01	<0.01	0.01	0.00	0.04

Hazardous Air Pollutant (HAP) Emissions (TPY)

Source Type/Service	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes	2,2,4-Tri.	Total
Valves - Gas	0.01	<0.01	<0.01	<0.01	<0.01	0.00	0.01
Flanges - Gas	<0.01	<0.01	<0.01	<0.01	<0.01	0.00	<0.01
Relief Valves - Gas	0.01	<0.01	<0.01	<0.01	<0.01	0.00	0.01
Components in Gas Service =	0.02	<0.01	<0.01	<0.01	<0.01	0.00	0.02
Valves - Light Oil	0.08	<0.01	0.01	0.01	0.02	0.00	0.12
Flanges - Light Oil	0.01	<0.01	<0.01	<0.01	<0.01	0.00	0.02
Components in Liquid Service =	0.09	<0.01	0.01	0.01	0.03	0.00	0.14
Total (Gas + Liquid Components) =	0.12	<0.01	0.01	0.01	0.03	0.00	0.16

Typical Component Count per Equipment Type based on Representative Facility³

Source Type/Service	WH	GPU	HT	LPT	FGC	ОТ	TT-O
Valves - Gas	12	3	2	5	5	0	0
Flanges - Gas	37	15	9	24	33	3	2
Compressor Seals - Gas	0	0	0	0	3	0	0
Relief Valves - Gas	1	3	1	1	1	1	1
Open-Ended Lines - Gas	0	0	0	0	0	0	0
Valves - Light Oil	0	5	6	12	3	6	9
Connectors - Light Oil	0	20	24	48	12	24	30
Pump Seals - Light Oil	0	0	0	0	0	0	0
Other - Light Oil	0	0	0	0	0	0	0
Equipment Type	WH	GPU	HT	LPT	FGC	ОТ	TT-O
Number of Each Type On Pad =	2	2	1	0	0	6	1

Speciated Gas Analysis⁴

Component	Molecular Weight	Mole %	Equiv. Wt. Basis	Weight %	HC Weight %	lb/hr	ТРҮ
Hydrogen Sulfide	34.082	0.000%	0.000	0.000%	-	0.00	0.00
Carbon Dioxide	44.010	0.131%	0.058	0.251%	-	<0.01	0.01
Nitrogen	28.013	0.544%	0.152	0.664%	-	<0.01	0.02
Methane	16.042	69.506%	11.150	48.550%	48.998%	0.36	1.59
Ethane	30.069	17.845%	5.366	23.364%	23.579%	0.17	0.76
Propane	44.096	7.460%	3.290	14.323%	14.456%	0.11	0.47
i-Butane	58.122	0.725%	0.421	1.835%	1.852%	0.01	0.06
n-Butane	58.122	2.230%	1.296	5.644%	5.696%	0.04	0.18
i-Pentane	72.149	0.394%	0.284	1.238%	1.249%	0.01	0.04
n-Pentane	72.149	0.614%	0.443	1.929%	1.947%	0.01	0.06
n-Hexane	86.175	0.177%	0.153	0.664%	0.670%	<0.01	0.02
Other Hexanes	86.175	0.199%	0.171	0.747%	0.754%	0.01	0.02
Heptanes (as n-Heptane)	100.202	0.124%	0.124	0.541%	0.546%	<0.01	0.02
Benzene	78.114	0.002%	0.002	0.007%	0.007%	<0.01	<0.01
Toluene	92.141	0.003%	0.003	0.012%	0.012%	<0.01	<0.01
Ethylbenzene	106.167	0.001%	0.001	0.005%	0.005%	<0.01	<0.01
Xylenes	106.167	0.002%	0.002	0.009%	0.009%	<0.01	<0.01
2,2,4-Trimethylpentane	114.230	0.000%	0.000	0.000%	0.000%	0.00	0.00
Octanes (as n-Octane)	114.229	0.035%	0.040	0.174%	0.176%	<0.01	0.01
Nonanes (as n-Nonane)	128.255	0.007%	0.009	0.039%	0.039%	<0.01	<0.01
Decanes (as n-Decane)	142.282	0.001%	0.001	0.006%	0.006%	<0.01	<0.01
	TOTAL =	100.00%	22.97	100.00%	100.00%	0.75	3.27
		TOTAL HC =	22.76	TOTAL VOC =	27.42%	0.20	0.89
				TOTAL HAP =	0.70%	0.01	0.02

Speciated Liquids Analysis⁴

Component	Molecular Weight	Mole %	Equiv. Wt. Basis	Weight %	HC Weight %	lb/hr	ТРҮ
Hydrogen Sulfide	34.082	0.000%	0.000	0.000%	-	0.00	0.00
Carbon Dioxide	44.010	0.015%	0.007	0.007%	-	<0.01	<0.01
Nitrogen	28.013	0.016%	0.004	0.005%	-	<0.01	<0.01
Methane	16.042	4.241%	0.680	0.753%	0.753%	<0.01	0.01
Ethane	30.069	6.176%	1.857	2.054%	2.054%	0.01	0.04
Propane	44.096	8.547%	3.769	4.169%	4.169%	0.02	0.07
i-Butane	58.122	1.876%	1.090	1.206%	1.206%	<0.01	0.02
n-Butane	58.122	8.305%	4.827	5.339%	5.340%	0.02	0.09
i-Pentane	72.149	3.379%	2.438	2.696%	2.697%	0.01	0.05
n-Pentane	72.149	6.936%	5.004	5.535%	5.536%	0.02	0.10
n-Hexane	86.175	5.794%	4.993	5.523%	5.523%	0.02	0.10
Other Hexanes	86.175	5.761%	4.965	5.491%	5.492%	0.02	0.10
Heptanes (as n-Heptane)	100.202	11.190%	11.213	12.402%	12.403%	0.05	0.22
Benzene	78.114	0.080%	0.062	0.069%	0.069%	<0.01	<0.01
Toluene	92.141	0.353%	0.325	0.360%	0.360%	<0.01	0.01
Ethylbenzene	106.167	0.304%	0.323	0.357%	0.357%	<0.01	0.01
Xylenes	106.167	1.420%	1.508	1.667%	1.668%	0.01	0.03
2,2,4-Trimethylpentane	114.230	0.000%	0.000	0.000%	0.000%	0.00	0.00
Octanes (as n-Octane)	114.229	9.004%	10.285	11.376%	11.377%	0.05	0.20
Nonanes (as n-Nonane)	128.255	5.630%	7.221	7.987%	7.988%	0.03	0.14
Decanes (as n-Decane)	142.282	20.972%	29.839	33.004%	33.008%	0.13	0.58
	TOTAL =	100.00%	90.41	100.00%	100.00%	0.40	1.75
		TOTAL HC =	90.40	TOTAL VOC =	97.19%	0.39	1.70
				TOTAL HAP =	7.98%	0.03	0.14

Notes:

¹ Component counts taken by equipment type at representative facility and made site-specific according to the number of each equipment type at this site.

² Emission Factor Source: EPA-453/R-95-017. TOC multiplied by pollutant content of streams (weight %) to obtain pollutant emissions.

³ Equipment Type Key: WH = Well Head, GPU = Gas Production Unit, HT = Heater Treater, LPT = Low-Pressure Tower, FGC = Flash Gas Compressor, OT = Oil Tank, TT-O = Tank Truck - Oil

⁴ Representative gas and liquids analyses (Mark Owen 8-H) located in Appendix A.

SWN Production Company, LLC Samuel Hubbard Pad Fugitive Haul Road Emissions

Facility Data¹

Vehicle Type	Light Vehicles (Pick-ups and Cars)	Medium Trucks (Service Trucks)	Heavy Trucks (Tanker Trucks) ²
Average vehicle weight ((empty + full)/2) (tons)	2	15	23.5
Number of wheels per vehicle type (w)	4	10	18
Average number of round trips/day/vehicle type	1	1	1
Distance per round trip (miles/trip)	0.84	0.84	0.84
Vehicle miles travelled (miles/day)	0.84	0.84	0.57
Number of days operational (days/yr)	365	365	365
Vehicle miles travelled VMT (miles/yr)	307	307	208
Average vehicle speed S (mph)	10	10	10
Average number of round trips/hour/vehicle type	0.06	0.06	0.04
Average number of round trips/year/vehicle type	365	365	248
Estimated maximum number of round trips/hour/vehicle type	2	1	1
Estimated maximum number of round trips/day/vehicle type	5	2	3
Estimated maximum number of round trips/year/vehicle type	1,917	767	1,150

190 Average Tanker Volume (bbl)
7,980 Gallons Tanker Volume
9 bwpd
120 bopd
0.68 Tanker Trucks per Day
1,750 Length Leased Access Road (ft)
470 Longest Pad Side (ft)
4,440 Total Round Trip Feet

Formula & Calculation Inputs

E=k(s/12) ^a * (W/3) ^b * ((365-P) / 365)	Reference : A	P-42, Section	13.2.2 (11/06), Equation 1a and 2	
where:	Rate	Units	Comment	
Days per year	365	_		
Annual average hours per day of road operations	18	_		
k = PM Particle Size Multiplier	4.90	lb/VMT	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM)	
k = PM10 Particle Size Multiplier	1.50	lb/VMT	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM ₁₀)	
k = PM2.5 Particle Size Multiplier	0.15	lb/VMT	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM _{2.5})	
s = Surface Material Silt Content	3.9	%	State Default Data from AP-42 Data (1999 NEI Data)	
P = Number of days > 0.01 inch of rain	150	days/year	AP-42 Section 13.2.2 (11/06), Figure 13.2.2-1	
a = PM Constant	0.70	unitless	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM)	
a = PM10 & PM2.5 Constant	0.90	unitless	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM ₁₀ & PM _{2.5})	
b = PM, PM10, & PM2.5 Constant	0.45	unitless	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2	
Total hourly fleet vehicle miles travelled (miles/hr)	0.13	VMT/hr		
Total annual fleet vehicle miles travelled (miles/yr) ³	822.00	VMT/yr		
Average wheels ⁴	10	_		
Average vehicle weight of the fleet (W) ⁵	12.3	tons		
Moisture Ratio	1.00	_	Estimated based on 0.2% uncontrolled surface water content assuming no watering	EPA - BID Document 13.2.2 - 1998
Control Efficiency (CF)	0.00	%	Based on Moisture Ratio and Figure 13.2.2-2 Control	

Continued on Next Page

SWN Production Company, LLC Samuel Hubbard Pad Fugitive Haul Road Emissions

Emission Calculations

	Emission	Factors		Control	Total Veh	icle Miles	Uncont	rolled Emissio	n Rates	Uncon	rolled Emissio	n Rates
	PM	PM ₁₀	PM _{2.5}	Efficiency	Trav	elled	Total PM	Total PM ₁₀	PM _{2.5}	Total PM	Total PM ₁₀	PM _{2.5}
Vehicle Type	(Ibs/VMT)	(lbs/VMT)	(lbs/VMT)	(%)	(VMT/hr)	(VMT/yr)	(lb/hr)	(lb/hr)	(lb/hr)	(tons/yr)	(tons/yr)	(tons/yr)
Light Vehicles	2.48	0.61	0.06	0.00	0.05	307.00	0.12	0.03	<0.01	0.38	0.09	0.01
Medium Trucks	2.48	0.61	0.06	0.00	0.05	307.00	0.12	0.03	<0.01	0.38	0.09	0.01
Heavy Trucks	2.48	0.61	0.06	0.00	0.03	208.00	0.08	0.02	<0.01	0.26	0.06	0.01
			Total =	0.00	0.13	822.00	0.32	0.08	0.01	1.02	0.24	0.03

Notes:

1) Facility vehicle data based on estimates, GP5.1 and AP-42 13.2.2-2 defaults for industrial unpaved roads

2) Tank trucker average vehicle weight as $(W_{(empty)}+W_{(full)})/2 = (7 + 40)/2 = 23.7$ tons

3) Average vehicle miles travelled (VMT/yr) as (No. of round trip/vehicle * No. of vehicles/type * Roundtrip miles/trip)* 365 days/yr * No. of vehicle type)

4) Average wheels calculated as average of (No. of wheels per vehicle type * No. of vehicle/type)

5) Average vehicle fleet calculated as (Average weight of vehicle type * Percentage of each vehicle type on unpaved surface). Percentage of each vehicle type= VMT vehicle type/VMT

6) Minimum one-per-day average pick-up trucks and service trucks even if tanker not required every day.

7) Per EPA BID calculations, all emissions based on average trips. Estimated maximum hourly, daily and yearly trips provided for information only.

Calculation of Emission Factors (AP-42, 13.2.2)

Equation 1a: $EF = k(s/12)^{a} (W/3)^{b}$ where k, a, and b are empirical constants and

EF = size-specific emission factor (*lb*/VMT)

s = surface material silt content %

W = mean vehicle weight (tons)

Equation 2: $EF_{ext} = EF^*((365-P)/365)$ where:

 EF_{ext} = annual size-specific emission factor extrapolated for natural mitigation, lb/VMT EF = emission factor from Equation 1a P = number of days in a year with at least 0.01 inches of precipitation

Calculation of Emissions

 $E = EF_{ext} * VMT/yr * ((1-CF)/100) * 1 ton/2000 lbs where:$

E = annual emissions (tons/yr) EF_{ext} = annual size-specific emission factor extrapolated for natural mitigation, lb/VMT CF = control efficiency (%)

APPENDIX A: SUPPORT DOCUMENTS

AP-42 AND EPA EMISSION FACTORS

REPRESENTATIVE GAS AND LIQUIDS ANALYSES

PROMAX PROCESS SIMULATION RESULTS

EPA TANKS 4.0.9d EMISSIONS REPORTS

loading operation, resulting in high levels of vapor generation and loss. If the turbulence is great enough, liquid droplets will be entrained in the vented vapors.

A second method of loading is submerged loading. Two types are the submerged fill pipe method and the bottom loading method. In the submerged fill pipe method, the fill pipe extends almost to the bottom of the cargo tank. In the bottom loading method, a permanent fill pipe is attached to the cargo tank bottom. During most of submerged loading by both methods, the fill pipe opening is below the liquid surface level. Liquid turbulence is controlled significantly during submerged loading, resulting in much lower vapor generation than encountered during splash loading.

The recent loading history of a cargo carrier is just as important a factor in loading losses as the method of loading. If the carrier has carried a nonvolatile liquid such as fuel oil, or has just been cleaned, it will contain vapor-free air. If it has just carried gasoline and has not been vented, the air in the carrier tank will contain volatile organic vapors, which will be expelled during the loading operation along with newly generated vapors.

Cargo carriers are sometimes designated to transport only one product, and in such cases are practicing "dedicated service". Dedicated gasoline cargo tanks return to a loading terminal containing air fully or partially saturated with vapor from the previous load. Cargo tanks may also be "switch loaded" with various products, so that a nonvolatile product being loaded may expel the vapors remaining from a previous load of a volatile product such as gasoline. These circumstances vary with the type of cargo tank and with the ownership of the carrier, the petroleum liquids being transported, geographic location, and season of the year.

One control measure for vapors displaced during liquid loading is called "vapor balance service", in which the cargo tank retrieves the vapors displaced during product unloading at bulk plants or service stations and transports the vapors back to the loading terminal. Figure 5.2-5 shows a tank truck in vapor balance service filling a service station underground tank and taking on displaced gasoline vapors for return to the terminal. A cargo tank returning to a bulk terminal in vapor balance service normally is saturated with organic vapors, and the presence of these vapors at the start of submerged loading of the tanker truck results in greater loading losses than encountered during nonvapor balance, or "normal", service. Vapor balance service is usually not practiced with marine vessels, although some vessels practice emission control by means of vapor transfer within their own cargo tanks during ballasting operations, discussed below.

Emissions from loading petroleum liquid can be estimated (with a probable error of ± 30 percent)⁴ using the following expression:

$$L_{L} = 12.46 \frac{SPM}{T}$$
(1)

where:

 $L_{\rm L}$ = loading loss, pounds per 1000 gallons (lb/10³ gal) of liquid loaded

- S = a saturation factor (see Table 5.2-1)
- P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Figure 7.1-5, Figure 7.1-6, and Table 7.1-2)
- M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Table 7.1-2)
- T = temperature of bulk liquid loaded, ${}^{\circ}\hat{R}$ (${}^{\circ}\hat{F}$ + 460)

6/08

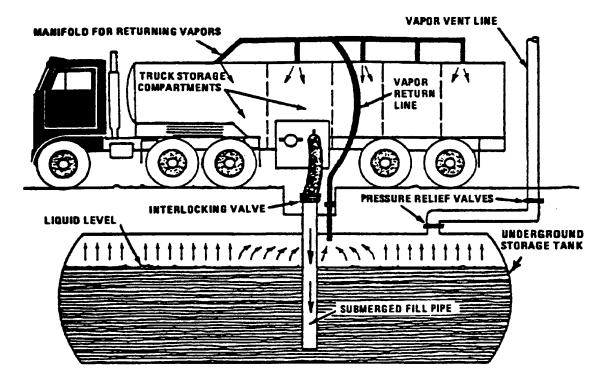


Figure 5.2-5. Tank truck unloading into a service station underground storage tank and practicing "vapor balance" form of emission control.

Table 5.2-1.	SATURATION (S) FACTORS FOR CALCULATING PETROLEUM LIQUID
	LOADING LOSSES

Cargo Carrier	Mode Of Operation	S Factor
Tank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.50
	Submerged loading: dedicated normal service	0.60
	Submerged loading: dedicated vapor balance service	1.00
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.00
Marine vessels ^a	Submerged loading: ships	0.2
	Submerged loading: barges	0.5

^a For products other than gasoline and crude oil. For marine loading of gasoline, use factors from Table 5.2-

2. For marine loading of crude oil, use Equations 2 and 3 and Table 5.2-3.

Since flares do not lend themselves to conventional emission testing techniques, only a few attempts have been made to characterize flare emissions. Recent EPA tests using propylene as flare gas indicated that efficiencies of 98 percent can be achieved when burning an offgas with at least $11,200 \text{ kJ/m}^3$ (300 Btu/ft³). The tests conducted on steam-assisted flares at velocities as low as 39.6 meters per minute (m/min) (130 ft/min) to 1140 m/min (3750 ft/min), and on air-assisted flares at velocities of 180 m/min (617 ft/min) to 3960 m/min (13,087 ft/min) indicated that variations in incoming gas flow rates have no effect on the combustion efficiency. Flare gases with less than 16,770 kJ/m³ (450 Btu/ft³) do not smoke.

Table 13.5-1 presents flare emission factors, and Table 13.5-2 presents emission composition data obtained from the EPA tests.¹ Crude propylene was used as flare gas during the tests. Methane was a major fraction of hydrocarbons in the flare emissions, and acetylene was the dominant intermediate hydrocarbon species. Many other reports on flares indicate that acetylene is always formed as a stable intermediate product. The acetylene formed in the combustion reactions may react further with hydrocarbon radicals to form polyacetylenes followed by polycyclic hydrocarbons.²

In flaring waste gases containing no nitrogen compounds, NO is formed either by the fixation of atmospheric nitrogen (N) with oxygen (O) or by the reaction between the hydrocarbon radicals present in the combustion products and atmospheric nitrogen, by way of the intermediate stages, HCN, CN, and OCN.² Sulfur compounds contained in a flare gas stream are converted to SO₂ when burned. The amount of SO₂ emitted depends directly on the quantity of sulfur in the flared gases.

Table 13.5-1 (English Units). EMISSION FACTORS FOR FLARE OPERATIONS^a

Component	Emission Factor (lb/10 ⁶ Btu)
Total hydrocarbons ^b	0.14
Carbon monoxide	0.37
Nitrogen oxides	0.068
Soot ^c	0 - 274

EMISSION FACTOR RATING: B

^a Reference 1. Based on tests using crude propylene containing 80% propylene and 20% propane.

^b Measured as methane equivalent.

^c Soot in concentration values: nonsmoking flares, 0 micrograms per liter (μ g/L); lightly smoking flares, 40 μ g/L; average smoking flares, 177 μ g/L; and heavily smoking flares, 274 μ g/L.

Equipment Type	Service ^a	Emission Factor (kg/hr/source) ^b
Valves	Gas Heavy Oil Light Oil Water/Oil	4.5E-03 8.4E-06 2.5E-03 9.8E-05
Pump seals	Gas Heavy Oil Light Oil Water/Oil	2.4E-03 NA 1.3E-02 2.4E-05
Others ^C	Gas Heavy Oil Light Oil Water/Oil	8.8E-03 3.2E-05 7.5E-03 1.4E-02
Connectors	Gas Heavy Oil Light Oil Water/Oil	2.0E-04 7.5E-06 2.1E-04 1.1E-04
Flanges	Gas Heavy Oil Light Oil Water/Oil	3.9E-04 3.9E-07 1.1E-04 2.9E-06
Open-ended lines	Gas Heavy Oil Light Oil Water/Oil	2.0E-03 1.4E-04 1.4E-03 2.5E-04

TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source)

^aWater/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

^bThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.

^CThe "other" equipment type was derived from compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

TABLE 1-B

COMPOSITIONAL ANALYSIS OF THE SEPARATOR GAS, OIL AND MATHEMATICALLY RECOMBINED WELLSTREAM THROUGH $C_{\rm 11+}$

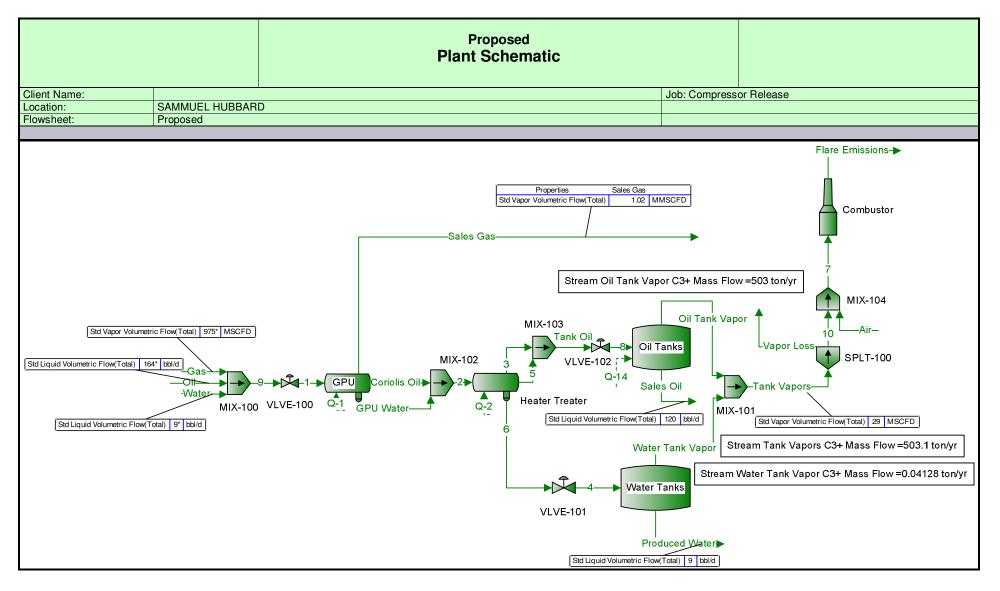
SEPARATOR GOR:	'	7195 Scf/Sep Bbl
SEPARATOR PRESSURE:		204 psig
SEPARATOR TEMPERATURE:		94 °F

	SEPARA	TOR GAS	SEPARA	TOR OIL	WELLS	TREAM
		*		Liquid		*
Component	Mole%	GPM	Mole %	Volume %	Mole %	GPM
Hydrogen Sulfide	0.000	0.000	0.000	0.000	0.000	0.000
Nitrogen	0.544	0.000	0.016	0.004	0.482	0.000
Carbon Dioxide	0.131	0.000	0.015	0.006	0.118	0.000
Methane	69.506	0.000	4.241	1.639	61.889	0.000
Ethane	17.845	4.810	6.176	3.767	16.483	4.443
Propane	7.460	2.072	8.547	5.370	7.587	2.107
Iso-butane	0.725	0.239	1.876	1.400	0.859	0.283
N-butane	2.230	0.709	8.305	5.971	2.939	0.934
2-2 Dimethylpropane	0.007	0.003	0.063	0.055	0.014	0.005
Iso-pentane	0.381	0.140	3.316	2.766	0.724	0.267
N-pentane	0.614	0.224	6.936	5.734	1.352	0.494
2-2 Dimethylbutane	0.007	0.003	0.100	0.095	0.018	0.008
Cyclopentane	0.006	0.002	0.000	0.000	0.005	0.002
2-3 Dimethylbutane	0.012	0.005	0.286	0.267	0.044	0.018
2 Methylpentane	0.097	0.041	2.339	2.214	0.359	0.150
3 Methylpentane	0.055	0.023	1.481	1.378	0.221	0.091
Other Hexanes	0.000	0.000	0.000	0.000	0.000	0.000
n-Hexane	0.177	0.073	5.794	5.434	0.833	0.345
Methylcyclopentane	0.012	0.004	0.688	0.555	0.091	0.032
Benzene	0.002	0.001	0.080	0.051	0.011	0.003
Cyclohexane	0.016	0.005	0.867	0.673	0.115	0.040
2-Methylhexane	0.022	0.010	1.979	2.098	0.250	0.117
3-Methylhexane	0.023	0.011	1.827	1.913	0.234	0.108
2,2,4 Trimethylpentane	0.000	0.000	0.000	0.000	0.000	0.000
Other Heptanes	0.021	0.009	0.825	0.818	0.115	0.050
n-Heptane	0.042	0.020	4.616	4.856	0.576	0.268
Methylcyclohexane	0.016	0.006	1.943	1.781	0.241	0.098
Toluene	0.003	0.001	0.353	0.270	0.044	0.015
Other C-8's	0.026	0.012	5.933	6.336	0.715	0.338
n-Octane	0.009	0.005	3.071	3.587	0.366	0.189
Ethylbenzene	0.001	0.000	0.304	0.268	0.036	0.014
M&P-Xylene	0.001	0.000	0.599	0.530	0.071	0.028
O-Xylene	0.001	0.000	0.821	0.712	0.097	0.037
Other C-9's	0.006	0.003	3.670	4.378	0.434	0.229
n-Nonane	0.001	0.001	1.960	2.516	0.230	0.130
Other C10's	0.000	0.000	3.963	5.195	0.463	0.268
n-Decane	0.000	0.000	1.231	1.724	0.144	0.089
Undecanes Plus	0.001	0.001	15.778	25.640	1.842	1.323
TOTAL	100.000	8.433	100.000	100.000	100.000	12.522

TABLE 1-B

COMPOSITIONAL ANALYSIS OF THE SEPARATOR GAS, OIL AND MATHEMATICALLY RECOMBINED WELLSTREAM THROUGH $C_{\rm 11+}$

SEPARATOR GOR...... 7195 Scf/Sep Bbl SEPARATOR PRESSURE...... 204 psig SEPARATOR TEMPERATURE...... 94 °F


UNDECANES PLUS (C ₁₁₊) FRACTION CHARACTERISTICS											
	Specific Gravity				Gross Heating Value						
COMPONENT	°API	**	lb/lb-mole	Scf/Gal	***						
Gas	N/A	0.8250	156.000	16.558	8,400						
Oil	41.256	0.8191	184.200	13.922	129,541						
Wellstream	N/A	0.8191	184.186	13.923	N/A						

TOTAL SAMPLE CHARACTERISTICS										
			Molecular	Vapor	Gross Hea	ating Value				
	Specific Gravity				Dry	Saturated				
COMPONENT	°API	**	lb/lb-mole	Scf/Gal	***	***				
Gas	N/A	0.7966	22.965	118.576	1,391	1,368				
Oil	71.218	0.6980	96.596	22.625	N/A	117,348				
Wellstream	N/A	1.0896	31.558	43.165	N/A	N/A				

* GPM (gallons per Mscf) determined at 14.85 psia and 60 °F

** Gas specific gravity and wellstream specific gravity determined relative to air (SG=1.000). Oil specific gravity determined relative to water (SG=1.000).

*** Gross Heating Value units for gas (real basis) and oil are BTU/Scf and BTU/Gal, respectively.

SAMUEL HUBBARD.pmx

Simulation initiated on 1			como Poport			Fage Fors
		All St	reams Report reams y Total Phase			
Client Name: Location:	SAMMUEL HUE			Job: Comp	ressor Release	
Flowsheet:	Proposed					
		Conn	ections			
		Produced Water	Sales Gas	Sales Oil	Tank Oil	Tank Vapors
From Block		Water Tanks	GPU	Oil Tanks	MIX-103	MIX-101
To Block					VLVE-102	SPLT-100
		Otres area O				
		Produced	omposition Sales Gas	Sales Oil	Tank Oil	Tank Vapors
Mole Fraction		Water %	%	%	%	%
H2S		0	0	0	0	0
N2		1.36404E-08	0.54937	7.08054E-05	0.0101494	0.0385237
CO2		4.97837E-05	0.196904	0.00254618	0.0392671	0.143156
C1		2.06877E-05	70.7135	0.0798397	3.9708	14.927
C2		2.67212E-05	17.4296	0.6223	5.91641	20.8225
C3 iC4		2.16802E-05 3.17304E-07	7.31261 0.636544	2.73562 1.13165	9.02362 2.00991	26.7255 4.48173
nC4		 5.33455E-06	1.95712	5.94171	8.81291	16.8936
2,2-Dimethylbutan	e	4.19723E-10	0.00267058	0.0763788	0.0672437	0.0415033
iC5		3.58891E-07	0.277235	3.09326	3.20596	3.52216
nC5		 6.32866E-07	0.441103	7.05437	6.81594	6.14246
2,2-Dimethylpropa	ne	 9.43065E-09	0.0182959	0.0897355	0.114143	0.182817
Cyclopentane		4.94016E-08	0.0011728	0.0268555	0.024472	0.0177562
2,3-Dimethylbutan	e	7.61514E-10	0.00101868	0.0410411	0.0346954	0.0168192
2-Methylpentane		1.98188E-08	0.0550775	2.51779 1.38617	2.10253 1.14529	0.932772
3-Methylpentane C6		6.6688E-08 2.024E-08	0.0271035	5.78187	4.68043	0.466809
Methylcyclopentar	1e	 2.18143E-07	0.0884185	0.825531	0.668264	0.225318
Benzene	•	3.50681E-05	0.00163149	0.101934	0.0827587	0.0288142
Cyclohexane		6.6813E-07	0.0127894	1.05434	0.838639	0.231157
2-Methylhexane		2.21515E-09	0.0112562	1.83841	1.41477	0.221644
3-Methylhexane		 2.18427E-09	0.0100271	1.70353	1.30878	0.19705
2,2,4-Trimethylper	ntane	0	0	0	0	0
C7		4.90723E-09	0.0273056	5.84806	4.45658	0.537777
Methylcyclohexane Toluene	9	1.02776E-07 3.29878E-05	0.0113783	2.32154 0.463446	1.77217 0.351955	0.224989 0.0380402
C8		 3.29878E-05 1.65883E-09	0.0134206	9.41219	7.02047	0.0380402
Ethylbenzene		7.9284E-06	0.000564851	0.42069	0.31362	0.0121114
m-Xylene		9.72935E-06	0.000625371	0.558208	0.415499	0.0136288
o-Xylene		4.69841E-06	0.000188805	0.186132	0.138438	0.00413473
C9		 9.26744E-10	0.00304509	6.85983	5.08058	0.0699445
C10		9.39334E-11	0.000875669	5.99179	4.42709	0.0206797
<u>C11</u>		 3.34211E-11	0.000207466 6.23843E-05	4.85577	3.58471	0.00522745
C12 C13		9.23661E-13 5.22129E-12	1.48582E-05	3.8196 3.19232	2.81912 2.35589	0.00163202
C14		 2.95055E-12	3.47245E-06	2.69127	1.98606	0.000412339
C15		5.52737E-14	1.14517E-06	2.26661	1.67266	3.4544E-05
C16		9.20093E-16	3.2632E-07	1.78992	1.32088	1.01417E-05
C17		 6.11656E-19	1.00479E-07	1.41733	1.04593	3.1647E-06
C18		1.84536E-18	3.09952E-08	1.32601	0.978534	1.08129E-06
C19		0	9.35081E-09	1.16528	0.859924	3.42234E-07
C20 C21		0	2.16518E-09 5.59854E-10	0.949758 0.67579	0.700879 0.498702	8.49147E-08 2.29083E-08
C22		0	2.24376E-10	0.67031	0.498702	9.47741E-09
C23		0	4.41482E-11	0.491317	0.36257	2.00405E-09
C24		0	1.03766E-11	0.363465	0.268221	4.9827E-10
C25		0	3.18566E-12	0.306845	0.226438	1.60391E-10
C26		0	1.09988E-12	0.356159	0.26283	5.87635E-11
C27		 0	2.10196E-13	0.28858	0.212959	1.22535E-11
C28		0	7.40424E-14	0.217349	0.160393	4.40761E-12
C29		0	2.82066E-14	0.195431	0.144219	1.73955E-12
C30 H2O		0	2.22329E-13 0.18438	4.78167	3.52866	1.45031E-11 0.9491
* User Specified Values		99.9998 BroMax	0.18438	0.0123854	0.25237	0.9491 western Energy Company

? Extrapolated or Approximate Values

101

Copyright © 2002-2012 BRE Group, Ltd.

Client Name:		ressor Release					
Location:	SAMMUEL HUE	BARD				Tessor nelease	
Flowsheet:	Proposed						
	•						
			Stream Co	omposition			
			Produced Water	Sales Gas	Sales Oil	Tank Oil	Tank Vapors
Mole Fraction			%	%	%	%	%
Oxygen			0	0	0	0	0
			Produced Water	Sales Gas	Sales Oil	Tank Oil	Tank Vapors
Molar Flow			lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
H2S N2			0 9.61908E-10	0.612631	0 6.3502E-06	0.00123348	0.00122731
CO2			3.5107E-06	0.219578	0.000228355	0.00123348	0.00122731
C1			1.45888E-06	78.8564	0.00716044	0.48258	0.475553
C2			1.88436E-06	19.4366	0.0558111	0.719034	0.663375
C3			1.52887E-06	8.15469	0.245345	1.09666	0.851436
iC4 nC4			2.2376E-08	0.709844	0.101493	0.244269	0.142781
nC4 2,2-Dimethylbutane	x		3.76188E-07 2.95985E-11	2.18249 0.00297811	0.532883 0.00685005	1.07105 0.00817227	0.538205 0.00132224
iC5	;		2.53087E-08	0.30916	0.27742	0.389627	0.112211
nC5			4.46292E-08	0.491897	0.632673	0.828356	0.19569
2,2-Dimethylpropar	ne		6.65042E-10	0.0204027	0.00804795	0.0138721	0.00582429
Cyclopentane			3.48376E-09	0.00130785	0.00240855	0.00297414	0.000565686
2,3-Dimethylbutane)		5.37014E-11	0.00113598	0.00368078	0.00421661	0.000535836
2-Methylpentane			1.39761E-09	0.0614199 0.0302246	0.225808	0.255525	0.0297167
3-Methylpentane C6			4.70278E-09 1.42731E-09	0.0302246	0.124319 0.518548	0.13919 0.568823	0.0148718 0.0502756
Methylcyclopentane	Э		1.53833E-08	0.0140776	0.074038	0.0812156	0.00717831
Benzene	-		2.47298E-06	0.00181936	0.00914193	0.0100578	0.000917978
Cyclohexane			4.7116E-08	0.0142621	0.0945585	0.101922	0.00736432
2-Methylhexane			1.56211E-10	0.0125524	0.164879	0.17194	0.00706124
3-Methylhexane			1.54033E-10	0.0111818	0.152782	0.159059	0.00627773
2,2,4-Trimethylpent C7	ane		0 3.46054E-10	0.03045	0.524485	0.541618	0.0171328
Methylcyclohexane			7.24768E-09	0.0126886	0.208208	0.215376	0.00716781
Toluene			2.32628E-06	0.00211601	0.0415643	0.0427738	0.0012119
C8			1.16979E-10	0.014966	0.844135	0.853213	0.00907784
Ethylbenzene			5.59104E-07	0.000629896	0.0377297	0.0381149	0.000385852
m-Xylene			6.86106E-07	0.000697385	0.050063	0.0504964	0.000434194
o-Xylene C9			3.31328E-07 6.53532E-11	0.000210546 0.00339574	0.0166933 0.615225	0.0168247 0.617454	0.000131726 0.00222833
C10			6.62411E-12	0.000976505	0.537375	0.538034	0.000658826
C11			2.35683E-12	0.000231357	0.435491	0.435658	0.000166539
C12			6.51358E-14	6.9568E-05	0.342561	0.342613	5.19937E-05
C13			3.68201E-13	1.65692E-05	0.286304	0.286317	1.31365E-05
C14			2.0807E-13	3.87231E-06	0.241367	0.241371	3.25911E-06
C15 C16			3.89786E-15 6.48842E-17	1.27704E-06 3.63897E-07	0.203281 0.16053	0.203282 0.16053	1.10052E-06 3.23101E-07
C17			4.31335E-20	1.12049E-07	0.127114	0.127114	1.00823E-07
C18			1.30133E-19	3.45644E-08	0.118923	0.118923	3.44483E-08
C19			0	1.04276E-08	0.104508	0.104508	1.09031E-08
C20			0	2.41451E-09	0.0851793	0.0851793	2.70526E-09
C21			0	6.24323E-10	0.0606084	0.0606084	7.29826E-10
C22 C23			0	2.50214E-10 4.9232E-11	0.060117 0.0440639	0.060117 0.0440639	3.01936E-10 6.3846E-11
C23			0	1.15716E-11	0.0325975	0.0325975	1.58741E-11
C25			0	3.5525E-12	0.0275195	0.0275195	5.10983E-12
C26			0	1.22653E-12	0.0319423	0.0319423	1.87212E-12
C27			0	2.34401E-13	0.0258814	0.0258814	3.9038E-13
C28			0	8.25686E-14	0.019493	0.019493	1.4042E-13
C29			0	3.14547E-14	0.0175273	0.0175273	5.54196E-14
C30 H2O			7.0519	2.47931E-13 0.205612	0.428845	0.428845	4.62049E-13 0.0302369
1120			7.0519	0.200012	0.00111079	0.030071	0.0302309

Licensed to Southwestern Energy Company

	All St	reams Report reams ry Total Phase			
Client Name:			Job: Comp	ressor Release	
Location: SAMMUEL HUBBARD					
Flowsheet: Proposed					
	Produced	Sales Gas	Sales Oil	Tank Oil	Tank Vapors
Malay Flags	Water	Un	Un	1	U
Molar Flow	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
Oxygen	0	0	0	0	0
	Duradasasad			Taula Oll	Taula Managar
Mass Fraction	Produced Water %	Sales Gas %	Sales Oil %	Tank Oil %	Tank Vapors %
H2S	0	0	0	0	0
N2	2.12104E-08	0.687653	1.38204E-05	0.00241578	0.0240073
CO2	0.000121616	0.387204	0.000780772	0.0146834	0.140154
C1	1.84221E-05	50.6888	0.00892439	0.541254	5.32714
C2	4.45997E-05	23.4177	0.130379	1.51157	13.9284
C3	5.3066E-05	14.4081	0.840504	3.38086	26.2163
iC4 nC4	1.0237E-06	1.65314 5.08274	0.458294 2.40626	0.992593 4.35224	5.79479 21.8431
nC4 2.2-Dimethylbutane	1.72106E-05 2.00772E-09	0.0102832	0.0458611	4.35224	0.079564
iC5	1.4373E-06	0.893751	1.55501	1.96534	5.65313
nC5	2.53453E-06	1.42203	3.5463	4.17837	9.85873
2,2-Dimethylpropane	3.77683E-08	0.0589823	0.045111	0.0699731	0.293424
Cyclopentane	1.92318E-07	0.00367522	0.0131233	0.0145829	0.0277027
2,3-Dimethylbutane	3.64265E-09	0.00392246	0.0246429	0.0254043	0.0322433
2-Methylpentane	9.4802E-08	0.212078	1.51179	1.53949	1.78817
3-Methylpentane	3.18998E-07	0.104363	0.832315	0.838595	0.894896
C6	9.68167E-08	0.340459	3.47168	3.42705	3.02527
Methylcyclopentane Benzene	1.01906E-06 0.00015205	0.0474717 0.00569429	0.484089 0.0554782	0.477863	0.421842
Cyclohexane	3.1212E-06	0.048094	0.61826	0.599694	0.432773
2-Methylhexane	1.23207E-08	0.0503971	1.28354	1.20452	0.494062
3-Methylhexane	1.2149E-08	0.0448942	1.18936	1.11428	0.439241
2,2,4-Trimethylpentane	0	0	0	0	0
C7	2.72942E-08	0.122255	4.08298	3.79428	1.19875
Methylcyclohexane	5.60142E-07	0.0499191	1.58824	1.47845	0.491429
Toluene	0.000168714	0.00781201	0.297529	0.275537	0.0779711
C8	1.0518E-08 4.67222E-05	0.068499 0.0026795	7.49125 0.311195	6.81385 0.282902	0.724071 0.028604
Ethylbenzene m-Xylene	5.73353E-05	0.00296659	0.41292	0.282902	0.028604
o-Xylene	2.76878E-05	0.000895638	0.137686	0.124879	0.00976514
C9	6.59768E-09	0.0174507	6.13023	5.53655	0.199562
C10	7.41867E-10	0.00556708	5.94011	5.35204	0.0654551
C11	2.89974E-10	0.001449	5.28846	4.76088	0.018177
C12	8.73319E-12	0.000474807	4.53325	4.08008	0.00618412
C13	5.34324E-11	0.000122398	4.10077	3.69044	0.00169112
C14	3.24919E-11	3.07815E-05	3.72016	3.34781	0.000451481
C15	6.51718E-13 1.1565E-14	1.08691E-05 3.3017E-06	3.35467	3.01887	0.000163232
C16 C17	1.1565E-14 8.16433E-18	1.07962E-06	2.82409 2.37474	2.54139 2.13702	5.10879E-05 1.69293E-05
C18	2.60684E-17	3.52461E-07	2.35133	2.11595	6.12167E-06
C19	0	1.12193E-07	2.1802	1.96196	2.04433E-06
C20	0	2.73353E-08	1.86979	1.68262	5.33733E-07
C21	0	7.41902E-09	1.39648	1.25668	1.51139E-07
C22	0	3.11399E-09	1.45066	1.30545	6.54851E-08
C23	0	6.40379E-10	1.11131	1.00007	1.44725E-08
C24	0	1.57019E-10	0.857645	0.771792	3.7538E-09
C25 C26	0	5.02019E-11 1.80219E-11	0.754031 0.910023	0.67855	1.25838E-09
C26 C27	0	3.5759E-12	0.910023	0.818927	4.79377E-10 1.03785E-10
C28	0	1.30603E-12	0.785558	0.537987	3.87068E-11
C29	0	5.15212E-13	0.556646	0.500924	1.58192E-11
C30	0	4.20032E-12	14.0869	12.6768	1.36415E-10
H2O	99.9993	0.14842	0.00155468	0.0386305	0.380367
			0		

I

Licensed to Southwestern Energy Company

			All St	reams Report reams by Total Phase						
Client Name:					Job: Comp	ressor Release				
Location:	SAMMUEL HUE	BARD								
Flowsheet:	Proposed									
			Produced	Sales Gas	Sales Oil	Tank Oil	Tank Vapors			
			Water	Sales Gas	Sales Oli		Talik vapors			
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h			
H2S			0	0	0	0	0			
N2			2.69463E-08	17.1619	0.000177891	0.0345539	0.0343811			
CO2			0.000154504	9.66353	0.0100498	0.210023	0.200716			
C1 C2			2.3404E-05	1265.05	0.114871	7.74178	7.62903			
C2 C3			5.66608E-05 6.74166E-05	584.441 359.586	1.67819 10.8186	21.6207 48.3579	19.947 37.5446			
iC4			1.30054E-06	41.2577	5.89898	14.1975	8.29877			
nC4			2.18649E-05	126.851	30.9724	62.2519	31.2817			
2,2-Dimethylbutan	е		2.55066E-09	0.256639	0.590306	0.704249	0.113944			
iC5			1.82599E-06	22.3055	20.0155	28.1111	8.09588			
nC5			3.21994E-06	35.4898	45.6466	59.7649	14.1188			
2,2-Dimethylpropa	ne		4.7982E-08	1.47203	0.58065	1.00085	0.420215			
Cyclopentane	•		2.44326E-07 4.62773E-09	0.0917231 0.0978936	0.168918	0.208585	0.0396732			
2,3-Dimethylbutan 2-Methylpentane	е		1.20439E-07	5.29288	19.4591	22.0199	2.56085			
3-Methylpentane			4.05264E-07	2.60461	10.7132	11.9948	1.28159			
C6			1.22999E-07	8.49691	44.6861	49.0186	4.33252			
Methylcyclopentan	ie		1.29465E-06	1.18476	6.231	6.83507	0.604123			
Benzene			0.000193169	0.142113	0.714093	0.785637	0.071705			
Cyclohexane			3.96526E-06	1.20029	7.95799	8.57767	0.619778			
2-Methylhexane			1.56526E-08	1.25777 1.12043	<u>16.5212</u> 15.309	17.2287 15.938	0.70755			
3-Methylhexane 2,2,4-Trimethylper	ntano		1.54344E-08 0	1.12043	15.309	15.938	0.62904			
C7	lanc		3.46753E-08	3.05115	52.5544	54.2711	1.71674			
Methylcyclohexane	Э		7.11621E-07	1.24584	20.4432	21.1469	0.703779			
Toluene			0.000214339	0.194966	3.82967	3.94111	0.111663			
C8			1.33623E-08	1.70954	96.4243	97.4612	1.03695			
Ethylbenzene			5.93573E-05	0.0668729	4.00557	4.04647	0.040964			
m-Xylene			7.28404E-05 3.51754E-05	0.0740379 0.0223526	5.31494 1.77224	5.36095 1.7862	0.0460962 0.0139847			
o-Xylene C9			8.38188E-09	0.0223526	78.9058	79.1916	0.0139847			
C10			9.42489E-10	0.138939	76.4587	76.5524	0.0937388			
C11			3.68392E-10	0.036163	68.0708	68.0969	0.0260314			
C12			1.10949E-11	0.0118499	58.3502	58.359	0.00885633			
C13			6.7882E-11	0.00305471	52.7834	52.7858	0.00242187			
C14			4.12787E-11	0.00076822	47.8844	47.885	0.000646569			
C15			8.27962E-13	0.000271262	43.1799	43.1802	0.000233767			
C16 C17			1.46925E-14 1.03722E-17	8.24012E-05 2.69442E-05	36.3505 30.5667	36.3506 30.5667	7.31633E-05 2.42446E-05			
C17 C18			3.31181E-17	8.79645E-06	30.2653	30.2653	8.76688E-06			
C19			0	2.80002E-06	28.0627	28.0627	2.92771E-06			
C20			0	6.82213E-07	24.0672	24.0672	7.64364E-07			
C21			0	1.85158E-07	17.9749	17.9749	2.16447E-07			
C22			0	7.77165E-08	18.6724	18.6724	9.37817E-08			
C23			0	1.59821E-08	14.3043	14.3043	2.07262E-08			
C24 C25			0	3.91875E-09 1.2529E-09	11.0393 9.70558	<u>11.0393</u> 9.70558	5.37584E-09 1.80214E-09			
C25 C26			0	4.49777E-10	11.7134	11.7134	6.86519E-10			
C27			0	8.92444E-11	9.85392	9.85392	1.48631E-10			
C28			0	3.25948E-11	7.69504	7.69504	5.54322E-11			
C29			0	1.28583E-11	7.16492	7.16492	2.26548E-11			
C30			0	1.04828E-10	181.321	181.321	1.9536E-10			
H2O			127.042	3.70416	0.0200112	0.552547	0.544727			
Oxygen			0	0	0	0	0			
			0	Duonoutica						
_				Properties	0.1.0"					
Property		Units	Produced Water	Sales Gas	Sales Oil	Tank Oil	Tank Vapors			
Temperature		°F	water 90	60 *	90	90 0004	87 5662			

Temperature

? Extrapolated or Approximate Values

°F

60

*

90

Licensed to Southwestern Energy Company

87.5662

90.0004

90

		All St	reams Report reams y Total Phase			
Client Name:				Job: Comp	ressor Release	
	L HUBBARD					
Flowsheet: Proposed						
		Stream I	Properties			
Property	Units	Produced Water	Sales Gas	Sales Oil	Tank Oil	Tank Vapors
Pressure	psig	-13.4977	130	0.5	30	-13.4977
Mole Fraction Vapor	%	0	100	0	12.7144	100
Mole Fraction Light Liquid	%	100	0	100	87.2856	0
Mole Fraction Heavy Liquid	%	0	0	0	0	0
Molecular Weight	lb/lbmol	18.0154	22.3801	143.52	117.692	44.9521
Mass Density	lb/ft^3	62.066	0.608997	45.2412	6.25578	0.00918398
Molar Flow	lbmol/h	7.05192	111.515	8.96853	12.1532	3.18585
Mass Flow	lb/h	127.043	2495.72	1287.16	1430.34	143.211
Vapor Volumetric Flow	ft^3/h	2.0469	4098.09	28.451	228.643	15593.6
Liquid Volumetric Flow	gpm	0.255198	510.93	3.54714	28.5062	1944.13
Std Vapor Volumetric Flow	MMSCFD	0.0642262	1.01564	0.081682	0.110687	0.0290156
Std Liquid Volumetric Flow	sgpm	0.253969	14.0567	3.50039	4.06506	0.56477
Compressibility		5.89636E-05	0.953479	0.00817219	0.14255	0.998713
Specific Gravity		0.995142	0.772723	0.72538		1.55207
API Gravity		10.0135		59.9951		
Enthalpy	Btu/h	-865011	-3.92763E+06	-1.13666E+06	-1.30038E+06	-150211
Mass Enthalpy	Btu/lb	-6808.81	-1573.75	-883.073	-909.139	-1048.88
Mass Cp	Btu/(lb* °F)	0.982128	0.481949 ?		0.503647	0.413475
Ideal Gas CpCv Ratio		1.32488	1.23832	1.03618	1.04426	1.1197
Dynamic Viscosity	cP	0.782693	0.0103057	0.797054		0.00848669
Kinematic Viscosity	cSt	0.787257	1.05644	1.09985		57.6882
Thermal Conductivity	Btu/(h*ft* °F)	0.355978	0.0164763 ?	0.0761307 ?		0.0113141
Surface Tension	lbf/ft	0.00489078	1010.5	0.00147127 ?		
Net Ideal Gas Heating Value	Btu/ft^3	0.00515736	1212.92	7236.81	5953.71	2339.72
Net Liquid Heating Value	Btu/lb	-1059.64	20489.8	18971.4	19034	19594.8
Gross Ideal Gas Heating Value	Btu/ft^3	50.3153	1334.89	7789.49	6414.72	2542.55
Gross Liquid Heating Value	Btu/lb	0.113868	22557.9	20432	20519.8	21306.8

TANKS 4.0.9d Emissions Report - Summary Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	Samuel Hubbard Condensate Brooke County West Virginia SWN Production Company, LLC Vertical Fixed Roof Tank Six (6) 400-bbl condensate tanks modeled as Gasoline RVP 15.
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	20.00 12.00 19.00 10.00 16,074.56 114.44 1,839,600.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	White/White Good White/White Good
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 0.00 0.06
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Pittsburgh, Pennsylvania (Avg Atmospheric Pressure = 14.11 psia)

TANKS 4.0.9d Emissions Report - Summary Format Liquid Contents of Storage Tank

Samuel Hubbard Condensate - Vertical Fixed Roof Tank Brooke County, West Virginia

			ily Liquid Su perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 15.0)	All	51.94	47.06	56.81	50.33	7.0149	6.3924	7.6845	60.0000			92.00	Option 4: RVP=15, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: Annual

Samuel Hubbard Condensate - Vertical Fixed Roof Tank Brooke County, West Virginia

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Gasoline (RVP 15.0)	7,905.17	1,424.69	9,329.87					

TANKS 4.0.9d Emissions Report - Summary Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	Samuel Hubbard Produced Water Brooke County West Virginia SWN Production Company, LLC Vertical Fixed Roof Tank Six (6) 400-bbl produced water tanks modeled as Gasoline RVP 15.					
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	20.00 12.00 19.00 10.00 16,074.56 8.58 137,970.00 N					
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	White/White Good White/White Good					
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 0.00 0.06					
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03					

Meterological Data used in Emissions Calculations: Pittsburgh, Pennsylvania (Avg Atmospheric Pressure = 14.11 psia)

TANKS 4.0.9d Emissions Report - Summary Format Liquid Contents of Storage Tank

Samuel Hubbard Produced Water - Vertical Fixed Roof Tank Brooke County, West Virginia

			ily Liquid Si perature (de		Liquid Bulk Temp Vapor Pressure (psia)		(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 15.0)	All	51.94	47.06	56.81	50.33	7.0149	6.3924	7.6845	60.0000			92.00	Option 4: RVP=15, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: Annual

Samuel Hubbard Produced Water - Vertical Fixed Roof Tank Brooke County, West Virginia

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Gasoline (RVP 15.0)	1,382.64	1,424.69	2,807.33					