

TRIAD HUNTER, LLC

APPLICATION FOR G70-A GENERAL PERMIT MODIFICATION

Weese Station Tyler County, West Virginia

98 Vanadium Road Bridgeville, PA 15017 (412) 221-1100

APPLICATION FOR GENERAL PERMIT MODIFICATION Triad Hunter, LLC

R. Weese Production Facility

Tyler County, West Virginia

Table of Contents

- I. Application Form
- II. Attachments
 - Attachment A Business Registration
 - Attachment B Process Description
 - Attachment C Description of Fugitive Emissions
 - Attachment D -- Process Flow Diagram
 - Attachment E Plot Plan
 - Attachment F Area Map
 - Attachment G Equipment Data Sheets and Registration Applicability Form
 - Attachment H Air Pollution Control Device Sheets
 - Attachment I Emission Calculations
 - Attachment J Class I Legal Advertisement
 - Attachment N Material Safety Data Sheets
 - Attachment O Emissions Summary Sheets
 - Attachment P Other Supporting Documentation

SECTION I

Application Form

)

 $\frac{\lambda}{r}$

			-		
ST VEST	WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROT DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 Phone: (304) 926-0475 • www.dep.wv.go	ov/daq		Р сол <i>stati</i>	LICATION FOR GENERAL ERMIT REGISTRATION <i>INSTRUCT, MODIFY, RELOCATE OR</i> <i>ADMINISTRATIVELY UPDATE</i> <i>ONARY SOURCE OF AIR POLLUTANTS</i>
		I RELOC	ATION		CLASS I ADMINISTRATIVE UPDATE CLASS II ADMINISTRATIVE UPDATE
	CHECK WHICH TYPE OF GENERAL PI		EGISTI	RATION	YOU ARE APPLYING FOR:
□ G20-B - Hot M □ G30-D - Natu □ G33-A - Spar	Preparation and Handling Mix Asphalt ral Gas Compressor Stations k Ignition Internal Combustion Engines ral Gas Compressor Stations (Flare/Glycol Dehyd	Iration Unit)	□ G50 □ G60 □ G65	 D-C – Nonmetallic Minerals Processing D-B – Concrete Batch D-C - Class II Emergency Generator i-C – Class I Emergency Generator D-A – Class II Oil and Natural Gas Production Facility
	SECTION I. O	GENERA		RMATI	ON
1. Name of appl Triad Hunte	icant (as registered with the WV Secretary of State er, LLC	e's Office):			2. Federal Employer ID No. (FEIN): 27-1355830
125 Putnan Marietta, O 5. If Applicant is		m A	niles so Ima, N	outh of lo physi	ff of CR 58 in Tyler County approximately 0.1 intersection with State Route 18 just west of ical address.
Magnum Hunte WV BUSINESS RE	r Resources GISTRATION. Is the applicant a resident of the S	State of We	est Virgii	nia? 🗆 Y	/ES 🗵 NO
amendments or oth - IF NO, pr	er Business Registration Certificate as Attachme	ent A.			artnership (one page) including any name change ion (one page) including any name change amendments
	SECTION II.	FACILIT		ORMAT	ION
constructed, updated (e.g	t or facility (stationary source) to be modified, relocated or administratively ., coal preparation plant, primary crusher, etc.): Pad and Production Facility	Classi	ification	Industria (SIC) coo	
9. DAQ Plant ID I 095-0002	No. (for existing facilities only): 2		nis proce		CSR13 and other General Permit numbers associated existing facilities only):

11A. Facility name of primary operating site: Weese Station	12A. Address of primary operating site:		
	Mailing: <u>None</u>	Physical:	
13A. Does the applicant own, lease, have an op → IF YES, please explain: <u>Applicant</u> the well → IF NO, YOU ARE NOT ELIGIBLE FOR	has a lease agreement with the land pad and associated gas and liquids	owner for installation of	
the nearest state road;	ive Updates at an existing facility, please pro	ovide directions to the present location of the facility	
For Construction or Relocation pern	nits, please provide directions to the propose	ed new site location from the nearest state road. Incl	
MAP as Attachment F.			
MAP as Attachment F.			
MAP as Attachment F.			
MAP as Attachment F.			
MAP as Attachment F.			
MAP as Attachment F.	16A. County:	17A. UTM Coordinates:	
MAP as Attachment F.		Northing (KM): <u>4363.9242</u>	
MAP as Attachment F.	16A. County: Tyler		
MAP as Attachment F.	Tyler	Northing (KM): 4363.9242 Easting (KM): 515.0582 Zone: 17 19A. Latitude & Longitude Coordinates (NAD	
MAP as Attachment F. 15A. Nearest city or town: Alma 18A. Briefly describe the proposed new operation Natural gas production, liquids separation	Tyler on or change (s) to the facility:	Northing (KM): 4363.9242 Easting (KM): 515.0582 Zone: 17 19A. Latitude & Longitude Coordinates (NAD Decimal Degrees to 5 digits):	
MAP as Attachment F. 15A. Nearest city or town: Alma 18A. Briefly describe the proposed new operation	Tyler on or change (s) to the facility:	Northing (KM): 4363.9242 Easting (KM): 515.0582 Zone: 17 19A. Latitude & Longitude Coordinates (NAD Decimal Degrees to 5 digits): Latitude: 39.424717	
MAP as Attachment F. 15A. Nearest city or town: Alma 18A. Briefly describe the proposed new operation Natural gas production, liquids separation	Tyler on or change (s) to the facility: ion, truck loading of liquids and	Northing (KM): 4363.9242 Easting (KM): 515.0582 Zone: 17 19A. Latitude & Longitude Coordinates (NAD Decimal Degrees to 5 digits): Latitude: 39.424717 Longitude: -80.82505	
MAP as Attachment F. 15A. Nearest city or town: Alma 18A. Briefly describe the proposed new operation Natural gas production, liquids separation B: 1 st ALTERNATE OPERA	Tyler on or change (s) to the facility: ion, truck loading of liquids and ATING SITE INFORMATION (only available	Northing (KM): 4363.9242 Easting (KM): 515.0582 Zone: 17 19A. Latitude & Longitude Coordinates (NAD Decimal Degrees to 5 digits): Latitude: 39.424717 Longitude: -80.82505 efor G20, G40, & G50 General Permits)	
MAP as Attachment F. 15A. Nearest city or town: Alma 18A. Briefly describe the proposed new operation Natural gas production, liquids separation	Tyler on or change (s) to the facility: ion, truck loading of liquids and	Northing (KM): 4363.9242 Easting (KM): 515.0582 Zone: 17 19A. Latitude & Longitude Coordinates (NAD Decimal Degrees to 5 digits): Latitude: 39.424717 Longitude: -80.82505 efor G20, G40, & G50 General Permits)	

🗆 YES

13B. Does the applicant own, lease, have an option to buy, or otherwise have control of the proposed site?
 IF YES, please explain:

For Construction or Relocation MAP as Attachment F.	on permits, please provide directions to the propose	ed new site location from the nearest state road. Include a
	······	· · · · · · · · · · · · · · · · · · ·
15B. Nearest city or town:	16B. County:	17B. UTM Coordinates:
		Northing (KM): Easting (KM):
		Zone:
18B. Briefly describe the proposed net	w operation or change (s) to the facility:	19B. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits):
		Latitude:

11C. Name of 2 nd alternate operating site:		
	Mailing:	Physical:
13C. Does the applicant own, lease, have an option IF YES, please explain:	on to buy, or otherwise have control of the propos	
	A PERMIT FOR THIS SOURCE.	
14C. — For Modifications or Administrati the nearest state road;	ive Updates at an existing facility, please provide	directions to the present location of the facility from
For Construction or Relocation permits, MAP as Attachment F.	please provide directions to the proposed new sit	e location from the nearest state road. Include a
15C. Nearest city or town:	16C. County:	17C. UTM Coordinates: Northing (KM): Easting (KM):
18C. Briefly describe the proposed new operation	or change (s) to the facility:	Zone: 19C. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude:
		Longitude:

20. Provide the date of anticipated installation or change:	21. Date of anticipated Start-up if registration is granted:
<u>12 / 01 / 15</u> (dehydration Unit) If this is an After-The-Fact permit application, provide the date upon which the proposed change did happen: / / 2011 (all other equipment)	<u>12/15/2015</u>
22. Provide maximum projected Operating Schedule of activity/activity	ties outlined in this application if other than 8760 hours/year. (Note: anything
other than 24/7/52 may result in a restriction to the facility's operation)	
Hours per day Days per week Weeks per	year Percentage of operation

SECTION III. ATTACHMENTS AND SUPPORTING DOCUMENTS

		neck payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR22 and 45CSR13).
24. Incl	lude a Ta	able of Contents as the first page of your application package.
All of the phone.	e require	ed forms and additional information can be found under the Permitting Section (General Permits) of DAQ's website, or requested by
25. Ple attachm	ase che nents list	ck all attachments included with this permit application. Please refer to the appropriate reference document for an explanation of the ed below.
	X	ATTACHMENT A : CURRENT BUSINESS CERTIFICATE
	X	ATTACHMENT B: PROCESS DESCRIPTION
	X	ATTACHMENT C: DESCRIPTION OF FUGITIVE EMISSIONS
	X	ATTACHMENT D: PROCESS FLOW DIAGRAM
	X	ATTACHMENT E: PLOT PLAN
	X	ATTACHMENT F: AREA MAP
	X	ATTACHMENT G: EQUIPMENT DATA SHEETS AND REGISTRATION SECTION APPLICABILITY FORM
	X	ATTACHMENT H: AIR POLLUTION CONTROL DEVICE SHEETS
	X	ATTACHMENT I: EMISSIONS CALCULATIONS
	X	ATTACHMENT J: CLASS I LEGAL ADVERTISEMENT
		ATTACHMENT K: ELECTRONIC SUBMITTAL
	X	ATTACHMENT L: GENERAL PERMIT REGISTRATION APPLICATION FEE
		ATTACHMENT M: SITING CRITERIA WAIVER
	X	ATTACHMENT N: MATERIAL SAFETY DATA SHEETS (MSDS)
	X	ATTACHMENT O: EMISSIONS SUMMARY SHEETS
	ß	OTHER SUPPORTING DOCUMENTATION NOT DESCRIBED ABOVE (Equipment Drawings, Aggregation Discussion, etc.)

Please mail an original and two copies of the complete General Permit Registration Application with the signature(s) to the DAQ Permitting Section, at the address shown on the front page of this application. Please DO NOT fax permit applications. For questions regarding applications or West Virginia Air Pollution Rules and Regulations, please refer to the website shown on the front page of the application or call the phone number also provided on the front page of the application.

SECTION IV. CERTIFICATION OF INFORMATION

This General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of a Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, Emission Inventory, Certified Emission Statement, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or unsigned Registration Application will be returned to the applicant.
FOR A CORPORATION (domestic or foreign) I certify that I am a President, Vice President, Secretary, Treasurer or in charge of a principal business function of the corporation
FOR A PARTNERSHIP I certify that I am a General Partner
EOR A LIMITED LIABILITY COMPANY
FOR AN ASSOCIATION I certify that I am the President or a member of the Board of Directors
FOR A JOINT VENTURE I certify that I am the President, General Partner or General Manager
FOR A SOLE PROPRIETORSHIP I certify that I am the Owner and Proprietor
I hereby certify that (please print or type)
l hereby certify that all information contained in this General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible
Signature ////////////////////////////////////
(please use blue ink) Responsible Official Date
Name & Title <u>Michael Horan, Vice President - Operations</u> (please print or type)
Signature
(please use blue ink) Authorized Representative (if applicable) Date
Applicant's Name
Phone & Fax740/374-2940
Phone Fax Email

ATTACHMENT A

 $\langle \rangle$

 \cdot \cdot \cdot \cdot \cdot \cdot \cdot /


Business Registration

I, Natalie E. Tennant, Secretary of State, of the State of West Virginia, hereby certify that

Triad Hunter, LLC

has filed the appropriate registration documents in my office according to the provisions of the West Virginia Code and hereby declare the organization listed above as duly registered with the Secretary of State's Office.

Given under my hand and the Great Seal of West Virginia on this day of January 29, 2010

table Exempter

Secretary of State

ATTACHMENT B

 $\left(\begin{array}{c} \\ \end{array} \right)$

}

Process Description

Triad Hunter, LLC Weese Station Modification and Addition of R. Weese Production Facility Process Description

Triad Hunter, LLC currently owns and operates certain equipment associated with natural gas production at its R. Weese Production Facility which is in close proximity to its Weese Station (aka E. Weese). The R. Weese Production Facility currently consists of four wells, each equipped with a Gas Processing Unit (GPU) and six tanks for receipt and accumulation of Produced Water and Condensate. Vapors from the tanks are controlled by a single enclosed combustor. There is currently no air emissions permit for this facility.

Triad Hunter is seeking inclusion of the emission sources at the R. Weese Production Facility under the existing General Permit G70-A registration for its Weese Station. In addition, Triad Hunter is seeking approval for installation of a 3.0 MMSCFD dehydration unit at the R. Weese facility. Upon installation, the R. Weese Production Facility will receive and dehydrate gas produced from the four Marcellus wells on that well pad prior to transportation via gathering line to the nearby Weese Station where it will be compressed and injection into a gathering line owned and operated by others.

Secondly, Triad is seeking to replace one of the permitted CAT 3516 compressor driver engines (and associated compressor) at the Weese Station with a smaller Cummins GTA 855 (225 Hp) engine and associated compressor.

Lastly, Triad is seeking to reduce the permitted amount of condensate throughput for the Weese station, to better reflect current and anticipated future condensate management. As part of this reduction, the amount of flash gas being generated (and managed) is reduced. Correspondingly, the amount of condensate being load onto trucks is being reduced and the VRU is no longer cost effective and is being eliminated. All gas managed by that unit will be routed to the combustors.

No other equipment additions are planned. There is currently no compression at the R. Weese Well Pad and none is planned in the foreseeable future.

The following discussion describes equipment and material flow through the <u>R. Weese</u> <u>Production Facility</u>:

Gas produced by each well is passed through a dedicated Gas Processing Units (GPUs) where Produced Fluids (water and condensate) is separated from the raw gas stream and then further separated into Produced Water and Condensate. The gas will be dehydrated through the new TEG dehydration unit and injected into pipelines for transportation to the nearby E. Weese Production facility where it will be combined with gas from that pad, compressed and discharged into gather lines for transportation to facilities owned by others for further processing. A small portion of the dehydrated gas will be used as fuel to power the existing equipment. The total amount of gas that will be processed through this facility will vary over time, but is not expected to exceed 3 MMSCFD for the foreseeable future. This application seeks to permit the emissions from the new dehydration equipment.

Under the existing and future configuration, raw condensate and produced water is mixed and routed to a series of four 400 BBL and two 210 BBL accumulation tanks. The accumulated condensate (approximately 10 BBL per day) will be transported, via tank truck, to a condensate processing facility owned and operated by others.

Vapors emitted by the storage tanks (flash, working and breathing losses) and the associated condensate truck loading operations will be captured by a piping system that will route the vapors to the enclosed combustor. For permitting purposes, a capture and control efficiency 98% of the tank vapors is claimed, with approximately 1 percent loss in the various fittings on the tanks and associated piping to the combustor and approximately 1 percent loss in the combustor efficiency.

It is estimated that a maximum of 154,800 gallons of condensate and 908,000 gallons of produced water will be generated and loaded per year.

As noted above, the inlet gas will be dehydrated prior to discharge into a gathering pipeline to route it to the nearby Everett Weese facility. The dehydration process will generate two gaseous streams: Flash Gas and Still Vent vapors. The still vent will vapors will be released directly to atmosphere. The flash gas will be routed to the enclosed combustor.

In Summary, emission sources at the R. Weese facility that Triad Hunter is seeking to add to its Weese Station G70-A registration will include the following:

- One 0.3 MMBTU/Hr TEG Re-boiler (**NEW SOURCE**)
- One Enclosed Combustors managing low pressure vapors from storage tanks, truck loading and dehy flash gas (EXISTING SOURCE)
- Four Gas Processing Units (EXISTING SOURCES)
- Six Water and Condensate Mixture Tanks (EXISTING SOURCE)
- Fugitive Emissions Facility Roadways (EXISTING SOURCE)
- Fugitive Emissions Component Leaks (NEW AND EXISTING SOURCE)

Weese Station

In addition to the incorporation of equipment at the nearby R. Weese Production Facility, there will be two changes at the Weese Station. One of two compressor engines at Weese Station will also be replaced with a smaller unit. Secondly, the vapor recovery compression unit at Weese Station will be removed. Lastly, as the volume of condensate being managed at this facility has decreased significantly since issuance of the current permit, Triad Hunter is seeking approval for allowing non-certified trucks for condensate loading/transportation to customers. This requested change and associated emission calculations are presented herein.

Emission Units Table

WEESE STATION SOURCES

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
S 1	1E	CAT 3516B Engine	2012	1380 HP.	EXISTING	1C (SCR)
S3A	3E	TEG Dehydration Reboiler (controlling still vent and flash tank)	2012	500 MBTU/Hr.	EXISTING	
S5	5E	CAT 3516B Engine	2015	1380 HP.	REM	2C(SCR)
S5A	5E-A	Cummins GTA855 Engine	Upon Receipt of Permit	225	NEW	4C(NSCR)
S6-1 to S6-3	6E-1 to 6E-3	Enclosed Vapor Combustors (COMM 200)	2014	7.7 MMBTU/Hr Each	EXISTING	N/A
HTR-1	7E	GPU Heater Pride of the Hills	2012	1.0 MMBTU/Hr	EXISTING	None
HTR-2	8E	GPU Heater Pride of the Hills	2012	1.0 MMBTU/Hr	EXISTING	None
HTR-3	9E	GPU Heater Pride of the Hills	2012	1.0 MMBTU/Hr	EXISTING	None
HTR-4	10E	GPU Heater Pride of the Hills	2014	1.0 MMBTU/Hr	EXISTING	None
HTR-5	11E	GPU Heater Pride of the Hills	2014	1.0 MMBTU/Hr	EXISTING	None
S 6	12E	Flash Compressor Engine GasJack GJ230	2014	46 Hp	REM	3C
T01-T03		Produced Water Tanks	2012	3@ 400 BBL/each	EXISTING	VCU-1 to VCU-3
T04-T06		Condensate Tanks	2012	3@ 400 BBL/each	EXISTING	VCU-1 to VCU-3
		Truck Loading (Condensate +Water)		9.8 Million Gallons/Yr	EXISTING	VCU-1 to VCU-3
		Haul Roads	2014	3 Trucks Per Day	EXISTING	None

¹ For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

Page ____1__ of __1___

³New, modification, removal

03/2007

⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Emission Units Table

R.WEESE SOURCES

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
1S (GPU-1)	1E	Marcellus GPU Heater	2011	0.75 MMBTU/Hr.	EXISTING	None
1S (GPU-2)	1E	Marcellus GPU Heater	2011	0.75 MMBTU/Hr.	EXISTING	None
1S (GPU-3)	1E	Marcellus GPU Heater	2011	0.75 MMBTU/Hr.	EXISTING	None
1S (GPU-4)	1E	Marcellus GPU Heater	2011	0.50 MMBTU/Hr.	EXISTING	None
28	2E	Dehydration Unit Re-Boiler	2015	300 MBTU/Hr	NEW	None
38	3E	Dehy Still Vent (Un-captured/Un-controlled)	2015	3 MMSCFD	NEW	None
4S	4E	Dehy Flash Tank	2015	3 MMSCFD	NEW	VCU-1
VCU-1	4E	Enclosed Combustor	2014	2.39 MMBTU/Hr	EXISTING	N/A
TL-1	4E	Truck Loading (Condensate)	2011	154,800 Gallons/Yr.	EXISTING	VCU-1
T01-T04	4E	Produced Water with Condensate Tanks	2011	4@400 BBL each	EXISTING	VCU-1
T05 - T06	4E	Produced Water with Condensate Tank	2010	210 BBL	EXISTING	VCU-1
TL-2	5E	Truck Loading (Water)	2011	908,000 Gallons/Yr.	EXISTING	None
		Fugitive VOC Emissions – Fittings and Connections	2014	N/A	EXISTING +NEW	None
		Haul Roads	2014	2 Trucks per day max.	EXISTING	None

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.
³ New, modification, removal

⁴ For <u>Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.</u>

Emission Units Table

ATTACHMENT C

Description of Fugitive Emissions

)

Triad Hunter, LLC Corporation Weese Station Attachment C – Fugitive Emissions Data

Equipment Fugitive Emissions

As noted in the Project Description, Triad Hunter is seeking approval to replace a single compressor driver engine and associated compressor at the existing Everett Weese Station. This exchange will not materially change the number of various valves, flanges, threaded fittings, etc. at the station. The previous potential emission rate of 3.2 tpy of VOCs and 209 tpy CO₂e remains appropriate.

Estimates of these emissions are included in the calculations (Attachment I) and summarized on the form included in this section. These calculations are based on emission factors accepted by the American Petroleum Institute and EPA.

Truck Loading Estimates

Estimates of potential VOC emissions from truck loading of condensate and produced water are presented in the calculations in Attachment I and summarized on the table at the end of this Attachment. Calculations were completed using methodology presented in AP-42.

Pigging Emission Estimates

There will be no pig launching or receiving at this facility.

Facility Blowdown Emission Estimates

The gas compressors associated with the existing CAT 3516 and the new Cummins GTA855 at Weese Station (there are no compressors at R. Weese Production Facility) will require routine blowdowns to allow for routine maintenance. The volume of natural gas released per blowdown event from the remaining compressor associated with the CAT 3515B driver has been revised to better reflect associated piping that will also be vented during a blowdown event. It is estimated at approximately 6,523 cubic feet of gas at STP (see attached sheet from vendor). The compressor associated with the planned Cummins driver engine will be 379 cubic feet of gas at STP. There will be a maximum of 90 blow downs per compressor per year. Thus, there is a potential for 621,180 cubic feet (6,902 x 90) or cubic feet of gas emitted from blow downs from the gas compressors.

The density of this gas at STP is 0.056lb/cf (see the Inlet Gas spreadsheet in the calculations). Thus, the amount of gas emitted from residue compressor blowdowns is 34,786 lb/year (621,180 x 0.056). As the percentage of VOCs in the gas (by weight) is 16.3 percent (see Inlet Gas spreadsheet in the calculations), the VOC (non-methane/non-ethane) emissions from compressor blowdowns is estimated at approximately 5,670 lbs per year or 2.84 tpy.

As the methane concentration in the gas is 63.2 % (by weight), methane emissions from the compressors will be 21,984 pounds (34,786 x 0.632) per year. Using a GHG factor of 25, methane emissions from blow downs in CO_{2e} will be 274.8 tons CO_{2e} (21,984 x 25[GHG factor] /2000).

Storage Tank and Haul Road Fugitive Emissions

Water and condensate received by this facility will be accumulated in tanks prior to off-site shipment In addition to flash, working and breathing losses from these tanks (presented in Attachment I), there will be emissions associated with the loading of the condensate tanks and fugitive dust emissions from the tank trucks entering and exiting the site.

Emissions from these sources are summarized in the attached form and the calculations are presented in Attachment I.

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities? ☐ Yes ☐ No ☐ If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles? Yes No If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations? ☐ Yes ☐ No ☐ If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation? Yes No If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	 Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)? ∑ Yes ☐ No ∑ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations? ☐ Yes
7.)	Will there be any other activities that generate fugitive emissions? ☐ Yes
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions mmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹	Maximum Potential Uncontrolled Emissions ²		Maximum Potential Controlled Emissions ³		Est. Method
		lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads						
Unpaved Haul Roads	PM	10.86	2.41	10.86	2.41	EE
Storage Pile Emissions						
Loading/Unloading Operations (Uncaptured Emissions Only)	VOCs	185.8	5.16	55.7	1.58	EE
Wastewater Treatment Evaporation & Operations						
Equipment Leaks	Inlet Natural Gas(VOCs)	0.74	3.2	0.74	3.2	EE
General Clean-up VOC Emissions						
Other: Blowdowns	Inlet Natural Gas(VOCs)	N/A	2.84	N/A	2.84	EE

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Triad Hunter, LLC Corporation R. Weese Production Facility Attachment C – Fugitive Emissions Data

Equipment Fugitive Emissions

As noted in the process description, Triad Hunter plans to install various additional equipment at its R. Weese Production Facility. This equipment, along with existing equipment will contain a variety of piping containing natural gas and separated liquids under pressure. During the normal course of operation minor leaks from valves, pressure release devices and various fittings associated with this piping may occur. The number of valves, flanges, etc. has been estimated to reflect the equipment that will be present after completion of expansion under this permit. A potential emission rate of 1.46 tpy of VOCs and 31.8 tpy $CO_{2}e$ has been estimated.

Estimates of these emissions are included in the calculations (Attachment I) and summarized on the form included in this section. These calculations are based on emission factors accepted by the American Petroleum Institute and EPA.

Truck Loading Estimates

Estimates of potential VOC emissions from truck loading of condensate and produced water are presented in the calculations (Attachment I) and summarized on the table in the fugitive emissions form. Calculations were completed using methodology presented in AP-42.

Pigging Emission Estimates

There will be no pig launching or receiving at this facility.

Facility Blowdown Emission Estimates

As there are no engines present or planned for this facility, there are no blowdown emissions.

Storage Tank and Haul Road Fugitive Emissions

Water and condensate received by this facility will be accumulated in tanks prior to off-site shipment In addition to flash, working and breathing losses from these tanks (presented in Attachment I), there will be emissions associated with the loading of the condensate tanks and fugitive dust emissions from the tank trucks entering and exiting the site. There will be a projected maximum of one condensate and two water truck trips per day.

Emissions from these sources are summarized in the attached form and the calculations are presented in Attachment I.

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	⊠ Yes □ No
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	□ Yes
	If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	⊠ Yes □ No
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	⊠ Yes □ No
	☐ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
-	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions nmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹	Maximum Potential Uncontrolled Emissions ²		Maximum Potential Controlled Emissions ³		Est. Method
		lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads						
Unpaved Haul Roads	РМ	10.86	0.45	10.86	0.45	EE
Storage Pile Emissions						
Loading/Unloading Operations (Uncaptured Emissions)	VOCs	1.33	0.06	1.33	0.06	EE
Wastewater Treatment Evaporation & Operations						
Equipment Leaks	Inlet Natural Gas(VOCs)	0.33	1.46	0.33	1.46	EE
General Clean-up VOC Emissions						
Other:	Inlet Natural Gas(VOCs)					EE

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
 ³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
 b VOC/20 minute batch).

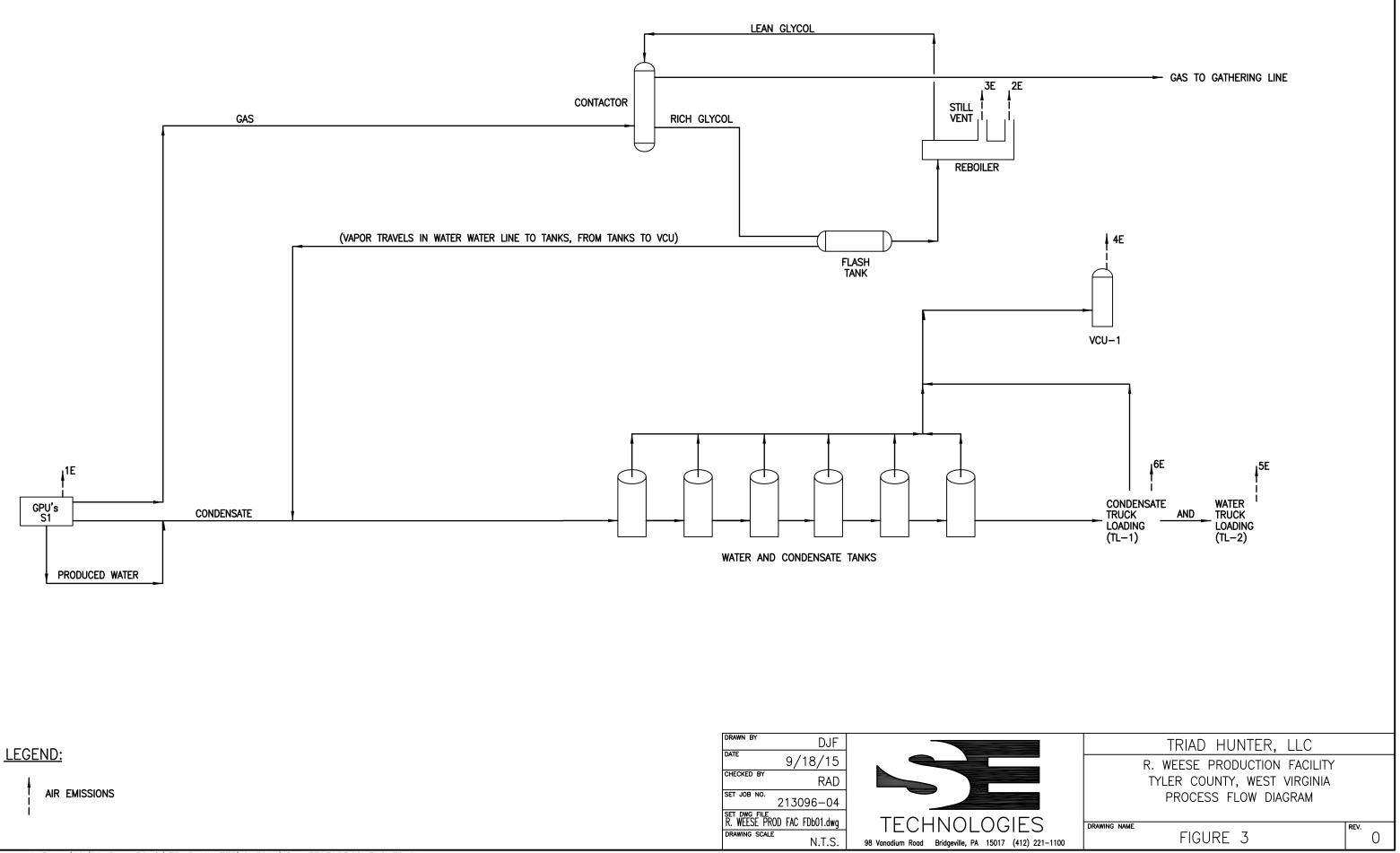
⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

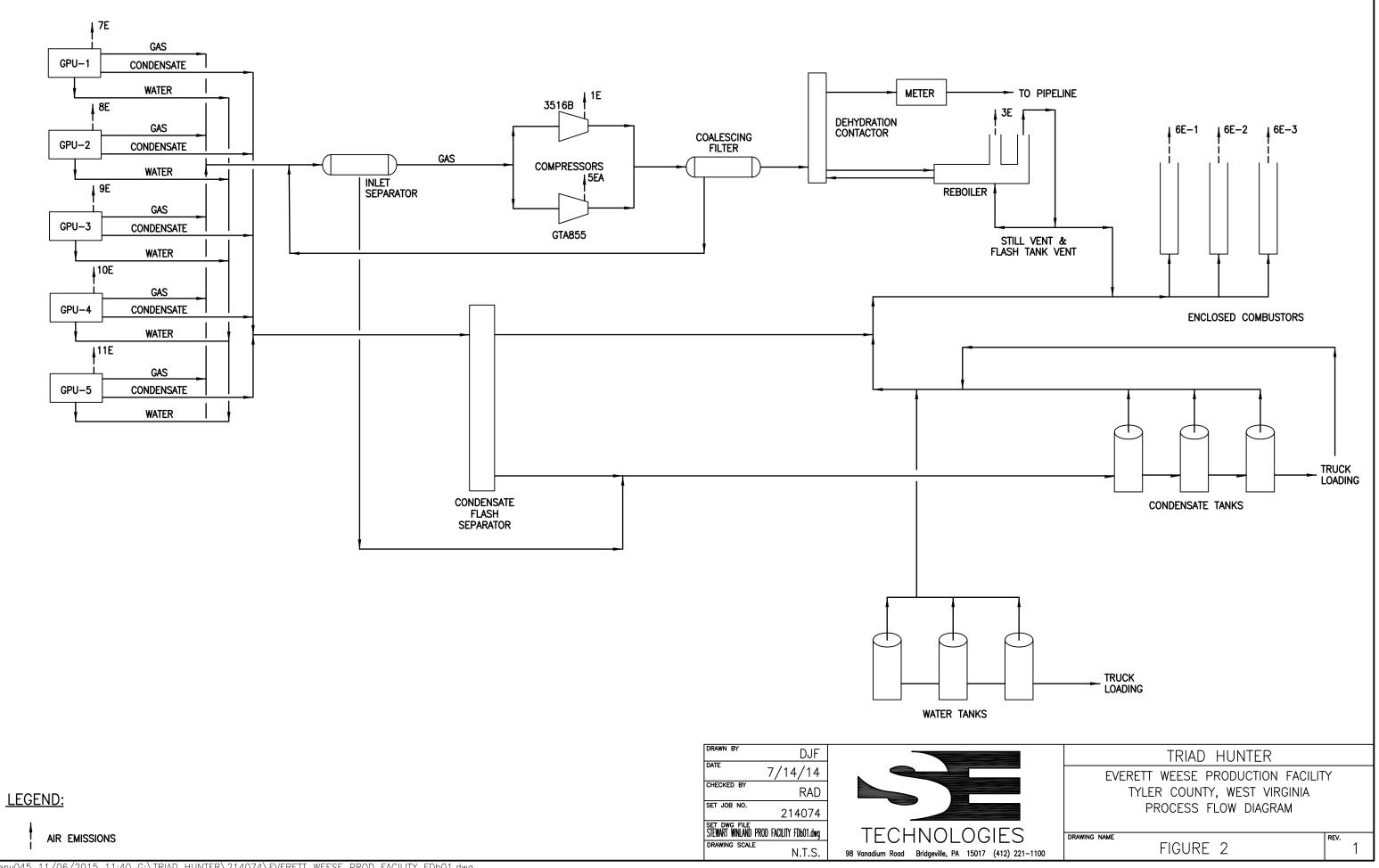
3516B, 2-Stage (Note: assumed ideal gas behavior and used OD for volume calc)

ENTER the following Values:	Suction Pressure, psig	180	Suction Temperature, F	55					
									section
	Discharge Pressure, psig	900	Discharge Temperature, F	120					volumes
Cylinders	Bore, in	Stroke, in	Rod Diameter, in	Pocket Clearance, in ³	Total Cylinder Volume, in ³	Temperature, R	Pressure, psig	Calculated Moles	FT3 @ STP
1st Stage Cylinder	9.13	4.50	2.00	0.00	280	514	500	0.02	6
1st Stage Cylinder	9.13	4.50	2.00	0.00	280	514	890	0.03	10
2nd Stage Cylinder	6.00	4.50	2.00	0.00	113	739	890	0.01	3
2nd Stage Cylinder	6.00	4.50	2.00	0.00	113	739	900	0.01	3
Scrubbers/Suction & Discharge Drums	OD, in	Height/Length, in	Total Volume, in ³			Temperature, R	Pressure, psig	Calculated Moles	
1st Stage Scrubber	30.00	68.00	48066			514	180	0.98	378
1st Stage Suction Drum	20.00	120.00	37699			514	180	0.77	296
1st Stage Discharge Drum	20.00	120.00	37699			739	890	2.49	958
2nd Stage Scrubber	30.00	68.00	48066			589	890	3.98	1532
2nd Stage Suction Drum	16.00	114.50	23022			589	890	1.91	734
2nd Stage Discharge Drum	16.00	114.50	23022			739	1440	2.44	940
Cooler Section	No. of Tubes	OD, in	Length, in	Total Tube Volume, in ³		Temperature, R	Pressure, psig	Calculated Moles	
1st Stage Cooler Section	137	0.63	288	12299		739	890	0.81	312
2nd Stage Cooler Section	170	0.63	288	15262		739	1440	1.62	623
Piping	OD, in	Length, in	Total Piping Volume, in ³			Temperature, R	Pressure, psig	Calculated Moles	
1st Stage Piping	8.00	114	5730			739	500	0.22	83
2nd Stage Piping	6.00	492	13911			739	1100	1.13	435
piping after Cooler	6.00	60	1696			739	1440	0.18	69
Bypass	4.00	348	4373			589	900	0.37	141
					Total Estimated Moles of Gas				
					Total Estimated Volume of Blo	wdown Gas, ft ³ @ STI	P (68F, 14.7 psia) :	6523	6523

piping and cylinders and scrubber stage 1 cooler section stage 1

74179.15728 59.5572634 lbs/mcl 24.4608 VOC 95.0188599 210 238271779 1245.300741 Ryan- I ran several cases on the 225HP blowdown volumes; conservatively I would estimate closer to 380 SCF. We'll follow with unit identification and pricing ASAP.

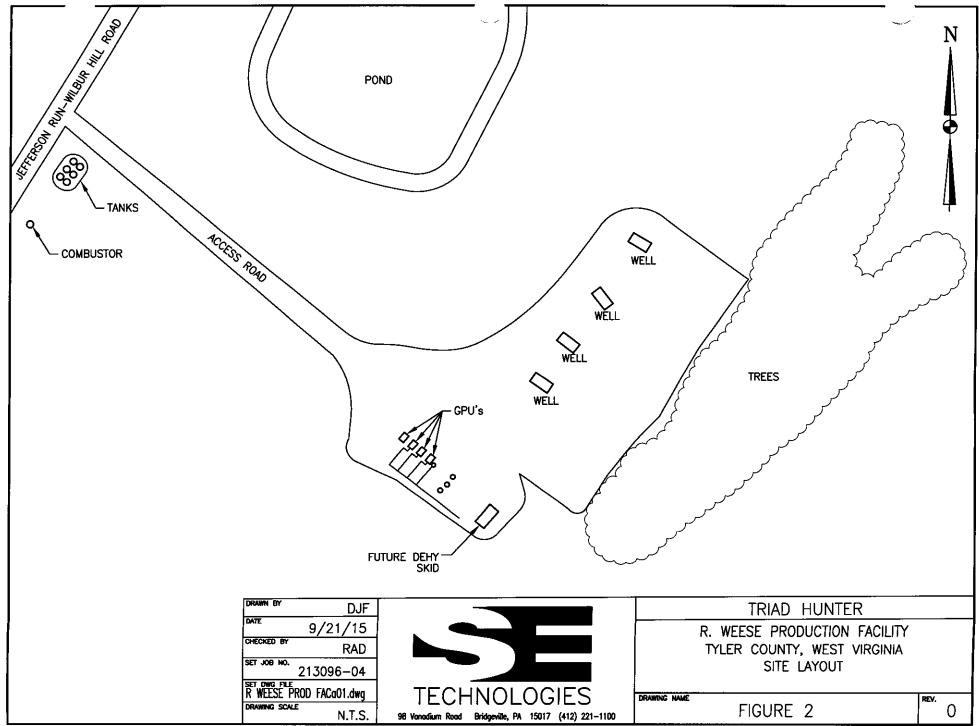

Temperature,		Calculated
R	Pressure, psig	Moles
539	255	0.004
739	510	0.003
739	900	0.002
Temperature,		Calculated
R	Pressure, psig	Moles
539	135	0.082
589	255	0.123
589	510	0.118
Temperature,		Calculated
R	Pressure, psig	Moles
739	255	0.024
739	510	0.047
739	900	0.081
Temperature,		Calculated
R	Pressure, psig	Moles
739	255	0.107
739	510	0.208
739	900	0.040
589	900	0.146
	Total Estimated Moles of Gas Discharged to Atmosphere per Blowdown =	0.98
	Total Estimated	0.90
	Volume of	
	Blowdown Gas, ft ³ @	
	STP (68F, 14.7 psia)	
		379


Matt Smith

USA Compression Applications Sr.Engineer Cell: 724.531.7150 (call>text>voicemail

ATTACHMENT D

Process Flow Diagram

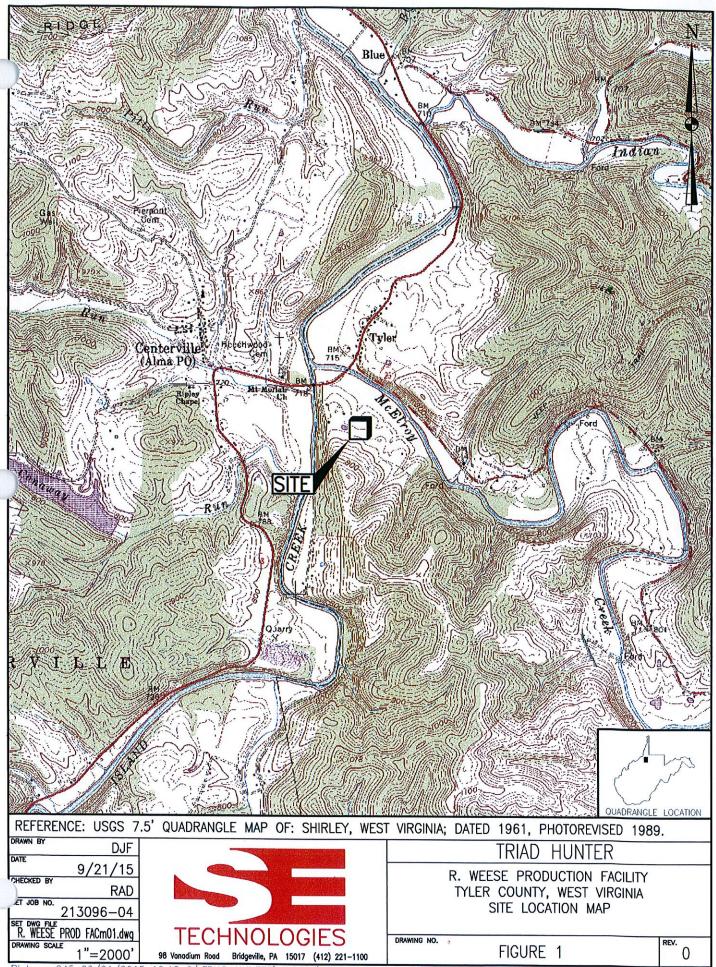


ATTACHMENT E

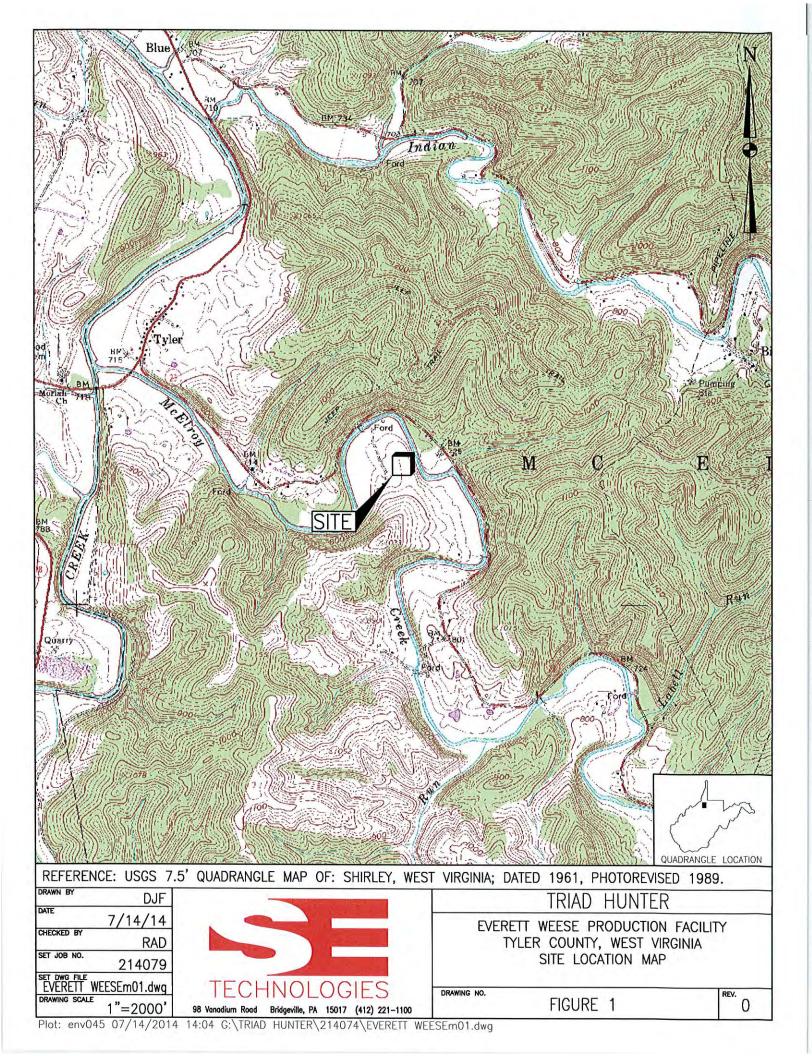
•

N 2

Plot Plan


Plot: env045 09/25/2015 13:56 G:\TRIAD HUNTER\213096\R WEESE PROD FACa01.dwg

ATTACHMENT F


)

)

Area Map

Plot: env045 09/21/2015 12:18 G:\TRIAD HUNTER\213096\R WEESE PROD FACm01.dwg

ATTACHMENT G

Equipment Data Sheets and Registration Section Applicability Form

 $\langle \rangle$

}

General Permit G70-A Registration Section Applicability Form

General Permit G70-A was developed to allow qualified applicants to seek registration for a variety of sources. These sources include natural gas well affected facilities, storage tanks, natural gas-fired compressor engines (RICE), natural gas producing units, natural gas-fired inline heaters, pneumatic controllers, heater treaters, tank truck loading, glycol dehydration units, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-A allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

Section 5	Natural Gas Well Affected Facility	\boxtimes
Section 6	Storage Vessels*	\boxtimes
Section 7	Gas Producing Units, In-Line Heaters, Heater Treaters, and Glyco	ol
	Dehydration Reboilers	\boxtimes
Section 8	Pneumatic Controllers Affected Facility(NSPS, Subpart OOOO)	
Section 9	Reserved	
Section 10	Natural gas-fired Compressor Engine(s) (RICE)**	\boxtimes
Section 11	Tank Truck Loading Facility ***	\boxtimes
Section 12	Standards of Performance for Storage Vessel Affected Facilities	
	(NSPS, Subpart OOOO)	
Section 13	Standards of Performance for Stationary Spark Ignition Internal	
	Combustion Engines (NSPS, Subpart JJJJ)	\boxtimes
Section 14	Control Devices not subject to NSPS, Subpart OOOO	\boxtimes
Section 15	National Emissions Standards for Hazardous Air Pollutants	
	for Stationary Reciprocating Internal Combustion Engines	
	(40CFR63, Subpart ZZZZ)	
Section 16	Glycol Dehydration Units	\boxtimes
Section 17	Dehydration Units With Exemption from NESHAP Standard,	
	Subpart HH § 63.764(d) (40CFR63, Subpart HH)	\boxtimes
Section 18	Dehydration Units Subject to NESHAP Standard, Subpart HH	
	and Not Located Within an UA/UC (40CFR63, Subpart HH)	
Section 19	Dehydration Units Subject to NESHAP Standard, Subpart HH	
	and Located Within an UA/UC (40CFR63, Subpart HH)	

* Applicants that are subject to Section 6 may also be subject to Section 12 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 14.

** Applicants that are subject to Section 10 may also be subject to the applicable RICE requirements of Section 13 and/or Section 15.

*** Applicants that are subject to Section 11 may also be subject to control device requirements of Section 14.

NATURAL GAS WELL AFFECTED FACILITY DATA SHEET R. Weese Production Facility

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification, or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

Please provide the API number(s) for each NG well at this facility:					
API #47-095-02004					
API #47-095-02005					
API #47-095-02019					
API #47-095-02027					

Note: This is the same API well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API (American Petroleum Institute) number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

 $047 = State \ code$. The state code for WV is 047.

001 = County Code. County codes are odd numbers, beginning with 001 (Barbour) and continuing to 109 (Wyoming).

00001 = Well number. Each well will have a unique well number.

NATURAL GAS FIRED FUEL BURNING UNITS EMISSION DATA SHEET R. Weese Production Facility

Complete the information on this data for each Gas Producing Unit(s), Heater Treater(s), and in-line heater(s) at the production pad. Reboiler information should be entered on the Glycol Dehydration Emission Unit Data Sheet.

Emission Unit ID # ¹	Emission Point ID# ²	Emission Unit Description (Manufacturer / Model #)	Year Installed/ Modified	Type ³ and Date of Change	Control Device ⁴	Design Heat Input (mmBtu/hr) ⁵	Fuel Heating Value (Btu/scf) ⁶
28	2E	Exterran	2015	NEW	None	0.300	1243
GPU-1	1E	Natco	2011	Existing	None	0.75	1243
GPU-2	1E	Natco	2011	Existing	None	0.75	1243
GPU-3	8E	Natco	2011	Existing	None	0.75	1243
GPU-4	9E	Natco	2011	Existing	None	0.50	1243

¹ Enter the appropriate Emission Unit (or Sources) identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the *Glycol Dehydration Unit Data Sheet*.

² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1,

- LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- ³ New, modification, removal
- ⁴ Complete appropriate air pollution control device sheet for any control device.
- ⁵ Enter design heat input capacity in mmBtu/hr.
- ⁶ Enter the fuel heating value in Btu/standard cubic foot.

Manufacturer's Rated bhp/rpm 1380/1400 1380/1400 1380/1400 46/200 Source Status ² ES RS RS Date Installed/Modified/Removed ³ Approx. Nov. 1, 2012 1/11/2015 2014 Engine Manufacturer/Reconstruction Date ⁴ After Jan 01,2010 After Jan 01,2010 After Jan 01,2010 After Jan 01,2010 Is this a Certified Stationary Spark Ignition Engine according to 40CFR60 Subpart JUJJ? (Yes or No ³) No No No No Engine, Fuel and Combustion Data Engine Type ⁶ LB4S LB4S RB43 APCD Type ⁷ A/F +SCR A/F +SCR NSCI Fuel Type ⁸ RG RG RG Masoliton Data BSFC (Bu/bhp-hr) 8321 8321 10,77 Fuel throughput (Mf ³ /yr) 89.33 89.33 3.89 3.89 Operation (hrs/yr) 8760 8760 8760 8760 Reference ⁹ Potential Emissions ¹⁰ Ibs/hr tons/yr Ibs/hr 10,193 0,41 MD NO _X 1.52 6.66 <td< th=""><th></th></td<>		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	GasJack GJ230	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	00F	
Engine Manufactured/Reconstruction Date ⁴ After Jan 01,2010 Af	5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	
Engine according to 40CFR60 Subpart JJJJ? No No No No $(Yes or No)^5$ Engine Type ⁶ LB4S LB4S RB4S RB4S APCD Type ⁷ A/F +SCR A/F +SCR No No No Fuel and Combustion Data Fuel Type ⁸ RG RG RG RG M2S (gr/100 scf) <1	01, 2010	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	R	
Fuel and Combustion Data H ₂ S (gr/100 scf) <1 <1 ,1 Operating bhp/rpm 1380/1400 1380/1400 1380/1400 46/200 BSFC (Btu/bhp-hr) 8321 8321 10,77 Fuel throughput (ft ³ /hr) 10,198 10,198 444 Fuel throughput (MMft ³ /yr) 89.33 89.33 3.89 Operation (hrs/yr) 8760 8760 8760 Reference ⁹ Potential Emissions ¹⁰ lbs/hr tons/yr lbs/hr 10,193 MD NO _X 1.52 6.66 1.52 6.66 0.20 MD CO 4.41 19.32 4.41 19.32 0.41 MD CO 4.41 19.32 6.66 0.20 1.52 MD CO 4.41 19.32 4.41 19.32 0.41 1.52 MD VOC 1.22 5.33 1.22 5.33 0.10 1.52 AP SO ₂ 0.006 0.03 0.006 0.0	ì	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$,1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	46/2000	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	10,777	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		
Reference ⁹ Potential Emissions ¹⁰ lbs/hr tons/yr lbs/hr tons/yr lbs/hr MD NO _X 1.52 6.66 1.52 6.66 0.20 MD CO 4.41 19.32 4.41 19.32 0.41 MD VOC 1.22 5.33 1.22 5.33 0.10 AP SO ₂ 0.006 0.03 0.006 0.03 <0.01	3.89	
MD NO _X 1.52 6.66 1.52 6.66 0.20 MD CO 4.41 19.32 4.41 19.32 0.41 MD VOC 1.22 5.33 1.22 5.33 0.10 AP SO ₂ 0.006 0.03 0.006 0.03 0.45 0.01 AP PM ₁₀ 0.103 0.45 0.103 0.45 0.01	8760	
MD CO 4.41 19.32 4.41 19.32 0.41 MD VOC 1.22 5.33 1.22 5.33 0.10 AP SO2 0.006 0.03 0.006 0.03 <0.01	tons/y	
MD VOC 1.22 5.33 1.22 5.33 0.10 AP SO2 0.006 0.03 0.006 0.03 <0.01 AP PM ₁₀ 0.103 0.45 0.103 0.45 0.01	0.89	
AP SO2 0.006 0.03 0.006 0.03 <0.01 AP PM ₁₀ 0.103 0.45 0.103 0.45 0.01	1.78	
AP PM_{10} 0.103 0.45 0.103 0.45 0.01	0.44	
	< 0.01	
	0.04	
MD Formaldehyde 0.75 3.28 0.75 3.28 0.02	0.11	
AP Total HAPs 0.89 3.91 0.89 3.91 0.03	0.13	
AP CO ₂ e 1,749 7,762 1,749 7,762 64	280	

NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

Source Identification Number ¹		S5A					
Engine Manufacturer and Model		Cummins GTA 855					
Manufacturer's Rated bhp/rpm		225	/1800				
So	urce Status ²	ľ	NS				
Date Installe	d/Modified/Removed ³	Upon Rece	ipt of Permit				
Engine Manufact	ured/Reconstruction Date ⁴	12/0	1/2007				
Is this a Certified	l Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	1	No				
	Engine Type ⁶	RI	B4S				
	APCD Type ⁷	NS	SCR				
End	Fuel Type ⁸	F	RG				
Engine, Fuel and	H ₂ S (gr/100 scf)	<1					
Combustion Data	Operating bhp/rpm	225/1800					
Data	BSFC (Btu/bhp-hr)	9420					
	Fuel throughput (ft ³ /hr)	1726					
	Fuel throughput (MMft ³ /yr)	15.12					
	Operation (hrs/yr)	8	760				
Reference ⁹	Potential Emissions ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
MD	NO _X	1.50	6.56				
MD	СО	0.72	3.15				
MD	VOC	0.15	0.65				
AP	SO ₂	< 0.01	< 0.01				
AP	PM ₁₀	0.41	0.18				
MD	Formaldehyde	0.05	0.22				
AP	Total HAPs	0.07	0.32				
AP	CO ₂ e	261	1145				

NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

- 1. Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. If more than three (3) engines exist, please use additional sheets.
- 2. Enter the Source Status using the following codes:
 - NS Construction of New Source (installation)

ES Existing Source

- MS Modification of Existing Source
- RS Removal of Source
- 3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.

- 4. Enter the date that the engine was manufactured, modified or reconstructed.
- 5. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

- 6. Enter the Engine Type designation(s) using the following codes:
 LB2S Lean Burn Two Stroke
 LB4S Lean Burn Four Stroke
- 7. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

	A/F	Air/Fuel Ratio	IR	Ignition Retard
	HEIS	High Energy Ignition System	SIPC	Screw-in Precombustion Chambers
	PSC	Prestratified Charge	LEC	Low Emission Combustion
	NSCR	Rich Burn & Non-Selective Catalytic Reduction	SCR	Lean Burn & Selective Catalytic Reduction
8.	Enter the F	Fuel Type using the following codes:		
	PQ	Pipeline Quality Natural Gas	RG	Raw Natural Gas
9.	Enter the	Potential Emissions Data Reference designation usir	ng the fo	bllowing codes. Attach all referenced data to
	Compresso	pr/Generator Data Sheet(s).		

MD	Manufacturer's Data	AP	AP-42	
GR	GRI-HAPCalc TM	OT	Other	(please list)

this

10. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

		Manufact	urer and Model	Exte	erran	
		Max Dry Gas F	low Rate (mmscf/day)	3 MMSCFD		
		Design Heat	Input (mmBtu/hr)	300 MBTU/I	Hr (re-boiler)	
		Design Typ	be (DEG or TEG)	TI	EG	
Ganara	l Glycol		rce Status ²	NE	EW	
Dehydra	tion Unit	Date Installed	/Modified/Removed ³	Upon recei	pt of Permit	
D	ata	Regenerator	Still Vent APCD ⁴		A	
			ol Device ID ⁴	TO (V	(CU-1)	
		Fuel H	IV (Btu/scf)	1243 ((HHV)	
		H ₂ S Cont	tent (gr/100 scf)	<0.0	01%	
		Opera	tion (hrs/yr)	8760		
Emission Unit ID/ Emission	Vent					
Point ID ¹		Reference ⁵	Potential Emissions ⁶	lbs/hr	tons/yr	
		AP-42	NO _X	0.020	0.088	
		AP-42	СО	0.017	0.074	
2S/2E	Re-boiler Vent	AP-42	VOC	< 0.01	< 0.01	
		AP-42	SO ₂	< 0.01	< 0.01	
		AP-42	PM ₁₀	< 0.01	0.01	
		GRI-GLYCalc [™]	VOC	1.228	5.380	
	Glycol	GRI-GLYCalc [™]	Benzene	0.039	0.170	
3S/3E	Regenerator	Regenerator GRI-GLYCalc [™] Et		< 0.01	< 0.01	
55,51	Still Vent	GRI-GLYCalc [™]	Toluene	0.187	0.820	
		GRI-GLYCalc [™]	Xylenes	0.195	0.855	
		GRI-GLYCalc TM	n-Hexane	0.024	0.106	

GLYCOL DEHYDRATION EMISSION UNIT DATA SHEET

1. Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a *Glycol Dehydration Emission Unit Data Sheet* shall be completed for each, using Source Identification #s RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

2. Enter the Source Status using the following codes:

NS	Construction of New Source	ES	Existing Source
MS	Modification of Existing Source	RS	Removal of Source

3. Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.

- 4. Enter the Air Pollution Control Device (APCD) type designation using the following codes and the control device ID number:
 - NANoneCDCondenserFLFlareCCCondenser/Combustion CombinationTOThermal OxidizerCCCondenser/Combustion Combination
- 5. Enter the Potential Emissions Data Reference designation using the following codes:

	Manufacturer's Data	AP	AP-42	
GR	GRI-GLYCalc TM	OT	Other	(please list)

6. Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalc Aggregate Calculations Report to this Glycol Dehydration Emission Unit Data Sheet(s). This PTE data shall be incorporated in the Emissions Summary Sheet.

Include a copy of the GRI-GLYCalcTM analysis. This includes a printout of the aggregate calculations report, which shall include emissions reports, equipment reports, and stream reports.

STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name			
R. Weese Tank Farm	T01-T04			
3. Emission Unit ID number	4. Emission Point ID number			
N/A Vapors to combustors, emission point 4E	4 E			
5. Date Installed or Modified (for existing tanks)	6. Type of change:			
December 2010	\Box New construction \Box New stored material \boxtimes Other			
7A. Description of Tank Modification (if applicable) No modifi	cation. Existing Tank			
7B. Will more than one material be stored in this tank? If so, a s	separate form must be completed for each material.			
🗌 Yes 🛛 No				
7C. Provide any limitations on source operation affecting emissions. (production variation, etc.)				
A maximum of 908,000 gallons of produced water per year for Tanks T01 through T06 combined.				

II. TANK INFORMATION (required)

8. Design Capacity (<i>specify barrels or gallons</i>). Use the internal cross-sectional area multiplied by internal height.					
400 BBL					
9A. Tank Internal Diameter (ft.) 12	9B. Tank Internal Height (ft.)20				
10A. Maximum Liquid Height (ft.)19	10B. Average Liquid Height (ft.) 12				
11A. Maximum Vapor Space Height (ft.) 19.5	11B. Average Vapor Space Height (ft.) 8				
12. Nominal Capacity (specify barrels or gallons). This is also be	known as "working volume. 320 BBL				
13A. Maximum annual throughput (gal/yr) 200,660/tank	13B. Maximum daily throughput (gal/day) 1500				
14. Number of tank turnovers per year 12(max)	15. Maximum tank fill rate (gal/min) 6				
16. Tank fill method 🗌 Submerged 🛛 Splash	Bottom Loading				
17. Is the tank system a variable vapor space system? Yes	🔀 No				
If yes, (A) What is the volume expansion capacity of the system	(gal)?				
(B) What are the number of transfers into the system per y	year?				
18. Type of tank (check all that apply):					
\square Fixed Roof $_X_$ vertical $__$ horizontal $__$ fla	t roof cone roof dome roof other (describe)				
 External Floating Roofpontoon roofdouble deck roof Domed External (or Covered) Floating Roof Internal Floating Roofvertical column supportself-supporting Variable Vapor Spacelifter roofdiaphragm Pressurizedsphericalcylindrical Underground Other (describe) 					

III. TANK CONSTRUCTION AND OPERATION INFORMATION (check which one applies)

 □ Refer to enclosed TANKS Summary Sheets

 ☑ Refer to the responses to items 19 – 26 in section VII

IV. SITE INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

Refer to the responses to items 27 - 33 in section VII

V. LIQUID INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets									
Refer to the responses to items 34 – 39 in section VII									
VI. EMISSIONS AND	CONT	ROL DE	EVICE D	ATA (re	equired)				
40. Emission Control Devi	ces (chec	ck as man	y as apply	-					
Does Not Apply					ire Disc (
\Box Carbon Adsorption ¹		1				ket of			
Vent to Vapor Combus	tion Dev	ice ¹ (vapo	or combust			-			
Condenser ¹						Vent (psig			
\Box Other ¹ (describe)					m Setting		ssure Se	tting	
			D ·		gency Re	elief Valve	(psig)		
¹ Complete appropriate Air									
41. Expected Emission Rat					1			ation).	
Material Name and	Flashir	ng Loss	Breathi	ng Loss	Worki	ng Loss	Total		Estimation Method ¹
CAS No.	11.0							ions Loss	-
NOG	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	D M 11
VOCs							0.07	0.31	Promax Model
(Un-controlled)									Stream 145 attached
Individual constituents									In Calculations
In provided Promax									
Output for Stream 415									
Tanks T01-T06 Combined									Tanks Emissions
Emissions									Controlled 98%

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

SECTION VII (required if did not provide TANKS Summary Sheets)

TANK CONSTRUCTION AND OPERATION INFORMATION					
19. Tank Shell Construction:					
Riveted Gunite lined Epot	xy-coated rivets Other (describe)				
20A. Shell Color: Blue	20B. Roof Color: Blue	20C. Year Last Painted: 2011			
21. Shell Condition (if metal and unlined):					
🛛 No Rust 🗌 Light Rust 🗌 Dens	e Rust 🔲 Not applicable				
22A. Is the tank heated? Yes X No	22B. If yes, operating temperature:	22C. If yes, how is heat provided to tank?			
23. Operating Pressure Range (psig): Less than	n 0.3 psig				
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome roof provide radius (ft):	24B. If yes, for cone roof, provide slop (ft/ft)			
Yes No	N/A	N/A			
25. Complete item 25 for Floating Roof Tanks	Does not apply				
25A. Year Internal Floaters Installed:					
25B. Primary Seal Type (check one): Metallic (mechanical) shoe seal Liquid mounted resilient seal					
Vapor mounted resilient seal Other (describe):					
25C. Is the Floating Roof equipped with a secondary seal? Yes					
25D. If yes, how is the secondary seal mounted	? (check one) \Box Shoe \Box Rim \Box O	ther (describe):			

25E. Is the floating roof equipped with a weather shield? Yes No						
25F. Describe deck fittings:						
26. Complete the following section for Internal Floating Roof Tanks Does not apply						
26A. Deck Type: Dolted V	Velded	26B. I	For bolted decks,	, provide dec	k construction:	
26C. Deck seam. Continuous sheet construction		— -		—		
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide					describe)	
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):		For column support	orted	26G. For column supported	
		tanks,	# of columns:		tanks, diameter of column:	
SITE INFORMATION:						
27. Provide the city and state on which the data	in this section are based:					
28. Daily Avg. Ambient Temperature (°F):			nnual Avg. Maxi	1	rature (°F):	
30. Annual Avg. Minimum Temperature (°F):			vg. Wind Speed			
32. Annual Avg. Solar Insulation Factor (BTU/ft ² -day): 33. Atmospheric F						
LIQUID INFORMATION:						
34. Avg. daily temperature range of bulk	34A. Minimum (°F): I	romax Model based 34B. Maximum (°F): Promax Model ba			imum (°F): Promax Model based	
liquid (°F): 70	on steady state	on steady state			state	
35. Avg. operating pressure range of tank	35A. Minimum (psig):	: 35B. Max		35B. Max	kimum (psig):	
(psig):	0 psig			0.3 psig		
0-0.3 psig		-				
36A. Minimum liquid surface temperature (°F):		36B. Corresponding vapor pressure (psia):				
37A. Avg. liquid surface temperature (°F):		37B. Corresponding vapor pressure (psia):				
38A. Maximum liquid surface temperature (°F)		38B. Corresponding vapor pressure (psia):				
39. Provide the following for each liquid or gas	to be stored in the tank.	Add add	litional pages if 1	necessary.		
39A. Material name and composition:	Produced Water					
39B. CAS number:	N/A					
39C. Liquid density (lb/gal):	8.33					
39D. Liquid molecular weight (lb/lb-mole):	19.78					
39E. Vapor molecular weight (lb/lb-mole):	19.78					
39F. Maximum true vapor pressure (psia):	5.066					
39G. Maxim Reid vapor pressure (psia):	1.033					
39H. Months Storage per year. From:	Continuous					
To:						

STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name			
R. Weese Tank Farm	T05 and T06			
3. Emission Unit ID number	4. Emission Point ID number			
N/A Vapors to combustors, emission point 4E	4 E			
5. Date Installed or Modified (for existing tanks)	6. Type of change:			
December 2010	\Box New construction \Box New stored material \boxtimes Other			
7A. Description of Tank Modification (if applicable) No modification. Existing Tank				
7B. Will more than one material be stored in this tank? If so, a separate form must be completed for each material.				
🗌 Yes 🛛 No				
7C. Provide any limitations on source operation affecting emissi	ons. (production variation, etc.)			
A maximum of 908,000 gallons of produced water per year for	or Tanks T01 through T06 combined.			

II. TANK INFORMATION (required)

8. Design Capacity (specify barrels or gallons). Use the internal	l cross-sectional area multiplied by internal height.		
210 BBL			
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.)15		
10A. Maximum Liquid Height (ft.)9	10B. Average Liquid Height (ft.) 8		
11A. Maximum Vapor Space Height (ft.) 8	11B. Average Vapor Space Height (ft.) 7		
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume. 190 BBL			
13A. Maximum annual throughput (gal/yr) 105,360/tank	13B. Maximum daily throughput (gal/day) 500		
14. Number of tank turnovers per year 12(max)	15. Maximum tank fill rate (gal/min) 6		
16. Tank fill method 🗌 Submerged 🛛 Splash	Bottom Loading		
17. Is the tank system a variable vapor space system? Yes	🔀 No		
If yes, (A) What is the volume expansion capacity of the system	(gal)?		
(B) What are the number of transfers into the system per y	year?		
18. Type of tank (check all that apply):			
\boxtimes Fixed Roof $_X_$ vertical $_$ horizontal $_$ fla	t roof cone roof dome roof other (describe)		
 External Floating Roofpontoon roofdoub Domed External (or Covered) Floating Roof Internal Floating Roofvertical column support Variable Vapor Spacelifter roofdiaphrag Pressurizedsphericalcylindric Underground Other (describe) 	self-supporting		

III. TANK CONSTRUCTION AND OPERATION INFORMATION (check which one applies)

□ Refer to enclosed TANKS Summary Sheets
 ☑ Refer to the responses to items 19 – 26 in section VII

IV. SITE INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

Refer to the responses to items 27 - 33 in section VII

V. LIQUID INFORMATION (check which one applies)

Refer to enclosed TAN	KS Sum	mary Shee	ets						
Refer to the responses t	o items 3	34 – 39 in	section V	II					
VI. EMISSIONS AND	CONT	ROL DH	EVICE D	DATA (re	quired))			
40. Emission Control Devi	ces (cheo	ck as man	y as apply):					
Does Not Apply	Rupture Disc (psig)								
Carbon Adsorption ¹	Inert Gas Blanket of								
Vent to Vapor Combus	tion Dev	ice ¹ (vapo	or combust	tors, flares	, thermal	oxidizers)			
Condenser ¹						Vent (psig			
\Box Other ¹ (describe)					n Setting		ssure Se	tting	
1	.	<i>a</i> .			gency Re	elief Valve	(psig)		
¹ Complete appropriate Air									
41. Expected Emission Rat								ation).	
Material Name and	Flashi	ng Loss	Breathi	ing Loss	Worki	ng Loss	Total		Estimation Method ¹
CAS No.	lb/hr		lb/hr	1.	lb/hr		Emiss lb/hr	ions Loss	-
		tpy	lh/hr	tnv				tpy	
NOC	10/111	чру	10/111	tpy	10/111	tpy		10	Due and Mardal
VOCs	10/111	·PJ	10/11	τρy	10/111	tpy	0.07	0.31	Promax Model
(Un-controlled)				τ ρ γ				10	Stream 145 attached
(Un-controlled) Individual constituents								10	
(Un-controlled) Individual constituents In provided Promax								10	Stream 145 attached
(Un-controlled) Individual constituents In provided Promax Output for Stream 415								10	Stream 145 attached In Calculations
(Un-controlled) Individual constituents In provided Promax Output for Stream 415 Tanks T01-T63 Combined								10	Stream 145 attached In Calculations Tanks Emissions
(Un-controlled) Individual constituents In provided Promax Output for Stream 415								10	Stream 145 attached In Calculations
(Un-controlled) Individual constituents In provided Promax Output for Stream 415 Tanks T01-T63 Combined								10	Stream 145 attached In Calculations Tanks Emissions
(Un-controlled) Individual constituents In provided Promax Output for Stream 415 Tanks T01-T63 Combined								10	Stream 145 attached In Calculations Tanks Emissions
(Un-controlled) Individual constituents In provided Promax Output for Stream 415 Tanks T01-T63 Combined								10	Stream 145 attached In Calculations Tanks Emissions
(Un-controlled) Individual constituents In provided Promax Output for Stream 415 Tanks T01-T63 Combined								10	Stream 145 attached In Calculations Tanks Emissions
(Un-controlled) Individual constituents In provided Promax Output for Stream 415 Tanks T01-T63 Combined								10	Stream 145 attached In Calculations Tanks Emissions

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

SECTION VII (required if did not provide TANKS Summary Sheets)

TANK CONSTRUCTION AND OPERATION INFORMATION				
19. Tank Shell Construction:				
Riveted Gunite lined Epoxy-coated rivets Other (describe)				
20A. Shell Color: Blue	20B. Roof Color: Blue	20C. Year Last Painted: 2011		
21. Shell Condition (if metal and unlined):				
🛛 No Rust 🗌 Light Rust 🗌 Dens	e Rust 🔲 Not applicable			
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating temperature:	22C. If yes, how is heat provided to tank?		
23. Operating Pressure Range (psig): Less than	n 0.3 psig			
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome roof provide radius (ft):	24B. If yes, for cone roof, provide slop (ft/ft)		
Yes No	N/A	N/A		
25. Complete item 25 for Floating Roof Tanks	Does not apply			
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type (check one): Met	tallic (mechanical) shoe seal 🛛 Liquid me	ounted resilient seal		
	oor mounted resilient seal 🛛 🗌 Other (de	scribe):		
25C. Is the Floating Roof equipped with a seco	ndary seal? Yes No			
25D. If yes, how is the secondary seal mounted	? (check one) Shoe Rim O	ther (describe):		

25E. Is the floating roof equipped with a weather shield? Yes No						
25F. Describe deck fittings:						
26. Complete the following section for Internal Floating Roof Tanks Does not apply						
26A. Deck Type: Bolted Welded 26B. For bolted decks, provide deck construction:						
26C. Deck seam. Continuous sheet construction: 5 ft. wide = 6 ft. wide = 7 ft. wide = 5 x 7.5 ft. wide = 5 x 12 ft. wide = 0 other (describe)						
	$1 \text{ of deck (ft}^2)$:		For column supp		26G. For column supported	
26D. Deck seam length (ft.): 26E. Area	tol deck (It):		# of columns:	oned	tanks, diameter of column:	
SITE INFORMATION:		taliks,	# Of Columns.		tanks, diameter of columni.	
27. Provide the city and state on which the data	in this section are based					
28. Daily Avg. Ambient Temperature (°F):	In this section are based.		nnual Avg. Maxi	mum Tempe	rature (°F).	
30. Annual Avg. Minimum Temperature (°F):			vg. Wind Speed	1	fature (17).	
 Annual Avg. Minimum Temperature (17). Annual Avg. Solar Insulation Factor (BTU/ 	(ft ² -day):		mospheric Press			
LIQUID INFORMATION:	It -day).	55. A	intospheric i tess	ure (psia).		
34. Avg. daily temperature range of bulk	34A. Minimum (°F): I	Promay	Model based	3/B May	imum (°F): Promax Model based	
liquid (°F): 70	on steady state			on steady	· · /	
35. Avg. operating pressure range of tank	35A. Minimum (psig)	:		35B. Maximum (psig):		
(psig):	0 psig			0.3 psig		
0-0.3 psig	1.9					
36A. Minimum liquid surface temperature (°F)	I	36B. (B. Corresponding vapor pressure (psia):			
37A. Avg. liquid surface temperature (°F):		37B. Corresponding vapor pressure (psia):				
38A. Maximum liquid surface temperature (°F)	:	38B. Corresponding vapor pressure (psia):				
39. Provide the following for each liquid or gas	to be stored in the tank.	Add add	litional pages if	necessary.		
39A. Material name and composition:	Produced Water					
39B. CAS number:	N/A					
39C. Liquid density (lb/gal):	8.33					
39D. Liquid molecular weight (lb/lb-mole):	19.78					
39E. Vapor molecular weight (lb/lb-mole):	19.78					
39F. Maximum true vapor pressure (psia):	5.066					
39G. Maxim Reid vapor pressure (psia):	1.033					
39H. Months Storage per year. From: To:	Continuous					

STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name			
R. Weese Tank Farm	T01-T04			
3. Emission Unit ID number	4. Emission Point ID number			
N/A Vapors to combustors, emission point 4E	4 E			
5. Date Installed or Modified (for existing tanks)	6. Type of change:			
December 2010	\Box New construction \Box New stored material \boxtimes Other			
7A. Description of Tank Modification (if applicable) No modification. Existing Tank				
7B. Will more than one material be stored in this tank? If so, a separate form must be completed for each material.				
🗌 Yes 🛛 No				
7C. Provide any limitations on source operation affecting emissi	ons. (production variation, etc.)			
A maximum of 154,800 gallons of condensate per year for Ta	nks T01 through T06 combined.			

II. TANK INFORMATION (required)

8. Design Capacity (specify barrels or gallons). Use the internal	l cross-sectional area multiplied by internal height.		
400 BBL			
9A. Tank Internal Diameter (ft.) 12	9B. Tank Internal Height (ft.)20		
10A. Maximum Liquid Height (ft.)19	10B. Average Liquid Height (ft.) 12		
11A. Maximum Vapor Space Height (ft.) 19.5	11B. Average Vapor Space Height (ft.) 8		
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume. 320 BBL			
13A. Maximum annual throughput (gal/yr) 62,000/tank	13B. Maximum daily throughput (gal/day) 300		
14. Number of tank turnovers per year 5(max)	15. Maximum tank fill rate (gal/min) 6		
16. Tank fill method 🗌 Submerged 🛛 Splash	Bottom Loading		
17. Is the tank system a variable vapor space system? Yes	🔀 No		
If yes, (A) What is the volume expansion capacity of the system	(gal)?		
(B) What are the number of transfers into the system per year?			
18. Type of tank (check all that apply):			
\boxtimes Fixed Roof $_X_$ vertical $_$ horizontal $_$ fla	t roof cone roof dome roof other (describe)		
 External Floating Roofpontoon roofdoub Domed External (or Covered) Floating Roof Internal Floating Roofvertical column support Variable Vapor Space lifter roof diaphrag Pressurized spherical cylindric Underground Other (describe) 	self-supporting gm		

III. TANK CONSTRUCTION AND OPERATION INFORMATION (check which one applies)

□ Refer to enclosed TANKS Summary Sheets
 ☑ Refer to the responses to items 19 – 26 in section VII

IV. SITE INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

Refer to the responses to items 27 - 33 in section VII

V. LIQUID INFORMATION (check which one applies)

Refer to enclosed TAN	KS Sum	mary Shee	ets						
\boxtimes Refer to the responses		•		/II					
VI. EMISSIONS AND	CONT	ROL DI	EVICE I	DATA (re	equired)				
40. Emission Control Dev	ices (che	ck as man	y as apply	<i>i</i>):					
Does Not Apply	Rupture Disc (psig)								
\Box Carbon Adsorption ¹		Inert Gas Blanket of							
Vent to Vapor Combus	stion Dev	vice ¹ (vapo	or combus	tors, flares	, thermal	oxidizers)			
Condenser ¹				Conse	ervation '	Vent (psig			
\Box Other ¹ (describe)				Vacuu	n Setting	g Pre	ssure Sett	ing	
				Emer	gency Re	elief Valve	(psig)		
¹ Complete appropriate Air									
41. Expected Emission Ra	te (subm	it Test Da	ta or Calc	ulations he	ere or els	ewhere in t	he applica	tion).	
Material Name and	Flashi	ng Loss	Breath	ing Loss	Worki	ng Loss	Total		Estimation Method ¹
CAS No.							Emissio	ns Loss	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
VOCs							12.43	54.4	Promax Model
(Un-controlled)									I folliar bioact
									Stream 144 attached
Individual constituents									
Individual constituents In provided Promax									Stream 144 attached
									Stream 144 attached
In provided Promax									Stream 144 attached
In provided Promax Output for Stream 144									Stream 144 attached In Calculations
In provided Promax Output for Stream 144 Tanks T01-T06 Combined									Stream 144 attached In Calculations Tanks Emissions
In provided Promax Output for Stream 144 Tanks T01-T06 Combined									Stream 144 attached In Calculations Tanks Emissions
In provided Promax Output for Stream 144 Tanks T01-T06 Combined									Stream 144 attached In Calculations Tanks Emissions
In provided Promax Output for Stream 144 Tanks T01-T06 Combined									Stream 144 attached In Calculations Tanks Emissions

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

SECTION VII (required if did not provide TANKS Summary Sheets)

TANK CONSTRUCTION AND OPERATION INFORMATION				
19. Tank Shell Construction:				
Riveted Gunite lined Epoxy-coated rivets Other (describe)				
20A. Shell Color: Blue	20B. Roof Color: Blue	20C. Year Last Painted: 2011		
21. Shell Condition (if metal and unlined):				
🛛 No Rust 🗌 Light Rust 🗌 Dens	e Rust 🔲 Not applicable			
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating temperature:	22C. If yes, how is heat provided to tank?		
23. Operating Pressure Range (psig): Less than	n 0.3 psig			
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome roof provide radius (ft):	24B. If yes, for cone roof, provide slop (ft/ft)		
Yes No	N/A	N/A		
25. Complete item 25 for Floating Roof Tanks	Does not apply			
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type (check one): Met	tallic (mechanical) shoe seal 🛛 Liquid me	ounted resilient seal		
	oor mounted resilient seal 🛛 🗌 Other (de	scribe):		
25C. Is the Floating Roof equipped with a seco	ndary seal? Yes No			
25D. If yes, how is the secondary seal mounted	? (check one) Shoe Rim O	ther (describe):		

25E. Is the floating roof equipped with a weather shield? Yes No						
25F. Describe deck fittings:						
26. Complete the following section for Internal Floating Roof Tanks Does not apply						
26A. Deck Type: Bolted Welded 26B. For bolted decks, provide deck construction:						
26C. Deck seam. Continuous sheet construction: 5 ft. wide = 6 ft. wide = 7 ft. wide = 5 x 7.5 ft. wide = 5 x 12 ft. wide = 0 other (describe)						
					,	
26D. Deck seam length (ft.): 26E. Area	of deck (ft^2):		For column suppo	orted	26G. For column supported	
		tanks,	# of columns:		tanks, diameter of column:	
SITE INFORMATION:						
27. Provide the city and state on which the data	in this section are based:					
28. Daily Avg. Ambient Temperature (°F):			nnual Avg. Maxi	1	rature (°F):	
30. Annual Avg. Minimum Temperature (°F):	2		vg. Wind Speed			
32. Annual Avg. Solar Insulation Factor (BTU/	'ft ² -day):	33. At	mospheric Press	ure (psia):		
LIQUID INFORMATION:						
34. Avg. daily temperature range of bulk	34A. Minimum (°F): I	Promax 1				
liquid (°F): 70	on steady state			on steady state		
35. Avg. operating pressure range of tank	35A. Minimum (psig):	:	35B. Maximum (psig):		imum (psig):	
(psig):	0 psig			0.3 psig		
0-0.3 psig		1				
36A. Minimum liquid surface temperature (°F)	:	36B. Corresponding vapor pressure (psia):				
37A. Avg. liquid surface temperature (°F):		37B. Corresponding vapor pressure (psia):				
38A. Maximum liquid surface temperature (°F)		38B. Corresponding vapor pressure (psia):				
39. Provide the following for each liquid or gas	to be stored in the tank.	Add add	litional pages if 1	necessary.		
39A. Material name and composition:	Condensate					
39B. CAS number:	N/A					
39C. Liquid density (lb/gal):	5.76					
39D. Liquid molecular weight (lb/lb-mole):	98.49					
39E. Vapor molecular weight (lb/lb-mole):	36.66					
39F. Maximum true vapor pressure (psia):						
39G. Maxim Reid vapor pressure (psia):	11.14					
39H. Months Storage per year. From:	Continuous					
To:						

STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name			
R. Weese Tank Farm	T05 and T06			
3. Emission Unit ID number	4. Emission Point ID number			
N/A Vapors to combustors, emission point 4E	4 E			
5. Date Installed or Modified (for existing tanks)	6. Type of change:			
December 2010	\Box New construction \Box New stored material \boxtimes Other			
7A. Description of Tank Modification (if applicable) No modification. Existing Tank				
7B. Will more than one material be stored in this tank? If so, a separate form must be completed for each material.				
🗌 Yes 🛛 No				
7C. Provide any limitations on source operation affecting emissi	ons. (production variation, etc.)			
A maximum of 154,800 gallons of condensate per year for Ta	nks T01 through T06 combined.			

II. TANK INFORMATION (required)

8. Design Capacity (specify barrels or gallons). Use the internal	l cross-sectional area multiplied by internal height.		
210 BBL			
9A. Tank Internal Diameter (ft.) 12	9B. Tank Internal Height (ft.)15		
10A. Maximum Liquid Height (ft.)19	10B. Average Liquid Height (ft.) 8		
11A. Maximum Vapor Space Height (ft.) 19.5	11B. Average Vapor Space Height (ft.) 7		
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume. 190 BBL			
13A. Maximum annual throughput (gal/yr) 31,000/tank	13B. Maximum daily throughput (gal/day) 300		
14. Number of tank turnovers per year 5(max)	15. Maximum tank fill rate (gal/min) 6		
16. Tank fill method 🗌 Submerged 🛛 Splash	Bottom Loading		
17. Is the tank system a variable vapor space system?	🔀 No		
If yes, (A) What is the volume expansion capacity of the system	(gal)?		
(B) What are the number of transfers into the system per year?			
18. Type of tank (check all that apply):			
\square Fixed Roof $_X_$ vertical $_$ horizontal $_$ fla	t roof cone roof dome roof other (describe)		
 External Floating Roof pontoon roof doub Domed External (or Covered) Floating Roof Internal Floating Roof vertical column support Variable Vapor Space lifter roof diaphrag Pressurized spherical cylindrica Underground Other (describe) 	self-supporting		

III. TANK CONSTRUCTION AND OPERATION INFORMATION (check which one applies)

□ Refer to enclosed TANKS Summary Sheets
 ☑ Refer to the responses to items 19 – 26 in section VII

IV. SITE INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

Refer to the responses to items 27 - 33 in section VII

V. LIQUID INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets									
\boxtimes Refer to the responses to items 34 – 39 in section VII									
VI. EMISSIONS AND	CONT	ROL DI	EVICE I	DATA (re	equired)				
40. Emission Control Dev	ices (che	ck as man	y as apply	<i>i</i>):					
Does Not Apply					re Disc (
\Box Carbon Adsorption ¹						ket of			
Vent to Vapor Combus	stion Dev	vice ¹ (vapo	or combus	tors, flares	, thermal	oxidizers)			
Condenser ¹				Conse	ervation	Vent (psig			
\Box Other ¹ (describe)				Vacuu	n Setting	g Pre	ssure Sett	ing	
				Emer	gency Re	elief Valve	(psig)		
¹ Complete appropriate Air									
41. Expected Emission Ra	te (subm	it Test Da	ta or Calc	ulations he	ere or els	ewhere in t	he applica	tion).	
Material Name and	Flashi	ng Loss	Breath	ing Loss	Worki	ng Loss	Total		Estimation Method ¹
CAS No.							Emissio	ns Loss	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
VOCs							12.43	54.4	Promax Model
(Un-controlled)									I folliar biodel
									Stream 144 attached
Individual constituents									
Individual constituents In provided Promax									Stream 144 attached
									Stream 144 attached
In provided Promax									Stream 144 attached
In provided Promax Output for Stream 144									Stream 144 attached In Calculations
In provided Promax Output for Stream 144 Tanks T01-T06 Combined									Stream 144 attached In Calculations Tanks Emissions
In provided Promax Output for Stream 144 Tanks T01-T06 Combined									Stream 144 attached In Calculations Tanks Emissions
In provided Promax Output for Stream 144 Tanks T01-T06 Combined									Stream 144 attached In Calculations Tanks Emissions
In provided Promax Output for Stream 144 Tanks T01-T06 Combined									Stream 144 attached In Calculations Tanks Emissions

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

SECTION VII (required if did not provide TANKS Summary Sheets)

TANK CONSTRUCTION AND OPERATIO	N INFORMATION			
19. Tank Shell Construction:				
Riveted Gunite lined Epot	xy-coated rivets Other (describe)			
20A. Shell Color: Blue	20B. Roof Color: Blue	20C. Year Last Painted: 2011		
21. Shell Condition (if metal and unlined):				
🛛 No Rust 🗌 Light Rust 🗌 Dens	e Rust 🔲 Not applicable			
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating temperature:	22C. If yes, how is heat provided to tank?		
23. Operating Pressure Range (psig): Less than	n 0.3 psig			
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome roof provide radius (ft):	24B. If yes, for cone roof, provide slop (ft/ft)		
Yes No	N/A	N/A		
25. Complete item 25 for Floating Roof Tanks	Does not apply			
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type (check one): Met	tallic (mechanical) shoe seal 🛛 Liquid me	ounted resilient seal		
□ Vapor mounted resilient seal □ Other (describe):				
25C. Is the Floating Roof equipped with a seco	ndary seal? Yes No			
25D. If yes, how is the secondary seal mounted	? (check one) Shoe Rim O	ther (describe):		

25E. Is the floating roof equipped with a weather	er shield? 🗌 Yes		No		
25F. Describe deck fittings:					
26. Complete the following section for Interna			11	-	
26A. Deck Type: Dolted V	Welded	26B. I	For bolted decks,	, provide dec	k construction:
26C. Deck seam. Continuous sheet constructio			10.6 11		1 1 \
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide					describe)
26D. Deck seam length (ft.): 26E. Area	of deck (ft^2):		For column suppo	orted	26G. For column supported
		tanks,	# of columns:		tanks, diameter of column:
SITE INFORMATION:					
27. Provide the city and state on which the data	in this section are based:				
28. Daily Avg. Ambient Temperature (°F):			nnual Avg. Maxi	1	rature (°F):
30. Annual Avg. Minimum Temperature (°F):	2		vg. Wind Speed		
32. Annual Avg. Solar Insulation Factor (BTU/	'ft ² -day):	33. At	mospheric Press	ure (psia):	
LIQUID INFORMATION:					
34. Avg. daily temperature range of bulk	34A. Minimum (°F): I	Promax 1	Model based		imum (°F): Promax Model based
liquid (°F): 70	on steady state			on steady	
35. Avg. operating pressure range of tank	35A. Minimum (psig):	:			imum (psig):
(psig):	0 psig			0.3 psig	
0-0.3 psig		1			
36A. Minimum liquid surface temperature (°F)	:		Corresponding va		-
37A. Avg. liquid surface temperature (°F):			Corresponding va		
38A. Maximum liquid surface temperature (°F)			Corresponding va		e (psia):
39. Provide the following for each liquid or gas	to be stored in the tank.	Add add	litional pages if 1	necessary.	
39A. Material name and composition:	Condensate				
39B. CAS number:	N/A				
39C. Liquid density (lb/gal):	5.76				
39D. Liquid molecular weight (lb/lb-mole):	98.49				
39E. Vapor molecular weight (lb/lb-mole):	36.66				
39F. Maximum true vapor pressure (psia):					
39G. Maxim Reid vapor pressure (psia):	11.14				
39H. Months Storage per year. From:	Continuous				
To:					

Page: 1 GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: Roger Weese File Name: C:\Rogers_Files\Misc\Triad Hunter\Weese\R. Weese 2015\Roger Weese.ddf Date: September 17, 2015 DESCRIPTION: Description: 3 MMCFD Dehy Flash Gas to Combustor Annual Hours of Operation: 8760.0 hours/yr WET GAS: 65.00 deg. F 420.00 psig Temperature: Pressure: Wet Gas Water Content: Saturated Component Conc. (vol %) Carbon Dioxide 0.1710 Nitrogen 0.4460 Methane 79.1390 13.5620 Ethane Propane 4.1280 Isobutane 0.5650 n-Butane 1,0180 0.2850 Isopentane n-Pentane 0.2520 Cyclopentane 0.1390 n-Hexane 0.0870 Cyclohexane 0.0110 Heptanes 0,1090 Benzene 0.0020 Toluene 0.0050 0.0020 Xylenes C8+ Heavies 0.0800 DRY GAS: Flow Rate: 3.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF LEAN GLYCOL: Glycol Type: TEG Water Content: 1.5 wt% H2O culation Ratio: 3.0 gal/lb H2O Recirculation Ratio: PUMP : ______ Glycol Pump Type: Gas Injection Gas Injection Pump Volume Ratio: 0.080 acfm gas/gpm glycol

.

)

)

Flash Control: Vented to atmosphere Temperature: 90.0 deg. F Pressure: 40.0 psig

.

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Roger Weese
File Name: C:\Rogers_Files\Misc\Triad Hunter\Weese\R. Weese 2015\Roger Weese.ddf
Date: September 17, 2015

DESCRIPTION:

Description: 3 MMCFD Dehy Flash Gas to Combustor

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.0160	0.384	0.0701
Ethane	0.0256	0.615	0.1123
Propane	0.0373	0.894	0.1632
Isobutane	0.0135	0.323	0.0590
n-Butane	0.0389	0.933	0.1703
Isopentane	0.0174	0.418	0.0764
n-Pentane	0.0229	0.550	0.1004
Cyclopentane	0.0837	2.008	0.3664
n-Hexane	0.0243	0.583	0.1064
Cyclohexane	0.0187	0.448	0.0818
Heptanes	0.0994	2.385	0.4353
Benzene	0.0389	0.934	0.1705
Toluene	0.1872	4.494	0.8201
Xylenes	0.1951	4.681	0.8544
C8+ Heavies	0.4510	10.823	1.9753
Total Emissions	1.2698	30.476	5.5618
Total Hydrocarbon Emissions	1.2698	30.476	5.5618
Total VOC Emissions	1.2282	29.477	5.3795
Total HAP Emissions	0.4455	10.692	1.9513
Total BTEX Emissions	0.4212	10.109	1.8450

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	1.1748	28.194	5.1454
Ethane	0.4840	11.617	2.1201
Propane	0.2758	6.619	1.2079
Isobutane	0.0605	1.453	0.2652
n-Butane	0.1273	3.055	0.5575
Isopentane	0.0465	1.116	0.2037
n-Pentane	0.0473	1.135	0.2071
Cyclopentane	0.0462	1.110	0.2025

.

n-Hexane Cyclohexane	0.0252 0.0051	0.605 0.123	Page: 2 0.1103 0.0224
Heptanes	0.0459	1.103	0.2012
Benzene	0.0011	0.028	0.0050
Toluene	0.0032	0.078	0.0142
Xylenes	0.0011	0.028	0.0050
C8+ Heavies	0.0224	0.537	0.0981
Total Emissions	2.3666	56.798	10.3657
Total Hydrocarbon Emissions	2.3666	56.798	10.3657
Total VOC Emissions	0.7078	16.987	3.1002
Total HAP Emissions	0.0307	0.737	0.1346
Total BTEX Emissions	0.0055	0.133	0.0242

EQUIPMENT REPORTS:

ABSORBER

1

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages:	1.25
Calculated Dry Gas Dew Point:	2.83 lbs. H2O/MMSCF

Temperature:	65.0	deg. F
Pressure:	420.0	psig
Dry Gas Flow Rate:		MMSCF/day
Glycol Losses with Dry Gas:	0.0031	lb/hr
Wet Gas Water Content:	Saturated	
Calculated Wet Gas Water Content:	38.32	lbs. H2O/MMSCF
Specified Lean Glycol Recirc. Ratio:	3.00	gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	7.38%	92.62%
Carbon Dioxide	99.94%	0.06%
Nitrogen	100.00%	0.00%
Methane	100.00%	0.00%
Ethane	99.99%	0.01%
Propane	99.978	0.03%
Isobutane	99.968	0.04%
n-Butane	99.948	0.06%
Isopentane	99.938	0.07%
n-Pentane	99.938	0.09%
Cyclopentane	99.62%	0.38%
n-Hexane	99.82%	0.18%
Cyclohexane	99.25%	0.75%
Heptanes	99.62%	0.38%
Benzene	92.24%	7.76%

Pag	e:	3

Toluene	87.47%	12.53%
Xylenes	71.97%	28.03%
C8+ Heavies	98.97%	1.03%

FLASH TANK

Flash Control: Vented to atmosphere Flash Temperature: 90.0 deg. F Flash Pressure: 40.0 psig

Component	Left in Glycol	Removed in Flash Gas
Water	99.95%	0.05%
Carbon Dioxide	17.81%	82.19%
Nitrogen	1.25%	98.75%
Methane	1.34%	98.66%
Ethane	5.03%	94.97%
Propane	11.90%	88.10%
Isobutane	18.21%	81.79%
n-Butane	23.40%	76.60%
Isopentane	27.53%	72.47%
n-Pentane	32.92%	67.08%
Cyclopentane	64.57%	35.43%
n-Hexane	49.30%	50.70%
Cyclohexane	79.19%	20.81%
Heptanes	68.53%	31.47%
Benzene	97.28%	2.72%
Toluene	98.44%	1.56%
Xylenes	99.49%	0.51%
C8+ Heavies	95.83%	4.17%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	27.128	72.88%
Carbon Dioxide	0.008	100.00%
Nitrogen	0.008	100.00%
Methane	0.008	100.00%
Ethane	0.008	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	1.34%	98.66%
n-Pentane	1.20%	98.80%
Cyclopentane	0.73%	99.27%
n-Hexane	0.89%	99.11%
Cyclohexane	3.91%	96.09%
Heptanes	0.68%	99.32%

Benzene	5.13%	Page: 94.87%
Toluene Xylenes	8.02% 12.98%	91.98% 87.02%
C8+ Heavies	12.30%	87.70%

4

.

STREAM REPORTS:

WET GAS STREAM

Temperature: 65.00 deg. F Pressure: 434.70 psia Flow Rate: 1.25e+005 scfh		
Component		Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	8.07e-002 1.71e-001 4.46e-001 7.91e+001 1.36e+001	2.48e+001 4.12e+001 4.18e+003
Isobutane n-Butane Isopentane	4.12e+000 5.65e-001 1.02e+000 2.85e-001 2.52e-001	1.08e+002 1.95e+002 6.77e+001
Cyclohexane Heptanes	8.69e-002	2.47e+001 3.05e+000 3.60e+001
	5.00e-003 2.00e-003 7.99e-002	7.00e-001
Total Components	100.00	6.77e+003

DRY GAS STREAM

)

Temperature: Pressure: Flow Rate:	65.00 deg. F 434.70 psia 1.25e+005 scfh		
	Component	Conc. (vol%)	Loading (lb/hr)
	Carbon Dioxide Nitrogen Methane	5.96e-003 1.71e-001 4.46e-001 7.91e+001 1.36e+001	2.48e+001 4.12e+001 4.18e+003

Isobutane n-Butane Isopentane	4.13e+000 5.65e-001 1.02e+000 2.85e-001 2.52e-001	1.08e+002 1.95e+002 6.77e+001
Cyclohexane Heptanes	8.69e-002	2.47e+001 3.03e+000 3.59e+001
	 -	5.03e-001

LEAN GLYCOL STREAM

7

)

Temperature: 65.00 deg. F Flow Rate: 1.96e-001 gpm		
Component		Loading (lb/hr)
	9.84e+001 1.50e+000	
Carbon Dioxide	1.38e-012	1.52e-012
	1.32e-013 4.31e-018	
	7.40e-008	
	6.01e-009 1.28e-009	
	2.64e-009	
	2.14e-004	
	2.52e-004	
Cyclopentane		
Cyclohexane	1.98e-004	
	6.22e-004	
	1.91e-003	
	1.48e-002	
Xylenes C8+ Heavies	2.64e-002 5.74e-002	
Total Components	100.00	1.10e+002

RICH GLYCOL AND PUMP GAS STREAM

Temperature: Pressure: Flow Rate: NOTE: Stream	434.70 ps 2.12e-001 gr	sia pm	ase.	
	Component		Conc.	Loading

Component	Conc.	Loading
	(wt%)	(lb/hr)

Page: 5

.

Page: 6

TEG 9.16e+001 1.08e+002 Water 5.16e+000 6.09e+000 Carbon Dioxide 1.81e-002 2.14e-002 Nitrogen 9.96e-003 1.18e-002 Methane 1.01e+000 1.19e+000 Ethane 4.31e-001 5.10e-001 Propane 2.65e-001 3.13e-001 Isobutane 6.26e-002 7.40e-002 n-Butane 1.41e-001 1.66e-001 Isopentane 5.43e-002 6.42e-002 n-Pentane 5.96e-002 7.05e-002 Cyclopentane 1.10e-001 1.30e-001 n-Hexane 4.21e-002 4.97e-002 Cyclohexane 2.08e-002 2.46e-002 Heptanes 1.24e-001 1.46e-001 Benzene 3.57e-002 4.22e-002 Toluene 1.75e-001 2.07e-001 Xylenes 1.91e-001 2.25e-001 C8+ Heavies 4.54e-001 5.37e-001 _____ ___ Total Components 100.00 1.18e+002

FLASH TANK OFF GAS STREAM

 Temperature: Pressure: Flow Rate:	90.00 deg. F 54.70 psia 3.90e+001 scfh				
	Component		Loading (lb/hr)		
	Carbon Dioxide Nitrogen Methane	1.58e-001 3.89e-001 4.04e-001 7.13e+001 1.57e+001	1.76e-002 1.16e-002 1.17e+000		
	Isobutane n-Butane Isopentane	6.09e+000 1.01e+000 2.13e+000 6.27e-001 6.38e-001	6.05e-002 1.27e-001 4.65e-002		
	Cyclohexane Heptanes	2.84e-001	2.52e-002 5.11e-003 4.59e-002		
		3.42e-002 1.05e-002 1.28e-001	1.15e-003		
	Total Components	100.00	2.40e+000	Voc	p

000 Mass Flow 3 0.714 16/Hz

FLASH TANK GLYCOL STREAM

Page: 7

Temperature: 90.00 deg. F Flow Rate: 2.07e-001 gpm

)

 $\frac{1}{j}$

Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.35e+001 5.26e+000 3.29e-003 1.27e-004 1.38e-002	6.09e+000 3.81e-003 1.47e-004
Propane Isobutane	2.21e-002 3.22e-002 1.16e-002 3.36e-002 1.53e-002	3.73e-002 1.35e-002 3.89e-002
Cyclopentane n-Hexane Cyclohexane	2.12e-002	8.43e-002 2.45e-002 1.94e-002
Toluene		2.04e-001 2.24e-001

REGENERATOR OVERHEADS STREAM

Temperature: Pressure: Flow Rate:	212.00 deg. F 14.70 psia 9.88e+001 scfh		
	Component		Loading (lb/hr)
		9.46e+001	
	Carbon Dioxide	3.32e-002	3.81e-003
		2.02e-003	
		3.83e-001	
	Ethane	3.27e-001	2.56e-002
	Propane	3.24e-001	3.73e-002
	Isobutane	8.90e-002	1.35e-002
		2.57e-001	
		9.28e-002	
	n-Pentane	1.22e-001	2.29e-002
	Cyclopentane	4.58e-001	8.37e-002
		1.08e-001	
	Cyclohexane		
		3.81e-001	
	-	1.91e-001	
	Toluene	7.80e-001	1.87e-001
		7.05e-001	
	C8+ Heavies		

Page: 8 Total Components 100.00 5.71e+000

 $\langle \rangle$

)

ATTACHMENT H

Air Pollution Control Device Sheets

()

}

Equipment Specification Report

Engine Data

Number of Engines:	수전 물 수업 방법은 전 영상 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전
Application:	Gas Compression
Engine Manufacturer:	Cumminns
Model Number:	GTA855
Power Output:	225 bhp
Lubrication Oil:	0.6 wt% sulfated ash or less
Type of Fuel:	Natural Gas
Exhaust Flow Rate:	945 acfm (cfm)
Exhaust Temperature:	1250 F
System Details	
Housing Model Number:	VXC-1610-05-HSG

Element Model Number:	VX-RE-10XC
Number of Catalyst Layers:	1
Number of Spare Catalyst Layers:	1
System Pressure Loss:	3.0 inches of WC (Clean)
Sound Attenuation:	28-32 dBA insertion loss
Exhaust Temperature Limits:	750 - 1250°F (catalyst inlet); 1350°F (catalyst outlet)

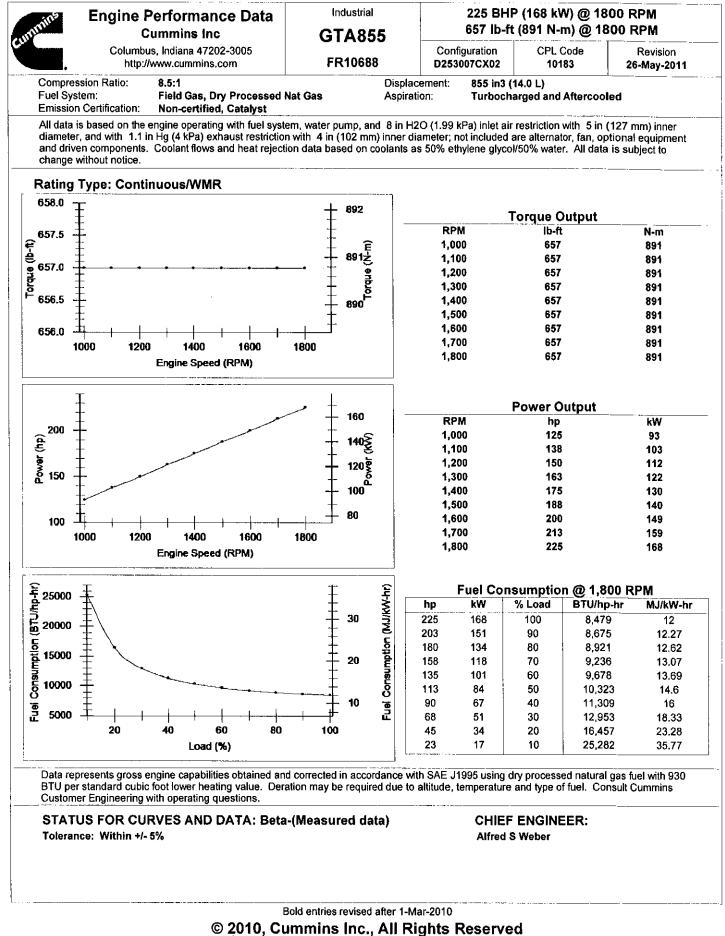
NSCR Housing & Catalyst Details

Model Number:	VXC-1610-XC1					
Material:	Carbon Steel					
Inlet Pipe Size & Connection:	5 inch FF Flange, 150# ANSI standard bolt pattern					
Outlet Pipe Size & Connection:	5 inch FF Flange, 150# ANSI standard bolt pattern					
Overall Length:	65 inches					
Weight Without Catalyst:	191 lbs					
Weight Including Catalyst:	205 lbs					
Instrumentation Ports:	1 inlet/1 outlet (1/2" NPT)					

Emission Requirements

Exhaust Gases	Engine Outputs (g/bhp-hr)	Reduction (%)	Warranted Converter Ouputs (g/bhp-hr)	Requested Emissions Targets
NO _x *	12.1	75	3.02	75 Reduction %
со	2.9	50	1.45	50 Reduction %
NMNEHC**	0.3	50	0.15	50 Reduction %
CH ₂ O	0.1			
PM ₁₀	0.1			
02	0.4%			
H2O	18.5%			

† MIRATECH warrants the performance of the converter, as stated above, per the MIRATECH General Terms and Conditions of Sale.


*MW referenced as NO₂ **MW referenced as CH₄. Assumed as 100% unsaturated HCs. Average at steady state per EPA 40CFR60 Method 25A for HC or mutually agreed test method.

Emissions Report

	USA Compres	ssion Unit	5103	GTA855/H302				
Engine Serial Number :	25327442		Engine Mar	ufactured Date :	12/01/2007			
Max HP :	225		Max RPM :		1800			
Number of Engine Cylinders :	6		Total Displa	cement (in3) :	855			
Combustion Type & Setting :	4 Stroke Rich Burn		Fuel Deliver		Carburetor			
Compression Ratio :	8.5:1		Combustion	Air Treatment :	Turbocharge	d and A	ftercooled	
Engine Modified/Reconstructed? :								
Compressor Frame Serial # :	HSR-003539		Unit Packag	ged Date :	01/16/2009			
Compressor Frame Max RPM :	0	#	f of Compre	ssor Throws :	2			
AIR ENVIRONMENTAL REGULATI	19			4 I				
County and State Selected for Quo	ote: Wetzel			WV				
NSPS JJJJ	NOx	g/hp-hr	со	g/hp-hr VOC	g/hp-hr			
Ozone Non-Attainment / General P	Permit NOx	g/hp-hr	со	g/hp-hr VOC	g/hp-hr		?O g/hp-h	
RAW ENGINE EMISSIONS								
(based on assumption of burning 9	00-970 LHV BTU/SCF or	80-85 Fuel Met	nane # Fuel	Gas with little to no H2	:S)			
	0 HHV BTU/bhp-hr							
ne na statisticka statisticka statisticka. Na munesta okona statista		g/bł	np-hr	Ib/MMBTU		<u>lb/hr</u>	TPY	
Nitrogen Oxides (NOx) :		12		6.002 26.289				
Carbon Monoxide (CO) :			2.90					
Volatile Organic Compounds (NMM	NEHC excluding CH2O) :	0.03			1. 10. V. Sectores		6.298 0.276	
Formaldehyde (CH2O) :		0.02			0.043 0.18			
Particulate Matter (PM) Filterable+	Condensable ·	0.0194				0.043	0.188	
Sulfur Dioxide (SO2) :	condensable .			0.0006		0.001		
				0.0008		0.001	0.005	
		g/bł	<u>np-hr</u>	Ib/MMBTU	<u> </u>	b/hr	Metric Tonne/yr	
Carbon Dioxide (CO2) :		52	4.00		2	259.92	1,032.61	
Methane (CH4) :				0.23		0.49	1.94	
CONTROLLED EMISSIONS			Part in the					
Catalytic Converter Make and Mod	lel:	VXC-1610-0)5-HSG					
Catalyst Element Type:		3-Way						
Number of Catalyst Elements curre	ently in Housing:	0						
Air/Fuel Ratio Control :	,	Yes						
Other Engine Emissions Control Ed	quipment :							
		% Reduction	on Required	to Comply with				
				eneral Permit Limits	lb/hr		TPY	
Nitrogen Oxides (NOx) :			0	a kora s	6.002		26.289	
Carbon Monoxide (CO) :			0		1.438		6.298	
and the second	NEHC excluding CH2O):		0		0.063		0.276	
Volatile Organic Compounds (NMN					0.043		0.188	
and the second of the second	Particulate Matter (PM) Filterable+Condensable :				0.041		0.180	
Formaldehyde (CH2O) :	Condensable :		0				0.005	
Formaldehyde (CH2O) : Particulate Matter (PM) Filterable+	Condensable :		0		0.001		0.005	
Formaldehyde (CH2O) :	Condensable :	% Reduction		to Comply with	0.001		0.005	
Formaldehyde (CH2O) : Particulate Matter (PM) Filterable+	Condensable :		on Required	to Comply with eneral Permit Limits				
Formaldehyde (CH2O) : Particulate Matter (PM) Filterable+	Condensable :		on Required	to Comply with eneral Permit Limits	0.001 <u>lb/hr</u> 259.92		Metric Tonne/yr 1,032.61	

1) g/bhp-hr are based on Engine Manufacturer Specifications assuming a "Pipeline Quality" fuel gas composition, 1200 ft elevation, and 100- 110 F Max Air Inlet. Note that g/bhp-hr values are based on 100% engine load operation and some g/hp-hr values are Nominal and are not representative of Not- To-Exceed values. It is recommended to apply safety factor (i.e. increase the value by a nominal percentage) to the g/hp-hr values for Air Permitting to allow for operational flexibility and variations in fuel gas composition . 2) lb/MMBTU emission Factors are based on EPA's AP-42, Fifth Edition, Volume I, Chapter 3: Stationary Internal Combution Sources (Section 3.2 Natural Gas-Fired Reciprocating Engines).

© 2010, Cummins Inc., All Rights Reserved Cummins Confidential and Proprietary Controlled copy is located on gce.cummins.com

							FR10688	8 (Continued) Page:		
Intake Air System										
Maximum allowable air temperature rise over ambient at Intake Manifold (Naturally Aspirated Engines) or Turbo Compressor inlet (Turbo-charged Engines): (This parameter impacts emissions, LAT and/or altitude capability)						15	delta deg F	8.3	delta deg C	
Low Temperature Aftercod	oling System									
Coolant temperature from the temperature at Limiting Aml		@ Maxim	um engir	ie coolant	out					
Maximum coolant temperature	e into the Aftercool	er @ 25C	(77F) ar	nbient						
Maximum coolant temperature					5	130	deg F	54	dea C	
Maximum coolant temperature	e for engine protect	tion contro	ols			212	deg F		deg C	
Maximum coolant operating te	emperature at engi	ne outlet ((max, top	tank temp	»):	204	deg F		deg C	
Exhaust System										
Maximum exhaust back press	ure:					2	in-Hg	7	kPa	
Recommended exhaust piping	g size (inner diame	ter):					in		mm	
Lubrication System										
Nominal operating oil pressure	е									
@ minimum low idle						15	psi	103	kPa	
@ maximum rated s	speed						, psi	414	kPa	
Minimum engine oil pressure	for engine protection	on device:	s							
@ minimum low idle						15	psi	103	kPa	
Fuel System										
Minimum fuel inlet pressure:						0	psi	2	kPa	
Maximum fuel inlet pressure:						1	psi	5	kPa	
Performance Data										
Engine low idle speed:						900	RPM			
Maximum low idle speed:						1,980	RPM			
Minimum low idle speed:						850	RPM			
Engine high idle speed						1,800	RPM			
Governor break speed:										
Maximum torque available at	closed throttle low	idle spee	d:			0	lb-ft	0	N-m	
]	100	% Load		<u> </u>	75%	& Load		50% Load		
Engine Speed	1.600 RPM			1.800	RPM		1,800 🕅			
Output Power	225 hp	168	kW	169		126 kW	113 h		84 kW	
Torque	657 lb-ft	891	N-m		lb-ft	668 N-m	330 it	•	47 N-m	

Engine Speed	1,800	RPM			1,800	RPM			1,800	RPM		
Output Power	225	hp	168	kW	169	hp	126	kW	113	hp	84	k₩
Torque	657	lb-ft	891	N-m	493	lb-ft	668	N-m	330	lb-ft	447	N-m
Intake Manifold Pressure	9	in-Hg	30	kPa	2	in-Hg	7	kPa	-3	in-Hg	-11	kPa
Turbo Comp. Outlet Pressure	22	in-Hg	73	kPa	15	in-Hg	49	kPa	8	in-Hg	28	kPa
Turbo Comp. Outlet Temperature	235	deg F	113	deg C	196	deg F	91	deg C	159	deg F	71	deg C
Inlet Air Flow	411	ft3/min	194	L/s	329	ft3/min	155	L/s	236	ft3/min	111	-
Exhaust Gas Flow	945	ft3/min	446	L/s	757	ft3/min	357	L/s	553	ft3/min	261	Us
Exhaust Gas Temperature	1,304	deg F	707	deg C	1,254	deg F		deg C	1,195	deg F		deg C
Heat Rejection to Coolant	11,445	BTU/min	201	ĸw	9,835	BTU/min	173	-	-	BTU/min	145	-
Heat Reject to Aftercooler Coolant	807	BTU/min	14	kW	-	BTU/min	10	kW		BTU/min		kW
Heat Rejection to Ambient	1,904	BTU/min	33	ĸw	1,707	BTU/min	30	kW		BTU/min		kW
Heat Rejection to Exhaust	8,137	BTU/min		kW		BTU/min		kW		8TU/min		kW
Fuel Consumption Air Fuel Ratio (dry)		BTU/hp-hr vol/vol	12	MJ/kW-hr	9,077	BTU/hp-hr vol/vol		MJ/kW-hr	10,323	BTU/hp-hr vol/vol		MJ/kW-I
Ignition timing (BTDC) Total Hydrocarbons VOC ppm w/o Catalyst		deg g/hp-hr	26	deg		deg g/hp-hr	26	deg		deg g/hp-hr	26	deg
VOC ppm with Catalyst NOx NOx ppm w/o Catalyst	12.1	g/hp-hr	16.23	g/kW-hr	10.8	g/hp-hr	14.48	g/kW-hr	8.4	g/hp-hr	11.26	g/kW-hr
NOx ppm with Catalyst CO CO ppm w/o Catalyst	2.9	g/hp-hr	3.89	g/kW-hr	4.4	g/hp-hr	5.9	g/kW-hr	4.5	g/hp-hr	6.03	g/kW-hr
CO ppm with Catalyst CO2 O2	524 0.41	g/hp-hr %	703	g/kW-hr	555 0.42	g/hp-hr %	744	g/kW-hr	588 0.42	g/hp-hr %	789	g/kW-hr

Bold entries revised after 1-Mar-2010

© 2010, Cummins Inc., All Rights Reserved Cummins Confidential and Proprietary Controlled copy is located on gce.cummins.com

ranking System (Cold Starting Capability)		
Unaided Cold Start:		
Minimum cranking speed	150 RPM	
Breakaway torque at minimum unaided cold start temperature:	375 lb-ft	508 N-m
Cold starting aids available	Block Heater, Oi	Pan Heater
Maximum parasitic load at 10 deg F @		
loise Emissions		
Тор	94.2 dBa	
Right Side	91 dBa	
Left Side	93.4 dBa	
Front	92,9 dBa	
Exhaust noise emissions	106.9 dBa	
Estimated Free Field Sound Pressure Level at 3.28ft (1m) and Full-Load Governed Speed (Excludes Noise from Intake, Exhaust, Cooling System and Driven Components)		

Aftercooler Heat Rejection - Heat Load on Aftercooler BTU/min (kW)

		Ambient Temp deg F (deg C)								
		120 (49)	110 (43)	100 (38)	90 (32)	80 (27)	70 (21)			
	0 (0)	896 (15.8)	839 (14.8)	775 (13.6)	718 (12.6)	654 (11.5)	597 (10.5)			
	1000 (305)	944 (16.6)	880 (15.5)	823 (14.5)	759 (13.3)	702 (12.3)	638 (11.2)			
	2000 (610)	993 (17.5)	928 (16.3)	863 (15.2)	807 (14.2)	742 (13,0)	686 (12.1)			
	3000 (914)	1,041 (18.3)	976 (17.2)	912 (16.0)	855 (15.0)	791 (13.9)	726 (12.8)			
	4000 (1219)	1,081 (19.0)	1,025 (18.0)	960 (16.9)	896 (15.8)	831 (14.6)	767 (13.5			
ltitude	5000 (1524)	1,138 (20.0)	1,073 (18.9)	1,009 (17.7)	944 (16.6)	879 (15.5)	815 (14.3			
ft (m)	6000 (1829)	1,138 (20.0)	1,073 (18.9)	1,008 (17.7)	944 (16.6)	879 (15.5)	815 (14.3			
	7000 (2134)	1,138 (20.0)	1,073 (18.9)	1,008 (17.7)	944 (16.6)	879 (15.5)	815 (14.3)			
-	8000 (2438)	1,138 (20.0)	1,073 (18.9)	1,008 (17.7)	944 (16.6)	879 (15.5)	815 (14.3)			
	9000 (2743)	1,138 (20.0)	1,073 (18.9)	1,008 (17.7)	944 (16.6)	879 (15.5)	815 (14.3			
	10000 (3048)	1,138 (20.0)	1,073 (18.9)	1,008 (17.7)	944 (16.6)	879 (15.5)	815 (14.3)			

Change Log

Date	Author

Change Description

7/3/2007 Cary A McFarden

Add noise data

End of Report

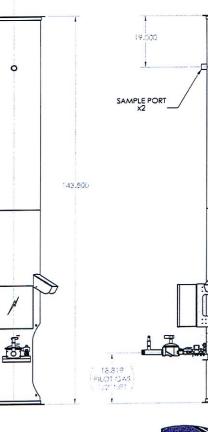
Bold entries revised after 1-Mar-2010

© 2010, Cummins Inc., All Rights Reserved Cummins Confidential and Proprietary Controlled copy is located on gce.cummins.com

Gene. Arrangement Drawing

F

Е


D

С

в

NOTE: This drawing is intended for your review and approval of the general arrangement for an ABUTEC 20 Some dimensions are subject to change during the final engineering phase of this project. "As Built" drawings will be provided at engineering completion.

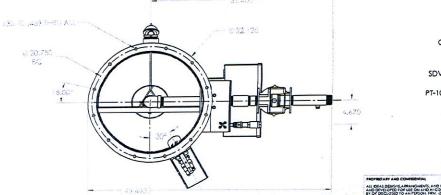
> > 7

5

ó

ð

3


CONTINUOUS PILOT

2

Ε

D

С

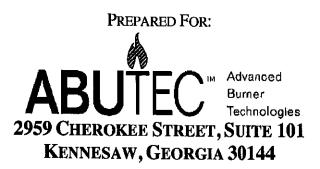
6

PA-101 SDV-101 BV-101 BV-10

Ē

ANTERN UNELS ON OPENNES MECHED: DIVIDUES ON OPENNES MECHED: TRACEDING: ANTONACE SCONE: MICH SCONE: MICH

1


5 4 3 2

ADVANCED INDUSTRIAL RESOURCES, INC.

MANUFACTURER'S CERTIFICATION PERFORMANCE TEST ENCLOSED GAS VAPOR COMBUSTOR CERTIFICATION TEST ENCLOSED GAS VAPOR COMBUSTORS (Small Combustion Utility Flare (SCUF) MTF 0.7 and MTF 2.7)

AT ABUTEC – Advanced Burner Technologies Chattanooga, Tennessee

PREPARED BY: ADVANCED INDUSTRIAL RESOURCES, INC. 3407 Novis Pointe Acworth, Georgia 30101

OCTOBER 18-23, 2012

3407 NOVIS POINTE ACWORTH, GEORGIA 30101 V, 404.843,2100 F, 404.845.0020

ADVANCED INDUSTRIAL RESOURCES, INC.

CERTIFICATION SHEET

Having conducted the Technical Review of this report, I hereby certify the data, information, results, and calculations in this report to be accurate and true according to the methods and procedures used.

Derek Stephens Technical Director Advanced Industrial Resources

December 13, 2012 Date

Having written and prepared this report, I hereby certify that the data, information and results in this report to be correct and all inclusive of the necessary information required for a complete third-party review of the testing event.

too has

Steven Haigh Report Preparation Director Advanced Industrial Resources

December 13, 2012 Date

Having supervised all aspects of the field testing, I hereby certify the equipment preparation, field sample collection procedures, and all equipment calibrations were conducted in accordance to the applicable methodologies.

m A. A.

Bill Nelson Field Project Supervisor Advanced Industrial Resources

October 26, 2012 Date

3407 NOVIS POINTE ACWORTH, GEORGIA 30101 / V. 404,843,2100 / F. 404,845,0020

TABLE OF CONTENTS

1

ì

<u>1.0</u>	INTRODUCTION
1.1	SUMMARY OF TEST PROGRAM 1
1.2	KEY PERSONNEL
• •	
<u>2.0</u>	PLANT AND SAMPLING LOCATION DESCRIPTIONS
2.1	PROCESS & CONTROL EQUIPMENT DESCRIPTION
2.2	SAMPLING LOCATION
<u>3.0</u>	SUMMARY AND DISCUSSION OF TEST RESULTS
3.1	OBJECTIVES
3.2	FIELD TEST CHANGES AND PROBLEMS
3.3	PRESENTATION OF TEST RESULTS
4.0	SAMPLING AND ANALYTICAL PROCEDURES
5.0	QUALITY ASSURANCE ACTIVITIES
2.0	UALITT ASSURANCE ACTIVITIES
F 1	
5.1 5.1.1	GAS ANALYZER CALIBRATION
5.1.2	2 MEASUREMENT SYSTEM PREPARATION
5.1.3	
5.1.4	
5.1.5	5 ZERO AND CALIBRATION DRIFT CHECKS
5.1.0	
5.2	NO ₂ -NO CONVERSION EFFICIENCY
5.3	INSTRUMENT INTERFENCE RESPONSE
5.4	INSTRUMENT RESPONSE TIME 12
5.5	DATA REDUCTION CHECKS
6.0	DATA QUALITY OBJECTIVES 14
210	

LIST OF APPENDICES

- APPENDIX A TEST RESULTS
- APPENDIX B FIELD DATA REDUCTION
- APPENDIX C EXAMPLE CALCULATIONS AND NOMENCLATURE
- APPENDIX D FIELD DATA (SEE ATTACHED FILE FOR COMPLETE MONITOR DATA)
- APPENDIX E LABORATORY REPORT
- APPENDIX F CALIBRATION DATA
- APPENDIX G PROCESS OPERATION DATA

1.0 INTRODUCTION

1.1 SUMMARY OF TEST PROGRAM

ABUTEC, an acronym for Advanced Burner Technologies, is an international manufacturer of Environmentally Friendly Combustion Solutions. ABUTEC specializes in offering high efficiency, low emission, burners and flares to various industry segments and applications. ABUTEC manufactures Infrared Burners, Enclosed Flares, Vapor Combustors, Incinerators, Thermal Oxidizers, and CHP "Gas-to-Energy" systems all aimed at reducing plant emissions and increasing efficiency.

ABUTEC is seeking Manufacturers' Certification in accordance to 40 CFR Part 60 Subpart OOOO 60.5413(d) for two (2) models of Enclosed Gas Vapor Combustors including the *Small Combustion Utility Flare (SCUF) MTF 0.7* and *MTF 2.7*. These units are manufactured at ABUTEC's manufacturing facility in Chattanooga, Tennessee.

The following test report describes the sampling and measurement procedures that were used to certify the subject combustors in accordance to Subpart OOOO 60.5413(d). Upon inquiry into the certification process to Mr. Steffan Johnson of the EPA's Measurement Policy Group, it was made aware to AIR and ABUTEC that the Federal Register Volume 77, Number 159 issued on August 16, 2012 contained incorrect information regarding the performance test procedures used to 'manufacturer certify' enclosed combustors. As directed in email correspondence from Mr. Johnson received on September 13, 2012, the test program is to be conducted in accordance to guidelines presented in 40 CFR Part 63 Subpart HH 63.1282(g). It was also indicated by Mr. Johnson at that time that it was anticipated that 60 Subpart OOOO 60.5413(d) test requirements would be corrected and updated in a later revision to the Subpart and an additional Federal Register will be issued as applicable.

However, through additional communication with Mr. Johnson on December 3, 2012, it was determined that there were no current plans for any updated revisions to 60 Subpart OOOO in the near term and that testing needed to be conducted and results assessed in accordance to the currently issued regulation. As stated, this information was not learned until <u>after</u> the testing was completed. Therefore, the test program was conducted in accordance to 63 Subpart HH 63.1282(g) as described above and the associated sitespecific test protocol. The major difference between the two regulatory guidance

7

documents is in the quantity of inlet fuel gas samples to be collected. 63 Subpart HH calls for one (1) inlet fuel sample to be collected per test condition over a period of at least three (3) hours while 60 Subpart OOOO calls for three (3) inlet fuel samples to be collected per test condition over a period of at least one (1) hour per test run. Additionally, 63 Subpart HH does not require the fuel samples to be analyzed for sulfur compounds while 60 Subpart OOOO does require the sulfur compounds to be analyzed. It is noted that although the sulfur compounds were not initially required to be quantified, in fact they were for this test program.

In accordance to 63.1282(g) and 60.5413(d), testing on each unit included determining the inlet volumetric flow rate to the combustors as well as collecting inlet fuel samples for content determination. Additionally, testing on the combustor exhausts included determining the volumetric flow rates, molecular weight, exhaust gas contents, carbon monoxide, visual emissions, and volatile organic compounds measured as propane. Testing on each unit was conducted under four (4) separate operating conditions, as described in this test report.

Testing was conducted on October 18-23, 2012. All testing and sample analysis, as applicable, was conducted by Advanced Industrial Resources, Inc. (*AIR*) in accordance with approved USEPA sampling methods (40 CFR 60 Appendix A Method 1, 2, 2A, 3, 3B, 3C, 4, 10, 22, 25A, 205) and ASTM analytical methods (ASTM D1945, ASTM D3588).

1.2 KEY PERSONNEL

The key personnel who coordinated and this Test Report and their telephone numbers are:

Brad Ward, ABUTEC	770-846-2554
Derek Stephens, Advanced Industrial Resources	800-224-5007
Scott Wilson, Advanced Industrial Resources	404-843-2100

2.0 PLANT AND SAMPLING LOCATION DESCRIPTIONS

2.1 PROCESS & CONTROL EQUIPMENT DESCRIPTION

ABUTEC manufactures several models of Enclosed Gas Vapor Combustors (Combustors). The company seeks 'manufacturers' certification' on two (2) specific models currently in production in accordance to 40 CFR Part 60 Subpart OOOO 60.5413(d). These models include the *Small Combustion Utility Flare (SCUF) MTF 0.7* and *MTF 2.7*.

Testing consisted of four (4) operating conditions per source with three (3), sixty (60) minute tests being conducted under each condition:

<u>Condition 1:</u> 90–100 percent of maximum design rate (fixed rate).

Condition 2: 70–100–70 percent (ramp up, ramp down).

<u>Condition 3:</u> 30–70–30 percent (ramp up, ramp down).

<u>Condition 4:</u> 0–30–0 percent (ramp up, ramp down).

Minimum and maximum design rates are determined by the manufacturer. Through discussion with the manufacturer's representative, Mr. Brad Ward of ABUTEC, it was determined that the minimum design rate (i.e. 0%) for the MTF 2.7 unit was 20 standard cubic feet per minute (SCFM) and the maximum design rate (100%) was 100 SCFM. The minimum design rate for the MTF 0.7 unit was 5 SCFM and maximum was 25 SCFM.

2.2 SAMPLING LOCATION

The (SCUF) MTF 0.7 exhaust stack has a circular cross section with an internal diameter of approximately 18.5 inches. The sampling location is located 3.6 equivalent diameters downstream from the nearest upstream flow disturbance and 4.9 equivalent diameters upstream from the stack exhaust. Two (2) sampling ports oriented 90 degrees to one

ABUTEC – Chattanooga, Tennessee Enclosed Gas Vapor Combustor Certification Test

- north

Ì

another in a plane perpendicular to the flow direction. Sixteen (16) sampling points were used for USEPA Methods 2, 3, and 4 sampling, in accordance with USEPA Method 1 requirements. Three (3) traverse points located at 16.7%, 50%, and 83.3% were used for EPA Methods 10 and 25A sampling.

The (SCUF) MTF 2.7 exhaust stack has a circular cross section with an internal diameter of approximately 33.0 inches. The sampling location is located 3.0 equivalent diameters downstream from the nearest upstream flow disturbance and 2.2 equivalent diameters upstream from the stack exhaust. Two (2) sampling ports oriented 90 degrees to one another in a plane perpendicular to the flow direction. Sixteen, (16), sampling points were used for USEPA Methods 2, 3, and 4 sampling, in accordance with USEPA Method 1 requirements. Three (3) traverse points located at 16.7%, 50%, and 83.3% were used for EPA Methods 10 and 25A sampling.

The inlet gas flow metering system conducted via Method 2A was located at least 8 duct diameters downstream from the fuel contents sampling location during each test set.

3.0 SUMMARY AND DISCUSSION OF TEST RESULTS

3.1 **OBJECTIVES**

Ż

ABUTEC is seeking Manufacturers' Certification in accordance to 40 CFR Part 60 Subpart OOOO 60.5413(d) for two (2) models of Enclosed Gas Vapor Combustors including the *Small Combustion Utility Flare (SCUF) MTF 0.7* and *MTF 2.7*.

3.2 FIELD TEST CHANGES AND PROBLEMS

No significant problems were encountered during testing that required deviation from the planned test protocol. Items of note include the following:

- 1) Initially the inlet volumetric flow rate measurements were attempted to be conducted using a ROOTS Series B3 3M173 Meter via EPA Method 2A. However, because the facility was utilizing the inlet volumetric flow rate measurements to determine the various operating conditions and thus generate the required system fluctuations, this system was found to not be efficient in determining this information. Therefore, prior to beginning the testing, ABUTEC removed the Vane meter from the selected sample location and installed a thermal mass flow measuring system (Model Proline t-mass, 65F, 65I) which provided real-time, instantaneous flow rate measurements. This unit also measured the inlet fuel delivery line pressure and temperature.
- 2) The moisture content of the inlet gas fuel samples was not able to be conducted by the analytical laboratory. This information was also not able to be measured in the field due to the limited access and gas stream characteristics of the inlet fuel delivery sample line and locations.

3.3 PRESENTATION OF TEST RESULTS

Emission test results are presented in Appendix A. Reduced and tabulated data from the field-testing is included in Appendix B. The calculations and nomenclature used to reduce the data are presented in Appendix C. Actual raw field data sheets are presented in Appendix D. Laboratory reports and custody records are presented in Appendix E

7

Equipment calibration information and gas calibration certification sheets are presented in Appendix F. . Process operation data information is presented in Appendix G.

Performance criteria of the control devices (Enclosed Combustors) were assessed as follows:

1) No visible emissions were observed throughout the test periods. Method 22 data sheets are presented and required digital photographs of the exhaust stacks are presented in Appendix D.

2) THC as propane corrected to 3.0 percent CO_2 did not exceed 10.0 ppmvw. Results are presented in Appendix A.

3) CO emissions corrected to 3.0 percent CO_2 did not exceed 10.0 ppmvd. Results are presented in Appendix A.

(4) It was determined that the maximum inlet gas flow rate measured for each unit did not result in emissions of VE, THC, or CO which exceeded the applicable criteria listed above. Results are presented in Appendix A.

(6) The control device HAP destruction efficiency (DRE) requirement (>95.0%) listed in 63 Subpart HH was determined, through communication with the previously referenced EPA contact, to not be applicable to these units and thus was not specifically assessed during this test event and therefore the unit exhaust samples were not requested to be analyzed for HAP contents. Additionally, as indicated by the EPA contact, it is expected that a unit which successfully demonstrates the ability to combust propylene and meet the emissions criteria listed in the rule, will be able to combust >95% of any HAPs or other organic compounds it encounters in field usage with the assumption that no liquid is fed to the burners.

(7) The control device VOC destruction efficiency (DRE) requirement listed in 60 Subpart OOOO is also greater than 95.0%. The inlet 'VOC' mass rates were determined via the inlet fuel sample contents' analysis and fuel flow rate. The exhaust VOC emissions were determined via Method 25A and measured as total hydrocarbons. As expected, the inlet fuel samples contained greater than 99.99% of hydrocarbons (C2-C6+). The resulting DRE was determined to be greater than 99.99% for both units tested.

Additionally, this test report includes the following information:

(i) Full schematic of the control device and dimensions of the device components.

SEE Appendix G.

٦Ľ.

1

(ii) Design net heating value (minimum and maximum) of the devices ranged from 220- 3500 BTU/FT^3 .

(iii) Test fuel gas flow range (in both mass and volume). Include the minimum and maximum allowable inlet gas flowrate. See Appendix A.

(iv) Air/stream injection/assist ranges are not applicable to these units.

(v) The test parameter ranges listed in paragraphs (A) through (O), as applicable for the tested model.

(A) Fuel gas delivery pressure and temperature. - see Appendix D

(B) Fuel gas moisture range. – See note in Section 3.2

(C) Purge gas usage range. – PURGE GAS NOT USED

(D) Condensate (liquid fuel) separation range. - NO LIQUIDS IN THE GAS

(E) Combustion zone temperature range was found to be 1400-2100 deg F.

(F) Excess combustion air range. – see Appendix A

(G) Flame arrestor(s). - see Appendix G - Components List

(H) Burner manifold pressure ranged from 2 to 4 oz/ in^2 .

(I) Pilot flame sensor. – Type K thermocouple; see Components List in Appendix G.

(J) Pilot flame design fuel and fuel usage - Optional 50kW Coander Anti-

Flashback Pilot Burner; Pilot not used during testing.

(K) Tip velocity range.- for 0.7 unit = 23.75ft/sec; for 2.7 unit = 36.7 ft/sec; both at full flow / max capacity

(L) Momentum flux ratio. –see Appendix G

(M) Exit temperature range. – see Appendix B, D

(N) Exit flowrate. – see Appendix A

(O) Wind velocity and direction. - see Appendix D

1

 $\Big)$

Source	Condition #	Pollutant / Parameter	Average Measured	Allowable	Units	% of Allowable
	1 • 90-100%	со	2.71	10	ppm _D @ 3% CO ₂	27%
	1	THC (as propane)	0.2	10	ppm _w @ 3% CO ₂	2%
	2 - 70-100%	со	2.75	10	ppm _D @ 3% CO ₂	27%
Flare 2.7	2-70-100 70	THC (as propane)	0.2	10	ppm _w @ 3% CO ₂	2%
Outlet	2 - 70-100%	СО	1.08	10	ppm _D @ 3% CO ₂	11%
	<u> </u>	THC (as propane)	0.2	10	ppm _w @ 3% CO ₂	2%
	4 - 0-30%	со	0.67	10	ppm _D @ 3% CO ₂	7%
	4-0-50 /0	THC (as propane)	0.1	10	ppm _w @ 3% CO ₂	1%
	1-90-100%	со	4.14	10	ppm _D @ 3% CO ₂	41%
	1 - 70-100 /0	THC (as propane)	0.3	10	ppm _w @ 3% CO ₂	3%
	2 - 70-100%	со	2.96	10	ppm _D @ 3% CO ₂	30%
Flare 0.7	2-70-100 /0	THC (as propane)	0.3	10	ppm _w @ 3% CO ₂	3%
Outlet	3 - 30-70%	со	2.60	10	ppm _D @ 3% CO ₂	26%
	5-50-1070	THC (as propane)	0.6	10	ppm _w @ 3% CO ₂	6%
	4 • 0-30%	CO	0.89	10	ppm _D @ 3% CO ₂	9%
		THC (as propane)	0.4	10	ppm _w @ 3% CO ₂	4%

TABLE 3-1: Results Summary

TABLE 3-2: THC Destruction & Removal Efficiency Summary

Source	Condition	Measured (Inlet)	Average Measured (Outlet)	Units	Destruction & Removal Efficiency (%)
	1	76.7	0.00157		99.998%
Flare 0.7	2	67.4	0.00207		99.997%
	3	48.9	0.00213	kg/hr	99.996%
	4	41.0	0.000548		99.999%
	1	279.0	0.00591		99.998%
Flare 2.7	2	257.57	0.00520		99,998%
riate 2.7	3	175.00	0.00587	kg/hr	99.997%
	4	93.98	0.00161		99.998%

<u>Notes:</u>

Inlet THC measured as C2-C6 on a dry mole percent basis; Outlet THC measured via Method 25A on a carbon converted to 'as propane' basis.

4.0 SAMPLING AND ANALYTICAL PROCEDURES

Testing was conducted according to the methodology in the *Title 40 Code of Federal Regulation*, Part 60, Appendix A and in accordance to the Site-Specific Test Protocol. The following methods were employed for emission sampling and analyses:

Combustor Inlet:

- EPA 40 CFR 60 Appendix A Method 2A was used to quantify the volumetric flow rate of the fuel gas being fed to the combustor. A thermal mass flow measuring system (Model Proline t-mass, 65F, 65I) was used for these measurements.
- ASTM D1945, ASTM D3588, and ASTM D5504-8 were used to quantify Hydrocarbons (C1-C5 + benzene); H2, CO, CO2, N2, & O2 and Higher Heating Value (Btu), and carbonyl sulfide, carbon disulfide plus mercaptans, respectively. These samples were collected in 6 Liter Silonite-coated stainless steel evacuated canisters fitted with a flow controller sufficient to fill the canister over a 3 hour period. A single canister sample was conducted over a three (3) hour period, per source operating condition.

Combustor Outlet:

- EPA 40 CFR 60 Appendix A Method 1 was used to determine the flow rate measurement traverse points via Method 2.
- EPA 40 CFR 60 Appendix A Method 2 was used to determine the velocity and volumetric flow rate of combustor exhaust gases.
- EPA 40 CFR 60 Appendix A Method 3B was be used to determine the excess air using the results of Method 3C.
- EPA 40 CFR 60 Appendix A Method 3C was used to determine the molecular weight of the exhaust gas by quantifying the contents of carbon dioxide, methane, nitrogen, and oxygen. These samples were collected in 6 Liter stainless steel evacuated canisters fitted with a flow controller sufficient to fill the canister over

a 3 hour period. A single canister sample was conducted over a three (3) hour period, per source operating condition.

- EPA 40 CFR 60 Appendix A Method 4 was used to determine the moisture contents of the exhaust gas streams.
- EPA 40 CFR 60 Appendix A Method 10 was used to quantify the carbon monoxide concentrations being emitted from the respective combustor exhaust stacks. Sampling was conducted with a calibrated, non-dispersive infrared instrumental analyzer calibrated on a range of 0-10 ppmvd and results reported on a 3% carbon dioxide correction basis.
- EPA 40 CFR 60 Appendix A Method 22 was used to verify the absence of visible emissions from the exhaust stacks. Observations were conducted continuously throughout each test condition. A digital color photograph of the exhaust point, taken from the position of the observer and annotated with date and time, was taken once per test run and the four photos are included in this test report.
- EPA 40 CFR 60 Appendix A Method 25A was used to quantify the total hydrocarbon (THC) concentrations exiting the combustor exhaust gas streams. Sampling and analysis was conducted via flame ionization detector analyzer (FID) calibrated using EPA Protocol 1 methane calibration gases on a range of 0-30 parts per million on a wet basis and THC concentrations have been reported on a 'wet' basis (ppmvw), as propane, corrected to 3% carbon dioxide.
- EPA 40 CFR 60 Appendix A Method 205 was used to verify the dilution panel used to dilute the EPA Protocol 1 calibration gases, as applicable. A carbon dioxide (CO2) EPA Protocol 1 calibration gas was used to verify the dilution panel.

Ĩ

5.0 QUALITY ASSURANCE ACTIVITIES

The quality assurance/quality control (QA/QC) measures associated with the sampling and analysis procedures given in the noted EPA reference methodologies, in Subparts A of 40 CFR 60 and 40 CFR 63, and in the EPA QA/QC Handbook, Volume III (EPA 600/R-94/038c) were employed, as applicable. Such measures included, but were not limited to, the procedures detailed below.

5.1 GAS ANALYZER CALIBRATION

5.1.1 CALIBRATION GAS CONCENTRATION VERIFICATION

Calibration gases that were analyzed following the Environmental Protection Agency Traceability Protocol No. 1 were used. Certifications from the gas manufacturers that Protocol No. 1 was followed are presented in Appendix E.

5.1.2 MEASUREMENT SYSTEM PREPARATION

AIR assembled each measurement system by following the manufacturer's written instructions for preparing and preconditioning each gas analyzer and, as applicable, the other system components. AIR made all necessary adjustments to calibrate the analyzers and the data recorders.

5.1.3 ANALYZER CALIBRATION ERROR

AIR conducted the analyzer calibration error check by introducing calibration gases to the measurement system upstream of each gas analyzer. After the measurement system had been prepared for use and immediately prior to starting the tests, *AIR* introduced the zero, high-range, and mid-range gases to the analyzer. During this check, *AIR* made no adjustments to the system except those necessary to achieve the correct calibration gas flow rate at the analyzer.

5.1.4 SAMPLING SYSTEM BIAS CHECK

AIR performed the sampling system bias check by introducing calibration gases at the calibration valve installed at the outlet of the sampling probe. Immediately prior to starting each test run, a zero gas and the mid-range gas (which most closely approximated the

Advanced Industrial Resources, Inc.

effluent concentrations) were used for this check. *AIR* introduced the zero calibration gas and record the gas concentration displayed by the analyzer. *AIR* then introduced mid-range calibration gas and recorded the gas concentration displayed by the analyzer. During the sampling system bias check, *AIR* operated the system at the normal sampling rate and made no adjustments to the measurement system other than those necessary to achieve proper calibration gas flow rates at the analyzer.

5.1.5 ZERO AND CALIBRATION DRIFT CHECKS

At the end of each test run and whenever adjustments were necessary for the measurement system, AIR repeated the sampling system bias check procedure described in Section 6.1.4.

5.1.6 ANALYZER ERROR, BIAS AND DRIFT CHECK SPECIFICATIONS

Analyzer calibration error was less than +/-2 percent of the span for the zero, mid-range, and high-range calibration gases. Sampling system bias were less than +/-5 percent of the span for the zero and mid-range calibration gases. Zero drift were less than +/-3 percent of the span over the period between zero drift checks. Calibration drift were less than +/-3 percent of the span over the period between calibration drift checks.

5.2 NO₂-NO CONVERSION EFFICIENCY

This conversion efficiency check was not applicable to this test program.

5.3 INSTRUMENT INTERFENCE RESPONSE

AIR obtained instrument vendor data that demonstrates the interference performance specification is not exceeded as defined in EPA Method 7E Section 8.2.7. Documentation is provided in Appendix D.

5.4 INSTRUMENT RESPONSE TIME

To determine the system response time, prior to testing, AIR introduced the upscale calibration gas into the measurement system at the calibration valve assembly, which is

located prior to all sample conditioning components. AIR recorded the upscale response time, which is equivalent to the time that was required for the system response output to stabilize at a value that is 95 percent or 0.5 ppm (whichever is less restrictive) of the certified upscale calibration gas value. AIR then quickly switched to the zero calibration gas and recorded the time from the concentration change to the measurement system response equivalent to 95 percent or 0.5 ppm (whichever is less restrictive) of the zero gas. This procedure was repeated three times. A stable value is equivalent to a change of less than 1 percent of span value for 30 seconds or less than 5 percent of the measured average concentration for 2 minutes. The greater of the average upscale or downscale response times was taken as the "response time" for each analyzer.

5.5 DATA REDUCTION CHECKS

AIR ran an independent check (using a validated computer program) of the calculations with predetermined data before the field test, and the AIR Team Leader conducted spot checks on-site to assure that data was being recorded accurately. After the test, AIR checked the data input to assure that the raw data had been transferred to the computer accurately.

6.0 DATA QUALITY OBJECTIVES

The data quality objectives (DQOs) process is generally a seven-step iterative planning approach to ensure development of sampling designs for data collection activities that support decision making. The seven steps are as follows: (1) defining the problem; (2) stating decisions and alternative actions; (3) identifying inputs into the decision; (4) defining the study boundaries; (5) defining statistical parameters, specifying action levels, and developing action logic; (6) specifying acceptable error limits; and (7) selecting resource-effective sampling and analysis plan to meet the performance criteria. The first five steps are primarily focused on identifying qualitative criteria such as the type of data needed and defining how the data will be used. The sixth step defines quantitative criteria and the seventh step is used to develop a data collection design. In regards to emissions sampling, these steps have already been identified for typical monitoring parameters.

Monitoring methods presented in 40 *CFR* 60 Appendix A indicate the following regarding DQOs: Adherence to the requirements of this method will enhance the quality of the data obtained from air pollutant sampling methods. At a minimum, each method provides the following types of information: summary of method; equipment and supplies; reagents and standards; sample collection, preservation, storage, and transportation; quality control; calibration and standardization; analytical procedures, data analysis and calculations; and alternative procedures. These test methods have been designed and tested according to DQOs for emissions testing and analysis. These test methods have been specified and were followed to testing to ensure that DQOs were met for this project.

ATTACHMENT I

Emissions Calculations

()

 \rangle

Everett Weese Production Facility Tyler County

Source	Description	NOx lb/hr	CO lb/hr	CO _{2e} lb/hr	VOC lb/hr	SO2 lb/hr	H2S lb/hr	PM lb/hr	n-Hexane lb/hr	benzene lb/hr	formaldehyde lb/hr	Total HAPs lb/hr
S1	Compressor Engine #1	1.52	4.41	1749.25	1.22	0.006	0.00	0.103	0.0011	0.0004	0.7484	0.8929
S5	Compressor Engine #2 (REMOVED	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.0000	0.0000	0.0000	0.0000
S5A	NEW Compressor Engine	1.50	0.72	261.50	0.15	0.001	0.00	0.041		0.0033	0.0496	0.0730
HTR-1 to HTR-3	Three Existing GPU Heaters	0.30	0.25	362.36	0.02	0.002	0.00	0.023	0.0054	0.0000	0.0002	0.0056
HTR-4 and HTR-5	Two New GPU Heaters	0.20	0.17	241.58	0.01	0.001	0.00	0.015	0.0036	0.0000	0.0002	0.0038
S3A	Dehy Reboiler	0.05	0.04	60.39	0.00	0.002	0.00	0.004	0.0000			0.0000
S4A	Dehy Still Vent + Flash Tank Vent (Controlled)			57.95	3.66					0.0046		0.0506
S6	Flash Compressor (REM)	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.0000	0.0000	0.0000	0.0000
VCU-1 to VCU-3	VCUs and Pilots (including Water and Condensate tank vapors) ² Blowdowns ¹	0.41	2.20	699.77 N/A	1.88 N/A	0.000	0.00	0.001	0.0002	0.0000	0.0000	0.0002
	Truck Loading ³			IV/A	55.70							
	Fugitive Dust - Roadways							N/A				
	Fugitive VOCs			47.60	0.74							
Total		3.98	7.79	3480.39	63.38	0.01	0.00	0.19	0.01	0.01	0.80	1.03

		NOx	СО	CO _{2e}	VOC	SO2	H2S	PM	n-Hexane	benzene	formaldehyde	Total HAPs
Source	Description	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy
S1	Compressor Engine #1	6.66	19.32	7662	5.33	0.027	0.00	0.45	0.005	0.002	3.278	3.911
S5	Compressor Engine #2 (REMOVED	0.00	0.00	0	0.00	0.000	0.00	0.00	0.000	0.000	0.000	0.000
S5A	NEW Compressor Engine	6.56	3.15	1145	0.65	0.004	0.00	0.18		0.015	0.217	0.320
HTR-1 to HTR-3	Three Existing GPU Heaters	1.31	1.10	1587	0.07	0.008	0.00	0.10	0.024	0.000		0.025
HTR-4 and HTR-5	Two New GPU Heaters	0.88	0.74	1052	0.05	0.005	0.00	0.07	0.016	0.000	0.001	0.016
S3A	Dehy Reboiler	0.22	0.18	265	0.01	0.001	0.00	0.02	0.000			0.000
S4A	Dehy Still Vent + Flash Tank Vent(Controlled)			254	4.39					0.020		0.222
S6	Flash Compressor (REM)	0.00	0.00	0	0.00	0.000	0.00	0.00	0.000	0.000	0.000	0.000
VCU- to VCU-3	VCUs and Pilots (including Water and Condensate tank vapors) ²	0.62	3.26	1051	5.58	0.000		0.03	0.007	0.000		0.007
	Blowdowns ¹			275	2.84							
	Truck Loading ³				1.58							
	Fugitive Dust- Roadways							2.41				
	Fugitive VOCs			208	3.24							
Total		16.25	27.75	13,499	23.75	0.05	0.00	3.26	0.05	0.037	3.496	4.501
	Currently Permitted Emissions	18.79	54.15	22,697	21.19	0.07	0.00	3.63	0.07	0.027	6.666	8.239
	Changes At Weese Station	-2.54	-26.39	-9,198	2.56	-0.02	0.00	-0.37	-0.02	0.01	-3.17	-3.74
	Additions from R. Weese Well Pad (see following R. Weese Calculations)	1.53	2.19	1,983	7.24	0.01	0.00	0.64	0.11	0.170	0.001	1.974
	Total Changes	-1.01	-24.20	-7,214	9.80	-0.02	0.00	0.27	0.09	0.18	-3.17	-1.76

= Changes at Weese Station

² Change ¹ See Appendix C for Blowdown Calculations

³ Condensate tanks and water tank emissions are controlled by a combustor.
 ² Combined capture and control efficacy of system for controlleding water and condensate tanks is 98%
 All emissions from this capture and control system are presented in this line. It is a mixture of un-captured/un-controlled VOCs and combustion products.
 ³ Un-Captured Truck Loading Emissions Only. Captured and Controlled emissions represented by the VCUs emissions

Triad Hunter, LLC ENGINE EMISSIONS

Everett Weese Production Facility Tyler County

Proposed Emission Rates

Source S	51					
Engine Data:						
Engine Manufacturer	CAT					
Engine Model	3516B					
Type (Rich-burn or Low Emission)	Low Emiss	sions				
Aspiration (Natural or Turbocharged)	Natural					
Turbocharge Cooler Temperature	130	deg. F				
Manufacturer Rating	1,380	hp				
Speed at Above Rating	1,400	rpm				
Configeration (In-line or Vee)	V-16					
Number of Cylinders	16					
Engine Bore	6.700	inches				
Engine Stroke	7.500	inches BTU/scf				
Fuel Heat Content Engine Displacement	1,117 4,231	cu. in.				
Fuel Consumption	7,500	Btu/bhp-hr				
	,					AP-42
Emission Datase		11- /h		- //	lle (alars	4strokelean
Emission Rates: Oxides of Nitrogen, NOx	g/bhp-hr 0.50	lb/hr 1.52	tons/year 6.66	g/hr 690	1b/day 36.51	Ib/mmbtu Comment
Carbon Monoxide CO	0.50 1.45	4.41	19.32	2,001	105.87	453.59 grams = 1 pound
VOC (NMNEHC)	0.40	1.22	5.33	552	29.21	2,000 pounds = 1 ton
CO2e	0110	1749	7661.70	001		2,000 poundo - 1011
CO2	483	1469	6436.28	666,540	35267.29	
Total Annual Hours of Operation	8,760					
SO2	0,100	0.0062	0.0272			0.0006
PM2.5		0.0008	0.0035			7.71E-05
PM (Condensable)		0.1026	0.4493			0.00991
CH _{4 as CO2e}	3.67	279.13	1222.6			0.0022 Mfg. Spec Used
N ₂ O as CO _{2e}		0.6417	2.8106			0.0002 Factor From 40 CFR 98, Table C-2
acrolein		0.0532	0.2330			0.00514
acetaldehyde		0.0865	0.3790			0.00836
formaldehyde	0.2460	0.7484	3.2780			0.0528 Mfg. Spec Used
biphenyl		0.0002	0.0009			0.000212
benzene		0.0004	0.0019			0.00044
toluene		0.0004 4E-05	0.0017 0.0002			0.000408 3.97E-05
ethylbenzene xylene		0.0002	0.0002			0.000184
methanol		0.0024	0.0000			0.0025
n-hexane		0.0011	0.0047			0.00111
total HAPs		0.8929	3.9109			0.071194
Exhquat Parametera						
Exhaust Parameters: Exhaust Gas Temperature	1,005	deg. F				
Exhaust Gas Flow Rate	9216	acfm				
	0.040	6				
Total Exhaust Gas Volume Flow, wet Total Exhaust Gas Volume Flow, wet	9,216 153.6	acfm acf per seo				
	100.0	aci pei 360	,			
Exhaust Stack Height	260	inches				
	21.67	feet				
Extravet Stock Incide Discussion	20	in ah				
Exhaust Stack Inside Diameter	20 1.667	inches				
	1.667	feet				

Triad Hunter, LLC ENGINE EMISSIONS

Everett Weese Production Facility Tyler County

Proposed Emission Rates

Source S5	A					
Engine Data: Engine Manufacturer Engine Model Type (Rich-burn or Low Emission) Aspiration (Natural or Turbocharged)	Cummins GTA855 Rich Burn Natural					
Manufacturer Rating Speed at Above Rating Configeration (In-line or Vee) Number of Cylinders Engine Bore Engine Stroke Fuel Heat Content Engine Displacement Fuel Consumption	225 1,800 In-Line 6 5.500 6.000 1,117 855 9,420	hp rpm inches inches BTU/scf cu. in. Btu/bhp-hr				AP-42
Emission Rates:	g/bhp-hr	lb/hr	tons/year	g/hr		4stroke rich Ib/mmbtu
Oxides of Nitrogen, NOx	3.02	1.50	6.56	680	35.95	Comment
Carbon Monoxide CO	1.45	0.72	3.15	326	17.26	453.59 grams = 1 pound
VOC (NMNEHC) CO2e	0.30	0.15 261	0.65 1145.36	68	3.57	2,000 pounds = 1 ton
CO2	524	260	1138.47	117,900	6238.21	
Total Annual Hours of Operation SO2 PM2.5 + Condensable $CH_{4 \text{ as }CO2e}$ N ₂ O as CO_{2e} acrolein acetaldehyde formaldehyde biphenyl benzene toluene ethylbenzene xylene methanol total HAPs	8,760 0.1000	0.001 0.041 1.4455 0.1263 0.0056 0.0059 0.0496 0.0004 0.0033 0.0012 5E-05 0.0004 0.0065 0.073	0.0044 0.1796 6.3 0.5533 0.0244 0.0259 0.2173 0.0020 0.0147 0.0052 0.0002 0.0018 0.0284 0.3198			Mfg. Spec Used Mfg. Spec Used 0.0022 Factor From 40 CFR 98, Table C-2 0.0026 40 CFR 98, Table C-2 0.00279 Mfg. Spec Used 0.000212 Mfg. Spec Used 0.00058 2.48E-05 0.00306 0.01105
Exhaust Parameters: Exhaust Gas Temperature Exhaust Gas Flow Rate	1,005 9216	deg. F acfm				
Total Exhaust Gas Volume Flow, wet Total Exhaust Gas Volume Flow, wet	9,216 153.6	acfm acf per sec	;			
Exhaust Stack Height	260 21.67	inches feet				
Exhaust Stack Inside Diameter	20 1.667	inches feet				

Triad Hunter, LLC ENGINE EMISSIONS

Everett Weese Production Facility Tyler County

Proposed Emission Rates

Source S6 (R	EM)					
Engine Data:						
Engine Manufacturer	GasJack					
Engine Model	GJ230					
Type (Rich-burn or Low Emission)	Low Emis	sions				
Aspiration (Natural or Turbocharged)	Natural					
Turbocharge Cooler Temperature		deg. F				
Manufacturer Rating	46	hp				
Speed at Above Rating	1,400	rpm				
Configeration (In-line or Vee) Number of Cylinders	In-line 4					
Engine Bore	4 4.360	inches				
Engine Stroke	4.300 3.850	inches				
Fuel Heat Content	1,117	BTU/scf				
Engine Displacement	230	cu. in.				
Fuel Consumption	10,777	Btu/bhp-hr				
					A	NP-42
Emission Patos:	a/bbp.br	lb/br	tons/voor	a/br		strokerich b/mmbtu
Emission Rates: Oxides of Nitrogen, NOx	g/bhp-hr 2.00	lb/hr 0.20	tons/year 0.89	g/hr 92	4.87	Comment
Carbon Monoxide CO	4.00	0.20	1.78	184	9.74	453.59 grams = 1 pound
VOC (NMNEHC)	1.00	0.10	0.44	46	2.43	2,000 pounds = 1 ton
CO2e		64	279.74		20	2,000 poundo 1 ton
Total Annual Hours of Operation	8,760					
SO2	0,100	0.0003	0.0013			0.0006
PM2.5		0.0047	0.0206			0.0095
PM (Condensable)		0.0049	0.0215			0.00991
CO2 Í		54.532	238.8			110
CH _{4 as CO2e}	3.67	9.3045	40.8			1.25
N ₂ O as CO _{2e}		0.0307	0.1346			0.0002 Factor From 40 CFR 98, Table C-
acrolein		0.0013	0.0057			0.00263
acetaldehyde		0.0014	0.0061			0.00279
formaldehyde	0.2460	0.0249	0.1093			0.0205
benzene		0.0008	0.0034			0.00158
toluene		0.0003	0.0011			0.000508
ethylbenzene		1E-05	0.0001			2.48E-05
xylene		1E-04	0.0004			0.000195
methanol		0.0015	0.0066			0.00306
total HAPs		0.0303	0.1327			0.031288
Exhaust Parameters:						
Exhaust Gas Temperature	1,005	deg. F				
Exhaust Gas Flow Rate	9216	acfm				
Total Exhaust Gas Volume Flow, wet	9,216	acfm				
Total Exhaust Gas Volume Flow, wet	153.6	acf per see	;			
Exhaust Stack Height	260	inches				
	21.67	feet				
Exhaust Stack Inside Diameter	20	inches				
	1.667	feet				

Everett Weese Production Facility Tyler County, WV

'otential Emission Rate

Sources HTR-1 to HTR-3

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 3000.0 Mbtu/hr 98.0 % 1232.8 Btu/scf 59596.5 scfd 0.000 Mole % 8760

ЪT

/0			
Btu/scf			
scfd			
Mole %			
0.3001	lbs/hr	1.315	

Three Units at 1.0 Mbtu/Hr Each

NOx	0.3001	lbs/hr	1.315	TPY
CO	0.2521	lbs/hr	1.104	TPY
CO2	360.1	lbs/hr	1577.4	TPY
CO2e	362	lbs/hr	1,587	TPY
VOC	0.0165	lbs/hr	0.072	TPY
SO2	0.0018	lbs/hr	0.008	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0228	lbs/hr	0.100	TPY
СНОН	0.0002	lbs/hr	0.001	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hezane	0.0054	lbs/hr	0.024	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0056	lbs/hr	0.025	TPY

AP-42 Factors Used (Tables 1.4.1-1.4.3)

NOx	100 Lbs/MMCF
СО	84 Lbs/MMCF
CO ₂	120,000 Lbs/MMCF
VOC	5.5 Lbs/MMCF
PM	7.6 Lbs/MMCF
SO_2	0.6 Lbs/MMCF
CH ₄	2.3 Lbs/MMCF
N ₂ O	2.2 Lbs/MMCF
нсон	0.075 Lbs/MMCF
Benzene	0.0021 Lbs/MMCF
n-Hexane	1.8 Lbs/MMCF
Toluene	0.0034 Lbs/MMCF

Global Warming Potential = 1

Global Warming Potential = 25 Global Warming Potential =310

Everett Weese Production Facility Tyler County, WV

'otential Emission Rate

Sources HTR-4 to HTR-5

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 2000.0 Mbtu/hr 98.0 % 1232.8 Btu/scf 39731.0 scfd 0.000 Mole % 8760

/hr	Two Units at 1.0 Mbtu/Hr Each
cf	
%	

NOx	0.2001	lbs/hr	0.876	TPY
CO	0.1681	lbs/hr	0.736	TPY
CO2	240.1	lbs/hr	1051.6	TPY
CO2e	242	lbs/hr	1,058	TPY
VOC	0.0110	lbs/hr	0.048	TPY
SO2	0.0012	lbs/hr	0.005	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0152	lbs/hr	0.067	TPY
СНОН	0.0002	lbs/hr	0.001	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hezane	0.0036	lbs/hr	0.016	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0038	lbs/hr	0.016	TPY

AP-42 Factors Used (Tables 1.4.1-1.4.3)

NOx	100 Lbs/MMCF	
СО	84 Lbs/MMCF	
CO ₂	120,000 Lbs/MMCF	
VOC	5.5 Lbs/MMCF	
PM	7.6 Lbs/MMCF	
SO_2	0.6 Lbs/MMCF	
CH ₄	2.3 Lbs/MMCF	
N ₂ O	2.2 Lbs/MMCF	
нсон	0.075 Lbs/MMCF	
Benzene	0.0021 Lbs/MMCF	
n-Hexane	1.8 Lbs/MMCF	
Toluene	0.0034 Lbs/MMCF	

Global Warming Potential = 1

Global Warming Potential = 25 Global Warming Potential =310

DEHYDRATOR EMISSIONS

Everett Weese Production Facility Tyler County

Dehydration Emissions Sources S3A and S4A

Reboiler Burner (S3A)

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration 500.0 Mbtu/hr 98.0 % 1232.8 Btu/scf 9932.7 scfd 0.000 Mole %

3.63 MMscf/yr

NOx	0.0500	lbs/hr	0.219	TPY
СО	0.0420	lbs/hr	0.184	TPY
VOC	0.0028	lbs/hr	0.012	TPY
SO2	0.0002	lbs/hr	0.001	TPY
PM	0.0038	lbs/hr	0.017	TPY
CO_2	60.0	lb/hr	262.9	TPY
CO _{2e}	60.4	lb/hr	264.5	TPY
n-Hexane	0.0000	lb/hr	0.000	TPY

Controlled Still Vent + Flash Tank Emissions (S4A)

From Gri GlyCalc 4.0

Dry Gas Rate Glycol Circulation Rate Treating Temperature Treating Pressure 40,000 MCFD 3.5 Gal/min 90 Deg F 900 psi

Total HC	4.1847	lbs/hr	18.329	TPY
Total VOC	1.0018	lbs/hr	4.388	TPY
Total HAP	0.0506	lbs/hr	0.222	TPY
CO _{2e}	57.9450	lbs/hr	253.799	TPY
benzene	0.0046	lbs/hr	0.020	TPY
toluene	0.0108	lbs/hr	0.047	TPY
ethyl benzene	0.0000	lbs/hr	0.000	TPY
xylene	0.0094	lbs/hr	0.041	TPY
n-hexane	0.0259	lbs/hr	0.113	TPY

Total Dehy Emissions

NOx	0.0500	lbs/hr	0.219	TPY
CO	0.0420	lbs/hr	0.184	TPY
VOC	1.0046	lbs/hr	4.400	TPY
SO2	0.0002	lbs/hr	0.000	TPY
PM	0.0038	lbs/hr	0.017	TPY
CO_2	0.0	lb/hr	0.000	TPY
CO_{2e}	0.0	lb/hr	0.000	TPY
n-Hexane	0.0000	lb/hr	0.000	TPY

Potential Emission Rates

Source EC-1

Combustor Pilot

Three Units at 0.019 MMBTU/Hr each

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Duty Hrs/Yr 57.00 Mbtu/hr 98.0 % 1126.0 Btu/scf 1,215 scfd 0.000 Mole % 8760

NOx	0.0051	lbs/hr	0.022	TPY
СО	0.0043	lbs/hr	0.019	TPY
CO2e	6.080	lbs/hr	26.63	TPY
VOC	0.0003	lbs/hr	0.001	TPY
SO2	0.0000	lbs/hr	0.000	TPY
PM	0.0004	lb/hr	0.002	TPY

AP-42 Factors Used

NOx	100 Lbs/MMCF
со	84 Lbs/MMCF
CO2	120,000 Lbs/MMCF
VOC	5.5 Lbs/MMCF
PM	7.6 Lbs/MMCF
SO2	0.6 Lbs/MMCF
CH4	2.3 Lbs/MMCF

Everett Weese Production Facility Tyler County

Potential Emission Rates

Sources VCU-1 through VCU-3

Enclosed Combustors

Destruction Efficiency Gas Heat Content (HHV) Max Flow to Combustor Max BTUs to Flare 98.0 % 2631.0 Btu/scf¹ 2,253 scf/hr² 5.93 MMBTU/Hr²

7.584 MMCF/Yr³ 17,509 MMBTU/Yr

NOx	0.40	lbs/hr	0.60	tpy
CO	2.19	lbs/hr	3.24	tpy
CO2	692.88	lbs/hr	1,023.31	tpy
CO2e	693.69	lb/hr	1,024.51	tpy
VOC	1.88	lb/hr	5.58	tpy
PM	0.00	lb/hr	0.03	tpy
Benzene	0.0000	lb/hr	0.00	tpy
Toluene	0.0000	lb/hr	0.00	tpy
Hexane	0.0002	lb/hr	0.01	tpy
Formaldehy	0.0000	lb/hr	0.00	tpy
CH4	0.01	lbs/hr	0.0193	tpy
N2O	0.0013	lbs/hr	0.0019	tpy

¹BTU content of gas is that estimatedby Promax for a combination of vapors from tank and truck loading emissions (2779.4 BTU/cf)

² Maximum daily gas flow to combustor.

³Annual flow assumes continuous operation

Thus, annual flow is hourly times 8760.

Factors Used AP-42 Table 13.5-1 0.068 Lbs/MMBTU NOx 0.37 Lbs/MMBTU AP-42 Table 13.5-1 со 40 CFR 98 Table C-1 116.89 Lbs/MMBTU CO2 40 CFR 98 Table C-2 CH4 0.0022 Lbs/MMBTU 40 CFR 98 Table C-2 N2O 0.00022 Lbs/MMBTU AP-42 Table 1.4-2 7.6 lb/MMSCF PM 0.0021 lb/MMSCF AP-42 Table 1.4-3 Benzene 0.0034 lb/MMSCF AP-42 Table 1.4-3 Toluene 1.8 lb/MMSCF AP-42 Table 1.4-3 Hexane снон 0.075 lb/MMSCF AP-42 Table 1.4-3 VOC emissions equals non-combusted NMNEHC

Everett Weese Production Facility Tyler County, WV

Fugitive VOC Emissions

Volatile Organic Compounds, NMNEHC from gas analysis:	16.32	weight percent
Methane from gas analysis:	63.20	weight percent
Carbon Dioxide from gas analysis:	0.39	weight percent
Gas Density	0.0565	lb/scf

Emission Source:	Number	Oil & Gas Production*	VOC %	VOC, lb/h	VOC TPY	CO2 lb/Hı	CO2 TPY	CH4 lb/hr	CH4 TPY	CO2e
Valves:										
Gas/Vapor:	205	0.02700 scf/hr	16.3	0.051	0.224	0.001	0.005	0.198	0.8655	21.643
Light Liquid:	136	0.05000 scf/hr	100.0	0.384	1.683					0.000
Heavy Liquid (Oil):	-	0.00050 scf/hr	100.0	0.000	0.000					
ow Bleed Pneumati	27	1.39000 scf/hr	16.3	0.346	1.516	1.340	5.869	1.340	5.8686	152.583
Relief Valves:	35	0.04000 scf/hr	16.3	0.013	0.057	0.000	0.001	0.050	0.2189	5.474
pen-ended Lines, ga	-	0.06100 sfc/hr	16.3	0.000	0.000					0.000
en-ended Lines, liqu	-	0.05000 lb/hr	100.0	0.000	0.000					0.000
Pump Seals:										0.000
Gas:	-	0.00529 lb/hr	16.3	0.000	0.000	0.000	0.000	0.000	0.0000	0.000
Light Liquid:	-	0.02866 lb/hr	100.0	0.000	0.000					
Heavy Liquid (Oil):	-	0.00133 lb/hr	100.0	0.000	0.000					
ompressor Seals, Ga	3	0.01940 lb/hr	16.3	0.009	0.042	0.000	0.001	0.002	0.0091	0.229
Connectors:										0.000
Gas:	355	0.00300 scf/hr	16.3	0.010	0.043	0.000	0.001	0.038	0.1665	4.164
Light Liquid:	30	0.00700 scf/hr	100.0	0.210	0.920					0.000
Heavy Liquid (Oil):	-	0.00030 scf/hr	100.0	0.000	0.000					
Flanges:										0.000
Gas:	410	0.00086 lb/hr	16.3	0.058	0.252	0.001	0.006	0.223	0.9760	24.406
Light Liquid:	34	0.00300 scf/hr	100.0	0.006	0.025					0.000
Heavy Liquid:		0.0009 scf/hr	100.0	0.000	0.000					

1 11	gitive Calculati	Jus.
	lb/hr	t/y
VOC	0.741	3.244
CH4	1.850	8.105
CO2	0.003	0.015
CO2e	47.602	208.50

Notes: *Factors are from 40 CFR 98, Table W-1A (scf/hr), where available. Remaining are API (lb/hr

Triad Hunter, LLC GAS ANALYSIS INFORMATION

Everett Weese Production Facility Tyler County

Inlet Gas Composition Information:

	Fuel Gas mole %	Fuel M.W. lb/lb-mole	Fuel S.G.	Fuel Wt. %	LHV, dry Btu/scf	HHV, dry Btu/scf	AFR vol/vol	VOC NM/NE	Z Factor	GPM
Nitrogen, N2	0.393	0.110	0.004	0.542	Dita, Ser	Diabor	-	1007102	0.0039	
Carbon Dioxide, CO2	0.181	0.080	0.003	0.392			-		0.0018	
Hydrogen Sulfide, H2S	0.000	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	79.964	12.829	0.443	63.195	727.2	807.6	7.621		0.7980	
Ethane, C2H6	13.198	3.969	0.137	19.550	213.6	233.6	2.201		0.1309	3.511
Propane	3.901	1.720	0.059	8.474	90.3	98.2	0.929	8.474	0.0383	1.069
Iso-Butane	0.514	0.299	0.010	1.472	15.4	16.7	0.159	1.472	0.0050	0.167
Normal Butane	0.937	0.545	0.019	2.683	28.2	30.6	0.290	2.683	0.0091	0.294
Iso Pentane	0.251	0.181	0.006	0.892	9.3	10.0	0.096	0.892	0.0025	0.091
Normal Pentane	0.228	0.165	0.006	0.810	8.5	9.1	0.087	0.810	0.0023	0.082
Hexane	0.215	0.185	0.006	0.913	9.5	10.2	0.097	0.913	0.0021	0.088
Heptane	0.218	0.218	0.008	1.076	11.1	12.0	0.114	1.076	0.0022	0.100
	100.000	20.300	0.701		1,113.1	1,228.0	11.595	16.320	0.9961	5.403

Gas Density (STP) =

1,228.0 1,207.4 -1,232.8 1,117.4 (STP) = 0.056

Ideal Gross (HHV)	
Ideal Gross (sat'd)	
GPM	
Real Gross (HHV)	
Real Net (LHV)	

Traid Hunter, LLC

Everett Weese Production Facility Tyler County

Fuel Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.393	0.110	0.004	0.542			-		0.0039	
Carbon Dioxide, CO2	0.181	0.080	0.003	0.392			-		0.0018	
Hydrogen Sulfide, H2S	0.000	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	79.964	12.829	0.443	63.195	727.2	807.6	7.621		0.7980	
Ethane, C2H6	13.198	3.969	0.137	19.550	213.6	233.6	2.201		0.1309	3.511
Propane	3.901	1.720	0.059	8.474	90.3	98.2	0.929	8.474	0.0383	1.069
Iso-Butane	0.514	0.299	0.010	1.472	15.4	16.7	0.159	1.472	0.0050	0.167
Normal Butane	0.937	0.545	0.019	2.683	28.2	30.6	0.290	2.683	0.0091	0.294
Iso Pentane	0.251	0.181	0.006	0.892	9.3	10.0	0.096	0.892	0.0025	0.091
Normal Pentane	0.228	0.165	0.006	0.810	8.5	9.1	0.087	0.810	0.0023	0.082
Hexane	0.215	0.185	0.006	0.913	9.5	10.2	0.097	0.913	0.0021	0.088
Heptane	0.218	0.218	0.008	1.076	11.1	12.0	0.114	1.076	0.0022	0.100
	100.000	20.300	0.701		1,113.1	1,228.0	11.595	16.320	0.9961	5.403

Gas Density (STP) =

1,228.0 1,207.4 -1,232.8 1,117.4 P) = 0.056

Ideal Gross (HHV)
Ideal Gross (sat'd)
GPM
Real Gross (HHV)
Real Net (LHV)

Triad Hunter, LLC

Everett Weese Production Facility Tyler County

Flash Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Ζ	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.099	0.028	0.001	0.094			-		0.0010	
Carbon Dioxide, CO2	0.228	0.100	0.003	0.340			-		0.0023	
Hydrogen Sulfide, H2S	0.000	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	42.455	6.811	0.235	23.029	386.1	428.8	4.046		0.4237	
Ethane, C2H6	31.856	9.579	0.331	32.388	515.7	563.7	5.314		0.3160	8.474
Propane	15.906	7.014	0.242	23.716	368.2	400.2	3.789	23.716	0.1563	4.359
Iso-Butane	1.784	1.037	0.036	3.506	53.5	58.0	0.552	3.506	0.0173	0.580
Normal Butane	4.568	2.655	0.092	8.976	137.5	149.0	1.415	8.976	0.0442	1.432
Iso Pentane	0.853	0.615	0.021	2.081	31.5	34.1	0.325	2.081	0.0085	0.311
Normal Pentane	1.103	0.796	0.027	2.691	40.9	44.2	0.420	2.691	0.0110	0.397
Hexane	0.435	0.375	0.013	1.267	19.1	20.7	0.197	1.267	0.0043	0.178
Heptane	0.565	0.566	0.020	1.913	28.8	31.1	0.296	1.913	0.0056	0.259
	99.851	29.576	1.021		1,581.4	1,729.8	16.354	44.149	0.9902	15.991

0.082

Gas Density (STP) =

-

1,747.0

1,597.1

 Ideal Gross (HHV)
 1,729.8

 Ideal Gross (sat'd)
 1,700.4

Ideal Gross (sat'd) GPM Real Gross (HHV) Real Net (LHV)

GAS DATA INFORMATION

 Specific Graivity of Air, @ 29.92 in. Hg and 60 -F,
 28.9625

 One mole of gas occupies, @ 14.696 psia & 32 -F,
 359.2 cu ft. per lb-mole

 One mole of gas occupies, @ 14.696 psia & 60 -F,
 379.64 cu ft. per lb-mole

Hydrogen Sulfide (H2S) conversion chart:

0 grains H2S/100 scf	=	0.00000 mole % H2S
		0.0 ppmv H2S
<u>0</u> mole % H2S	=	0 grains H2S/100 scf
		0.0 ppmv H2S
0 ppmv H2S	=	0.000 grains H2S/100 scf
		0.00000 mole % H2S

Ideal Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Z factor
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	0.9997
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	0.9964
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	587	637	6,545	7,100	7.15	0.9846
Helium	He	4.003	0.1382	0.0105	94.848						1.0006
Oxygen	02	31.999	1.1048	0.0843	11.864	0	0	0	0	0	0.9992
Methane	CH4	16.043	0.5539	0.0423	23.664	909.4	1,010.0	21,520	23,879	9.53	0.9980
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,618.7	1,769.6	20,432	22,320	16.68	0.9919
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,314.9	2,516.1	19,944	21,661	23.82	0.9825
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,000.4	3,251.9	19,629	21,257	30.97	0.9711
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,010.8	3,262.3	19,680	21,308	30.97	0.9667
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,699.0	4,000.9	19,478	21,052	38.11	1.0000
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,706.9	4,008.9	19,517	21,091	38.11	1.0000
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,403.8	4,755.9	19,403	20,940	45.26	0.9879
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,100.0	5,502.5	22,000	23,000	52.41	0.9947

Real Gas at 14.696 psia and 60°F

Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /		
Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Gal/Mole	
0.0738	13.552	0	0	0	0	0	4.1513	
0.1159	8.626	0	0	0	0	0	6.4532	
0.0898	11.141	621	672	6,545	7,100	7.15	5.1005	
0.0105	94.848						3.8376	
0.0843	11.864	0	0	0	0	0	3.3605	
0.0423	23.664	911	1,012	21,520	23,879	9.53	6.4172	
0.0792	12.625	1,631	1,783	20,432	22,320	16.68	10.126	
0.1162	8.609	2,353	3,354	19,944	21,661	23.82	10.433	
0.1531	6.532	3,101	3,369	19,629	21,257	30.97	12.386	
0.1531	6.532	3,094	3,370	19,680	21,308	30.97	11.937	
0.1901	5.262	3,709	4,001	19,478	21,052	38.11	13.86	
0.1901	5.262	3,698	4,009	19,517	21,091	38.11	13.713	
0.2270	4.405	4,404	4,756	19,403	20,940	45.26	15.566	16.
0.2639	3.789	5,101	5,503	22,000	23,000	52.41	17.468	17
	Cu Ft 0.0738 0.1159 0.0898 0.0105 0.0843 0.0423 0.0423 0.0792 0.1162 0.1531 0.1531 0.1531 0.1531 0.1901 0.1901 0.2270	Cu Ft per Lb 0.0738 13.552 0.1159 8.626 0.0898 11.141 0.0105 94.848 0.0843 11.864 0.0423 23.664 0.0792 12.625 0.1162 8.609 0.1531 6.532 0.1531 6.532 0.1901 5.262 0.1901 5.262 0.2270 4.405	Cu Ft per Lb Btu/scf 0.0738 13.552 0 0.1159 8.626 0 0.0898 11.141 621 0.0105 94.848 0 0.0843 11.864 0 0.0423 23.664 911 0.0792 12.625 1.631 0.1628 8.609 2.353 0.1531 6.532 3.101 0.1531 6.532 3.094 0.1901 5.262 3,698 0.2270 4.405 4,404	Cu Ft per Lb Btu/scf Btu/scf Btu/scf 0.0738 13.552 0 0 0.1159 8.626 0 0 0.0898 11.141 621 672 0.0105 94.848 0 0 0.0843 11.864 0 0 0.0423 23.664 911 1,012 0.0792 12.625 1,631 1,783 0.1162 8.609 2,353 3,354 0.1531 6.532 3,101 3,369 0.1531 6.532 3,094 3,370 0.1901 5.262 3,698 4,009 0.2270 4.405 4,404 4,756	Cu Ft per Lb Btu/scf Btu/scf Btu/scf Btu/lb 0.0738 13.552 0 0 0 0 0.1159 8.626 0 0 0 0 0.0898 11.141 621 672 6,545 0.0105 94.848	Cu Ft per Lb Btu/scf Btu/scf Btu/scf Btu/lb Btu/lb 0.0738 13.552 0 0 0 0 0 0.1159 8.626 0 0 0 0 0 0.0898 11.141 621 672 6,545 7,100 0.0105 94.848	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cu Ft per Lb Btu/scf Btu/scf Btu/lb Btu/lb 1 cu ft of gas Gal/Mole 0.0738 13.552 0 0 0 0 0 0 4.1513 0.1159 8.626 0 0 0 0 0 6.4532 0.0898 11.141 621 672 6,545 7,100 7.15 5.1005 0.0105 94.848 3.8376 3.8376 0.0423 23.664 911 1,012 21,520 23,879 9.53 0.0423 23.664 911 1,783 20,432 22,320 16.68 0.1162 8.609 2,353 3,354 19,944 21,661 23.82 0.1531 6.532 3,101 3,369 19,629 21,257 30.97 12.386 0.1531 6.532 3,094 3,370 19,680 21,308 30.97 11.937 0.1901 5.262 3,698 4,009 19,517 <td< td=""></td<>

6.3227 17.468

Condensate Truck Loading Lost Emissions Per AP-42 Weese Station

Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor L_L can be estimated as follows:

$$L_{L} = 12.46[SPM/T]$$

Where:

L_L = uncontrolled loading loss in pounds per 1000 gallons of liquid loaded S= saturation factor (0.6) P=true vapor pressure of liquid loaded 18.1 psia (by ProMax) M= Molecular weight of vapor in lb/lb-mole (estimated at 82.92 by ProMax) T= temperature of bulk liquid loaded in deg R or 460+deg F (70 Deg F)

Thus, $L_L = 12.46[0.6 \text{ x } 18.1 \text{ x } 82.92]/[460+70]$ $L_L = 21.17 \text{ lb}/1000 \text{ gallons loaded}$

Based on the ProMax model, these emissions are 99.5% VOCs..

Given a maximum loading of 210 BBL (8,820 gallons) a day, uncontrolled VOC emissions are estimated at 185.8 lb of VOC per day [8.82 x 21.17 x .995]. The overall control system is estimated to reduce these emissions greater than 68.6%. This will be accomplished through a combination of a vapor control system and use of un-certified tanker trucks. Un-certified tankers have a capture efficiency of 70% per AP-42, Chapter 5.2.2.1.1. Thus, uncaptured VOC emissions are estimated at 55.7 lb/day [185.8 x 0.3]. With all daily loading taking place within 1 hour, the uncaptured hourly VOC emission rate is the same as the daily rate, 55.7 lb/hr.

Maximum annual throughput is 490,000 gallons per year. Thus, un-captured VOC emissions are conservatively estimated at 3096 pounds per year [490 x 21.17 x 30% x 0.995] or 1.58 tons per year.

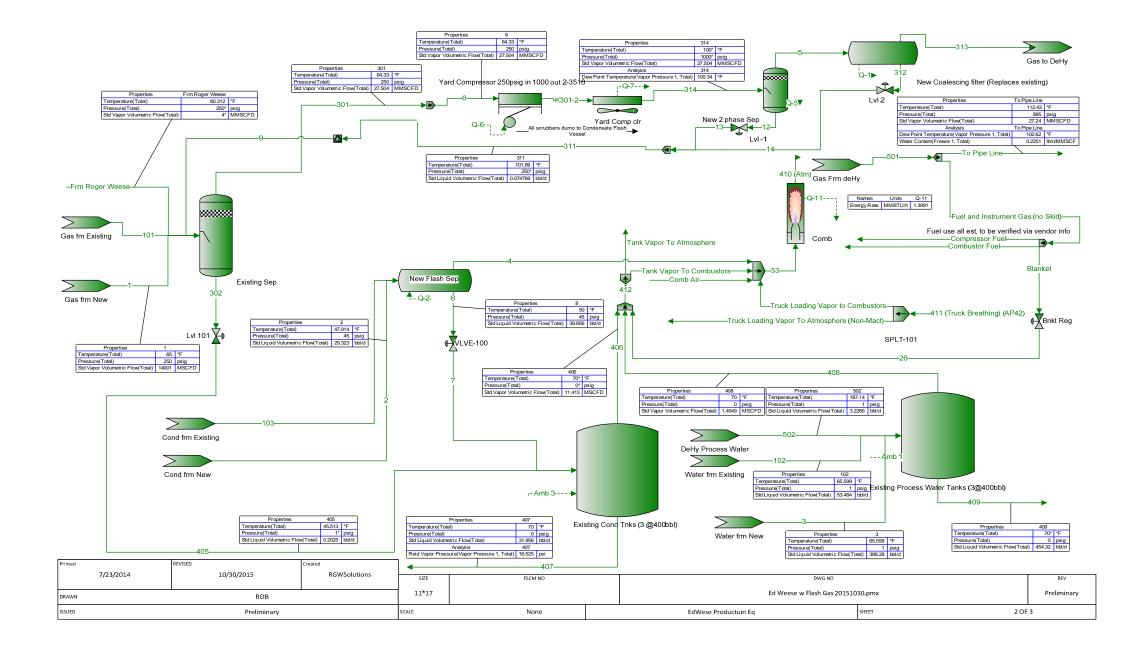
The captured VOC emissions are routed to the combustor [185.8 lb/day x 70% = 130.1 lb/day VOC or a 1 hour loading day]. Annually, captured VOC emissions are estimated at (490 x 21.17 x 70% x .995) or 7,225 pounds per year or 3.01 tons per year. With a minimum capture and control efficiency of 98%, hourly and annual VOC emissions from the combustor are 2.60 lb/hr and 0.07 tpy.

It is important to note that all captured truck loading vapors will be routed to an enclosed combustor. This device will have a warranted destruction efficiency >99%. However, per the limitations of the G70-A permit, a maximum capture/control efficiency of 98% is claimed.

Condensate Truck Loading Emissions to Combustor

Given: Vapor Heat Content: 2830 btu/scf (HHV – per ProMax Stream 407) Vapor Density: 0.134 lb/scf (per ProMax Stream 407) Max to Combustor: 93.4 lb/hr [total gas flow, not just VOCs] (185.8/ lb/day / 0.995 = 186.7 lb/day or 93.4 lb/hr) Max to Combustor (per Yr) 7,261 lb/yr [3.63 tons per year]

<u>Max Hourly BTUs to Combustor</u> (186.8 lb/hr)/(0.134 lb/scf) = 1394 scf/hr 1394 scf/hr x 2830 btu/scf = 3.945 MMBTU/hr


<u>Max Annual BTUs to VRU or Combustor</u> (7,261 lb/yr) / (0.134 lb/scf) = 54,189 scf/yr 54,189 scf/yr x 2830 btu/scf = 153 MMBTU/yr

Triad Hunter Weese Station Loading to Combustor

There are three gas streams that are routed to the combustor: flash gas from the flash separator, tank vapors and condensate loading vapors. These three streams and associated contribution to the overall loading to the combustor is summarized in the following table.

Source	SCFD	SCF/Hr	BTU /scf	MMSCF/Yr	MMBTU/Hr	Tons /yr	% VOC	MMBTU /Yr	Reference
Flash Separator	7,736	322	1734	2.824	0.56	110.4	44.1	4896	ProMax Stream 4
Water and Condensate Tanks	12,892	537	2648	4.706	1.422	293.1	82.7	12,460	ProMax Stream 412
Condensate Truck Loading	1,394	1394	2830	0.054	3.945	3.61	99.5	153	Truck Loading Worksheet
Total to Combustor	22,022	2253	2631	7.584	5.927	407.1	68.5	17,509	

Given an overall combustion efficiency of 98%, potential annual VOC emissions are 5.58 tpy [407.1 x 0.685 x 0.02]. In a similar manner, hourly potential VOC emissions (during truck loading) have been estimated at 1.88 lb/hr. These have been used in the combustor emission calculation worksheet for Weese Station.

Process Streams		Comb AIR	Comb Stack	1	2	3	4	5	12	16	17	18	140	140A	143	144	145	150	153
Composition	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:		REAC-100	MIX-101	RCYL-1	VSSL-101	VLVE-106	VSSL-101	VLVE-108	9H Marcela's Gas	9H Mar Cond	9H Mar Water	MIX-100	MIX-105		Condensate Tanks		Condensate Tanks	Water Tanks
	To Block:	MIX-105		VLVE-108	MIX-101	MIX-100	Water Tanks	RCYL-1	Condensate Tanks		MIX-101	VLVE-106	MIX-105	REAC-100	VSSL-101	MIX-100	MIX-100	-	
Mass Fraction		%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Methane		0*	0.0100644	2.29748	0.0119944	3.99878	0.0434767	0.0119944	2.29748	61.8019	2.30804	0.0434767	15.5998	0.503221	0.197672*	14.1972	64.1695	0.0278654	0.00186611
Ethane		0*	0.0133793	3.56554	0.218507	11.2061	0.0132379	0.218507	3.56554	19.8052	3.58100	0.0132379	20.7379	0.668963	0.730235*	20.7905	19.3644	0.280246	0.000681181
Propane		0*	0.0146433	4.71583	1.36911	20.6941	0.00516717	1.36911	4.71583	8.81550	4.73129	0.00516717	22.6970	0.732163	2.26913*	23.1441	7.47390	1.20103	0.000320804
Isobutane		0*	0.00426351	1.86745	2.23964	12.5195	0.000297174	2.23964	1.86745	1.59428	1.86573	0.000297174	6.60844	0.213176	2.71841*	6.78049	0.448288	0.930395	6.47901E-06
n-Butane		0*	0.00880612	4.58524	4.57623	17.4005	0.00119085	4.57623	4.58524	2.88319	4.58528	0.00119085	13.6495	0.440306	5.17349*	13.9918	1.75299	2.79113	
Isopentane		0*	0.00364528	3.54283	6.56881	10.0084	0.000236794	6.56881	3.54283	1.02088	3.52886	0.000236794	5.65019	0.182264	6.72900*	5.79909	0.352964	3.11250	
n-Pentane		0* 0*	0.00333662	4.13717	12.9911	14.5636	0.000219218	12.9911	4.13717	0.911318	4.09628	0.000219218	5.17176	0.166831	13.0644*	5.30081	0.327364	3.91523	
Isohexane Heptane		0*	0.00217504 0.00158643	6.04875	0	0	6.56540E-05	0	6.04875	0.623957	6.07668	6.56540E-05	3.37132	0.108752	0*	3.47127	0.0997159	6.54035	9.92249E-07
Octane		0*	0.000715980	18.6341 27.6903	63.0879 0	6.27206		63.0879 0	18.6341	0.573875	18.4289	3.42053E-05	2.45897	0.0793216	60.4418*	2.52422	0.0517997	21.7068	
Nonane		0*	0.000715980	15.5510	0	0	1.39661E-05 3.92658E-06	0	27.6903 15.5510	0.332545 0.0715936	27.8182	1.39661E-05	1.10977	0.0357990	0* 0*	1.14301	0.0213290	32.7536	
Decane		0*	0.000124870	15.5510	0	0	3.92030E-00	0	15.5510	0.0715936	15.6228 0	3.92658E-06	0.193549	0.00624350	0*	0.199280	0.00595824	18.4790	6.28976E-08
n-Hexane		0*	0.00133370	5.10261	7.97301	2.31775	3.16591E-05	7,97301	5.10261	0.396006	5.08935	0 3.16591E-05	2.06723	0 0.0666850	7.70963*	0 2.12585	0.0482264	0 5.67036	3.86194E-07
Benzene		0*	2.96497E-05	0.108833	0.0827123	0.0259667	0.000331791	0.0827123	0.108833	0.00816332	0.108953	0.000331791	0.0459570	0.00148249	0.0800695*	0.0454828	0.0631051	0.120915	
Toluene		0*	6.94464E-05	0.923639	0.0027120	0.0200001	0.000686229	0.0027120	0.923639	0.0234799	0.927904	0.000686229	0.107642	0.00347232	0.0000095	0.106431	0.153978	1.07950	
Ethylbenzene		0*	4.91171E-06	0.210437	0.0310333	0.000843795		0.0310333	0.210437	0.00210150	0.211265	4.42173E-05			0.0296272*	0.00754978	0.0100896	0.249133	
o-Xylene		0*	1.67747E-05	0.961570	0.465887	0.00946456		0.465887	0.961570	0.00748181	0.963859	0.000224662			0.444630*	0.0256282	0.0395086	1.14008	
2,2,4-Trimethylpentane		0*	0	0	0	0	0	0	0	0	0	0.000221002	0	0	0*	0.0200202	0.0000000	0	
Carbon Dioxide		0*	9.32550	0.0329067	0.000481239	0.0565176	0.00453956	0.000481239	0.0329067	0.365457	0.0330565	0.00453956	0.294278	0.00949283	0.00309103*	0.199275	3.55920	0.00117556	0.0022329
Water		0*	5.39461	0.0163010	0.383511	0.926353	99.9300	0.383511	0.0163010	0.154598	0.0146052	99,9300	0.145375	0.00468952	0.408793*	0.0986194	1.71166	0.000600479	
TEG		0*	0	0	0	0	0	0	0	0	0	0	0	0	0*	0	0	0	(
Nitrogen		76.7082*	74.2356	0.00792451	8.68120E-08	8.97052E-05	0.000229310	8.68120E-08	0.00792451	0.608478	0.00796110	0.000229310	0.0576714	74.2356	4.26063E-06*	0.0493278	0.346068	2.77020E-05	4.89981E-0
Oxygen		23.2918*	10.9800	0	0	0	0	0	0	0	0	0	0	22.5404	0*	0	0	0	
Mass Flow		lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
Methane		0*	0.0618137		6.61757E-05		0.376309		2.75759	4178.81	2.75753	0.376309	3.09068	3.09068	0.00107572*	2.72950	0.360167	0.0280886	0.016141
Ethane		0*	0.0821728	4.27961	0.00120555		0.114579	0.00113373	4.27961	1339.15	4.27840	0.114579	4.10864	4.10864	0.00397392*	3.99711	0.108687	0.282491	
Propane		0*	0.0899360	5.66026	0.00755369		0.0447240	0.00710364	5.66026	596.070	5.65270	0.0447240	4.49680	4.49680	0.0123485*	4.44961	0.0419491	1.21065	
Isobutane		0*	0.0261857	2.24144	0.0123566		0.00257217	0.0116204	2.24144	107.799	2.22908	0.00257217	1.30928	1.30928	0.0147935*	1.30359	0.00251613	0.937848	
n-Butane		0* 0*	0.0540855	5.50351	0.0252481	0.00441015	0.0103073	0.0237438	5.50351	194.950	5.47826	0.0103073	2.70427	2.70427	0.0281540*	2.69002	0.00983906	2.81349	
Isopentane n-Pentane		0*	0.0223886 0.0204929	4.25234 4.96571	0.0362417		0.00204955	0.0340824	4.25234	69.0278	4.21610	0.00204955	1.11943	1.11943	0.0366190*	1.11491	0.00198110	3.13743	
Isohexane		0*	0.0204929	7.26012	0.0716752	0.00369115		0.0674048	4.96571 7.26012	61.6198 42.1896	4.89403	0.00189742 0.000568263	1.02464	1.02464	0.0710959*	1.01912	0.00183741	3.94659	
Heptane		0*	0.00974355	22.3659	0.348071			0.327333	22.3659	38.8032	7.26012	0.000368263	0.667935	0.667935		0.667375	0.000559680	6.59274	8.58276E-0
Octane		0*	0.00439741	33.2358	0.540071	0.00138903		0.327333	33.2358	22.4854	22.0179 33.2358	0.000120883	0.487178 0.219871	0.487178 0.219871	0.328923*	0.485297 0.219751	0.000290739	21.8806	
Nonane		0*	0.000766928	18.6654	0	0		0	18.6654	4.84088	18.6654	3.39862E-05	0.0383464	0.0383464	0*	0.0383129	3.34421E-05	33.0160	
Decane		0*	0.000100020	0	0	0	0.000022-00	0	10.0004	4.04000	10.0004	0.000021-00	0.0000404	0.0000404	0*	0.0303129	3.344212-03	18.6271	5.44051E-0
n-Hexane		0*	0.00819132	6,12449	0.0439890	0.000587433	0.000274023	0.0413681	6.12449	26,7764	6.08051	0.000274023	0	0.409566	0.0419556*	0.408708	0.000270682	5.71579	3.34050E-0
Benzene		0*	0.000182103	0.130628		6.58126E-06		0.000429154	0.130628	0.551972	0.130172	0.00287179			0.000435736*	0.00874436	0.000354193	0.121884	
Toluene		0*	0.000426526	1.10861	0	0	0.00593960	0	1,10861	1.58762	1,10861	0.00593960	0.0213263	0.0213263	0*	0.0204621	0.000864238	1.08815	
Ethylbenzene		0*	3.01668E-05	0.252581	0.000171218	2.13860E-07		0.000161017	0.252581	0.142095	0.252409	0.000382719			0.000161231*	0.00145149	5.66306E-05	0.251129	
o-Xylene		0*	0.000103027	1.15414		2.39879E-06		0.00241727	1.15414	0.505891	1.15157	0.00194455		0.00515134		0.00492719	0.000221752	1.14921	
2,2,4-Trimethylpentane		0*	0	0	0	0	0	0	0	0	0	0	0	0	0*	0	0	0	
Carbon Dioxide		0*	57.2754	0.0394969	2.65511E-06	1.43244E-05	0.0392918	2.49692E-06	0.0394969	24.7108	0.0394942	0.0392918	0.0583031	0.0583031	1.68213E-05*	0.0383119	0.0199769	0.00118498	0.019314
		0*	33.1327	0.0195655	0.00211592	0.000234784	864.935	0.00198985	0.0195655	10.4533	0.0174496	864.935	0.0288021	0.0288021	0.00222464*	0.0189602	0.00960713	0.000605289	
Water																			
TEG		0*	0	0	0	0	0	0	0	0	0	0	0	0	0*	0	0	0	
		0* 455.929* 138.439*	0 455.941 67.4373			0 2.27358E-08	0 0.00198477	0 4.50426E-10	0 0.00951153	J	0 0.00951152	0 0.00198477	0 0.0114260	anonan marine	0* 2.31862E-08*	0 0.00948360	0 0.00194239	0 2.79239E-05	4.23824E-0

 \bigcirc

 \bigcirc

 \bigcirc

Process Streams		Comb AIR	Comb Stack	1	2	3	4	5	12	16	17	18	140	140A	143	144	145	150	153
Composition	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:		REAC-100	MIX-101	RCYL-1	VSSL-101	VLVE-106	VSSL-101	VLVE-108	9H Marcela's Gas	9H Mar Cond	9H Mar Water	MIX-100	MIX-105		Condensate Tanks	Water Tanks	Condensate Tanks	Water Tanks
	To Block:	MIX-105		VLVE-108	MIX-101	MIX-100	Water Tanks	RCYL-1	Condensate Tanks	-	MIX-101	VLVE-106	MIX-105	REAC-100	VSSL-101	MIX-100	MIX-100	-	
Mole Fraction		%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Methane		0*	0.0178925	11.1050	0.0635442	11.9309	0.0488273	0.0635442	11.1050	79.0255	11.1515	0.0488273	34.8146	0.910684	1.01072*	32.4403	79.1382	0.171083	0.00209565
Ethane		0*	0.0126901	9.19480	0.617611	17.8382	0.00793188	0.617611	9.19480	13.5112	9.23092	0.00793188	24.6920	0.645896	1.99205*	25.3454	12.7413	0.917979	
Propane		0*	0.00947099	8.29275	2.63883	22.4629	0.00211122	2.63883	8.29275	4.10098	8.31657	0.00211122	18.4283	0.482050	4.22107*	19.2397	3.35336	2.68269	0.000131068
Isobutane		0*	0.00209208	2.49140	3.27496	10.3101	9.21184E-05	3.27496	2.49140	0.562675	2.48810	9.21184E-05	4.07070	0.106482	3.83646*	4.27634	0.152596	1.57666	2.00825E-06
n-Butane		0*	0.00432112	6.11725	6.69168	14.3296	0.000369142	6.69168	6.11725	1.01758	6.11483	0.000369142	8.40788	0.219934	7.30129*	8.82441	0.596712	4.72988	1.67801E-05
Isopentane		0*	0.00144097	3.80765	7.73798	6.63973	5.91315E-05	7.73798	3.80765	0.290256	3.79110	5.91315E-05	2.80379	0.0733418	7.65032*	2.94634	0.0967898	4.24906	1.97614E-06
n-Pentane		0*	0.00131896	4.44642	15.3034	9.66175	5.47424E-05	15.3034	4.44642	0.259106	4.40069	5.47424E-05	2.56639	0.0671317	14.8531*	2.69318	0.0897699	5.34491	1.73226E-06
Isohexane		0*	0.000719844	5.44275	0	0	1.37264E-05	0	5.44275	0.148528	5.46567	1.37264E-05	1.40065	0.0366382	0*	1.47659	0.0228934	7.47532	2.07439E-07
Heptane		0*	0.000451543	14.4201	53.5106	2.99606	6.15027E-06	53.5106	14.4201	0.117484	14.2555	6.15027E-06	0.878596	0.0229824	49.4788*	0.923429	0.0102277	21.3369	1.10624E-07
Octane		0*	0.000178764	18.7970	0	0	2.20282E-06	0	18.7970	0.0597190	18.8762	2.20282E-06	0.347833	0.00909864	0*	0.366799	0.00369424	28.2421	2.13020E-08
Nonane		0*	2.77675E-05	9.40200	0	0	5.51590E-07	0	9.40200	0.0114508	9.44160	5.51590E-07	0.0540291	0.00141330	0*	0.0569564	0.000919119	14.1911	8.83509E-09
Decane		0*	0	0	0	0	0	0	0	0	0	0	0	0	0*	0	0	0) (
n-Hexane		0*	0.000441396	4.59140	7.86338	1.28736	6.61901E-06	7.86338	4.59140	0.0942660	4.57762	6.61901E-06	0.858854	0.0224659	7.33852*	0.904278	0.0110721	6.48097	7 8.07373E-08
Benzene		0*	1.08257E-05	0.108039	0.0899959	0.0159117	7.65287E-05	0.0899959	0.108039	0.00214381	0.108115	7.65287E-05	0.0210643	0.000551002	0.0840830*	0.0213443	0.0159836	0.152467	6.71297E-05
Toluene		0*	2.14962E-05	0.777315	0	0	0.000134185	0	0.777315	0.00522746	0.780589	0.000134185	0.0418267	0.00109410	0*	0.0423429	0.0330632	1.15397	0.000114729
Ethylbenzene		0*	1.31949E-06	0.153701		0.000380427	7.50391E-06	0.0248437	0.153701	0.000406055	0.154244	7.50391E-06	0.00256741	6.71585E-05	0.0228912*	0.00260679	0.00188028	0.231133	6.39734E-06
o-Xylene		0*	4.50636E-06	0.702321	0.372966	0.00426712	3.81264E-05	0.372966	0.702321	0.00144565	0.703708	3.81264E-05	0.00876833	0.000229362	0.343539*	0.00884890	0.00736273	1.05771	3.37985E-05
2,2,4-Trimethylpentane		0*	0	0	0	0	0	0	0	0	0	0	0	0	0*	0	0	C) (
Carbon Dioxide		0*	6.04337	0.0579795	0.000929361	0.0614685	0.00185842		0.0579795	0.170344	0.0582197	0.00185842	0.239400	0.00626223	0.00576122*	0.165981	1.60005	0.00263094	4 0.000914097
Water		0*	8.54029	0.0701630	1.80928	2.46122	99.9383	1.80928	0.0701630	0.176035	0.0628387	99.9383	0.288910	0.00755731	1.86132*	0.200666	1.87977	0.00328299	99.9962
TEG		0*	0	0	0	0	0	0	0	0	0	0	0	0	0*	0	0	C) (
Nitrogen		79*	75.5788	0.0219352	2.63380E-07	0.000153274	0.000147480	2.63380E-07	0.0219352	0.445570	0.0220276	0.000147480	0.0737067	76.9354	1.24757E-05*	0.0645475	0.244413	9.73997E-05	5 3.15112E-06
Oxygen		21*	9.78642	0	0	0	0	0	0	0	0	0	0	20.4507	0*	0	0	C) (

 \bigcirc

 \bigcirc

 \bigcirc

Process Streams	er de la constance	Comb AIR	Comb Stack	1	2	3	4	5	12	16	17	18	140	140A	143	144	145	150	153
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:		REAC-100	MIX-101	RCYL-1	VSSL-101	VLVE-106	VSSL-101	VLVE-108	9H Marcela's Gas	9H Mar Cond	9H Mar Water	MIX-100	MIX-105		Condensate Tanks	Water Tanks	Condensate Tanks	Water Tank
A CARLES AND A CARLE	To Block:	MIX-105		VLVE-108	MIX-101	MIX-100	Water Tanks	RCYL-1	Condensate Tanks		MIX-101	VLVE-106	MIX-105	REAC-100	VSSL-101	MIX-100	MIX-100	-	
Property	Units			eponetic (e)			ane ne water a	A MARY AND A MARY				and a second second		e de la composition d		Ros Mondel Concerns of Concerns	and the second	San Selection of the Selection	Cale of the loss
Temperature	°F	70*	600*	49.4038	70	70	91.0653	70	50.4352	70.4140	83.6550	91.0555	61.9881	69.4764	70*	62*	62*	62	
Pressure	psig	1*	0	0	0	0	1*	0	1*	185*	185*	10	0	0	0*	0	0	0	
Mass Flow	lb/h	594.368*	614.181	120.027	0.551724	0.0253450	865.542	0.518852	120.027	6761.61	119.475	865.542	19.8123	614.181	0.544197*	19.2257	0.561275	100.801	864.98
Mass Fraction Vapor	%	100	100	14.2273	0	100	0.0675367	0	13.9208	99.8950	3.16758	0.0643202	100	100	4.65732	100	100	0	
Enthalpy	MMBtu/h	-0.00108558	-0.328756	-0.119150	-0.000558890	-2.68715E-05	-5.88936	-0.000525591	-0.119150	-11.3224	-0.118591	-5.88936	-0.0234809	-0.0245665	-0.000552463	-0.0224083	-0.00104574	-0.0956743	-5.9130
Mole Fraction Vapor	%	100	100	31.7051	0	100	0.0613600	0	31.2764	99.9757	10.6380	0.0586571	100	100	7.98138	100	100	0	
Molecular Weight	lb/lbmol	28.8503	28.5203	77.5418	84.9904	47.8647	18.0168	84.9904	77.5418	20.5133	77.5104	18.0168	35.8024	29.0322	82.0272	36.6567	19.7847	98.4946	18.015
Molar Flow	lbmol/h	20.6018	21.5349	1.54790	0.00649160	0.000529513	48.0409	0.00610483	1.54790	329.620	1.54141	48.0409	0.553378	21.1552	0.00663434	0.524479	0.0283692	1.02342	48.012
Specific Gravity		0.996124	0.984727		0.660701	1.65264		0.660701					1.23616	1.00240		1.26566	0.683110	0.690507	0.99962
Dynamic Viscosity	cP	0.0180500	0.0285029		0.313523	0.00808981		0.313523					0.00882526	0.0176857		0.00874846	0.0105961	0.423284	1.1044
Kinematic Viscosity	cSt	14.1386	48.2935		0.474311	4.00113		0.474311					5.79363	14.6873		5.60629	12.6916	0.613584	1.1059
Thermal Conductivity	Btu/(h*ft*°F)	0.0147468	0.0254359		0.0702527	0.0103366		0.0702527					0.0123910	0.0146820		0.0121820	0.0169974	0.0722995	0.34323
Std Vapor Volumetric Flow	MMSCFD	0.187633	0.196132	0.0140977	5.91231E-05	4.82260E-06	0.437538	5.56005E-05	0.0140977	3.00206	0.0140385	0.437538	0.00503996	0.192673	6.04231E-05	0.00477676	0.000258376	0.00932091	0.43728
Std Liquid Volumetric Flow	Mbbl/d	0.0470349	0.0499107	0.0129662	5.70944E-05		0.0594029	5.36927E-05	0.0129662	1.36375	0.0129091	0.0594029	0.00301139	0.0500463	5.69995E-05	0.00289455	0.000113525	0.0100716	0.059289
Gross Ideal Gas Heating Value	Btu/ft^3	0	5.35453	4280.83	4669.28	2685.24	50.9979	4669.28	4280.83	1236.98			2058.60	53.8489	4510.93	2107.27	1147.03	5394.73	50.350
CpCv Ratio		1.40096	1.35369	1.14888	1.17639	1.12294	1.41732	1.17639	1.14959	1.31459	1.18797	1.41728	1.16113	1.38485	1.17432	1.15785	1.27237	1.14582	1.3900
Compressibility		0.999581	1.00032	0.317410	0.00533241	0.980414	0.00138218	0.00533241	0.313295		0.162858		0.988335	0.999483	0.0831574	0.987769	0.996450	0.00600362	0.00075855
Mass Volume	ft^3/lb	12.5473	27.1407	1.52171	0.0242675	7.92256	0.0288873	0.0242675	1.40914	1.31904	0.0613485		10.5158	13.3026	0.392116	10.2651	19.1862	0.0232200	0.016039
Mass Density	lb/ft^3	0.0796987	0.0368450	0.657156	41.2073	0.126222	34.6173	41.2073	0.709652	0.758127			0.0950946	0.0751730	2.55026	0.0974171	0.0521207	43.0662	62.345
Net Ideal Gas Heating Value	Btu/ft^3	0	0.970355	3962.80	4323.23	2472.14	0.651540	4323.23	3962.80	1121.47	3961.28	0.651540	1888.08	49.3886	4175.49	1933.49	1037.78	5002.77	0.038730

Process Streams	and the second		Comb Stack	Coluert	2 Salvad	3 Solved	4 Saluad	5 Column	12	16	17	18	140	140A	143	144	145	150	153
Composition Phase: Vapor	Status:	Solved	Solved	Solved		Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solve
nase. Vapor	From Block: To Block:	MIX-105	REAC-100	MIX-101 VLVE-108		/SSL-101 MIX-100	VLVE-106 Water Tanks	VSSL-101 RCYL-1	VLVE-108 Condensate Tanks	9H Marcela's Gas	9H Mar Cond MIX-101	9H Mar Water VLVE-106	MIX-100 MIX-105	MIX-105		Condensate Tanks	Water Tanks	Condensate Tanks	
Mass Fraction	TO DIOOK.	%	%	%	1012-101	%	%	KUTE-T	%	%	%	<u>vLvE-106</u>	WIA-105 %	REAC-100	VSSL-101	MIX-100	MIX-100		
Nethane		0	0.0100644	15.9572		3.99878	62.0024		16.2920	61.8659	46.7039	63.5956	15.5998	0.503221	3.99878	14.1972	64.1695		
Ethane		0	0.0133793	23.0294		11.2061	18.7923		23.3885		27.5660	19.2260	20.7379	0.668963	11.2061	20.7905	19.3644		
Propane		0	0.0146433	24.4170		20.6941	7.33461		24.4867	8.82172	13.3586	7.50485	22.6970	0.732163	20.6941	23.1441	7.47390		
sobutane		0	0.00426351	6.62976		12.5195	0.433286		6.55247	1.59460	2.35632	0.450613	6.60844	0.213176	12.5195	6.78049	0.448288		
-Butane		0	0.00880612	13.1637		17.4005	1.70327		12.9380	2.88278	4.20593	1.75098	13.6495	0.440306	17.4005	13.9918	1.75299		
sopentane n-Pentane		0	0.00364528 0.00333662	4.94453 4.38324		10.0084 14.5636	0.342791 0.317082		4.80919 4.25668	1.01894 0.908652	1.39018 1.22593	0.354987	5.65019 5.17176	0.182264	10.0084	5.79909	0.352964		
sohexane		0	0.00217504	2.67366		0	0.0961111		2.59048		0.787976	0.328198 0.100212		0.166831 0.108752	14.5636 0	5.30081 3.47127	0.327364 0.0997159		
leptane		0	0.00158643	1.78775		6.27206	0.0502641		1.73822	0.553315	0.642985	0.0525332	2.45897	0.0793216	6.27206	2.52422	0.0517997		
Octane		0	0.000715980	0.767220		0	0.0205514		0.749087	0.298385	0.339127	0.0214978	1.10977	0.0357990	0	1.14301	0.0213290		
lonane		0	0.000124870	0.127060		0	0.00575952		0.124509	0.0533048	0.0663603	0.00601337	0.193549	0.00624350	0	0.199280	0.00595824		
Decane		0	0	0		0	0		0	0	0	0	0	0	0	0	0		
-Hexane		0	0.00133370	1.59857		2.31775	0.0464584		1.54947	0.391274	0.487532	0.0485131	2.06723	0.0666850	2.31775	2.12585	0.0482264		
Benzene Foluene	10 m	0	2.96497E-05 6.94464E-05	0.0345082 0.0754445		0.0259667	0.0975434 0.233883		0.0334482	0.00806385	0.0103830	0.0682741	0.0459570		0.0259667	0.0454828	0.0631051		
Ethylbenzene		0	4.91171E-06	0.00508636	0	.000843795	0.233883		0.0733365 0.00496523	0.0224671 0.00185109	0.0270743 0.00220031	0.166270		0.00347232 0.000245586	0.000843795	0.106431	0.153978		
p-Xylene		0	1.67747E-05	0.0170445		0.00946456	0.0657916		0.0166573	0.00634402	0.00220031	0.0462753		0.000245566	0.000843795	0.00754978 0.0256282	0.0100896 0.0395086		
,2,4-Trimethylpentane		0	0	0		0	0		0.0100070	0	0.00703037	0.0402733	0.0200007	0.0000000705	0.00340430	0.0230202	0.0000000		
arbon Dioxide		0	9.32550	0.222884		0.0565176	3.91082		0.227131	0.365824	0.424751	3.23819	-		0.0565176	0.199275	3.55920		
Vater		0	5.39461	0.110342		0.926353	4.19651		0.112439		0.184292	2.68261	0.145375		0.926353	0.0986194	1.71166		
reg		0	0	0		0	0		0	0	0	0	0	0	0	0	0		
Vitrogen		76.7082	74.2356	0.0555162	8.	97052E-05	0.333312		0.0567217	0.609115	0.212778	0.345885		74.2356		0.0493278	0.346068		
Dxygen Aass Flow		23.2918 lb/h	10.9800 lb/h	0 Ib/h	-	0 lb/h	0		0	0	0	0		22.5404	0	0	0	-	
lethane			0.0618137	2.72493		0.00101349	Ib/h		lb/h	lb/h	1 76740	lb/h	lb/h	lb/h	Ib/h	lb/h	lb/h	-	
thane		0	0.0821728	3.93262		0.00101349	0.362440 0.109852		2.72217 3.90791	4178.74 1339.02	1.76749 1.04323	0.354048 0.107035		3.09068 4.10864	0.00101349	2.72950	0.360167		
Propane		0	0.0899360	4.16958		0.00524491	0.0428751		4.09140		0.505553			4.10864	0.00284019 0.00524491	3.99711 4.44961	0.108687 0.0419491		
sobutane		0	0.0261857	1.13213		0.00317307	0.00253281		1.09483		0.0891743		1.30928	1.30928	0.00317307	1.30359	0.00251613		
-Butane		0	0.0540855	2.24791		0.00441015	0.00995663		2.16177	194.718	0.159172			2.70427	0.00441015	2.69002	0.00983906		
sopentane		0	0.0223886	0.844354		0.00253662	0.00200381		0.803552		0.0526108	0.00197628		1.11943		1.11491	0.00198110		
n-Pentane		0	0.0204929	0.748505	(0.00369115			0.711236		0.0463948		1.02464	1.02464	0.00369115	1.01912	0.00183741		
sohexane		0	0.0133587	0.456568			0.000561825		0.432835		0.0298207	0.000557899		0.667935	0	0.667375			
Heptane Octane		0	0.00974355 0.00439741	0.305285	,		0.000293823		0.290434		0.0243335			0.487178	0.00158965	0.485297	0.000290739		
Nonane		0	0.000766928	0.131014 0.0216974			0.000120135 3.36678E-05		0.125163 0.0208039		0.0128342 0.00251138			0.219871 0.0383464	0	0.219751			
Decane		0	0.000700320	0.0210314		0	0.000702-05		0.0208039	3.00040	0.00251138	3.34773E-05	0.0363464	0.0363464	0	0.0383129	3.34421E-05		
n-Hexane		0	0.00819132	0.272979	0.	.000587433	0.000271576		0.258897	26.4287	0.0184505	0.000270081		0.409566	0.000587433	0.408708	0.000270682		
Benzene		0	0.000182103	0.00589279	6	6.58126E-06	0.000570198		0.00558875		0.000392942					0.00874436			
Toluene		0	0.000426526	0.0128833		0	0.00136718		0.0122536	1.51755	0.00102462	0.000925656	0.0213263	0.0213263	0	0.0204621			
Ethylbenzene		0		0.000868573			0.000100829		0.000829624		8.32702E-05		0.00150834		2.13860E-07	0.00145149	5.66306E-05		
o-Xylene		0	0.000103027	0.00291060	2		0.000384590		0.00278322		0.000291267	0.000257623		0.00515134	2.39879E-06	0.00492719	0.000221752		
2,2,4-Trimethylpentane Carbon Dioxide		0	0 57.2754	0 0290609	1	0	0 0000610		0 00270507	J	0	0	0	0	0	0	0		
Vater		0	33.1327	0.0380608		1.43244E-05	0.0228610 0.0245311		0.0379507 0.0187871	24.7097 10.4528	0.0160746 0.00697447		0.0583031	0.0583031	1.43244E-05 0.000234784	0.0383119			
TEG		0	00.1027	0.0100420	0.	000234704	0.0243311		0.0107071		0.00097447		0.0200021		0.000234784	0.0189602	0.00960713		
Nitrogen		455.929	-	0.00948024	2	2.27358E-08	0.00194840		0.00947745	41.1427			0.0114260	and a local design of the second s	2.27358E-08	0.00948360	0.00194239		
Dxygen		138.439	67.4373	0		0	0		C	0	0	0		138.439	0	0.000	0.00101200		
Nole Fraction	Canada States	%	%	%		%	%		%	%	%	%	%	%	%	%	%		
Nethane		0	0.0178925	34.6110		11.9309	76.6425		35.0499		67.1908	78.3177	34.8146	0.910684	11.9309	32.4403	79.1382		
Ethane		0	0.0126901	26.6497		17.8382	12.3934		26.8452		21.1584		24.6920	0.645896	17.8382		12.7413		
Propane		0	0.00947099	19.2675		22.4629	3.29848		19.1654		6.99188			0.482050	22.4629	19.2397	3.35336		
sobutane n-Butane		0	0.00209208	3.96903		10.3101	0.147831		3.89087	0.562337	0.935666				10.3101	4.27634	0.152596		
sopentane			0.00432112 0.00144097	7.88072 2.38465		14.3296 6.63973	0.581131 0.0942175		7.68263 2.30052		1.67012 0.444702			0.219934	14.3296	8.82441	0.596712		
n-Pentane		0	0.00131896	2.36465		9.66175			2.03623		0.444702			0.0733418 0.0671317	6.63973 9.66175	2.94634 2.69318	0.0967898 0.0897699		
sohexane		o o	0.000719844	1.07957		0.00110	0.0221168		1.03748		0.211037			0.0366382	0.00175	1.47659	0.0228934		
Heptane		0	0.000451543	0.620810		2.99606			0.598704		0.148099				2.99606	0.923429	0.0102277		
Dctane		0	0.000178764	0.233708		0	0.00356779		0.226330	0.0535413	0.0685198				0	0.366799			
Vonane		0	2.77675E-05	0.0344716		0	0.000890520		0.0335051		0.0119416	0.000926291	0.0540291	0.00141330	0	0.0569564	0.000919119		
Decane		0	0	0		0	0		0	Ū	0	0	0	0	0	0	0		
n-Hexane			0.000441396	0.645470		1.28736	0.0106909		0.620562		0.130571	0.0111219			1.28736	0.904278	0.0110721		
Benzene Toluene			1.08257E-05 2.14962E-05			0.0159117	0.0247635 0.0503373		0.0147788 0.0274703		0.00306786			0.000551002	0.0159117	0.0213443	0.0159836		
Ethylbenzene		0	1.31949E-06		0	0.000380427	0.00322187		0.0274703		0.00678180			0.00109410 6.71585E-05	0 000380427	0.0423429 0.00260679	0.0330632 0.00188028		
p-Xylene		0	4.50636E-06			0.00426712			0.00541512		0.000478334			0.000229362		0.00280879			
2,2,4-Trimethylpentane		o o	0	0.0000000000000000000000000000000000000		0.00420712	0.0122031		0.00041012		0.00107314	0.00001100	0.00070833	0.000220002	0.00420712	0.00004090	0.00100273		
Carbon Dioxide		0	6.04337	0.176223		0.0614685	1.76219		0.178121	0.170377	0.222749	1.45365	State of the second	0.00626223	0.0614685	0.165981	1.60005		
Water		0	8.54029	0.213123		2.46122	4.61933		0.215408		0.236098				2.46122	0.200666	1.87977		
TEG		0	0	0		0	0		(0	0			0	0	0	0		
Nitrogen		79	75.5788	0.0689577	0	0.000153274	0.235948		0.0698823	0.445675	0.175302	0.243932	0.0737067	76 9354	0.000153274	0.0645475	0.244413		

 \bigcirc

 \bigcirc

 \bigcirc

Process Streams		Comb AIR	Comb Stack	1	2	3	4	5	12	16	17	18	140	140A	143	144	145	150	153
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Vapor	From Block:	-	REAC-100	MIX-101	RCYL-1	VSSL-101	VLVE-106	VSSL-101	VLVE-108	9H Marcela's Gas	9H Mar Cond	9H Mar Water	MIX-100	MIX-105			Water Tanks		
and the second second second	To Block:	MIX-105		VLVE-108	MIX-101	MIX-100	Water Tanks	RCYL-1	Condensate Tanks	-	MIX-101	VLVE-106	MIX-105	REAC-100	VSSL-101	MIX-100	MIX-100		
Property	Units							and the second		A CONTRACTOR OF A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACTACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACTACO		and the second second			STATISTICS IN				
Temperature	°F	70	600	49.4038		70	91.0653		50.4352	70.4140	83.6550	91,0555	61.9881	69.4764	70	62	62		
Pressure	psig	1	0	0		0	1		1	185	185	10	0	0	0	0	0		
Mass Flow	lb/h	594.368	614.181	17.0765		0.0253450	0.584558		16.7087	6754.51	3.78447	0.556718	19.8123	614,181	0.0253450	19.2257	0.561275		
Mass Fraction Vapor	%	100	100	100		100	100		100	100	100	100	100	100	100	100	100		
Enthalpy	MMBtu/h	-0.00108558	-0.328756	-0.0205214		-2.68715E-05	-0.00114182		-0.0201588	-11.3156	-0.00582470	-0.00104685	-0.0234809	-0.0245665	-2.68715E-05	-0.0224083	-0.00104574		
Mole Fraction Vapor	%	100	100	100		100	100		100	100	100	100	100	100	100	100	100		
Molecular Weight	lb/lbmol	28.8503	28.5203	34.7959		47.8647	19.8304		34.5131	20.4968	23.0796	19.7562	35.8024	29.0322	47.8647	36.6567	19.7847		
Molar Flow	lbmol/h	20.6018	21.5349	0.490761		0.000529513	0.0294779		0.484126	329.540	0.163975	0.0281794	0.553378	21.1552	0.000529513	0.524479	0.0283692		
Specific Gravity		0.996124	0.984727	1.20141		1.65264	0.684690		1.19164	0.707698	0.796875	0.682129	1.23616	1.00240	1.65264	1.26566	0.683110		
Dynamic Viscosity	cP	0.0180500	0.0285029	0.00868966		0.00808981	0.0111866		0.00873113	0.0107696	0.0107018	0.0111372	0.00882526	0.0176857	0.00808981	0.00874846	0.0105961		
Kinematic Viscosity	cSt	14.1386	48.2935	5.72674		4.00113	13.2181		5.43960	0.887740	0.794579	8.38002	5.79363	14.6873	4.00113	5.60629	12.6916		
Thermal Conductivity	Btu/(h*ft*°F)	0.0147468	0.0254359	0.0120409		0.0103366	0.0180792		0.0121351	0.0178525	0.0173244	0.0181971	0.0123910	0.0146820	0.0103366	0.0121820	0.0169974		
Std Vapor Volumetric Flow	MMSCFD	0.187633	0.196132	0.00446967		4.82260E-06	0.000268474		0.00440924	3.00133	0.00149342	0.000256647	0.00503996	0.192673	4.82260E-06	0.00477676	0.000258376		
Std Liquid Volumetric Flow	Mbbl/d	0.0470349	0.0499107	0.00264631		3.30680E-06			0.00260103	1.36302	0.000724919	0.000111983	0.00301139	0.0500463	3.30680E-06	0.00289455	0.000113525		
Gross Ideal Gas Heating Value	Btu/ft^3	0	5.35453	2007.75		2685.24	1116.14		1992.59	1236.09	1377.56	1137.83	2058.60	53.8489	2685.24	2107.27	1147.03		
CpCv Ratio		1.40096	1.35369	1.16915		1.12294	1.26548		1.17059	1.31476	1.29061	1.26688	1.16113	1.38485	1.12294	1.15785	1.27237		
Compressibility		0.999581	1.00032	0.988113		0.980414	0.996787		0.987563	0.950063	0.940105	0.994991	0.988335	0.999483	0.980414	0.987769	0.996450		
Mass Volume	ft^3/lb	12.5473	27.1407	10.5566		7.92256	18.9274		9.97969	1.32040	1.18933	12.0528	10.5158	13.3026	7.92256	10.2651	19.1862		
Mass Density	lb/ft^3	0.0796987	0.0368450	0.0947272		0.126222	0.0528336		0.100203	0.757345	0.840809	0.0829681	0.0950946	0.0751730	0.126222	0.0974171	0.0521207		
Net Ideal Gas Heating Value	Btu/ft^3	0	0.970355	1840.64		2472.14	1008.67		1826.49	1120.65	1252.63	1029.01	1888.08	49.3886	2472.14	1933.49	1037.78		

.

 \bigcirc

 \bigcirc

R. WEESE PRODUCTION FACILITY EMISSION CALCULATIONS

R. Weese Production Facility Tyler County

Source	Description	NOx lb/hr	CO lb/hr	CO _{2e} lb/hr	VOC lb/hr	SO2 lb/hr	H2S lb/hr	PM lb/hr	n-Hexane lb/hr	benzene lb/hr	formaldehyde lb/hr	Total HAPs lb/hr
1S	Four GPU Heaters	0.28	0.23	332.17	0.02	0.002	0.00	0.021		0.0000	0.0002	0.0052
28	Dehy Reboiler	0.03	0.03	36.24	0.00	0.002	0.00	0.002				0.0000
3S	Dehy Still Vent (Un-controlled)			0.40	1.23				0.0243	0.0389		0.4455
	VCU and Pilot (including Water											
VCU-1	and Condensate tank vapors) ²	0.04	0.24	76.96	0.26							
TL-1	Condensate Truck Loading				2.74							
TL-2	Water Truck Loading				0.03							
	Haul Roads							10.860				
	Fugitive VOC			6.92	0.13							
Total		0.35	0.50	452.69	4.41	0.00	0.00	10.88	0.02	0.04	0.00	0.45

Source		NOx tpy	CO tpy	CO _{2e} tpy	VOC tpy	SO2 tpy	H2S tpy	PM tpy	n-Hexane tpy	benzene tpy	formaldehyde tpy	Total HAPs tpy
1S	Four GPU Heaters	1.20	1.01	1455	0.07	0.007	0.00	0.09		0.000	0.001	0.023
28	Dehy Reboiler	0.13	0.11	159	0.01	0.001	0.00	0.01				0.000
3S	Dehy Still Vent (Un-controlled)			2	5.38				0.106	0.170		1.951
	VCU and Pilot (including Water											
VCU-1	and Condensate tank vapors) ²	0.20	1.07	337	1.16							
TL-1	Condensate Truck Loading ³				0.05							
TL-2	Water Truck Loading				0.01							
	Haul Road							0.54				
	Fugitive VOC			30	0.57							
Total		1.53	2.19	1983	7.24	0.01	0.00	0.64	0.11	0.170	0.001	1.974

¹ See Appendix C for Blowdown Calculations
 ² Condensate and water tanks equipped with Combustor
 Combined capture and control effiency of system for controlleding water and condensate tanks is 98%
 All emissions from this capture and control system are presented in this line. It is a mixture of un-captured/un-controlled VOCs and combustion products.
 ³ Un-Captured Truck Loading Emissions Only. Captured and Controlled emissions represented by the VCUs emissions

otential Emission Rate

Source 1S (GPU-1 to GPU-4)

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 2750.0 Mbtu/hr 98.0 % 1243.3 Btu/scf 54169.6 scfd 0.000 Mole % 8760

FourUnits: Three at at 750 Mbtu/Hr Each and One at 500 Mbtu/hr

NOx	0.2751	lbs/hr	1.205	TPY
CO	0.2311	lbs/hr	1.012	TPY
CO2	330.1	lbs/hr	1446.0	TPY
CO2e	332	lbs/hr	1,455	TPY
VOC	0.0151	lbs/hr	0.066	TPY
SO2	0.0017	lbs/hr	0.007	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0209	lbs/hr	0.092	TPY
СНОН	0.0002	lbs/hr	0.001	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hezane	0.0050	lbs/hr	0.022	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0052	lbs/hr	0.023	TPY

AP-42 Factors Used (Tables 1.4.1-1.4.3)

NOx	100	Lbs/MMCF
СО	84	Lbs/MMCF
CO ₂	120,000	Lbs/MMCF
VOC	5.5	Lbs/MMCF
PM	7.6	Lbs/MMCF
SO ₂	0.6	Lbs/MMCF
CH ₄	2.3	Lbs/MMCF
N ₂ O	2.2	Lbs/MMCF
нсон	0.075	Lbs/MMCF
Benzene	0.0021	Lbs/MMCF
n-Hexane	1.8	Lbs/MMCF
Toluene	0.0034	Lbs/MMCF

Global Warming Potential = 1

Global Warming Potential = 25 Global Warming Potential =310

Triad Hunter, LLC

R. Weese Production Facility Tyler County

Dehy Burner/Still Vent Emissions Sources S2 and S3

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration

300.0 Mbtu/hr 98.0 % 1243.3 Btu/scf 5909.4 scfd 0.000 Mole %

2.16 MMscf/yr

NOx	0.0300	lbs/hr	0.131	TPY
со	0.0252	lbs/hr	0.110	TPY
VOC	0.0017	lbs/hr	0.007	TPY
SO2	0.0001	lbs/hr	0.001	TPY
РМ	0.0023	lbs/hr	0.010	TPY
CO ₂	36.0	lb/hr	157.7	TPY
CO _{2e}	36.2	lb/hr	158.7	TPY
n-Hexane	0.0000	lb/hr	0.000	TPY

Reboiler Burner (2S)

Un-Controlled Still Vent (3S)

Dry Gas Rate Glycol Circulation Rate Treating Temperature Treating Pressure 3,000 MCFD 3.0 Gal/Lb H2O 65 Deg F 420 psi

Total HC	1.2698	lbs/hr	5.562	TPY
Total VOC	1.2282	lbs/hr	5.380	TPY
Total HAP	0.4455	lbs/hr	1.951	TPY
CO _{2e}	0.40	lbs/hr	1.752	TPY
benzene	0.0389	lbs/hr	0.170	TPY
toluene	0.1872	lbs/hr	0.820	TPY
ethyl benzene	0.0000	lbs/hr	0.000	ТРҮ
xylene	0.1951	lbs/hr	0.855	TPY
n-hexane	0.0243	lbs/hr	0.106	TPY

From Gri GlyCalc 4.0

Potential Emission Rates

Source VCU-1

Enclosed Combustor (Flare)

Destruction Efficiency Gas Heat Content (HHV) Max Flow to T-E Max BTUs to Flare 98.0 % 1892.2 Btu/scf¹ 8,340 scf/day¹ 0.66 MMBTU/Hr

3.0441 MMCF/Yr² 5,760 MMBTU/Yr

NOx	0.04	lbs/hr	0.20	tpy
СО	0.24	lbs/hr	1.07	tpy
CO2	76.86	lbs/hr	336.65	tpy
CO2e	76.96	lb/hr	337.05	tpy
VOC	0.26	lb/hr	1.16	tpy
CH4	0.0021	lbs/hr	0.0060	tpy
N2O	0.0001	lbs/hr	0.0006	tpy

BTU content of gas and mass flow is derived from ProMax(tank and condensate truck loading emissions) plus GLYCalc Flash Gas

Promax Flow From Tanks (Stream 144) = 5040 scf/day

GLYCalc Flash Gas Flow = 3900 scf/day

Lbs/MMBTU

0.068 Lbs/MMBTU

0.37 Lbs/MMBTU

116.89 Lbs/MMBTU

0.0022 Lbs/MMBTU

0.00022

² Annual flow assumes daily flow 365 days per year.

VOC emissons are 2% of VOC loading to the combustor [0.02 x(12.515+0.714)]

Factors Used AP-42 Table 13 NOx AP-42 Table 13 CO 40 CFR 98 Tabl CO2 40 CFR 98 Tabl CH4 40 CFR 98 Tabl N2O

VOC emissions equals non-combusted NMNEHC

Fugitive VOC Emissions		
Volatile Organic Compounds, NMNEHC from gas analysis:	17.21	weight percent
Methane from gas analysis:	61.92	weight percent
Carbon Dioxide from gas analysis:	0.37	weight percent
Gas Density	0.0571	lb/scf

Emission Source:	Number	Oil & Gas Production*	VOC %	VOC, lb/h	VOC TPY	CO2 lb/H	CO2 TPY	CH4 lb/hr	CH4 TPY	CO2e
Valves:		a state in the second second	No. Starting	and the state	Ser Church		Sand San		and the second	
Gas/Vapor:	10	0.02700 scf/hr	17.2	0.003	0.012	0.000	0.000	0.010	0.0418	1.045
Light Liquid:	8	0.05000 scf/hr	100.0	0.023	0.100					0.000
Heavy Liquid (Oil):	-	0.00050 scf/hr	100.0	0.000	0.000					01000
Low Bleed Pneumatic	4	1.39000 scf/hr	17.2	0.055	0.239	0.196	0.860	0.196	0.8604	22.372
Relief Valves:	4	0.04000 scf/hr	17.2	0.002	0.007	0.000	0.000	0.006	0.0248	0.619
Open-ended Lines, gas:	-	0.06100 sfc/hr	17.2	0.000	0.000					0.000
Open-ended Lines, liquid:	-	0.05000 lb/hr	100.0	0.000	0.000					0.000
Pump Seals:									S. STAT	0.000
Gas:	-	0.00529 lb/hr	17.2	0.000	0.000	0.000	0.000	0.000	0.0000	0.000
Light Liquid:	6	0.02866 lb/hr	100.0	0.172	0.753			-		01000
Heavy Liquid (Oil):		0.00133 lb/hr	100.0	0.000	0.000					
Compressor Seals, Gas:	10	0.01940 lb/hr	17.2	0.033	0.146	0.001	0.003	0.007	0.0300	0.754
Connectors:	Children and					C. Market	Sector State	Sec. 1	1000	0.000
Gas:	90	0.00300 scf/hr	17.2	0.003	0.012	0.000	0.000	0.010	0.0418	1.045
Light Liquid:	12	0.00700 scf/hr	100.0	0.084	0.368					0.000
Heavy Liquid (Oil):	-	0.00030 scf/hr	100.0	0.000	0.000					
Flanges:								S. C. S. S.		0.000
Gas:	90	0.00086 lb/hr	17.2	0.013	0.058	0.000	0.001	0.048	0.2099	5.249
Light Liquid:	12	0.00300 scf/hr	100.0	0.002	0.009					0.000
Heavy Liquid:	0	0.0009 scf/hr	100.0	0.000	0.000					0.000

Fugi	tive Calculation	is:
	lb/hr	t/y
VOC	0.334	1.465
CH4	0.276	1.209
CO2	0.001	0.005
CO2e	7.097	31.08

Notes: *Factors are from 40 CFR 98, Table W-1A (scf/hr), where available. Remaining are API (lb/hr

Triad Hunter, LLC

R. Weese Production Facility Tyler County

Combined Tank Vapor Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	CDM
	mole %	lb/lb-mole	1 uer 5.0.	Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE		GPM
211. 210					Diusci	Dtu/sci	V01/V01	INIVI / INE	Factor	
Nitrogen, N2	0.074	0.021	0.001	0.058			-		0.0007	
Carbon Dioxide, CO2	0.239	0.105	0.004	0.295					0.0024	
Hydrogen Sulfide, H2S	0.000	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Water	0.289	0.052	0.002	0.146			(-).		0.0029	
Oxygen, O2	0.001	0.000	0.000	0.001			-		0.0000	
Methane, CH4	34.815	5.585	0.193	15.625	316.6	351.6	3.318		0.3474	
Ethane, C2H6	24.692	7.425	0.256	20.771	399.7	436.9	4.119		0.2449	6.568
Propane	18.428	8.126	0.281	22.733	426.6	463.7	4.390	22.733	0.1811	5.051
Iso-Butane	4.071	2.366	0.082	6.619	122.1	132.4	1.261	6.619	0.0395	1.325
Normal Butane	8.408	4.887	0.169	13.671	253.1	274.3	2.604	13.671	0.0813	2.637
Iso Pentane	2.804	2.023	0.070	5.659	103.7	112.2	1.069	5.659	0.0280	1.021
Normal Pentane	2.566	1.852	0.064	5.180	95.1	102.9	0.978	5.180	0.0257	0.925
Hexane	2.260	1.948	0.067	5.448	99.5	107.5	1.023	5.448	0.0223	0.924
Heptane+	1.353	1.356	0.047	3.793	69.0	74.4	0.709	3.793	0.0135	0.621
	100.000	35.746	1.234		1,885.5	2,055.9	19.469	63.104	0.9897	19.071

Ideal Gross (HHV)	2,055.9
Ideal Gross (sat'd)	2,020.8
GPM	-
Real Gross (HHV)	2,077.2
Real Net (LHV)	1,905.1

Triad Hunter, LLC

R. Weese Production Facility Tyler County

Fuel Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.446	0.125	0.004	0.609			-		0.0045	
Carbon Dioxide, CO2	0.171	0.075	0.003	0.367			-		0.0017	
Hydrogen Sulfide, H2S	0.000	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-					-	
Methane, CH4	79.139	12.696	0.438	61.921	719.7	799.3	7.542		0.7898	
Ethane, C2H6	13.562	4.078	0.141	19.889	219.5	240.0	2.262		0.1345	3.608
Propane	4.128	1.820	0.063	8.878	95.6	103.9	0.983	8.878	0.0406	1.131
Iso-Butane	0.565	0.328	0.011	1.602	17.0	18.4	0.175	1.602	0.0055	0.184
Normal Butane	1.018	0.592	0.020	2.886	30.6	33.2	0.315	2.886	0.0098	0.319
Iso Pentane	0.285	0.206	0.007	1.003	10.5	11.4	0.109	1.003	0.0029	0.104
Normal Pentane	0.252	0.182	0.006	0.887	9.3	10.1	0.096	0.887	0.0025	0.091
Hexane	0.239	0.206	0.007	1.005	10.5	11.4	0.108	1.005	0.0024	0.098
Heptane+	0.195	0.195	0.007	0.953	9.9	10.7	0.102	0.953	0.0019	0.089
	100.000	20.504	0.708		1,122.7	1,238.3	11.693	17.213	0.9960	5.624

0.05706

Gas Density (STP) =

Ideal Gross (HHV)	1,238.3
Ideal Gross (sat'd)	1,217.6
GPM	-
Real Gross (HHV)	1,243.3
Real Net (LHV)	1,127.2

FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

				,	,	PM		,	PM-1	0
k =	Particle size multiplier				0.80			0.36		
s =	s = Silt content of road surface material (%)					10		3		
p =	Number of days per year with	n precipitati	on >0.01	in.		157			157	
Item Numbe	r Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	le Miles per Trips per Trips d Trip Hour Ye			sper	Control Device ID Number	Control Efficiency (%)
1	Produced Water Tanker Truck	10	20	10	0.8	2	30)0	None	0
2	Condensate Tanker Truck	18	22	10	0.8	1	4	0	None	0
3										
4										
5										
6										
7										
8										

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

Source: AP-42 Fifth Edition – 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$ Ib/Vehicle Mile Traveled (VMT) Where:

		PM	PM-10
k =	Particle size multiplier	0.80	0.36
s =	Silt content of road surface material (%)	10	3
S =	Mean vehicle speed (mph)	10	10
W =	Mean vehicle weight (tons)	20	20
w =	Mean number of wheels per vehicle	10	10
p =	Number of days per year with precipitation >0.01 in.	157	157

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] =$ lb/hr

For TPY: [lb ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

SUMMARY OF UNPAVED HAULROAD EMISSIONS

		Р	Μ		PM-10				
Item No.	Uncor	trolled	Controlled		Uncor	ntrolled	Controlled		
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	
1	6.48	0.46	6.48	0.46	0.86	0.07	0.86	0.07	
2	4.38	0.09	4.38	0.09	0.73	0.01	0.73	0.01	
3									
4									
5									
6									
7									
8									
TOTALS	10.86	0.54	10.86	0.54	1.59	0.08	1.59	0.08	

FUGITIVE EMISSIONS FROM PAVED HAULROADS

l =	Industrial augmentation factor	(dimensionle					
n =	Number of traffic lanes						
s =	Surface material silt content (9						
L =	Surface dust loading (lb/mile)						
Item Number	Item Description Mean Vehicle Miles per Trip				Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1	None						

INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

Source: AP-42 Fifth Edition – 11.2.6 Industrial Paved Roads

$$E = 0.077 \times I \times (4 \div n) \times (s \div 10) \times (L \div 1000) \times (W \div 3)^{0.7} =$$

Ib/Vehicle Mile Traveled (VMT)

Where:

l =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface meterial silt content (%)	
L =	Surface dust loading (lb/mile)	
W =	Average vehicle weight (tons)	

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: [Ib ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

SUMMARY OF PAVED HAULROAD EMISSIONS

ltere Nie	Uncon	trolled	Controlled			
Item No.	lb/hr	TPY	lb/hr	TPY		
1						
2						
3						
4						
5						
6						
7						
8						
TOTALS						

Condensate Truck Loading Lost Emissions Per AP-42 R. Weese Production Facility

Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor L_L can be estimated as follows:

$$L_L = 12.46[SPM/T]$$

Where:

L_L = uncontrolled loading loss in pounds per 1000 gallons of liquid loaded S= saturation factor (0.6) P=true vapor pressure of liquid loaded (6.1 psia by converting ProMax RVP to true VP via AP-42) M= Molecular weight of vapor in lb/lb-mole (estimated at 36.66 by ProMax) T= temperature of bulk liquid loaded in deg R or 460+deg F (62 Deg F)

Thus, $L_L= 12.46[0.6 \ x \ 6.1 \ x \ 36.66]/[460+62]$ $L_L= 3.20 \ lb/1000 \ gallons \ loaded$

Based on the ProMax model, these emissions are 64.7% VOCs..

Given a maximum loading of 210 BBL (8,820 gallons) a day, uncontrolled VOC emissions are estimated at 18.26 lb of VOC per day [8.82 x $3.20 \times .647$]. The overall control system is estimated to reduce these emissions greater than 68%. This will be accomplished through a combination of a vapor combustor system with a 98%+ destruction efficiency and trucks having a capture efficiency of 70% per AP-42, Chapter 5.2.2.1.1. Thus, <u>un-captured</u> emissions are estimated at 5.48 lb/day [18.26 x 30%]. With all daily loading taking place within 2 hours, the <u>uncaptured</u> hourly emission rate is conservatively estimated at 2.74 lb/hr.

Maximum annual condensate throughput is 154,800 gallons per year. Thus, <u>un-captured</u> VOC emissions are conservatively estimated at 96.1 pounds per year [154.8 x $3.20 \times 30\% \times 0.647$] or 0.05 tons per year.

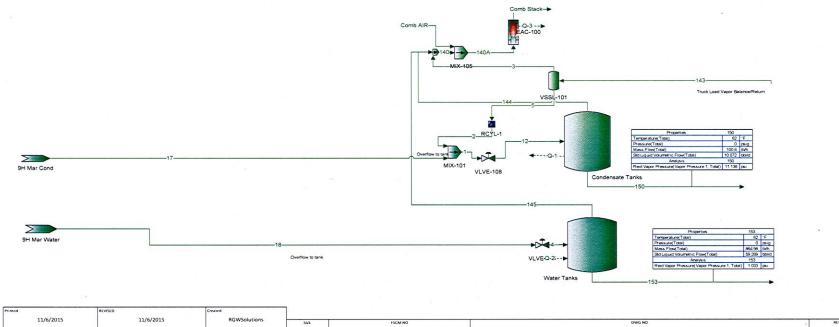
The captured VOC emissions routed to the enclosed combustor are 6.1 lb/day [8.7 lb/day x 70%] VOC. Annually, captured VOC emissions are estimated at 224 pounds per year (154.8 x $3.20 \times 70\% \times .647$) or 0.11 tons per year.

Water Truck Loading Lost Emissions Per AP-42

Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor L_L can be estimated as follows:

Where:

L_L = uncontrolled loading loss in pounds per 1000 gallons of liquid loaded S= saturation factor (0.6) P=true vapor pressure of liquid loaded 1.0 psia (by ProMax M= Molecular weight of vapor in lb/lb-mole (estimated at 19.78 by ProMax) T= temperature of bulk liquid loaded in deg R or 460+deg F (62 Deg F)


Thus, $L_L = 12.46[0.6 \text{ x } 1.0 \text{ x } 19.78]/[460+62]$ $L_L = 0.28 \text{ lb}/1000 \text{ gallons loaded}$

Based on the ProMax model, these emissions are 4.4% VOCs..

Given a maximum loading of 200 BBL (8,400 gallons) a day, uncontrolled VOC emissions are estimated at 0.10 lb of VOC per day [$8.4 \times 0.28 \times .044$]. There is no control on these emissions. Thus, <u>uncaptured</u> emissions are estimated at 0.10 lb/day. With all daily loading taking place within 4 hours, the <u>uncaptured</u> hourly emission rate is conservatively estimated at 0.03 lb/hr.

Maximum annual throughput is 908,000 gallons per year. Thus, <u>un-captured</u> VOC emissions are conservatively estimated at 11.2 pounds per year [908 x 0.28 x 0.044] or less than 0.01 tons per year.

	ISSULD	Preliminary	E.	SCALL	None	Phase 1	SHEET	2 OF 2	
	DRAWN	ROB	and the survey of the survey of	11*17		R. Weese 110	15.pmx	Prelimi	minary
11/6/2015 RGWSolutions Sia HSOM NO DWG NO .	11/6/2015	11/6/2015	RGWSolutions	SIZL	ESCM NO	DWG NO			. REV

Process Streams		Cond Composistion to match co	nditions	1	2	7	8	9	9H M Pad Gas 9	H M Pad Water	16	16A	17	17A	18	18A
omposition	Status:	Solved		Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
hase: Total	From Block:			MIX-100	C9HM1	GPU	GPU	GPU			9H M Gas Header	VLVE-102	9HM Water Header	VLVE-101	9H M Cond Header	VLVE-100
	To Block:	MIX-100		C9HM1	GPU	9H M Gas Header	9H M Cond Header	9HM Water Header	MIX-100	MIX-100	VLVE-102	9H Marcela's Gas	VLVE-101	9H Mar Water	VLVE-100	9H Mar Con
ass Fraction		%		%	%	%	%	%	%	%	%	%	%	%	%	%
thane		0.	00469989*	53.9840	53.9840	61.8019	2.30804	0.0434767	61.8711*	0	61.8019	61.8019	0.0434767	0.0434767	2.30804	2.308
ane			0.253107*	17.3436	17.3436	19.8052	3.58100	0.0132379	19.8733*	0	19.8052	19.8052	0.0132379	0.0132379	3.58100	3.581
opane			1.94603*	7.76812	7.76812	8.81550	4.73129	0.00516717	8.87077*	0	8.81550	8.81550	0.00516717	0.00516717	4.73129	4.731
butane			1.65956*	1.42037	1.42037	1.59428	1.86573	0.000297174	1.60036*	0	1.59428	1.59428	0.000297174	0.000297174	1.86573	1.865
Butane			4.94291*	2.58743	2.58743	2.88319	4.58528	0.00119085	2.88347*	0	2.88319	2.88319	0.00119085	0.00119085	4.58528	4.585
pentane			4.91896*	0.945521	0.945521	1.02088	3.52886	0.000236794	1.00207*	0	1.02088	1.02088	0.000236794	0.000236794	3.52886	3.528
entane			5.91112*	0.858641	0.858641	0,911318	4.09628	0.000219218	0.886045*	0	0.911318	0.911318	0.000219218	0.000219218	4.09628	4.096
hexane			8.91465*	0.638345	0.638345	0.623957	6.07668	6.56540E-05	0.583746*	0	0.623957	0.623957	6.56540E-05	6.56540E-05	6.07668	6.076
ptane			22.1612*	0.785133	0.785133	0.573875	18.4289	3.42053E-05	0.532266*	0	0.573875	0.573875	3.42053E-05	3.42053E-05	18.4289	18.42
lane			26.8804*	0.719298	0.719298	0.332545	27.8182	1.39661E-05	0.378538*	0	0.332545	0.332545	1.39661E-05	1.39661E-05	27,8182	27.81
nane			12.8654*	0.303439	0.303439	0.0715936	15.6228	3.92658E-06	0.134381*	0	0.0715936	0.0715936	3.92658E-06	3.92658E-06	15.6228	15.62
cane			0*	0	0	0	0	0	0*	0	0	0	0	0	0	
lexane			7.28005*	0.424148	0.424148	0.396006	5.08935	3.16591E-05	0.365366*	0	0.396006	0.396006	3.16591E-05	3.16591E-05	5.08935	5.089
nzene				0.00884276	0.00884276	0.00816332	0.108953	0.000331791	0.00761330*	0	0.00816332	0.00816332	0.000331791	0.000331791	0.108953	0.1089
uene				0.0348819	0.0348819	0.0234799		0.000686229	0.0224511*	0	0.0234799	0.0234799	0.000686229	0.000686229	0.927904	0.9279
ylbenzene				0.00509754	0.00509754	0.00210150	0.211265	4.42173E-05	0.00258689*	0	0.00210150	0.00210150	4.42173E-05	4.42173E-05	0.211265	0.2112
ylene			0.856308*	0.0214210	0.0214210	0.00748181	0.963859	0.000224662	0.0103476*	0	0.00748181	0.00748181	0.000224662	0.000224662	0.963859	0.9638
,4-Trimethylpentane			0*	0	0	0	0	0	0*	0	0	0	0	0	0	
rbon Dioxide			00537220*	0.320005	0.320005	0.365457	0.0330565	0.00453956	0.366749*	0	0.365457	0.365457	0.00453956	0.00453956	0.0330565	
ater		0.0	00115057*	11.3005	11.3005	0.154598	0.0146052	99.9300	0*	100	0.154598	0.154598	99.9300	99.9300	0.0146052	0.01460
G			0*	0	0	0	0	0	0*	0	0	0	0	0	0	
rogen		1.3	33689E-06*	0.531256	0.531256	0.608478	0.00796110		0 600079*	0		0 C00470	0.000229310	0.000229310	0.00796110	0.007961
				0.001200		0.000410	0.00730110	0.000229310	0.608873*		0.608478	0.608478	0.000223310		0.00790110	
ygen			0*	0	0	0.000470	0.00730110	0.000229310	0*	0		0.000478	0.000225510	0.000220010	0.00798110	
			0*	0		0	0 6-11-11-11-11-11-11-11-11-11-11-11-11-11	0 	0* Na na sa	Õ	0 	0 	0 The second states of the second se	0 	0 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	
ocess Streams	Ctatura	Cond Composistion to match co	0*	0 1	0 2	0 	0 8	0 9	0* 9H M Pad Gas 9	o H M Pad Water	0 	0 16A	0 	0 17A	0 18 18	18A
ocess Streams operties	Status:	Cond Composistion to match co Solved	0* Inditions	0 1 Solved	0 2 Solved	0 7 Solveđ	0 	0 9 Solved	0* 9H M Pad Gas 9 Solved	0 DH M Pad Water Solved	0 <u>16</u> Solved	0 <u>16A</u> Solved	0 <u>17</u> Solved	0 17A Solved	0 18 Solved	18A Solved
ocess Streams operties	From Block	Cond Composistion to match co Solved	0* Inditions	0 1 Solved MIX-100	0 2 Solved C9HM1	0 7 Solved GPU	0 <u>8</u> Solved GPU	0 9 Solved GPU	0* 9H M Pad Gas 9 Solved	0 0 H M Pad Water Solved	0 16 Solved 9H M Gas Header	0 16A Solved VLVE-102	0 17 Solved 9HM Water Header	0 17A Solved VLVE-101	0 18 Solved 9H M Cond Header	18A Solved VLVE-100
ocess Streams operties ase: Total	From Block To Block:	Cond Composistion to match co Solved	0* Inditions	0 1 Solved	0 2 Solved	0 7 Solved GPU	0 	0 9 Solved GPU	0* 9H M Pad Gas 9 Solved	0 DH M Pad Water Solved	0 <u>16</u> Solved	0 <u>16A</u> Solved	0 <u>17</u> Solved	0 17A Solved	0 18 Solved	18A Solved
ocess Streams operties ase: Total operty	From Block To Block: Units	Cond Composistion to match co Solved	0*	0 Solved MIX-100 C9HM1	0 2 Solved C9HM1 GPU	0 7 Solved GPU 9H M Gas Header	0 8 Solved GPU 9H M Cond Header	0 9 Solved GPU 9HM Water Header	0* 9H M Pad Gas 9 Solved MiX-100	0 DH M Pad Water Solved MIX-100	0 16 Solved 9H M Gas Header VLVE-102	0 16A Solved VLVE-102 9H Marcela's Gas	0 17 Solved 9HM Water Header VLVE-101	0 17A Solved VLVE-101 9H Mar Water	0 18 Solved 9H M Cond Header VLVE-100	18A Solved VLVE-100 9H Mar Con
ocess Streams operties ase: Total operty mperature	From Block To Block: Units °F	Cond Composistion to match co Solved	o* Inditions	0 1 Solved MIX-100 C9HM1 69.7739	0 2 Solved C9HM1 GPU 65.3568	0 7 Solved GPU 9H M Gas Header 90*	0 8 Solved GPU 9H M Cond Header 90	0 9 Solved GPU 9HM Water Header 90	0* 9H M Pad Gas 9 Solved MIX-100 70	0 DH M Pad Water Solved MIX-100 70	0 16 Solved 9H M Gas Header VLVE-102 90	0 16A Solved VLVE-102 9H Marcela's Gas 70.4140	0 17 Solved 9HM Water Header VLVE-101 90	0 17A Solved VLVE-101 9H Mar Water 91.0555	0 18 Solved 9H M Cond Header VLVE-100 90	18A Solved VLVE-100 9H Mar Con 83.65
ocess Streams operties ase: Total operty mperature assure	From Block To Block: Units °F psig	Cond Composistion to match co Solved	0* Inditions 70* 500*	0 1 Solved MIX-100 C9HM1 69.7739 500	0 2 Solved C9HM1 GPU 65.3568 430*	0 7 Solved GPU 9H M Gas Header 90* 430	0 8 Solved GPU 9H M Cond Header 90 430	0 9 Solved GPU 9HM Water Header 90 430	0* 9H M Pad Gas 9 Solved MIX-100 70 500*	0 DH M Pad Water Solved MIX-100 70 500*	0 16 Solved 9H M Gas Header VLVE-102 90 430	0 16A Solved VLVE-102 9H Marcela's Gas 70.4140 185	0 17 Solved 9HM Water Header VLVE-101 90 430	0 17A Solved VLVE-101 9H Mar Water 91.0555 10*	0 18 Solved 9H M Cond Header VLVE-100 90 430	18A Sofved VLVE-100 9H Mar Coo 83.65
ocess Streams operties ase: Total operty mperature essure iss Flow	From Block To Block: Units °F psig Ib/h	Cond Composistion to match co Solved	o* Inditions	0 1 Solved MIX-100 C9HM1 69.7739 500 7746.63	0 2 Solved C9HM1 GPU 65.3568 430* 7746.63	0 7 Solved GPU 9H M Gas Header 90* 430 6761.61	0 8 Solved GPU 9H M Cond Header 90 430 119.475	0 9 Solved GPU 9HM Water Header 90 430 865.542	0* 9H M Pad Gas 9 Solved 	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 16 Solved 9H M Gas Header VLVE-102 90 430 6761.61	0 16A Solved VLVE-102 9H Marcela's Gas 70.4140 185 6761.61	0 17 Solved 9HM Water Header VLVE-101 90 430 865.542	0 17A Solved VLVE-101 9H Mar Water 91.0555 10* 865.542	0 18 Solved 9H M Cond Header VLVE-100 90 430 119.475	18A Solved VLVE-100 9H Mar Con 83.65 1 119.4
ocess Streams operties ase: Total operty mperature assure ass Flow ass Fraction Vapor	From Block To Block: Units °F psig Ib/h %	Cond Composistion to match co Solved	0* mditions 70* 500* 112.110 0	0 1 Solved MIX-100 C9HM1 69.7739 500 7746.63 85.8820	0 2 Solved C9HM1 GPU 65.3568 430* 7746.63 85.8356	0 7 Solved GPU 9H M Gas Header 90* 430 6761.61 100	0 8 Solved GPU 9H M Cond Header 90 430 119.475 0	0 9 Solved GPU 9HM Water Header 90 430 865.542 0	0* 9H M Pad Gas 9 Solved 	0 PH M Pad Water Solved MIX-100 70 500* 875.406 0	0 16 Solved 9H M Gas Header VLVE-102 90 430 6761.61 100	0 16A Solved VLVE-102 9H Marcela's Gas 70.4140 185 6761.61 99.8950	0 17 Solved 9HM Water Header VLVE-101 90 430 865.542 0	0 17A Solved VLVE-101 9H Mar Water 91.0555 10* 865.542 0.0643202	0 18 Solved 9H M Cond Header VLVE-100 90 430 119.475 0	18A Solved VLVE-100 9H Mar Cou 83.65 1 119.4 3.167
ocess Streams operties ase: Total operty mperature essure ss Flow ss Fraction Vapor thalpy	From Block: To Block: Units °F psig Ib/h % MMBtu/h	Cond Composistion to match co Solved	0* Inditions 70* 500*	0 1 Solved MIX-100 C9HM1 69.7739 500 7746.63 85.8820 -17.4634	0 2 Solved C9HM1 GPU 65.3568 430* 7746.63 85.8356 -17.4634	0 7 Solved GPU 9H M Gas Header 90* 430 6761.61 100 -11.3224	0 8 Solved GPU 9H M Cond Header 90 430 119.475 0 -0.118591	0 9 Solved GPU 9HM Water Header 90 430 865.542 0 -5.88936	0* 9H M Pad Gas 9 Solved 	0 PH M Pad Water Solved MIX-100 70 500* 875.406 0 -5.97644	0 16 Solved 9H M Gas Header VLVE-102 90 430 6761.61 100 -11.3224	0 16A Solved VLVE-102 9H Marcela's Gas 70.4140 185 6761.61 99.8950 -11.3224	0 17 Solved 9HM Water Header VLVE-101 90 430 865.542	0 17A Solved VLVE-101 9H Mar Water 91.0555 10* 865.542 0.0643202 -5.88936	0 18 Solved 9H M Cond Header VLVE-100 90 430 119.475 0 -0.118591	18A Solved VLVE-100 9H Mar Con 83.65 1 119.4 3.167 -0.1185
ocess Streams operties ase: Total operty mperature assure ass Flow iss Fraction Vapor thalpy de Fraction Vapor	From Block: To Block: Units °F psig Ib/h % MMBtu/h %	Cond Composistion to match co Solved	0* mditions 70* 500* 112.110 0 -0.107700 0	0 Solved MIX-100 C9HM1 69.7739 500 7746.63 85.8820 -17.4634 86.3781	0 2 Solved C9HM1 GPU 65.3568 430* 7746.63 85.8356 -17.4634 86.3881	0 7 Solved GPU 9H M Gas Header 90° 430 6761.61 100 -11.3224 100	0 8 Solved 9U 9H M Cond Header 90 430 119.475 0 -0.118591 0	0 9 Solved GPU 9HM Water Header 90 430 865.542 0 -5.88936 0	0* 9H M Pad Gas 9 Solved 	0 PH M Pad Water Solved MIX-100 70 500* 875.406 0 -5.97644 0	0 16 Solved 9H M Gas Header VLVE-102 90 430 6761.61 100 -11.3224 100	0 16A Solved VLVE-102 9H Marcela's Gas 70.4140 185 6761.61 99.8950 -11.3224 99.9757	0 17 Solved 9HM Water Header VLVE-101 90 430 865.542 0 -5.88936 0	0 17A Solved VLVE-101 9H Mar Water 91.0555 10* 865.542 0.0643202 -5.88936 0.0586571	0 18 Solved 9H M Cond Header VLVE-100 90 430 119.475 0 -0.118591 0	18A Solved VLVE-100 9H Mar Coo 83.65 1 119.4 3.167 -0.1185 10.63
ocess Streams operties ase: Total operty mperature assure ass Flow ass Fraction Vapor thalpy ale Fraction Vapor alecular Weight	From Block To Block: Units °F psig Ib/h % MMBtu/h % Ib/lbmol	Cond Composistion to match co Solved	0* mditions 70* 500* 112.110 0 -0.107700 0 92.1983	0 1 Solved MIX-100 C9HM1 69.7739 500 7746.63 85.8820 -17.4634 86.3781 20.4287	0 2 Solved C9HM1 GPU 65.3568 430* 7746.63 85.8366 -17.4634 86.3881 20.4287	0 7 Solved GPU 9H M Gas Header 90* 430 6761.61 100 -11.3224 100 20.5133	0 8 Solved GPU 9H M Cond Header 90 430 119.475 0 -0.118591 0 77.5104	0 9 Solved GPU 9HM Water Header 90 430 865.542 0 -5.88936 0 18.0168	0* 9H M Pad Gas 9 Solved 	0 PH M Pad Water Solved MIX-100 70 500* 875.406 0 -5.97644 0 18.0153	0 16 Solved 9H M Gas Header VLVE-102 90 430 6761.61 100 -11.3224 100 20.5133	0 16A Solved VLVE-102 9H Marcela's Gas 70.4140 185 6761.61 99.8950 -11.3224 99.9757 20.5133	0 17 Solved 9HM Water Header VLVE-101 90 430 865.542 0 -5.88936 0 18.0168	0 17A Solved VLVE-101 9H Mar Water 91.0555 10* 865.542 0.0643202 -5.88936 0.0586571 18.0168	0 18 Solved 9H M Cond Header VLVE-100 90 430 119.475 0 -0.118591 0 77.5104	18A Solved VLVE-100 9H Mar Coo 83.65 1 119.4 3.167 -0.1185 10.63 77.51
ocess Streams operties ase: Total operty mperature assure ass Fraction Vapor thalpy le Fraction Vapor lecular Weight lar Flow	From Block: To Block: Units °F psig Ib/h % MMBtu/h %	Cond Composistion to match co Solved	0* nditions 70* 500* 112.110 0 -0.107700 0 92.1983 1.21596	0 Solved MIX-100 C9HM1 69.7739 500 7746.63 85.8820 -17.4634 86.3781	0 2 Solved C9HM1 GPU 65.3568 430* 7746.63 85.8356 -17.4634 86.3881	0 7 Solved GPU 9H M Gas Header 90* 430 6761.61 100 -11.3224 100 20.5133 329.620	0 8 Solved GPU 9H M Cond Header 90 430 119.475 0 -0.118591 0 77.5104 1.54141	0 9 Solved GPU 9HM Water Header 90 430 865.542 0 -5.88936 0 18.0168 48.0409	0* 9H M Pad Gas 9 Solved 	0 PH M Pad Water Solved 	0 16 Solved 9H M Gas Header VLVE-102 90 430 6761.61 100 -11.3224 100 20.5133 329.620	0 16A Solved VLVE-102 9H Marcela's Gas 70.4140 185 6761.61 99.8950 -11.3224 99.9757	0 17 Solved 9HM Water Header VLVE-101 90 430 865.542 0 -5.88936 0 18.0168 48.0409	0 17A Solved VLVE-101 9H Mar Water 91.0555 10* 865.542 0.0643202 -5.88936 0.0586571	0 18 Solved 9H M Cond Header VLVE-100 90 430 119.475 0 -0.118591 0 77.5104 1.54141	18A Solved VLVE-100 9H Mar Coo 83.65 119.4 3.167 -0.1185 10.63 77.51
ocess Streams operties ase: Total operty mperature ass Flow ass Fraction Vapor thalpy de Fraction Vapor becular Weight lar Flow ecific Gravity	From Block To Block: Units °F psig Ib/h % MMBtu/h % b/lbmol Ibmol/h	Cond Composistion to match co Solved	0* nditions 70* 500* 112.110 0 -0.107700 0 92.1983 1.21596 0.679347	0 1 Solved MIX-100 C9HM1 69.7739 500 7746.63 85.8820 -17.4634 86.3781 20.4287	0 2 Solved C9HM1 GPU 65.3568 430* 7746.63 85.8366 -17.4634 86.3881 20.4287	0 7 Solved GPU 9H M Gas Header 90* 430 6761.61 100 -11.3224 100 20.5133 329.620 0.708270	0 8 Solved GPU 9H M Cond Header 90 430 119.475 0 -0.118591 0 77.5104 1.54141 0.639277	0 9 Solved GPU 9HM Water Header 90 430 865.542 0 -5.88936 0 18.0168 48.0409 0.994804	0* 9H M Pad Gas 9 Solved 	0 H M Pad Water Solved 	0 16 Solved 9H M Gas Header VLVE-102 90 430 6761.61 100 -11.3224 100 20.5133 329.620 0.708270	0 16A Solved VLVE-102 9H Marcela's Gas 70.4140 185 6761.61 99.8950 -11.3224 99.9757 20.5133	0 17 Solved 9HM Water Header VLVE-101 90 430 865.542 0 -5.88936 0 18.0168 48.0409 0.994804	0 17A Solved VLVE-101 9H Mar Water 91.0555 10* 865.542 0.0643202 -5.88936 0.0586571 18.0168	0 18 Solved 9H M Cond Header VLVE-100 90 430 119.475 0 -0.118591 0 77.5104 1.54141 0.639277	18A Solved VLVE-100 9H Mar Cou 119.4 3.167 -0.1185 10.63 77.51 1.541
rocess Streams operties ase: Total operty mperature assure ass Flow ass Fraction Vapor thatpy ble Fraction Vapor oblecular Weight valar Flow ecific Gravity namic Viscosity	From Block To Block: Units °F psig Ib/h % MMBtu/h % Ib/lbmol Ibmol/h cP	Cond Composistion to match co Solved	0* 70* 500* 112.110 0 -0.107700 0 92.1983 1.21596 0.679347 0.375386	0 1 Solved MIX-100 C9HM1 69.7739 500 7746.63 85.8820 -17.4634 86.3781 20.4287	0 2 Solved C9HM1 GPU 65.3568 430* 7746.63 85.8366 -17.4634 86.3881 20.4287	0 7 Solved GPU 9H M Gas Header 90* 430 6761.61 100 -11.3224 100 20.5133 329.620 0.708270 0.0115330	0 8 Solved GPU 9H M Cond Header 90 430 119.475 0 -0.118591 0 77.5104 1.54141 0.639277 0.244918	0 9 Solved GPU 9HM Water Header 90 430 865.542 0 -5.88936 0 18.0168 48.0409 0.994804 0.994804 0.783625	0* 9H M Pad Gas 9 Solved 	0 PH M Pad Water Solved MIX-100 70 500* 875.406 0 -5.97644 0 18.0153 48.5924 0.988849 1.00247	0 16 Solved 9H M Gas Header VLVE-102 90 430 6761.61 100 -11.3224 100 20.5133 329.620 0.708270 0.0115330	0 16A Solved VLVE-102 9H Marcela's Gas 70.4140 185 6761.61 99.8950 -11.3224 99.9757 20.5133	0 17 Solved 9HM Water Header VLVE-101 90 430 865.542 0 -5.88936 0 18.0168 48.0409 0.994804 0.994804 0.783625	0 17A Solved VLVE-101 9H Mar Water 91.0555 10* 865.542 0.0643202 -5.88936 0.0586571 18.0168	0 18 Solved 9H M Cond Header VLVE-100 90 430 119.475 0 -0.118591 0 77.5104 1.54141 0.639277 0.244918	18A Solved VLVE-100 9H Mar Con 83.65 1119.4 3.167 -0.1186 10.63 77.51 1.541
rocess Streams roperties ase: Total perty mperature assure ass Flow ass Fraction Vapor thatpy ble Fraction Vapor blecular Weight blar Flow ecific Gravity namic Viscosity thematic Viscosity	From Block To Block: Units °F psig Ib/h % MMBtu/h % Ib/Ibmol Ibmol/h cP cSt	Cond Composistion to match co Solved	0* 70* 500* 112.110 0 -0.107700 0 92.1983 1.21596 0.679347 0.375386 0.553091	0 1 Solved MIX-100 C9HM1 69.7739 500 7746.63 85.8820 -17.4634 86.3781 20.4287	0 2 Solved C9HM1 GPU 65.3568 430* 7746.63 85.8366 -17.4634 86.3881 20.4287	0 7 Solved GPU 9H M Gas Header 90° 430 6761.61 100 -11.3224 100 20.5133 329.620 0.708270 0.0115330 0.420536	0 8 Solved GPU 9H M Cond Header 90 430 119.475 0 -0.118591 0 77.5104 1.54141 0.639277 0.244918 0.383480	0 Solved GPU 9HM Water Header 90 430 865.542 0 -5.88936 0 18.0168 48.0409 0.994804 0.793625 0.788463	0* 9H M Pad Gas 9 Solved 	0 PH M Pad Water Solved MIX-100 70 500* 875.406 0 -5.97644 0 18.0153 48.5924 0.98849 1.00247 1.00447	0 16 Solved 9H M Gas Header VLVE-102 90 430 6761.61 100 -11.3224 100 20.5133 329.620 0.708270 0.0115330 0.420536	0 16A Solved VLVE-102 9H Marcela's Gas 70.4140 185 6761.61 99.8950 -11.3224 99.9757 20.5133	0 17 Solved 9HM Water Header VLVE-101 90 430 865.542 0 -5.88936 0 18.0168 48.0409 0.994804 0.783625 0.788463	0 17A Solved VLVE-101 9H Mar Water 91.0555 10* 865.542 0.0643202 -5.88936 0.0586571 18.0168	0 18 Solved 9H M Cond Header VLVE-100 90 430 119.475 0 -0.118591 0 77.5104 1.54141 0.639277 0.244918 0.383480	18A Solved VLVE-100 9H Mar Con 83.65 1119.4 3.167 -0.1186 10.63 77.51 1.541
rocess Streams roperties ase: Total perty mperature essure less Fraction Vapor thalpy ble Fraction Vapor blear Flow ecific Gravity namic Viscosity eematic Viscosity ermal Conductivity	From Block To Block: Units °F psig Ib/h % MMBtu/h % Ib/Ibmol Ibmol/h cP cSt Btu/(h*ft**F)	Cond Composistion to match co Solved	0* 70* 500* 112.110 0 -0.107700 0 92.1983 1.21596 0.679347 0.375386 0.553091 0.0701300	0 Solved MIX-100 C9HM1 69.7739 500 7746.63 85.8820 -17.4634 86.3781 20.4287 379.203	2 Solved C9HM1 GPU 65.3568 430* 7746.63 85.8356 -17.4634 86.3881 20.4287 379.203	0 7 Solved GPU 9H M Gas Header 90* 430 6761.61 100 -11.3224 100 20.5133 329.620 0.708270 0.0115330 0.420536 0.0196092	0 8 Solved GPU 9H M Cond Header 90 430 119.475 0 -0.118591 0 77.5104 1.54141 0.639277 0.244918 0.383480 0.0664121	0 Solved GPU 9HM Water Header 90 430 865.542 0 -5.88936 0 18.0168 48.0409 0.994804 0.783625 0.788463 0.354991	0* 9H M Pad Gas 9 Solved 	0 PH M Pad Water Solved 	0 16 Solved 9H M Gas Header VLVE-102 90 430 6761.61 100 -11.3224 100 20.5133 329.620 0.708270 0.0115330 0.420536 0.0196092	0 16A Solved VLVE-102 9H Marcela's Gas 70.4140 185 6761.61 99.8950 -11.3224 99.9757 20.5133 329.620	0 17 Solved 9HM Water Header VLVE-101 90 430 865.542 0 -5.88936 0 18.0168 48.0409 0.994804 0.783625 0.788463 0.354991	0 17A Solved VLVE-101 9H Mar Water 91.0555 10* 865.542 0.0643202 -5.88936 0.0586571 18.0168 48.0409	0 18 Solved 9H M Cond Header VLVE-100 90 430 119.475 0 -0.118591 0 77.5104 1.54141 0.639277 0.244918 0.383480 0.0664121	18A Solved VLVE-100 9H Mar Cov 83.65 1 119.4 3.167 -0.1185 10.63 77.51 1.541
ocess Streams operties ase: Total operty mperature assure ass Flow ss Fraction Vapor thalpy le Fraction Vapor thalpy le Fraction Vapor lecular Weight lar Flow ecific Gravity namic Viscosity ermal Conductivity I Vapor Volumetric Flow	From Block To Block: Units °F psig Ib/h % MMBtu/h % Ib/Ibmol Ibmol/h cP cSt Btu/(h*ft**F) MMSCFD	Cond Composistion to match co Solved	0* 70* 500* 112.110 0 -0.107700 0 92.1983 1.21596 0.679347 0.375386 0.553091 0.0701300 0.0110745	0 Solved MIX-100 C9HM1 69.7739 500 7746.63 85.8820 -17.4634 86.3781 20.4287 379.203 3.45364	2 Solved C9HM1 GPU 65.3568 430* 7746.63 85.8356 -17.4634 86.3881 20.4287 379.203 3.45364	7 Solved GPU 9H M Gas Header 90° 430 6761.61 100 -11.3224 100 20.5133 329.620 0.708270 0.0115330 0.420536 0.0196092 3.00206	0 8 Solved GPU 9H M Cond Header 90 430 119.475 0 -0.118591 0 77.5104 1.54141 0.639277 0.244918 0.383480 0.0664121 0.0140385	0 9 Solved GPU 9HM Water Header 90 430 865.542 0 -5.88936 0 18.0168 48.0409 0.994804 0.783625 0.788463 0.354991 0.437538	0* 9H M Pad Gas 9 Solved 	0 PH M Pad Water Solved 70 500* 875.406 0 -5.97644 0 18.0153 48.5924 0.998949 1.00247 1.00447 0.347101 0.442562	0 16 Solved 9H M Gas Header VLVE-102 90 430 6761.61 100 -11.3224 100 20.5133 329.620 0.708270 0.0115330 0.420536 0.0196092 3.00206	0 16A Solved VLVE-102 9H Marcela's Gas 70.4140 185 6761.61 99.8950 -11.3224 99.9757 20.5133 329.620 3.00206	0 17 Solved 9HM Water Header VLVE-101 90 430 865.542 0 -5.88936 0 18.0168 48.0409 0.994804 0.783625 0.788463 0.354991 0.437538	0 17A Solved VLVE-101 9H Mar Water 91.0555 10* 865.542 0.0643202 -5.88936 0.0586571 18.0168 48.0409 0.437538	0 18 Solved 9H M Cond Header VLVE-100 90 430 119.475 0 -0.118591 0 77.5104 1.54141 0.639277 0.244918 0.383480 0.0664121 0.0140385	18A Solved VLVE-100 9H Mar Cod 83.65 119.4 3.167 -0.1185 10.63 77.51 1.541
ocess Streams operties ase: Total perty mperature ssure ss Flow ss Fraction Vapor halpy le Fraction Vapor lacular Weight lar Flow scific Gravity mamic Viscosity ematic Viscosity ematic Viscosity vapor Volumetric Flow Liquid Volumetric Flow	From Block To Block: Units °F psig Ib/h % MMBtu/h % Ib/lbmol Ibmol/h cP cSt Btu/(h*ft*°F) MMSCFD Mbbl/d	Cond Composistion to match co Solved	0* 70* 500* 112.110 0 -0.107700 92.1983 1.21596 0.679347 0.375386 0.553091 0.0701300 0.0110745 0.0114*	0 1 Solved MIX-100 C9HM1 69.7739 500 7746.63 85.8820 -17.4634 86.3781 20.4287 379.203 3.45364 1.43607	0 2 Solved C9HM1 GPU 65.3568 430* 7746.63 85.8356 -17.4634 86.3881 20.4287 379.203 3.45364 1.43607	7 Solved GPU 9H M Gas Header 90* 430 6761.61 100 -11.3224 100 20.5133 329.620 0.708270 0.0115330 0.420536 0.0196092 3.00206 1.36375	0 8 Solved GPU 9H M Cond Header 90 430 119.475 0 -0.118591 0 77.5104 1.54141 0.639277 0.244918 0.383480 0.0664121 0.0140385 0.0129091	0 9 Solved GPU 9HM Water Header 90 430 865.542 0 -5.88936 0 18.0168 48.0409 0.994804 0.783625 0.788463 0.354991 0.437538 0.0594029	0* 9H M Pad Gas 9 Solved MIX-100 70 500* 6759.11 98.8260 -11.3793 99.6417 20.5198 329.394 329.394	0 PH M Pad Water Solved 70 500* 875.406 0 -5.97644 0 18.0153 48.5924 0.98849 1.00247 1.00247 1.00247 0.347101 0.442562 0.06*	0 16 Solved 9H M Gas Header VLVE-102 90 430 6761.61 100 -11.3224 100 20.5133 329.620 0.708270 0.0115330 0.420536 0.0196092 3.00206 1.36375	0 16A Solved VLVE-102 9H Marcela's Gas 70.4140 185 6761.61 99.8950 -11.3224 99.9757 20.5133 329.620 3.00206 1.36375	0 17 Solved 9HM Water Header VLVE-101 90 430 865.542 0 -5.88936 0 18.0168 48.0409 0.994804 0.783625 0.788463 0.354991 0.437538 0.0594029	0 17A Solved VLVE-101 9H Mar Water 91.0555 10* 865.542 0.0643202 -5.88936 0.0586571 18.0168 48.0409 0.437538 0.0594029	0 18 Solved 9H M Cond Header VLVE-100 90 430 119.475 0 -0.118591 0 77.5104 1.54141 0.639277 0.244918 0.383480 0.0664121 0.0140385 0.0129091	18A Solved VLVE-100 9H Mar Cor 83.65 1 119.4 3.167 -0.1185 10.63 77.51 1.541 0.01403 0.01403 0.01290
ocess Streams operties ase: Total perty mperature ssure ss Flow ss Fraction Vapor lecular Weight lar Flow ecific Gravity namic Viscosity ermal Conductivity I Vapor Volumetric Flow b Liquid Volumetric Flow b ss Ideal Gas Heating Value	From Block To Block: Units °F psig Ib/h % MMBtu/h % Ib/lbmol Ibmol/h cP cSt Btu/(h*ft*°F) MMSCFD Mbbl/d	Cond Composistion to match co Solved	0* 70* 500* 112.110 0 -0.107700 0 92.1983 1.21596 0.679347 0.375386 0.553091 0.0701300 0.0110745 0.0114* 5061.87	0 1 Solved MIX-100 C9HM1 69.7739 500 7746.63 85.8820 -17.4634 86.3781 20.4287 379.203 3.45364 1.43607 1099.09	0 2 Solved C9HM1 GPU 65.3568 430* 7746.63 85.8356 -17.4634 86.3881 20.4287 379.203 3.45364 1.43607 1099.09	7 Solved GPU 9H M Gas Header 90* 430 6761.61 100 -11.3224 100 20.5133 329.620 0.708270 0.0115330 0.420536 0.0196092 3.00206 1.36375 1236.98	0 8 Solved GPU 9H M Cond Header 90 430 119.475 0 -0.118591 0 77.5104 1.54141 0.639277 0.244918 0.383480 0.0664121 0.0140385 0.0129091 4279.19	0 9 Solved GPU 9HM Water Header 90 430 865.542 0 -5.88936 0 18.0168 48.0409 0.994804 0.783625 0.788463 0.354991 0.437538 0.0554029 50.9979	0* 9H M Pad Gas 9 Solved 	0 PH M Pad Water Solved 	0 16 Solved 9H M Gas Header VLVE-102 90 430 6761.61 100 -11.3224 100 20.5133 329.620 0.708270 0.0115330 0.420536 0.0196092 3.00206 1.36375 1236.98	0 16A Solved VLVE-102 9H Marcela's Gas 70.4140 185 6761.61 99.8950 -11.3224 99.9757 20.5133 329.620 3.00206 1.36375 1236.98	0 17 Solved 9HM Water Header VLVE-101 90 430 865.542 0 -5.88936 0 18.0168 48.0409 0.994804 0.783625 0.788463 0.354991 0.437538 0.0554029 50.9979	0 17A Solved VLVE-101 9H Mar Water 91.0555 10* 865.542 0.0643202 -5.88936 0.0586571 18.0168 48.0409 0.437538 0.0594029 50.9979	0 18 Solved 9H M Cond Header VLVE-100 90 430 119.475 0 -0.118591 0 -0.118591 0 77.5104 1.54141 0.639277 0.244918 0.383480 0.0664121 0.0140385 0.0129091 4279.19	18A Solved VLVE-100 9H Mar Cou 83.65 1 119.4 3.167 -0.1185 10.63 77.51 1.541 0.01403 0.01290 4279.
ocess Streams operties ase: Total perty mperature ssure ss Flow ss Fraction Vapor thatpy le Fraction Vapor lecular Weight lar Flow ecific Gravity namic Viscosity ermatic Viscosity ermatic Viscosity ermatic Viscosity ermatic Viscosity ermatic Viscosity estatic Viscosity estatic Viscosity estatic Viscosity estatic Viscosity b Liquid Volumetric Flow Sos Ideal Gas Heating Value Cv Ratio	From Block To Block: Units °F psig Ib/h % MMBtu/h % Ib/lbmol Ibmol/h cP cSt Btu/(h*ft*°F) MMSCFD Mbbl/d	Cond Composistion to match co Solved	0* 70* 500* 112.110 0 -0.107700 0 92.1983 1.21596 0.679347 0.375386 0.553091 0.0701300 0.0110745 0.0110745 0.0114* 5061.87 1.15364	0 1 Solved MIX-100 C9HM1 69.7739 500 7746.63 85.8820 -17.4634 86.3781 20.4287 379.203 3.45364 1.43607 1099.09 1.43172	0 2 Solved C9HM1 GPU 65.3568 430* 7746.63 85.8356 -17.4634 86.3881 20.4287 379.203 3.45364 1.43607 1099.09 1.40988	0 7 Solved GPU 9H M Gas Header 90* 430 6761.61 100 -11.3224 100 20.5133 329.620 0.708270 0.0115330 0.420536 0.0196092 3.00206 1.36375 1236.98 1.38634	0 8 Solved GPU 9H M Cond Header 90 430 119.475 0 -0.118591 0 -0.118591 0 77.5104 1.54141 0.639277 0.244918 0.383480 0.0664121 0.0140385 0.0129091 4279.19 1.20679	0 9 Solved GPU 9HM Water Header 90 430 865.542 0 -5.88936 0 -5.8936 0 -5.8936 0 -5.8936 0 -5.89397 0 -5.94991 0.437538 -5.0979 -5.0979 -1.41510	0* 9H M Pad Gas 9 Solved 	0 PH M Pad Water Solved MIX-100 70 500* 875.406 0 -5.97644 0 18.0153 48.5924 0.98849 1.00247 1.00447 0.347101 0.442562 0.06* 50.31 1.39588	0 16 Solved 9H M Gas Header VLVE-102 90 430 6761.61 100 -11.3224 100 20.5133 329.620 0.708270 0.0115330 0.420536 0.0196092 3.00206 1.36375 1236.98 1.38634	0 16A Solved VLVE-102 9H Marcela's Gas 70.4140 185 6761.61 99.8950 -11.3224 99.9757 20.5133 329.620 3.00206 1.36375 1236.98 1.31459	0 17 Solved 9HM Water Header VLVE-101 90 430 865.542 0 -5.88936 0 18.0168 48.0409 0.994804 0.783625 0.788463 0.354991 0.437538 0.0594029 50.9979 1.41510	0 17A Solved VLVE-101 9H Mar Water 91.0555 10* 865.542 0.0643202 -5.88936 0.0586571 18.0168 48.0409 0.437538 0.0594029 50.9979 1.41728	0 18 Solved 9H M Cond Header VLVE-100 90 430 119.475 0 -0.118591 0 77.5104 1.54141 0.639277 0.244918 0.383480 0.0664121 0.0129091 4279.19 1.20679	18A Solved VLVE-100 9H Mar Coo 83.65 1 119.4 3.167 -0.1185 10.63 77.51 1.541 0.01403 0.01290 4279. 1.187
rocess Streams roperties ase: Total mperature assure ass Flow ass Fraction Vapor thatpy ble Fraction Vapor ble Fraction Vapor b	From Block To Block: Units °F psig Ib/h % MMBtu/h % Ib/Ibmol Ibmol/h cP cSt Btu/(h*ft*°F) MMSCFD Mbbl/d Btu/ft*3	Cond Composistion to match co Solved	0* 70* 500* 112.110 0 -0.107700 0 92.1983 1.21596 0.679347 0.375386 0.553091 0.0701300 0.0110745 0.0111745 0.01114* 5061.87 1.15364 0.197035	0 1 Solved MIX-100 C9HM1 69.7739 500 7746.63 85.8820 -17.4634 86.3781 20.4287 379.203 3.45364 1.43607 1099.09 1.43172 0.760534	0 2 Solved C9HM1 GPU 65.3568 430* 7746.63 85.8356 -17.4634 86.3881 20.4287 379.203 3.45364 1.43607 1099.09 1.40988 0.771571	0 7 Solved GPU 9H M Gas Header 90* 430 6761.61 100 -11.3224 100 20.5133 329.620 0.708270 0.0115330 0.420536 0.0196092 3.00206 1.36375 1236.98 1.38634 0.903263	0 8 Solved GPU 9H M Cond Header 90 430 119.475 0 -0.118591 0 -0.118591 0 77.5104 1.54141 0.639277 0.244918 0.383480 0.0664121 0.0140385 0.0129091 4279.19 1.20679 0.146555	0 Solved GPU 9HM Water Header 90 430 865.542 0 -5.88936 0 18.0168 48.0409 0.994804 0.783625 0.788463 0.354991 0.437538 0.0594029 50.9979 1.41510 0.0218911	0* 9H M Pad Gas 9 Solved 	0 PH M Pad Water Solved MIX-100 70 500* 875.406 0 -5.97644 0 18.0153 48.5924 0.98849 1.00247 1.00447 0.347101 0.442562 0.06* 50.31 1.39588 0.0261825	0 16 Solved 9H M Gas Header VLVE-102 90 430 6761.61 100 -11.3224 100 20.5133 329.620 0.708270 0.0115330 0.420536 0.0196092 3.00206 1.36375 1236.98 1.38634 0.903263	0 16A Solved VLVE-102 9H Marcela's Gas 70.4140 185 6761.61 99.8950 -11.3224 99.9757 20.5133 329.620 3.00206 1.36375 1236.98 1.31459 0.949850	0 17 Solved 9HM Water Header VLVE-101 90 430 865.542 0 -5.88936 0 18.0168 48.0409 0.994804 0.783625 0.788463 0.354991 0.437538 0.0594029 50.9979 1.41510 0.0218911	0 17A Solved VLVE-101 9H Mar Water 91.0555 10* 865.542 0.0643202 -5.88936 0.0586571 18.0168 48.0409 0.437538 0.0594029 50.9979 1.41728 0.00179608	0 18 Solved 9H M Cond Header VLVE-100 90 430 119.475 0 -0.118591 0 77.5104 1.54141 0.639277 0.244918 0.383480 0.0664121 0.0140385 0.0129091 4279.19 1.20679 0.146555	18A Solved VLVE-100 9H Mar Cov 83.65 1 119.4 3.167 -0.1185 10.63 77.51 1.541 0.01403 0.01403 0.01290 4279. 1.187 0.1628
rocess Streams roperties mase: Total mase: Total momentume essure ass Flow ass Fraction Vapor othalpy ole Fraction Vapor olecular Weight olar Flow becific Gravity mermal Conductivity d Vapor Volumetric Flow d Liquid Volumetric Flow ross Ideal Gas Heating Value oCv Ratio ompressibility ass Volume	From Block To Block: Units °F psig Ib/h % MMBtu/h % Ib/Ibmol Ibmol/h cP cSt Btu/(h*ft**F) MMSCFD Mbb//d Btu/ft^3	Cond Composistion to match co Solved	0* 70* 500* 112.110 0 -0.107700 0 92.1983 1.21596 0.679347 0.375386 0.553091 0.0701300 0.0110745 0.0114* 5061.87 1.15364 0.197035 0.0236015	0 Solved MIX-100 C9HM1 69.7739 500 7746.63 85.8820 -17.4634 86.3781 20.4287 379.203 3.45364 1.43607 1099.09 1.43172 0.760534 0.410970	2 Solved C9HM1 GPU 65.3568 430* 7746.63 85.8356 -17.4634 86.3881 20.4287 379.203 3.45364 1.43607 1099.09 1.40988 0.771571 0.478538	7 Solved GPU 9H M Gas Header 90° 4300 6761.61 100 -11.3224 100 20.5133 329.620 0.708270 0.0115330 0.420536 0.0196092 3.00206 1.366375 1236.98 1.38634 0.903263 0.584091	0 8 Solved GPU 9H M Cond Header 90 430 119.475 0 -0.118591 0 77.5104 1.54141 0.639277 0.244918 0.383480 0.0664121 0.0140385 0.0140385 0.0140385 0.0129091 4279.19 1.20679 0.146555 0.0250808	0 9 Solved GPU 9HM Water Header 90 430 865.542 0 -5.88936 0 18.0168 48.0409 0.994804 0.783625 0.788463 0.354991 0.437538 0.0594029 50.9979 1.41510 0.0218911 0.0161174	0* 9H M Pad Gas 9 Solved 	0 H M Pad Water Solved 	0 16 Solved 9H M Gas Header VLVE-102 90 430 6761.61 100 -11.3224 100 20.5133 329.620 0.708270 0.015330 0.420536 0.0196092 3.00206 1.36375 1236.98 1.38634 0.903263 0.584091	0 16A Solved VLVE-102 9H Marcela's Gas 70.4140 185 6761.61 99.8950 -11.3224 99.9757 20.5133 329.620 3.00206 1.36375 1236.98 1.31459 0.949850 1.31904	0 17 Solved 9HM Water Header VLVE-101 90 430 865.542 0 -5.88936 0 18.0168 48.0409 0.994804 0.783625 0.788463 0.354991 0.437538 0.0594029 50.9979 1.41510 0.0218911 0.0218911 0.0161174	0 17A Solved VLVE-101 9H Mar Water 91.0555 10* 865.542 0.0643202 -5.88936 0.0586571 18.0168 48.0409 0.437538 0.0594029 50.9979 1.41728 0.00179608 0.0238574	0 18 Solved 9H M Cond Header VLVE-100 90 430 119.475 0 -0.118591 0 77.5104 1.54141 0.639277 0.244918 0.383480 0.0664121 0.0140385 0.0140385 0.0129091 4279.19 1.20679 0.146555 0.0250808	18A Solved VLVE-100 9H Mar Cov 83.65 1 119.4 3.167 -0.1185 10.63 77.51 1.541 0.01403 0.01290 4279. 1.187 0.1628 0.06134
rocess Streams roperties hase: Total roperty emperature ressure ass Flow ass Fraction Vapor olacular Weight olacular	From Block To Block: Units °F psig Ib/h % MMBtu/h % Ib/Ibmol Ibmol/h cP cSt Btu/(h*ft*°F) MMSCFD Mbbl/d Btu/ft*3	Cond Composistion to match co Solved	0* 70* 500* 112.110 0 -0.107700 0 92.1983 1.21596 0.679347 0.375386 0.553091 0.0701300 0.0110745 0.0111745 0.01114* 5061.87 1.15364 0.197035	0 1 Solved MIX-100 C9HM1 69.7739 500 7746.63 85.8820 -17.4634 86.3781 20.4287 379.203 3.45364 1.43607 1099.09 1.43172 0.760534	0 2 Solved C9HM1 GPU 65.3568 430* 7746.63 85.8356 -17.4634 86.3881 20.4287 379.203 3.45364 1.43607 1099.09 1.40988 0.771571	0 7 Solved GPU 9H M Gas Header 90* 430 6761.61 100 -11.3224 100 20.5133 329.620 0.708270 0.0115330 0.420536 0.0196092 3.00206 1.36375 1236.98 1.38634 0.903263	0 8 Solved GPU 9H M Cond Header 90 430 119.475 0 -0.118591 0 0 77.5104 1.54141 0.639277 0.244918 0.383480 0.0664121 0.0140385 0.0129091 4279.19 1.20679 0.146555 0.0250808 39.8711	0 Solved GPU 9HM Water Header 90 430 865.542 0 -5.88936 0 18.0168 48.0409 0.994804 0.783625 0.788463 0.354991 0.437538 0.0594029 50.9979 1.41510 0.0218911	0* 9H M Pad Gas 9 Solved 	0 PH M Pad Water Solved MIX-100 70 500* 875.406 0 -5.97644 0 18.0153 48.5924 0.98849 1.00247 1.00447 0.347101 0.442562 0.06* 50.31 1.39588 0.0261825	0 16 Solved 9H M Gas Header VLVE-102 90 430 6761.61 100 -11.3224 100 20.5133 329.620 0.708270 0.015330 0.420536 0.0196092 3.00206 1.36375 1236.98 1.38634 0.903263 0.584091 1.71206	0 16A Solved VLVE-102 9H Marcela's Gas 70.4140 185 6761.61 99.8950 -11.3224 99.9757 20.5133 329.620 3.00206 1.36375 1236.98 1.31459 0.949850	0 17 Solved 9HM Water Header VLVE-101 90 430 865.542 0 -5.88936 0 18.0168 48.0409 0.994804 0.783625 0.788463 0.354991 0.437538 0.0594029 50.9979 1.41510 0.0218911	0 17A Solved VLVE-101 9H Mar Water 91.0555 10* 865.542 0.0643202 -5.88936 0.0586571 18.0168 48.0409 0.437538 0.0594029 50.9979 1.41728 0.00179608 0.0238574 41.9157	0 18 Solved 9H M Cond Header VLVE-100 90 430 119.475 0 -0.118591 0 77.5104 1.54141 0.639277 0.244918 0.383480 0.0664121 0.0140385 0.0129091 4279.19 1.20679 0.146555 0.0250808 39.8711	18A Solved VLVE-100 9H Mar Cou 83.65 1 119.4 3.167 -0.1185 10.63 77.51 1.541 0.01403 0.01403 0.01290 4279. 1.187 0.1628 0.06134 16.30

Process Streams		Cond Composistion to match conditions	1	2	7	8	9	9H M Pad Gas 9	H M Pad Water	16	16A	17	17A	18	18A
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:		MIX-100	C9HM1	GPU	GPU	GPU			9H M Gas Header	VLVE-102	9HM Water Header	VLVE-101	9H M Cond Header	VLVE-100
	To Block:	MIX-100	C9HM1	GPU	9H M Gas Header	9H M Cond Header	9HM Water Header	MIX-100	MIX-100	VLVE-102	9H Marcela's Gas	VLVE-101	9H Mar Water	VLVE-100	9H Mar Con
Property	Units						+								
Femperature	۴F	70*	69.7739	65.3568	90*	90) 90	70	70	90	70.4140	90	91.0555	90	0 83.655
Pressure	psig	500*	500	430*	430	430	430	500*	500*	430	185	430	10*	430	0 18
Mass Flow	lb/h	112.110	7746.63	7746.63	6761.61	119.475	865.542	6759.11	875.406	6761.61	6761.61	865.542	865.542	119.475	5 119.47
Mass Fraction Vapor	%	0	85.8820	85.8356	100	C) C	98.8260	0	100	99.8950	0	0.0643202	0	D 3.1675
Enthalpy	MMBtu/h	-0.107700	-17.4634	-17.4634	-11.3224	-0.118591	-5.88936	-11.3793	-5.97644	-11.3224	-11.3224	-5.88936	-5.88936	-0.118591	1 -0.11859
Mole Fraction Vapor	%	0	86.3781	86.3881	100	C) C	99.6417	0	100	99.9757	0	0.0586571	0	0 10.638
Molecular Weight	lb/lbmol	92.1983	20.4287	20.4287	20.5133	77.5104	18.0168	20.5198	18.0153	20.5133	20.5133	18.0168	18.0168	77.5104	4 77.510
Molar Flow	lbmol/h	1.21596	379.203	379.203	329.620	1.54141	48.0409	329.394	48.5924	329,620	329.620	48.0409	48.0409	1.54141	1 1.5414
Specific Gravity		0.679347			0.708270	0.639277	0.994804		0.998949	0.708270		0.994804		0.639277	1
Dynamic Viscosity	сP	0.375386			0.0115330	0.244918	0.783625		1.00247	0.0115330		0.783625		0.244918	3
Kinematic Viscosity	cSt	0.553091			0.420536	0.383480	0.788463		1.00447	0.420536		0.788463		0.383480	J
Thermal Conductivity	Btu/(h*ft*°F)	0.0701300			0.0196092	0.0664121	0.354991		0.347101	0.0196092		0.354991		0.0664121	1
Std Vapor Volumetric Flow	MMSCFD	0.0110745	3.45364	3.45364	3.00206	0.0140385	0.437538	3*	0.442562	3.00206	3.00206	0.437538	0.437538	0.0140385	5 0.014038
Std Liquid Volumetric Flow	Mbbl/d	0.0114*	1.43607	1.43607	1.36375	0.0129091	0.0594029	1.36467	0.06*	1.36375	1.36375	0.0594029	0.0594029	0.0129091	1 0.012909
Gross Ideal Gas Heating Value	Btu/ft^3	5061.87	1099.09	1099.09	1236.98	4279.19	50.9979	1239.18	50.31	1236.98	1236.98	50.9979	50.9979	4279.19	9 4279.1
CpCv Ratio		1.15364	1.43172	1.40988	1.38634	1.20679) 1.41510	1.44424	1.39588	1.38634	1.31459	1.41510	1.41728	1.20679	9 1.1879
Compressibility		0.197035	0.760534	0.771571	0.903263	0.146555	0.0218911	0.872099	0.0261825	0.903263	0.949850	0.0218911	0.00179608	0.146555	5 0.16285
Mass Volume	ft^3/lb	0.0236015	0.410970	0.478538	0.584091	0.0250808	0.0161174	0.469365	0.0160505	0.584091	1.31904	0.0161174	0.0238574	0.0250808	
Mass Density	lb/ft^3	42.3702	2.43327	2.08970	1.71206	39.8711	62.0449	2.13054	62.3034	1.71206	0.758127	62.0449	41.9157		
Net Ideal Gas Heating Value	Btu/ft^3	4691.76	991.020	991.020	1121.47				0	1121.47	1121.47		0.651540		

Certificate of Analysis

Number: 2030-13110102-005A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Field: Triad Hunter LLC Station Name:Weese Hunter Combine 1001,1002,1003,1110 Sample Point: Cylinder No: GAS Analyzed: 11/16/2013 19:05:50 by GR

Sampled By:AW-GASSample Of:GasSpotSample Date:11/05/2013Sample Conditions: 250 psig, @ 65 °FMethod:GPA 2286

Nov. 16, 2013

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.73 psia			
Nitrogen	0.446	0.609				
Carbon Dioxide	0.171	0.367		GPM TOTAL C2+	5.667	
Methane	79.139	61.888				
Ethane	13.562	19.879	3.638			
Propane	4.128	8.873	1.141			
Iso-Butane	0.565	1 601	0.185			
n-Butane	1.018	2.884	0.322			
Iso-Pentane	0.285	1.002	0.104			
n-Pentane	0.252	0.886	0.091			
i-Héxanes	0.139	0.572	0.055			
n-Hexane	0.087	0.357	0.035			
Benzene	0.002	0.010	0.001			
Cyclohexane	0.011	0.046	0.004			
i-Heptanes	0.077	0.368	0.034			
n-Heptane	0.032	0.153	0.014			
Toluene	0.005	0.021	0.002			
i-Octanes	0.058	0.311	0.027			
n-Octane	0.010	0.056	0.005			
Ethylbenzene	NIL	NIL	NIL			
Xylenes	0.002	0.016	0.001			
i-Nonanes	0.009	0.085	0.007			
n-Nonane	0.002	0.016	0.007			
Decane Plus	NIL	NIL	NIL			
	100.000	100.000	5.667			
Physical Properties				**************************************		
Calculated Molecular	Weight		Total 20.51	C10+ 136.80		
GPA 2172-09 Calcula Calculated One	ation:					
Calculated Gross BT	rU per ft³ @	14.73 psia	& 60°F			
Real Gas Dry B10			1245.6	7185.4		
Water Sat. Gas Base	BTU	1	1224.0	7060.4		
Relative Density Real	Gas	C	0.7103	4.7225		
Compressibility Facto	r	C	0.9965			

Fatter A Detro Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Certificate of Analysis Number: 2030-13110102-005A Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Nov. 16, 2013

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Field:Triad Hunter LLCStation Name:Weese Hunter Combine 1001,1002,1003,1110Sample Point:Cylinder No:GASAnalyzed:11/16/2013 19:05:50 by GR

Sampled By:	AW-GA	S
Sample Of:	Gas	Spot
Sample Date:	11/05/2	
Sample Condition	ns:250 psi	a. @ 65 °F
Method:	GPA 22	

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.73 psia		
Nitrogen Carbon Dioxide Methane Ethane Propane Iso-butane n-Butane Iso-pentane n-Pentane Hexanes Plus	0.446 0.171 79.139 13.562 4.128 0.565 1.018 0.285 0.252 0.434 100.000	0,609 0,367 61.888 19,879 8,873 1,601 2,884 1,002 0,886 2,011 100,000	3.638 1.141 0.185 0.322 0.104 0.091 0.186 5.667	GPM TOTAL C2+ GPM TOTAL C3+ GPM TOTAL iC5+	5.667 2.029 0.381
Physical Properties Relative Density Rea Calculated Molecular Compressibility Factor GPA 2172-09 Calcul Calculated Gross B Real Gas Dry BTU Water Sat. Gas Base	el Gas r Weight or lation: TU per ft ^a @	2 14.73 psia	Total 0.7103 20.51 0.9965 & 60°F 1245.6 1224.0	C6+ 3.2448 93.98 5129.0 5039.8	

Par L. Dero

Quality Assurance:

Hydrocarbon Laboratory Manager

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Certificate of Analysis

Number: 2030-13110102-005A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Field:Triad Hunter LLCStation Name:Weese Hunter Combine 1001,1002,1003,1110Sample Point:Cylinder No:GASAnalyzed:11/16/2013 19:05:50 by GR

Nov. 16, 2013

Sampled By: AW-GAS Sample Of: Gas Spot Sample Date: 11/05/2013 Sample Conditions:250 psig, @ 65 °F Method: GPA 2286

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.73 psia	· _ · · · · · · · · · · · · · · · · · ·		
Nitrogen Carbon Dioxide Methane Ethane Propane Iso-Butane n-Butane Iso-Pentane n-Pentane Hexanes Heptanes Plus	0.446 0.171 79.139 13.562 4.128 0.565 1.018 0.285 0.252 0.226 0.208 100.000	0.609 0.367 61.888 19.879 8.873 1.601 2.884 1.002 0.886 0.929 1.082 100.000	3.638 1.141 0.185 0.322 0.104 0.091 0.090 0.096 5.667	GPM TOTAL C2+ GPM TOTAL C3+ GPM TOTAL iC5+	5.667 2.029 0.381	
Physical Properties Relative Density Rea Calculated Molecula Compressibility Fact GPA 2172-09 Calcu Calculated Gross B Real Gas Dry BTU Water Sat. Gas Base	al Gas r Weight or lation: TU per ft³ @	14.73 psia	Total 0.7103 20.51 0.9965 & 60°F 1245.6 1224.0	C7+ 3.5460 102.70 5549.8 5453.2		

Patter S. Derro

Quality Assurance:

Hydrocarbon Laboratory Manager

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

ATTACHMENT J

Class I Legal Advertisement

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Triad Hunter, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Modification of its General Permit registration for its Weese Station. It is seeking to include equipment at the nearby R. Weese Production Facility with access off of County Route 58 approximately 0.1 miles south of its intersection with State Route 18, just west of Alma in Tyler County, West Virginia. (Lat. 39.42472, Long. -80.82505)

The applicant estimates the following increase in potential emissions of Regulated Air Pollutants will be:

0.27 tons of Particulate Matter per year9.80 tons of Volatile Organics per year0.09 tons of n-Hexane per year0.18 tons of Benzene per year

In addition, the applicant estimates the following decrease in potential emissions of Regulated Air Pollutants:

1.01 tons of Nitrogen Oxides per year
24.20 tons of Carbon Monoxide per year
7,214 tons of Greenhouse Gases per year
0.02 tons of Sulfur Dioxide per year
3.17 tons of Formaldehyde per year

The facility is currently operating. Startup of operation of additional equipment under the modified permit registration is planned to begin on or about the 15th day of December 2015. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the (Day) day of (Month), (Year).

By: Mr. Michael Horan, Vice President of Operations Triad Hunter, LLC PO Box 430 Reno, Ohio 45773

ATTACHMENT N

Material Safety Data Sheets

FILE NO.: MSDS DATE: 02/13/2012

:

SECTION 1: PRODUCT	AND COMPANY IDENTIFICATION
PRODUCT NAME:	Natural Gas Pipeline Condensate.
SYNONYMS:	Produced Water, Pipeline Drip, Formation Water, Salt Water, Oliy Water.
PRODUCT DESCRIPTION:	Water extracted from natural gas well production with residual mineral contents and residual hydrocarbons.
PRODUCT CODES:	Mixture. See CAS Numbers of Individual Components.
MANUFACTURER: Division: Address:	EQT Waynesburg Operations 176 Industry Road Waynesburg, PA 15370
Emergency Phone; Chemtrec Phone;	(800) 926-1759 After hours: (800) 926-1759 (800) 424-9300
CHEMICAL NAME; CHEMICAL FAMILY; CHEMICAL FORMULA CAS Reg. No.:	Water Brine Waters Mixture Mixture
Product USE:	Waste Brine, brine stock for chemical industry, sait brine for ice and snow removal.
PREPARED BY:	MSES Consultants, inc. 609 West Main Street Clarksburg, WV 26301
SECTION 1 NOTES:	

SECTION 1 NOTES:

SECTION 2: COMPOSITIO	MANFORMATION O	N INGREDIENTS	<u> </u>		
INGREDIENT	CAS No.	% Wt	OSHA PEL	ACGIH TLV	
Produced Water	Mixture	> 68	None	N/A	
Mineral Variety	N/A	< 32	None	N/A	
Gas Condensate	8002-05-9	<1	600 ppm	N/A	
Benzene	71-43-2	<1	1 ppm	0.5 ppm	
Hydrogen Sulfide	7783-08-4	<1	20 pp m	1 ppm	

FILE NO.; MSDS DATE: 02/13/2012

SECTION 2 NOTES:

EMERGENCY OVERVIEW		
ROUTES OF ENTRY:	Inhalation, ingestion, skin co	ntact
Potential Health Effects Eyes:	Eye contact with vapors may may cause initation and pair	r cause eye irritation. Eye contact with liquid 1. Eye contact with H2S may cause painful ve of exposure above applicable H2S
SKIN:	Skin contact may cause skin skin contact may cause dem	irritation and redness. Repeated or prolonged natitis.
ingestion;	ingestion may cause initation nauses, vomiting and diarrh toxicity may be present.	n of the digestive tract that may result in sa. In addition, signs and symptoms of H2S
INHALATION:	Breathing the mist and vapo is irritating and highly toxic	rs may be irritating to the respiratory tract. H28 If Inhaled.
ACUTE HEALTH R azards:	and death, depending on co	centrations may have results ranging from lache, nausea, to possibly unconsciousness, ncentrations and length of exposure. symptorms similar to carbon monoxide
CHRONIC HEALTH HAZARDS;	errects and death may occu system effects, such as hea	ict Irritation. Gastrointestinal and vascular r at high concentrations. May cause nervous dache, nauses and drowsiness. May contain gen sulfide, from which respiratory paralysis
MEDICAL CONDITIONS GENERA	LLY AGORAVATED BY EXPOSURE:	Any condition causing impaired function of the respiratory systems.
CARCINOGENICITY OBHA: Not Regulated	NTP: Not Applicable IARC: N	ot Applicable
BECTION 3 NOTES:		
BECTION 4: FIRST AID MEASUR		

- EYES: Flush eyes immediately with clean, low-pressure water for at least 15 minutes, occasionally lifting the eyelids. If pain or reciness persists after flushing, seek medical attention. If eye is exposed to hot liquid, cover eyes with cloth and seek medical attention immediately.
- SKIN: In case of hot liquid exposure, do not remove clothing or treat, wash only unburned area and seek medical attention immediately.

PAGE 2 OF 7

FILE NO.: M8DS DATE: 02/13/2012

- INGESTION: Do not induce vomiting. If spontaneous vomiting occurs, hold the victim's head lower than hips to prevent sepiration of liquid into the lungs. Have exposed individual rinse mouth thoroughly with water. Never give anything by mouth to an unconscious person. Obtain medical assistance immediately.
- INHALATION: immediately remove person to area of fresh eir. Call 911, emergency medical service, or Emergency Phone Numbers(s) provided in Section 1. Give artificial respiration if victim is not breathing. Do not use mouth-to mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a oneway valve or other proper respiratory medical device. Administer oxygen if breathing is difficult.

SECTION 4 NOTES:

SECTION S; FIRE-FIGHTING MEASURES	
FLASH POINT:	> 200° F; > 93° C
AUTOIGNITION TEMPERATURE:	N/A
NFPA HAZARD CLASSIFICATION HEALTH: 1 FLAMMABILI	TY: 1 REACTIVITY: 0
extinguishing nedia;	Water stream, water mist.
Special fire fighting procedures:	Evacuate area downwind of source. Stop liquids flow and extinguish fire. If gas source cannot be shut off immediately, equipment and surfaces exposed to the fire should be cooled with water to prevent overheating and explosions. Control fire until the natural gas condensate has burned off.
UNUSUAL FIRE AND EXPLOSION HAZARDS;	if large amounts of natural gas condensate are present, they are extremely flammable and they can form flammable mixtures with air. Condensate will burn in the open or be explosive in confined spaces. Its vapors are lighter than air and will disperse.
Hazardous decomposition products:	Carbon dioxide, carbon monoxide, and toxic vapors as a result of incomplete combustion.
Section 8 Notes:	Generally non-flammable, depending on the amount of natural gas condensate present. If large quantities of natural gas condensate are present, then water may be ineffective on flames and should be used only to keep fire-exposed containers cool. Use water mists to keep the surrounding areas cool,

FILE NO.: MSDS DATE: 02/13/2012

ACCIDENTAL RELEASE MEASURES:	Smail:	Evacuate erea. Eliminate all sources of Ignition such as flares, flames (including pilot lights), and electrical sparks. Ventilate area.
	Large:	Evacuate area. Eliminate all sources of ignition such as flares, flames (including pilot lights), and electrical sparks. Non-essential employees should be evacuated from the exposure area. Parsons involved in the control and repair of the leak should be provided with all necessary protective equipment and be properly trained for emergency situations involving this material. Stop leaks only when safe to do so. Stay upwind, and out of low areas. Ventilate closed spaces before entering. Use water spray to cool equipment surfaces, and containers exposed to fire and excessive heat.
SECTION 6 NOTES:		
SECTION 7: HANDLING AND STORA	IGE	
HANDLING AND STORAGE:	Vent slowly to the and eyes. Avoid t (ventilating, light)	ly with adequate ventilation. Wear appropriate personal tent and use exposure controls as indicated in Section 8. a atmosphere when opening. Avoid all contact with skin breathing product vapors. Use explosion-proof electrical ing and material handling) equipment. Remove thing immediately. Wash with soap and water after product.
Storage:	well-ventilated an	ated and approved area. Store in vented containers in a ea, away from heat and ignition sources. Use appropriate vold environmental contamination.
OTHER PRECAUTIONS:	Bond and ground	i containers.
SECTION 7 NOTES:		
SECTION S: EXPOSURE CONTROL	SIPERSONAL PROTEC	YIGH
Engineering controls:		
VENTILATION :	to maintain expo	nt mechanical (general and/or local exhaust) ventilation osure below the flammability limits, particularly ses. Use explosion-proof equipment and lighting in rolled areas,
RESPIRATORY PROTECTION:	Respiratory prot	tection is not required for normal use. In non-emergency

PAGE4 OF 7

FILE NO.: M8DS DATE: 02/13/2012

	situations, use NiOSH approved respiratory protective equipment in situations where airborne concentrations may meet or exceed occupationat exposure levels. At excessive concentrations, wear a NiOSH approved full-f ace self-contained breathing apparatus (SCBA) with supplied air.
EYE PROTECTION:	Wear splash-proof goggles and/or face shield for protection from apray.
SKIN PROTECTION:	Consider wearing long-sleeve, FRC, otherwise normal working clothes should be worn. Wash contaminated clothing prior to rause. If gloves are required for job operations involving this product, wear nitrile rubber or polyvinylalcohol (PVAL) gloves
SECTION & NOTES:	

SECTION . PHYSICAL AND CHEMICAL PROPERTIES APPEARANCE: Brine water. Coloriess to lightly colored. Clear to turbid. ODOR: Slight hydrocarbon / rotten egg odor if hydrogen suifide is present. PHYSICAL STATE: Liquid BOILING POINT: 212° F (100° C) MELTING POINT: Not determined FREEZING POINT: < 32° C. < 0° C VAPOR PREBSURE (mmHg); Not determined VAPOR DENSITY (AIR = 1): 1.2 SPECIFIC GRAVITY (H2O = 1): >1 EVAPORATION RATE: N/A SOLUBILITY IN WATER: This material is ageous, PERCENT SOUDS BY WEIGHT: < 32% PERCENT VOLATILE: < 1% by weight and by volume **VOLATILE ORGANIC** COMPOUNDB (VOC): Not determined **MOLECULAR WEIGHT:** Not determined VISCOSITY: Not determined

SECTION 9 NOTES:

FILE NO.: MSDS DATE: 02/13/2012

SECTION 10: STABILITY AND REACTIVITY

STABILITY:	Stable	
Conditions to avoid (Stability):	Generally non-flammable. Can be flammable, depending on the quantity of natural gas liquids present.	
INCOMPATIBILITY (MATERIAL TO AVOID):	Oxygen	and strong oxidizing material – if natural gas liquids present.
HAZARDOUS DECOMPOSITION OR BY-PRODUCTS:		Carbon dioxide, carbon monoxide, and various hydrocarbons formed during incomplete combustion.
HAZARDOUS POLYMERIZATION:		Polymerization will not occur.
SECTION 10 NOTES:		

SECTION 11: TOXICOLOGICAL INFORMATION

TOXICOLOGICAL INFORMATION:	BENZENE: This product contains benzene, which can cause degeneration in blood forming bone marrow leading to snemia which may further degrade to laukemia, a type of cancer. Acute benzene poleoning causes central nervous system depression. Chronic exposure affects the hematopoletic system causing blood disorders including anemia and pancytopenia. Mutagenic and clastogenic in mammalian and non- mammalian test systems. Reproductive or developmental toxicant only at doses that are matemally toxic, based on tests with animals.		
	HYDROGEN SULFIDE: This product contains hydrogen sulfide, which may be fatal if inhaled. Inhalation of a single breath at a concentration of 1000 ppm (0.1%) may cause come. Hydrogen sulfide is corrosive when moist. Skin contact may cause burns. There is a rapid loss of sense of smell on exposure to gas concentrations above 150 ppm, and this means that the extent of exposure may be underestimated. Perception threshold ranges from 0.5 ppt to 0.1 ppm. It is an irritant and asphyxiant.		
SECTION 11 NOTES:			
SECTION 12: ECOLOGICAL INFO	RMATION		
ECOLOGICAL INFORMATION:	Do not discharge into or allow runoff to flow into sewers and natural waterways. Contain spill material and dike for proper disposal. May be hazardous to waterways/wildlife.		
SECTION 12 NOTES:			
SECTION 13: DISPOSAL CONSIL	PERATIONS		
waste disposal method:	This product is not a "listed" hazardous waste. But when disposed of in containers may meet the criteria of being an "ignitable" waste. It is the responsibility of the user to determine if the material disposed of meets federal, state, or local criteria to be defined as a hazardous waste and dispose of accordingly.		

FILE NO.: M8DS DATE: 02/13/2012

SECTION 13 NOTES:

SECTION 14: TRANSPORT INFORMATION

U.S. DEPARTMENT OF TRANSPORTATION FROPER SHIPPING NAME:

NOT REGULATED as a Hazardous Material for Transportation.

SECTION 14 NOTES:

U.S. FEDERAL REGULATIONS	
US OSHA Hazard Communication Class	This product is hazardous under 29CFR 1910.1200 (Hazard Commiunication). HCS Class: irritating Substance.
USA Right-to-Know — Federal	None of this product's components are listed under SARA Section 302 (40 CFR 365 Appendix A), SARA Section 313 (40 CFR 372.65), or CERCLA (40 CFR 302.4).

SECTION 15 NOTES:

SECTION 14: OTHER INFORMATION

OTHER INFORMATION:

PREPARATION INFORMATION:

MSES Consultants, inc. 609 West Main Street Clarksburg, WV 26301

DISCLAIMER: This material safety data sheet and the information it contains is offered to you in good faith as accurate. We have reviewed any information contained in this data sheet which we received from sources outside our Company. We believe that information to be correct but cannot guarantee its accuracy or completeness. Health and safety precautions in this data sheet may not be adequate for all individuals and/or situations. It is the user's obligation to evaluate and use this product safety and to comply with all applicable laws and regulations. No statement made in this data sheet shall be construed as a permission or recommendation for the use of any product in a manner that might infringe existing patents. No warranty is made, either express or implied.

Distributed By: SAL Chemical 3036 Birch Drive Weirton, WV 26062 304-748-8200 Page: 1 Revision Date: 02/18/2010 Print Date: 6/29/2010 MSDS Number: R0001447 Version: 1.7

1. IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING

Ashland P.O. Box 2219 Columbus, OH 43216	Regulatory Information Number Telephone Emergency telephone	1-800-325-3751 614-790-3333 1-800-ASHLAND (1-800-274- 5263)	
Product name	METHANOL		
Product code Product Use Description	20297 No data		

2. HAZARDS IDENTIFICATION

Emergency Overview

Appearance: liquid,, colourless

WARNING! FLAMMABLE LIQUID AND VAPOR. MAY AFFECT THE CENTRAL NERVOUS SYSTEM CAUSING DIZZINESS, HEADACHE OR NAUSEA. MAY CAUSE BLINDNESS. HARMFUL IF SWALLOWED. MAY BE HARMFUL IF INHALED OR ABSORBED THROUGH SKIN. PROLONGED OR REPEATED CONTACT MAY DRY THE SKIN AND CAUSE IRRITATION AND BURNS.

Potential Health Effects

Exposure routes

Inhalation, Skin absorption, Skin contact, Eye Contact, Ingestion

Eye contact

May cause mild eye irritation. Symptoms include stinging, tearing, and redness.

Skin contact

May cause mild skin irritation. Prolonged or repeated contact may dry the skin. Symptoms may include redness, burning, drying and cracking of skin, and skin burns. Passage of this material into the body through the skin is possible, and may add to toxic effects from breathing or swallowing.

Ingestion

Page 1 / 11

Page: 2 Revision Date: 02/18/2010 Print Date: 6/29/2010 MSDS Number: R0001447 Version: 1,7

Swallowing this material may be harmful.

Inhalation

Breathing of vapor or mist is possible. Breathing this material may be harmful. Symptoms are not expected at air concentrations below the recommended exposure limits, if applicable (see Section 8.).

Aggravated Medical Condition

Preexisting disorders of the following organs (or organ systems) may be aggravated by exposure to this material:, Skin, lung (for example, asthma-like conditions), Liver, kidney, Central nervous system, pancreas, Heart, Exposure to this material may aggravate any preexisting condition sensitive to a decrease in available oxygen, such as chronic lung disease, coronary artery disease or anemias.

Symptoms

Signs and symptoms of exposure to this material through breathing, swallowing, and/or passage of the material through the skin may include:, stomach or intestinal upset (nausea, vomiting, diarrhea), irritation (nose, throat, airways), central nervous system depression (dizziness, drowsiness, weakness, fatigue, nausea, headache, unconsciousness), muscle cramps, pain in the abdomen and lower back, Blurred vision, Shortness of breath, cyanosis (causes blue coloring of the skin and nails from lack of oxygen), visual impairment (including blindness), coma, and death

Target Organs

Exposure to lethal concentrations of methanol has been shown to cause damage to organs including liver, kidneys, pancreas, heart, lungs and brain. Although this rarely occurs, survivors of severe intoxication may suffer from permanent neurological damage., Overexposure to this material (or its components) has been suggested as a cause of the following effects in laboratory animals:, liver abnormalities, central nervous system damage, Overexposure to this material (or its components) has been suggested as a cause of the following effects in laboratory animals:, liver abnormalities, central nervous system damage, Overexposure to this material (or its components) has been suggested as a cause of the following effects in humans:, visual impairment

Carcinogenicity

Based on the available information, this material cannot be classified with regard to carcinogenicity. This material is not listed as a carcinogen by the International Agency for Research on Cancer (IARC), the National Toxicology Program (NTP), or the Occupational Safety and Health Administration (OSHA).

Reproductive hazard

Methanol has caused birth defects in laboratory animals, but only when inhaled at extremely high vapor concentrations. The relevance of this finding to humans is uncertain.

Page: 3 Revision Date: 02/18/2010 Print Date: 6/29/2010 MSDS Number: R0001447 Version: 1.7

3. COMPOSITION/INFORMATION ON INGREDIENTS			
Hazardous Components METHANOL	<u>CAS-No,</u> 67-56-1	Concentration	
	07-30-I	<=100%	

4. FIRST AID MEASURES

Eyes

If symptoms develop, immediately move individual away from exposure and into fresh air. Flush eyes gently with water for at least 15 minutes while holding eyelids apart; seek immediate medical attention.

Skin

Remove contaminated clothing. Wash exposed area with soap and water. If symptoms persist, seek medical attention. Launder clothing before reuse.

Ingestion

Seek medical attention. If individual is drowsy or unconscious, do not give anything by mouth; place individual on the left side with the head down. Contact a physician, medical facility, or poison control center for advice about whether to induce vomiting. If possible, do not leave individual unattended.

Inhalation

If symptoms develop, move individual away from exposure and into fresh air. If symptoms persist, seek medical attention. If breathing is difficult, administer oxygen. Keep person warm and quiet; seek immediate medical attention.

Notes to physician

Hazards: This product contains methanol which can cause intoxication and central nervous system depression. Methanol is metabolized to formic acid and formaldehyde. These metabolites can cause metabolic acidosis, visual disturbances and blindness. Since metabolism is required for these toxic symptoms, their onset may be delayed from 6 to 30 hours following ingestion. Ethanol competes for the same metabolic pathway and has been used to prevent methanol metabolism. Ethanol administration is indicated in symptomatic patients or at blood methanol concentrations above 20 ug/dl. Methanol is effectively removed by hemodialysis.

Treatment: Fomepizole (4-methylpyrazole) is an effective antagonist of alcohol dehydrogenase, and as such, may be used as an antidote in the treatment of ethylene glycol, diethylene glycol and methanol poisoning.

Page 3/11

5. FIRE-FIGHTING MEASURES

Suitable extinguishing media

Dry chemical, Alcohol-resistant foam, Carbon dioxide (CO2)

Hazardous combustion products

May form:, carbon dioxide and carbon monoxide

Precautions for fire-fighting

Material is volatile and readily gives off vapors which may travel along the ground or be moved by ventilation and ignited by pilot lights, flames, sparks, heaters, smoking, electric motors, static discharge or other ignition sources at locations near the material handling point. Never use welding or cutting torch on or near drum (even empty) because product (even just residue) can ignite explosively. During a fire, irritating or toxic decomposition products may be generated. Wear full firefighting turn-out gear (full Bunker gear), and respiratory protection (SCBA). Water may be ineffective for extinguishment unless used under favorable conditions by experienced fire fighters. Use water spray to cool fire exposed containers and structures until fire is out if it can be done with minimal risk. Avoid spreading burning liquid with water used for cooling purposes.

NFPA Flammable and Combustible Liquids Classification Flammable Liquid Class IB

6. ACCIDENTAL RELEASE MEASURES

Personal precautions

For personal protection see section 8. Eliminate all ignition sources (flares, flames including pilot lights, electrical sparks). Persons not wearing protective equipment should be excluded from area of spill until clean-up has been completed. Stop spill at source. Prevent from entering drains, sewers, streams or other bodies of water. Prevent from spreading. If runoff occurs, notify authorities as required. Pump or vacuum transfer spilled product to clean containers for recovery. Absorb unrecoverable product. Transfer contaminated absorbent, soil and other materials to containers for disposal.

Environmental precautions

Prevent run-off to sewers, streams or other bodies of water. If run-off occurs, notify proper authorities as required, that a spill has occurred.

Methods for cleaning up

Absorb liquid on vermiculite, floor absorbent or other absorbent material.

Page 4 / 11

Page: 4 Revision Date: 02/18/2010 Print Date: 6/29/2010 MSDS Number: R0001447 Version: 1.7

7. HANDLING AND STORAGE

Handling

Containers of this material may be hazardous when emptied. Since emptied containers retain product residues (vapor, liquid, and/or solid), all hazard precautions given in the data sheet must be observed. Static ignition hazard can result from handling and use. Electrically bond and ground all containers, personnel and equipment before transfer or use of material. Special precautions may be necessary to dissipate static electricity for non-conductive containers. Use proper bonding and grounding during product transfer as described in National Fire Protection Association document NFPA 77. Warning. Sudden release of hot organic chemical vapors or mists from process equipment operating at elevated temperature and pressure, or sudden ingress of air into vacuum equipment, may result in ignitions without the presence of obvious ignition sources. Published "autoignition" or "ignition" temperature values cannot be treated as safe operating temperatures in chemical processes without analysis of the actual process conditions. Any use of this product in elevated temperature processes should be thoroughly evaluated to establish and maintain safe operating conditions.

Storage

Store in a cool, dry, ventilated area, away from incompatible substances.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Exposure Guidelines

METHANOL		67-56-1	
ACGIH	time weighted average	200 ppm	
ACGIH	Short term exposure limit	250 ppm	
NIOSH	Recommended exposure limit (REL):	200 ppm	
NIOSH	Recommended exposure limit (REL):	260 mg/m3	
NIOSH NIOSH	Short term exposure limit Short term exposure limit	250 ppm 325 mg/m3	
OSHA Z1	Permissible exposure limit	200 ppm	
OSHA Z1	Permissible exposure limit	260 mg/m3	

General advice

These recommendations provide general guidance for handling this product. Personal protective equipment should be selected for individual applications and should consider factors which affect exposure potential, such as handling practices, chemical concentrations and ventilation. It is ultimately the responsibility of the employer to follow regulatory guidelines established by local authorities.

Page 5 / 11

Page: 5 Revision Date: 02/18/2010 Print Date: 6/29/2010 MSDS Number: R0001447 Version: 1.7

Page: 6 Revision Date: 02/18/2010 Print Date: 6/29/2010 MSDS Number: R0001447 Version: 1.7

Exposure controls

Provide sufficient mechanical (general and/or local exhaust) ventilation to maintain exposure below TLV(s).

Eye protection

Chemical splash goggles in compliance with OSHA regulations are advised; however, OSHA regulations also permit other type safety glasses. Consult your safety representative.

Skin and body protection

Wear resistant gloves (consult your safety equipment supplier). To prevent repeated or prolonged skin contact, wear impervious clothing and boots.

Respiratory protection

If workplace exposure limit(s) of product or any component is exceeded (see exposure guidelines), a NIOSH-approved air supplied respirator is advised in absence of proper environmental control. OSHA regulations also permit other NIOSH respirators (negative pressure type) under specified conditions (see your industrial hygienist). Engineering or administrative controls should be implemented to reduce exposure.

9. PHYSICAL AND CHEMICAL PROPERTIES

Physical state	liquid
Form	liquid
Colour	colourless
Odour	characteristic, pungent
Boiling point/boiling range	64.70 °C @ 101.32 kPa
Melting point/range	-144.0 °F / -97.8 °C
pH	No data
Flash point	12.00 °C Closed Cup
Evaporation rate	2.10 (n-Butyl Acetate)
Lower explosion limit/Upper explosion limit	7.3 %(V) / 36 %(V)
Vapour pressure Vapour density Density Solubility Partition coefficient: n-octanol/water	16.931 kPa @ 25 °C 1.110 (AIR=1) 0.792 g/cm3 @ 68 °F / 20 °C 6.6 lb/gal @ 61 °F / 16 °C completely soluble in water No data

Page 6 / 11

METHANOL 20297

log Pow Autoignition temperature

-0.77 725 °F / 385 °C

10. STABILITY AND REACTIVITY

Stability

Stable.

Conditions to avoid Avoid contact with:

Incompatible products

Avoid contact with:, calcium hypochlorite, hypochlorites, Peroxides, reactive metals such as aluminum and magnesium, sodium, Strong acids, strong bases, Strong oxidizing agents, Zinc

Hazardous decomposition products

carbon dioxide and carbon monoxide

Hazardous reactions

Product will not undergo hazardous polymerization.

Thermal decomposition

No data

11. TOXICOLOGICAL INFORMATION

Acute oral toxicity	: LD L0 Human: 300 mg/kg
Acute inhalation toxicity	: LC 50 Rat: 64000 ppm, 4 h
	:
Acute dermal toxicity	: LD 50 Rabbit: 12,800 mg/kg

12. ECOLOGICAL INFORMATION

Elimination information (persistence and degradability)

Page 7 / 11

Page: 7 Revision Date: 02/18/2010 Print Date: 6/29/2010 MSDS Number: R0001447 Version: 1,7

ASHLAND. SAFETY DATA SHEET METHANOL		Page: 8 Revision Date: 02/18/2010 Print Date: 6/29/2010 MSDS Number: R0001447
20297		Version: 1.7
Biodegradability	:	Result: Readily biodegradable.
Bioaccumulation METHANOL	:	Species: Green algae (Chlorella fusca vacuolata) Exposure time: 24 h Dose: 0.05 mg/l Bioconcentration factor (BCF): 28,400 Method: Static
Ecotoxicity effects		
Toxicity to fish METHANOL Toxicity to daphnia and other aquatic invertebrate	:	no data available
METHANOL	:	48 h EC 50 Water flea (Daphnia magna): > 10,000.00 mg/i Method: Static
Toxicity to algae		Intoxication
METHANOL Toxicity to bacteria	:	no data available
METHANOL Biochemical Oxygen Demaud (BOD)	:	no data available
METHANOL Chemical Oxygen Demand (COD)	:	no data available
METHANOL Additional ecological information	:	no data available
METHANOL	:	no data available

13. DISPOSAL CONSIDERATIONS

Waste disposal methods

Dispose of in accordance with all applicable local, state and federal regulations. For assistance with your waste management needs - including disposal, recycling and waste stream reduction, contact Ashland Distribution's Environmental Services Group at 800-637-7922.

14. TRANSPORT INFORMATION

Page 8 / 11

Page: 9 Revision Date: 02/18/2010 Print Date: 6/29/2010 MSDS Number: R0001447 Version: 1.7

METHANOL 20297

ID	PROPER SHIPPING NAME	*HAZARD	SUBSIDIARY	PACKING	MARINE
NUMBER		CLASS	HAZARDS	GROUP	POLLUTANT
					/LTD. QTY.
U.S. DOT - F				.	[/ BID. Q11,
UN 1230	0 Methanol	3	(6.1)	II	
U.S. DOT - F	RATE.				
UN 1230					
		3	(6.1)	II	
J.S. DOT - I	NLAND WATERWAYS				
UN 1230		3	(6.1)	 II	
			(0.1)		
<u>CRANSPOR</u>	T CANADA - ROAD				
<u>ÚN 123(</u>		3	(6.1)	11	
				11	
	T CANADA - RAIL				
<u>UN_1230</u>) METHANOL	3	(6.1)	II	
FRANSPOR	T CANADA - INLAND WATER	WAYS			
UN 1230	METHANOL	3	(6.1)	lI	
NTERNAT	IONAL MARITIME DANGERO	US GOODS			
UN 1230) METHANOL	3	(6.1)	11	
UN 1230	IONAL AIR TRANSPORT ASSO	DCIATION - C	ARGO		
<u>UN 1230</u>) Methanol	3	(6.1)	ll	
NTEDNATI	INAL AD TRANSPORT				
UN 1230	IONAL AIR TRANSPORT ASSO Methanol				
1231		3	(6.1)	11	
MEXICANT	RECULATION FOD THE TANK				
WASTES	REGULATION FOR THE LANI	TRANSFOR	I OF HAZARDO	US MATERI	ALS AND
UN 1230	0 METANOL	3	(6.1)	71	·····
			(0.1)	II	

*ORM = ORM-D, CBL = COMBUSTIBLE LIQUID

Dangerous goods descriptions (if indicated above) may not reflect quantity, end-use or region-specific exceptions that can be applied. Consult shipping documents for descriptions that are specific to the shipment.

Page 9/11

METHANOL 20297 Page: 10 Revision Date: 02/18/2010 Print Date: 6/29/2010 MSDS Number: R0001447 Version: 1,7

100.00 %

÷

15. REGULATORY INFORMATION

California Prop. 65

This product does not contain any chemicals known to the State of California to cause cancer, birth, or any other reproductive defects.

SARA Hazard Classification

Fire Hazard Acute Health Hazard

SARA 313	Component(s)
METHAN	

New Jersey RTK Label Information METHANOL	67-56-1
Pennsylvania RTK Label Information METHANOL	67- 56-1
Notification status Australia. Industrial Chemical (Notification and Assessment) Act	y (positive listing)
Canada. Canadian Environmental Protection Act (CEPA). Domestic Substances List (DSL). (Can. Gaz. Part II, Vol. 133) China. Inventory of Existing Chemical Substances	y (positive listing)
Japan. Kashin-Hou Law List Japan. Kashin-Hou Law List	y (positive listing) y (positive listing) y (positive listing)
US. Toxic Substances Control Act EU. EINECS Korea. Toxic Chemical Control Law (TCCL) List	y (positive listing) y (positive listing)
Korea. Toxic Chemical Control Law (TCCL) List Philippines. The Toxic Substances and Hazardous and Nuclear Waste Control Act	y (positive listing) y (positive listing) y (positive listing)
Japan. Industrial Safety & Health Law (ISHL) List	y (positive listing)

Page 10/11

ASHLAND. SAFETY DATA SHEET	Page: 11 Revision Date: 02/18/2010 Print Date: 6/29/2010		
METHANOL 20297		MSDS Number: R0001447 Version: 1.7	
New Zealand. Inventory of Chen by ERMA New Zealand	nicals (NZIoC), as published	y (positive listing)	
Switzerland. Consolidated Inven	y (positive listing)		
Reportable quantity - Product US. EPA CERCLA Hazardous S	ubstances (40 CFR 302)	5000 lbs	
Reportable quantity-Compone METHANOL	nts 67-56-1	5000 lbs	
	HMIS	NFPA	
Health	1*	1	
Flammability	3	3	
Physical hazards	0		

0

16. OTHER INFORMATION

Instability

Specific Hazard

The information accumulated herein is believed to be accurate but is not warranted to be whether originating with the company or not. Recipients are advised to confirm in advance of need that the information is current, applicable, and suitable to their circumstances. This MSDS has been prepared by Ashland's Environmental Health and Safety Department (1-800-325-3751).

--

Page: 1 Revision Date: 08/10/2010 Print Date: 2/4/2011 MSDS Number: R0003553 Version: 1.7

TRIETHYLENE GLYCOL (515#/DM) 104071

1. IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING

Ashland P.O. Box 2219 Columbus, OH 43216	Regulatory Information Number Telephone Emergency telephone	1-800-325-375) 614-790-3333 1-800-ASHLAND (1-800-274- 5263)
Product name	TRIETHYLENE GLYCOL (515#	/DM)
Product code	104071	

Product Code Product Use Description

104071 No data

2. HAZARDS IDENTIFICATION

Emergency Overview

Appearance: liquid, colourless

CAUTION! MAY AFFECT THE CENTRAL NERVOUS SYSTEM CAUSING DIZZINESS, HEADACHE OR NAUSEA. MAY BE HARMFUL IF SWALLOWED. MAY CAUSE EYE IRRITATION.

Potential Health Effects

Exposure routes

Inhalation, Skin absorption, Skin contact, Eye Contact, Ingestion

Eye contact

May cause mild eye irritation. Symptoms include stinging, tearing, and redness.

Skin contact

May cause mild skin irritation. Symptoms may include redness and burning of skin. Passage of this material into the body through the skin is possible, but it is unlikely that this would result in harmful effects during safe handling and use.

Ingestion

Swallowing small amounts of this material during normal handling is not likely to cause harmful effects. Swallowing large amounts may be harmful.Ingestion of medications contaminated with

Page 1 / 11

Page; 2 Revision Date: 08/10/2010 Print Date: 2/4/2011 MSDS Number: R0003553 Version: 1.7

TRIETHYLENE GLYCOL (515#/DM) 104071

diethylene glycol has caused kidney failure and death in humans. Products containing diethylene glycol should be considered toxic by ingestion.

Inhalation

It is possible to breathe this material under certain conditions of handling and use (for example, during heating, spraying, or stirring). Breathing small amounts of this material during normal handling is not likely to cause harmful effects. Breathing large amounts may be harmful. Symptoms are not expected at air concentrations below the recommended exposure limits, if applicable (see Section 8.).

Aggravated Medical Condition

Preexisting disorders of the following organs (or organ systems) may be aggravated by exposure to this material:, lung (for example, asthma-like conditions), Liver, kidney, Central nervous system

Symptoms

Signs and symptoms of exposure to this material through breathing, swallowing, and/or passage of the material through the skin may include:, stomach or intestinal upset (nausea, vomiting, diarrhea), irritation (nose, throat, airways), central nervous system depression (dizziness, drowsiness, weakness, fatigue, nausea, headache, unconsciousness), pain in the abdomen and lower back, acute kidney failure (sudden slowing or stopping of urine production), lung edema (fluid buildup in the lung tissue)

Target Organs

Overexposure to this material (or its components) has been suggested as a cause of the following effects in laboratory animals:, kidney damage, liver damage, central nervous system damage, Overexposure to this material (or its components) has been suggested as a cause of the following effects in humans:, liver damage, kidney damage

Carcinogenicity

Based on the available information, this material cannot be classified with regard to carcinogenicity. This material is not listed as a carcinogen by the International Agency for Research on Cancer (IARC), the National Toxicology Program (NTP), or the Occupational Safety and Health Administration (OSHA).

Reproductive hazard

This material (or a component) has been shown to cause harm to the fetus in laboratory animal studies. Harm to the fetus occurs only at exposure levels that harm the pregnant animal. The relevance of these findings to humans is uncertain.

3. COMPOSITION/INFORMATION ON INGREDIENTS

Page 2/11

Page: 3 Revision Date: 08/10/2010 Print Date: 2/4/2011 MSDS Number: R0003553 Version: 1.7

TRIETHYLENE GLYCOL (515#/DM) 104071

Hazardous Components	CAS-No.	Concentration
TRIETHYLENE GLYCOL	112-27-6	<=100%
DIETHYLENE GLYCOL	111-46-6	>=1.5-<5%

4. FIRST AID MEASURES

Eyes

If symptoms develop, move individual away from exposure and into fresh air. Flush eyes gently with water while holding eyelids apart. If symptoms persist or there is any visual difficulty, seek medical attention.

Skin

Remove contaminated clothing. Wash exposed area with soap and water. If symptoms persist, seek medical attention. Launder clothing before reuse.

Ingestion

Seek medical attention. If individual is drowsy or unconscious, do not give anything by mouth; place individual on the left side with the head down. Contact a physician, medical facility, or poison control center for advice about whether to induce vomiting. If possible, do not leave individual unattended.

Inhalation

If symptoms develop, move individual away from exposure and into fresh air. If symptoms persist, seek medical attention. If breathing is difficult, administer oxygen. Keep person warm and quiet; seek immediate medical attention.

Notes to physician

Hazards: Ingestion or other significant exposure to this material (or a component) may cause metabolic acidosis.

Treatment: Fomepizole (4-methylpyrazole) is an effective antagonist of alcohol dehydrogenase, and as such, may be used as an antidote in the treatment of ethylene glycol, diethylene glycol and methanol poisoning.

5. FIRE-FIGHTING MEASURES

Suitable extinguishing media

Page 3 / 11

Page: 4 Revision Date: 08/10/2010 Print Date: 2/4/2011 MSDS Number: R0003553 Version: 1.7

TRIETHYLENE GLYCOL (515#/DM)

104071

Dry chemical, Carbon dioxide (CO2), Alcohol-resistant foam, Water spray

Hazardous combustion products

Alcohols, Aldehydes, carbon dioxide and carbon monoxide, ethers, Hydrocarbons

Precautions for fire-fighting

Never use welding or cutting torch on or near drum (even empty) because product (even just residue) can ignite explosively. Wear full firefighting turn-out gear (full Bunker gear), and respiratory protection (SCBA). DO NOT direct a solid stream of water or foam into hot, burning pools of liquid since this may cause frothing and increase fire intensity. Frothing can be violent and possibly endanger any firefighter standing too close to the burning liquid. Use water spray to cool fire exposed containers and structures until fire is out if it can be done with minimal risk. Avoid spreading burning material with water used for cooling purposes.

NFPA Flammable and Combustible Liquids Classification

Combustible Liquid Class IIIB

6. ACCIDENTAL RELEASE MEASURES

Personal precautions

For personal protection see section 8. Persons not wearing protective equipment should be excluded from area of spill until clean-up has been completed.

Environmental precautions

Do not flush into surface water or sanitary sewer system.

Methods for cleaning up

Absorb liquid on vermiculite, floor absorbent or other absorbent material.

7. HANDLING AND STORAGE

Handling

Containers of this material may be hazardous when emptied. Since emptied containers retain product residues (vapor, liquid, and/or solid), all hazard precautions given in the data sheet must be observed. Warning. Sudden release of hot organic chemical vapors or mists from process equipment operating at elevated temperature and pressure, or sudden ingress of air into vacuum equipment, may result in ignitions without the presence of obvious ignition sources. Published "autoignition" or "ignition" temperature values cannot be treated as safe operating temperatures in chemical processes without analysis of the actual process conditions. Any use of this product in elevated temperature processes should be thoroughly evaluated to establish and maintain safe operating conditions.

Page 4 / 11

Page: 5 Revision Date: 08/10/2010 Print Date: 2/4/2011 MSDS Number: R0003553 Version: 1.7

TRIETHYLENE GLYCOL (515#/DM) 104071

Storage

Store in closed containers in a dry, well-ventilated area. Do not store near extreme heat, open flame, or sources of ignition. Store out of direct sunlight.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Exposure Guidelines

General advice

These recommendations provide general guidance for handling this product. Personal protective equipment should be selected for individual applications and should consider factors which affect exposure potential, such as handling practices, chemical concentrations and ventilation. It is ultimately the responsibility of the employer to follow regulatory guidelines established by local authorities.

Exposure controls

General room ventilation should be adequate for normal conditions of use. However, if unusual operating conditions exist, provide sufficient mechanical (general and/or local exhaust) ventilation to maintain exposure below exposure guidelines (if applicable) or below levels that cause known, suspected or apparent adverse effects.

Eye protection

Wear chemical splash goggles when there is the potential for exposure of the eyes to liquid, vapor or mist.

Skin and body protection

Wear normal work clothing including long pants, long-sleeved shirts and foot covering to prevent direct contact of the product with the skin. Launder clothing before reuse. If skin irritation develops, contact your facility health and safety professional or your local safety equipment supplier to determine the proper personal protective equipment for your use. Wear resistant gloves such as: polyvinyl chloride

Respiratory protection

Respiratory protection is not required under normal conditions of use.

9. PHYSICAL AND CHEMICAL PROPERTIES

Page 5 / 11

TRIETHYLENE GLYCOL (515#/DM) 104071

Physical state Form Colour Odour Bolling point/boiling range Melting point/range

- Sublimation point pH Flash point Ignition temperature Evaporation rate Lower explosion limit/Upper explosion limit Particle size Vapour pressure Relative vapour density Density
- Bulk density Water solubility Solubility Partition coefficient: n-octanol/water log Pow Autoignition temperature Viscosity, dynamic Viscosity, kinematic Solids in Solution Decomposition temperature Burning number Dust explosion constant Minimum ignition energy

Page: 6 Revision Date: 08/10/2010 Print Date: 2/4/2011 MSDS Number: R0003553 Version: 1.7

liquid no data available colourless very faint 329 °F / 165 °C @ 1.86 kPa 19 °F / -7 °C

no data available no data available 349.99 °F / 176.66 °C Open Cup no data available (<)0.01 n-Butyl Acetate 0.9 %(V) / 9.2 %(V) no data available 0.000 kPa @ 77 °F / 25 °C 5.2 AIR=1 (+/- 0.01) 1.125 g/cm3 @ 68.00 °F / 20.00 °C 9.36 lb/gal @68 °F / 20 °C () 1.25 kg/m3 completely soluble no data available no data available no data available 657 °F / 347 °C no data available no data ayailable no data available no data available no data available no data available no data available

10. STABILITY AND REACTIVITY

Stability

Stable.

Conditions to avoid

Heat, flames and sparks.

Page 6 / 11

Page: 7 Revision Date: 08/10/2010 Print Date: 2/4/2011 MSDS Number: R0003553 Version: 1.7

TRIETHYLENE GLYCOL (515#/DM) 104071

Incompatible products

Alkaline earth metals, Strong oxidizing agents, Acids, Bases

Hazardous decomposition products

acetaldehyde, Alcohols, Aldehydes, carbon dioxide and carbon monoxide, dioxolanes, ethers, ethylene glycol monomethyl ether, formaldehyde, Hydrocarbons

Hazardous reactions

Product will not undergo hazardous polymerization.

Thermal decomposition

No data

11. TOXICOLOGICAL INFORMATIC	DN
Acute oral toxicity	: LD 50 Rat: 15,000 - 22,000 mg/kg
Acute inhalation toxicity	: LC 50 Rat: > 3.9 mg/l; 4 h
Acute dermal toxicity	: LD 50 Rabbit: > 22.6 g/kg

12. ECOLOGICAL INFORMATION

Biodegradability TRIETHYLENE GLYCOL	: no data available
DIETHYLENE GLYCOL	: 92 % Exposure time: 28 d
Bioaccumulation	 Species: Sheepshead minnow (Cyprinodon variegatus) Exposure time: 28 d Dose: 7.8 mg/l Bioconcentration factor (BCF): 1,700 Method: Flow through

Ecotoxicity effects

Page 7/11

TRIETHYLENE GLYCOL (515#/DM) 104071

Toxicity to fish	 96 h LC 50 Bluegill (Lepomis macrochirus): > 10,000.00 mg/l Method: Static Mortality
Toxicity to daphnia and other aquatic invertebrates. Toxicity to algae	: 48 h EC 50 Water flea (Daphnia magna): 46,500.00 mg/l Method: Static; Intoxication
TRIETHYLENE GLYCOL	: no data available
DIETHYLENE GLYCOL	: no data available
Toxicity to bacteria	
TRIETHYLENE GLYCOL	: no data available
DIETHYLENE GLYCOL	: no data available
Biochemical Oxygen Demand (BOD)	
TRIETHYLENE GLYCOL	: no data available
DIETHYLENE GLYCOL	: no data available
Chemical Oxygen Demand (COD)	
TRIETHYLENE GLYCOL	no data available
DIETHYLENE GLYCOL	: no data available
Additional ecological information	
TRIETHYLENE GLYCOL	: no data available
DIETHYLENE GLYCOL	: no data available

13. DISPOSAL CONSIDERATIONS

Waste disposal methods

For assistance with your waste management needs - including disposal, recycling and waste stream reduction, contact Ashland Distribution's Environmental Services Group at 800-637-7922.

14. TRANSPORT INFORMATION

Page 8 / 11

Page: 9 Revision Date: 08/10/2010 Print Date: 2/4/2011 MSDS Number: R0003553 Version: 1.7

TRIETHYLENE GLYCOL (515#/DM) 104071

REGULATION

ID NUMBER	PROPER SHIPPING NAME	*HAZARD CLASS	SUBSIDIARY HAZARDS	PACKING GROUP	MARINE POLLUTANT /LTD. QTY.
U.S. DOT - R			· · · · · · · · · · · · · · · · · · ·	<u> </u>	1
	Not dangerous goods		· · · · · · · · · · · · · · · · · · ·		
U. <u>S. DOT - R</u>	A 11				
0.0. 001 • K	Not dangerous goods				
		······································			
U.S. DOT - IN	LAND WATERWAYS				
	Not dangerous goods				
FRANSPOR	<u>r canada - road</u>				
	Not dangerous goods		· · · · · · · · · · · · · · · · · · ·		
	CANADA - RAIL Not dangerous goods		· · · · · · · · · · · · · · · · · · ·		
TRANSPOR	<u> CANADA - INLAND WATER</u>	WAYS			
	Not dangerous goods				· · · · · · · · · · · · · · · · · · ·
INTEDNATI	ONAL MADITIME DANCEDO	10 00000			
INTERNATI	ONAL MARITIME DANGERO Not dangerous goods	US GOODS		· · · · · ·	
INTERNATI	ONAL AIR TRANSPORT ASSO	DCIATION - C	ARGO		
	Not dangerous goods				<u> </u>
INTED NATE					
IN I GRIVA II	ONAL AIR TRANSPORT ASSO Not dangerous goods	UCIATION - P.	ASSENGER	•	
		<u>_</u>	···		
MEXICAN R WASTES	EGULATION FOR THE LANI	D TRANSPOR	f of hazardo	US MATER	IALS AND
	Not dangerous goods			<u></u>	
*ORM = ORM	-D, CBL = COMBUSTIBLE LIOU	ID		···- ···	

*ORM = ORM-D, CBL = COMBUSTIBLE LIQUID

Dangerous goods descriptions (if indicated above) may not reflect quantity, end-use or region-specific exceptions that can be applied. Consult shipping documents for descriptions that are specific to the shipment.

Page 9/11

Page: 10 Revision Date: 08/10/2010 Print Date: 2/4/2011 MSDS Number: R0003553 Version: 1,7

TRIETHYLENE GLYCOL (515#/DM) 104071

15. REGULATORY INFORMATION

California Prop. 65

WARNING! This product contains a chemical known to the State of California to cause cancer.	1,4-DIOXANE
SARA Hazard Classification	
Acute Health Hazard	
New Jersey RTK Label Information	
TRIETHYLENE GLYCOL	1 12-27-6
	111-46-6
Pennsylvania RTK Label Information	
TRIETHYLENE GLYCOL	112-27-6
DIRTHVI ENR GI VCOT	111-46-6
Notification status	
Australia. Industrial Chemical (Notification and Assessment) Act	y (positive listing)
Canada. Canadian Environmental Protection Act (CEPA). Domestic Substances List (DSL). (Can. Gaz. Part II, Vol. 133)	y (positive listing)
China. Inventory of Existing Chemical Substances	y (positive listing)
Japan. Kashin-Hou Law List	y (positive listing)
US. Toxic Substances Control Act	y (positive listing)
EU. EINECS	y (positive listing)
	y (positive listing)
Dhilippingo The Texts Outstand 177	y (positive listing)
Waste Control Act	A Chosurae usturg)
Japan. Industrial Safety & Health Law (ISHL) List	N (monitive listing)
Now Zonland Insurations of Class 1 to a ray on the second	y (positive listing)
by ERMA New Zealand	y (positive listing)

Page 10/11

Page: 11 Revision Date: 08/10/2010 Print Date: 2/4/2011 MSDS Number: R0003553 Version: 1.7

TRIETHYLENE GLYCOL (515#/DM) 104071

	HMIS	NFPA
Health	1*	1
Flammability	1	1
Physical hazards	0	<u>k</u>
Instability		0
Specific Hazard	*=	

16. OTHER INFORMATION

The information accumulated herein is believed to be accurate but is not warranted to be whether originating with the company or not. Recipients are advised to confirm in advance of need that the information is current, applicable, and suitable to their circumstances. This MSDS has been prepared by Ashland's Environmental Health and Safety Department (1-800-325-3751).

ATTACHMENT O

Emissions Summary Sheets

 $\langle \cdot \rangle$

G70-A EMISSIONS SUMMARY SHEET R.WEESE SOURCES

Emission Point ID No.			Emission Unit Vented Through This Point		ion Control evice	All Regulated Pollutants - Chemical Name/CAS ²	Maximum Potential Uncontrolled Emissions ³		Maximum Potential Controlled Emissions ⁴		Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁵
		ID No.	Source	ID No.	Device Type	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)	
1E	Upward Vertical Stacks	15	GPU-1 to GPU-4	None		NOx CO VOC PM HCOH Total HAPs CO2e	0.28 0.23 0.02 0.021 0.001 0.005 332	1.20 1.01 0.07 0.09 <0.001 0.023 1455	0.28 0.23 0.02 0.021 0.001 0.005 332	1.20 1.01 0.07 0.09 0.001 0.023 1455	Gas Gas Solid Gas Gas Gas	EE EE EE EE EE EE EE
2E	Upward Vertical Stack	25	Re- boiler	None		NOx CO VOC PM HCOH Total HAPs CO2e	$\begin{array}{c} 0.03 \\ 0.03 \\ 0.00 \\ 0.002 \\ 0.00 \\ 0.00 \\ 36 \end{array}$	0.13 0.11 0.01 0.01 0.00 0.00 159	$\begin{array}{c} 0.03 \\ 0.03 \\ 0.00 \\ 0.002 \\ 0.00 \\ 0.00 \\ 36 \end{array}$	0.13 0.11 0.01 0.01 0.00 0.00 159	Gas Gas Gas Solid Gas Gas Gas	EE EE EE EE EE EE EE EE
3E	Upward Vertical Stack	35	Still vent	None		NOx CO VOC PM HCOH Total HAPs CO2e	1.23 0.45 0.40	5.38 1.95 1.75	1.23 0.45 0.40	5.38 1.95 1.75	Gas Gas Gas Solid Gas Gas Gas	EE EE EE EE EE EE EE
4E	Upward Vertical Stack	T01 to T06 TL-1, 5 & 5	VCU-1	N/A		NOx CO VOC PM HCOH Total HAPs CO2e			0.04 0.24 0.26 76.96	0.20 1.07 1.16 337	Gas Gas Gas Solid Gas Gas Gas	EE EE EE EE EE EE EE

The EMISSION SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSIONS SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs,

H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases ³ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; M = modeling; O = other (specify).

G70-A EMISSIONS SUMMARY SHEET

Emission Point ID No.	Emission Point Type ¹	oint Vented		Device		All Regulated Pollutants - Chemical Name/CAS ²	Maximum Potential Uncontrolled Emissions ³		Maximum Potential Controlled Emissions ⁴		Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁵
		ID No.	Source	ID No.	Device Type	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)	
5E-A	Upward Vertical Stacks	5E-A	S5-A	4C	NSCR	NOx CO VOC PM HCOH Total HAPs CO2e			1.50 0.72 0.15 0.04 0.05 0.07 262	6.56 3.15 0.65 0.18 0.22 0.32 1145	Gas Gas Solid Gas Gas Gas	EE EE EE EE EE EE

NEW WEESE STATION SOURCES

The EMISSION SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSIONS SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases

³ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; M = modeling; O = other (specify).

ATTACHMENT P

Other Supporting Documentation

٩

Triad Hunter, LLC Weese Station Modification and Addition of R. Weese Production Facility Regulatory Analysis and Aggregation Assessment

Both State and Federal environmental regulations governing air emissions apply to the planned addition of the R. Weese Production Facility to the Weese Station General Permit registration. The West Virginia Department of Environmental Protection (WVDEP) has been delegated the authority to implement certain federal air quality requirements for the state. Air quality regulations that potentially affect the modification are discussed herein.

1.0 FEDERAL REQUIREMENTS

1.1 PSD and NSR

The combined facilities will be remain a minor source with respect to Prevention of Significant Deterioration (PSD) regulations as they will not have the potential to emit more than the annual emission thresholds of any PSD regulated pollutant.

The facilities are within an area designated as attainment for all criteria pollutants. Additionally, at the potential emission rates, the combined facilities are not subject to the New Source Review (NSR) regulations. Thus, NSR requirements are not applicable to this project.

1.2 Title V Operating Permit Program

West Virginia has incorporated provisions of the federal Title V operating permit program. Thresholds for inclusion under the Title V program are 10 tpy of any single Hazardous Air Pollutant (HAP) or 25 tpy of any combination of HAP and/or 100 tpy of all other regulated pollutants. Additionally, facilities regulated under certain New Source Performance Standards (NSPS) require facilities to have Title V permits.

The combined facilities will be a natural minor source. Additionally, the NSPS programs regulating this facility do not trigger a Title V permit. Hence, a Title V permit will not be required.

1.3 Aggregation

Source aggregation determinations are typically made based on the following criteria:

- Whether the facilities are under common control,
- Whether the facilities belong to the same Major Group (i.e. the first two digit code) as described in the Standard Industrial Classification Manual, 1972, as amended by the 1977 Supplement;
- Whether the facilities are located on one or more contiguous or adjacent properties; and the distance between all pollutant emitting activities,
- Whether the facilities can operate independently

Only if all criteria are met does a permitting authority aggregate the facilities into a single source.

The R. Weese Production Facility receives and manages raw natural gas and associated produced fluids from the on-site wells. After separation of the liquids, the gas will be dehydrated and routed to the nearby Weese Station for compression and injection into a gathering line for transportation to a processing plant owned and operated by MarkWest for further processing.

There will be no gas from any other well pads routed to either R. Weese or Weese Station. As noted above, all gas and liquids from R. Weese will be routed to the Weese Station which is approximately 0.78 miles away. The R. Weese Production Facility and the Weese Station are under common control, within the same SIC Major Group and are on adjacent lease units. Additionally, as gas and liquid flow from the R. Weese well pad is dependent upon the Weese Station, the equipment at both locations should fall under a common permit. No other Triad Hunter well pads or other Triad Hunter facilities in the area should be aggregated with this facility.

The receiving MarkWest Mobley processing plant is under a different SIC Code, has completely separate ownership and there is no sharing of staff between Triad Hunter and MarkWest. In addition, the processing plant is more than 15 miles from the site of this new facility. The MarkWest plant receives gas from various other production facilities and is not dependent upon Weese Station. Additionally, Triad Hunter can, within the confines of any contractual obligations, route gas produced by R. Weese to any of several other processing plants in the region. Thus, there is not a dependency relationship and not all of the criteria are met for aggregation of this facility and the MarkWest Processing Plant. Emissions from the R. Weese Production Facility should not be aggregated with the MarkWest Processing Plant.

1.4 New Source Performance Standards

New Source Performance Standards (NSPS) regulations promulgated under 40 CFR 60 require new and reconstructed facilities to control emissions to the level achievable by Best-Available Control Technology (BACT). Specific NSPS requirements potentially applicable to the Everett Weese Production Facility are as follows:

- 40 CFR 60, Subpart K/Ka/Kb Storage Vessels for Petroleum Liquids/Volatile Organic Liquids
- 40 CFR 60, Subpart KKK Equipment Leaks of VOC from Onshore Natural Gas Processing Stations
- 40 CFR 60, Subpart LLL Onshore Natural Gas Processing Stations: SO₂ Emissions
- 40 CFR 60, Subpart JJJJ Stationary Spark Ignition Internal Combustion Engines
- 40 CFR 60, Subpart OOOO Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution

1.4.1 Subpart K/Ka/Kb

These three subparts apply to volatile organic liquid storage tanks of specific sizes constructed in certain timeframes. Their consideration is appropriate due to the presence of the two 400 BBL condensate tanks and a single 210 BBL condensate tank. Subpart K applies to tanks constructed or modified between 1973 and 1978 while Subpart Ka applies to tanks constructed between 1978 and 1984. Subpart Kb applies to storage tanks constructed or modified after 1984. The condensate and produced water tanks at the facility are of new (2010) construction. Thus, Subparts K and Ka are not applicable, but Subpart Kb remains tentatively applicable. However,

the capacity of the 400 BBL tanks (16,800 gallons) is below the threshold for regulation under Kb (19,800 gallons or 75 cubic meters). Hence, the rule does not apply to the condensate tanks.

1.4.2 Subpart KKK

This subpart limits VOC emissions from equipment at a natural gas processing station. The planned facility does not meet the definition of a processing station under this rule. Hence, this rule does not apply.

1.4.3 Subpart LLL

This set of regulations governs emissions from processes used to remove sulfur gases from the field gas stream (sweetening unit) and subsequent sulfur recovery operations. The field gas that will be received by the Everett Weese Production Facility does not contain sufficient sulfur compounds to warrant a sweetening unit. Hence, this rule does not apply.

1.4.4 <u>Subpart IIII</u>

This subpart governs emissions from new compression ignition internal combustion engines CI ICE) manufactured after July 11, 2005. There will be no CI ICE at this facility. Hence, this rule does not apply.

1.4.5 Subpart JJJJ

This subpart governs emissions from new stationary spark ignition internal combustion engines (SI ICE) manufactured after July 1, 2007. There are no changes being sought for natural gas engines driving the gas compressors at the combined R Weese Production Facility and the Weese Station. Hence, this rule remains applicable.

1.4.6 Subpart KKKK

This subpart governs emissions from new stationary combustion turbine engines with a heat input of greater than 10 MMBTU/Hr at HHV fuel and manufactured after February 18, 2005 [40 CFR60.4035(a)]. There will be no combustion turbines at this facility. Hence, this rule does not apply.

1.4.7 Subpart OOOO

This subpart governs emissions from a broad spectrum of operations in the oil and natural gas industries, including operations at processing and fractionation plants. The potentially applicable sections of this rule set restrictions on pneumatic controllers present and set requirements for storage vessels with potential VOC emissions greater than 6 tons per year. This rule applies to the combined R. Weese Production Facility/Weese Station.

One of the key components to this rule [40 CFR 60.5390(b)] is the requirement that all pneumatic controllers located between the well head and a processing plant that are natural gas driven must have a bleed rate of less than 6 scfh. All pneumatic controllers installed at this facility meet these criteria. Emissions from these controllers are included with the fugitive emission calculations (see Attachment C).

This rule also stipulates that storage vessels with VOC emissions equal to or greater than 6 tpy must control those emissions by 95% by October 15, 2013. The condensate tanks at this facility have a combined estimated *uncontrolled* VOC emission rate in excess of this threshold. Although there are multiple tanks, there is a potential that any one tank may exceed the 6 tpy threshold, depending upon the management of condensate at any given time. Thus, emissions

from these tanks must be controlled by at least 95%. Triad Hunter meets this requirement through installation of a system that captures all vapors released from the condensate tanks and routes them to an enclosed combustor unit. This unit controls VOC emissions to greater than 95%, fulfilling this regulatory requirement. The control systems presented in this application reduces VOC emissions from the three condensate tanks described above to rates well below the 6 tpy limit and operation of these controls will become part of the permit. As described in 40 CFR 60.5365(e), ...the determination may take into account requirement established under a *Federal, State, local or tribal authority*. Thus, as proper use and operation of this control system is anticipated to become part of the permit, the condensate tanks at this facility will not be regulated under 40 CFR 60, Subpart OOOO.

1.5 National Emission Standards for Hazardous Air Pollutants

National Emission Standards for Hazardous Air Pollutants (NESHAPs) promulgated under 40 CFR 63 regulate the emission of Hazardous Air Pollutants (HAPs) from certain industrial processes. In general, these rules apply to major sources of HAPs with a major source being defined as having the potential to emit more than 10 tpy of any individual HAP or 25 tpy of total HAPs. Emissions standards under these rules have been established as the Maximum Achievable Control Technology (MACT) for each source category. The following NESHAP source category standards are potentially applicable to the planned station:

- 40 CFR 63, Subpart HH NESHAP from Oil and Natural Gas Production Facilities
- 40 CFR 63, Subpart HHH NESHAP from Natural Gas Transmission and Storage Facilities
- 40 CFR 63, Subpart ZZZZ NESHAP from Stationary Reciprocating Internal Combustion Engines
- 40 CFR 63, Subpart DDDDD NESHAP for Industrial, Commercial and Institutional Boilers and Process Heaters

1.5.1 Subpart HH

This Subpart contains MACT standards for major and area source dehydration units located at natural gas production facilities. The proposed dehydration unit for the R. Weese Production Facility potentially falls under this rule. However, as set forth in 40 CFR 63.764(e)(1), since the actual average benzene emissions will be less than 1 ton per year and the annual average flow is anticipated to be less than 85,000 SCMD (3.0 MMSCFD), the facility is, for all practical purposes, exempt from the rule. The facility must maintain records of either the flow to the dehydration unit or the benzene emission determination as required in 40 CFR 63.774(d)(1). A copy of the GRI-GLYCalc modeling input and results demonstrating compliance with the 1 ton per year requirement is provided with the Glycol Dehydration Emission Unit Sheet in Attachment G.

1.5.2 Subpart HHH

This Subpart applies to dehydration units at facilities which are major sources of HAPs that transport or store natural gas in association with transmission pipelines as defined by 40 CFR 63.1271. The planned dehydration unit at the R. Weese Production Facility does not cause the facility to be a major source of HAPs, a transportation source or a storage facility source associated with transmission pipelines. Hence, this rule does not apply.

1.5.3 Subpart ZZZZ

This Subpart governs emissions from a stationary reciprocating internal combustion engine (RICE) located both at major and area source of HAPs. The station will not be a major source of HAPs, but will be considered an area source of HAPs. RICE currently present at the combined facilities meets this rule through compliance with NSPS Subpart JJJJ.

1.5.4 <u>Subpart DDDDD</u>

This Subpart applies to industrial process heaters of various sizes and fuel types located at facilities that are classified as a major source of HAPs. As the planned facility is not a major source of HAPs, this rule does not apply.

1.6 Chemical Accident Prevention

Subparts B-D of 40 CFR 68 present the requirements for the assessment and subsequent preparation of a Risk Management Plan (RMP) for a facility that stores more than a threshold quantity of a regulated substance listed in 40 CFR 68.130. If a facility stores, handles or processes one or more regulated substances in an amount greater than its corresponding threshold, the facility must prepare and implement an RMP. The R. Weese Production Facility has the potential to store more than 10,000 lbs of a flammable mixture containing several of the substances listed in Table 3 in 40 CFR 68.130. However, an RMP is not required as this facility qualifies for the exclusion provided for remote oil and gas production facilities [40CFR68.115(b)(2)(iii)].

2.0 WEST VIRGINIA STATE REQUIREMENTS

2.1 45 CSR 2

The purpose of 45CSR2 is to control smoke and particulate matter emissions from fuel burning units. The proposed facility is subject to the opacity requirement of 45 CSR 2. Emissions from any fuel burning source within the proposed facility cannot exceed 10% opacity over any six minute period.

2.2 45 CSR 4

This regulation prohibits the emission of objectionable odors. Triad Hunter is obligated to run the station in a manner that does not produce objectionable odors.

2.3 45 CSR 6

This rule establishes emission standards for particulate matter and other requirements for incineration of refuse not subject to or specifically exempted from federal regulation. The combustor units fall under Section 4.1 of this rule. PM emissions from the combustors are expected to be well below the allowable limit of 2.33 lb/hr calculated under this rule.

The combustors must also meet the visible emissions requirements of this rule limiting visible emissions to 20% opacity at all times, with the exception of 40% opacity, for a period or periods aggregating no more than eight (8) minutes during start-up

2.4 45 CSR 10

This regulation limits emissions of sulfur oxides. As the sulfur content of the Inlet Gas contains no measurable sulfur, emissions of sulfur oxides is negligible. Thus, while parts of this rule are applicable to the planned facility, no actions are required on the part of Triad Hunter to attain compliance. The various non-engine combustion units have a design heat input less than 10 MMBTU/Hr and are therefore exempt from the requirements of this rule.

2.5 45 CSR 13

The state regulations applicable to the permitting of the proposed construction are in Title 45 Series 13 of the Code of State Regulations. The combined R. Weese Production Facility and Weese Station have the potential to emit several regulated pollutants in excess of the thresholds that define a Stationary Source.

When taking into consideration the voluntary limit to operate the engines equipped with catalysts only when the catalytic converters are properly functioning, the facility's potential to emit is less than the thresholds that would classify the facility as a Major Source under 45 CSR 14.

2.6 45 CSR 16

This series of regulations is an incorporation, by reference, of the New Source Performance Standards codified under 40 CFR 60. As discussed under the federal regulations, the proposed facility is subject to Subpart OOOO.

2.7 45 CSR 30

The state regulations applicable to Title V operating permits are in Title 45 Series 30. The planned combined R. Weese Production Facility and Weese Station, with proposed control devices, does not have the potential to emit any regulated pollutant about the threshold that would define it as a major facility. Additionally, although the facility is subject to certain New Source Performance Standards, the NSPS applicable to this facility do not trigger the need to submit a Title V application and obtain a Title V permit. Hence this rule is not applicable.

2.8 Other Applicable Requirements

Through Series 34, WVDEP has adopted the National Emission Standards for Hazardous Air Pollutants for Source Categories. Both of these topics have been addressed above.