# JAY-BEE OIL & GAS, INC.

# APPLICATION FOR GENERAL PERMIT MODIFICATION

**Bashful Well Pad Production Facility Tyler County, West Virginia** 



98 Vanadium Road Bridgeville, PA 15017 (412) 221-1100

# APPLICATION FOR G70-A GENERAL PERMIT MODIFICATION

Jay-Bee Oil & Gas, Inc.

#### **Bashful Well Pad Production Facility**

Tyler County, West Virginia

#### **Table of Contents**

- I. Application Form
- II. Attachments
  - Attachment A Business Registration
  - Attachment B Process Description
  - Attachment C Description of Fugitive Emissions
  - Attachment D Process Flow Diagram
  - Attachment E Plot Plan
  - Attachment F Area Map
  - Attachment G Equipment Data Sheets and Registration Applicability Form
  - Attachment H Air Pollution Control Device Sheets
  - Attachment I Emission Calculations
  - Attachment J Class I Legal Advertisement
  - Attachment O Emissions Summary Sheets
  - Attachment P Other Supporting Documentation

# **SECTION I**

**Application Form** 



# WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY

601 57<sup>th</sup> Street, SE Charleston, WV 25304

Phone: (304) 926-0475 · www.dep.wv.gov/dag

# APPLICATION FOR GENERAL PERMIT REGISTRATION

CONSTRUCT, MODIFY, RELOCATE OR
ADMINISTRATIVELY UPDATE
A STATIONARY SOURCE OF AIR POLITICANTS

|            |                                       | T HOHE. (C        | 304) 320 0473                               | www.acp.w      | vv.gov/daq    |                                              |                 | HONANT                | BOOKCE OF AIR FOLL             | UTANTS        |
|------------|---------------------------------------|-------------------|---------------------------------------------|----------------|---------------|----------------------------------------------|-----------------|-----------------------|--------------------------------|---------------|
|            | □ CONSTR                              | UCTION            | <b>⊠</b> MODIFICA                           | ATION          |               | □ RELOCATION □ CLASS I ADMINISTRATIVE UPDATE |                 |                       |                                | ATE .         |
|            |                                       |                   |                                             |                |               |                                              |                 | ☐ CLASS               | II ADMINISTRATIVE UPD          | ATE           |
|            |                                       |                   |                                             |                |               |                                              |                 |                       |                                |               |
|            |                                       | CHECK W           | HICH TYPE OF                                | GENERA         | L PERMIT      | REG                                          | STRATI          | ON YOU ARI            | E APPLYING FOR:                |               |
|            | <b>G10-D</b> – Coal                   | Preparation ar    | nd Handling                                 |                |               |                                              |                 | <b>340-C</b> – Nonme  | etallic Minerals Processing    |               |
|            | <b>G20-B</b> – Hot N                  |                   |                                             |                |               |                                              |                 | <b>350-B</b> – Concre | ete Batch                      |               |
|            | G30-D - Natu                          |                   | essor Stations<br>nal Combustion En         | ainaa          |               |                                              |                 |                       | II Emergency Generator         |               |
|            |                                       |                   | essor Stations (Fla                         |                | hvdration I   | nit)                                         |                 | 665-C - Class I       | Emergency Generator            | Cara Easille  |
|            | Joon Hata                             | iai oao compi     | occor cialione (i la                        |                | ony aradion c | ,                                            | IXI (           | J70-A – Class         | II Oil and Natural Gas Product | lion Facility |
|            | SECTION I. GENERAL INFORMATION        |                   |                                             |                |               |                                              |                 |                       |                                |               |
| 1          | Name of appli                         | icant (ac raciat  |                                             |                |               |                                              | NFORIVIA        |                       | al Employer ID No. (FEIN):     |               |
| 1.         | Name or appr                          | icani (as regisi  | ered with the WV S                          | secretary or   | State's Offic | e).                                          |                 |                       |                                |               |
|            | Jay-Bee Oil                           | & Gas, Inc.       |                                             |                |               |                                              |                 | 55-07                 | 73-8862                        |               |
| 3.         | Applicant's ma                        | ailing address:   |                                             |                |               | 4.                                           | Applicant'      | s physical addr       | ess:                           |               |
|            |                                       | •                 |                                             |                |               |                                              |                 |                       |                                |               |
|            | 3570 Shield                           | lo U:II Dal       |                                             |                |               | ;                                            | 3570 Shie       | elds Hill Rd          |                                |               |
|            | Cairo, WV 2                           |                   |                                             |                |               | Cairo, WV 26337                              |                 |                       |                                |               |
| _          | - Can 6, 11 1 2                       |                   |                                             | _              |               |                                              |                 |                       |                                |               |
| 5.         | If Applicant is                       | a aubaidian, a    | orporation, please                          | provide the    | nome of no    | ont on                                       | rnorotion       |                       |                                |               |
|            |                                       | a subsidiary c    | orporation, please                          | provide the    | name or par   | ent co                                       | rporation.      |                       |                                |               |
| N/A        | A                                     |                   |                                             |                |               |                                              |                 |                       |                                |               |
| wv         | BUSINESS RE                           | GISTRATION        | Is the applicant a                          | resident of th | ne State of \ | Vest V                                       | irginia? D      | 7 YFS □N              | 0                              |               |
| •••        | DOOMEOO KE                            | olo manon.        | is the applicant a i                        | COIGOIR OF R   | ic claic or i | V COL V                                      | ngina. <b>E</b> | 2 120 LN              |                                |               |
| -          | IF <b>YES,</b> p                      | rovide a copy of  | of the Certificate of                       | Incorporat     | ion/ Organi   | zation                                       | / Limited       | l Partnership (       | one page) including any nam-   | e change      |
| ame        | ndments or other                      | er Business Re    | egistration Certifica                       | te as Attach   | nment A.      |                                              |                 |                       |                                |               |
|            | 15.110                                |                   |                                             |                |               |                                              |                 | ,                     |                                |               |
| -<br>or ot | IF <b>NO</b> , pro<br>ther Business C |                   |                                             | Authority /    | Authority     | of LLC                                       | / Registi       | ation (one pag        | ge) including any name chang   | e amendments  |
| 0. 0.      | anor Buomicoo C                       |                   |                                             |                |               |                                              |                 |                       |                                |               |
|            |                                       |                   |                                             | SECTION        | III. FACIL    | ITY I                                        | NFORM           | ATION                 |                                |               |
| 7.         |                                       |                   | ionary source) to b                         |                |               |                                              | ard Indus       | trial AND             | 8b. North American Indus       | try           |
|            |                                       |                   | ated or administrat<br>ion plant, primary o |                |               | ssificat                                     | ion             |                       |                                |               |
| N-         |                                       |                   |                                             | orusiner, etc. | Cla           | ssificat                                     | ion (SIC)       | code: <b>1311</b>     | System (NAICS) code: 2         | 11111         |
| Na         | tural Gas Well                        | rad Producti      | on Facility                                 |                |               |                                              |                 |                       |                                |               |
| 9.         | DAQ Plant ID N                        | lo. (for existing | facilities only):                           |                |               |                                              |                 | 5CSR13 and o          | other General Permit numbers   | associated    |
|            |                                       |                   |                                             |                |               |                                              | `               | i onidiniy lacilil    | 100 Orny).                     |               |
|            | 095-00051                             |                   |                                             |                | 6/            | '0-A0                                        | <del>,</del> ,  |                       |                                |               |
|            |                                       |                   |                                             |                |               |                                              |                 |                       |                                |               |
|            |                                       |                   |                                             |                |               |                                              |                 |                       |                                |               |
|            |                                       |                   |                                             |                |               |                                              |                 |                       |                                |               |

#### A: PRIMARY OPERATING SITE INFORMATION

| 11A. Facility name of primary operating site:  Bashful Well Pad Production Facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12A. Address of primary operating s  Mailing: None  | ite: Physical:                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13A. Does the applicant own, lease, have an option — IF YES, please explain: Applicant the Well F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • '                                                 | • •                                                                                                                                                                                           |
| the nearest state road;  For Construction or Relocation permit  MAP as Attachment F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | re Updates at an existing facility, please          | e provide directions to the present location of the facility from cosed new site location from the nearest state road. Include a co CR 13/1 for 2 miles. Take right onto Bonelick Rd. Proceed |
| approximately 0.6 miles. Access road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d is on the left.                                   |                                                                                                                                                                                               |
| 15A. Nearest city or town: Stringtown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16A. County:                                        | 17A. UTM Coordinates:  Northing (KM): 4369.319  Easting (KM): 523.994  Zone: 17                                                                                                               |
| 18A. Briefly describe the proposed new operation Natural gas production and separation o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • ( )                                               | 19A. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits):  Latitude: 39.47313  Longitude: -80.72104                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     | ble for G20, G40, & G50 General Permits)                                                                                                                                                      |
| 11B. Name of 1 <sup>st</sup> alternate operating site:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12B. Address of 1 <sup>st</sup> alternate operation |                                                                                                                                                                                               |
| 13B. Does the applicant own, lease, have an option in the second of the | • •                                                 | the proposed site?                                                                                                                                                                            |
| —→ IF <b>NO</b> , YOU ARE NOT ELIGIBLE FO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R A PERMIT FOR THIS SOURCE.                         |                                                                                                                                                                                               |

| 14B. — For Modifications or Administrative the nearest state road;         | ve Updates at an existing facility, please provide of     | directions to the present location of the facility from                     |  |  |
|----------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------|--|--|
| For Construction or Relocation permits, p<br>MAP as Attachment F.          | lease provide directions to the proposed new site         | location from the nearest state road. Include a                             |  |  |
|                                                                            |                                                           |                                                                             |  |  |
|                                                                            |                                                           |                                                                             |  |  |
| -                                                                          |                                                           |                                                                             |  |  |
| 45D Negreet site and over                                                  | ACD County                                                | 47D LITM Coordinates                                                        |  |  |
| 15B. Nearest city or town:                                                 | 16B. County:                                              | 17B. UTM Coordinates:                                                       |  |  |
|                                                                            |                                                           | Northing (KM):                                                              |  |  |
|                                                                            |                                                           | Zone:                                                                       |  |  |
| 18B. Briefly describe the proposed new operation of                        | or change (s) to the facility:                            | 19B. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): |  |  |
|                                                                            |                                                           | Latitude:                                                                   |  |  |
|                                                                            |                                                           | Longitude:                                                                  |  |  |
| C: 2 <sup>ND</sup> ALTERNATE OPERATIN                                      | IG SITE INFORMATION (only available for G20               | , G40, & G50 General Permits):                                              |  |  |
| 11C. Name of 2 <sup>nd</sup> alternate operating site:                     | 12C. Address of 2 <sup>nd</sup> alternate operating site: |                                                                             |  |  |
|                                                                            | Mailing:                                                  | Physical:                                                                   |  |  |
|                                                                            |                                                           |                                                                             |  |  |
| 13C. Does the applicant own, lease, have an optio  IF YES, please explain: | n to buy, or otherwise have control of the propose        |                                                                             |  |  |
| → IF <b>NO</b> , YOU ARE NOT ELIGIBLE FOR                                  | A PERMIT FOR THIS SOURCE.                                 |                                                                             |  |  |
| 14C. For <b>Modifications or Administration</b> the nearest state road;    | ve Updates at an existing facility, please provide of     | directions to the present location of the facility from                     |  |  |
| For Construction or Relocation permits, p<br>MAP as Attachment F.          | lease provide directions to the proposed new site         | location from the nearest state road. Include a                             |  |  |
|                                                                            |                                                           |                                                                             |  |  |
|                                                                            |                                                           |                                                                             |  |  |
|                                                                            |                                                           |                                                                             |  |  |
|                                                                            |                                                           |                                                                             |  |  |
| 15C. Nearest city or town:                                                 | 16C. County:                                              | 17C. UTM Coordinates:                                                       |  |  |
|                                                                            |                                                           | Northing (KM):                                                              |  |  |
|                                                                            |                                                           | Zone:                                                                       |  |  |
| 18C. Briefly describe the proposed new operation                           | or change (s) to the facility:                            | 19C. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): |  |  |
|                                                                            |                                                           | Latitude: Longitude:                                                        |  |  |

| 20. Provide the date of anticipated installation or change:                                                                                                                                                                             | 21. Date of anticipated Start-up if registration is granted: |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|--|--|
| 02 / 08 /16                                                                                                                                                                                                                             | <u>02<b>/ 12/ 16</b></u>                                     |  |  |  |  |  |
| If this is an <b>After-The-Fact</b> permit application, provide the date upon which the proposed change did happen: :                                                                                                                   |                                                              |  |  |  |  |  |
| 22. Provide maximum projected <b>Operating Schedule</b> of activity/activities outlined in this application if other than 8760 hours/year. (Note: anything other than 24/7/52 may result in a restriction to the facility's operation). |                                                              |  |  |  |  |  |
| Hours per day 24 Days per week 7 Weeks per                                                                                                                                                                                              | year <u>52</u> Percentage of operation <u>100</u>            |  |  |  |  |  |

#### SECTION III. ATTACHMENTS AND SUPPORTING DOCUMENTS

- 23. Include a check payable to WVDEP Division of Air Quality with the appropriate application fee (per 45CSR22 and 45CSR13).
- 24. Include a **Table of Contents** as the first page of your application package.

All of the required forms and additional information can be found under the Permitting Section (General Permits) of DAQ's website, or requested by phone.

- 25. Please check all attachments included with this permit application. Please refer to the appropriate reference document for an explanation of the attachments listed below.
  - X ATTACHMENT A: CURRENT BUSINESS CERTIFICATE
  - **X** ATTACHMENT B: PROCESS DESCRIPTION
  - X ATTACHMENT C: DESCRIPTION OF FUGITIVE EMISSIONS
  - X ATTACHMENT D: PROCESS FLOW DIAGRAM
  - X ATTACHMENT E: PLOT PLAN
  - ATTACHMENT F: AREA MAP
  - X ATTACHMENT G: EQUIPMENT DATA SHEETS AND REGISTRATION SECTION APPLICABILITY FORM
  - X ATTACHMENT H: AIR POLLUTION CONTROL DEVICE SHEETS
  - X ATTACHMENT I: EMISSIONS CALCULATIONS
  - X ATTACHMENT J: CLASS I LEGAL ADVERTISEMENT
  - X ATTACHMENT K: ELECTRONIC SUBMITTAL
  - ☑ ATTACHMENT L: GENERAL PERMIT REGISTRATION APPLICATION FEE
  - ☐ ATTACHMENT M: SITING CRITERIA WAIVER
  - ☐ ATTACHMENT N: MATERIAL SAFETY DATA SHEETS (MSDS)
  - X ATTACHMENT O: EMISSIONS SUMMARY SHEETS
  - X OTHER SUPPORTING DOCUMENTATION NOT DESCRIBED ABOVE (Equipment Drawings, Aggregation Discussion, etc.)

Please mail an original and two copies of the complete General Permit Registration Application with the signature(s) to the DAQ Permitting Section, at the address shown on the front page of this application. Please DO NOT fax permit applications. For questions regarding applications or West Virginia Air Pollution Rules and Regulations, please refer to the website shown on the front page of the application or call the phone number also provided on the front page of the application.

#### SECTION IV. CERTIFICATION OF INFORMATION

This General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of a Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, Emission Inventory, Certified Emission Statement, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or unsigned Registration Application will be returned to the applicant.

|                                          | FOR A CORPORATION (domestic or foreign)  I certify that I am a President, Vice President corporation                                                                                    | Secretary, Treasurer or in charge of a principal business function of the                                                                                                                                                                                                                                                                                               |  |  |  |  |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                          | FOR A PARTNERSHIP  I certify that I am a General Partner                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                                          | FOR A LIMITED LIABILITY COMPANY  I certify that I am a General Partner or General                                                                                                       | al Manager                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                                          | FOR AN ASSOCIATION  I certify that I am the President or a member                                                                                                                       | of the Board of Directors                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                          | FOR A JOINT VENTURE  I certify that I am the President, General Partner or General Manager                                                                                              |                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                                          | FOR A SOLE PROPRIETORSHIP  I certify that I am the Owner and Proprietor                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Liabilit<br>chang<br>I herek<br>hereto   | ty Company, Association Joint Venture or Sole Proprietor.<br>es its Authorized Representative, a Responsible Official s<br>by certify that all information contained in this General Pe | sent the interest of the business (e.g., Corporation, Partnership, Limited ship) and may obligate and legally bind the business. If the business hall notify the Director of the Office of Air Quality immediately, and/or, mit Registration Application and any supporting documents appended lete, and that all reasonable efforts have been made to provide the most |  |  |  |  |
| Signature                                |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| (please use blue ink)                    | Responsible Official                                                                                                                                                                    | Date                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Name & Title _<br>(please print or type) | Shane Dowell, Office Manager                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Signature                                |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| (please use blue ink)                    | Authorized Representative (if applicable)                                                                                                                                               | Date                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Applicant's Na                           | me                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Phone & Fax                              | 304/628-3119                                                                                                                                                                            | 304/628-3119                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| _                                        | Phone                                                                                                                                                                                   | Fax                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Email                                    | sdowell@jaybeeoil.com                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                                          |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |

# **SECTION II**

**Attachments** 

# ATTACHMENT A

**Business Registration** 

#### Attachment A

#### Attached Current WV Business Certificate

# STATE TAX DEPARTMENT BUSINESS REGISTRATION

# CERTIFICATE

ISSUED TO: JAY-BEE OIL & GAS INC RR 1 BOX 5 CAIRO, WV 26337-9701

BUSINESS REGISTRATION ACCOUNT NUMBER

1043:4498

This certificate is issued on

. 06/1<sup>1</sup>120.10 1

This certificate is issued by a thic West Winding State Tax Commissioner Inductionality with W.Va. Gods St. 12

The person of preamy alton identified on this continueters registered to conduct this iness in the State of the proginite at the location apply

This certificate is not transferrable and injust be maplayed at the (charge) that the second in the

This certificate shall be the manager until caseation of the business for which the certificate of registration was granted or until the sustained by the Tax can be successful.

Change in name or change of localism shall be considered a cassium of the intelliness and a new certificitie shall be required.

TRAVELUIGETREET VENDORS: Must carry a copy of this territicate in every Vehicle presented by them. CONTRACTORS, DRILLING OPERATORS, TIMBEPLOGGING OPERATIONS: Must have a copy of this certificate displayed at every job after within West Virginitä.

ail.006 v.1 L1388190464

MOS PS NOT

mandle win or

# **ATTACHMENT B**

**Process Description** 

#### Jay-Bee Oil & Gas, Incorporated Bashful Well Pad Production Facility Attachment B Process Description

Natural gas and Produced Fluids (condensate and water) are received from two wells at this location and passed through Gas Processing Units (one per well) to avoid ice formation during subsequent pressure drops. The GPU also separates the gas from the liquids and separates the liquids into Condensate and Produced Water. The gas is routed to a gathering pipeline owned and operated by others.

Both the Condensate and Produced Water are accumulated in four 210 BBL tanks (two for Condensate and two for Produced Water), pending truck transportation by others. The Condensate is transported to a regional processing facility and the Produced Water to a regional disposal facility. Flash, working and breathing losses from these tanks is currently routed to a Vapor Recovery Unit (VRU) with the captured vapors routed back to the raw gas discharge line. In accordance with the G70-A permit registration a maximum capture and control efficiency of only 95% is claimed for the VRU.

Jay-Bee is seeking approval for installation of an enclosed combustor as a back-up for the VRU to capture and destroy tank emissions for those times when the VRU is not available (e.g. engine and compressor maintenance). In association with this change, condensate and water production rates have changed subsequent to issuance if the initial permit registration. Accordingly, Jay-Bee is seeking to revise the permitted rates for production and associated tank emissions and truck loading emissions for these two liquids.

Separately, the original permit application, and subsequent permit, did not address fugitive dusts associated with truck traffic. This application seeks to correct this oversight.

Lastly, Jay-Bee is seeking approval for the installation and operation of a Thermo-Electric Generator.

#### No other changes are being requested at this time.

A Process Flow Diagram depicting the new and existing features is provided in Attachment D.

The proposed change to the tank emissions control methodology will actually control the tank emissions to a greater degree than the VRU, actually reduce overall VOC and HAPs emissions. However, the presence of a permanent combustor warrants the modification being through a Modification rather than a Class II Administrative Update. It is also our understanding that in order for both control devices to be addressed within the confines of the G70-A permit registration, the application must show the emissions for both control units as if they were the only control. Thus, for permitting purposes, the enclosed application shows 2% of the potential tank emissions as un-captured/uncontrolled emissions from the combustor in addition to the 5% of potential uncaptured/uncontrolled tank emissions from the current VRU.

#### **Emission Units Table**

#### (includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

| Emission<br>Unit ID <sup>1</sup> | Emission<br>Point ID <sup>2</sup> | Emission Unit Description                         | Year Installed/<br>Modified | Design<br>Capacity    | Type <sup>3</sup> and Date of Change | Control<br>Device <sup>4</sup> |
|----------------------------------|-----------------------------------|---------------------------------------------------|-----------------------------|-----------------------|--------------------------------------|--------------------------------|
| GPU-1                            | 1E                                | Gas Processing Unit                               | 2014                        | 1.5<br>MMBTU/Hr       | EXIST                                | None                           |
| GPU-2                            | 2E                                | Gas Processing Unit                               | 2014                        | 1.5<br>MMBTU/Hr       | EXIST                                | None                           |
| VRU-1                            | 3E                                | VRU Driver<br>(Cummins G5.9)                      | 2014                        | 84 Hp                 | EXIST                                | 1C                             |
| T01                              | 4E                                | Produced Water Tank                               | 2014                        | 210 BBL               | EXIST                                | VRU-1/<br>EC-1                 |
| T02                              | 5E                                | 5E Produced Water Tank                            |                             | 210 BBL               | EXIST                                | VRU-1/<br>EC-1                 |
| T03                              | CO3 6E Condensate Tank            |                                                   | 2014                        | 210 BBL               | EXIST                                | VRU-1/<br>EC-1                 |
| T04                              | 7E                                | Condensate Tank                                   | 2014                        | 210 BBL               | EXIST                                | VRU-1/<br>EC-1                 |
| TEG-1                            | 8E                                | Thermoelectric Generator                          | Pending Permit              | 4.4 KW/Hr             | NEW                                  | None                           |
| TL-1                             | 9E                                | Condensate Truck Loading                          | 2014                        | 27,480<br>BBL./Yr.    | Modification                         | None                           |
| TL-1                             | 10E                               | Produced Water Loading                            | 2014                        | 25,200<br>BBL/Yr.     | Modification                         | None                           |
| EC-1                             | EC-1 11E Enclosed Combustor       |                                                   | Upon Receipt of<br>Permit   | 10.0<br>MMBTU/Hr      | NEW                                  | N/A                            |
|                                  |                                   | Fugitive VOC Emissions – Fittings and Connections | 2014                        | N/A                   | Modification                         | None                           |
|                                  |                                   | Haul Roads                                        | 2014                        | 2 Trucks per day max. | EXIST                                | None                           |

<sup>&</sup>lt;sup>1</sup> For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.
<sup>2</sup> For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.
<sup>3</sup> New, modification, removal

<sup>&</sup>lt;sup>4</sup> For <u>Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.</u>

# ATTACHMENT C Description of Fugitive Emissions

# Jay-Bee Oil & Gas, Inc. Bashful Well Pad Production Facility Attachment C Fugitive Emissions Data

#### **Equipment Fugitive Emissions**

As noted in the process description, Jay Bee plans to install an enclosed combustor at its Bashful Well Pad Production Facility. This equipment will contain a variety of piping containing natural gas and tank vapors. During the normal course of operation minor leaks from valves, pressure release devices and various fittings associated with this piping may occur. The number of valves, flanges, etc. has been revised to reflect the inclusion of additional equipment that will be installed with this modification. A new potential emission rate of 1.34 tpy of VOCs and 3 tpy CO<sub>2</sub>e has been estimated.

Estimates of these emissions are included in the calculations (Attachment I) and summarized on the form included in this section. These calculations are based on emission factors accepted by the American Petroleum Institute and EPA.

#### **Pigging Emission Estimates**

There are no pigging operations in association with this facility.

#### **Facility Blowdown Emission Estimates**

The proposed modification will not result in any changes to the blowdown emissions at this facility. The numbers presented in the following Fugitive Emissions Summary Sheet for blowdowns has not changed from the original application.

#### **Storage Tank and Haul Road Fugitive Emissions**

Produced Fluids (water and condensate) received by this facility are accumulated in four 210-BBL tanks (two condensate and two water) prior to off-site shipment. In this modification application, emissions from these tanks were determined by using flash gas measurements from pressurized condensate produced at an area Jay-Bee well pad and working/breathing losses using AP-42 methods using condensate vapor data from this same condensate. Given changes in condensate production, <u>uncontrolled</u> emissions from these tanks are now determined to be a maximum of 767.2 tons per year of VOCs. These vapors are routed to a VRU with a minimum capture and control efficiency of 95%. Emission calculations are presented in Attachment I. Emissions associated with the proposed Enclosed Combustor are also presented in the calculations in Attachment I.

Emissions from Truck Loading Operations have been correspondingly revised to match the current maximum water and condensate production rates.

Fugitive dust emissions from truck traffic on the access road have been added to the fugitive emissions with this modification application.

#### **FUGITIVE EMISSIONS DATA SUMMARY SHEET**

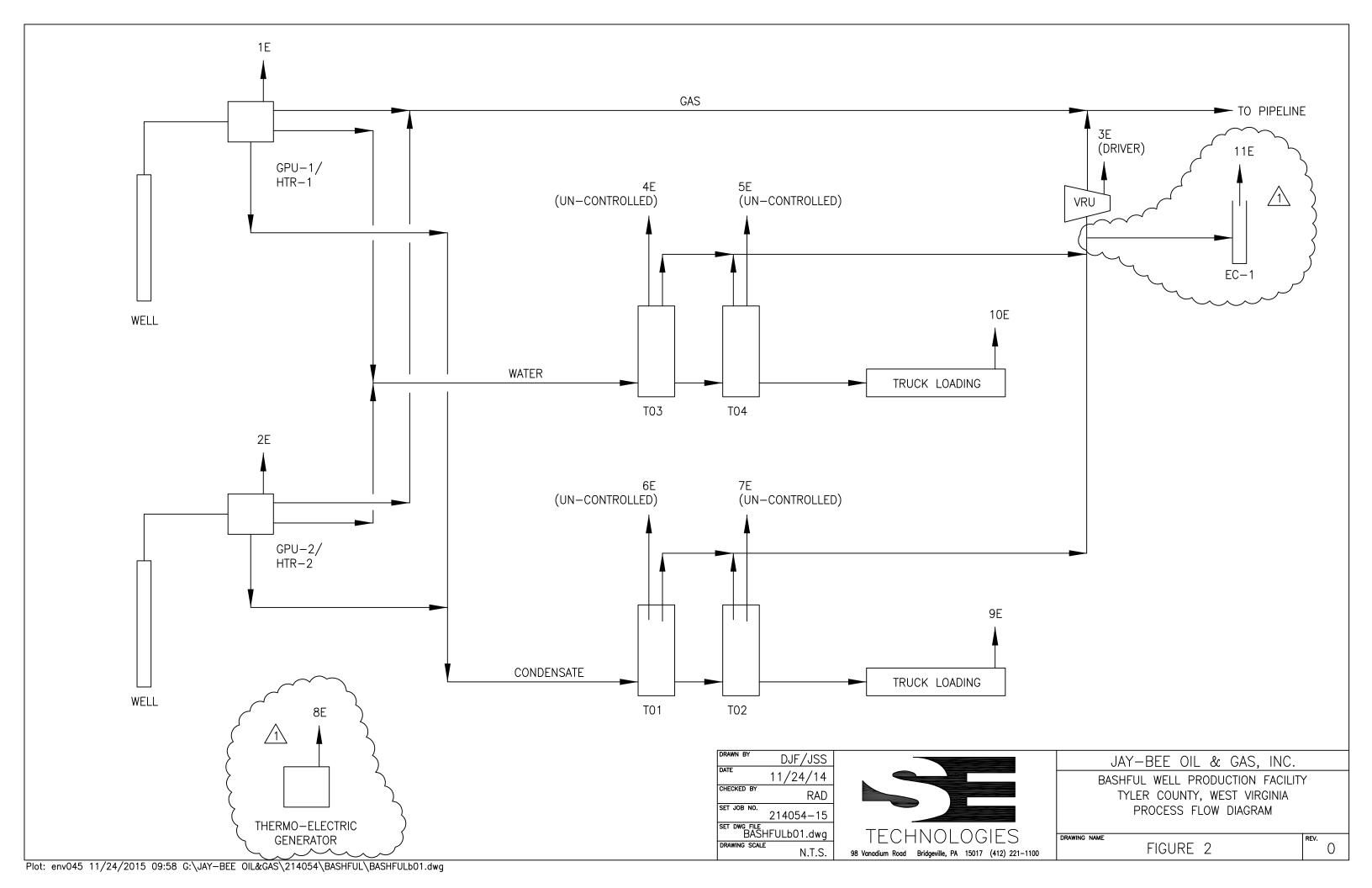
The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

|     | APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS                                                                                                                                                        |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.) | Will there be haul road activities?                                                                                                                                                                     |
|     | ⊠ Yes □ No                                                                                                                                                                                              |
|     | ☐ If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.                                                                                                                                        |
| 2.) | Will there be Storage Piles?                                                                                                                                                                            |
|     | ☐ Yes ☐ No                                                                                                                                                                                              |
|     | $\hfill \square$ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.                                                                                             |
| 3.) | Will there be Liquid Loading/Unloading Operations?                                                                                                                                                      |
|     | ⊠ Yes □ No                                                                                                                                                                                              |
|     | $oxed{oxed}$ If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.                                                                                                            |
| 4.) | Will there be emissions of air pollutants from Wastewater Treatment Evaporation?                                                                                                                        |
|     | ☐ Yes      No                                                                                                                                                                                           |
|     | ☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.                                                                                                                                               |
| 5.) | Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)? |
|     | ⊠ Yes □ No                                                                                                                                                                                              |
|     | $\hfill \square$ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.                                                                               |
| 6.) | Will there be General Clean-up VOC Operations?                                                                                                                                                          |
|     | ☐ Yes      No                                                                                                                                                                                           |
|     | ☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.                                                                                                                                               |
| 7.) | Will there be any other activities that generate fugitive emissions?                                                                                                                                    |
|     | ☐ Yes ☐ No                                                                                                                                                                                              |
|     | ☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.                                                                                                                  |
|     | ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions mmary."                                                                            |

| FUGITIVE EMISSIONS SUMMARY                                        | All Regulated Pollutants -<br>Chemical Name/CAS 1 | Maximum Potential Uncontrolled Emissions <sup>2</sup> |        | Maximum Potential<br>Controlled Emissions <sup>3</sup> |        | Est.<br>Method    |
|-------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|--------|--------------------------------------------------------|--------|-------------------|
|                                                                   | Chemical Name/CAS                                 | lb/hr                                                 | ton/yr | lb/hr                                                  | ton/yr | Used <sup>4</sup> |
| Haul Road/Road Dust Emissions<br>Paved Haul Roads                 |                                                   |                                                       |        |                                                        |        |                   |
| Unpaved Haul Roads                                                | РМ                                                | 6.32                                                  | 0.68   | 6.32                                                   | 0.68   | EE                |
| Loading/Unloading Operations (Condensate Loading + Water Loading) | VOCs                                              | 51.14                                                 | 3.53   | 51.14                                                  | 3.53   | EE                |
|                                                                   | Total HAPs                                        | 2.51                                                  | 0.17   | 2.51                                                   | 0.17   | EE                |
| Equipment Leaks                                                   | VOCs                                              | 0.31                                                  | 1.34   | 0.31                                                   | 1.34   | EE                |
|                                                                   | Total HAPs                                        | 0.01                                                  | 0.04   | 0.01                                                   | 0.04   | EE                |
| Blowdowns                                                         | VOCs                                              | N/A                                                   | 0.01   | N/A                                                    | 0.01   | EE                |
|                                                                   | Total HAPs                                        | N/A                                                   | <0.01  | N/A                                                    | <0.01  | EE                |
| Other:                                                            |                                                   |                                                       |        |                                                        |        |                   |

<sup>&</sup>lt;sup>1</sup> List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS<sub>2</sub>, VOCs, H<sub>2</sub>S, Inorganics, Lead, Organics, O<sub>3</sub>, NO, NO<sub>2</sub>, SO<sub>2</sub>, SO<sub>3</sub>, all applicable Greenhouse Gases (including CO<sub>2</sub> and methane), etc. DO NOT LIST H<sub>2</sub>, H<sub>2</sub>O, N<sub>2</sub>, O<sub>2</sub>, and Noble Gases.

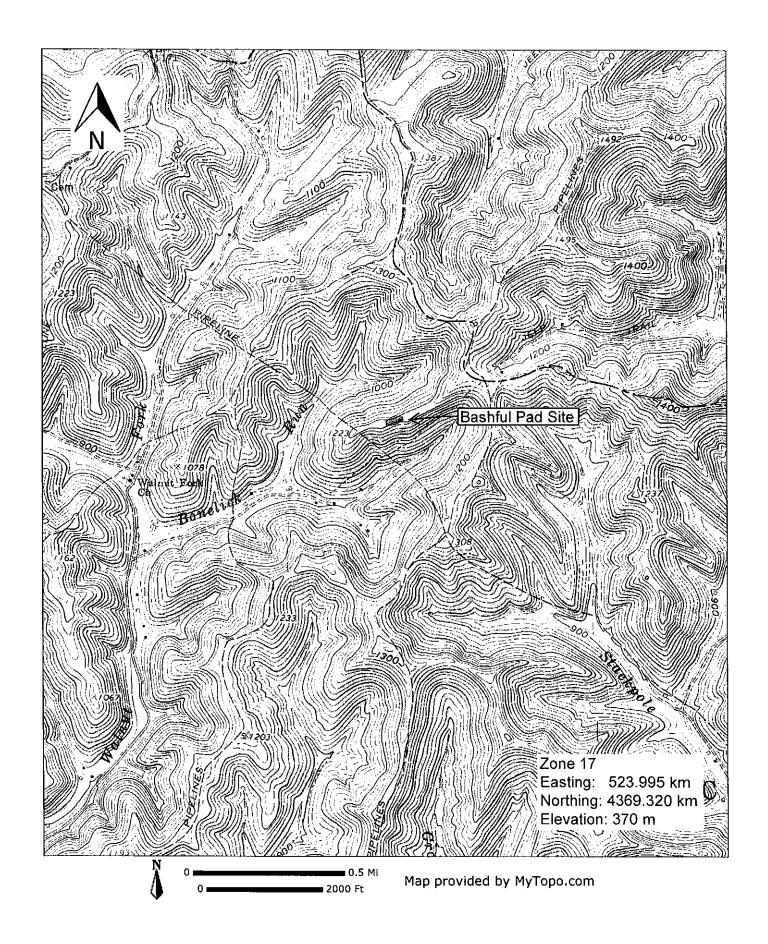

<sup>&</sup>lt;sup>2</sup> Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

<sup>3</sup> Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

### **ATTACHMENT D**

**Process Flow Diagram** 






**Plot Plan** 

# **ATTACHMENT F**

Area Map



# **ATTACHMENT G**

**Equipment Data Sheets and Registration Section Applicability Form** 

#### General Permit G70-A Registration Section Applicability Form

General Permit G70-A was developed to allow qualified applicants to seek registration for a variety of sources. These sources include natural gas well affected facilities, storage tanks, natural gas-fired compressor engines (RICE), natural gas producing units, natural gas-fired inline heaters, pneumatic controllers, heater treaters, tank truck loading, glycol dehydration units, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-A allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

| Section 5  | Natural Gas Well Affected Facility                               | $\boxtimes$ |
|------------|------------------------------------------------------------------|-------------|
| Section 6  | Storage Vessels*                                                 | $\boxtimes$ |
| Section 7  | Gas Producing Units, In-Line Heaters, Heater Treaters, and Glyco | 1           |
|            | Dehydration Reboilers                                            | $\boxtimes$ |
| Section 8  | Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)     |             |
| Section 9  | Reserved                                                         |             |
| Section 10 | Natural gas-fired Compressor Engine(s) (RICE)**                  | $\boxtimes$ |
| Section 11 | Tank Truck Loading Facility ***                                  | $\boxtimes$ |
| Section 12 | Standards of Performance for Storage Vessel Affected Facilities  |             |
|            | (NSPS, Subpart OOOO)                                             | $\boxtimes$ |
| Section 13 | Standards of Performance for Stationary Spark Ignition Internal  |             |
|            | Combustion Engines (NSPS, Subpart JJJJ)                          | $\boxtimes$ |
| Section 14 | Control Devices not subject to NSPS, Subpart OOOO                | $\boxtimes$ |
| Section 15 | National Emissions Standards for Hazardous Air Pollutants        |             |
|            | for Stationary Reciprocating Internal Combustion Engines         |             |
|            | (40CFR63, Subpart ZZZZ)                                          |             |
| Section 16 | Glycol Dehydration Units                                         |             |
| Section 17 | Dehydration Units With Exemption from NESHAP Standard,           |             |
|            | Subpart HH § 63.764(d) (40CFR63, Subpart HH)                     |             |
| Section 18 | Dehydration Units Subject to NESHAP Standard, Subpart HH         |             |
|            | and Not Located Within an UA/UC (40CFR63, Subpart HH)            |             |
| Section 19 | Dehydration Units Subject to NESHAP Standard, Subpart HH         |             |
|            | and Located Within an UA/UC (40CFR63, Subpart HH)                |             |
|            | • • • • • • • • • • • • • • • • • • • •                          |             |

<sup>\*</sup> Applicants that are subject to Section 6 may also be subject to Section 12 if the applicant is subject to the NSPS, Subpart 0000 control requirements or the applicable control device requirements of Section 14.

<sup>\*\*</sup> Applicants that are subject to Section 10 may also be subject to the applicable RICE requirements of Section 13 and/or Section 15.

<sup>\*\*\*</sup> Applicants that are subject to Section 11 may also be subject to control device requirements of Section 14.

#### NATURAL GAS FIRED BOILER/LINE HEATER DATA SHEET

| Source ID #1 | Status <sup>2</sup> | Design Heat Input<br>(mmBtu/hr) <sup>3</sup> | Hours of Operation (hrs/yr) <sup>4</sup> | Fuel Heating Value (Btu/scf) <sup>5</sup> |  |
|--------------|---------------------|----------------------------------------------|------------------------------------------|-------------------------------------------|--|
| GPU-1        | EXIST               | 1.5 MMBTU/Hr                                 | 8760                                     | 1270 BTU/scf (HHV)                        |  |
| GPU-2        | EXSIT               | 1.5 MMBTU/Hr                                 | 8760                                     | 1270 BTU/scf (HHV)                        |  |
| TEG-1        | NEW                 | 0.013<br>MMBTU/Hr                            | 8760                                     | 1270 BTU/scf (HHV)                        |  |
|              |                     |                                              |                                          |                                           |  |
|              |                     |                                              |                                          |                                           |  |
|              |                     |                                              |                                          |                                           |  |

- 1. Enter the appropriate Source Identification Numbers (Source ID #) for each boiler or line heater located at the compressor station. Boilers should be designated BLR-1, BLR-2, BLR-3, etc. Heaters or Line Heaters should be designated HTR-1, HTR-2, HTR-3, etc. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- 2. Enter the Status for each boiler or line heater using the following:

NEW Installation of New Equipment

- EXIST Existing Equipment REM Equipment Removed
- 3. Enter boiler or line heater design heat input in mmBtu/hr.
- 4. Enter the annual hours of operation in hours/year for each boiler or line heater.
- 5. Enter the fuel heating value in Btu/standard cubic foot.

#### STORAGE TANK DATA SHEET

| Source ID # <sup>1</sup> | Status <sup>2</sup> | Content <sup>3</sup> | Volume <sup>4</sup> | Dia <sup>5</sup> | Throughput <sup>6</sup> | Orientation <sup>7</sup> | Liquid Height <sup>8</sup> |
|--------------------------|---------------------|----------------------|---------------------|------------------|-------------------------|--------------------------|----------------------------|
| Т03                      | EXIST               | Condensate           | 210 BBL             | 10.0             | 577,080<br>gallons/yr   | VERT                     | 10 feet                    |
| T04                      | EXIST               | Condensate           | 210 BBL             | 10.0             | 577,080<br>gallons/yr   | VERT                     | 10 feet                    |
|                          |                     |                      |                     |                  |                         |                          |                            |
| T01                      | EXIST               | Produced<br>Water    | 210 BBL             | 10.0             | 529,200<br>gallons/yr   | VERT                     | 10 feet                    |
| T02                      | EXIST               | Produced<br>Water    | 210 BBL             | 10.0             | 529,200<br>gallons/yr   | VERT                     | 10 feet                    |
|                          |                     |                      |                     |                  |                         |                          |                            |

- 1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc.
- 2. Enter storage tank Status using the following:

EXIST Existing Equipment REM Equipment Removed Installation of New Equipment

- 3. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, etc.
- 4. Enter storage tank volume in gallons.
- 5. Enter storage tank diameter in feet.
- 6. Enter storage tank throughput in gallons per year.
- Enter storage tank orientation using the following:

VERT Vertical Tank

HORZ Horizontal Tank

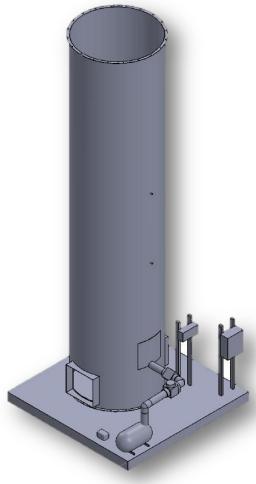
8. Enter storage tank average liquid height in feet.

#### **AIR POLLUTION CONTROL DEVICE Vapor Combustion Control Device Sheet**

Complete this vapor combustion control device sheet for each enclosed combustion device, flare, thermal oxidizer, or completion combustion device that is located at the natural gas production pad for the purpose of thermally destructing waste gas to control emissions of regulated pollutants to the atmosphere.

| IMPORTANT: READ THE INSTRUCTIONS ACCOMPANYING THIS FORM BEFORE COMPLETING.                                                                                       |                 |                              |                                                                                             |                     |           |                                |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------|---------------------------------------------------------------------------------------------|---------------------|-----------|--------------------------------|--|
| General Information                                                                                                                                              |                 |                              |                                                                                             |                     |           |                                |  |
| 1. Control Device ID#: EC-1                                                                                                                                      |                 |                              | 2. Installation Dat                                                                         | e: <b>Upon rece</b> | ipt of Po | ermit 🛚 New                    |  |
| 3. Maximum Rated Total Flow Capacity: No limit. Only limit on total BTU/Hr  4. Maximum D 10.0 MMBt                                                               |                 |                              | Design Heat Input:  5. Design I  No limit. O  BTU/hr                                        |                     |           |                                |  |
| Control Device Information                                                                                                                                       |                 |                              |                                                                                             |                     |           |                                |  |
| 6. Select the type                                                                                                                                               | of vapor comb   | bustion control de           | vice being used: 🗵                                                                          | Enclosed C          | ombustic  | on Device                      |  |
| ☐ Elevated Flare                                                                                                                                                 | e 🔲 Ground I    | Flare  Therm                 | nal Oxidizer 🔲 (                                                                            | Completion C        | ombustic  | on Device                      |  |
| 7. Manufacturer: <b>Hy-Bon Eng</b>                                                                                                                               | ineering, Inc.  |                              | 8. Hours of opera                                                                           | ation per year:     |           |                                |  |
| Model No. CH 10.0                                                                                                                                                |                 |                              |                                                                                             |                     |           |                                |  |
| 9. List the emiss                                                                                                                                                | ion units whos  |                              | ontrolled by this vapoint ID#: 7E)                                                          | oor combustio       | n contro  | l device:                      |  |
| 10. Emission Unit ID#                                                                                                                                            | Emission So     | urce Description:            | Emission U                                                                                  | nit ID#             | Emissi    | on Source Description:         |  |
| T01                                                                                                                                                              | Produced W      |                              |                                                                                             |                     |           | nsate Tank                     |  |
| T02                                                                                                                                                              | Produced W      | ater Tank                    | T04                                                                                         |                     | Conde     | nsate Tank                     |  |
|                                                                                                                                                                  |                 |                              |                                                                                             |                     |           |                                |  |
|                                                                                                                                                                  |                 |                              |                                                                                             |                     |           |                                |  |
| If this vapor combusto                                                                                                                                           | er controls emi | issions from more            | than six emission u                                                                         | nits, please at     | tach ada  | litional pages.                |  |
| 11. Assi                                                                                                                                                         | st Type         |                              | 12. Flare<br>Height                                                                         | 13. Tip Dia         | ameter    | 14. Was the design per §60.18? |  |
| Steam - Air - I                                                                                                                                                  | Pressure -      | Non -                        | 11 ft                                                                                       | 0.25 ft             |           | ⊠Yes □No                       |  |
|                                                                                                                                                                  |                 | Waste Gas                    | Information                                                                                 |                     |           |                                |  |
| 15. Maximum waste gas flow rate (scfm):                                                                                                                          |                 | ue of waste gas<br>(BTU/ft3) | 17. Temperature of the emissions stream (°F)  18. Exit Velocity of t emissions stream (ft/s |                     | •         |                                |  |
| 20                                                                                                                                                               | 125'            | 7-2345                       | 1400-210                                                                                    | 00                  | 78        | 3.4 (at max flow)              |  |
| 19. Provide an attachment with the characteristics of the waste gas stream to be burned. <b>See Calculations (Tank Emissions)</b> in Attachment I - Calculations |                 |                              |                                                                                             |                     |           |                                |  |

|                               |                                                                                   | Pilot Information                                           |                                            |                                           |  |  |
|-------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------|-------------------------------------------|--|--|
| 20. Type/Grade of pilot fuel: | 21. Number of pilot lights:                                                       | 22. Fuel flow rate to pilot flame per pilot (scf/hr):       | 23. Heat input per pilot (BTU/hr):         | 24. Will automatic reignition be used?    |  |  |
| Natural Gas                   | 1                                                                                 | 63                                                          | 63 80,000                                  |                                           |  |  |
|                               |                                                                                   | be the method:<br>fter that it will go into man             | ual mode which means                       | someone will need to                      |  |  |
| 26. Describe the med          | thod of controlling flame: I                                                      | gnition module located in t                                 | he combustor control p                     | anel                                      |  |  |
|                               | quipped with a monitor sence of the flame?                                        | 28. If yes, what type?                                      | Thermocouple  Infr                         | a-Red  Ultra Violet                       |  |  |
| ⊠ Yes                         | ☐ No                                                                              | ☐ Camera with monitoring                                    | ng control room   Oth                      | er, describe:                             |  |  |
|                               |                                                                                   |                                                             |                                            |                                           |  |  |
|                               |                                                                                   |                                                             |                                            |                                           |  |  |
| 29. Pollu                     | utant(s) Controlled                                                               | 30. % Capture Effi                                          | ICIENCV                                    | ufacturer's Guaranteed rol Efficiency (%) |  |  |
| T                             | ank VOCs                                                                          | >99% (hard pip                                              |                                            | 99%                                       |  |  |
|                               |                                                                                   | For Permitting Pul                                          | rposes a capture and co<br>98% is claimed. | ntrol efficiency of only                  |  |  |
|                               |                                                                                   |                                                             |                                            |                                           |  |  |
| 32 Has the control (          | device been tested by the m                                                       | anufacturer and certified? Ye                               | 96                                         |                                           |  |  |
| 52. This the control of       | active seem tested by the in                                                      | and continued.                                              |                                            |                                           |  |  |
|                               |                                                                                   | nce procedures required by the checked for foreign debris ( |                                            |                                           |  |  |
| 34. Additional Infor          | mation Attached?                                                                  | YES NO                                                      |                                            |                                           |  |  |
| Please attach a copy          | of manufacturer's data shows of manufacturer's drawing of the manufacturer's perf | ?.                                                          |                                            |                                           |  |  |


If any of the requested information is not available, please contact the manufacturer.



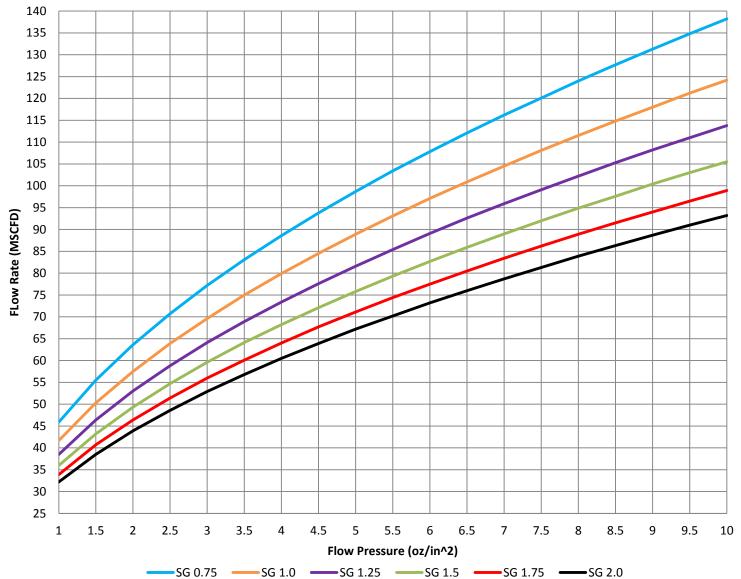


2404 Commerce Dr. Midland, TX 79703 432-697-2292 hy-bon.com 100 Ayers Blvd. Belpre, OH 45714 740-401-4000 ediplungerlift.com

With the fairly recent publication of the NSPS OOOO emission standard, all storage tank facilities constructed on or after August 23, 2011 will be allowed to emit 6 Tons or less of VOC's per year. This regulation not only forces companies to monitor and control their emissions, but it also forces the *means* of emission monitoring and controlling to be more reliable and exact. In response to such a stringent protocol, HY-BON Engineering Company is pleased to offer the **CH10.0** enclosed Vapor Combustor Unit (VCU). Built upon a foundation of 60+ years' experience with tank vapors, the VCU is the solution for reducing residual tank vapor emissions when a Vapor Recovery Unit (VRU) is not sufficient or a viable option.



|  | EPA 40 | CFR 60, | Quad C | ) Compliant |
|--|--------|---------|--------|-------------|
|--|--------|---------|--------|-------------|


- Completely Enclosed Combustion
- 99.99% Destruction Efficiency
- > Fully Automated System
- Output Operational Data via Thumb Drive
- Capable of SCADA Integration

| GENERAL PROPERTIES                      |                                             |
|-----------------------------------------|---------------------------------------------|
| TYPE                                    | Enclosed Tank Battery Flare                 |
| AMBIENT                                 |                                             |
| TEMPERATURE                             | -20 °F to +100 °F                           |
| PILOT FUEL                              | Propane or Site Gas                         |
| REQUIREMENTS                            | @5psi of natural gas = 13.3 SCFM            |
| REQUIREMENTS                            | @5psi of propane = 12.5 SCFM                |
| BURNER SIZE                             | 10.0 million BTU/hr                         |
| INLET PRESSURE                          | Minimum 0.5 oz/in <sup>2</sup> (~1.0 inches |
| REQUIRMENTS                             | w.c.)                                       |
| TUDY DOWN DATE                          |                                             |
| TURN DOWN RATIO                         | 5:1                                         |
| DESTRUCTION                             | 00 000/ PPF                                 |
| EFFICIENCY                              | 99.99% DRE                                  |
| MECHANICAL PROPERTIES                   |                                             |
| DESIGN WIND SPEED                       | 100 MPH                                     |
| AMBIENT                                 |                                             |
| TEMPERATURE                             | -20 °F to +120 °F                           |
| ELECTRICAL AREA                         | General Area Classification (Non-           |
| CLASSIFICATION                          | Hazardous)                                  |
| CLASSII ICATION                         | Hazardous)                                  |
| ELEVATION                               | up to 3,000ft ASL                           |
| PROCESS PROPERTIES                      | · · · · · · · · · · · · · · · · · · ·       |
| area area area area area area area area | 1000                                        |
| SMOKELESS CAPACITY                      | 100%                                        |
| OPERATING                               | 800 °F to 2000 °F (1500 °F                  |
| TEMPERATURE                             | Nominal)                                    |
| UTILITIES                               |                                             |
| PILOT GAS                               | Process Gas                                 |
| ELECTRICITY                             | 1 Phase, 60 Hz, 120V/10A                    |
| SOLAR PANEL OPTION                      | VEC                                         |
| AVAILABLE                               | YES                                         |
|                                         |                                             |



2404 Commerce Dr. Midland, TX 79703 432-697-2292 hy-bon.com 100 Ayers Blvd. Belpre, OH 45714 740-401-4000 ediplungerlift.com

CH10.0: Flow Rate vs Flow Pressure with Corresponding Specific Gravity





#### Standard Features

- Automatic Spark Ignition (SI)
- · Fuel Filter
- Low Voltage Alarm Contacts (VSR)
- · Volt & Amp Meter

#### **Optional Features**

- · Cathodic Protection Interface
- Pole Mount or bench stand
- Automatic Fuel Shut-off (SO)
- · Corrosive Environmental Fuel System
- · Flame Arrestor

Note: Specifications shown are for standard configurations. Global Thermoelectric's Applications Engineering Department is available to design custom voltages, fuel supply systems and non-standard operating temperatures.



Power where you need it.

#### Model 5120 Thermoelectric Generators

Global Thermoelectric's Model 5120 Thermoelectric Generator contains no moving parts. It is a reliable, low maintenance source of DC electrical power for any application where regular utilities are unavailable or unreliable.

#### **Power Specifiations**

Power Rating at 20°C 120 Watts at 6.7 Volts 108 Watts at 12 Volts 108 Watts at 24 Volts 108 Watts at 48 Volts

#### **Electrical**

Adjustment: 6.7V up to 11 Volts

12 V 12 -18 Volts 24 V 24 - 30 Volts 48 V 48 - 60 Volts

Reverse current protection included.

Output: Terminal block which accepts up to 8 AWG wire. Opening for

3/4" conduit in the base of the cabinet.

#### Fuel

Natural Gas: 8.8 m³/day (311 ft³/day) of Std.

1000 BTU/SCF (37.7 MJ/SM³) gas

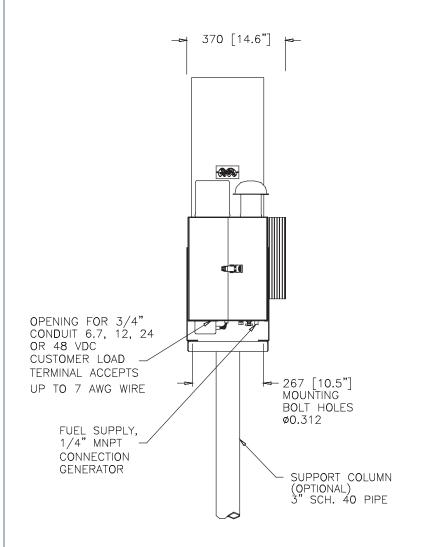
Propane: 11.4 l/day (3.0 US gal/day)

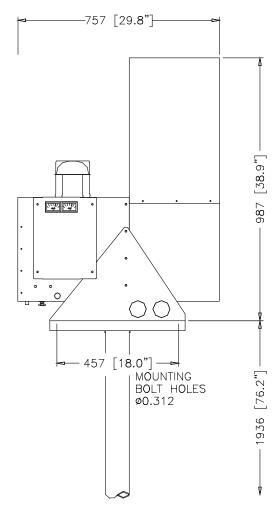
Max. Supply Pressure: 1724 kPa (250 psi)
Min. Supply Pressure: 103 kPa (15 psi)
Fuel Connection: 1/4" MNPT

#### **Environmental**

Ambient Operation Temperature: Max. 55°C (130°F) Min. -55°C (-67°F) Operating Conditions: Unsheltered operation

#### **Materials of Construction**


Cabinet: 304 SS


Cooling Type: Natural Convection

Thermopile: Hermetically Sealed Lead Tin-Telluride (PbSnTe)

Burner: Meeker Type/Inconel 600
Fuel System: Brass, Aluminum & SS

#### **Typical Installation**





#### NOTES:

- 1. GENERATOR WEIGHT: 60 kg [132 lb].
  2. DIMENSIONS IN mm [INCHES].



Power where you need it.

#### **Corporate Office**

#9, 3700 - 78 Avenue SE Calgary, Alberta T2C 2L8 **CANADA** 

Phone: (403) 236-5556 (403) 236-5575 Fax:

#### **US Sales**

P.O. Box 38624 Houston, TX 77238 Phone: (281) 445-1515 (281) 445-6060

Toll Free: 1800848-4113

Model 5120 Thermoelectric Generator



**Emissions Calculations** 

#### **Bashful Well Pad Production Facility** Tyler County, WV

| Source         | Description                                 | NOx<br>lb/hr | CO<br>lb/hr | CO2e<br>lb/hr | VOC<br>lb/hr | SO2<br>lb/hr | PM<br>lb/hr | n-Hexane<br>lb/Hr | benzene<br>lb/hr | formaldehyde<br>lb/hr | Total HAPs<br>lb/hr |
|----------------|---------------------------------------------|--------------|-------------|---------------|--------------|--------------|-------------|-------------------|------------------|-----------------------|---------------------|
| VRU-1          | VRU Compressor <sup>4</sup>                 | 0.52         | 0.89        | 89.36         | 0.02         | 0.000        | 0.013       |                   | 0.001            | 0.014                 | 0.021               |
| GPU-1 to GPU-4 | GPU's                                       | 0.30         | 0.25        | 362.36        | 0.02         | 0.002        | 0.023       | 0.005             | 0.002            | 0.000                 | 0.006               |
|                | Blowdowns <sup>1</sup>                      |              |             | N/A           | N/A          |              |             |                   |                  |                       |                     |
| TNK1-TNK6      | Condensate Tanks + Water Tanks <sup>2</sup> |              |             | 3.50          | 8.64         |              |             | 0.550             |                  |                       | 0.790               |
| EC-1           | Condensate Tanks + Water Tanks <sup>5</sup> | 0.27         | 1.45        | 467.09        | 3.49         | 0.000        | 0.013       | 0.960             | 0.000            |                       | 0.320               |
| TEG-1          | Thermo-Electric Generator                   | 0.00         | 0.00        | 1.57          | 0.00         | 0.000        | 0.000       | 0.000             | 0.000            | 0.000                 | 0.000               |
| TL-1           | Condensate Truck Loading <sup>3</sup>       |              |             |               | 51.00        |              |             |                   |                  |                       | 2.510               |
| TL-2           | Water Truck Loading <sup>3</sup>            |              |             |               | 0.14         |              |             |                   |                  |                       |                     |
|                | Truck Traffic Fugitive Dust                 |              |             |               |              |              | 6.32        |                   |                  |                       |                     |
|                | Fittings Fugitive Emissions                 |              |             | 0.77          | 0.31         |              |             |                   |                  |                       | 0.010               |
| Total          |                                             | 1.09         | 2.59        | 925           | 63.61        | 0.00         | 6.37        | 1.52              | 0.00             | 0.01                  | 3.66                |

| Source         |                                             | NOx<br>tpy | CO<br>tpy | CO2e<br>tpy | VOC<br>tpy | SO2<br>tpy | PM<br>tpy | n-Hexane<br>TPY | benzene<br>tpy | formaldehyde<br>tpy | Total HAPs<br>tpy |
|----------------|---------------------------------------------|------------|-----------|-------------|------------|------------|-----------|-----------------|----------------|---------------------|-------------------|
| RU-1           | VRU Compressor <sup>4</sup>                 | 2.27       | 3.89      | 391         | 0.09       | 0.002      | 0.06      |                 | 0.00           | 0.06                | 0.09              |
| GPU-1 to GPU-4 | GPU's                                       | 1.31       | 1.10      | 1,587       | 0.07       | 0.008      | 0.10      | 0.02            | 0.00           | 0.00                | 0.02              |
|                | Blowdowns <sup>1</sup>                      |            |           | 1           | 0.01       |            |           |                 |                |                     |                   |
| TNK1-TNK6      | Condensate Tanks + Water Tanks <sup>2</sup> |            |           | 15          | 38.38      |            |           | 2.41            |                |                     | 3.46              |
| EC-1           | Condensate Tanks + Water Tanks <sup>5</sup> | 1.20       | 6.35      | 2,046       | 15.33      | 0.00       | 0.06      | 0.96            | 0.00           |                     | 1.38              |
| TEG-1          | Thermo-Electric Generator                   | 0.01       | 0.00      | 7           | 0.00       | 0.00       | 0.00      | 0.00            | 0.00           | 0.00                | 0.00              |
| TL-1           | Condensate Truck Loading <sup>3</sup>       |            |           |             | 3.51       |            |           |                 |                |                     | 0.17              |
| TL-2           | Water Truck Loading <sup>3</sup>            |            |           |             | 0.02       |            |           |                 |                |                     |                   |
|                | Truck Traffic Fugitive Dust                 |            |           |             |            |            | 0.68      |                 |                |                     |                   |
|                | Fittings Fugitive Emissions                 |            |           | 3           | 1.34       |            |           |                 |                |                     | 0.040             |
| Total          |                                             | 4.79       | 11.35     | 4,051       | 58.76      | 0.01       | 0.90      | 3.39            | 0.00           | 0.06                | 5.17              |
|                | <b>Existing Permit Registration</b>         | 3.56       | 4.98      | 1,889       | 15.96      | 0.01       | 0.13      | 0.18            | 0.00           | 0.06                | 0.27              |
|                | Increase                                    | 1.23       | 6.37      | 2,162       | 42.80      | 0.00       | 0.77      | 3.22            | 0.00           | 0.00                | 4.90              |

<sup>&</sup>lt;sup>1</sup> See Attachment C for Blowdown Calculations

 $<sup>^2</sup>$  Condensate and water tank emissions are currently controlled by a VRU at 95% . This entry represents the un-controlled 5%.  $^3$  Truck loading is un-controlled.

 $<sup>^4</sup>$ Emission presented herein for VOCs and Formaldehyde represent un-controlled Mfg. specs. + 15%. The Catalyst Warranty had 0% reduction for these parameters

<sup>&</sup>lt;sup>5</sup> Condensate and water tank emissions are alternately controlled by an Enclosed Combustor at 98%. The entries for VOC, n-hexane, HAPs and CO2e represents emissions of organics based on a 98% capture and control efficiency.

# Bashful Well Pad Production Facility Tyler County, WV

#### **Controlled Emission Rates**

#### Source CE-1 Flash Gas Compressor

| Engine Data: Engine Manufacturer Engine Model Type (Rich-burn or Low Emission) Aspiration (Natural or Turbocharged)                                                                      | Cummins<br>G5.9<br>Rich Burn<br>Natural       |                                                                                                                                        |                                                                                                                                          |                                   |                                              |                      |                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------|----------------------|----------------------------------------------------------------------------|
| Manufacturer Rating Speed at Above Rating Configeration (In-line or Vee) Number of Cylinders Engine Bore Engine Stroke                                                                   | 84<br>1,800<br>In-line<br>6<br>4.020<br>4.720 | hp<br>rpm<br>inches<br>inches                                                                                                          |                                                                                                                                          |                                   |                                              |                      |                                                                            |
| Engine Displacement Engine BMEP Fuel Consumption (HHV)                                                                                                                                   | 359<br>103<br>7,914                           | cu. in.<br>psi<br>Btu/bhp-hr                                                                                                           |                                                                                                                                          |                                   |                                              | P-42                 | l                                                                          |
| Emission Rates: Oxides of Nitrogen, NOx Carbon Monoxide CO VOC (NMNEHC) CO2 CO2 CO2e                                                                                                     | g/bhp-hr<br>2.800<br>4.800<br>0.110<br>449    | 0.52<br>0.89<br>0.02<br>83<br>89                                                                                                       | 2.27<br>3.89<br>0.09<br>364<br>391                                                                                                       | g/hr<br>235<br>403<br>9<br>37,716 | 1b/day lb<br>12.44<br>21.33<br>0.49<br>1,996 | strokerich<br>/mmbtu | Comment 453.59 grams = 1 pound 2,000 pounds = 1 ton                        |
| Total Annual Hours of Operation SO2 PM2.5 PM (Condensable) CH <sub>4</sub> N <sub>2</sub> O acrolein acetaldehyde formaldehyde benzene toluene ethylbenzene xylene s methanol total HAPs | <b>8,760</b> 0.0760                           | 0.0004<br>0.0063<br>0.0066<br>0.1262<br>0.0115<br>0.0017<br>0.0019<br>0.0141<br>0.0011<br>0.0004<br>2E-05<br>0.0001<br>0.002<br>0.0213 | 0.0017<br>0.0277<br>0.0289<br>0.5529<br>0.0503<br>0.0077<br>0.0081<br>0.0016<br>0.0046<br>0.0016<br>0.0001<br>0.0006<br>0.0089<br>0.0932 |                                   |                                              |                      | Factor From 40 CFR 98, Table C-2 Factor From 40 CFR 98, Table C-2 Per Mfg. |
| Exhaust Parameters: Exhaust Gas Temperature Exhaust Gas Mass Flow Rate Exhaust Gas Mass Flow Rate                                                                                        | 1,078<br>430                                  | deg. F<br>lb/hr<br>acfm                                                                                                                | 0.0002                                                                                                                                   |                                   |                                              |                      |                                                                            |
| Exhaust Stack Height  Exhaust Stack Inside Diameter                                                                                                                                      | 96<br>8.00<br>4                               | inches<br>feet<br>inches                                                                                                               |                                                                                                                                          |                                   |                                              |                      |                                                                            |
| Exhaust Stack Inside Diameter  Exhaust Stack Velocity                                                                                                                                    | 4<br>0.333<br>82.1<br>4,927.4                 | feet  ft/sec ft/min                                                                                                                    |                                                                                                                                          |                                   |                                              |                      |                                                                            |

## Jay-Bee Oil &Gas ,LLC

## **Bashful Well Pad Production Facility Tyler County, WV**

#### **Potential Emission Rates**

## **Source HTR-1**

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 3000.0 Mbtu/hr 98.0 % 1269.7 Btu/scf 57863.3 scfd 0.000 Mole % 8760 2 GPU's at 1500 MBTU/Hr Each

| NOx        | 0.3001 | lbs/hr | 1.315  | TPY |
|------------|--------|--------|--------|-----|
| СО         | 0.2521 | lbs/hr | 1.104  | TPY |
| CO2        | 360.1  | lbs/hr | 1577.4 | TPY |
| CO2e       | 362    | lbs/hr | 1,587  | tpy |
| VOC        | 0.0165 | lbs/hr | 0.072  | TPY |
| SO2        | 0.0018 | lbs/hr | 0.008  | TPY |
| H2S        | 0.0000 | lbs/hr | 0.000  | TPY |
| PM10       | 0.0228 | lbs/hr | 0.100  | TPY |
| СНОН       | 0.0002 | lbs/hr | 0.001  | TPY |
| Benzene    | 0.0000 | lbs/hr | 0.000  | TPY |
| N-Hexane   | 0.0054 | lbs/hr | 0.024  | TPY |
| Toluene    | 0.0000 | lbs/hr | 0.000  | TPY |
| Total HAPs | 0.0056 | lbs/hr | 0.025  | TPY |

#### **AP-42 Factors Used**

| NOx      | 100 Lbs/MMCF     |                               |
|----------|------------------|-------------------------------|
| CO       | 84 Lbs/MMCF      |                               |
| $CO_2$   | 120,000 Lbs/MMCF | Global Warming Potential = 1  |
| VOC      | 5.5 Lbs/MMCF     |                               |
| PM       | 7.6 Lbs/MMCF     |                               |
| $SO_2$   | 0.6 Lbs/MMCF     |                               |
| $CH_4$   | 2.3 Lbs/MMCF     | Global Warming Potential = 25 |
| $N_2O$   | 2.2 Lbs/MMCF     | Global Warming Potential =310 |
| НСОН     | 0.075 Lbs/MMCF   |                               |
| Benzene  | 0.0021 Lbs/MMCF  |                               |
| n-Hexane | 1.8 Lbs/MMCF     |                               |
| Toluene  | 0.0034 Lbs/MMCF  |                               |

## Bashful Well Pad Production Facility Tyler County, WV

### 'otential Emission Rate

## **Enclosed Combustor Pilot**

Burner Duty Rating 80.0 Mbtu/hr
Burner Efficiency 99.0 %
Gas Heat Content (HHV) 1269.7 Btu/scf
Total Gas Consumption 1527.4 scfd
H2S Concentration 0.000 Mole %
Hours of Operation 8760

| NOx        | 0.0079 | lbs/hr | 0.035 | TPY |
|------------|--------|--------|-------|-----|
| CO         | 0.0067 | lbs/hr | 0.029 | TPY |
| CO2        | 9.5    | lbs/hr | 41.6  | TPY |
| CO2e       | 10     | lbs/hr | 42    | TPY |
| VOC        | 0.0004 | lbs/hr | 0.002 | TPY |
| SO2        | 0.0000 | lbs/hr | 0.000 | TPY |
| H2S        | 0.0000 | lbs/hr | 0.000 | TPY |
| PM10       | 0.0006 | lbs/hr | 0.003 | TPY |
| СНОН       | 0.0000 | lbs/hr | 0.000 | TPY |
| Benzene    | 0.0000 | lbs/hr | 0.000 | TPY |
| N-Hezane   | 0.0001 | lbs/hr | 0.001 | TPY |
| Toluene    | 0.0000 | lbs/hr | 0.000 | TPY |
| Total HAPs | 0.0001 | lbs/hr | 0.001 | TPY |

### **AP-42 Factors Used (Tables 1.4.1-1.4.3)**

| NOx             | 100 Lbs/MMCF     |                               |
|-----------------|------------------|-------------------------------|
| CO              | 84 Lbs/MMCF      |                               |
| $CO_2$          | 120,000 Lbs/MMCF | Global Warming Potential = 1  |
| VOC             | 5.5 Lbs/MMCF     |                               |
| PM              | 7.6 Lbs/MMCF     |                               |
| $SO_2$          | 0.6 Lbs/MMCF     |                               |
| CH <sub>4</sub> | 2.3 Lbs/MMCF     | Global Warming Potential = 25 |
| $N_2O$          | 2.2 Lbs/MMCF     | Global Warming Potential =310 |
| НСОН            | 0.075 Lbs/MMCF   |                               |
| Benzene         | 0.0021 Lbs/MMCF  |                               |
| n-Hexane        | 1.8 Lbs/MMCF     |                               |
| Toluene         | 0.0034 Lbs/MMCF  |                               |

## Bashful Well Pad Production Facility Tyler County, WV

### **Potential Emission Rates**

### **Source EC-1**

## **Enclosed Vapor Combustor - Control of Tank Emissions**

Destruction Efficiency
Gas Heat Content (HHV)
Max Flow to T-E
Max BTUs to Flare

98.0 % 2313.1 Btu/scf 0.040 MMSCFD 3.894 MMBTU/Hr

0.075 lb/MMSCF

14.770 MMCF/Yr 34,164 MMBTU/Yr

| NOx       | 0.26   | lbs/hr | 1.16    | tpy |
|-----------|--------|--------|---------|-----|
| CO        | 1.44   | lbs/hr | 6.32    | tpy |
| CO2       | 455.13 | lbs/hr | 1,996.7 | tpy |
| CO2e      | 457.53 | lb/hr  | 2,004.2 | tpy |
| VOC       | 3.49   | lb/hr  | 15.33   | tpy |
| CH4       | 0.06   | lbs/hr | 0.2500  | tpy |
| N2O       | 0.0009 | lbs/hr | 0.0038  | tpy |
| PM        | 0.0128 | lb/hr  | 0.0561  | tpy |
| Benzene   | 0.0000 | lb/hr  | 0.0000  | tpy |
| СНОН      | 0.0001 | lb/hr  | 0.0006  | tpy |
| n-Hexane  | 0.2200 | lb/hr  | 0.9600  | tpy |
| Toluene   | 0.0000 | lb/hr  | 0.0000  | tpy |
| Total HAP | 0.3200 | lb/hr  | 1.3800  | tpy |

Notes:

VOC, Total HAP, N-Hexane and CH4 emissions are taken from the Condensate and Produced Water Tank Emissions sheet in the Calculations Section.

| NOx     | 0.068 Lbs/MMBTU                   |
|---------|-----------------------------------|
| CO      | 0.37 Lbs/MMBTU                    |
| CO2     | 116.89 Lbs/MMBTU                  |
| CH4     | 0.0022 Lbs/MMBTU                  |
| N2O     | 0.00022 Lbs/MMBTU                 |
| PM      | 7.6 lb/MMSCF                      |
| Benzene | 0.0021 lb/MMSCF                   |
| Toluene | 0.0034 lb/MMSCF                   |
| Hexane  | 1.8 lb/MMSCF                      |
|         | CO CO2 CH4 N2O PM Benzene Toluene |

СНОН

AP-42 Table 1.4-3

## Jay-Bee Oil &Gas ,LLC

## **Bashful Well Pad Production Facility Tyler County, WV**

#### **Potential Emission Rates**

## **Source TEG-1**

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 13.0 Mbtu/hr 98.0 % 1263.0 Btu/scf 252.1 scfd 0.000 Mole % 8760

| NOx        | 0.0013 | lbs/hr | 0.006 | TPY |
|------------|--------|--------|-------|-----|
| CO         | 0.0011 | lbs/hr | 0.005 | TPY |
| CO2        | 1.6    | lbs/hr | 6.8   | TPY |
| CO2e       | 2      | lbs/hr | 7     | tpy |
| VOC        | 0.0001 | lbs/hr | 0.000 | TPY |
| SO2        | 0.0000 | lbs/hr | 0.000 | TPY |
| H2S        | 0.0000 | lbs/hr | 0.000 | TPY |
| PM10       | 0.0001 | lbs/hr | 0.000 | TPY |
| СНОН       | 0.0000 | lbs/hr | 0.000 | TPY |
| Benzene    | 0.0000 | lbs/hr | 0.000 | TPY |
| N-Hexane   | 0.0000 | lbs/hr | 0.000 | TPY |
| Toluene    | 0.0000 | lbs/hr | 0.000 | TPY |
| Total HAPs | 0.0000 | lbs/hr | 0.000 | TPY |

#### **AP-42 Factors Used**

| NOx      | 100 Lbs/MMCF     |                               |
|----------|------------------|-------------------------------|
| CO       | 84 Lbs/MMCF      |                               |
| $CO_2$   | 120,000 Lbs/MMCF | Global Warming Potential = 1  |
| VOC      | 5.5 Lbs/MMCF     |                               |
| PM       | 7.6 Lbs/MMCF     |                               |
| $SO_2$   | 0.6 Lbs/MMCF     |                               |
| $CH_4$   | 2.3 Lbs/MMCF     | Global Warming Potential = 25 |
| $N_2O$   | 2.2 Lbs/MMCF     | Global Warming Potential =310 |
| НСОН     | 0.075 Lbs/MMCF   |                               |
| Benzene  | 0.0021 Lbs/MMCF  |                               |
| n-Hexane | 1.8 Lbs/MMCF     |                               |
| Toluene  | 0.0034 Lbs/MMCF  |                               |

# **Bashful Well Pad Production Facility Tyler County, WV**

## **Fugitive VOC Emissions**

Volatile Organic Compounds, NMNEHC from gas analysis:19.00weight percentMethane from gas analysis:59.08weight percentCarbon Dioxide from gas analysis:0.29weight percentGas Density0.0583lb/scf

| Emission Source:          | Number | Oil & Gas Production* | VOC % | VOC, lb/hr        | VOC TPY | CO2 lb/Hr | CO2 TPY | CH4 lb/hr | СН4 ТРҮ | CO2e  |
|---------------------------|--------|-----------------------|-------|-------------------|---------|-----------|---------|-----------|---------|-------|
| Valves:                   |        |                       |       | , , , , , , , , , | , , , , |           |         |           |         |       |
| Gas/Vapor:                | 6      | 0.02700 scf/hr        | 19.0  | 0.002             | 0.008   | 0.000     | 0.000   | 0.006     | 0.0244  | 0.611 |
| Light Liquid:             | 13     | 0.05000 scf/hr        | 100.0 | 0.038             | 0.166   |           |         |           |         | 0.000 |
| Heavy Liquid (Oil):       | -      | 0.00050 scf/hr        | 100.0 | 0.000             | 0.000   |           |         |           |         | 0.000 |
| Low Bleed Pneumatic       | -      | 1.39000 scf/hr        | 19.0  | 0.000             | 0.000   | 0.000     | 0.000   | 0.000     | 0.0000  | 0.000 |
| Relief Valves:            | 10     | 0.04000 scf/hr        | 19.0  | 0.004             | 0.019   | 0.000     | 0.000   | 0.014     | 0.0604  | 1.509 |
| Open-ended Lines, gas:    | 2      | 0.06100 sfc/hr        | 19.0  | 0.001             | 0.006   |           |         |           |         | 0.000 |
| Open-ended Lines, liquid: | -      | 0.05000 lb/hr         | 100.0 | 0.000             | 0.000   |           |         |           |         | 0.000 |
| Pump Seals:               |        |                       |       |                   |         |           |         |           |         | 0.000 |
| Gas:                      | -      | 0.00529 lb/hr         | 19.0  | 0.000             | 0.000   | 0.000     | 0.000   | 0.000     | 0.0000  | 0.000 |
| Light Liquid:             | -      | 0.02866 lb/hr         | 100.0 | 0.000             | 0.000   |           |         |           |         | 0.000 |
| Heavy Liquid (Oil):       | -      | 0.00133 lb/hr         | 100.0 | 0.000             | 0.000   |           |         |           |         | 0.000 |
| Compressor Seals, Gas:    | 1      | 0.01940 lb/hr         | 19.0  | 0.004             | 0.016   | 0.000     | 0.000   | 0.001     | 0.0029  | 0.073 |
| Connectors:               |        |                       |       |                   |         |           |         |           |         | 0.000 |
| Gas:                      | 24     | 0.00300 scf/hr        | 19.0  | 0.001             | 0.003   | 0.000     | 0.000   | 0.002     | 0.0109  | 0.272 |
| Light Liquid:             | 36     | 0.00700 scf/hr        | 100.0 | 0.252             | 1.104   |           |         |           |         | 0.000 |
| Heavy Liquid (Oil):       | -      | 0.00030 scf/hr        | 100.0 | 0.000             | 0.000   |           |         |           |         | 0.000 |
| Flanges:                  |        |                       |       |                   |         |           |         |           |         | 0.000 |
| Gas:                      | 16     | 0.00086 lb/hr         | 19.0  | 0.003             | 0.011   | 0.000     | 0.000   | 0.008     | 0.0356  | 0.890 |
| Light Liquid:             | 12     | 0.00300 scf/hr        | 100.0 | 0.002             | 0.009   |           |         |           |         | 0.000 |
| Heavy Liquid:             |        | 0.0009 scf/hr         | 100.0 | 0.000             | 0.000   |           |         |           |         | 0.000 |

## Fugitive Calculations:

|      | lb/hr | t/y   |
|------|-------|-------|
| VOC  | 0.307 | 1.343 |
| CH4  | 0.031 | 0.134 |
| CO2  | 0.000 | 0.001 |
| CO2e | 0.766 | 3.36  |

Notes: \*Factors are from 40 CFR 98, Table W-1A (scf/hr), where available. Remaining are API (lb/hr)

## Jay-Bee Oil & Gas, Inc. GAS ANALYSIS INFORMATION

## Bashful Well Pad Production Facility Tyler County, WV

## Inlet Gas Composition Information:

|                       | Fuel Gas | Fuel M.W.  | Fuel S.G. | Fuel   | LHV, dry | HHV, dry | AFR     | VOC     | Z      | GPM   |
|-----------------------|----------|------------|-----------|--------|----------|----------|---------|---------|--------|-------|
|                       | mole %   | lb/lb-mole |           | Wt. %  | Btu/scf  | Btu/scf  | vol/vol | NM / NE | Factor |       |
| Nitrogen, N2          | 0.382    | 0.107      | 0.004     | 0.511  |          |          | ı       |         | 0.0038 |       |
| Carbon Dioxide, CO2   | 0.138    | 0.061      | 0.002     | 0.290  |          |          | ı       |         | 0.0014 |       |
| Hydrogen Sulfide, H2S | 0.000    | 0.000      | 0.000     | 0.000  | 0.0      | 0.0      | 0.000   |         | 0.0000 |       |
| Helium, He            | -        | -          | -         | -      |          |          | ı       |         | -      |       |
| Oxygen, O2            | -        | -          | -         | -      |          |          | ı       |         | -      |       |
| Methane, CH4          | 77.158   | 12.378     | 0.427     | 59.077 | 701.7    | 779.3    | 7.353   |         | 0.7700 |       |
| Ethane, C2H6          | 14.716   | 4.425      | 0.153     | 21.119 | 238.2    | 260.4    | 2.455   |         | 0.1460 | 3.915 |
| Propane               | 4.832    | 2.131      | 0.074     | 10.169 | 111.9    | 121.6    | 1.151   | 10.169  | 0.0475 | 1.324 |
| Iso-Butane            | 0.627    | 0.364      | 0.013     | 1.739  | 18.8     | 20.4     | 0.194   | 1.739   | 0.0061 | 0.204 |
| Normal Butane         | 1.131    | 0.657      | 0.023     | 3.137  | 34.1     | 36.9     | 0.350   | 3.137   | 0.0109 | 0.355 |
| Iso Pentane           | 0.279    | 0.201      | 0.007     | 0.961  | 10.3     | 11.2     | 0.106   | 0.961   | 0.0028 | 0.102 |
| Normal Pentane        | 0.266    | 0.192      | 0.007     | 0.916  | 9.9      | 10.7     | 0.101   | 0.916   | 0.0027 | 0.096 |
| Hexane                | 0.258    | 0.222      | 0.008     | 1.061  | 11.4     | 12.3     | 0.117   | 1.061   | 0.0025 | 0.106 |
| Heptane               | 0.213    | 0.213      | 0.007     | 1.019  | 10.9     | 11.7     | 0.112   | 1.019   | 0.0021 | 0.098 |
|                       | 100.000  | 20.953     | 0.723     |        | 1,147.0  | 1,264.4  | 11.939  | 19.003  | 0.9958 | 6.198 |

Gas Density (STP) = 0.058

 Ideal Gross (HHV)
 1,264.4

 Ideal Gross (sat'd)
 1,243.1

 GPM

 Real Gross (HHV)
 1,269.7

 Real Net (LHV)
 1,151.8

## Jay-Bee Oil & Gas, Inc. GAS ANALYSIS INFORMATION

## **Bashful Well Pad Production Facility** Tyler County County, WV

## Condensate Tank Flash Vapor Composition Information:

|                       | Fuel Gas | Fuel M.W.  | Fuel S.G. | Fuel   | LHV, dry | HHV, dry | AFR     | VOC     | Z      | GPM    |
|-----------------------|----------|------------|-----------|--------|----------|----------|---------|---------|--------|--------|
|                       | mole %   | lb/lb-mole |           | Wt. %  | Btu/scf  | Btu/scf  | vol/vol | NM / NE | Factor |        |
| Nitrogen, N2          | 0.032    | 0.009      | 0.000     | 0.022  |          |          | i       |         | 0.0003 |        |
| Carbon Dioxide, CO2   | 0.093    | 0.041      | 0.001     | 0.103  |          |          | -       |         | 0.0009 |        |
| Hydrogen Sulfide, H2S | 0.000    | 0.000      | 0.000     | 0.000  | 0.0      | 0.0      | 0.000   |         | 0.0000 |        |
| Helium, He            | -        | -          | -         | -      |          |          | i       |         | -      |        |
| Oxygen, O2            | -        | -          | -         | -      |          |          | -       |         | -      |        |
| Methane, CH4          | 21.006   | 3.370      | 0.116     | 8.458  | 191.0    | 212.2    | 2.002   |         | 0.2096 |        |
| Ethane, C2H6          | 26.977   | 8.112      | 0.280     | 20.358 | 436.7    | 477.4    | 4.500   |         | 0.2676 | 7.176  |
| Propane               | 25.650   | 11.311     | 0.391     | 28.386 | 593.8    | 645.4    | 6.110   | 28.386  | 0.2520 | 7.030  |
| Iso-Butane            | 5.272    | 3.064      | 0.106     | 7.690  | 158.2    | 171.4    | 1.633   | 7.690   | 0.0512 | 1.715  |
| Normal Butane         | 11.899   | 6.916      | 0.239     | 17.357 | 358.3    | 388.2    | 3.685   | 17.357  | 0.1150 | 3.731  |
| Iso Pentane           | 3.281    | 2.367      | 0.082     | 5.941  | 121.4    | 131.3    | 1.250   | 5.941   | 0.0328 | 1.195  |
| Normal Pentane        | 3.198    | 2.307      | 0.080     | 5.791  | 118.5    | 128.2    | 1.219   | 5.791   | 0.0320 | 1.152  |
| Hexane                | 1.776    | 1.531      | 0.053     | 3.841  | 78.2     | 84.5     | 0.804   | 3.841   | 0.0175 | 0.726  |
| Heptane               | 0.816    | 0.818      | 0.028     | 2.052  | 41.6     | 44.9     | 0.428   | 2.052   | 0.0081 | 0.374  |
|                       | 100.000  | 39.846     | 1.376     |        | 2,097.7  | 2,283.4  | 21.630  | 71.059  | 0.9872 | 23.100 |

Gas Density (STP) = 0.111

 Ideal Gross (HHV)
 2,283.4

 Ideal Gross (sat'd)
 2,244.3

 GPM

 Real Gross (HHV)
 2,313.1

 Real Net (LHV)
 2,124.9

## Jay-Bee Oil & Gas, Inc. GAS ANALYSIS INFORMATION

## **Bashful Well Pad Production Facility** Tyler County County, WV

## Water Tank Flash Vapor Composition Information:

|                       | Fuel Gas | Fuel M.W.  | Fuel S.G. | Fuel   | LHV, dry | HHV, dry | AFR     | VOC     | Z      | GPM   |
|-----------------------|----------|------------|-----------|--------|----------|----------|---------|---------|--------|-------|
|                       | mole %   | lb/lb-mole |           | Wt. %  | Btu/scf  | Btu/scf  | vol/vol | NM / NE | Factor |       |
| Nitrogen, N2          | 0.575    | 0.161      | 0.006     | 0.652  |          |          | -       |         | 0.0057 |       |
| Carbon Dioxide, CO2   | 1.602    | 0.705      | 0.024     | 2.855  |          |          | -       |         | 0.0160 |       |
| Hydrogen Sulfide, H2S | 0.000    | 0.000      | 0.000     | 0.000  | 0.0      | 0.0      | 0.000   |         | 0.0000 |       |
| Helium, He            | -        | -          | -         | -      |          |          | -       |         | -      |       |
| Oxygen, O2            | -        | -          | -         | -      |          |          | -       |         | -      |       |
| Methane, CH4          | 74.187   | 11.902     | 0.411     | 48.188 | 674.7    | 749.3    | 7.070   |         | 0.7404 |       |
| Ethane, C2H6          | 9.798    | 2.946      | 0.102     | 11.929 | 158.6    | 173.4    | 1.634   |         | 0.0972 | 2.606 |
| Propane               | 4.384    | 1.933      | 0.067     | 7.827  | 101.5    | 110.3    | 1.044   | 7.827   | 0.0431 | 1.202 |
| Iso-Butane            | 1.841    | 1.070      | 0.037     | 4.332  | 55.2     | 59.9     | 0.570   | 4.332   | 0.0179 | 0.599 |
| Normal Butane         | 2.043    | 1.187      | 0.041     | 4.808  | 61.5     | 66.6     | 0.633   | 4.808   | 0.0197 | 0.641 |
| Iso Pentane           | 1.305    | 0.942      | 0.033     | 3.812  | 48.3     | 52.2     | 0.497   | 3.812   | 0.0131 | 0.475 |
| Normal Pentane        | 0.928    | 0.670      | 0.023     | 2.711  | 34.4     | 37.2     | 0.354   | 2.711   | 0.0093 | 0.334 |
| Hexane                | 1.149    | 0.990      | 0.034     | 4.009  | 50.6     | 54.6     | 0.520   | 4.009   | 0.0114 | 0.470 |
| Heptane               | 2.188    | 2.192      | 0.076     | 8.877  | 111.6    | 120.4    | 1.147   | 8.877   | 0.0218 | 1.004 |
|                       | 100.000  | 24.699     | 0.853     |        | 1,296.4  | 1,424.0  | 13.469  | 36.376  | 0.9954 | 7.331 |

Gas Density (STP) = 0.069

 Ideal Gross (HHV)
 1,424.0

 Ideal Gross (sat'd)
 1,399.9

 GPM

 Real Gross (HHV)
 1,430.5

 Real Net (LHV)
 1,302.3

## **GAS DATA INFORMATION**

Specific Graivity of Air, @ 29.92 in. Hg and 60 -F,
One mole of gas occupies, @ 14.696 psia & 32 -F
One mole of gas occupies, @ 14.696 psia & 60 -F
379.64 cu ft. per lb-mole

Hydrogen Sulfide (H2S) conversion chart:

 0 grains H2S/100 scf
 =
 0.00000 mole % H2S

 0 mole % H2S
 =
 0 grains H2S/100 scf

 0 ppmv H2S
 =
 0.000 ppmv H2S

 0 ppmv H2S
 =
 0.0000 grains H2S/100 scf

 0.00000 mole % H2S

Ideal Gas at 14.696 psia and 60°F

|                  |       | MW      | Specific | Lb per | Cu Ft  | LHV, dry | HHV, dry | LHV    | HHV    | cu ft of air / |          |
|------------------|-------|---------|----------|--------|--------|----------|----------|--------|--------|----------------|----------|
|                  |       | lb/mol  | Gravity  | Cu Ft  | per Lb | Btu/scf  | Btu/scf  | Btu/lb | Btu/lb | 1 cu ft of gas | Z factor |
| Nitrogen         | N2    | 28.013  | 0.9672   | 0.0738 | 13.552 | 0        | 0        | 0      | 0      | 0              | 0.9997   |
| Carbon Dioxide   | CO2   | 44.010  | 1.5196   | 0.1159 | 8.626  | 0        | 0        | 0      | 0      | 0              | 0.9964   |
| Hydrogen Sulfide | H2S   | 34.076  | 1.1766   | 0.0898 | 11.141 | 587      | 637      | 6,545  | 7,100  | 7.15           | 0.9846   |
| Water            | H20   | 18.000  | 0.6215   | 0.0474 | 21.091 | 0        | 0        | 0      | 0      | 0              | 1.0006   |
| Oxygen           | O2    | 31.999  | 1.1048   | 0.0843 | 11.864 | 0        | 0        | 0      | 0      | 0              | 0.9992   |
| Methane          | CH4   | 16.043  | 0.5539   | 0.0423 | 23.664 | 909.4    | 1,010.0  | 21,520 | 23,879 | 9.53           | 0.9980   |
| Ethane           | C2H6  | 30.070  | 1.0382   | 0.0792 | 12.625 | 1,618.7  | 1,769.6  | 20,432 | 22,320 | 16.68          | 0.9919   |
| Propane          | C3H8  | 44.097  | 1.5226   | 0.1162 | 8.609  | 2,314.9  | 2,516.1  | 19,944 | 21,661 | 23.82          | 0.9825   |
| Iso-Butane       | C4H10 | 58.124  | 2.0069   | 0.1531 | 6.532  | 3,000.4  | 3,251.9  | 19,629 | 21,257 | 30.97          | 0.9711   |
| Normal Butane    | C4H10 | 58.124  | 2.0069   | 0.1531 | 6.532  | 3,010.8  | 3,262.3  | 19,680 | 21,308 | 30.97          | 0.9667   |
| Iso Pentane      | C5H12 | 72.151  | 2.4912   | 0.1901 | 5.262  | 3,699.0  | 4,000.9  | 19,478 | 21,052 | 38.11          | 1.0000   |
| Normal Pentane   | C5H12 | 72.151  | 2.4912   | 0.1901 | 5.262  | 3,706.9  | 4,008.9  | 19,517 | 21,091 | 38.11          | 1.0000   |
| Hexane           | C6H14 | 86.178  | 2.9755   | 0.2270 | 4.405  | 4,403.8  | 4,755.9  | 19,403 | 20,940 | 45.26          | 0.9879   |
| Heptane          | C7H16 | 100.205 | 3.4598   | 0.2639 | 3.789  | 5,100.0  | 5,502.5  | 22,000 | 23,000 | 52.41          | 0.9947   |

### Real Gas at 14.696 psia and 60°F

| riodi dao at i noco p | ola alla oo |         |          |        |        |          |          |        |        |                | _        |
|-----------------------|-------------|---------|----------|--------|--------|----------|----------|--------|--------|----------------|----------|
|                       |             | MW      | Specific | Lb per | Cu Ft  | LHV, dry | HHV, dry | LHV    | HHV    | cu ft of air / |          |
|                       |             | lb/mol  | Gravity  | Cu Ft  | per Lb | Btu/scf  | Btu/scf  | Btu/lb | Btu/lb | 1 cu ft of gas | Gal/Mole |
| Nitrogen              | N2          | 28.013  | 0.9672   | 0.0738 | 13.552 | 0        | 0        | 0      | 0      | 0              | 4.1513   |
| Carbon Dioxide        | CO2         | 44.010  | 1.5196   | 0.1159 | 8.626  | 0        | 0        | 0      | 0      | 0              | 6.4532   |
| Hydrogen Sulfide      | H2S         | 34.076  | 1.1766   | 0.0898 | 11.141 | 621      | 672      | 6,545  | 7,100  | 7.15           | 5.1005   |
| Water                 | H2O         | 18.000  | 0.6215   | 0.0474 | 21.091 |          |          |        |        |                | 3.8376   |
| Oxygen                | 02          | 31.999  | 1.1048   | 0.0843 | 11.864 | 0        | 0        | 0      | 0      | 0              | 3.3605   |
| Methane               | CH4         | 16.043  | 0.5539   | 0.0423 | 23.664 | 911      | 1,012    | 21,520 | 23,879 | 9.53           | 6.4172   |
| Ethane                | C2H6        | 30.070  | 1.0382   | 0.0792 | 12.625 | 1,631    | 1,783    | 20,432 | 22,320 | 16.68          | 10.126   |
| Propane               | C3H8        | 44.097  | 1.5226   | 0.1162 | 8.609  | 2,353    | 3,354    | 19,944 | 21,661 | 23.82          | 10.433   |
| Iso-Butane            | C4H10       | 58.124  | 2.0069   | 0.1531 | 6.532  | 3,101    | 3,369    | 19,629 | 21,257 | 30.97          | 12.386   |
| Normal Butane         | C4H10       | 58.124  | 2.0069   | 0.1531 | 6.532  | 3,094    | 3,370    | 19,680 | 21,308 | 30.97          | 11.937   |
| Iso Pentane           | C5H12       | 72.151  | 2.4912   | 0.1901 | 5.262  | 3,709    | 4,001    | 19,478 | 21,052 | 38.11          | 13.86    |
| Normal Pentane        | C5H12       | 72.151  | 2.4912   | 0.1901 | 5.262  | 3,698    | 4,009    | 19,517 | 21,091 | 38.11          | 13.713   |
| Hexane                | C6H14       | 86.178  | 2.9755   | 0.2270 | 4.405  | 4,404    | 4,756    | 19,403 | 20,940 | 45.26          | 15.566   |
| Heptane               | C7H16       | 100.205 | 3.4598   | 0.2639 | 3.789  | 5,101    | 5,503    | 22,000 | 23,000 | 52.41          | 17.468   |

16.3227 17.468

## Jay-Bee Oil & Gas, Incorporated **Bashful Well Pad Production Facility Condensate Tank Emissions**

Utilizing direct measurements of the Gas to Oil (GOR) ratio and flash gas composition from a nearby Jay-Bee well pad (T103-6), the attached calculation spreadsheet was used to determine un-controlled VOC and HAP flash emissions from the Condensate tanks of 764.8 tpy and 69.1 tpy respectively for the revised maximum annual throughput of 27,480 BBL/Yr. Working and Breathing losses were calculated using EPA's Tanks 4.0 to be 2.15 tpy VOCs and 0.22 tpy HAPs (est.). RVP 6 Gasoline was used as a surrogate. As the RVP of the condensate was measured at 9.33 before flash losses, this was deemed appropriate. Thus, total uncontrolled tank emissions are projected to be 767 tpy of VOCs and 69.3 tpy of HAPs. As emissions from these tanks are anticipated to be continuous, this is equivalent to 175.1 pounds per hour VOCs and 15.8 pounds per hour HAPs.

The largest component to the HAPs is Hexane. Using the process described above, potential uncontrolled n-Hexane emissions were determined to be 48.4 tons per year or 11.0 pounds per hour.

Methane is also be emitted at a maximum rate of 12.4 tpy (2.83 lb/hr) from the condensate tanks. Using the GHG factor of 25 for Methane, the CO<sub>2e</sub> uncontrolled emission rate is 310 tpy. This is equivalent to 70.8 lb/hr of CO<sub>2e</sub>

During operation of the VRU, emissions are controlled at a minimum of 95%. Actual control efficiency is anticipated to be much higher, but only 95% is claimed as allowed under the G70-A General Permit. Thus, when in operation, emissions will be controlled to 8.76 pounds per hour of VOCs and 0.79 pounds per hour of HAPs. Methane emissions will be controlled to 0.14 lb/hr while n-Hexane will be controlled to 0.55 pounds per hour.

The proposed Enclosed Combustor will control organic vapor emissions to at least 98%. Actual control efficiency is anticipated to be higher, but only 98% is claimed as allowed under the G70-A General Permit. Thus, when in operation, organic emissions from the combustor will be controlled to 3.50 pounds per hour of VOCs and 0.32 pounds per hour of HAPs. Methane emissions will be controlled to 0.06 lb/hr while n-Hexane will be controlled to 0.22 pounds per hour.

#### **VRU Emissions**

The VRU is permitted to operate continuously, except for brief intervals for preventive maintenance. It is conservatively estimated that the VRU will capture and control 95% of potential emissions. Thus, total potential tank emissions are calculated as follows:

**VOCs** 

8.76 lb/hr (Controlled) x 8760 = 76,738 lb/yr or 38.37 tpy

### **HAPs**

0.79 lb/Hr (Controlled) x 8760 = 6,920 lb/yr or 3.46 tpy

### n-Hexane

0.55 lb/Hr (Controlled) x 8760 = 4,818 lb/yr or 2.41 tpy

#### Methane

0.16 lb/Hr (Controlled) x 8760 = 1,226 lb/yr or 0.61 tons per year

#### **Enclosed Combustor Emissions**

In order to include the enclosed combustor into the G70-A permit, it is assumed that the combustor will operate full time. Thus, it is conservatively estimated that the combustor will capture and control 98% of potential emissions. Total potential tank emissions via the combustor are therefore calculated as follows:

### **VOCs**

3.50 lb/hr (Controlled) x 8760 = 30,660 lb/yr or 15.33 tpy

#### **HAPs**

0.32 lb/Hr (Controlled) x 8760 = 2,768 lb/yr or 1.38 tpy

### n-Hexane

0.22 lb/Hr (Controlled) x 8760 = 1,927lb/yr or 0.96 tpy

### Methane

0.06 lb/Hr (Controlled) x 8760 = 496 lb/yr or 0.25 tpy

#### **Gas Flow to Combustor**

Total gas flow to the combustor from the condensate tanks is derived from the condensate flash calculation spreadsheets (808.9 tpy total organics) plus working and breathing losses for the condensate tanks (2.15 tpy) for a total of 811.0 tpy. Using the density of the condensate vapor shown in the Excel spreadsheet (0.110 lb/scf), an annual gas flow to the combustor of 14.75 MMSCF/yr or 40,399 scfd was determined.

Using the HHV of 2313 BTU/scf of the condensate tank flash vapors as a conservative surrogate, this results in a maximum heat loading of 3.91 MMBTU/Hr.

## Jay-Bee Oil & Gas - Bashful

## **Flash Emission Calculations**

Using Gas-Oil Ratio Method

### **Un-Controlled**

### Site specific data

Gas-Oil-ratio = 534 scf/bbl (Using Actual GOR from T103-6)

Throughput = 27,480 bbl/yr

Stock tank gas molecular weight = 39.56 g/mole

### **Conversions**

1 lb = 453.6 g 1 mole = 22.4 L 1 scf = 28.32 L 1 ton = 2000 lb

### **Equations**

$$E_{TOT} = Q \frac{(bbl)}{(yr)} \times R \frac{(scf)}{(bbl)} \times \frac{28.32(L)}{1(scf)} \times \frac{1(mole)}{22.4(L)} \times MW \frac{(g)}{(mole)} \times \frac{1(lb)}{453.6(g)} \times \frac{1(ton)}{2000(lb)}$$

 $E_{TOT}$  = Total stock tank flash emissions (TPY)

R = Measured gas-oil ratio (scf/bbl)

Q = Throughput (bbl/yr)

MW = Stock tank gas molecular weight (g/mole)

$$E_{spec} = E_{TOT} \times X_{spec}$$

 $E_{\text{spec}}$  = Flash emission from constituent

 $X_{\text{spec}}$  = Weight fraction of constituent in stock tank gas

## Flash Emissions

| Constituent            | TPY      |     |
|------------------------|----------|-----|
| Total                  | 809.0148 |     |
| VOC                    | 764.7536 |     |
| Nitrogen               | 4.05E-02 |     |
| Carbon Dioxide         | 1.54E-01 |     |
| Methane                | 1.24E+01 |     |
| Ethane                 | 3.17E+01 |     |
| Propane                | 5.69E+01 |     |
| Isobutane              | 2.27E+01 |     |
| n-Butane               | 6.38E+01 |     |
| 2,2 Dimethylpropane    | 1.40E+00 |     |
| Isopentane             | 4.39E+01 |     |
| n-Pentane              | 5.64E+01 |     |
| 2,2 Dimethylbutane     | 2.39E+00 |     |
| Cyclopentane           | 0.00E+00 |     |
| 2,3 Dimethylbutane     | 3.58E+00 |     |
| 2 Methylpentane        | 2.69E+01 |     |
| 3 Methylpentane        | 1.75E+01 |     |
| n-Hexane               | 4.49E+01 | HAP |
| Methylcyclopentane     | 3.91E+00 |     |
| Benzene                | 7.52E-01 | HAP |
| Cyclohexane            | 6.76E+00 |     |
| 2-Methylhexane         | 2.54E+01 |     |
| 3-Methylhexane         | 2.13E+01 |     |
| 2,2,4 Trimethylpentane | 0.00E+00 |     |
| Other C7's             | 1.27E+01 |     |
| n-Heptane              | 3.69E+01 |     |
| Methylcyclohexane      | 2.25E+01 |     |
| Toluene                | 4.99E+00 | HAP |
| Other C8's             | 6.56E+01 |     |
| n-Octane               | 2.52E+01 |     |
| Ethylbenzene           | 4.86E+00 | HAP |
| M & P Xylenes          | 5.95E+00 | HAP |
| O-Xylene               | 7.63E+00 | HAP |
| Other C9's             | 3.74E+01 |     |
| n-Nonane               | 1.59E+01 |     |
| Other C10's            | 3.55E+01 |     |
| n-Decane               | 9.60E+00 |     |
| Undecanes (11)         | 8.14E+01 |     |

 $E_{TOT}$ Sum of C3+

### **TANKS 4.0.9d**

# Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: Bashful Condensate

City: Huntington
State: West Virginia
Company: Jay-Bee Oil & Gas
Type of Tank: Vertical Fixed Roof Tank

Description: 210 BBL Condensate Tanks - Emissions from a Single Tank

**Tank Dimensions** 

 Shell Height (ft):
 15.00

 Diarneter (ft):
 10.00

 Liquid Height (ft):
 14.00

 Avg. Liquid Height (ft):
 10.00

 Volume (gallons):
 8,225.29

 Turnovers:
 70.16

 Net Throughput(gal/yr):
 577,080.00

Is Tank Heated (y/n): N

Paint Characteristics

Shell Color/Shade: Gray/Light
Shell Condition Good
Roof Color/Shade: Gray/Light
Roof Condition: Good

**Roof Characteristics** 

Type: Cone

Height (ft) 0.25 Slope (ft/ft) (Cone Roof) 0.04

**Breather Vent Settings** 

Vacuum Settings (psig): -0.03
Pressure Settings (psig) 0.03

Meterological Data used in Emissions Calculations: Huntington, West Virginia (Avg Atmospheric Pressure = 14.33 psia)

## TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

## Bashful Condensate - Vertical Fixed Roof Tank Huntington, West Virginia

|                   |       |       | rity Liquid S<br>perature (d |       | Liquid<br>Bulk<br>Temp | Vapo   | or Pressure | _ ,    | Vapor<br>Mol. | Liquid<br>Mass | Vapor<br>Mass | Mol.   | Basis for Vapor Pressure      |
|-------------------|-------|-------|------------------------------|-------|------------------------|--------|-------------|--------|---------------|----------------|---------------|--------|-------------------------------|
| Mixture/Component | Month | Avg.  | Min.                         | Max.  | (deg F)                | Avg.   | Min.        | Max.   | Weight.       | Fract,         | Fract.        | Weight | Calcutations                  |
| Gasoline (RVP 6)  | All   | 61.42 | 53.10                        | 69.74 | 57.09                  | 3.0220 | 2.5373      | 3.5797 | 69.0000       |                |               | 92.00  | Option 4: RVP=6, ASTM Slope=3 |

## TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

## Bashful Condensate - Vertical Fixed Roof Tank Huntington, West Virginia

| Annual Emission Calcaulations                                                   |                      |
|---------------------------------------------------------------------------------|----------------------|
| Standing Losses (lb):                                                           | 451.6638             |
| Vapor Space Volume (cu ft):                                                     | 399,2441             |
| Vapor Density (lb/cu ft):                                                       | 0.0373<br>0.1508     |
| Vapor Space Expansion Factor:                                                   | 0,1506               |
| Vented Vapor Saturation Factor:                                                 | 0.3512               |
| Tank Vapor Space Volume:                                                        |                      |
| Vapor Space Volume (cu ft):                                                     | 399,2441             |
| Tank Diameter (ft):                                                             | 10.0000              |
| Vapor Space Outage (ft):                                                        | 5.0833               |
| Tank Shell Height (ft):                                                         | 15.0000              |
| Average Liquid Height (ft):                                                     | 10.0000<br>0.0833    |
| Roof Outage (ft):                                                               | 0.0633               |
| Roof Outage (Cone Roof)                                                         | 0.0000               |
| Roof Outage (ft):                                                               | 0.0833               |
| Roof Height (ft):                                                               | 0.2500<br>0.0400     |
| Roof Slope (ft/ft):                                                             | 5.0000               |
| Shell Radius (ft):                                                              | 5.0000               |
| Vapor Density                                                                   | 0.0079               |
| Vapor Density (lb/cu ft):                                                       | 0.0373<br>69.0000    |
| Vapor Molecular Weight (lb/lb-mole):                                            | 95.00.00             |
| Vapor Pressure at Daily Average Liquid                                          | 3.0220               |
| Surface Temperature (psia);<br>Daity Avg. Liquid Surface Temp. (deg. R);        | 521,0866             |
| Daily Average Ambient Temp. (deg. F):                                           | 54,8458              |
| Ideal Gas Constant R                                                            | ¥ -,• -==            |
| (osia cutt / (lb-mol-deg R)):                                                   | 10.731               |
| Liquid Bulk Temperature (deg. R):                                               | 516.7558             |
| Tank Paint Solar Absorptance (Shelf):                                           | 0,5400               |
| Tank Paint Solar Absorptance (Roof):                                            | 0,5400               |
| Daily Total Solar Insulation                                                    |                      |
| Factor (Btu/sqft day):                                                          | 1,246.2101           |
| Vapor Space Expansion Factor                                                    |                      |
| Vapor Space Expansion Factor:                                                   | 0.1508               |
| Daily Vapor Temperature Range (deg. R):                                         | 33,2847              |
| Daily Vapor Pressure Range (psia):                                              | 1.0425               |
| Breather Vent Press. Setting Range(psia):                                       | 0.0600               |
| Vapor Pressure at Daily Average Liquid                                          |                      |
| Surface Temperature (psia):                                                     | 3.0220               |
| Vapor Pressure at Daily Minimum Liquid                                          | 4.0070               |
| Surface Temperature (psia):                                                     | 2.5373               |
| Vapor Pressure at Daily Maximum Liquid                                          | 3.5797               |
| Surface Temperature (psia):                                                     |                      |
| Daily Avg. Liquid Surface Temp. (deg R):                                        | 521.0966<br>512.7654 |
| Daily Min. Liquid Surface Temp. (deg R):                                        | 529.4077             |
| Daily Max. Liquid Surface Temp. (deg R):<br>Daily Ambient Temp. Range (deg. R): | 20,0583              |
| Vented Vapor Saturation Factor                                                  |                      |
| Vented Vapor Saturation Factor:                                                 | 0,5512               |
| Vapor Pressure at Daily Average Liquid:                                         |                      |
| Surface Temperature (psia):                                                     | 3.0220               |
| Vapor Space Outage (ft):                                                        | 5.0833               |
| • • •                                                                           |                      |

Page 4 of 7 TANKS 4.0 Report

| Working Losses (Ib):                   | 1,702.6152   |
|----------------------------------------|--------------|
| Vapor Molecular Weight (lb/lb-mole):   | 69.0000      |
| Vapor Pressure at Daily Average Liquid |              |
| Surface Temperature (psia):            | 3.0220       |
| Annual Net Throughput (gallyr.):       | 577,080.0000 |
| Annual Turnovers:                      | 70.1592      |
| Turnover Factor:                       | 0.5943       |
| Maximum Liquid Volume (gal):           | 8,225.2880   |
| Maximum Liquid Height (ft):            | 14.0000      |
| Tank Diameter (ft):                    | 10.0000      |
| Working Loss Product Factor:           | 1,0000       |
| Total Losses (lb):                     | 2,154.2790   |

Total Losses (lb):

## TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

**Emissions Report for: Annual** 

Bashful Condensate - Vertical Fixed Roof Tank Huntington, West Virginia

|                  | Losses(lbs)  |                |                 |  |  |  |  |  |
|------------------|--------------|----------------|-----------------|--|--|--|--|--|
| Components       | Working Loss | Breathing Loss | Total Emissions |  |  |  |  |  |
| Gasoline (RVP 6) | 1,702.62     | 451.66         | 2,154.28        |  |  |  |  |  |

Per Tonk X 2 Tonks =

4308.56/6/yr Un-controlled

or 2.15 tpy

Assumed to be 100% VOC's

13% HAPs



## FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Date Sampled: 04/07/14

Date Analyzed: 04/21/14

**Sample:** T 103-6

Job Number: J42799

| FLASH LIBERATION OF HYDROCARBON LIQUID |        |       |  |  |  |  |
|----------------------------------------|--------|-------|--|--|--|--|
| Separator HC Liquid Stock Tai          |        |       |  |  |  |  |
| Pressure, psig                         | 300    | 0     |  |  |  |  |
| Temperature, °F                        | 55     | 70    |  |  |  |  |
| Gas Oil Ratio (1)                      |        | 534   |  |  |  |  |
| Gas Specific Gravity (2)               | *****  | 1.396 |  |  |  |  |
| Separator Volume Factor (3)            | 1.3618 | 1.000 |  |  |  |  |

| 0.7343 |
|--------|
| 71.19  |
| 9.33   |
|        |

| Quality Control Check |                     |              |        |  |  |  |  |
|-----------------------|---------------------|--------------|--------|--|--|--|--|
|                       | Sampling Conditions | Test Samples |        |  |  |  |  |
| Cylinder No.          | TENDAL              | W-2515*      | W-2277 |  |  |  |  |
| Pressure, psig        | 300                 | 268          | 265    |  |  |  |  |
| Temperature, °F       | 55                  | 66           | 66     |  |  |  |  |

<sup>(1) -</sup> Scf of flashed vapor per barrel of stock tank oil

Analyst:

\_\_\_E.F.

Base Conditions: 14.85 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

<sup>(2)</sup> - Air = 1.000

<sup>(3) -</sup> Separator volume / Stock tank volume

<sup>(4) -</sup> Fraction of first stage separator liquid

<sup>(5) -</sup> Absolute pressure at 100 deg F

<sup>\*</sup> Sample used for flash study

## FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

**Sample:** T 103-6

Separator Hydrocarbon Liquid Sampled @ 300 psig & 55 °F

Date Sampled: 04/07/14 Job Number: 42799.002

### CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

| COMPONENT           | MOL %         | LIQ VOL %     | WT %          |
|---------------------|---------------|---------------|---------------|
| Nitrogen            | 0.014         | 0.004         | 0.005         |
| Carbon Dioxide      | 0.033         | 0.015         | 0.019         |
| Methane             | 7.177         | 3.237         | 1.527         |
| Ethane              | 9.830         | 6.997         | 3.920         |
| Propane             | 12.024        | 8.817         | 7.031         |
| Isobutane           | 3.637         | 3.168         | 2.803         |
| n-Butane            | 10.238        | 8.591         | 7.891         |
| 2,2 Dimethylpropane | 0.180         | 0.184         | 0.173         |
| Isopentane          | 5.670         | 5.519         | 5.425         |
| n-Pentane           | 7.291         | 7.035         | 6.976         |
| 2,2 Dimethylbutane  | 0.259         | 0.288         | 0.296         |
| Cyclopentane        | 0.000         | 0.000         | 0.000         |
| 2,3 Dimethylbutane  | 0.388         | 0.423         | 0.443         |
| 2 Methylpentane     | 2.911         | 3.215         | 3.326         |
| 3 Methylpentane     | 1.892         | 2.056         | 2.163         |
| n-Hexane            | 4.861         | 5.320         | 5.555         |
| Heptanes Plus       | <u>33.596</u> | <u>45.132</u> | <u>52.448</u> |
| Totals:             | 100.000       | 100.000       | 100.000       |

### Characteristics of Heptanes Plus:

| Specific Gravity | 0.7391 | (Water=1) |
|------------------|--------|-----------|
| °API Gravity     | 59.95  | @ 60°F    |
| Molecular Weight | 117.7  |           |
| Vapor Volume     | 19.93  | CF/Gal    |
| Weight           | 6.16   | Lbs/Gal   |

#### Characteristics of Total Sample:

| Specific Gravity | 0.6360 | (Water=1) |
|------------------|--------|-----------|
| °API Gravity     | 90.98  | @ 60°F    |
| Molecular Weight | 75.4   | _         |
| Vapor Volume     | 26.77  | CF/Gal    |
| Weight           | 5.30   | Lbs/Gal   |

Base Conditions: 14.850 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: XG Processor: JCdjv Cylinder ID: W-2415

David Dannhaus 361-661-7015

### **TANKS DATA INPUT REPORT - GPA 2186-M**

| COMPONENT                        | Mol %   | LiqVo1 % | Wt %          |
|----------------------------------|---------|----------|---------------|
| Carbon Dioxide                   | 0.033   | 0.015    | 0.019         |
| Nitrogen                         | 0.014   | 0.004    | 0.005         |
| Methane                          | 7.177   | 3.237    | 1.527         |
| Ethane                           | 9.830   | 6.997    | 3.920         |
| Propane                          | 12.024  | 8.817    | 7.031         |
| Isobutane                        | 3.637   | 3,168    | 2.803         |
| n-Butane                         | 10.418  | 8.775    | 8.064         |
| Isopentane                       | 5.670   | 5.519    | 5.425         |
| n-Pentane                        | 7.291   | 7.035    | 6.976         |
| Other C-6's                      | 5.450   | 5.982    | 6.228         |
| Heptanes                         | 10.149  | 12.070   | 13,219        |
| Octanes                          | 9.740   | 12.234   | 14.005        |
| Nonanes                          | 3.918   | 5.705    | 6.591         |
| Decanes Plus                     | 7.574   | 12.950   | 15.644        |
| Benzene                          | 0.090   | 0.067    | 0.093         |
| Toluene                          | 0.505   | 0.450    | 0.617         |
| E-Benzene                        | 0.427   | 0.438    | 0.601         |
| Xylenes                          | 1.193   | 1.218    | 1.679         |
| n-Hexane                         | 4.861   | 5.320    | 5.555         |
| 2,2,4 Trimethylpentane           | 0.000   | 0.000    | 0.000         |
| Totals:                          | 100.000 | 100.000  | 100.000       |
| Characteristics of Total Sample: |         |          |               |
| Specific Gravity                 |         | 0.6360   | (Water=1)     |
| *API Gravity                     |         | 90.98    | @ 60°F        |
| Molecular Weight                 |         | 75.4     | <b>©</b> 30 . |
| Vapor Volume                     |         | 26.77    | CF/Gal        |
| Weight                           |         | 5.30     | Lbs/Gal       |
| Characteristics of Decanes (C10  | ) Plus: |          |               |
| Specific Gravity                 |         | 0.7683   | (Water=1)     |
| Molecular Weight                 |         | 155.8    | (vvater-1)    |
| moround Froight                  | ·       | 130.0    |               |
| Characteristics of Atmospheric   | -       |          |               |
| °API Gravity                     |         | 71.19    | @ 60°F        |
| Reid Vapor Pressure (ASTM D-     | 5191)   | 9.33     | psi           |

| QUA             | LITY CONTRO            | L CHECK |        |
|-----------------|------------------------|---------|--------|
|                 | Sampling<br>Conditions | Test S  | amples |
| Cylinder Number |                        | W-2515* | W-2277 |
| Pressure, PSIG  | 300                    | 268     | 265    |
| Temperature, °F | 55                     | 66      | 66     |

<sup>\*</sup> Sample used for analysis

## **TOTAL EXTENDED REPORT - GPA 2186-M**

| COMPONENT                 | Mol %          | LiqVol %       | Wt %           |
|---------------------------|----------------|----------------|----------------|
| Nitrogen                  | 0.014          | •              |                |
| <del>-</del>              | 0.014          | 0.004          | 0.005          |
| Carbon Dioxide Methane    | 0.033          | 0.015          | 0.019          |
|                           | 7.177          | 3.237          | 1.527          |
| Ethane                    | 9.830          | 6.997          | 3.920          |
| Propane                   | 12.024         | 8.817          | 7.031          |
| Isobutane                 | 3.637          | 3.168          | 2.803          |
| n-Butane                  | 10.238         | 8.591          | 7.891          |
| 2,2 Dimethylpropane       | 0.180          | 0.184          | 0.173          |
| Isopentane                | 5.670          | 5.519          | 5.425          |
| n-Pentane                 | 7.291          | 7.035          | 6.976          |
| 2,2 Dimethylbutane        | 0.259          | 0.288          | 0. <b>296</b>  |
| Cyclopentane              | 0.000          | 0.000          | 0.000          |
| 2,3 Dimethylbutane        | 0.388          | 0.423          | 0.443          |
| 2 Methylpentane           | 2.911          | 3.215          | 3.326          |
| 3 Methylpentane           | 1.892          | 2.056          | 2.163          |
| n-Hexane                  | 4.861          | 5.320          | 5.555          |
| Methylcyclopentane        | 0.433          | 0.408          | 0.483          |
| Benzene                   | 0.090          | 0.067          | 0.093          |
| Cyclohexane               | 0.749          | 0.678          | 0.836          |
| 2-Methylhexane            | 2.360          | 2.921          | 3.137          |
| 3-Methylhexane            | 1.985          | 2.425          | 2.638          |
| 2,2,4 Trimethylpentane    | 0.000          | 0.000          | 0.000          |
| Other C-7's               | 1.191          | 1.425          | 1.567          |
| n-Heptane                 | 3.430          | 4.212          | 4.558          |
| Methylcyclohexane         | 2.138          | 2.288          | 2.784          |
| Toluene                   | 0.505          | 0.450          | 0.617          |
| Other C-8's               | 5,547          | 7.144          | 8.107          |
| n-Octane                  | 2.055          | 2.802          | 3.113          |
| E-Benzene                 | 0.427          | 0.438          | 0.601          |
| M & P Xylenes             | 0.523          | 0.540          | 0.736          |
| O-Xylene                  | 0.670          | 0.678          | 0.943          |
| Other C-9's               | 2.764          | 3.975          | 4.626          |
| n-Nonane                  | 1.155          | 1.730          | 1.964          |
| Other C-10's              | 2.343          | 3.704          | 4.390          |
| n-decane                  | 0.629          | 1.028          | 1.187          |
| Undecanes(11)             | 1.946          | 3,156          | 3.794          |
| Dodecanes(12)             | 1.166          | 2.043          | 2.489          |
| Tridecanes(13)            | 0.722          | 1.357          |                |
| Tetradecanes(14)          |                |                | 1.676          |
| Pentadecanes(15)          | 0.362<br>0.194 | 0.728          | 0.911          |
| Hexadecanes(16)           | 0.099          | 0.418          | 0.530          |
| Heptadecanes(17)          | 0.051          | 0.229<br>0.123 | 0.293          |
| Octadecanes(18)           | 0.033          | 0.085          | 0.159          |
| Nonadecanes(19)           |                | 0.046          | 0.110          |
| Eicosanes(20)             | 0.017<br>0.005 | 0.046          | 0.060<br>0.018 |
| Heneicosanes(21)          | 0.003          | 0.009          | 0.012          |
| Docosanes(22)             | 0.003          | 0.005          | 0.007          |
| Tricosanes(23)            | 0.002          | 0.002          | 0.007          |
| Tetracosanes(24)          | 0.000          |                |                |
| Pentacosanes(25)          |                | 0.001          | 0.002          |
| , ,                       | 0.000          | 0.001          | 0.001          |
| Hexacosanes(26)           | 0.000          | 0.001          | 0.001          |
| Heptacosanes(27)          | 0.000          | 0.000          | 0.000          |
| Octacosanes(28)           | 0.000          | 0.000          | 0.000          |
| Nonacosanes(29)           | 0.000          | 0.000          | 0.000          |
| Triacontanes (30)         | 0.000          | 0.000          | 0.000          |
| Hentriacontanes Plus(31+) | 0.000          | 0.000          | 0.000          |
| Total                     | 100.000        | 100.000        | 100.000        |

# Condensate Truck Loading Lost Emissions Per AP-42

Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor  $L_L$  can be estimated as follows:

 $L_{L} = 12.46[SPM/T]$ 

### Where:

L<sub>L</sub> = uncontrolled loading loss in pounds per 1000 gallons of liquid loaded

S = saturation factor (0.6)

P=true vapor pressure of liquid loaded: 6.6 psia (per AP-42 conversion of RVP to TVP)

M= Molecular weight of vapor in lb/lb-mole 64.35 (see attached breathing vapor analysis report)

T= temperature of bulk liquid loaded in deg R or 460+deg F (60 Deg F)

Thus,  $L_L = 12.46[0.6 \times 6.6 \times 64.35]/[460+60]$ 

 $L_L$ = 6.11 lb/1000 gallons loaded

Based on sample data of breathing vapor (attached), these emissions are 99.4% VOCs. It is assumed that vapor composition from truck loading is the same as that from the tank breathing vapors.

Given a maximum loading of 200 BBL (8,400 gallons) a day, uncontrolled VOC emissions are estimated at 51.02 lb of VOC per day [8,4 x 6.11 x .994]. With all daily loading taking place within 1 hour, the average hourly un-controlled emission rate is therefore also estimated at 51.02 lb/hr VOCs. Emissions from truck loading are un-controlled.

Maximum annual throughput is 1,154,160 gallons (27,480 barrels) per year. Thus, uncaptured/un-controlled VOC emissions are conservatively estimated at 7023 pounds per year [1154 x 6.11 x .996] or 3.51 tons per year.

Based on the attached analysis of a representative tank's breathing emissions, HAPs represent 4.9 percent of the emissions. Thus, daily HAPs emissions equal 2.51 lb/hr [8.40 x 6.11 x 0.049]. Annual maximum HAPs emissions are estimated at 345 lb/yr [1154 x 6.11 x 0.049] or 0.17 tpy.

.

## FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: T 103-6

**Breathing Vapor** 

From 0 psig & 70 °F to 0 psig & 100 °F

Date Sampled: 04/07/14 Job Number: 42799.011

## CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

| COMPONENT           | MOL%         | GPM          |
|---------------------|--------------|--------------|
| Hydrogen Sulfide*   | < 0.001      |              |
| Nitrogen            | 0.000        |              |
| Carbon Dioxide      | 0.032        |              |
| Methane             | 0.023        |              |
| Ethane              | 0.533        | 0.144        |
| Propane             | 13.569       | 3.768        |
| Isobutane           | 9.746        | 3.214        |
| n-Butane            | 31.720       | 10.079       |
| 2-2 Dimethylpropane | 0.415        | 0.160        |
| Isopentane          | 15.075       | 5.557        |
| n-Pentane           | 16.449       | 6.010        |
| Hexanes             | 9.639        | 4.004        |
| Heptanes Plus       | <u>2.799</u> | <u>1.199</u> |
| Totals              | 100.000      | 34.134       |

### Computed Real Characteristics Of Heptanes Plus:

| Specific Gravity    | 3.521 | (Air=1) |
|---------------------|-------|---------|
| Molecular Weight    | 97.70 |         |
| Gross Heating Value | 5232  | BTU/CF  |

## **Computed Real Characteristics Of Total Sample:**

| Specific Gravity    | 2.319  | (Air=1) |
|---------------------|--------|---------|
| Compressibility (Z) | 0.9579 |         |
| Molecular Weight    | 64.35  |         |
| Gross Heating Value |        |         |
| Dry Basis           | 3781   | BTU/CF  |
| Saturated Basis     | 3716   | BTU/CE  |

<sup>\*</sup>Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377)

Results: 0.031 Gr/100 CF, 0.5 PPMV or 0.0001 Mol %

Base Conditions: 14.850 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: MR Processor: AL Cylinder ID: ST# 2

David Dannhaus 361-661-7015

## CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

| COMPONENT              | MOL %        | GPM          | WT %         |
|------------------------|--------------|--------------|--------------|
| Hydrogen Sulfide*      | < 0.001      | <b>-</b> ,   | < 0.001      |
| Nitrogen               | 0.000        |              | 0.000        |
| Carbon Dioxide         | 0.032        |              | 0.022        |
| Methane                | 0.023        |              | 0.004        |
| Ethane                 | 0.533        | 0.144        | 0.249        |
| Propane                | 13.569       | 3.768        | 9.299        |
| Isobutane              | 9.746        | 3.214        | 8.803        |
| n-Butane               | 31.720       | 10.079       | 28.652       |
| 2,2 Dimethylpropane    | 0.415        | 0.160        | 0.465        |
| Isopentane             | 15.075       | 5.557        | 16.903       |
| n-Pentane              | 16.449       | 6.010        | 18.443       |
| 2,2 Dimethylbutane     | 0.444        | 0.187        | 0.595        |
| Cyclopentane           | 0.000        | 0.000        | 0.000        |
| 2,3 Dimethylbutane     | 0.617        | 0.255        | 0.826        |
| 2 Methylpentane        | 3.194        | 1.336        | 4.278        |
| 3 Methylpentane        | 1.835        | 0.755        | 2.458        |
| n-Hexane               | 3.549        | 1.471        | 4.753        |
| Methylcyclopentane     | 0.250        | 0.087        | 0.327        |
| Benzene                | 0.052        | 0.015        | 0.063        |
| Cyclohexane            | 0.293        | 0.101        | 0.383        |
| 2-Methylhexane         | 0.386        | 0.181        | 0.601        |
| 3-Methylhexane         | 0.362        | 0.166        | 0.564        |
| 2,2,4 Trimethylpentane | 0.000        | 0.000        | 0.000        |
| Other C7's             | 0.440        | 0.193        | 0.678        |
| n-Heptane              | 0.390        | 0.181        | 0.607        |
| Methylcyclohexane      | 0.251        | 0.102        | 0.383        |
| Toluene                | 0.040        | 0.014        | 0.057        |
| Other C8's             | 0.234        | 0.110        | 0.401        |
| n-Octane               | 0.053        | 0.027        | 0.094        |
| Ethylbenzene           | 0.001        | 0.000        | 0.002        |
| M & P Xylenes          | 0.009        | 0.003        | 0.015        |
| O-Xylene               | 0.001        | 0.000        | 0.002        |
| Other C9's             | 0.034        | 0.017        | 0.067        |
| n-Nonane               | 0.003        | 0.002        | 0.006        |
| Other C10's            | 0.000        | 0.000        | 0.000        |
| n-Decane               | 0.000        | 0.000        | 0.000        |
| Undecanes (11)         | <u>0.000</u> | <u>0.000</u> | <u>0.000</u> |
| Totals                 | 100.000      | 34.134       | 100.000      |

## Computed Real Characteristics Of Total Sample:

| Specific Gravity    | 2.319  | (Air=1) |  |
|---------------------|--------|---------|--|
| Compressibility (Z) | 0.9579 |         |  |
| Molecular Weight    | 64.35  |         |  |
| Gross Heating Value |        |         |  |
| Dry Basis           | 3781   | BTU/CF  |  |
| Saturated Basis     | 3716   | BTU/CF  |  |

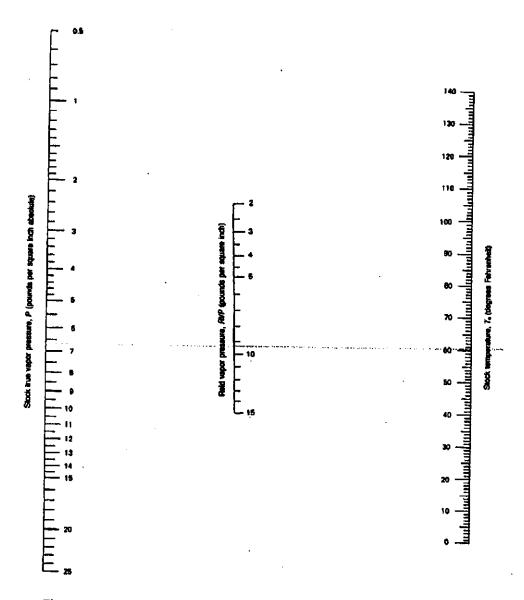



Figure 7.1-13a. True vapor pressure of crude oils with a Reid vapor pressure of 2 to 15 pounds per square inch.<sup>4</sup>

## Jay-Bee Oil & Gas, Incorporated Bashful Well Pad Production Facility Water Tank Emissions

Utilizing direct measurements of the Gas to Water (GOW) ratio and flash gas composition from a nearby Jay-Bee well pad (Schulberg), the attached calculation spreadsheet was used to determine <u>un-controlled</u> VOC and HAP flash emissions from the Water tanks of 0.21 tpy and 0.02 tpy respectively for the revised maximum annual throughput of 25,200 BBL/Yr. Working and Breathing losses were deemed negligible. Thus, total <u>uncontrolled</u> produced water tank emissions are projected to be 0.21 tpy of VOCs and 0.02 tpy of HAPs. As emissions from these tanks are anticipated to be continuous, this is equivalent to 0.048 pounds per hour VOCs and 0.004 pounds per hour HAPs.

The largest component to the HAPs is Hexane. Using the process described above, potential uncontrolled n-Hexane emissions were determined to be 0.01 tons per year or 0.002 pounds per hour.

Methane is also be emitted at a maximum rate of 0.27 tpy (0.06 lb/hr) from the water tanks. Using the GHG factor of 25 for Methane, the  $CO_{2e}$  uncontrolled emission rate is 6.75 tpy. This is equivalent to 1.5 lb/hr of  $CO_{2e}$ 

During operation of the VRU, emissions are controlled at a minimum of 95%. Actual control efficiency is anticipated to be much higher, but only 95% is claimed as allowed under the G70-A General Permit. Thus, when in operation, emissions will be controlled to 0.01 pounds per hour of VOCs and <0.01 pounds per hour of HAPs. Methane and n-hexane emissions will also be controlled to 0.01 lb/hr and <0.01 lb/hr respectively.

The proposed Enclosed Combustor will control organic vapor emissions to at least 98%. Actual control efficiency is anticipated to be higher, but only 98% is claimed as allowed under the G70-A General Permit. Thus, when in operation, organic emissions from the combustor will also be controlled to <0.01 pounds per hour of VOCs, HAPs, methane and n-Hexane.

#### **VRU Emissions**

The VRU is permitted to operate continuously, except for brief intervals for preventive maintenance. It is conservatively estimated that the VRU will capture and control 95% of potential emissions. Thus, total potential tank emissions are calculated as follows:

#### VOCs

0.0024 lb/hr (Controlled) x 8760 = 21 lb/yr or 0.01 tpy

#### <u>HAPs</u>

0.0002 lb/Hr (Controlled) x 8760 = 2 lb/yr or < 0.01 tpy

### Methane

0.003 lb/Hr (Controlled) x 8760 = 27 lb/yr or 0.01 tons per year

### **Enclosed Combustor Emissions**

In order to include the enclosed combustor into the G70-A permit, it is assumed that the combustor will operate full time. Thus, it is conservatively estimated that the combustor will capture and control 98% of potential emissions. Total potential tank emissions via the combustor are less than 0.01 lb/hr and less than 0.01 tpy for VOCs, HAPS, n-Hexane and Methane.

#### **Gas Flow to Combustor**

Total gas flow to the combustor from the water tanks is derived from the water flash calculation spreadsheets (0.516 tpy total organics). Using the density of the condensate vapor shown in the Excel spreadsheet (0.069 lb/scf), an annual gas flow to the combustor of 0.015 MMSCF/yr or 41 scfd was determined.

Using the HHV of 1431 BTU/scf of the condensate tank flash vapors as a conservative surrogate, this results in a maximum heat loading of 0.002 MMBTU/Hr.

### Jay-Bee Oil & Gas - Bashful

## **Flash Emission Calculations - Produced Water**

Using Gas-Water Ratio Method

### **Un-Controlled**

### Site specific data

Gas-Water-ratio = 0.41 scf/bbl Using GOW from comparable well pad

Throughput = 25,200 bbl/yr

Stock tank gas molecular weight = 39.56 g/mole

### Conversions

1 lb = 453.6 g 1 mole = 22.4 L 1 scf = 28.32 L 1 ton = 2000 lb

### **Equations**

$$E_{TOT} = Q \frac{(bbl)}{(yr)} \times R \frac{(scf)}{(bbl)} \times \frac{28.32(L)}{1(scf)} \times \frac{1(mole)}{22.4(L)} \times MW \frac{(g)}{(mole)} \times \frac{1(lb)}{453.6(g)} \times \frac{1(ton)}{2000(lb)}$$

 $E_{TOT}$  = Total stock tank flash emissions (TPY)

R = Measured gas-oil ratio (scf/bbl)

Q = Throughput (bbl/yr)

MW = Stock tank gas molecular weight (g/mole)

$$E_{spec} = E_{TOT} \times X_{spec}$$

 $E_{\text{spec}}$  = Flash emission from constituent

 $X_{\text{spec}}$  = Weight fraction of constituent in stock tank gas

## Flash Emissions

| Constituent            | TPY      |     |
|------------------------|----------|-----|
| Total                  | 0.5696   |     |
| VOC                    | 0.2084   |     |
| Nitrogen               | 3.70E-03 | 1   |
| Carbon Dioxide         | 1.62E-02 |     |
| Methane                | 2.74E-01 |     |
| Ethane                 | 6.77E-02 |     |
| Propane                | 4.44E-02 |     |
| Isobutane              | 2.46E-02 |     |
| n-Butane               | 2.73E-02 |     |
| 2,2 Dimethylpropane    | 0.00E+00 |     |
| Isopentane             | 2.16E-02 |     |
| n-Pentane              | 1.54E-02 |     |
| 2,2 Dimethylbutane     | 1.94E-03 |     |
| Cyclopentane           | 2.28E-04 |     |
| 2,3 Dimethylbutane     | 1.19E-03 |     |
| 2 Methylpentane        | 6.88E-03 |     |
| 3 Methylpentane        | 4.18E-03 |     |
| n-Hexane               | 8.30E-03 | HAP |
| Methylcyclopentane     | 1.37E-03 |     |
| Benzene                | 1.69E-03 | HAP |
| Cyclohexane            | 1.97E-03 |     |
| 2-Methylhexane         | 3.82E-03 |     |
| 3-Methylhexane         | 3.38E-03 |     |
| 2,2,4 Trimethylpentane | 0.00E+00 |     |
| Other C7's             | 3.85E-03 |     |
| n-Heptane              | 5.09E-03 |     |
| Methylcyclohexane      | 4.58E-03 |     |
| Toluene                | 3.71E-03 | HAP |
| Other C8's             | 7.50E-03 |     |
| n-Octane               | 2.84E-03 |     |
| Ethylbenzene           | 1.71E-04 | HAP |
| M & P Xylenes          | 1.90E-03 | HAP |
| O-Xylene               | 3.19E-04 | HAP |
| Other C9's             | 5.98E-03 |     |
| n-Nonane               | 1.41E-03 |     |
| Other C10's            | 1.85E-03 | 1   |
| n-Decane               | 3.25E-04 | 1   |
| Undecanes (11)         | 6.21E-04 | 1   |

 $E_{TOT}$  Sum of C3+



## FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Date Sampled: 08/21/2012

**Date Analyzed: 08/27/2012** 

Job Number: J25159

Sample: Schulberg 1-HF

| FLASH LIBERATION OF SEPARATOR WATER |       |       |  |
|-------------------------------------|-------|-------|--|
| Separator Sto                       |       |       |  |
| Pressure, psig                      | 155   | 0     |  |
| Temperature, °F                     | NA    | 70    |  |
| Gas Water Ratio (1)                 |       | 0.41  |  |
| Gas Specific Gravity (2)            |       | 0.860 |  |
| Separator Volume Factor (3)         | 1.000 | 1.000 |  |

| <ol><li>Scf of water saturated vapor per barrel of stock tank was</li></ol> | vate |
|-----------------------------------------------------------------------------|------|
|-----------------------------------------------------------------------------|------|

Analyst:

J. G.

Piston No.: WF-306

Base Conditions: 14.65 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

<sup>(2) -</sup> Air = 1.000

<sup>(3) -</sup> Separator volume / Stock tank volume

## FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: Schulberg 1-HF

Gas Evolved from Separator Water Flashed From 155 psig & NA °F to 0 psig & 70 °F

Date Sampled: 08/21/2012 Job Number: 25159.001

### CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT

| COMPONENT           | MOL%         | GPM          |
|---------------------|--------------|--------------|
| Hydrogen Sulfide*   | < 0.001      |              |
| Nitrogen            | 0.575        |              |
| Carbon Dioxide      | 1.602        |              |
| Methane             | 74.187       |              |
| Ethane              | 9.798        | 2.605        |
| Propane             | 4.384        | 1.201        |
| Isobutane           | 1.841        | 0.599        |
| n-Butane            | 2.043        | 0.640        |
| 2-2 Dimethylpropane | 0.000        | 0.000        |
| Isopentane          | 1.305        | 0.475        |
| n-Pentane           | 0.928        | 0.334        |
| Hexanes             | 1.149        | 0.471        |
| Heptanes Plus       | <u>2.188</u> | <u>0,952</u> |
| Totals              | 100.000      | 7.278        |

### Computed Real Characteristics Of Heptanes Plus:

| Specific Gravity    | 3.616  | (Air=1) |
|---------------------|--------|---------|
| Molecular Weight    | 104.18 |         |
| Gross Heating Value | 5424   | BTU/CF  |

## Computed Real Characteristics Of Total Sample:

| Specific Gravity    | 0.860  | (Air=1) |
|---------------------|--------|---------|
| Compressibility (Z) | 0.9946 |         |
| Molecular Weight    | 24.78  |         |
| Gross Heating Value |        |         |
| Dry Basis           | 1426   | BTU/CF  |
| Saturated Basis     | 1402   | BTU/CF  |

<sup>\*</sup>Hydrogen Sulfide tested in laboratory by Stained Tube Method (GPA 2377)

Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 14.650 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: MR Processor: MFG Cylinder ID: FL-9

David Dannhaus 361-661-7015

FESCO, Ltd. Job Number: 25159.001

## CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT

| COMPONENT              | MOL %        | GPM          | WT %         |
|------------------------|--------------|--------------|--------------|
| Hydrogen Sulfide*      | < 0.001      |              | < 0.001      |
| Nitrogen               | 0.575        |              | 0.650        |
| Carbon Dioxide         | 1.602        |              | 2.845        |
| Methane                | 74.187       |              | 48.024       |
| Ethane                 | 9.798        | 2.605        | 11.888       |
| Propane                | 4.384        | 1.201        | 7.800        |
| Isobutane              | 1.841        | 0.599        | 4.318        |
| n-Butane               | 2.043        | 0.640        | 4.791        |
| 2,2 Dimethylpropane    | 0.000        | 0.000        | 0.000        |
| Isopentane             | 1.305        | 0.475        | 3.799        |
| n-Pentane              | 0.928        | 0.334        | 2.702        |
| 2,2 Dimethylbutane     | 0.098        | 0.041        | 0.341        |
| Cyclopentane           | 0.014        | 0.006        | 0.040        |
| 2,3 Dimethylbutane     | 0.060        | 0.024        | 0.209        |
| 2 Methylpentane        | 0.347        | 0.143        | 1.207        |
| 3 Methylpentane        | 0.211        | 0.086        | 0.734        |
| n-Hexane               | 0.419        | 0.171        | 1.457        |
| Methylcyclopentane     | 0.071        | 0.024        | 0.241        |
| Benzene                | 0.094        | 0.026        | 0.296        |
| Cyclohexane            | 0.102        | 0.035        | 0.346        |
| 2-Methylhexane         | 0.166        | 0.077        | 0.671        |
| 3-Methylhexane         | 0.147        | 0.067        | 0.594        |
| 2,2,4 Trimethylpentane | 0.000        | 0.000        | 0.000        |
| Other C7's             | 0.169        | 0.073        | 0.676        |
| n-Heptane              | 0.221        | 0.101        | 0.894        |
| Methylcyclohexane      | 0.203        | 0.081        | 0.804        |
| Toluene                | 0.175        | 0.058        | 0.651        |
| Other C8's             | 0.296        | 0.137        | 1.316        |
| n-Octane               | 0.108        | 0.055        | 0.498        |
| Ethylbenzene           | 0.007        | 0.003        | 0.030        |
| M & P Xylenes          | 0.078        | 0.030        | 0.334        |
| O-Xylene               | 0.013        | 0.005        | 0.056        |
| Other C9's             | 0.206        | 0.104        | 1.049        |
| n-Nonane               | 0.048        | 0.027        | 0.248        |
| Other C10's            | 0.057        | 0.033        | 0.325        |
| n-Decane               | 0.010        | 0.008        | 0.057        |
| Undecanes (11)         | <u>0.017</u> | <u>0.010</u> | <u>0.109</u> |
| Totals                 | 100.000      | 7.278        | 100.000      |
|                        |              |              |              |

## Computed Real Characteristics Of Total Sample:

| Specific Gravity    | 0.860  | (Air=1) |
|---------------------|--------|---------|
| Compressibility (Z) | 0.9946 |         |
| Molecular Weight    | 24.78  |         |
| Gross Heating Value |        |         |
| Dry Basis ——————    | 1426   | BTU/CF  |
| Saturated Basis     | 1402   | BTU/CF  |

# Produced Water Truck Loading Lost Emissions Per AP-42

Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor  $L_L$  can be estimated as follows:

 $L_L = 12.46[SPM/T]$ 

### Where:

L<sub>L</sub> = uncontrolled loading loss in pounds per 1000 gallons of liquid loaded

S = saturation factor (0.6)

P=true vapor pressure of liquid loaded: 0.3 psia (water at 60 Deg. F)

M= Molecular weight of vapor in lb/lb-mole 24.78 (flash gas of comparable water sample)

T= temperature of bulk liquid loaded in deg R or 460+deg F (60 Deg F)

Thus,  $L_L = 12.46[0.6 \times 0.3 \times 24.78]/[460+60]$ 

 $L_L$ = 0.11 lb/1000 gallons loaded

Based on sample data of breathing vapor (attached), these emissions are 36.59% VOCs. It is assumed that vapor composition from truck loading is the same as that from the tank breathing vapors.

Given a maximum loading of 80 BBL (3,360 gallons) a day, uncontrolled VOC emissions are estimated at 0.14 lb of VOC per day [3.36 x 0.11 x .366]. With all daily loading taking place within 1 hour, the average hourly un-controlled emission rate is therefore also estimated at 0.14 lb/hr VOCs. Emissions from truck loading are un-controlled.

Maximum annual throughput is 1,058,400 gallons (25,200 barrels) per year. Thus, uncaptured/un-controlled VOC emissions are conservatively estimated at 42.6 pounds per year [1058.4 x 0.11 x .366] or 0.02 tons per year.

.

## FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: Schulberg 1-HF

Gas Evolved from Separator Water Flashed From 155 psig & NA °F to 0 psig & 70 °F

Date Sampled: 08/21/2012 Job Number: 25159.001

## CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT

| COMPONENT           | MOL%         | GPM   |
|---------------------|--------------|-------|
| Hydrogen Sulfide*   | < 0.001      |       |
| Nitrogen            | 0.575        |       |
| Carbon Dioxide      | 1.602        |       |
| Methane             | 74.187       |       |
| Ethane              | 9.798        | 2.605 |
| Propane             | 4.384        | 1.201 |
| Isobutane           | 1.841        | 0.599 |
| n-Butane            | 2.043        | 0.640 |
| 2-2 Dimethylpropane | 0.000        | 0.000 |
| Isopentane          | 1.305        | 0.475 |
| n-Pentane           | 0.928        | 0.334 |
| Hexanes             | 1.149        | 0.471 |
| Hepjanes Plus       | <u>2.188</u> | 0.952 |
| Totals              | 100.000      | 7.278 |

## Computed Real Characteristics Of Heptanes Plus:

| Specific Gravity    | 3.616  | (Air=1) |
|---------------------|--------|---------|
| Molecular Weight    | 104.18 | , ,     |
| Gross Heating Value | 5424   | BTU/CE  |

## Computed Real Characteristics Of Total Sample:

| Specific Gravity ———     | 0.860  | (Air≃1) |
|--------------------------|--------|---------|
| Compressibility (Z) ———— | 0.9946 | ,       |
| Molecular Weight         | 24.78  |         |
| Gross Heating Value      |        |         |
| Dry Basis                | 1426   | BTU/CF  |
| Saturated Basis —————    | 1402   | BTU/CF  |

<sup>\*</sup>Hydrogen Sulfide tested in laboratory by Stained Tube Method (GPA 2377)

Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 14.650 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: MR Processor: MFG Cylinder ID: FL-9

David Dannhaus 361-661-7015

FESCO, Ltd. Job Number: 25159.001

## CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT

| COMPONENT              | MOL %   | GPM   | WT%     |
|------------------------|---------|-------|---------|
| Hydrogen Sulfide*      | < 0.001 | GI W  | < 0.001 |
| Nitrogen               | 0.575   |       | 0.650   |
| Carbon Dioxide         | 1.602   |       | 2.845   |
| Methane                | 74.187  |       | 48.024  |
| Ethane                 | 9.798   | 2.605 | 11.888  |
| Propane                | 4.384   | 1,201 | 7.800   |
| Isobutane              | 1.841   | 0.599 | 4.318   |
| n-Butane               | 2.043   | 0.640 | 4,791   |
| 2,2 Dimethylpropane    | 0.000   | 0.000 | 0.000   |
| Isopentane             | 1.305   | 0.475 | 3.799   |
| n-Pentane              | 0.928   | 0.334 | 2.702   |
| 2,2 Dimethylbutane     | 0.098   | 0.041 | 0.341   |
| Cyclopentane           | 0.014   | 0.006 | 0.040   |
| 2,3 Dimethylbutane     | 0.060   | 0.024 | 0.209   |
| 2 Methylpentane        | 0.347   | 0.143 | 1.207   |
| 3 Methylpentane        | 0.211   | 0.086 | 0.734   |
| n-Hexane               | 0.419   | 0.171 | 1.457   |
| Methylcyclopentane     | 0.071   | 0.024 | 0.241   |
| Benzene                | 0.094   | 0.024 | 0.296   |
| Cyclohexane            | 0.102   | 0.035 | 0.246   |
| 2-Methylhexane         | 0.166   | 0.077 | 0.671   |
| 3-Methylhexane         | 0.147   | 0.067 | 0.594   |
| 2,2,4 Trimethylpentane | 0.000   | 0.000 | 0.000   |
| Other C7's             | 0.169   | 0.073 | 0.676   |
| n-Heptane              | 0.221   | 0.101 | 0.894   |
| Methylcyclohexane      | 0.203   | 0.081 | 0.804   |
| Toluene                | 0.175   | 0.058 | 0.651   |
| Other C8's             | 0.296   | 0.137 | 1.316   |
| n-Octane               | 0.108   | 0.055 | 0.498   |
| Ethylbenzene           | 0.007   | 0.003 | 0.030   |
| M & P Xylenes          | 0.078   | 0.030 | 0.334   |
| O-Xylene               | 0.013   | 0.005 | 0.056   |
| Other C9's             | 0.206   | 0.104 | 1.049   |
| л-Nonane               | 0.048   | 0.027 | 0.248   |
| Other C10's            | 0.057   | 0.033 | 0.325   |
| n-Decane               | 0.010   | 0.008 | 0.020   |
| Undecanes (11)         | 0.017   | 0.010 | 0.109   |
| Totals                 | 100.000 | 7.278 | 100,000 |
|                        |         |       |         |

## Computed Real Characteristics Of Total Sample:

| Specific Gravity    | 0.860  | (Air≃1) |
|---------------------|--------|---------|
| Compressibility (Z) | 0.9946 | , ,     |
| Molecular Weight    | 24.78  |         |
| Gross Heating Value |        |         |
| Dry Basis ————      | 1426   | BTU/CF  |
| Saturated Basis     | 1402   | BTU/CF  |

#### Jay-Bee Oil & Gas, Incorporated Bashful Well Pad Production Facility Loading to Combustor

As noted in the Project Overview, vapors released during the drop in pressure on the condensate and produced water as they are routed to the atmospheric pressure storage tanks (flash gas) and subsequent working and breathing losses during storage of condensate in these tanks will controlled a Vapor Recover Unit (VRU), with an Enclosed Combustor as backup for times when the VRU is down for repair or maintenance or if there is a slug of condensate generating more flash gas than the VRU can handle.

All waste gases are hard piped to the combustor. This hard pipe capture system is conservatively estimated at 99% effective. Additionally, the combustor is warranted by the manufacturer to have 99%+ destruction efficiency, resulting in an overall 98% reduction in VOC emissions from un-controlled emissions.

Based on actual flash liberation tests on both condensate tanks and produced water tanks at nearby well pads and working/breathing losses modeled by EPA's TANKS 4.0, loading to the combustor when the VRU is down is projected as follows:

| Total                    | 811.6 tpy | 185.3 lb/hr |
|--------------------------|-----------|-------------|
| Working/Breathing Losses | 2.15 tpy  | 0.49 lb/hr  |
| Produced Water Flash Gas | 0.52 tpy  | 0.12 lb/hr  |
| Condensate Flash Gas     | 808.9 tpy | 184.7 lb/hr |

As shown in the emissions calculation spreadsheet, the density and heat content of the produced water flash gas and the condensate flash gas are as follows. It is assumed that working/breathing losses from the condensate tanks is the same as the flash gas from these tanks.

Condensate Flash Gas Gas Density: 0.110 lb/scf HHV: 2313 BTU/scf Produced Water Flash Gas Gas Density: 0.069 lb/scf HHV: 1431 BTU/scf

Using this data, the heat loading to the combustor is determined as follows:

Condensate Flash Gas and Working Breathing Losses: 185.2 lb/hr/0.11 lb/scf = 1684 scf/hr and 3.89 MMBTU/Hr

Produced Water Flash Gas:

0.12 lb/hr/0.069 lb/scf = 1.7 scf/hr and 0.002 MMBTU/Hr

The total heat loading to the combustor (3.89 MMBTU/Hr) is well within the 10.0 MMBTU/Hr capacity of the combustor and capable of managing flash gas from any slugs of condensate that may enter the system.

#### The overall flow to the combustor is 1686 scf/hr (40,464 scf/day) at 2312 BTU/scf.

As noted in the Project Overview, the combustor is being permitted as if it will run full time. Thus, annual flow to the combustor is 14.77 MMSCF/yr.

#### **VOC Emissions**

VOC content of this combined vapor stream is 94.3%. With a 98% capture and control efficiency of all VOCs going to the combustor, hourly VOC emissions are 3.49 lb/hr [185.3 lb/Hr x 0.943 x 0.02] or 15.3 tpy (based on continuous usage). This hourly and annual VOC emission rate has been entered into the preceding emissions spreadsheet.

#### **HAP Emissions**

HAPs represent approximately 8.5% of the gas going to the combustor. Thus, in a similar manner as shown above, anticipated HAP emissions are 0.32 lb/hr [185.3 x 0.085 x 0.02] and 1.38 tpy.

#### **Methane Emissions**

As noted above, the maximum loading to the combustor is modeled at 185.3 lb/hr. Methane represents approximately 1.6% (weight) of the combined gas stream to the combustor or 2.89 lb/Hr. At a 2% incomplete combustion, non-combusted methane is 0.06 lb/hr or 0.24 tpy. These amounts are presented in the combustor calculation sheet in lieu of the AP-42 emission factors which are not appropriate for a gas stream of this composition.

### Attachment I FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

PM PM-10

|     |                                                      | I IVI | 1 101 10 |
|-----|------------------------------------------------------|-------|----------|
| k = | Particle size multiplier                             | 0.80  | 0.36     |
| s = | Silt content of road surface material (%)            | 10    | 3        |
| p = | Number of days per year with precipitation >0.01 in. | 157   | 157      |

| Item<br>Number | Description                 | Number of Wheels | Mean<br>Vehicle<br>Weight<br>(tons) | Mean<br>Vehicle<br>Speed<br>(mph) | Miles per<br>Trip | Maximum<br>Trips per<br>Hour | Maximum<br>Trips per<br>Year | Control<br>Device ID<br>Number | Control<br>Efficiency<br>(%) |
|----------------|-----------------------------|------------------|-------------------------------------|-----------------------------------|-------------------|------------------------------|------------------------------|--------------------------------|------------------------------|
| 1              | Produced Water Tanker Truck | 10               | 27                                  | 10                                | 0.9               | 1                            | 320                          | None                           | 0                            |
| 2              | Condensate Tanker Truck     | 18               | 27                                  | 10                                | 0.9               | 1                            | 140                          | None                           | 0                            |
| 3              |                             |                  |                                     |                                   |                   |                              |                              |                                |                              |
| 4              |                             |                  |                                     |                                   |                   |                              |                              |                                |                              |
| 5              |                             |                  |                                     |                                   |                   |                              |                              |                                |                              |
| 6              |                             |                  |                                     |                                   |                   |                              |                              |                                |                              |
| 7              |                             |                  |                                     |                                   |                   |                              |                              |                                |                              |
| 8              |                             |                  |                                     |                                   |                   |                              |                              |                                |                              |

Source: AP-42 Fifth Edition - 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$  lb/Vehicle Mile Traveled (VMT)

Where:

|     |                                                      | PM   | PM-10 |
|-----|------------------------------------------------------|------|-------|
| k = | Particle size multiplier                             | 0.80 | 0.36  |
| s = | Silt content of road surface material (%)            | 10   | 3     |
| S = | Mean vehicle speed (mph)                             | 10   | 10    |
| W = | Mean vehicle weight (tons)                           | 27   | 27    |
| w = | Mean number of wheels per vehicle                    | 18   | 18    |
| p = | Number of days per year with precipitation >0.01 in. | 157  | 157   |

For lb/hr:  $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$ 

For TPY:  $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 \ lb] = Tons/year$ 

#### SUMMARY OF UNPAVED HAULROAD EMISSIONS

|          |       | Р       | M     |        | PM-10 |         |            |      |  |  |
|----------|-------|---------|-------|--------|-------|---------|------------|------|--|--|
| Item No. | Uncon | trolled | Cont  | rolled | Uncor | trolled | Controlled |      |  |  |
|          | lb/hr | TPY     | lb/hr | TPY    | lb/hr | TPY     | lb/hr      | TPY  |  |  |
| 1        | 2.70  | 0.43    | 2.70  | 0.43   | 0.365 | 0.06    | 0.365      | 0.06 |  |  |
| 2        | 3.62  | 0.25    | 3.62  | 0.25   | 0.49  | 0.03    | 0.49       | 0.03 |  |  |
| 3        |       |         |       |        |       |         |            |      |  |  |
| 4        |       |         |       |        |       |         |            |      |  |  |
| 5        |       |         |       |        |       |         |            |      |  |  |
| 6        |       |         |       |        |       |         |            |      |  |  |
| 7        |       |         |       |        |       |         |            |      |  |  |
| 8        |       |         |       |        |       |         |            |      |  |  |
| TOTALS   | 6.32  | 0.68    | 6.32  | 0.68   | 0.86  | 0.09    | 0.86       | 0.09 |  |  |

Page 1 of 2

#### **FUGITIVE EMISSIONS FROM PAVED HAULROADS**

INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

| l = | Industrial augmentation factor (dimensionless) |  |
|-----|------------------------------------------------|--|
| n = | Number of traffic lanes                        |  |
| s = | Surface material silt content (%)              |  |
| L=  | Surface dust loading (lb/mile)                 |  |

| Item<br>Number | Description | Mean Vehicle<br>Weight (tons) | Miles per Trip | Maximum<br>Trips per<br>Hour | Maximum<br>Trips per<br>Year | Control<br>Device ID<br>Number | Control<br>Efficiency (%) |
|----------------|-------------|-------------------------------|----------------|------------------------------|------------------------------|--------------------------------|---------------------------|
| 1              | None        |                               |                |                              |                              |                                |                           |
| 2              |             |                               |                |                              |                              |                                |                           |
| 3              |             |                               |                |                              |                              |                                |                           |
| 4              |             |                               |                |                              |                              |                                |                           |
| 5              |             |                               |                |                              |                              |                                |                           |
| 6              |             |                               |                |                              |                              |                                |                           |
| 7              |             |                               |                |                              |                              |                                |                           |
| 8              |             |                               |                |                              |                              |                                |                           |

Source: AP-42 Fifth Edition – 11.2.6 Industrial Paved Roads

 $E = 0.077 \times I \times (4 \div n) \times (s \div 10) \times (L \div 1000) \times (W \div 3)^{0.7} =$ 

lb/Vehicle Mile Traveled (VMT)

Where:

| I = | Industrial augmentation factor (dimensionless) |  |
|-----|------------------------------------------------|--|
| n = | Number of traffic lanes                        |  |
| s = | Surface meterial silt content (%)              |  |
| L=  | Surface dust loading (lb/mile)                 |  |
| W = | Average vehicle weight (tons)                  |  |

For lb/hr:  $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$ 

For TPY:  $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 lb] = Tons/year$ 

#### SUMMARY OF PAVED HAULROAD EMISSIONS

| SOMMAN OF A VED FIAGENCIA DE MISSIONS |       |         |            |     |  |  |  |  |  |  |
|---------------------------------------|-------|---------|------------|-----|--|--|--|--|--|--|
| Item No.                              |       | trolled | Controlled |     |  |  |  |  |  |  |
| item No.                              | lb/hr | TPY     | lb/hr      | TPY |  |  |  |  |  |  |
| 1                                     |       |         |            |     |  |  |  |  |  |  |
| 2                                     |       |         |            |     |  |  |  |  |  |  |
| 3                                     |       |         |            |     |  |  |  |  |  |  |
| 4                                     |       |         |            |     |  |  |  |  |  |  |
| 5                                     |       |         |            |     |  |  |  |  |  |  |
| 6                                     |       |         |            |     |  |  |  |  |  |  |
| 7                                     |       |         |            |     |  |  |  |  |  |  |
| 8                                     |       |         |            |     |  |  |  |  |  |  |
| TOTALS                                |       |         |            |     |  |  |  |  |  |  |

# **ATTACHMENT J Class I Legal Advertisement**

# Affidavit Notice Will Be Submitted Upon Receipt

## AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Jay-Bee Oil & Gas, Inc. has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a modification permit for its Bashful Well Pad Production Facility located off of Bonelick Road near Stringtown, WV in Tyler County., West Virginia. The latitude and longitude coordinates are: Lat.39.47313, Long. -80.72104.

The applicant estimates following increases in the potential to emit the following regulated air pollutants:

1.23 tons of Nitrogen Oxides per year

6.37 tons of Carbon Monoxide per year

42.80 tons of Volatile Organics per year

0.00 tons of Sulfur Dioxide per year

0.77 tons of Particulate Matter per year

0.00 tons of Formaldehyde per year

3.22 tons of n-Hexane

2,162 tons of Greenhouse Gases per year

Startup of operation is planned to begin on or about the 12th day of February, 2016. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57<sup>th</sup> Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the (Day) day of (Month), (Year).

By: Mr. Shane Dowell Office Manager Jay-Bee Oil & Gas, Inc. 3570 Shields Hill Rd. Cairo, WV 26337

# ATTACHMENT O Emissions Summary Sheets

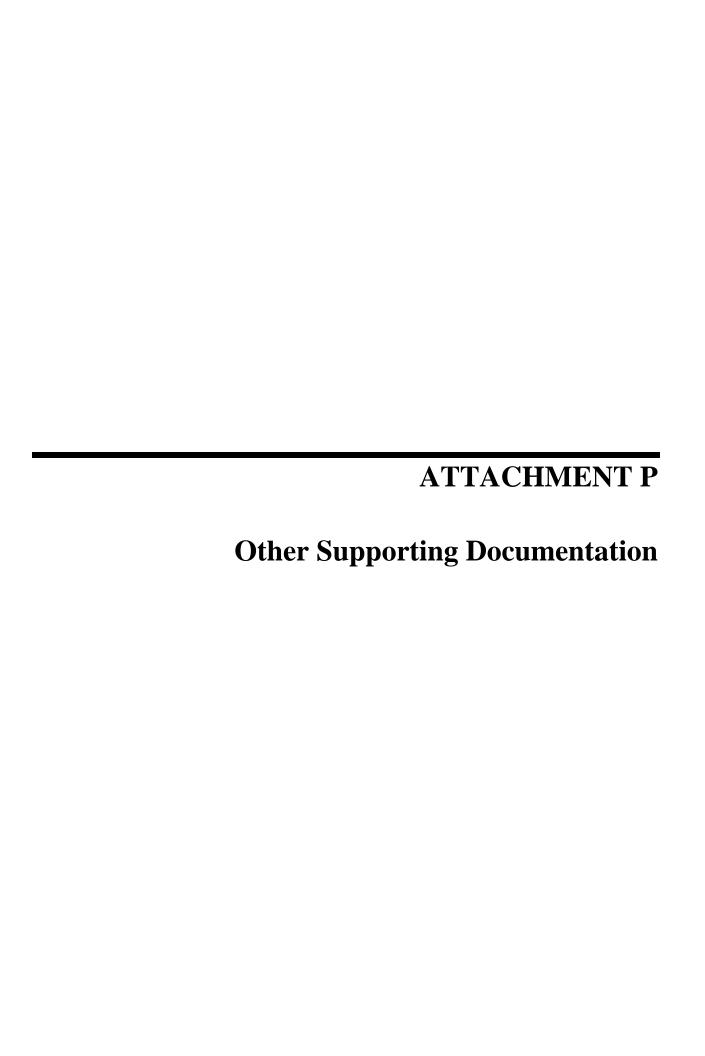
#### **G70-A EMISSIONS SUMMARY SHEET**

| Emission Point<br>ID No. | Emission<br>Point<br>Type <sup>1</sup> | Emission Unit<br>Vented<br>Through This Point |                         | Vented |                | Vented                    |        | Vented |        |        | ollution<br>I Device           | All Regulated<br>Pollutants -<br>Chemical<br>Name/CAS <sup>2</sup> | Pote<br>Unco | imum<br>ential<br>ntrolled<br>sions <sup>3</sup> | Maximum<br>Potential<br>Controlled<br>Emissions <sup>4</sup> |      | Emission Form or Phase  (At exit conditions, | Est. Method<br>Used <sup>5</sup> |        |       |      |     |
|--------------------------|----------------------------------------|-----------------------------------------------|-------------------------|--------|----------------|---------------------------|--------|--------|--------|--------|--------------------------------|--------------------------------------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------------------|------|----------------------------------------------|----------------------------------|--------|-------|------|-----|
|                          |                                        | ID No.                                        | Source                  | ID No. | Device<br>Type | (Speciate VOCs<br>& HAPS) | lb/hr  | ton/yr | lb/hr  | ton/yr | Solid, Liquid or<br>Gas/Vapor) |                                                                    |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          |                                        |                                               |                         |        |                | NOx                       | 0.15   | 0.66   | 0.15   | 0.66   | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          |                                        |                                               |                         |        |                | CO                        | 0.13   | 0.55   | 0.13   | 0.55   | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          | Upward                                 |                                               |                         |        |                | VOC                       | 0.01   | 0.04   | 0.01   | 0.04   | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
| 1E                       | Vertical                               | GPU-1                                         | GPU                     | None   |                | PM                        | 0.01   | 0.05   | 0.01   | 0.05   | Solid                          | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          | Stack                                  |                                               |                         |        |                | НСОН                      | < 0.01 | < 0.01 | < 0.01 | < 0.01 | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          |                                        |                                               |                         |        |                | Total HAPs                | < 0.01 | 0.01   | < 0.01 | 0.01   | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          |                                        |                                               |                         |        |                | CO2e                      | 181.2  | 794    | 181.2  | 794    | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          |                                        |                                               |                         |        |                | NOx                       | 0.15   | 0.66   | 0.15   | 0.66   | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          |                                        |                                               |                         |        |                | CO                        | 0.13   | 0.55   | 0.13   | 0.55   | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          | Upward                                 |                                               |                         |        |                | VOC                       | 0.01   | 0.04   | 0.01   | 0.04   | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
| 2E                       | Vertical                               | GPU-2                                         | GPU                     | None   |                | PM                        | 0.01   | 0.05   | 0.01   | 0.05   | Solid                          | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          | Stack                                  |                                               |                         |        |                | НСОН                      | < 0.01 | < 0.01 | < 0.01 | < 0.01 | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          |                                        |                                               |                         |        |                | Total HAPs                | < 0.01 | 0.01   | < 0.01 | 0.01   | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          |                                        |                                               |                         |        |                | CO2e                      | 181.2  | 794    | 181.2  | 794    | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          |                                        |                                               |                         |        |                | NOx                       | 2.11   | 9.25   | 0.52   | 2.27   | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          |                                        |                                               |                         |        |                | CO                        | 2.71   | 11.87  | 0.89   | 3.89   | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          | Upward                                 |                                               |                         |        |                | VOC                       | 0.05   | 0.21   | 0.02   | 0.09   | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
| 3E                       | Vertical                               | VRU-1                                         | Engine                  | 1C     | NSCR           | PM                        | 0.01   | 0.06   | 0.01   | 0.06   | Solid                          | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          | Stack                                  |                                               |                         |        |                |                           |        |        |        |        |                                |                                                                    |              |                                                  |                                                              | НСОН | 0.02                                         | 0.07                             | < 0.01 | 0.006 | Gas  | EE  |
|                          |                                        |                                               |                         |        |                |                           |        |        |        |        |                                |                                                                    |              |                                                  |                                                              |      | Total HAPs                                   | 0.02                             | 0.11   | 0.01  | 0.04 | Gas |
|                          |                                        |                                               |                         |        |                | CO2e                      | 8      | 391    | 89     | 391    | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          |                                        |                                               |                         |        |                | NOx                       |        |        |        |        | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          |                                        |                                               |                         |        |                | CO                        |        |        |        |        | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          |                                        |                                               | Condensate              |        |                | VOC                       | 51.0   | 3.51   | 51.0   | 3.51   | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
| 9E                       | Fugitive                               | TL-1                                          | Truck                   | None   |                | PM                        |        |        |        |        | Solid                          | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          |                                        |                                               | Loading                 |        |                | НСОН                      |        |        |        |        | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          |                                        |                                               |                         |        |                | Total HAPs                | 2.51   | 0.17   | 2.51   | 0.17   | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          |                                        |                                               |                         |        |                | CO2e                      |        |        |        |        | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          |                                        |                                               |                         |        |                | NOx                       |        |        |        |        | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          |                                        |                                               |                         |        |                | CO                        |        |        |        |        | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          |                                        |                                               | W-t T 1                 |        |                | VOC                       | 0.05   | 0.21   | < 0.01 | 0.01   | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
| 4E-5E                    | Fugitive                               | VRU-1                                         | Water Tank<br>Emissions | VRU-1/ | VRU            | PM                        |        |        |        |        | Solid                          | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
| .2.22                    |                                        |                                               | Zimooiono               | EC-1   |                | НСОН                      |        |        |        |        | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          |                                        |                                               |                         |        |                | Total HAPs                | < 0.01 | 0.02   | < 0.01 | < 0.01 | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |
|                          |                                        |                                               |                         |        |                | CO2e                      | 1.5    | 6.8    | < 0.01 | 0.01   | Gas                            | EE                                                                 |              |                                                  |                                                              |      |                                              |                                  |        |       |      |     |

#### **G70-A EMISSIONS SUMMARY SHEET**

|       |          |             |            |        |      | NOx        |        |        |        |        | Gas   | EE  |    |
|-------|----------|-------------|------------|--------|------|------------|--------|--------|--------|--------|-------|-----|----|
| 6E-7E |          |             | Condensate |        |      | CO         |        |        |        |        | Gas   | EE  |    |
|       |          |             |            |        |      | VOC        | 175.1  | 767    | 8.64   | 38.37  | Gas   | EE  |    |
|       | Fugitive | VRU-1       | Tank       | VRU-1/ | VRU  | PM         |        |        |        |        | Solid | EE  |    |
|       | Tugitive | VKC-1       | Emissions  | EC-1   | VICO | НСОН       |        |        |        |        | Gas   | EE  |    |
|       |          |             |            |        |      | Total HAPs | 15.8   | 69.3   | 0.79   | 3.46   | Gas   | EE  |    |
|       |          |             |            |        |      | CO2e       | 70.8   | 310    | 3.50   | 15     | Gas   | EE  |    |
|       |          |             |            |        |      | NOx        | < 0.01 | 0.01   | < 0.01 | 0.01   | Gas   | EE  |    |
|       |          |             |            |        |      | CO         | < 0.01 | 0.01   | < 0.01 | 0.01   | Gas   | EE  |    |
|       | Upward   |             | Thermo-    |        |      | VOC        | < 0.01 | < 0.01 | < 0.01 | < 0.01 | Gas   | EE  |    |
| 8E    | Vertical | TEG-1       | electric   | None   |      | PM         | < 0.01 | < 0.01 | < 0.01 | < 0.01 | Solid | EE  |    |
| 02    | Stack    | 1201        | generator  |        |      | НСОН       | < 0.01 | < 0.01 | < 0.01 | < 0.01 | Gas   | EE  |    |
|       |          |             |            |        |      | Total HAPs | < 0.01 | < 0.01 | < 0.01 | < 0.01 | Gas   | EE  |    |
|       |          |             |            |        |      | CO2e       | 2      | 7      | 2      | 7      | Gas   | EE  |    |
|       |          |             |            |        |      | NOx        |        |        |        |        | Gas   | EE  |    |
|       |          |             |            |        |      |            | CO     |        |        |        |       | Gas | EE |
|       |          |             | Water      |        |      | VOC        | 0.14   | 0.02   | 0.14   | 0.02   | Gas   | EE  |    |
| 10E   | Fugitive | TL-2        | Truck      | None   |      | PM         |        |        |        |        | Solid | EE  |    |
|       | C        |             | Loading    |        |      | НСОН       |        |        |        |        | Gas   | EE  |    |
|       |          |             |            |        |      | Total HAPs |        |        |        |        | Gas   | EE  |    |
|       |          |             |            |        |      | CO2e       |        |        |        |        | Gas   | EE  |    |
|       |          |             |            |        |      | NOx        |        |        | 0.27   | 1.20   | Gas   | EE  |    |
|       |          |             |            |        |      | CO         |        |        | 1.45   | 6.35   | Gas   | EE  |    |
|       | Upward   |             |            |        |      | VOC        | 175.1  | 767    | 3.49   | 15.33  | Gas   | EE  |    |
| 11E   | Vertical | T01-<br>T04 | Enclosed   | None   |      | PM         |        |        | 0.01   | 0.06   | Solid | EE  |    |
|       | Stack    | 104         | Combustor  | 110110 |      | НСОН       |        |        | < 0.01 | < 0.01 | Gas   | EE  |    |
|       |          |             |            |        |      | Total HAPs | 15.8   | 69.3   | 0.32   | 1.38   | Gas   | EE  |    |
|       |          |             |            |        |      | CO2e       | 70.8   | 310    | 467    | 2046   | Gas   | EE  |    |

The EMISSION SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSIONS SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.


Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

<sup>&</sup>lt;sup>2</sup> List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS<sub>2</sub>, VOCs, H<sub>2</sub>S, Inorganics, Lead, Organics, O<sub>3</sub>, NO, NO<sub>2</sub>, SO<sub>2</sub>, SO<sub>3</sub>, all applicable Greenhouse Gases (including CO<sub>2</sub> and methane), etc. **DO NOT LIST** H<sub>2</sub>O, N<sub>2</sub>O<sub>2</sub>, and Noble Gases

<sup>&</sup>lt;sup>3</sup> Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

<sup>&</sup>lt;sup>4</sup> Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).4C

<sup>&</sup>lt;sup>5</sup> Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; M = modeling; O = other (specify).



# Bashful Well Pad Production Facility Attachment P Regulatory Analysis

Both State and Federal environmental regulations governing air emissions apply to the planned modification to the Bashful Well Pad Production Facility. The West Virginia Department of Environmental Protection (WVDEP) has been delegated the authority to implement certain federal air quality requirements for the state. Air quality regulations that potentially affect the modification are discussed herein.

#### 1.1 PSD and NSR

The facility will remain a minor source with respect to Prevention of Significant Deterioration (PSD) regulations as it will not have the potential to emit more than the annual emission thresholds of any PSD regulated pollutant with the voluntary restrictions (e.g., catalytic converter on the engine).

The facility is within an area designated as attainment for all criteria pollutants. Consequently, the facility is not subject to the New Source Review (NSR) regulations. Consequently, NSR requirements are not applicable to this project.

#### 1.2 Title V Operating Permit Program

West Virginia has incorporated provisions of the federal Title V operating permit program. Thresholds for inclusion under the Title V program are 10 tpy of any single Hazardous Air Pollutant (HAP) or 25 tons of any combination of HAP and/or 100 tpy of all other regulated pollutants. Additionally, facilities regulated under certain New Source Performance Standards (NSPS) require facilities to have Title V permits.

The modified facility will remain a minor source. Additionally, the NSPS regulating this facility does not trigger a Title V permit. Hence, a Title V permit will not be required for the Bashful Well Pad Production Facility.

#### 1.3 Aggregation

The addition of an enclosed combustor at the Bashful Well Pad will not impact the aggregation analysis completed and submitted with the initial application.

#### 1.4 New Source Performance Standards

New Source Performance Standards (NSPS) regulations promulgated under 40 CFR 60 require new and reconstructed facilities to control emissions to the level achievable by Best-Available Control Technology (BACT). There are no potentially applicable NSPS requirements associated with the installation of the enclosed combustor at the Bashful Well Pad.

#### 1.5 National Emission Standards for Hazardous Air Pollutants

National Emission Standards for Hazardous Air Pollutants (NESHAPs) promulgated under 40 CFR 63 regulate the emission of Hazardous Air Pollutants (HAPs) from certain industrial processes. In general, these rules apply to major sources of HAPs with a major source being defined as having the potential to emit more than 10 tpy of any individual HAP or 25 tpy of total HAPs. Emissions standards under these rules have been established as the Maximum Achievable Control Technology (MACT) for each source category. There are no NESHAP source category standards which are potentially applicable to the planned installation of a small enclosed combustor at the Bashful Well Pad Production Facility:

#### 1.6 Chemical Accident Prevention

Subparts B-D of 40 CFR 68 present the requirements for the assessment and subsequent preparation of a Risk Management Plan (RMP) for a facility that stores more than a threshold quantity of a regulated substance listed in 40 CFR 68.130. If a facility stores, handles or processes one or more regulated substances in an amount greater than its corresponding threshold, the facility must prepare and implement an RMP. The Bashful Well Pad Production Facility stores more than 10,000 lbs of a flammable mixture (condensate) containing several of the substances listed in Table 3 in 40 CFR 68.130. However, an RMP is not required as this facility qualifies for the exclusion provided for remote oil and gas production facilities (40 CFR 68.115).

#### 1.7 West Virginia State Requirements

#### 1.7.1 45 CSR 2

The purpose of 45CSR2 is to control smoke and particulate matter emissions from fuel burning units. The facility is subject to the opacity requirement of 45 CSR 2. Emissions from the facility cannot exceed 10% over any six minute period.

#### 1.7.2 45 CSR 4

This regulation prohibits the emission of objectionable odors. Jay-Bee Oil & Gas is obligated to run the station in a manner that does not produce objectionable odors.

#### 1.7.3 45 CSR 6

This rule establishes emission standards for particulate matter and other requirements for incineration of refuse not subject to or specifically exempted from federal regulation. The planned combustor falls under this rule and must meet the visible emission requirements as well as the permitting requirements.

#### 1.7.4 45 CSR 10

This regulation limits emissions of sulfur oxides. As the sulfur content of the Inlet Gas contains no measurable sulfur, emissions of sulfur oxides is negligible. Thus, while parts of this rule are applicable to the planned facility, no actions are required on the part of Jay-Bee Oil & Gas to attain compliance. The various non-engine process combustion units have a design heat input less than 10 MMBTU/Hr and are therefore exempt from the requirements of this rule.

#### 1.7.5 45 CSR 13

The state regulations applicable to the permitting of the proposed construction are in Title 45 Series 13 of the Code of State Regulations. The proposed modification to the Bashful Well Pad Production Facility will result in a minor increase in potential emissions several regulated pollutants. Hence, this modification must be integrated into the facility's permit.

#### 1.7.6 45 CSR 16

This series of regulations is an incorporation, by reference, of the New Source Performance Standards codified under 40 CFR 60. As discussed under the federal regulations, the Bashful Well Pad Production Facility will remain subject to the emission limitations, monitoring, testing and recordkeeping of Subpart JJJJ. The facility will also remain subject to Subpart OOOO.

#### 1.7.7 45 CSR 30

The state regulations applicable to Title V operating permits are in Title 45 Series 30. The planned modification to the Bashful Well Pad Production Facility does not result in the facility having the potential to emit any regulated pollutant about the threshold that would define it as a major facility. Additionally, although the facility is subject to certain New Source Performance Standards, the NSPS applicable to this facility do not trigger the need to submit a Title V application and obtain a Title V permit. Hence this rule is not applicable.

#### 1.7.8 Other Applicable Requirements

Through Series 34, WVDEP has adopted the National Emission Standards for Hazardous Air Pollutants for Source Categories. Both of these topics have been addressed above.