

December 14, 2015

Assistant Director for Permitting WV Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, WV 25304

RE: **Antero Midstream LLC – Lafferty Compressor Station**

West Virginia Department of Environmental Protection, Division of Air

Quality, 45CSR13 Air Permit Application

To Whom it May Concern,

On behalf of Antero Midstream LLC, please find attached the 45CSR13 Air Permit Application for the proposed Lafferty Compressor Station located in Ritchie County, West Virginia. Lafferty Compressor Station is a new source. Enclosed are one hardcopy and two CDs containing the entire permit application including the application form and required attachments. Per 45CSR22, a \$4,500 application fee is also enclosed, which covers the base 45CSR13 \$1,000 application fee, an additional \$1,000 for NSPS requirements, and an additional \$2,500 for Hazardous Air Pollutant requirements.

A copy of the Air Quality Permit Notice for the advertisement is included as Attachment P. As the Notice is being submitted simultaneously with the application, the official affidavit of publication will be submitted to the Division of Air Quality separately once it is completed.

Please call if you have any questions or if I can be of further assistance. I can be reached at (719)632-3593 or by email at msteyskal@kleinfelder.com.

Sincerely,

KLEINFELDER

Michele Stevskal Air Quality Specialist

Michele Stephal

Enclosures: Lafferty Compressor Station Air Permit Application

Antero Midstream LLC

Lafferty Compressor Station

NSR Permit Application
West Virginia Department of Environmental Protection
Division of Air Quality
45CSR13

Ritchie County, West Virginia

December 2015

Prepared by:

1801 California Street, Suite 1100 Denver, CO 80202 (303) 237-6601 Fax (303) 237-6602 www.kleinfelder.com

> © 2015 Kleinfelder DEN15O28912

Table of Contents

45CSR13 Application Form Discussion of Nearby Facilities

Attachment A. Business Certificate

Attachment B. Area Map

Attachment C. Installation and Startup Schedule

Attachment D. Regulatory Discussion

Attachment E. Plot Plan

Attachment F. Process Flow Diagram Attachment G. Process Description

Attachment H. Material Safety Data Sheets

Attachment I. Emission Units Table

Attachment J. Emission Point Data Summary Sheet
Attachment K. Fugitive Emissions Data Summary Sheet

Attachment L. Emissions Unit Data Sheets

a. Compressor Engines

b. Generator

c. Catalytic Heater

d. Dehydrator

e. Storage Tanks

f. Bulk Loading and Fugitives

Attachment M. Air Pollution Control Device Sheets

a. NSCR Catalysts

b. Flare

c. Vapor Recovery Unit

Attachment N. Supporting Emissions Calculations

a. Emission Calculations

b. GlyCalc

c. ProMax 3.2

Attachment O. Monitoring, Recordkeeping, Reporting, and Testing Plans

Attachment P. Public Notice

Attachment R. Authority/Delegation of Authority

WEST VIRGINIA DEPARTMENT OF **ENVIRONMENTAL PROTECTION**

DIVISION OF AIR QUALITY

601 57th Street, SE

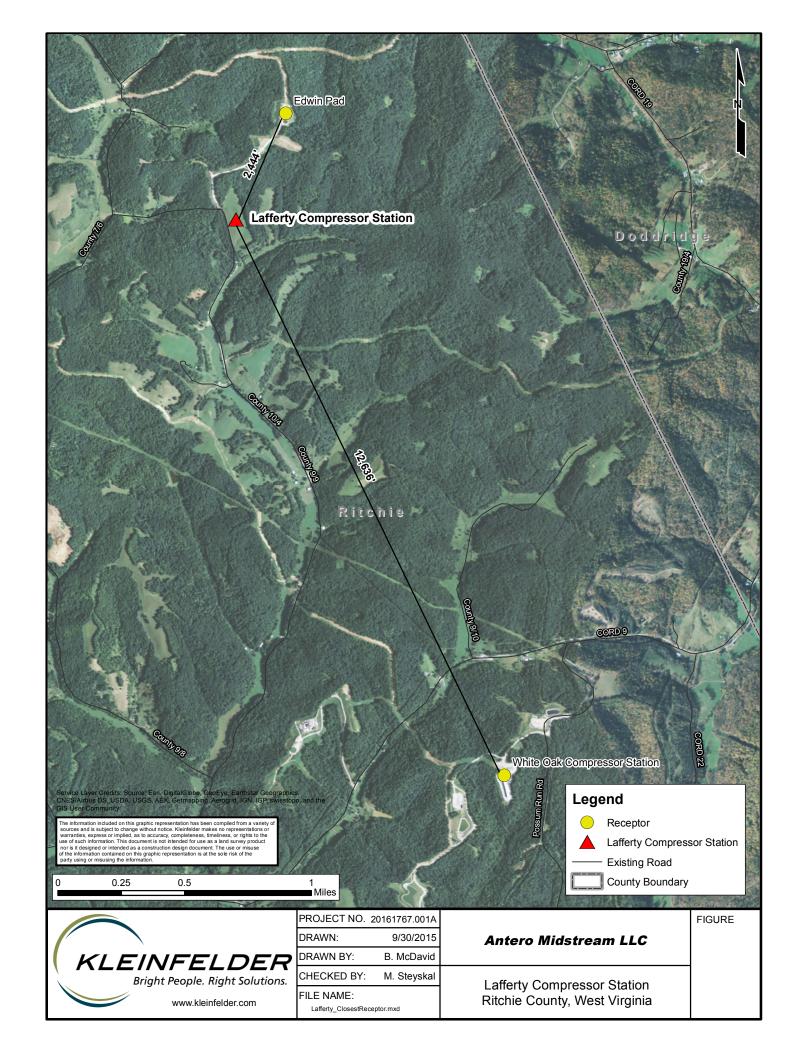
APPLICATION FOR NSR PERMIT **AND**

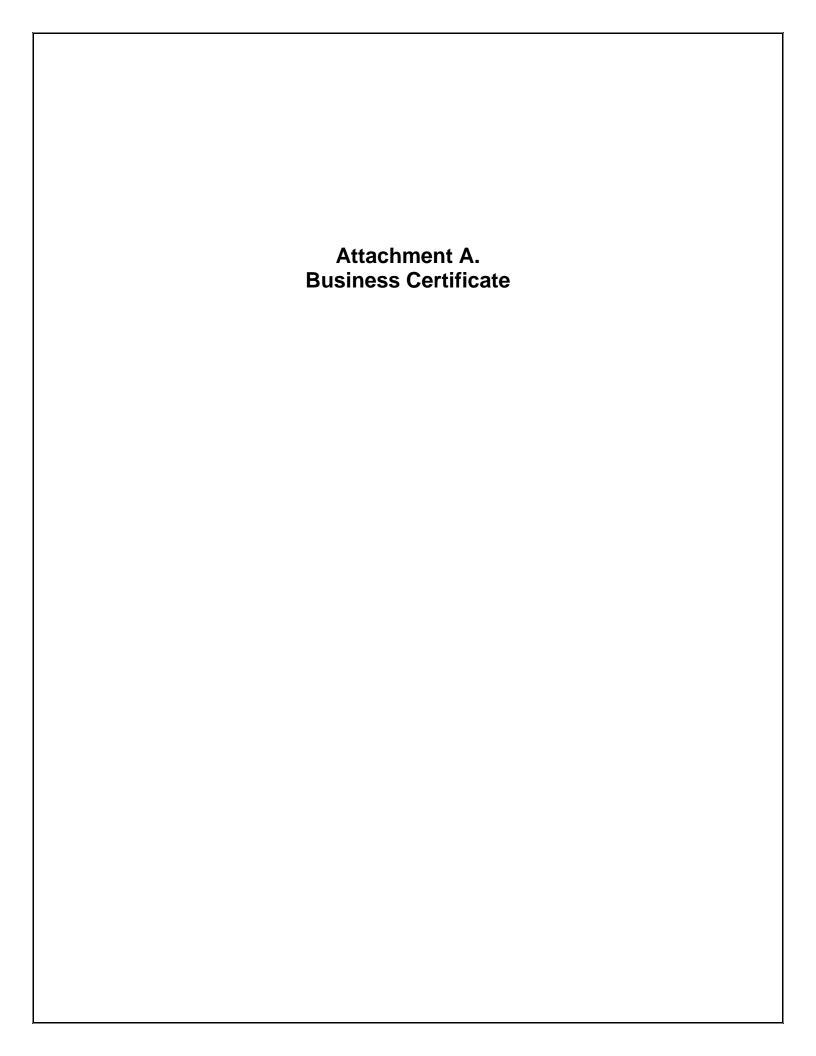
Charleston, WV 25304 (304) 926-0475 www.dep.wv.gov/dag		TITLE V PERMIT REVISION (OPTIONAL)		
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13 CONSTRUCTION	CATION	PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY ADMINISTRATIVE AMENDMENT MINOR MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION		
FOR TITLE V FACILITIES ONLY: Please refer to (Appendix A, "Title V Permit Revision Flowchar	t") and ability to	o operate with the o		
	Section I	. General		
 Name of applicant (as registered with the WV S Antero Midstream LLC 	Secretary of Sta	ate's Office):	2. Federal En	nployer ID No. <i>(FEIN):</i> 46-5517375
3. Name of facility (if different from above):			4. The applica	nt is the:
Lafferty Compressor Station				□OPERATOR ⊠ BOTH
5A. Applicant's mailing address: 1615 Wynkoop Street 5B. Facility's			esent physical address:	
Denver, CO 80202		County Road 10/4 Pennsboro, WV 264	15	
 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? YES NO If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 			p (one page) including any name	
7. If applicant is a subsidiary corporation, please p	provide the nam	ne of parent corpo	ration:	
8. Does the applicant own, lease, have an option t	to buy or otherv	wise have control	of the <i>proposed</i>	d site? ⊠ YES □ NO
 If YES, please explain: Antero Midstream 	m LLC owns th	e land for the prop	posed site	
 If NO, you are not eligible for a permit for this 	source.			
9. Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary crusher, etc.): Natural Gas Compressor Station 10. North American Industry Classification System (NAICS) code for the facility			Classification System (NAICS) code for the facility:	
11A. DAQ Plant ID No. (for existing facilities only): -	No. (for existing facilities only): _ 11B. List all current 45CSR13 and 45CSR30 (Title V) permit numbers associated with this process (for existing facilities only): NA			
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.				

12A.			
For Modifications, Administrative Updates or Te		please provide directions to the	
present location of the facility from the nearest state		its location from the manual state	
 For Construction or Relocation permits, please proad. Include a MAP as Attachment B. 	provide directions to the <i>proposed new</i> s	are location from the hearest state	
From Pennsboro, WV, head south on WV-74 S/Pullman 1.4 miles and then continue on Co Rd 10 for 0.1 m entrance will be on the left.			
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:	
County Road 10/4	Pennsboro	Ritchie	
Pennsboro, WV 26415			
12.E. UTM Northing (KM): 4341.658	12F. UTM Easting (KM): 508.091	12G. UTM Zone: 17	
13. Briefly describe the proposed change(s) at the facilit New construction	iy:		
Provide the date of anticipated installation or change. If this is an After-The-Fact permit application, proving change did happen: / /	• .	14B. Date of anticipated Start-Up if a permit is granted: December 2016	
14C. Provide a Schedule of the planned Installation of/application as Attachment C (if more than one uni		units proposed in this permit	
15. Provide maximum projected Operating Schedule of Hours Per Day 24 Days Per Week 7	f activity/activities outlined in this applica Weeks Per Year 52	ation:	
16. Is demolition or physical renovation at an existing facility involved? YES NO			
17. Risk Management Plans. If this facility is subject to	112(r) of the 1990 CAAA, or will becom	e subject due to proposed	
changes (for applicability help see www.epa.gov/ceppo), submit your Risk Management Plan (RMP) to U. S. EPA Region III.			
18. Regulatory Discussion. List all Federal and State air pollution control regulations that you believe are applicable to the			
proposed process (if known). A list of possible applica	able requirements is also included in Atta	achment S of this application	
(Title V Permit Revision Information). Discuss applica	ability and proposed demonstration(s) of	compliance (if known). Provide this	
information as Attachment D.			
Section II. Additional att	achments and supporting d	ocuments.	
19. Include a check payable to WVDEP – Division of Air	Quality with the appropriate application	fee (per 45CSR22 and	
45CSR13).			
 20. Include a Table of Contents as the first page of your application package. 21. Provide a Plot Plan, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as Attachment E (Refer to Plot Plan Guidance). 			
Indicate the location of the nearest occupied structure	,	ce).	
22. Provide a Detailed Process Flow Diagram(s) show device as Attachment F.		•	
23. Provide a Process Description as Attachment G.			
 Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable). 			
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.			

24. Provide Mate	rial Safety Data Sheets	(MSDS) for all materials pro	ocessed, used or produ	iced as Attachment H.
 For chemical p 	rocesses, provide a MSE	S for each compound emitt	ed to the air.	
25. Fill out the Er	nission Units Table and	provide it as Attachment I.		
26. Fill out the En	nission Points Data Su	mmary Sheet (Table 1 and	Table 2) and provide i	it as Attachment J.
27. Fill out the Fu	igitive Emissions Data	Summary Sheet and provid	le it as Attachment K.	
28. Check all app	olicable Emissions Unit	Data Sheets listed below:		
Bulk Liquid Tra	ansfer Operations	☐ Haul Road Emissions	☐ Quarry	
□ Chemical Proc □	esses	☐ Hot Mix Asphalt Plant		als Sizing, Handling and Storage
☐ Concrete Batcl	h Plant	☐ Incinerator	Facilities	
☐ Grey Iron and	Steel Foundry	☐ Indirect Heat Exchange	er 🛛 Storage Tanl	KS
□ General Emiss	sion Unit, specify: Engine	es, Dehydrator, Generator, C	Catalytic Heater	
Fill out and provid	e the Emissions Unit Da	ata Sheet(s) as Attachmen	t L.	
29. Check all app	olicable Air Pollution Co	ntrol Device Sheets listed b	pelow:	
☐ Absorption Sys	stems	☐ Baghouse		
☐ Adsorption Sys	stems	☐ Condenser		☐ Mechanical Collector
Afterburner		☐ Electrostatic Preci	pitator	☐ Wet Collecting System
	rs, specify: Catalysts, V	RU		
Fill out and provid	e the Air Pollution Cont	rol Device Sheet(s) as Atta	achment M.	
30. Provide all Supporting Emissions Calculations as Attachment N , or attach the calculations directly to the forms listed in Items 28 through 31.				
31. Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O.				
measures. A	dditionally, the DAQ may		easures proposed by the	cant chooses to propose such ne applicant. If none of these plans nit.
32. Public Notice	e. At the time that the ap	oplication is submitted, place	e a Class I Legal Adve	ertisement in a newspaper of general
circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>				
Advertiseme	ent for details). Please su	ubmit the Affidavit of Public	cation as Attachment	P immediately upon receipt.
33. Business Co	onfidentiality Claims. D	oes this application include o	confidential information	n (per 45CSR31)?
segment clair	fy each segment of informed confidential, includin	nation on each page that is	31-4.1, and in accorda	ial and provide justification for each note with the DAQ's "Precautionary tachment Q.
	Sec	ction III. Certification	n of Information	1
	elegation of Authority. (e other than the respon	nsible official signs the application.
□ Authority of Co □	orporation or Other Busin	ess Entity	☐ Authority of Partne	ership
☐ Authority of Governmental Agency ☐ Authority of Limited Partnership				
Submit completed and signed Authority Form as Attachment R .				
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.				
All of the required	TOTTIIS ATTU AUUTUUTIAI INTO	madon can be found under t	ne remnung section o	i DAG 5 Website, or requested by prione.

35A. Certification of Information. To certify 2.28) or Authorized Representative shall chec	r this permit application, a Respo k the appropriate box and sign bo	nsible Official (per 45CSR§13-2.22 and 45CSR§30-elow.		
Certification of Truth, Accuracy, and Completeness				
I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.				
Compliance Certification Except for requirements identified in the Title V that, based on information and belief formed a compliance with all applicable requirements. SIGNATURE	/ Application for which compliand fter reasonable inquiry, all air con	ce is not achieved, I, the undersigned hereby certify intaminant sources identified in this application are in DATE:		
(Please	use blue ink)	(Please use blue ink)		
35B. Printed name of signee: Ward McNeilly		35C. Title: Vice President, Reserves Planning and Midstream		
35D. E-mail: wmcneilly@anteroresources.com	36E. Phone: (303) 357-6822	36F. FAX: (303)357-7315		
36A. Printed name of contact person (if different from above): Barry Schatz		36B. Title: Senior Environmental and Regulatory Manager		
36C. E-mail: bschatz@anteroresources.com	36D. Phone: (303) 357-7276	36E. FAX: (303)357-7315		
V				
PLEASE CHECK ALL APPLICABLE ATTACHMEN	ITS INCLUDED WITH THIS PERMIT	APPLICATION:		
PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDED WITH THIS PERMIT APPLICATION: Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment H: Material Safety Data Sheets (MSDS) Attachment J: Emission Points Data Summary Sheet Please mail an original and three (3) copies of the complete permit application. Please DO NOT fax permit applications.				
FOR AGENCY USE ONLY - IF THIS IS A TITLE V	SOURCE:			
 Forward 1 copy of the application to the Title V Permitting Group and: For Title V Administrative Amendments: NSR permit writer should notify Title V permit writer of draft permit, For Title V Minor Modifications: Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt, NSR permit writer should notify Title V permit writer of draft permit. For Title V Significant Modifications processed in parallel with NSR Permit revision: NSR permit writer should notify a Title V permit writer of draft permit, Public notice should reference both 45CSR13 and Title V permits, EPA has 45 day review period of a draft permit. 				
All of the required forms and additional informat	ion can be found under the Permit	ting Section of DAQ's website, or requested by phone.		


Discussion of Moorby E	acilitics
Discussion of Nearby F	aciilucə


Lafferty Compressor Station – Closest Antero Facilities

- 1. Common Control: Only those facilities that are owned and managed by Antero were included in the aggregation discussion. This includes Antero Resources Corporation production facilities in addition to the Antero Midstream LLC midstream facilities.
- 2. SIC Code: The Lafferty Compressor Station will operate under SIC code 4923 (natural gas distribution). The closest facility owned by Antero Midstream LLC with this SIC code is the White Oak Compressor station which is 2.4 miles southeast of the Facility. All Antero Resources Corporation production facilities operate under the SIC code of 1311 (crude petroleum and natural gas extraction). The closest facility operated by Antero Resources Corporation with the SIC code of 1311 is the Edwin Pad 2,444 feet to the northeast.
- 3. Contiguous or Adjacent: The land between the Lafferty Compressor Station and its nearest facility operating under SIC code 4923 is not owned or managed by Antero Midstream LLC or Antero Resources Corporation. Therefore, the two facilities are not contiguous or adjacent. Secondly, although most of the Lafferty Compressor Station land parcel border is not adjacent to any parcels operated by Antero, the north border of the Lafferty Compressor Station land parcel is adjacent to the land parcel for the Edwin Pad facility operating under 1311. The actual pad locations for the Lafferty Compressor Station and the Edwin Pad are 2,444 feet apart and thus not contiguous.

Based on this three-pronged evaluation, although the Lafferty Compressor Station and White Oak Compressor Station do belong to the same major industrial group, they should not be aggregated because they are not contiguous or adjacent.

Although a portion of their land parcel borders are adjacent, the Lafferty Compressor Station and Edwin Pad should not be aggregated because they do not belong to the same major industrial group and do not directly rely on each other nor are they contiguous.

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

ANTERO MIDSTREAM LLC

Control Number: 9A5E1

a limited liability company, organized under the laws of the State of Delaware has filed its "Application for Certificate of Authority" in my office according to the provisions of West Virginia Code §31B-10-1002. I hereby declare the organization to be registered as a foreign limited liability company from its effective date of April 29, 2014, until a certificate of cancellation is filed with our office.

Therefore, I hereby issue this

CERTIFICATE OF AUTHORITY OF A FOREIGN LIMITED LIABILITY COMPANY

to the limited liability company authorizing it to transact business in West Virginia

Given under my hand and the Great Seal of the State of West Virginia on this day of April 29, 2014

Secretary of State

IN THE OFFICE OF WY SECRETARY OF STATE

Submitted by: CT Corporation Rep-Terry Stamper Terry.Stamper@wolterskluwer.com 304-776-1152

Natafie E. Tennant Secretary of State 1900 Kanawha Blvd E Bldg 1, Suite 157-K. Charleston, WV 25305

FILE ONE ORIGINAL

FEE: \$150

(Two if you want a filed stamped copy returned to you)

WV APPLICATION FOR CERTIFICATE OF AUTHORITY OF LIMITED LIABILITY COMPANY

Penney Barker, Manager Corporations Division Tel: (304)558-8000 Fax: (304)558-8381 Website: www.wvsos.com E-mail: <u>business@wvsos.com</u>

Office Hours: Monday – Friday 8:30 a.m. – 5:00 p.m. ET Control #

1.	The name of the company as registered in its home state is:	Antero Midstream LLC
	and the state or country of organization is:	Delaware
\geq	EXISTENCE (GOOD STANDING), dated do	d and submitted with this application a CERTIFICATE OF uring the current tax year, from your home state of original plication. The certificate may be obtained by contacting the of original incorporation.
2.	The name to be used in West Virginia will be [The name must contain one of the required terms s as limited liability company" or abbreviations such as "LLC" or "PLLC". See instructions for complete list of acceptable terms and requirements for use of trade name	(If name is not available, check DBA Name box below and follow special instructions in Section 2, attached.)
3.	The company will be a: [See instructions for limitar on professions which may form P.L.L.C. in WV. All ment must have WV professional license. In most cases, a Lette Authorization/Approval from the appropriate State Licensing Board is required to process the application.]	bers
4.	The street address of the principal office is:	No. & Street: Denver, Colorado 80202
	and the mailing address (if different) is:	City/State/Zip: Street/Box: City/State/Zip:
5.	The address of the designated office of the company in WV, if any, will be:	No. & Street: City/State/Zip: 5400 D Big Tyler Road Charleston, West Virginia 25313
6.	Agent of Process: Properly designated person to whom notice of legal process may be sent, if any:	Name: C T Corporation System 5400 D Big Tyler Road City/State/Zip: Charleston, West Virginia 25313
	rm LLF-1 Issued b	y the Office of the Scorotary of State Revised (

WV045 - 09/04/2013 Wolters Kluwer Online

Issued by the Office of the Secretary of State

Revised 8/13

Form LLF-I

APPL	ICATION FOR CERTIFICATE O	OF AUTHORITY OF LIMITED LIABILITY COMPANY Page 3	
[R <i>fili</i>	ne requested effective date is: equested date <u>may not be earlier than</u> ing nor later than 90 days after filing our office.	the date & time of filing in the Secretary of State's Office the following date and time	
16. Ce	ontact and Signature Informatio	on* (See below Important Legal Notice Regarding Signature):	
a.	Alvyn A. Schopp	(313) 357-7310	
	Contact Name	Phone Number	
ь.	Alvyn A. Schopp	Chief Administrative Officer and Regional Vice Pres	ident
	Print or type name of aignor	Title / Capacity of Signer	
c.	As Tochto	April 28, 2014	
C.	Signature /	Date	

*Important Legal Notice Regarding Signature: Per West Virginia Code §31B-2-209. Liability for false statement in filed record. If a record authorized or required to be filed under this chapter contains a false statement, one who suffers loss by reliance on the statement may recover damages for the loss from a person who signed the record or caused another to sign it on the person's behalf and knew the statement to be false at the time the record was signed.

Delaware

PAGE :

The First State

I, JEFFREY W. BULLOCK, SECRETARY OF STATE OF THE STATE OF

DELAWARE, DO HEREBY CERTIFY "ANTERO MIDSTREAM LLC" IS DULY

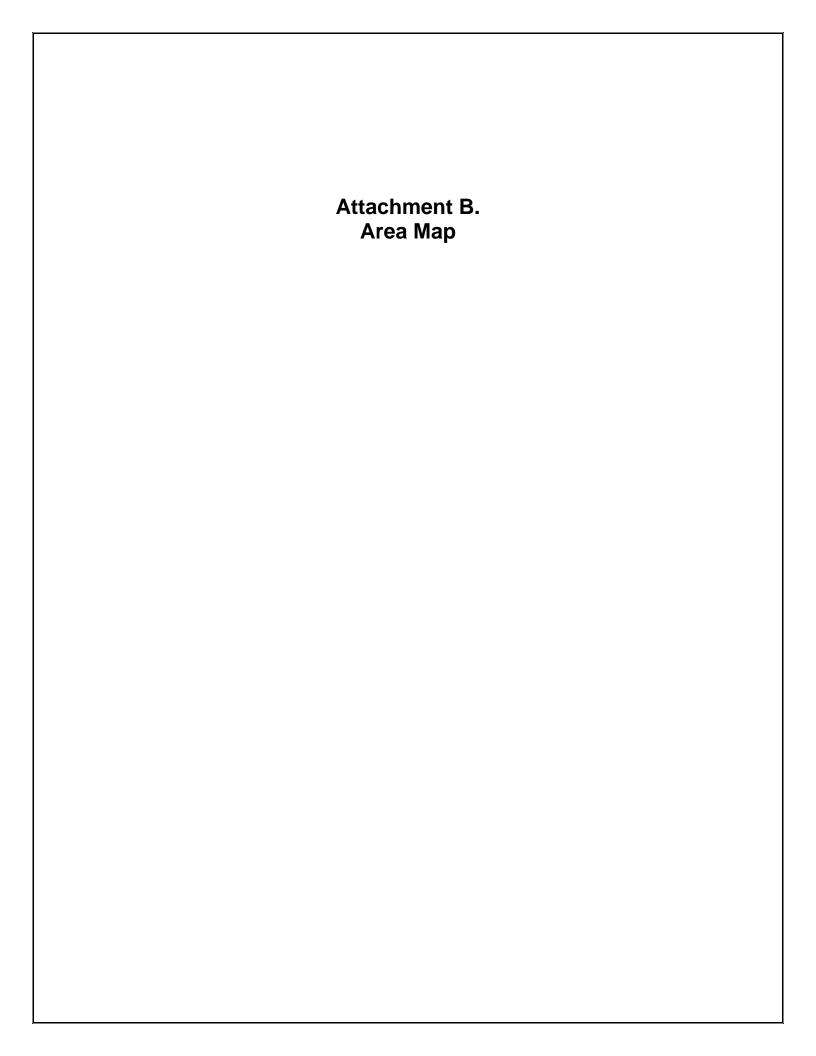
FORMED UNDER THE LAWS OF THE STATE OF DELAWARE AND IS IN GOOD

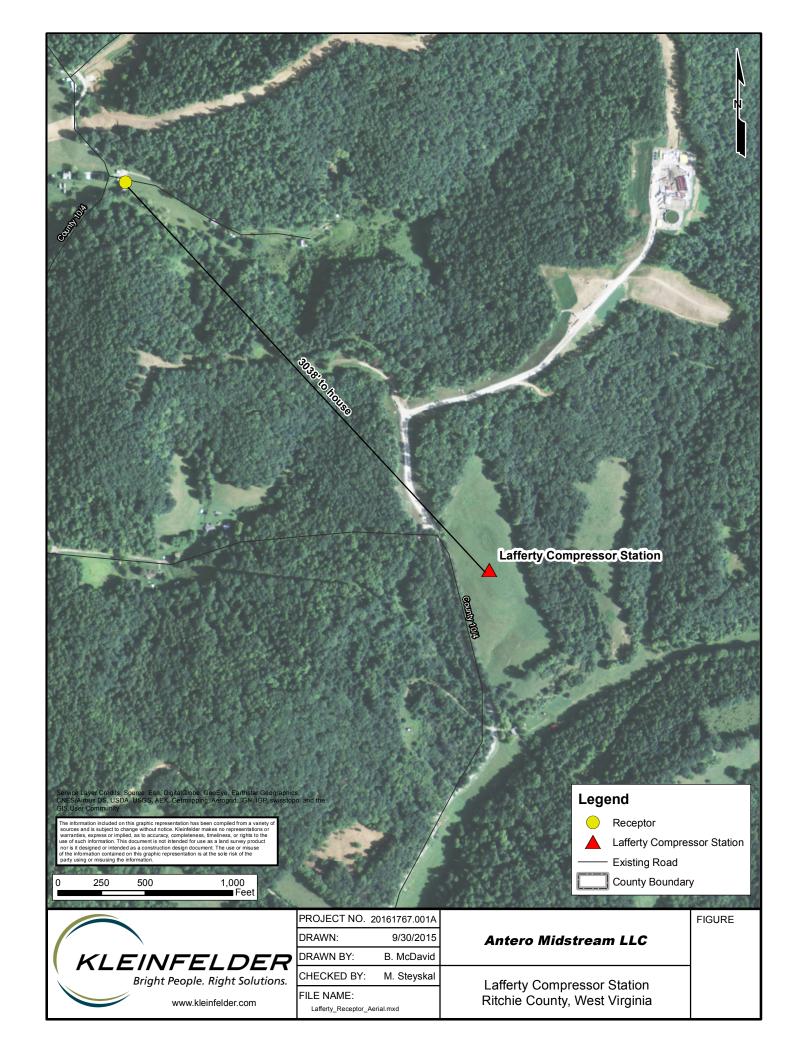
STANDING AND HAS A LEGAL EXISTENCE SO FAR AS THE RECORDS OF THIS

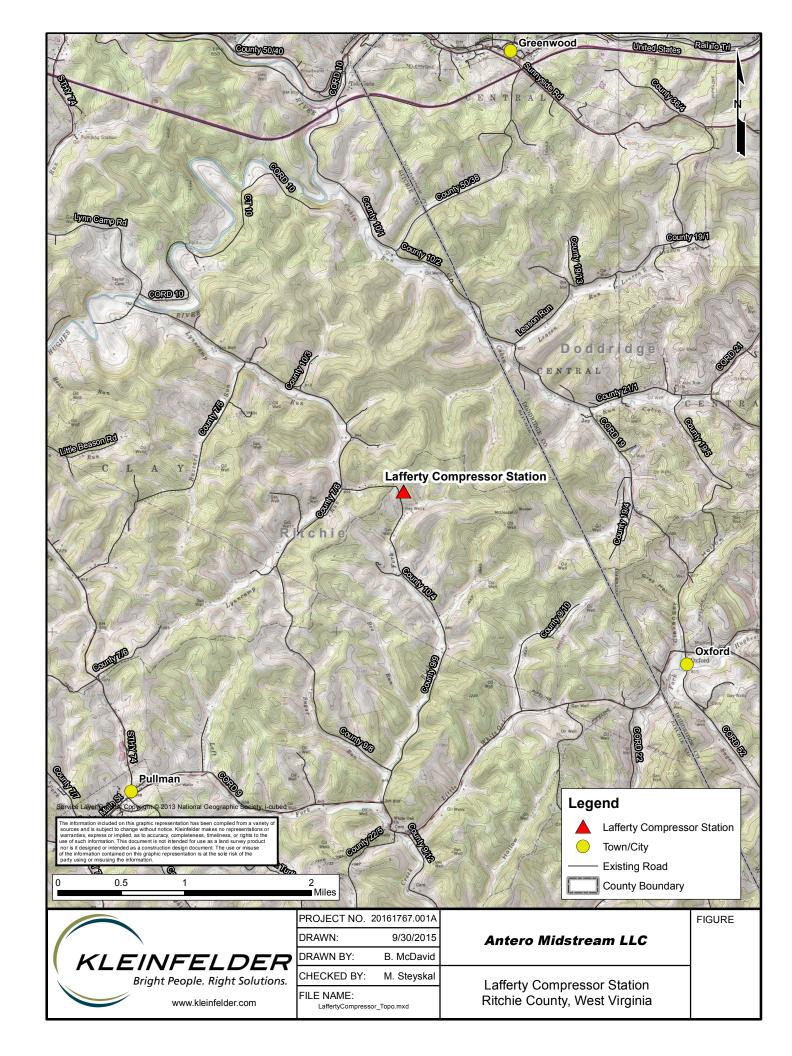
OFFICE SHOW, AS OF THE TWENTY-NINTH DAY OF APRIL, A.D. 2014.

AND I DO HEREBY FURTHER CERTIFY THAT THE ANNUAL TAXES HAVE NOT BEEN ASSESSED TO DATE.

5466900 8300


140532521


Jeffrey W. Bullock, Secretary of State


AUTHENT CATION: 1328067

DATE: 04-29-14

You may verify this certificate online at corp.delaware.gov/authver.shtml

Attachn Installation and S		

Lafferty Compressor Station – Installation and Startup Schedule

The Lafferty Compressor Station will be a new facility located in Ritchie County, WV, approximately 5.3 miles southeast of Pennsboro, WV. Ground clearing and other site preparation activities are anticipated to occur starting in January 2016. Installation of equipment is anticipated to begin in April 2016. Facility operations are scheduled to begin on or around December 2016.

Attachment D. ulatory Discussion	

Lafferty Compressor Station – Regulatory Discussion

Federal Regulations

40 CFR Part 60 – Standards of Performance for New Stationary Sources

I. Subpart Kb - Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984.

<u>Applicability:</u> Subpart Kb applies to volatile organic liquid storage tanks with a capacity greater than or equal to 75 m³ (§60.110b(a)). Storage vessels with a design capacity less than 1,589.874 m³ do not apply to this subpart if they are used store condensate prior to custody transfer. The condensate and produced water storage tanks at the Lafferty Compressor Station will be 64 m³. The settler tank is 79 m³, but stores condensate prior to custody transfer. Therefore, Subpart Kb does not apply to the Lafferty Compressor Station.

II. Subpart GG - Standards of Performance for Stationary Gas Turbines

<u>Applicability:</u> Subpart GG applies to all stationary gas turbines with a heat input at peak load equal to or greater than 10 million BTU per hour based on the lower heating value of the fuel (§60.330(a)). Since the microturbine generators at the Lafferty Compressor Station will have a heat input rating less than 10 million Btu per hour, Subpart GG does not apply.

III. Subpart KKK - Standards of Performance for Equipment Leaks of VOC from Onshore Natural Gas Processing Plants for Which Construction, Reconstruction, or Modification Commenced After January 20, 1984, and on or Before August 23, 2011.

<u>Applicability:</u> Subpart KKK applies to facilities built or modified before August 23, 2011, so Subpart KKK will not apply as the Lafferty Compressor Station has not been constructed yet.

IV. Subpart LLL - Standards of Performance for SO₂ Emissions from Onshore Natural Gas Processing for Which Construction, Reconstruction, or Modification Commenced After January 20, 1984, and on or Before August 23, 2011.

<u>Applicability:</u> Subpart LLL applies to facilities built or modified before August 23, 2011, so Subpart LLL will not apply as the Lafferty Compressor Station has not been constructed yet.

V. Subpart JJJJ - Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

Applicability: Subpart JJJJ applies to rich burn engines that were ordered after June 12, 2006 and manufactured on or after July 1, 2007 for engines with maximum power

greater than or equal to 500 hp (§60.4230(a)(4)(i)). Thus, Subpart JJJJ applies to the Lafferty Compressor Station as the compressor engines will be installed in 2016 and are new engines manufactured after July 1, 2007.

VI. Subpart KKKK - Standards of Performance for Stationary Combustion Turbines

<u>Applicability:</u> Subpart KKKK applies to all stationary combustion turbines with a heat input at peak load equal to or greater than 10 million BTU per hour based on the higher heating value of the fuel (§60.4305(a)). Since the microturbine generators at the Lafferty Compressor Station will have a heat input rating less than 10 million Btu per hour, Subpart KKKK does not apply.

VII. Subpart 0000 - Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution

Applicability: Subpart OOOO applies to reciprocating compressor facilities that were constructed, modified, or reconstructed after August 23, 2011 (§60.5365(c)). Additionally, Subpart OOOO applies to storage vessel affected facilities with individual tank emissions greater than 6 tons per year (§60.5365(e)). Thus, Subpart OOOO applies to the Lafferty Compressor Station as it will be constructed after August 23, 2011 and has reciprocating compressors and a settler tank that has controlled VOC potential to emit greater than six (6) tons per year. The pneumatic controllers installed at Lafferty Compressor Station are air-actuated and therefore exempt from the requirements of this subpart.

40 CFR Part 61 – National Emission Standards for Hazardous Air Pollutants

I. Subpart V – National Emission Standard for Equipment Leaks (Fugitive Emission Sources)

<u>Applicability:</u> Subpart V applies to components such as compressors, valves, and pumps that are intended to operate in volatile hazardous air pollutant (VHAP) service (§61.240(a)). VHAP service means that a component contains or contacts a fluid that is at least 10 percent by weight a VHAP. Subpart V does not apply to the Lafferty Compressor Station because none of the components will have fluid (natural gas, water, or condensate) that is over 10 percent by weight of any VHAP.

40 CFR Part 63 – National Emission Standards for Hazardous Air Pollutants for Source Categories

I. Subpart HH – National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities

<u>Applicability:</u> Subpart HH applies to oil and natural gas production facilities that are a major or area source of HAP emissions, and that process, upgrade, or store hydrocarbon liquids or natural gas prior to the transmission and storage source category

(§63.760(a)). Subpart HH does apply to the Lafferty Compressor Station, and because it is an area source of HAP emissions, the two (2) TEG dehydrators will be applicable sources under Subpart HH (§63.760(b)(2)). However, actual benzene emissions from the dehydrators at the Lafferty Compressor Station will be less than 1 ton per year, so both dehydrators are exempt from all requirements except recordkeeping (§63.764(e)(1)(ii)).

II. Subpart HHH – National Emission Standards for Hazardous Air Pollutants from Natural Gas Transmission and Storage Facilities

<u>Applicability:</u> Subpart HHH applies to natural gas transmission and storage facilities that are a major source of HAP emissions (§63.1270(a)). Subpart HHH does not apply to the Lafferty Compressor Station as it is not a major source of HAP emissions. Further, the Lafferty Compressor Station would be prior to the gas transmission and storage phase.

III. Subpart EEEE – National Emission Standards for Hazardous Air Pollutants: Organic Liquids Distribution (Non-Gasoline)

<u>Applicability:</u> Subpart EEEE applies to organic liquids distribution operations that are located at major source of HAP emissions (§63.2334(a)). Subpart EEEE does not apply to the Lafferty Compressor Station as it is not a major source of HAP emissions.

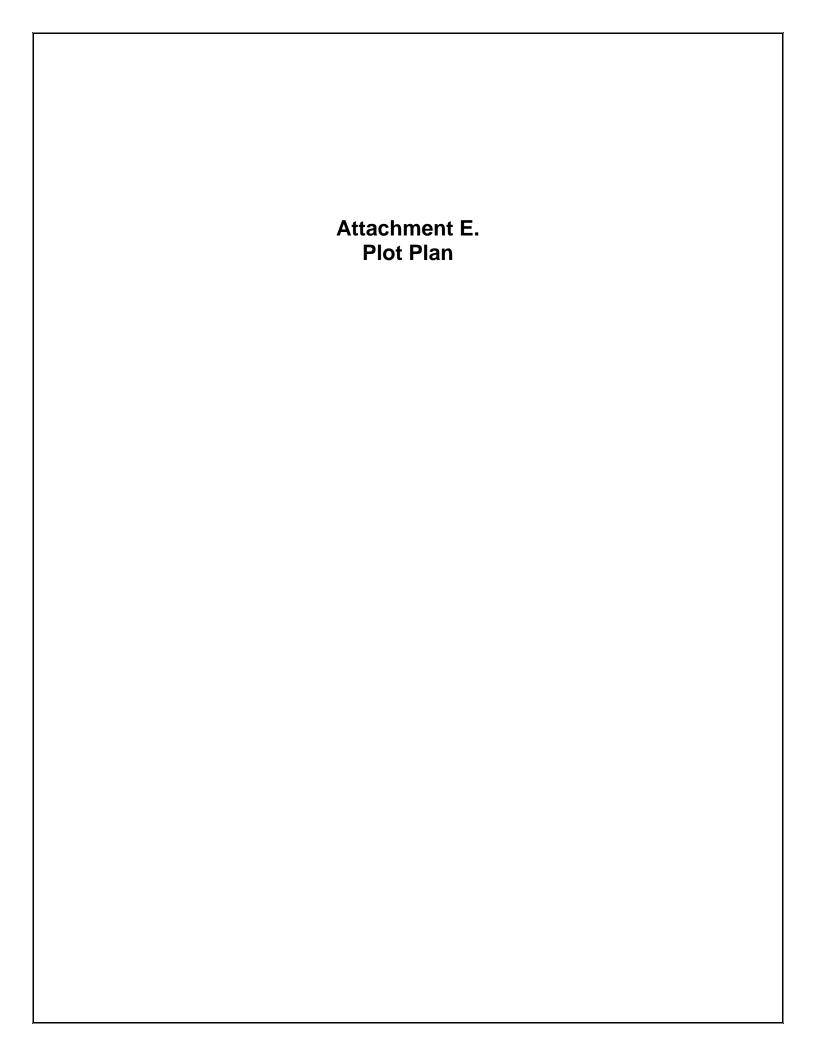
IV. Subpart YYYY – National Emission Standards for Hazardous Air Pollutants for Stationary Combustion Turbines

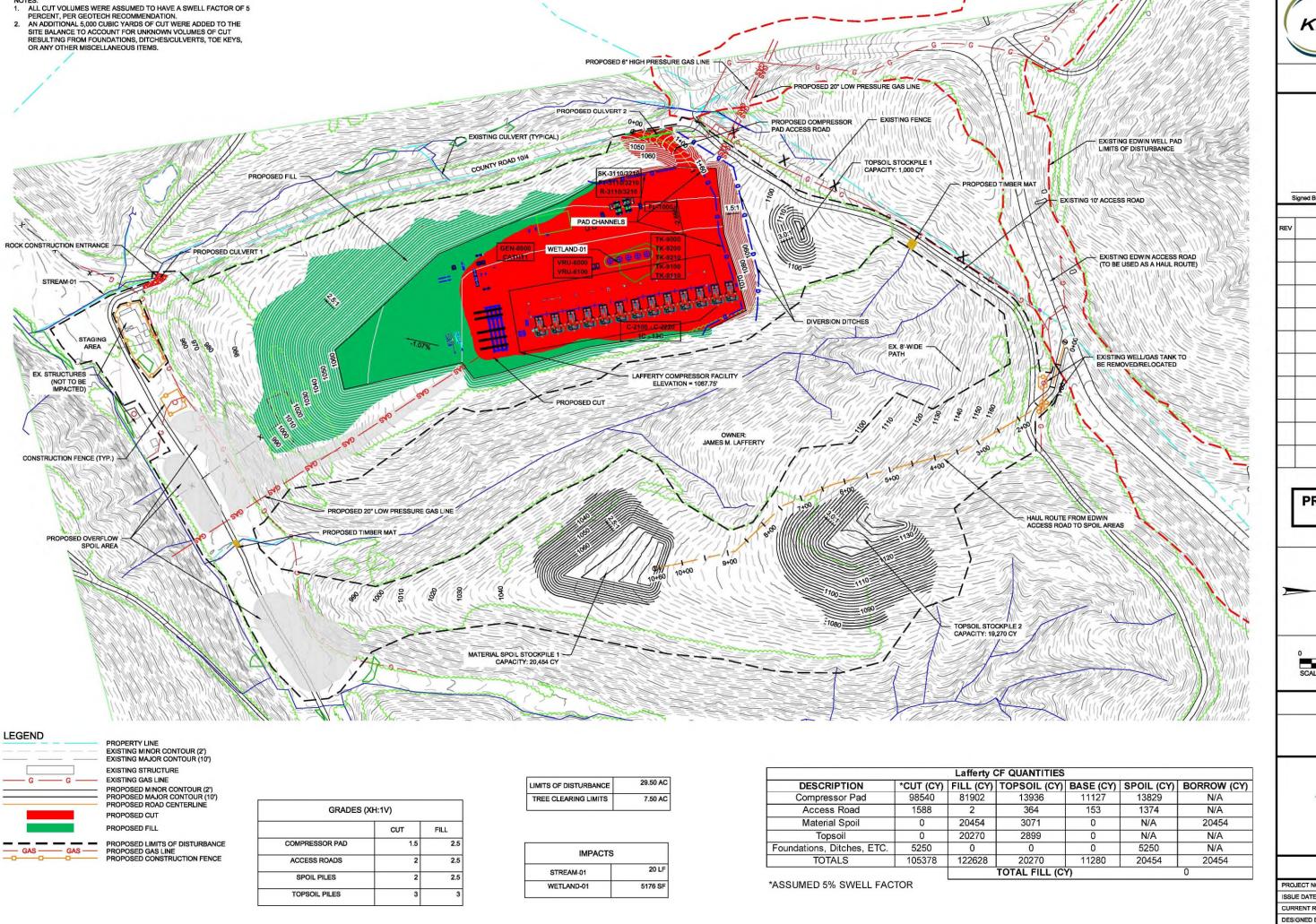
<u>Applicability:</u> Subpart YYYY applies to stationary combustion turbines located at major sources of HAP emissions (§63.6085(a)). Since the Lafferty Compressor Station is not a major source of HAP emissions, Subpart YYYY does not apply.

V. Subpart ZZZZ - National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

<u>Applicability:</u> Subpart ZZZZ applies to stationary RICE at a major or area source of HAP emissions (§63.6585). Subpart ZZZZ applies to the Lafferty Compressor Station as the compressor engines are new RICE. The engines will meet Subpart ZZZZ by meeting 40 CFR Part 60, Subpart JJJJ as the Lafferty Compressor Station is an area source of HAP emissions (§63.6590(c)(1)).

VI. Subpart DDDDD – National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers and Process Heaters

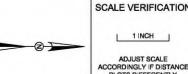

<u>Applicability:</u> Subpart DDDDD applies to process heaters at a major source of HAP emissions (§63.7485). Subpart DDDDD does not apply to the Lafferty Compressor Station as it is not a major source of HAP emissions.


West Virginia State Regulations

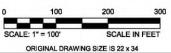
Title 45 Legislative Rule – Division of Environmental Protection, Office of Air Quality

The following Title 45 Legislative Rules will be applicable to the Lafferty Compressor Station:

- I. 45CSR2 To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers
- II. 45CSR2A Testing, Monitoring, Recordkeeping and Reporting Requirements Under 45CSR2
- III. 45CSR4 To Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors
- IV. 45CSR6 Control of Air Pollution from Combustion of Refuse
- V. 45CSR8 Ambient Air Quality Standards
- VI. 45CSR11 Prevention of Air Pollution Emergency Episodes
- VII. 45CSR13 Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Administrative Updates, Temporary Permits, General Permits, and Procedures for Evaluation
- VIII. 45CSR16 Standards of Performance for New Stationary Sources Pursuant to 40 CFR, Part 60
- IX. 45CSR20 Good Engineering Practice as Applicable to Stack Heights
- X. 45CSR22 Air Quality Management Fee Program
- XI. 45CSR27 To Prevent and Control the Emissions of Toxic Air Pollutants
- XII. 45CSR33 Acid Rain Provisions and Permits
- XIII. 45CSR34 Emission Standards for Hazardous Air Pollutants for Source Categories Pursuant to 40 CFR, Part 63
- XIV. 45CSR38 Provisions for Determination of Compliance with Air Quality Management Rules
- XV. 45CSR42 Greenhouse Gas Emissions Inventory



KLEINFELDER


230 Executive Drive, Suite 122 Cranberry Township, PA 16066 Phone: 724-772-7072 www.kleinfelder.com

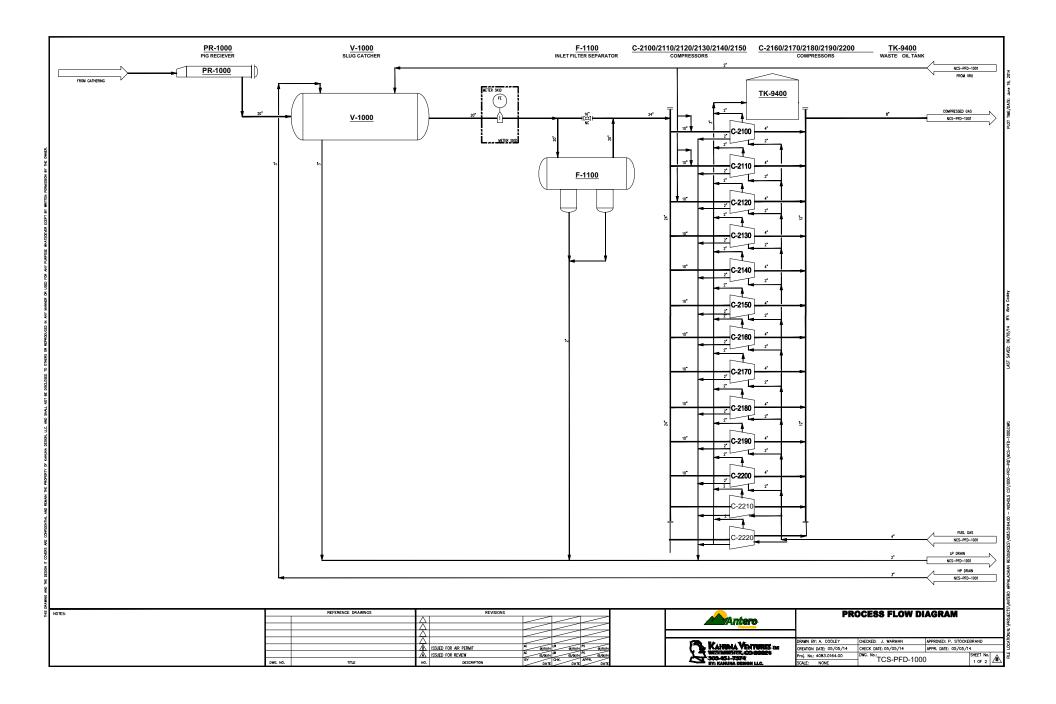
Signed By: #### REVISIONS DSN CHK DESCRIPTION DWN APP

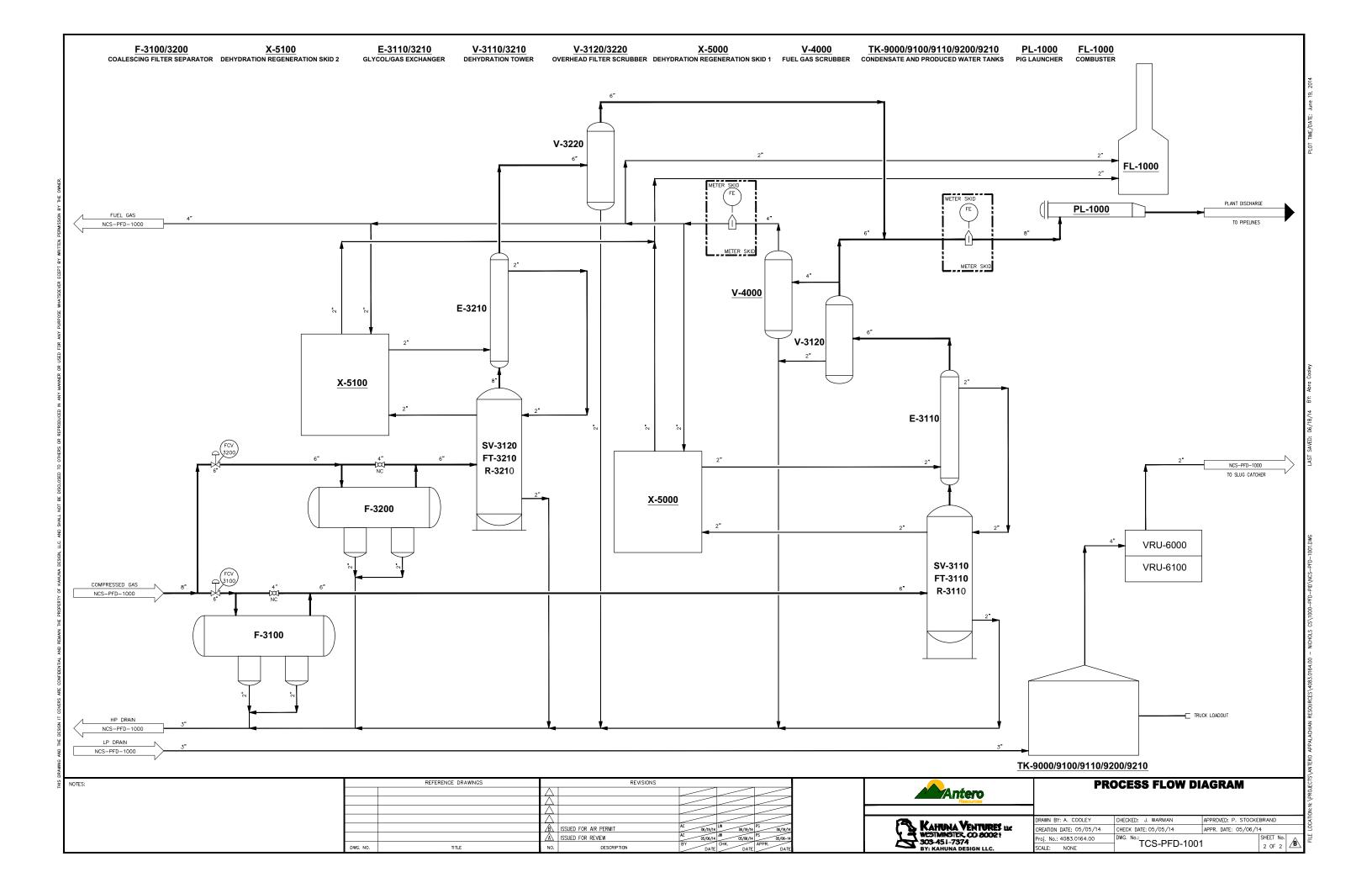
PRELIMINARY PLANS NOT FOR CONSTRUCTION

ADJUST SCALE ACCORDINGLY IF DISTANCE PLOTS DIFFERENTLY

OVERALL SITE PLAN

LAFFERTY CF RITCHIE COUNTY


WEST VIRGINIA



PROJECT NO.	20160328
ISSUE DATE	08/27/2015
CURRENT REVIS	SION -
DESIGNED BY	AJD
DRAWN BY	AJD

Attachment F. Process Flow Diagram	

Attachment G. Process Description	

Lafferty Compressor Station – Process Description

The proposed Lafferty Compressor Station will be located in Ritchie County, West Virginia. Gas from surrounding pipelines will enter the facility through one (1) receiver and associated slug catcher. From there, the gas is metered and routed through a filter separator. Any produced liquids from the scrubber or separator are sent to the 500 barrel settling tank (TK-9000). Gas from the filter separator is sent to one (1) of thirteen (13) 1680 hp compressor engines (C-2100 – C-2220). The thirteen (13) compressor engines are controlled with NSCR catalysts and airfuel ratio controllers (1C – 13C). Produced fluids are routed to the settling tank and high pressure gas is sent to one of the two (2) TEG dehydrators.

Each TEG dehydrator contains a flash gas tank (FT-3110 & FT-3210) and 1.5 MMBtu/hr reboiler (R-3110 & R-3210). Each dehydrator has a design rate of 72.5 MMscf/day. Within the dehydrator unit, vent gas from the flash gas tank (FT-3110 & FT-3210) is routed to the reboiler (R-3110 & R-3210) and used as fuel, with an assumed 95% efficiency for combusting the gas. Combustion emissions from each reboiler are routed to the atmosphere. The dehydrator still vents (SV-3110 & SV-3210) are controlled by a flare with at least 98% control efficiency (FL-1000). Produced fluids from the dehydrator are routed to the settling tank. The dry gas from the dehydration process is either routed to a fuel gas scrubber, metered, and routed to the compressors as fuel gas or metered and sent to the high pressure facility discharge pipeline.

All produced fluids enter one (1) 500 barrel settling tank (TK-9000) where the fluids settle out as either condensate or produced water. The produced water goes to two (2) 400 barrel produced water tanks (TK-9100 – TK-9110) and the condensate goes to two (2) 400 barrel condensate tanks (TK-9200 – TK-9210). Flashing only occurs at the settling tank as the fluids stabilize in the settling tank before going to the other storage tanks. All five (5) tanks are connected to a primary vapor recovery unit (VRU-6000) where tank vapors are collected and recycled back into the gas system right before the initial filter scrubber. A second vapor recovery unit (VRU-6100) is used as back-up to the primary vapor recovery unit. The produced fluids are trucked out via tanker trucks as needed (LDOUT1). The loading emissions are uncontrolled. The anticipated production is 150 barrels per day of condensate and 45 barrels per day of produced water.

One (1) 600 kWe microturbine generator will be used at the facility. The Capstone C600 unit is comprised of three (3) 200 kWe units that can be operated individually. Likely, all three units will not be operating 8,760 hours per year; however, emissions were calculated as such for maximum flexibility. The fuel line for the generators will be heated by a small catalytic heater (CATHT1) with a burner rating of 24 Btu/hr.

Fugitive emissions from component leaks and emissions from venting or blowdown events will also occur.

There will also be small storage tanks located at the facility. Their ID number, description, and exact size are listed in the table below.

Tag Number	Description	Gallons
TK-9300 & TK-9320	Compressor Skid Oily Water Tanks	1,000 each
TK-9310 & TK-9330	Used Oil Tank	500 each
TK-9410	TEG Make-Up Tank	1,000
TK-9420	Compressor Coolant Tank	2,000
TK-9430	Engine Lube Oil Tank	2,000
TK-9440	Compressor Lube Oil Tank	2,000
TK-9400	Compressor Waste Oil Tank	4,200

Attachment H. Material Safety Data Shee	ets

Material Safety Data Sheet (TRIETHYLENE GLYCOL (TEG))

SECTION 1 – IDENTIFICATION OF CHEMICAL PRODUCT

PRODUCT NAME:......TRIETHYLENE GLYCOL (TEG)

EFFECTIVE DATE:..... October 1, 2007

CHEMICAL FAMILY: Glycol **FORMULA:** $C_6H_{14}O_4$ **CAS NUMBER:** 112-27-6

SECTION 2 – COMPOSITION / INFORMATION ON INGREDIENTS

HAZARDOUS INGREDIENT PERCENT CAS NUMBER PEL

TRIETHYLENE GLYCOL > 99 112-27-6 None Established by ACGIH or OSHA.

The criteria for listing components in the composition section are as follows: Carcinogens are listed when present at 0.1% or greater; components which are otherwise hazardous according to OSHA are listed when present at 1.0% or greater. Non-hazardous components may be listed at 3.0% or greater if not proprietary in nature. This is not intended to be complete compositional disclosure. Refer to section 14 for applicable states right to know and other regulatory information.

SECTION 3 – HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

APPEARANCE / ODOR: Clear Liquid / Mild Odor

SHORT TERM EXPOSURE: Inhalation: No adverse health effects expected from inhalation.

Ingestion: No adverse effects expected. **Skin Contact:** Prolonged exposure may cause skin irritation. **Eye Contact:** Splashing in eye causes irritation with transitory disturbances of corneal epithelium. However, these effects diminish and no permanent injury is expected. Vapors are non-irritating. **Chronic Exposure:** Possible skin irritation.

Aggravation of Pre-existing Conditions: No information found.

OSHA REGULATED: No

LISTED CARCINOGEN: NTP: No IARC MONOGRAPHS: No

POTENTIAL HEALTH EFFECTS

SKIN (DERMAL): Slight Irritant After Prolonged Contact

Material Safety Data Sheet (TRIETHYLENE GLYCOL (TEG))

OVER EXPOSURE EFFECTS: Inhalation: No adverse health effects expected from inhalation. **Ingestion:** No adverse effects expected. **Skin Contact:** Prolonged exposure may cause skin irritation. Eye Contact: Splashing in eye causes irritation with transitory disturbances of corneal epithelium. However, these effects diminish and no permanent injury is expected. Vapors are non-irritating. **Chronic Exposure:** Possible skin irritation. Aggravation of Pre-existing Conditions: No information found.

SECTION 4 – FIRST AID MEASURES

FIRST AID:

SKIN CONTACT: Remove contaminated clothing and shoes immediately. Wash affected area with soap or mild detergent and large amounts of water until no evidence of chemical remains (at least 15-20 minutes). Get medical attention immediately. EYE CONTACT: Flush eyes immediately with large amounts of water or normal saline solution, occasionally lifting upper and lower lids until no evidence of chemical remains (at least 15-20 minutes). Get medical attention immediately. INGESTION: Give large amounts of fresh water or milk immediately. Do not give anything by mouth if person is unconscious or otherwise unable to swallow. If vomiting occurs, keep head below hips to prevent aspiration. Treat symptomatically and supportively. Seek medical attention immediately. **INHALATION:** Remove from exposure area to fresh air immediately. If breathing has stopped, perform artificial resuscitation. Keep person warm and at rest. Treat symptomatically and supportively. Seek medical attention immediately. Qualified medical personnel should consider administering oxygen.

NOTE TO PHYSICIAN: Ethylene Glycol (EG) and diethylene glycol (DEG) intoxication may initially produce behavioral changes, drowsiness, vomiting, diarrhea, thirst, and convulsions. EG and DEG are nephrotoxic. End stages of poisoning may include renal damage or failure with acidosis. Supportive measures, supplemented with hemodialysis if indicated, may limit the progression and severity of toxic effects. Primary toxic effects of EG when swallowed are kidney damage and metabolic acidosis. This product may contain trace amounts of Ethylene Glycol (EG) or Diethylene Glycol (DEG).

SECTION 5 - FIRE FIGHTING MEASURES

FLASHPOINT:.... 350°F

Water fog or spray, Foam, Dry Powder, Carbon Dioxide (CO₂). **EXTINGUISHING MEDIA:**

DECOMPOSITION

PRODUCTS: From fire; Smoke, Carbon dioxide, & Carbon Monoxide

LOWER FLAME LIMIT:....< 0.9 HIGHER FLAME LIMIT:.....> 9

UNUSUAL FIRE AND

EXPLOSION HAZARDS:...... Toxic levels of carbon monoxide, carbon dioxide, irritation aldehydes

and ketones may be formed on burning. Heating in air may produce

irritating aldehydes, acids, and ketones.

FIRE FIGHTING

Material Safety Data Sheet (TRIETHYLENE GLYCOL (TEG))

EQUIPMENT: Fire fighters and others exposed to products of combustion should wear self-contained breathing apparatus. Equipment should be thoroughly decontaminated after use.

SECTION 6 – ACCIDENTAL RELEASE MEASURES

CHEMTEL EMERGENCY

NUMBER (24 Hour): 1-800-255-3924

SPILL: Ventilate area of leak or spill. Wear appropriate personal protective

equipment as specified in Section 8. Isolate hazard area. Keep unnecessary and unprotected personnel from entering. Contain and recover liquid when possible. Collect liquid in an appropriate container or absorb with an inert material (e.g., vermiculite, dry sand, earth), and place in a chemical waste container. Do not use combustible materials,

such as saw dust. Do not flush to sewer!

RCRA STATUS: None

SECTION 7 – HANDLING AND STORAGE

HANDLE IN ACCORDANCE WITH GOOD INDUSTRIAL HYGIENE AND SAFETY PRACTICES. THESE PRACTICES INCLUDE AVOIDING UNNECESSARY EXPOSURE AND PROMPT REMOVAL OF MATERIAL FROM EYES, SKIN, AND CLOTHING.

HANDLING AND STORAGE: .. No special storage requirements. Do not store above 120°F.

PRECAUTIONARY

container after each use. Avoid prolonged or repeated contact with skin. Avoid contact with skin, eyes, and clothing. After handling this product, wash hands before eating, drinking, or smoking. If needed, take first aid action shown in Section 4.

SECTION 8 – EXPOSURE CONTROL / PERSONAL PROTECTION

GENERAL CONSIDERATIONS:

Consider the potential hazards of this material (see section 3), applicable exposure limits, job activities, and other substances in the work place when designing engineering controls and selecting personal protective equipment.

EYE PROTECTION:..... Chemical safety goggles meeting the specifications of OSHA 29CFR

1910.133 / ANSI Standard Z87.1 should be worn whenever there is the possibility of splashing or other contact with the eyes. Wear safety glasses meeting the specifications of OSHA 29CFR 1910.133 / ANSI

Standard Z87.1 where no contact with the eye is anticipated.

RESPIRATORY

exposure is unknown or exceeds permissible limits. A respiratory protection program that meets OSHA's 29 CFR 1910.134 or ANSI Z88.2 requirements must be followed whenever workplace conditions

warrant respirator use.

Use NIOSH / MSHA approved respiratory protection equipment when airborne exposure limits are exceeded (see below). Consult the respirator manufacturer to determine appropriate type of

Material Safety Data Sheet (TRIETHYLENE GLYCOL (TEG))

equipment for a given application. Observe respirator use limitations specified by NIOSH / MSHA or the manufacturer. Respiratory protection programs must comply with 29 CFR 1910.134. WARNING: Air-purifying respirators do not protect workers in oxygen-deficient atmospheres.

PROTECTIVE GLOVES:..... Wear impervious gloves

VENTILATION: A system of local and/or general exhaust is recommended to keep

employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, *Industrial Ventilation, A Manual of Recommended Practices*, most

recent edition, for details.

MECHANICAL EXHAUST: Desired in closed places

LOCAL EXHAUST: Recommended

VENTILATION NOTES: Provide natural or mechanical ventilation to control exposure levels below Airborne exposure limits (see below). The use of local mechanical exhaust ventilation is preferred at sources of air contamination such as open process equipment. Consult NFPA Standard 91 for design of exhaust systems.

THRESHOLD LIMIT VALUE: . None Established

PROTECTIVE EQUIPMENT:... HMIS PERSONAL PROTECTION: C: Safety Glasses, Gloves, Apron The user should read and understand all instructions and limitations supplied with the equipment since protection is usually provided for a limited time or under certain circumstances.

SECTION 9 - PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE / ODOR: Clear Liquid / Mild Odor

SOLUBILITY IN WATER: Complete

SECTION 10 – STABILITY AND REACTIVITY

STABILITY: Stable

HAZARDOUS

POLYMERIZATION: Will Not Occur

POLYMERIZATION AVOID:... None

INCOMPATIBILITY: Explosive decomposition may occur if combined with strong acids or

strong bases and subjected to elevated temperatures. Therefore, avoid strong acids and strong bases at elevated temperatures. Avoid

contamination with strong oxidizing agents and materials reactive with

hydroxyl compounds. Avoid burning or heating in air. This may

produce irritating aldehydes, acids, and ketones.

CONDITIONS TO AVOID:...... Excessive heat. Will ignite in air at 700°F

Material Safety Data Sheet (TRIETHYLENE GLYCOL (TEG))

SECTION 11 – TOXICOLOGICAL INFORMATION

EYE EFFECTS:

The eye irritation hazard is based on data from information supplied by raw material(s) supplier(s).

SKIN EFFECTS:

The skin irritation hazard is based on data from information supplied by raw material(s) supplier(s).

ACUTE ORAL EFFECTS:

The acute oral toxicity is based on data from information supplied by raw material(s) supplier(s).

ACUTE INHALATION EFFECTS:

The acute respiratory toxicity is based on data from information supplied by raw material(s) supplier(s).

SECTION 12 - ECOLOGICAL INFORMATION

Data from laboratory studies and from scientific literature is noted below if available.

SECTION 13 DISPOSAL CONSIDERATIONS

WASTE DISPOSAL: Treatment, storage, transportation and disposal must be in accordance with Federal, State/Provincial and Local Regulations. Regulations may vary in different locations. Characterization and compliance with applicable laws are the responsibility solely of the generator. Whatever cannot be saved for recovery or recycling should be managed in an appropriate and approved waste disposal facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

SECTION 14- TRANSPORTATION INFORMATION

The data provided in this section is for information only. The description shown may not apply to all shipping situations. Consult 49CFR, or appropriate regulations to properly classify your shipment for transportation.

PROPER SHIPPING NAME:..... DOT NON-REGULATED - TRIETHYLENE GLYCOL (TEG)

REPORTABLE QUANTITY:..... None

HAZARD CLASS AND LABEL: NON-REGULATED

UN NUMBER: None NA NUMBER: None

PACKAGING SIZE:..... Pail, Drum & Bulk

SECTION 15 - REGULATORY INFORMATION

SARA 311 CATEGORIES:

EPA ACUTE:..... Yes (Eyes)

Material Safety Data Sheet (TRIETHYLENE GLYCOL (TEG))

EPA CHRONIC:
Of Theodoria minimum 100
CERCLA RQ VALUE: None
SARA TPQ: None
SARA RQ:None
EPA HAZARD WASTE #: None
CLEAN AIR: NA
CLEAN WATER:NA
SARA SECTION 313: No
NFPA HEALTH:2
NFPA FLAMMABILITY: 1
NFPA REACTIVITY: 0
DEA Chemical Trafficking Act: No
TSCA STATUS: All ingredients in this product are on the TSCA Inventory List.

SECTION 16 - ADDITIONAL INFORMATION

FOOT NOTES: NA - NOT APPLICABLE ND - NO DATA AVAILABLE > = GREATER THAN < = LESS THAN

Prepared according to the OSHA Hazard Communication Standard (29 CFR 1910.1200) and the ANSI MSDS Standard (Z400.1) by the Company Health and Risk Assessment Unit, PO Box 1519, Gretna, LA 70054-1519.

REVISION STATEMENT: Changes have been made throughout this Material Safety Data Sheet. Please read the entire document.

DISCLAIMER:

Although the information and recommendations set forth herein (hereinafter "Information") are presented in good faith and believed to be correct as of the date hereof, the Company makes no representations as to the completeness or accuracy thereof. Information is supplied upon the condition that the persons receiving this MSDS will make their own determination as to its suitability for their intended purposes prior to use. Since the product is within the exclusive control of the user, it is the user's obligation to determine the conditions of safe use of this product. Such conditions should comply with all Federal Regulations concerning the Product. It must be recognized that the physical and chemical properties of any product may not be fully understood and that new, possibly hazardous products may arise from reactions between chemicals. The information given in this data sheet is based on our present knowledge and shall not constitute a guarantee for any specific product features and shall not establish a legally valid contractual relationship. REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED. MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OF ANY OTHER NATURE ARE MADE HEREUNDER WITH RESPECT TO INFORMATION OR THE PRODUCT TO WHICH INFORMATION REFERS.

Material Name: Produced Water US GHS

Produced Brine Water, Brine, Brine Water, Formation Water SYNONYMS:

* * * Section 1 - PRODUCT AND COMPANY IDENTIFICATION * * *

Produced Water (800) 878-1373 PRODUCT NAME: **EMERGENCY PHONE:** Mixture (800) 878-1373 PRODUCT CODES: AFTER HOURS:

PRODUCER: Antero Resources

1615 Wynkoop Street (800) 424-9300 ADDRESS: **CHEMTREC PHONE:**

Denver, Colorado 80202

* * * Section 2 - HAZARDS IDENTIFICATION * * *

GHS Classification:

Eye Irritant – Category 2A.

GHS LABEL ELEMENTS Symbol(s)

Signal Word

Warning

Hazard Statements

Causes serious eye irritation

Precautionary Statements

Prevention

Wear protective gloves/protective clothing/eye protection/face protection.

Response

If on SKIN (or hair): Rinse skin with water / shower. Remove / Take off all contaminated clothing immediately.

Material Name: Produced Water US GHS

If in EYES: Rinse cautiously with water for at least fifteen (15) minutes. Remove Contact Lenses, if present and easy to do. Continue rinsing.

If EYE irritation persists, get medical advice / attention.

Storage

Store in a secure area.

Disposal

Dispose of contents/containers in accordance with regulations.

* * * Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS * * *

CAS#	Component	Percent
7732-18-5	Water	80
7647-14-5	Sodium Chloride	20

Because brine water is a natural product, composition can vary greatly.

* * * Section 4 - FIRST AID MEASURES * * *

First Aid: Eyes

Flush eyes with clean running water for at least fifteen (15) minutes. If irritation or redness develops from exposure, following flushing, seek medical attention.

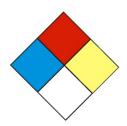
First Aid: Skin

First aid is not required, normally. However, it is a good practice to wash any chemical from the skin.

First Aid: Ingestion (Swallowing)

First aid is not required, normally. If spontaneous vomiting occurs, lean the victim forward to reduce the risk of aspiration. Monitor for breathing difficulties. If symptoms develop, seek medical attention.

First Aid: Inhalation (Breathing)


Remove person to fresh air. If person is not breathing, provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

Material Name: Produced Water US GHS

Most important symptoms and effects

None known or anticipated.

* * * Section 5 - FIRE FIGHTING MEASURES * * *

NFPA 704 Hazard Class

Health: 1 Flammability: 0 Instability: 0 (0=Minimal, 1=Slight, 2=Moderate, 3=Serious, 4=Severe)

General Fire Hazards

No fire hazards are expected.

General Fire Hazards

No unusual fire or explosion hazards are expected. If container is not properly cooled, it can rupture in the heat of a fire.

Extinguishing Media

The material is non-flammable. Use extinguishing agent suitable for the type of surrounding fire.

Unsuitable Extinguishing Media

None

Fire Fighting Equipment / Instructions

Small fires in the beginning stage may typically be extinguished using handheld portable fire extinguishers and other firefighting equipment. Isolate area around container involved in fire and keep unauthorized personnel out. Stop spill/release if it can be done safely. Move undamaged containers from the immediate hazard area if it can be done safely. Cool equipment exposed to fire with water, if it can be done safely.

Hazardous Combustion Products

None Anticipated. See Section 9 for Flammable Properties including Flash Point and Flammable (Explosive) Limits

Material Name: Produced Water US GHS

* * * Section 6 - ACCIDENTAL RELEASE MEASURES * * *

Recovery and Neutralization

Contain and stop the source of the spill, if safe to do so.

Materials and Methods for Clean-Up

Notify relevant authorities in accordance with all applicable regulations. Immediate cleanup of any spill is recommended. Dike far ahead of spill for later recovery or disposal. Absorb spill with inert material such as sand or vermiculite, and place in suitable container for disposal. If spilled on water remove with appropriate methods (e.g. skimming, booms or absorbents). In case of soil contamination, remove contaminated soil for remediation or disposal, in accordance with local regulations.

Recommended measures are based on the most likely spillage scenarios of this material. However, local conditions and regulations may influence or limit the choice of appropriate actions to be taken. See Section 13 for information on appropriate disposal.

Emergency Measures

The material is not considered hazardous. Nevertheless, evacuate nonessential personnel and secure the area. Stay upwind and uphill, if possible.

Personal Precautions and Protective Equipment

Stay upwind and away from the spill/release. Avoid direct contact with the material. For large spillages, notify persons downstream of the spill/release. Isolate the immediate hazard area and keep unauthorized personnel out. Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8).

Environmental Precautions

Protect bodies of water by diking or absorbents, if possible. Do not flush down sewer or drainage systems. Use water sparingly to minimize environmental contamination and reduce disposal requirements. If a spill occurs on water, notify appropriate authorities and advise shipping of any hazard.

Prevention of Secondary Hazards

None

Material Name: Produced Water US GHS

* * * Section 7 - HANDLING AND STORAGE * * *

Handling Procedures

Wash thoroughly after handling. Use good personal hygiene practices and wear appropriate personal protective equipment (see section 8).

Do not enter confined spaces such as tanks or pits without following proper entry procedures such as ASTM D-4276 and 29 CFR 1910.146. Do not wear contaminated clothing or shoes.

Storage Procedures

Keep container(s) tightly closed and properly labeled. Use and store this material in cool, dry, well ventilated areas. Store only in approved containers. Keep away from any incompatible material (see Section 10). Protect container(s) against physical damage.

Incompatibilities

Keep away from excessive heat to prevent rupture of container.

* * * Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION * * *

Component Exposure Limits

Water (7732-18-5)

ACGIH: Not listed

Sodium Chloride (7647-14-5)

ACGIH: Not listed

Engineering Measures

If current ventilation practices are not adequate to maintain airborne concentrations below the established exposure limits, additional engineering controls may be required.

Personal Protective Equipment: Respiratory

Emergencies or conditions that could result in significant airborne exposures may require the use of NIOSH approved respiratory protection. An industrial hygienist or other appropriate health and safety professional should be consulted for specific guidance under these situations.

A respiratory protection program that meets or is equivalent to OSHA 29 CFR

Material Name: Produced Water US GHS

1910.134 and ANSI Z88.2 should be followed whenever workplace conditions warrant a respirator's use.

Personal Protective Equipment: Skin and Hands

The use of skin protection is not normally required; however, good industrial hygiene practice suggests the use of gloves or other appropriate skin protection whenever working with chemicals.

Personal Protective Equipment: Eyes

Safety glasses or goggles that meet or exceed ANSI Z-87.1 are recommended where there is a possibility of splashing or spraying.

Hygiene Measures

Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Promptly remove contaminated clothing and launder before reuse.

* * * Section 9 - PHYSICAL AND CHEMICAL PROPERTIES * * *

Appearance:	Clear to Brown	Odor:	Salty
Physical State:	Liquid	pH:	ND
Vapor Pressure:	< 0.36 psia @ 70°F / 21.1°C	Vapor Density:	> 1
Boiling Point:	212°F / 100°C	Melting Point:	2.4°F / -16.5°C
Solubility (H2O):	Complete	Specific Gravity:	1.1 @ 68°F / 20°C
Evaporation Rate:	Variable	VOC:	ND
Octanol / H2O Coeff.:	ND	Flash Point:	ND
Flash Point Method:	ND		
Lower Flammability Limit:	ND	Upper Flammability Limit:	ND
(LFL):		(UFL):	
Auto Ignition:	ND	Burning Rate:	ND

Material Name: Produced Water US GHS

* * * Section 10 - CHEMICAL STABILITY & REACTIVITY INFORMATION * * *

Chemical Stability

This is a stable material.

Hazardous Reaction Potential

Will react with alkali and alkaline metals to form flammable hydrogen gas.

Conditions to Avoid

Avoid contact with alkali metals (lithium, sodium, potassium), alkaline metals (beryllium, magnesium, calcium, strontium, and barium), and metallic hydrides like lithium aluminum hydride.

Hazardous Decomposition Products

Not anticipated under normal conditions of use.

Hazardous Polymerization

Not known to occur.

* * * Section 11 - TOXICOLOGICAL INFORMATION * * *

Acute Toxicity

A: General Product Information

Unlikely to be harmful.

B. Component Analysis - D50/LC50

Water (7732-18-5)

Oral LD50 Rat 90 g/kg

Sodium Chloride (7647-14-5)

Oral LD50 Rat 3 g/kg

Potential Health Effects: Skin Corrosion Property / Stimulativeness

May cause skin irritation with prolonged or repeated contact. Not expected to be a skin sensitizer.

Potential Health Effects: Eye Critical Damage / Stimulativeness

Contact with eyes may cause moderate irritation.

Page 7 of 11

Material Name: Produced Water US GHS

Potential Health Effects: Ingestion

Ingestion may result in nausea, vomiting, diarrhea, abdominal cramps, and dehydration (thirst).

Potential Health Effects: Inhalation

No information available on the mixture. However, none of the components have been classified for respiratory sensitization (or are below the concentration threshold for classification).

Generative Cell Mutagenicity

Not expected to cause genetic effects.

Carcinogenicity

General Product Information

Not expected to cause cancer. This substance is not listed as a carcinogen by IARC. NTP or OSHA.

Reproductive Toxicity

This product is not reported to have any reproductive toxicity effects.

Specified Target Organ General Toxicity: Single Exposure

This product is not reported to have any specific target organ general toxicity single exposure effects.

Specified Target Organ General Toxicity: Repeated Exposure

This product is not reported to have any specific target organ general toxicity multiple exposure effects.

Aspiration Respiratory Organs Hazard

The major health threat of ingestion occurs from the danger of aspiration (breathing) of liquid drops into the lungs, particularly from vomiting. Aspiration may result in chemical pneumonia (fluid in the lungs), severe lung damage, respiratory failure and even death.

* * * Section 12 - ECOLOGICAL INFORMATION * * *

Ecotoxicity

A: General Product Information

Keep out of sewers, drainage areas, and waterways. Report spills and releases, as applicable under Federal and State regulations.

Material Name: Produced Water US GHS

Persistence / Degradability

No information available

Bioaccumulation

No information available

Mobility in Soil

No information available

* * * Section 13 - DISPOSAL CONSIDERATIONS * * *

Waste Disposal Instructions

See Section 7 for Handling Procedures. See Section 8 for Personal Protective Equipment Recommendations.

Disposal of Contaminated Containers or Packaging

Recover or recycle if possible. It is the responsibility of the generator to determine the toxicity and physical properties of the material generated so as to properly classify the waste and ensure disposal methods comply with applicable regulations.

This material, if discarded as produced, is not a RCRA "listed" hazardous waste, and is not believed to exhibit characteristics of hazardous waste. Consult state and local regulations regarding the proper disposal of this material. Do not dispose of brine water by draining onto the ground. This will result in soil and groundwater contamination. Waste arising from spillage or tank cleaning should be disposed of in accordance with applicable regulations.

Container contents should be completely used and containers should be emptied prior to discard. Container rinsate should not be considered a RCRA hazardous waste but must be disposed of with care and in full compliance with federal, state and local regulations. Larger empty containers, such as drums, should be returned to the distributor or to a qualified drum reconditioner. To assure proper disposal of smaller empty containers, consult with state and local regulations and disposal authorities.

* * * Section 14 - TRANSPORTATION INFORMATION * * *

DOT Information

Shipping Description: Not Regulated

UN #: Not Regulated

Page 9 of 11

Material Name: Produced Water US GHS

* * * Section 15 - REGULATORY INFORMATION * * *

CERCLA/SARA – Section 302 Extremely Hazardous Substances and TPQs (in pounds):

This material does not contain any chemicals subject to the reporting requirements of SARA 302 and 40 CFR 372.

CERCLA/SARA – Section 313 and 40 CFR 372):

This material does not contain any chemicals subject to the reporting requirements of SARA 313 and 40 CFR 372.

EPA (CERCLA) Reportable Quantity (in pounds):

This material does not contain any chemicals with CERCLA Reportable Quantities.

State Regulations

Component Analysis

The following components appear on one or more of the following state hazardous substances list.

California Proposition 65:

This material does not contain any chemicals that are known to the State of California to cause cancer, birth defects or other reproductive harm at concentrations that trigger the warning requirements of California Proposition 65.

National Chemical Inventories:

All components are either listed on the US TSCA Inventory, or are not regulated under TSCA.

U.S. Export control classification Number: EAR99.

* * * Section 16 - OTHER INFORMATION * * *

NFPA® Hazard Rating

Health 1
Fire 0
Reactivity0

HMIS® Hazard Rating Health 1 Slight

Fire 0 Minimal Physical 0 Minimal

Material Name: Produced Water US GHS

Key/Legend

EPA = Environmental Protection Agency; TSCA = Toxic Substance Control Act: ACGIH = American Conference of Governmental Industrial Hygienists; IARC = International Agency for Research on Cancer; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; NJTSR = New Jersey Trade Secret Registry.

Literature References

None

Other Information

The information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Date of Preparation: January 28, 2014

Date of Last Revision: March 4, 2014

End of Sheet

Material Name: Natural Gas Condensate US GHS

SYNONYMS: Drips; Condensate; Field Condensate; Gas Well Condensate; High

Pressure Inlet Liquids; Lease Condensate; Natural Gas Liquids; Pipeline

Liquids

* * * Section 1 - PRODUCT AND COMPANY IDENTIFICATION * * *

PRODUCT NAME: Natural Gas Condensate EMERGENCY PHONE: (800) 878-1373
PRODUCT CODES: 64741-47-5 AFTER HOURS: (800) 878-1373

PRODUCER: Antero Resources

ADDRESS: 1615 Wynkoop Street CHEMTREC PHONE: (800) 424-9300

Denver, Colorado 80202

* * * Section 2 - HAZARDS IDENTIFICATION * * *

GHS Classification:

Flammable Liquids – Category 2.

Acute Toxicity Inhalation - Category 3

Germ Cell Mutagenicity - Category 1B

Carcinogenicity - Category 1A

Specific Target Organ Systemic Toxicity (STOT) – Single Exposure Category 3

Specific Target Organ Systemic Toxicity (STOT) - Repeat Exposure Category 1

Aspiration Toxicity - Category 1

Toxic to the Aquatic Environment Acute – Category 3

GHS LABEL ELEMENTS

Symbol(s)

Signal Word

Danger

Material Name: Natural Gas Condensate US GHS

Hazard Statements

Highly flammable liquid and vapor.

Toxic if inhaled.

May cause genetic defects.

May cause cancer.

May cause respiratory irritation.

May cause drowsiness or dizziness.

May cause damage to organs (liver, kidneys, blood, nervous system, and skin) through prolonged or repeated exposure.

May be fatal if swallowed and enters airways.

Harmful to aquatic life.

Precautionary Statements

Prevention

Keep away from heat/sparks/open flames/hot surfaces. No smoking.

Keep container tightly closed.

Ground/bond container and receiving equipment.

Use explosion-proof electrical/ventilating/lighting equipment.

Use only non-sparking tools.

Take precautionary measures against static discharge.

Wear protective gloves/protective clothing/eye protection/face protection.

Do not breathe gas/mist/vapors/spray.

Do not handle until all safety precautions have been read and understood.

Wash thoroughly after handling.

Do not eat, drink or smoke when using this product.

Use only outdoors or in a well-ventilated area.

Avoid release to the environment.

Response

If on SKIN (or hair): Wash with plenty of soap and water. Remove / Take off all contaminated clothing immediately. Rinse skin with water/shower.

If INHALED: Remove victim to fresh air and keep comfortable for breathing. Call a poison center/doctor if the victim feels unwell.

If SWALLOWED: Immediately call a poison center or doctor / physician. Do not Induce vomiting.

If exposed or concerned: Get medical advice/attention.

In case of fire: Use water spray, fog or fire-fighting foam.

Storage

Store in a well-ventilated place. Keep cool.

Store in a secure area.

Material Name: Natural Gas Condensate US GHS

Disposal

Dispose of contents/containers in accordance with local/regional/national/international regulations.

* * * Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS * * *

CAS#	Component	Percent
111-65-9	Octanes	25 - 95
142-82-5	Heptanes	25 - 95
110-54-3	Hexanes as n-Hexane	25 - 95
109-66-0	Pentanes as n-Pentane	5 - 70
106-97-8	N-butane	0 - 45
74-98-6	Propane	0 - 15
78-84-0	Ethane	0 - 5
71-43-2	Benzene	< 1
108-88-3	Toluene	< 1
1330-20-7	m-,o-,p-Xylene	< 1

Because natural gas condensate is a natural product, composition can vary greatly.

* * * Section 4 - FIRST AID MEASURES * * *

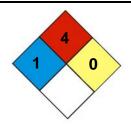
First Aid: Eyes

Flush eyes with clean running water for at least fifteen (15) minutes. Following flushing, seek medical attention.

First Aid: Skin

Remove contaminated clothing. Wash contaminated areas thoroughly with soap and water or waterless hand cleanser. Obtain medical attention if irritation or redness develops. Wash contaminated clothing before reuse.

First Aid: Ingestion (swallowing)


DO NOT INDUCE VOMITING. Do not give liquids. Obtain immediate medical attention. If spontaneous vomiting occurs, lean the victim forward to reduce the risk of aspiration. Monitor for breathing difficulties. Small amounts of material which enter the mouth should be rinsed out until the taste is dissipated.

Material Name: Natural Gas Condensate US GHS

First Aid: Inhalation (breathing)

Remove person to fresh air. If person is not breathing, provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

* * * Section 5 – FIRE FIGHTING MEASURES * * *

NFPA 704 Hazard Class

Health: 1 **Flammability:** 4 **Instability:** 0 (0-Minimal, 1-Slight, 2-Moderate, 3-Serious, 4-Severe)

General Fire Hazards

See Section 9 for Flammability Properties.

Extremely flammable. Vapors may be ignited rapidly when exposed to heat, spark, open flame, or other source of ignition (e.g., static electricity, pilot lights, mechanical / electrical equipment, and electronic devices such as cell phones, computers, calculators, and pagers which have not been certified as intrinsically safe). Flammable vapors can burn in the open or explode in confined spaces. Vapors are heavier than air, and may travel distances to an ignition source and flash back. Runoff to sewer systems may cause fire or explosion.

Hazardous Combustion Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

Extinguishing Media

SMALL FIRES: Any extinguisher suitable for Class B fires, dry chemical, firefighting foam, water spray, carbon dioxide (CO_2), or other gaseous extinguishing agents. Use caution when applying CO_2 in confined spaces.

LARGE FIRES: Water spray, fog or fire-fighting foam. Water may be ineffective for fighting the fire, but may be used to cool fire-exposed containers.

Unsuitable Extinguishing Media

None

Material Name: Natural Gas Condensate US GHS

Fire Fighting Equipment / Instructions

Small fires in the beginning stage may typically be extinguished using handheld portable fire extinguishers and other firefighting equipment. Isolate area around container involved in fire. Cool tanks, shells, and containers exposed to fire and excessive heat with water. For massive fires the use of unmanned hose holders or monitor nozzles may be advantageous to minimize personnel exposure. Major fires may require withdrawal, allowing the tank to burn. Large storage tank fires typically require specially trained personnel and equipment to extinguish the fire, often including the need for properly applied firefighting foam.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH/MSHA- approved pressure-demand self-contained breathing apparatus with full face piece and full protective clothing.

* * * Section 6 - ACCIDENTAL RELEASE MEASURES * * *

Recovery and Neutralization

Contain and stop the source of the spill, if safe to do so.

Materials and Methods for Clean-Up

Notify relevant authorities in accordance with all applicable regulations. Immediate cleanup of any spill is recommended. Dike far ahead of spill for later recovery or disposal. Absorb spill with inert material such as sand or vermiculite, and place in suitable container for disposal. If spilled on water remove with appropriate methods (e.g. skimming, booms or absorbents). In case of soil contamination, remove contaminated soil for remediation or disposal, in accordance with local regulations.

Recommended measures are based on the most likely spillage scenarios for this material; however local conditions and regulations may influence or limit the choice of appropriate actions to be taken.

Emergency Measures

Evacuate nonessential personnel and secure all ignition sources. No road flares, smoking or flames in hazard area. Consider wind direction. Stay upwind and uphill, if possible. Vapor cloud may be white, but color will dissipate as cloud disperses. Fire and explosion hazard is still present.

Personal Precautions and Protective Equipment

Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8). Extremely flammable. Spillages of liquid product will create a fire hazard and may form an explosive atmosphere. Keep all sources of

Material Name: Natural Gas Condensate

US GHS

ignition and hot metal surfaces away from spill/release if safe to do so.

The use of explosion-proof electrical equipment is recommended. Stay upwind and away from spill/release. Avoid direct contact with material. For large spillages, notify persons downwind of the spill/release, isolate immediate hazard area and keep unauthorized personnel out. Wear appropriate protective equipment, including respiratory protection, as conditions warrant (see Section 8). See Sections 2 and 7 for additional information on hazards and precautionary measures.

Environmental Precautions

Protect bodies of water by diking, absorbents, or absorbent boom, if possible. Do not flush down sewer or drainage systems, unless system is designed and permitted to handle such material. The use of firefighting foam may be useful in certain situations to reduce vapors. If spill occurs on water notify appropriate authorities and advise shipping of any hazard. Spills into or upon navigable waters, the contiguous zone, or adjoining shorelines that cause a sheen or discoloration on the surface of the water, may require notification of the National Response Center (phone number 800-424-8802).

Prevention of Secondary Hazards

None

* * * Section 7 - HANDLING AND STORAGE * * *

Handling Procedures

Keep away from flame, sparks and excessive temperatures. Bond and ground containers. Use non-sparking tools. Use only outdoors or in well ventilated areas. Wear protective gloves / clothing and eye / face protection. Wash thoroughly after handling. Use good personal hygiene practices and wear appropriate personal protective equipment (see section 8).

Storage Procedures

Store only in approved containers. Bond and ground containers. Keep away from flame, sparks, excessive temperatures and open flames. Keep containers closed and clearly labeled. Empty product containers or vessels may contain explosive vapors. Do not pressurize, cut, heat, weld or expose containers to sources of ignition.

Store in a well-ventilated area. This storage area should comply with NFPA 30 "Flammable and Combustible Liquid Code". Avoid storage near incompatible materials. The cleaning of tanks previously containing this product should follow API Recommended Practice (RP) 2013 "Cleaning Mobile Tanks In Flammable and Combustible Liquid Service" and API RP 2015 "Cleaning Petroleum Storage Tanks."

Material Name: Natural Gas Condensate US GHS

Incompatibilities

Keep away from strong oxidizers, ignition sources and heat.

* * * Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION * * *

Component Exposure Limits

Octanes (111-65-9)

ACGIH: 300 ppm TWA (listed under Octane, all isomers)

Heptanes (142-82-5)

ACGIH: 400 ppm TWA (listed under n-Heptane)

n-Hexane (110-54-3)

ACGIH: 20 ppm TWA (listed under n-Hexane)

n-Pentane (109-66-0)

ACGIH: 600 ppm TWA (listed under Pentane, all isomers)

n-Butane (106-97-8)

ACGIH: 600 ppm TWA (listed under n-Butane)

Propane (74-98-6)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases C1-C4)

Ethane (74-84-0)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases C1-C4)

Benzene (71-43-2)

ACGIH: 0.5 ppm (TWA); NIOSH: 0.1 ppm (TWA); OSHA 1 ppm (TWA)

Toluene (108-88-3)

ACGIH: 20 ppm TWA (listed under Toluene)

m-, o-, p-Xylene (1330-20-7)

ACGIH: 100 ppm TWA (listed under Xylene o, m & p isomers)

Material Name: Natural Gas Condensate US GHS

Engineering Measures

Use adequate ventilation to keep vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces. Use explosion-proof equipment and lighting in classified / controlled areas.

Personal Protective Equipment: Respiratory

Use a NIOSH-approved positive-pressure, supplied air respirator with escape bottle or self-contained breathing apparatus (SCBA) for gas concentrations above occupational exposure limits, for potential for uncontrolled release, if exposure levels are not known, or in an oxygen-deficient atmosphere (oxygen content less than 19.5 percent). A respiratory program that meets or is equivalent to OSHA 29 CFR 1910.134 and ANSI Z88.2 should be followed whenever workplace conditions warrant the use of a respirator.

If benzene concentrations equal or exceed applicable exposure limits, OSHA requirements for personal protective equipment, exposure monitoring, and training may apply (29 CFR 1910.1028 – Benzene).

CAUTION: Flammability limits (i.e., explosion hazard should be considered when assessing the need to expose personnel to concentrations requiring respiratory protection.

Personal Protective Equipment: Hands

Gloves constructed of nitrile or neoprene are recommended.

Personal Protective Equipment: Eyes

Safety glasses or goggles are recommended where there is a possibility of splashing or spraying. Eye protection that meets or exceeds ANSI Z.87.1 is recommended. Depending on conditions of use, a face shield may be necessary.

Personal Protective Equipment: Skin and Body

Chemical protective clothing such as of E.I. DuPont TyChem®, Saranex® or equivalent recommended based on degree of exposure. Note: The resistance of specific material may vary from product to product as well as with degree of exposure. Consult manufacturer specifications for further information.

Hygiene Measures

Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Do not use as a cleaning solvent on the skin. Do not use gasoline or solvents (naphtha, kerosene, etc.) for washing this product from

Material Name: Natural Gas Condensate

US GHS

exposed skin areas. Waterless hand cleaners are effective. Promptly remove contaminated clothing and launder before reuse. Use care when laundering to prevent the formation of flammable vapors which could ignite via washer or dryer. Consider the need to discard contaminated leather shoes and gloves.

* * * Section 9 - PHYSICAL AND CHEMICAL PROPERTIES * * *

Appearance: Colorless to straw yellow **Odor:** Aromatic, Gasoline;

Physical State: Liquid pH: ND

Vapor Pressure: 110 - 200 psia (Reid VP) Vapor Density (air = 1): > 1 @ $100^{\circ}\text{F}/37.8^{\circ}\text{C}$

Boiling Point: Approx. 85 - 437°F **Melting Point:** ND

(39 – 200°C)

Solubility (H2O): Insoluble to slightly Specific Gravity: AP 0.62-0.76 (varies)

soluble

Evaporation Rate:HighVOC:NDOctanol / H2O Coeff.:NDFlash Point:-40°F

-40°C

Flash Point Method: Tag Closed Cup (TCC)

Lower Flammability Limit: ND (NFPA Gasoline 1.4) Upper Flammability Limit: ND (NFPA Gasoline 7.6)

(LFL): (UFL):

Auto Ignition: AP 480°F (250°C) Burning Rate: ND

* * * Section 10 - CHEMICAL STABILITY & REACTIVITY INFORMATION * * *

Chemical Stability

This is a stable material.

Hazardous Reaction Potential

Will not occur.

Conditions to Avoid

Keep away from ignition sources and high temperatures.

Hazardous Decomposition Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

Material Name: Natural Gas Condensate US GHS

* * * Section 11 - TOXICOLOGICAL INFORMATION * * *

Acute Toxicity

A: General Product Information

Harmful if swallowed.

B. Component Analysis - LD50/LC50

Octanes (111-65-9)

Inhalation LC50 rat = 118,000 mg/m3 / 4H

Heptanes (142-82-5)

Inhalation LC50 rat = 103,000 mg/m3 / 4H

Hexanes as n-Hexane (110-53-3)

Inhalation LC50 rat = 48,000 ppm / 4H

Pentanes as n-Pentane (109-66-0)

Inhalation LC50 rat = 364,000 mg/m3 / 4H

Butanes as n-Butane (106-97-8)

Inhalation LC50 rat 658,000 mg/l / 4H

Propane (74-98-6)

Inhalation LC50 Rat > 800,000 ppm / 0.25H

Ethane (74-84-0)

Inhalation LC50 Rat 658,000 mg/l / 4H

Benzene (71-43-2)

Inhalation LC50 Rat 44,700 mg/m3 /

Toluene (108-88-3)

Inhalation LD50 Rat 12/5 mg/l / 4H

m-, o-, p-Xylene (1330-20-7)

Inhalation LC50 Rat 5000 ppm / 4H

Potential Health Effects: Skin Corrosion Property / Stimulativeness

May cause skin irritation with prolonged or repeated contact. Liquid may be absorbed through the skin in toxic amounts if large areas of skin are exposed repeatedly.

Material Name: Natural Gas Condensate US GHS

Potential Health Effects: Eye Critical Damage / Stimulativeness

Contact with eyes may cause moderate irritation.

Potential Health Effects: Ingestion (swallowing)

Ingestion may cause gastrointestinal disturbances, including irritation, nausea, vomiting and diarrhea, and central nervous system (brain) effects similar to alcohol intoxication. In severe cases, tremors, convulsions, loss of consciousness, coma, respiratory arrest, and death may occur.

Potential Health Effects: Inhalation (breathing)

Excessive exposure may cause irritations to the nose, throat, lungs and respiratory tract. Central nervous system (brain) effects may include headache, dizziness, loss of balance and coordination, unconsciousness, coma, respiratory failure, and death.

Respiratory Organs Sensitization / Skin Sensitization

This product is not reported to have any skin sensitization effects.

Generative Cell Mutagenicity

May cause genetic defects. Some crude oils and crude oil fractions have been positive in mutagenicity studies.

Carcinogenicity

A: General Product Information

May cause cancer.

This product contains benzene, although at very low concentrations. Human health studies indicate that prolonged and/or repeated overexposure to benzene may cause damage to the blood-forming system (particularly bone marrow), and serious blood disorders such as aplastic anemia and leukemia. Benzene is listed as a human carcinogen by the NTP, IARC, OSHA and ACGIH.

Exposure to light hydrocarbons in the same boiling range as this product have been associated in animal studies with effects to the central nervous system, peripheral nervous system, liver, and kidneys. The significance of these animal models to predict similar human response is uncertain. Observing good work practices and personal hygiene procedures (Sections 7 and 8) can minimize potential risks to humans.

B: Component Carcinogenicity

Benzene (71-43-2)

ACGIH: A1 - Confirmed Human Carcinogen

OSHA: 5 ppm STEL (Cancer hazard, Flammable, See 29 CFR 1910.1028,

15 min); 0.5 ppm Action Level; 1 ppm TWA

NIOSH: potential occupational carcinogen

NTP: Known Human Carcinogen (Select Carcinogen)

Page 11 of 17

Material Name: Natural Gas Condensate US GHS

IARC: Monograph 100F [in preparation]; Supplement 7 [1987]; Monograph

29 [1982] (Group 1 (carcinogenic to humans))

Reproductive Toxicity

This product is not reported to have any reproductive toxicity effects.

Specified Target Organ General Toxicity: Single Exposure

This product is not reported to have any specific target organ general toxicity single exposure effects.

Specified Target Organ General Toxicity: Repeated Exposure

May cause damage to organs (liver, kidneys, blood, nervous system and skin) through prolonged or repeated exposure.

Aspiration Respiratory Organs Hazard

The major health threat of ingestion occurs from the danger of aspiration (breathing) of liquid drops into the lungs, particularly from vomiting. Aspiration may result in chemical pneumonia (fluid in the lungs), severe lung damage, respiratory failure and even death.

* * * Section 12 - ECOLOGICAL INFORMATION * * *

Ecotoxicity

A: General Product Information

Keep out of sewers, drainage areas, and waterways. Report spills and releases, as applicable under Federal and State regulations.

B: Component Analysis – Ecotoxicity – Aquatic Toxicity Benzene (71-43-2)

Test and Species	Conditions
96 Hr LC50 Pimephales promelas	10.7-14.7 mg/L [flow-through]
96 Hr LC50 Oncorhynchus mykiss	5.3 mg/L [flow-through]
96 Hr LC50 Lepomis macrochirus	22.49 mg/L [static]
96 Hr LC50 Poecilia reticulata	28.6 mg/L [static]
96 Hr LC50 Pimephales promelas	22330-41160 µg/L [static]
96 Hr LC50 Lepomis macrochirus	70000-142000 μg/L [static]
72 Hr EC50 Pseudokirchneriella subcapitata	29 mg/L
48 Hr EC50 Daphnia magna	8.76 - 15.6 mg/L [static]
48 Hr EC50 Daphnia magna	10 mg/L

Material Name: Natural Gas Condensate US GHS

Natural Gas condensates (68919-39-1)

Test and Species

96 Hr LC50 Alburnus alburnus

96 Hr LC50 Cyprinodon variegatus

72 Hr EC50 Pseudokirchneriella

24 b applieds

56 mg/L

subcapitata 30 mg/L 24 Hr EC50 Daphnia magna 170 mg/L

Persistence / Degradability

No information available

Bioaccumulation

No information available

Mobility in Soil

No information available

* * * Section 13 - DISPOSAL CONSIDERATIONS * * *

Waste Disposal Instructions

See Section 7 for Handling Procedures. See Section 8 for Personal Protective Equipment Recommendations.

Disposal of Contaminated Containers or Packaging

Recover or recycle if possible. It is the responsibility of the generator to determine the toxicity and physical properties of the material generated so as to properly classify the waste and ensure disposal methods comply with applicable regulations. This material, if discarded should be fully characterized for ignitability (D001), reactivity (D003) and benzene (D018) prior to disposal (40 CFR261). Use which results in chemical or physical change or contamination may subject it to regulation as a hazardous waste. Along with properly characterizing all waste materials, consult state and local regulations regarding the proper disposal of this material. Do not dispose of by draining onto the ground. This will result in soil and groundwater contamination. Waste arising from spillage or tank cleaning should be disposed of in accordance with applicable regulations.

Container contents should be completely used and containers should be emptied prior to discard. Container rinsate could be considered a RCRA hazardous waste and must be disposed of with care and in full compliance with federal, state and local regulations. Larger empty containers, such as drums, should be returned to the distributor or to a qualified drum reconditioner. To assure proper disposal of smaller empty containers, consult with state and local regulations and disposal authorities.

Material Name: Natural Gas Condensate US GHS

* * * Section 14 - TRANSPORTATION INFORMATION * * *

DOT Information

Shipping Name: Petroleum Products, n.o.s. (condensate)

UN #: 1268 Hazard Class: 3

Additional Info.: Dependent on the product's properties, the shipper may also elect to classify as Gasoline UN1203 or Petroleum Crude Oil UN1267 - reference 49 CFR

172.101 for further description (e.g., packing group determination).

Placard:

* * * Section 15 - REGULATORY INFORMATION * * *

Regulatory Information

Component Analysis

This material contains one or more of the following chemicals required to be identified under SARA Section 302 (40 CFR 355 Appendix A), SARA Section 313 (40 CFR 372.65) and/or CERCLA (40 CFR 302.4).

Benzene (71-43-2)

SARA 313: 0.1% de minimis concentration

CERCLA: 10 lb final RQ (received an adjusted RQ of 10 lbs based on

potential carcinogenicity in an August 14, 1989 final rule); 4.54 kg final RQ (received an adjusted RQ of 10 lbs based on potential

carcinogenicity in an August 14, 1989 final rule)

SARA Section 311/312 – Hazard Classes

Acute Health Chronic Health X Sudden Release of Pressure Reactive

SARA SECTION 313 – SUPPLIER NOTIFICATION

This product contains the following toxic chemicals subject to the reporting requirements of section 313 of the Emergency Planning and Community Right-To-Know Act (EPCRA) of 1986 and of 40 CFR 372:

Material Name: Natural Gas Condensate **US GHS**

CONCENTRATION PERCENT BY WEIGHT INGREDIENT NAME (CAS NUMBER)

Benzene (71-43-2) <0.1 to 2

Canadian Regulatory Information

This product has been classified in accordance with the hazard criteria of the DSL/NDSL

Controlled Products Regulations (CPR) and the SDS contains all the Inventory

information required by the Regulations.

Workplace B2 - Flammable Liquid

Hazardous D1A – Material Causing Immediate and Serious Toxic Effects - Very Toxic

Materials Material

Information D2A: Material Causing Other Toxic Effects Very Toxic D2B - Material Causing Other Toxic Effects - Toxic Material System

European Union Regulatory Information

Product is dangerous as defined by the European Union Dangerous

Substances / Preparations Directives. Labeling

Contains: Low Boiling Point Naphtha

F+ Extremely Flammable

T Toxic Symbol

N Dangerous for the Environment

R12-45-38-65-67-51/53

Extremely flammable. May cause cancer. Irritating to skin. Harmful: may cause lung damage if swallowed. Vapors may cause drowsiness

Risk Phrases and dizziness. Toxic to aquatic organisms, may cause long-term

adverse effects in the aquatic environment.

S16-53-45-2-23-24-29-43-62

Keep away from sources of ignition – No smoking. Avoid exposure – obtain special instructions before use. In case of accident or if you feel

unwell, seek medical advice immediately (show the label where

possible). Keep out of reach of children. Do not breathe vapor. Avoid

contact with skin. Do not empty into drains. In case of fire use foam/dry powder/CO2. If swallowed, do not induce vomiting: seek

medical advice immediately and show this container or label.

Safety

Phrases

Material Name: Natural Gas Condensate US GHS

State Regulations

Component Analysis - State

The following components appear on one or more of the following state hazardous substances lists

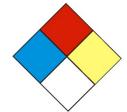
Component	CAS	CA	MA	MN	NJ	РА	RI
Octanes	111-65-9	Yes	No	Yes	Yes	Yes	Yes
Heptanes	142-82-5	Yes	No	Yes	Yes	Yes	Yes
n-Hexane	110-54-3	Yes	Yes	Yes	Yes	Yes	Yes
n-Pentane	109-66-0	Yes	No	Yes	Yes	Yes	Yes
n-Butane	106-97-8	Yes	No	Yes	Yes	Yes	Yes
Propane	74-98-6	No	No	Yes	Yes	Yes	Yes
Ethane	78-84-0	No	No	Yes	Yes	Yes	No
Benzene	71-43-2	Yes	Yes	Yes	Yes	Yes	Yes
Toluene	108-88-3	Yes	Yes	Yes	Yes	Yes	Yes
m-, o-, p-Xylene	1330-20-7	Yes	Yes	Yes	Yes	Yes	Yes

The following statement(s) are provided under the California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65):

WARNING! This product contains a chemical known to the state of California to cause cancer.

WARNING! This product contains a chemical known to the state of California to cause Reproductive / developmental effects.

Component Analysis - WHMIS IDL


The following components are identified under the Canadian Hazardous Products Act Ingredient Disclosure List:

Component	CAS#	Minimum Concentration
Benzene	71-43-2	0.1%

* * * Section 16 - OTHER INFORMATION * * *	

NFPA® Hazard Rating Health 1

Fire 4 Reactivity 0

HMIS® **Hazard Rating** Health 1 Slight

Fire 4 Severe
Physical 0 Minimal

* Chronic

Material Name: Natural Gas Condensate US GHS

Key/Legend

EPA = Environmental Protection Agency; TSCA = Toxic Substance Control Act: ACGIH = American Conference of Governmental Industrial Hygienists; IARC = International Agency for Research on Cancer; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; NJTSR = New Jersey Trade Secret Registry.

Literature References

None

Other Information

The information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Date of Preparation: January 29, 2014

Date of Last Revision: March 4, 2014

End of Sheet

Material Name: Wet Field Natural Gas

SYNONYMS: CNG, Natural Gas, Methane.

* * * Section 1 - PRODUCT AND COMPANY IDENTIFICATION * * *

PRODUCT NAME: Wet Field Natural Gas EMERGENCY PHONE: (800) 878-1373
PRODUCT CODES: CAS Reg. No. 68410-63-9 AFTER HOURS: (800) 878-1373

PRODUCER: Antero Resources

ADDRESS: 1615 Wynkoop Street CHEMTREC PHONE: (800) 424-9300

Denver, Colorado 80202

* * * Section 2 - HAZARDS IDENTIFICATION * * *

GHS Classification:

Flammable Gas – Category 1.

Gases Under Pressure - Gas.

Specific Target Organ Systemic Toxicity (STOT) – Single Exposure Category 2.

GHS LABEL ELEMENTS

Signal Word

Danger

Hazard Statements

Extremely flammable gas.

Contains gas under pressure, may explode if heated.

May cause damage to central nervous and respiratory systems.

Precautionary Statements

Prevention

Keep away from heat/sparks/open flames/hot surfaces. No smoking.

Do not breathe fume/gas/mist/vapors/spray.

Wash thoroughly after handling.

Do not eat, drink or smoke when using this product.

Material Name: Wet Field Natural Gas

Response

Leaking gas fire: Do not extinguish, unless leak can be stopped safely. Eliminate all ignition sources if safe to do so.

If exposed to gas, or concerned about possible exposure: Call a POISON CENTER or doctor/physician.

Storage

Protect from sunlight. Store in a well-ventilated place.

Store in a secure area.

Disposal

Dispose of contents/containers in accordance with local/regional/national/international regulations.

* * * Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS * * *

CAS#	Component	Percent
74-82-8	Methane	72 - 97
78-84-0	Ethane	2.2 - 14
74-98-6	Propane	0.0 - 8.0
106-97-8	Butanes	0.0 - 3.5
109-66-0	Pentanes	0.0 - 1.4
110-54-3	Hexanes	0.0 - 0.5
7727-37-9	Nitrogen	< 0.4
124-38-9	Carbon Dioxide	< 0.2
7782-44-7	Oxygen	< 0.04

Because natural gas is a natural product, composition can vary greatly.

* * * Section 4 - FIRST AID MEASURES * * *

First Aid: Eyes

In case of freeze burn, cover eyes to protect from light. Flush eyes with running water for at least fifteen (15) minutes. Following flushing, seek medical attention.

First Aid: Skin

Remove contaminated clothing. In case of blistering, frostbite or freeze burns, seek immediate medical attention.

Material Name: Wet Field Natural Gas

First Aid: Ingestion

Risk of ingestion is extremely low. However, if oral exposure occurs, seek immediate medical assistance.

First Aid: Inhalation

Remove person to fresh air. If person is not breathing, provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

* * * Section 5 - FIRE FIGHTING MEASURES * * *

NFPA 704 Hazard Class

Health: **1** Flammability: **4** Instability: **0** (0-Minimal, 1-Slight, 2-Moderate, 3-Serious, 4-Severe)

General Fire Hazards

See Section 9 for Flammability Properties.

Forms a flammable mixture with air. If released, the resulting vapors will disperse with the prevailing wind. If a source of ignition is present where the vapor exists at a 5 – 15% concentration in air, the vapor will burn along the flame front toward the source of the fuel.

Hazardous Combustion Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

Extinguishing Media

Any extinguisher suitable for Class B fires, dry chemical, firefighting foam, CO2, and other gaseous agents. However, fire should not be extinguished unless flow of gas can be immediately stopped.

Unsuitable Extinguishing Media

None.

Fire Fighting Equipment / Instructions

Gas fires should not be extinguished unless flow of gas can be immediately stopped. Shut off gas source and allow gas to burn out. If spill or leak has not ignited, determine

Material Name: Wet Field Natural Gas

if water spray may assist in dispersing gas or vapor to protect personnel attempting to stop leak. Use water to cool equipment, surfaces and piping exposed to fire and excessive heat. For large fire, the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Isolate area, particularly around piping. Let the fire burn unless leak can be stopped. Concentrate fire-fighting efforts on objects / materials ignited by the initial fire. Withdraw immediately in the event of a rising sound from a venting safety device.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH-approved pressure-demand self-contained breathing apparatus with full facepiece and full protective clothing.

* * * Section 6 - ACCIDENTAL RELEASE MEASURES * * *

Recovery and Neutralization

Stop the source of the release, if safe to do so.

Materials and Methods for Clean-Up

Consider the use of water spray to disperse gas vapors. Do not use water spray to direct gas vapors toward sewer or drainage systems. Isolate the area until gas has dispersed. Ventilate and gas test area before entering.

Emergency Measures

Evacuate nonessential personnel and secure all ignition sources. No road flares, smoking or flames in hazard area. Consider wind direction. Stay upwind and uphill, if possible. Vapor cloud may be white, but color will dissipate as cloud disperses. Fire and explosion hazard is still present.

Personal Precautions and Protective Equipment

Cooling effect of expanding gas from leak may present frostbite / freeze burn hazard. Wear flame retardant (FR) clothing around un-ignited leak. Wear fire protective clothing around an active fire.

Environmental Precautions

Do not flush gas vapors toward sewer or drainage systems.

Prevention of Secondary Hazards

None.

Material Name: Wet Field Natural Gas

* * * Section 7 – HANDLING AND STORAGE * * *

Handling Procedures

Keep away from flame, sparks and excessive temperatures. Bond and ground containers. Use only in well ventilated areas.

Storage Procedures

Natural gas will be contained in the pipeline. Keep away from flame, sparks, excessive temperatures and open flames. Empty pipeline segments may contain explosive residues from natural gas liquids. Do not cut, heat, weld or expose containers to sources of ignition sections of pipeline unless the sections have been purged of natural gas residues.

Incompatibilities

Keep away from strong oxidizers, ignition sources and heat.

* * * Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION * * *

Component Exposure Limits

Methane (74-82-8)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases: Alkane C1-4)

Ethane (74-84-0)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases: Alkane C1-4)

Propane (74-98-6)

ACGIH: 2500 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Butane (106-97-8)

ACGIH: 800 ppm TWA (listed under Aliphatic hydrocarbon gases: Alkane C1-4)

Pentanes (109-66-0)

ACGIH: 600 ppm TWA (listed under Pentane, all isomers)

Hexanes (110-54-3)

ACGIH: 50 ppm TWA (listed under n-Hexane)

Material Name: Wet Field Natural Gas

Nitrogen (7727-37-9)

Simple Asphyxiant

Carbon Dioxide (124-38-9)

ACGIH: 5000 ppm TWA (listed under Carbon Dioxide)

Oxygen (7782-44-7)

N/A – Necessary for life

Engineering Measures

Use adequate ventilation to keep gas and vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces. Use explosion-proof equipment and lighting in classified / controlled areas.

Personal Protective Equipment: Respiratory

Use a NIOSH approved positive-pressure, supplied air respirator with escape bottle or self-contained breathing apparatus (SCBA) for gas concentrations above occupational exposure limits, for potential for uncontrolled release, if exposure levels are not known, or in an oxygen-deficient atmosphere. CAUTION: Flammability limits (i.e., explosion hazard should be considered when assessing the need to expose personnel to concentrations requiring respiratory protection.

Personal Protective Equipment: Hands

Use cold-impervious, insulating flame-retardant (FR) gloves where contact with pressurized gas may occur.

Personal Protective Equipment: Eyes

Where there is a possibility of pressurized gas contact, wear splash-proof safety goggles and faceshield.

Personal Protective Equipment: Skin and Body

Where contact with pressurized gas may occur, wear flame-retardant (FR) and a faceshield.

* * * Section 9 - PHYSICAL AND CHEMICAL PROPERTIES * * *

Odorless to slight

Appearance: Colorless Odor: petroleum odor

Physical State:GaspH:NDVapor Pressure:40 atm @ -187°F (-86°C)Vapor Density:0.6Boiling Point:-259°F (-162°C)Melting Point:ND

Solubility (H2O): 3.5% **Specific Gravity:** 0.4 @ -263°F (-164°C)

Material Name: Wet Field Natural Gas

Evaporation Rate: ND VOC: ND

Octanol / H2O Coeff.: ND Flash Point: Flammable Gas

Flash Point Method: N/A

Lower Flammability Limit: 3.8 – 6.5 Upper Flammability Limit: 13-17

(LFL): (UFL):

Auto Ignition: 900-1170°F (482-632°C) Burning Rate: ND

* * * Section 10 - CHEMICAL STABILITY & REACTIVITY INFORMATION * * *

Chemical Stability

This is a stable material.

Hazardous Reaction Potential

Will not occur.

Conditions to Avoid

Keep away from strong oxidizers, ignition sources and heat.

Hazardous Decomposition Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

* * * Section 11 - TOXICOLOGICAL INFORMATION * * *

Acute Toxicity

A: General Product Information

Methane and ethane, the main components of natural gas, are considered practically inert in terms of physiological effects. At high concentrations these materials act as simple asphyxiants and may cause death due to lack of oxygen.

B. Component Analysis – LD50/LC50

Methane (74-82-8)

Inhalation LC50 Mouse 326 g/m3 2h

Ethane (74-84-0)

Inhalation LC50 Rat 658 mg/l 4h

Propane (74-98-6)

Inhalation LC50 Rat 658 mg/l 4h

Material Name: Wet Field Natural Gas

Butanes (106-97-8)

Inhalation LC50 Rat 658 g/m3 4h

Pentanes (109-66-0)

Inhalation LD50 Rat 364 g/m3 4h

Hexanes (110-54-3)

Inhalation LC50 Rat > 20 mg/l 4h

Nitrogen (7727-37-9)

Simple Asphyxiant

Carbon Dioxide (124-38-9)

Inhalation LC50 Human 100,000 ppm 1minute

Oxygen (7782-44-7)

N/A – Necessary for life

Potential Health Effects: Skin Corrosion Property / Stimulativeness

This product is not reported to have any skin sensitization effects.

Generative Cell Mutagenicity

This product is not reported to have any mutagenic effects.

Carcinogenicity

A: General Product Information

This product is not reported to have any carcinogenic effects.

B: Component Carcinogenicity

None of this product's components are listed by ACGIH, IARC, OSHA, NIOSH, or NTP.

Reproductive Toxicity

This product is not reported to have any reproductive toxicity effects.

Specified Target Organ General Toxicity: Single Exposure

This product may cause damage to the heart.

Specified Target Organ General Toxicity: Repeated Exposure

This product is not reported to have any specific target organ repeat effects.

Aspiration Respiratory Organs Hazard

This product is not reported to have any aspiration hazard effects.

Page 8 of 11

Material Name: Wet Field Natural Gas

* * * Section 12 - ECOLOGICAL INFORMATION * * *

Ecotoxicity

A: General Product Information

Keep gas and vapors out of sewers, drainage areas, and waterways. Report spills and releases, as applicable under Federal and State regulations.

B: Component Analysis – Ecotoxicity – Aquatic Toxicity

No ecotoxicity data are available for this product's components.

Persistance / Degradability

No information available.

Bioaccumulation

No information available.

Mobility in Soil

No information available.

* * * Section 13 - DISPOSAL CONSIDERATIONS * * *

Waste Disposal Instructions

See Section 7 for Handling Procedures. See Section 8 for Personal Protective Equipment Recommendations.

Disposal of Contaminated Containers or Packaging

Dispose of contents / container in accordance with local / regional / national / international regulations.

* * * Section 14 - TRANSPORTATION INFORMATION * * *

DOT Information

Shipping Name: Natural Gas, Compressed

UN #: 1971 **Hazard Class:** 2.1

Placard:

Material Name: Wet Field Natural Gas

* * * Section 15 - REGULATORY INFORMATION * * *

Regulatory Information

Component Analysis

None of this products components are listed under SARA Section 302 (40 CFR 355 Appendix A.

n-hexane is listed under SARA Section 313 (40 CFR 372.65). However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

n-hexane is listed under CERCLA (40 CFR 302.4). However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

SARA Section 311/312 – Hazard Classes

Acute Health	Chronic Health	<u>Fire</u>	Sudden Release of Pressure	Reactive
		Χ	X	

SARA Section 313 – Supplier Notification

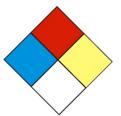
This product contains one chemical (n-Hexane) that is subject to the reporting requirements of section 313 of the Emergency Planning and Community Right-to-know act (EPCRA) of 1986 and of 40 CFR 372. However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

State Regulations

Component Analysis – State

The following components appear on one or more of the following state hazardous substances lists:

Component	CAS	CA	MA	MN	NJ	PA	RI
Methane	74-82-8	No	No	Yes	Yes	Yes	No
Ethane	78-84-0	No	No	Yes	Yes	Yes	No
Propane	74-98-6	No	No	Yes	Yes	Yes	Yes
Butane	106-97-8	Yes	No	Yes	Yes	Yes	Yes
Pentanes	109-66-0	Yes	No	Yes	Yes	Yes	Yes
Hexanes	110-54-3	Yes	Yes	Yes	Yes	Yes	Yes
Nitrogen	7727-37-9	No	No	No	No	No	No
Carbon Dioxide	124-38-9	Yes	No	Yes	Yes	Yes	Yes
Oxygen	7782-44-7	No	No	No	No	No	No


Material Name: Wet Field Natural Gas

* * * Section 16 - OTHER INFORMATION * * *

NFPA® Hazard Rating Health 1

Fire 4

Reactivity 0

HMIS® Hazard Rating Health 1 Moderate

Fire 4 Severe
Physical 0 Minimal
* Chronic

Key/Legend

EPA = Environmental Protection Agency; TSCA = Toxic Substance Control Act: ACGIH = American Conference of Governmental Industrial Hygienists; IARC = International Agency for Research on Cancer; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; NJTSR = New Jersey Trade Secret Registry.

Literature References

None

Other Information

The information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Date of Preparation: February 7, 2014

Date of Last Revision: March 4,, 2014

End of Sheet

Material Name: Dry Field Natural Gas US GHS

SYNONYMS: CNG, Natural Gas, Methane.

* * * Section 1 - PRODUCT AND COMPANY IDENTIFICATION * * *

PRODUCT NAME: Dry Field Natural Gas EMERGENCY PHONE: (800) 878-1373
PRODUCT CODES: CAS Reg. No. 68410-63-9 AFTER HOURS: (800) 878-1373

PRODUCER: Antero Resources

ADDRESS: 1615 Wynkoop Street CHEMTREC PHONE: (800) 424-9300

Denver, Colorado 80202

* * * Section 2 – HAZARDS IDENTIFICATION * * *

GHS Classification:

Flammable Gas – Category 1.

Gases Under Pressure - Gas.

Specific Target Organ Systemic Toxicity (STOT) – Single Exposure Category 2.

GHS LABEL ELEMENTS Symbol(s)

Signal Word

Danger

Hazard Statements

Extremely flammable gas.

Contains gas under pressure, may explode if heated.

May cause damage to central nervous and respiratory systems.

Precautionary Statements

Prevention

Keep away from heat/sparks/open flames/hot surfaces. No smoking.

Do not breathe fume/gas/mist/vapors/spray.

Wash thoroughly after handling.

Do not eat, drink or smoke when using this product.

Material Name: Dry Field Natural Gas US GHS

Response

Leaking gas fire: Do not extinguish, unless leak can be stopped safely. Eliminate all ignition sources if safe to do so.

If exposed to gas, or concerned about possible exposure: Call a POISON CENTER or doctor/physician.

Storage

Protect from sunlight. Store in a well-ventilated place.

Store in a secure area.

Disposal

Dispose of contents/containers in accordance with local/regional/national/international regulations.

* * * Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS * * *

CAS#	Component	Percent
74-82-8	Methane	95.01
78-84-0	Ethane	3.99
74-98-6	Propane	0.32
106-97-8	Butanes	0.07
109-66-0	Pentanes	0.02
110-54-3	Hexanes	0.01
7727-37-9	Nitrogen	0.35
124-38-9	Carbon Dioxide	0.19
7782-44-7	Oxygen	0.03

Because natural gas is a natural product, composition can vary greatly.

* * * Section 4 - FIRST AID MEASURES * * *

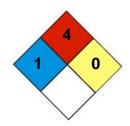
First Aid: Eyes

In case of freeze burn, cover eyes to protect from light. Flush eyes with running water for at least fifteen (15) minutes. Following flushing, seek medical attention.

First Aid: Skin

Remove contaminated clothing. In case of blistering, frostbite or freeze burns, seek immediate medical attention.

Material Name: Dry Field Natural Gas US GHS


First Aid: Ingestion

Risk of ingestion is extremely low. However, if oral exposure occurs, seek immediate medical assistance.

First Aid: Inhalation

Remove person to fresh air. If person is not breathing, provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

* * * Section 5 - FIRE FIGHTING MEASURES * * *

NFPA 704 Hazard Class

Health: 1 Flammability: 4 Instability: 0 (0-Minimal, 1-Slight, 2-Moderate, 3-Serious, 4-Severe)

General Fire Hazards

See Section 9 for Flammability Properties.

Forms a flammable mixture with air. If released, the resulting vapors will disperse with the prevailing wind. If a source of ignition is present where the vapor exists at a 5-15% concentration in air, the vapor will burn along the flame front toward the source of the fuel.

Hazardous Combustion Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

Extinguishing Media

Any extinguisher suitable for Class B fires, dry chemical, fire fighting foam, CO2, and other gaseous agents. However, fire should not be extinguished unless flow of gas can be immediately stopped.

Unsuitable Extinguishing Media

None.

Fire Fighting Equipment / Instructions

Gas fires should not be extinguished unless flow of gas can be immediately stopped. Shut off gas source and allow gas to burn out. If spill or leak has not ignited, determine

Material Name: Dry Field Natural Gas US GHS

if water spray may assist in dispersing gas or vapor to protect personnel attempting to stop leak. Use water to cool equipment, surfaces and piping exposed to fire and excessive heat. For large fire, the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Isolate area, particularly around piping. Let the fire burn unless leak can be stopped. Concentrate fire-fighting efforts on objects / materials ignited by the initial fire. Withdraw immediately in the event of a rising sound from a venting safety device.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH-approved pressure-demand self-contained breathing apparatus with full facepiece and full protective clothing.

* * * Section 6 - ACCIDENTAL RELEASE MEASURES * * *

Recovery and Neutralization

Stop the source of the release, if safe to do so.

Materials and Methods for Clean-Up

Consider the use of water spray to disperse gas vapors. Do not use water spray to direct gas vapors toward sewer or drainage systems. Isolate the area until gas has dispersed. Ventilate and gas test area before entering.

Emergency Measures

Evacuate nonessential personnel and secure all ignition sources. No road flares, smoking or flames in hazard area. Consider wind direction. Stay upwind and uphill, if possible. Vapor cloud may be white, but color will dissipate as cloud disperses. Fire and explosion hazard is still present.

Personal Precautions and Protective Equipment

Cooling effect of expanding gas from leak may present frostbite / freeze burn hazard. Wear flame retardant (FR) clothing around un-ignited leak. Wear fire protective clothing around an active fire.

Environmental Precautions

Do not flush gas vapors toward sewer or drainage systems.

Prevention of Secondary Hazards

None.

Material Name: Dry Field Natural Gas US GHS

* * * Section 7 – HANDLING AND STORAGE * * *

Handling Procedures

Keep away from flame, sparks and excessive temperatures. Bond and ground containers. Use only in well ventilated areas.

Storage Procedures

Natural gas will be contained in the pipeline. Keep away from flame, sparks, excessive temperatures and open flames. Empty pipeline segments may contain explosive residues from natural gas liquids. Do not cut, heat, weld or expose containers to sources of ignition sections of pipeline unless the sections have been purged of natural gas residues.

Incompatibilities

Keep away from strong oxidizers, ignition sources and heat.

* * * Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION * * *

Component Exposure Limits

Methane (74-82-8)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases: Alkane C1-4)

Ethane (74-84-0)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases: Alkane C1-4)

Propane (74-98-6)

ACGIH: 2500 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Butane (106-97-8)

ACGIH: 800 ppm TWA (listed under Aliphatic hydrocarbon gases: Alkane C1-4)

Pentanes (109-66-0)

ACGIH: 600 ppm TWA (listed under Pentane, all isomers)

Hexanes (110-54-3)

ACGIH: 50 ppm TWA (listed under n-Hexane)

Material Name: Dry Field Natural Gas US GHS

Nitrogen (7727-37-9)

Simple Asphyxiant

Carbon Dioxide (124-38-9)

ACGIH: 5000 ppm TWA (listed under Carbon Dioxide)

Oxygen (7782-44-7)

N/A – Necessary for life

Engineering Measures

Use adequate ventilation to keep gas and vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces. Use explosion-proof equipment and lighting in classified / controlled areas.

Personal Protective Equipment: Respiratory

Use a NIOSH approved positive-pressure, supplied air respirator with escape bottle or self-contained breathing apparatus (SCBA) for gas concentrations above occupational exposure limits, for potential for uncontrolled release, if exposure levels are not known, or in an oxygen-deficient atmosphere. CAUTION: Flammability limits (i.e., explosion hazard should be considered when assessing the need to expose personnel to concentrations requiring respiratory protection.

Personal Protective Equipment: Hands

Use cold-impervious, insulating flame-retardant (FR) gloves where contact with pressurized gas may occur.

Personal Protective Equipment: Eyes

Where there is a possibility of pressurized gas contact, wear splash-proof safety goggles and faceshield.

Personal Protective Equipment: Skin and Body

Where contact with pressurized gas may occur, wear flame-retardant (FR) and a faceshield.

* * * Section 9 - PHYSICAL AND CHEMICAL PROPERTIES * * *

Odorless to slight

Appearance: Colorless Odor: petroleum odor

Physical State:GaspH:NDVapor Pressure:40 atm @ -187°F (-86°C)Vapor Density:0.6Boiling Point:-259°F (-162°C)Melting Point:ND

Solubility (H2O): 3.5% **Specific Gravity:** 0.4 @ -263°F (-164°C)

Material Name: Dry Field Natural Gas US GHS

Evaporation Rate: ND VOC: ND

Octanol / H2O Coeff.: ND Flash Point: Flammable Gas

Flash Point Method: N/A

Lower Flammability Limit: 3.8 – 6.5 Upper Flammability Limit: 13-17

(LFL): (UFL):

Auto Ignition: 900-1170°F (482-632°C) Burning Rate: ND

* * * Section 10 - CHEMICAL STABILITY & REACTIVITY INFORMATION * * *

Chemical Stability

This is a stable material.

Hazardous Reaction Potential

Will not occur.

Conditions to Avoid

Keep away from strong oxidizers, ignition sources and heat.

Hazardous Decomposition Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

* * * Section 11 - TOXICOLOGICAL INFORMATION * * *

Acute Toxicity

A: General Product Information

Methane and ethane, the main components of natural gas, are considered practically inert in terms of physiological effects. At high concentrations these materials act as simple asphyxiants and may cause death due to lack of oxygen.

B. Component Analysis – LD50/LC50

Methane (74-82-8)

Inhalation LC50 Mouse 326 g/m3 2h

Ethane (74-84-0)

Inhalation LC50 Rat 658 mg/l 4h

Propane (74-98-6)

Inhalation LC50 Rat 658 mg/l 4h

Material Name: Dry Field Natural Gas US GHS

Butanes (106-97-8)

Inhalation LC50 Rat 658 g/m3 4h

Pentanes (109-66-0)

Inhalation LD50 Rat 364 g/m3 4h

Hexanes (110-54-3)

Inhalation LC50 Rat > 20 mg/l 4h

Nitrogen (7727-37-9)

Simple Asphyxiant

Carbon Dioxide (124-38-9)

Inhalation LC50 Human 100,000 ppm 1minute

Oxygen (7782-44-7)

N/A – Necessary for life

Potential Health Effects: Skin Corrosion Property / Stimulativeness

This product is not reported to have any skin sensitization effects.

Generative Cell Mutagenicity

This product is not reported to have any mutagenic effects.

Carcinogenicity

A: General Product Information

This product is not reported to have any carcinogenic effects.

B: Component Carcinogenicity

None of this product's components are listed by ACGIH, IARC, OSHA, NIOSH, or NTP.

Reproductive Toxicity

This product is not reported to have any reproductive toxicity effects.

Specified Target Organ General Toxicity: Single Exposure

This product may cause damage to the heart.

Specified Target Organ General Toxicity: Repeated Exposure

This product is not reported to have any specific target organ repeat effects.

Aspiration Respiratory Organs Hazard

This product is not reported to have any aspiration hazard effects.

Page 8 of 11

Material Name: Dry Field Natural Gas US GHS

* * * Section 12 - ECOLOGICAL INFORMATION * * *

Ecotoxicity

A: General Product Information

Keep gas and vapors out of sewers, drainage areas, and waterways. Report spills and releases, as applicable under Federal and State regulations.

B: Component Analysis - Ecotoxicity - Aquatic Toxicity

No ecotoxicity data are available for this product's components.

Persistance / Degradability

No information available.

Bioaccumulation

No information available.

Mobility in Soil

No information available.

* * * Section 13 - DISPOSAL CONSIDERATIONS * * *

Waste Disposal Instructions

See Section 7 for Handling Procedures. See Section 8 for Personal Protective Equipment Recommendations.

Disposal of Contaminated Containers or Packaging

Dispose of contents / container in accordance with local / regional / national / international regulations.

* * * Section 14 - TRANSPORTATION INFORMATION * * *

DOT Information

Shipping Name: Natural Gas, Compressed

UN #: 1971 Hazard Class: 2.1

Placard:

Material Name: Dry Field Natural Gas US GHS

* * * Section 15 - REGULATORY INFORMATION * * *

Regulatory Information

Component Analysis

None of this products components are listed under SARA Section 302 (40 CFR 355 Appendix A.

n-hexane is listed under SARA Section 313 (40 CFR 372.65). However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

n-hexane is listed under CERCLA (40 CFR 302.4). However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

SARA Section 311/312 – Hazard Classes

Acute Health	Chronic Health	<u>Fire</u>	Sudden Release of Pressure	<u>Reactive</u>
		Χ	X	

SARA Section 313 – Supplier Notification

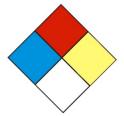
This product contains one chemical (n-Hexane) that is subject to the reporting requirements of section 313 of the Emergency Planning and Community Right-to-know act (EPCRA) of 1986 and of 40 CFR 372. However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

State Regulations

Component Analysis – State

The following components appear on one or more of the following state hazardous substances lists:

Component	CAS	CA	MA	MN	NJ	PA	RI
Methane	74-82-8	No	No	Yes	Yes	Yes	No
Ethane	78-84-0	No	No	Yes	Yes	Yes	No
Propane	74-98-6	No	No	Yes	Yes	Yes	Yes
Butane	106-97-8	Yes	No	Yes	Yes	Yes	Yes
Pentanes	109-66-0	Yes	No	Yes	Yes	Yes	Yes
Hexanes	110-54-3	Yes	Yes	Yes	Yes	Yes	Yes
Nitrogen	7727-37-9	No	No	No	No	No	No
Carbon Dioxide	124-38-9	Yes	No	Yes	Yes	Yes	Yes
Oxygen	7782-44-7	No	No	No	No	No	No


Material Name: Dry Field Natural Gas US GHS

* * * Section 16 - OTHER INFORMATION * * *

NFPA® Hazard Rating Health 1

Fire 4

Reactivity 0

HMIS® Hazard Rating Health 1 Moderate

Fire 4 Severe
Physical 0 Minimal

* Chronic

Key/Legend

EPA = Environmental Protection Agency; TSCA = Toxic Substance Control Act: ACGIH = American Conference of Governmental Industrial Hygienists; IARC = International Agency for Research on Cancer; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; NJTSR = New Jersey Trade Secret Registry.

Literature References

None

Other Information

The information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Date of Preparation: January 30, 2014

Date of Last Revision: March 4, 2014

End of Sheet

Attachment I.	
Emission Units Table	

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and of Char		Control Device 4
C-2100	1E	Compressor Engine #1	2016	1,680 hp	New	NS	SCR (1C)
C-2110	2E	Compressor Engine #2	2016	1,680 hp	New	NS	SCR (2C)
C-2120	3E	Compressor Engine #3	2016	1,680 hp	New	NS	SCR (3C)
C-2130	4E	Compressor Engine #4	2016	1,680 hp	New	NS	SCR (4C)
C-2140	5E	Compressor Engine #5	2016	1,680 hp	New	NS	SCR (5C)
C-2150	6E	Compressor Engine #6	2016	1,680 hp	New	NS	SCR (6C)
C-2160	7E	Compressor Engine #7	2016	1,680 hp	New	NS	SCR (7C)
C-2170	8E	Compressor Engine #8	2016	1,680 hp	New	NS	SCR (8C)
C-2180	9E	Compressor Engine #9	2016	1,680 hp	New	NS	SCR (9C)
C-2190	10E	Compressor Engine #10	2016	1,680 hp	New	NS	SCR(10C)
C-2200	11E	Compressor Engine #11	2016	1,680 hp	New	NS	SCR(11C)
C-2210	12E	Compressor Engine #12	2016	1,680 hp	New	NS	SCR(12C)
C-2220	13E	Compressor Engine #13	2016	1,680 hp	New	NS	SCR(13C)
G-8000	14E	Microturbine Generator #1	2016	600 kWe	New		None
SV-3110	15E	Dehydrator Still Vent #1	2016	72.5 MMscfd	New	FL-	1000 (14C)
FT-3110	16E	Dehydrator Flash Tank #1	2016	72.5 MMscfd	New	R-3	110 (17E)
R-3110	17E	Dehydrator Reboiler #1	2016	1.5 mmbtu/hr	New		None
SV-3210	18E	Dehydrator Still Vent #2	2016	72.5 MMscfd	New	FL-100	00 (14C)
FT-3210	19E	Dehydrator Flash Tank #2	2016	72.5 MMscfd	New	R-3210) (20E)
R-3210	20E	Dehydrator Reboiler #2	2016	1.5 mmbtu/hr	New	None	
TK-9000	21E	Settling Tank 1	2016	500 barrel	New		5000 & VRU- (15C & 16C)
TK-9200	22E	Condensate Tank 1	2016	400 barrel	New	VRU-	6000 & VRU- (15C & 16C)
TK-9210	23E	Condensate Tank 2	2016	400 barrel	New		5000 & VRU- (15C & 16C)

Emission	Units 1	lable
	03/	2007

TK-9100	24E	Produced Water Tank 1	2016	400 barrel	New	VRU-6000 & VRU- 6100 (15C & 16C)
TK-9110	25E	Produced Water Tank 2	2016	400 barrel	New	VRU-6000 & VRU- 6100 (15C & 16C)
CATHT1	26E	Catalytic Heater for Generator Fuel	talytic Heater for Generator Fuel 2016 0.024 MMBtu/h			
		NSCR Catalyst for Compressor #1	2016		New	1C
		NSCR Catalyst for Compressor #2	2016		New	2C
		NSCR Catalyst for Compressor #3	2016		New	3C
		NSCR Catalyst for Compressor #4	2016		New	4C
		NSCR Catalyst for Compressor #5	2016		New	5C
		NSCR Catalyst for Compressor #6	2016		New	6C
		NSCR Catalyst for Compressor #7	2016		New	7C
		NSCR Catalyst for Compressor #8	2016		New	8C
		NSCR Catalyst for Compressor #9	2016		New	9C
		NSCR Catalyst for Compressor #10	2016		New	10C
		NSCR Catalyst for Compressor #11	2016		New	11C
		NSCR Catalyst for Compressor #12	2016		New	12C
		NSCR Catalyst for Compressor #12	2016		New	13C
FL-1000	27E	Flare Combustion Device 1	2016	9.2 MMBtu/hr	New	14C
VRU-6000		Vapor Recovery Unit 1	2016	TBD	New	15C
VRU-6100		Vapor Recovery Unit 2	2016	TBD	New	16C

¹ For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation. ³ New, modification, removal ⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Attachment J. Emission Point Data Summary Sheet	

Attachment J EMISSION POINTS DATA SUMMARY SHEET

							Table ′	1: Emissions [Data						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
1E	Upward Vertical Stack	C-2100	Compressor engine 1	1C	NSCR catalyst	С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	50.37 47.41 1.41 0.27 0.008 0.35 0.19 2084	220.44 207.47 6.16 1.18 0.04 1.54 0.81 9121	1.26 1.19 0.70 0.27 0.008 0.21 0.04 1990	5.51 5.19 3.08 1.18 0.04 0.92 0.19 8707	Gas/Vapor	EE	
2E	Upward Vertical Stack	C-2110	Compressor engine 2	2C	NSCR catalyst	С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	50.37 47.41 1.41 0.27 0.008 0.35 0.19 2084	220.44 207.47 6.16 1.18 0.04 1.54 0.81 9121	1.26 1.19 0.70 0.27 0.008 0.21 0.04 1990	5.51 5.19 3.08 1.18 0.04 0.92 0.19 8707	Gas/Vapor	EE	
3E	Upward Vertical Stack	C-2120	Compressor engine 3	3C	NSCR catalyst	С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	50.37 47.41 1.41 0.27 0.008 0.35 0.19 2084	220.44 207.47 6.16 1.18 0.04 1.54 0.81 9121	1.26 1.19 0.70 0.27 0.008 0.21 0.04 1990	5.51 5.19 3.08 1.18 0.04 0.92 0.19 8707	Gas/Vapor	EE	

T	1							I		T	I			[]	
4E	Upward Vertical	C-2130	Com- pressor	4C	NSCR	C	8,760	NOx	50.37	220.44	1.26	5.51	Gas/Vapor	EE	
	Stack		engine 4		catalyst			CO	47.41	207.47	1.19	5.19			
	Stuck							VOC	1.41	6.16	0.70	3.08			
								PM10	0.27	1.18	0.27	1.18			
								SO2	0.008	0.04	0.008	0.04			
								Total HAPs	0.35	1.54	0.21	0.92			
								Formaldehyde	0.19	0.81	0.04	0.19			
								CO2e	2084	9121	1990	8707			
5E	Upward	C-2140	Com-	5C	NSCR	C	8,760	NOx	50.37	220.44	1.26	5.51	Gas/Vapor	EE	
	Vertical		pressor engine 5		catalyst			CO	47.41	207.47	1.19	5.19			
	Stack		engine e					VOC	1.41	6.16	0.70	3.08			
								PM10	0.27	1.18	0.27	1.18			
								SO2	0.008	0.04	0.008	0.04			
								Total HAPs	0.35	1.54	0.21	0.92			
								Formaldehyde	0.19	0.81	0.04	0.19			
								CO2e	2084	9121	1990	8707			
6E	Upward	C-2150	Com-	6C	NSCR	С	8,760	NOx	50.37	220.44	1.26	5.51	Gas/Vapor	EE	
02	Vertical		pressor engine 6		catalyst		0,700	CO	47.41	207.47	1.19	5.19			
	Stack		eligilie o					VOC	1.41	6.16	0.70	3.08			
								PM10	0.27	1.18	0.27	1.18			
								SO2	0.008	0.04	0.008	0.04			
								Total HAPs	0.35	1.54	0.21	0.92			
								Formaldehyde	0.19	0.81	0.04	0.19			
								CO2e	2084	9121	1990	8707			
7E	Upward	C-2160	Com-	7C	NSCR	С	8,760	NOx	50.37	220.44	1.26	5.51	Gas/Vapor	EE	
	Vertical		pressor		catalyst		3,700	CO	47.41	207.47	1.19	5.19	, ·		
	Stack		engine 7					VOC	1.41	6.16	0.70	3.08			
								PM10	0.27	1.18	0.27	1.18			
								SO2	0.008	0.04	0.008	0.04			
								Total HAPs	0.35	1.54	0.21	0.92			
								Formaldehyde	0.19	0.81	0.04	0.19			
								CO2e	2084	9121	1990	8707			
i					<u> </u>	<u> </u>	<u> </u>	0020		7141	1770	0707		I	

	G 21=6			1					T	T			I I	
	C-2170	Com- pressor	8C		C	8,760						Gas/Vapor	EE	
		engine 8		Cataryst										
Stuck														
							•							
							CO2e	2084	9121	1990	8707			
Upward	C-2180	Com-	9C	NSCR	С	8,760	NOx	50.37	220.44	1.26	5.51	Gas/Vapor	EE	
Vertical				catalyst			CO	47.41	207.47	1.19	5.19			
Stack		engine y					VOC	1.41	6.16	0.70	3.08			
							PM10	0.27	1.18	0.27	1.18			
							SO2	0.008	0.04	0.008	0.04			
							Total HAPs	0.35	1.54	0.21	0.92			
							Formaldehyde	0.19	0.81	0.04	0.19			
							CO2e	2084	9121	1990	8707			
Upward	C-2190	Com-	10C	NSCR	С	8.760	NOx	50.37	220.44	1.26	5.51	Gas/Vapor	EE	
Vertical		pressor		catalyst		, , , , , ,	CO	47.41	207.47	1.19	5.19	_		
Stack		10					VOC	1.41	6.16	0.70	3.08			
							PM10	0.27	1.18	0.27	1.18			
							SO2	0.008	0.04	0.008	0.04			
							Total HAPs	0.35	1.54	0.21	0.92			
							Formaldehyde	0.19	0.81	0.04	0.19			
							CO2e	2084	9121	1990	8707			
Upward	C-2200	Com-	11C	NSCR	С	8,760	NOx	50.37	220.44	1.26	5.51	Gas/Vapor	EE	
Vertical		pressor		catalyst		2,, 33	CO	47.41		1.19	5.19	T		
Stack		11					VOC	1.41	6.16	0.70	3.08			
							PM10	0.27		0.27	1.18			
							SO2	0.008	0.04	0.008	0.04			
							Total HAPs	0.35	1.54	0.21	0.92			
								0.19	0.81	0.04	0.19			
								2084						
	Vertical Stack Upward Vertical Stack Upward Vertical Stack	Vertical Stack Upward Vertical Stack C-2180 Upward Vertical Stack Upward Vertical Stack C-2200 Upward Vertical Stack	Vertical Stack Upward Vertical Stack C-2180 Compressor engine 9 Upward Vertical Stack C-2190 Compressor engine 10 Upward Vertical Stack C-2200 Compressor engine 10	Vertical Stack Upward Vertical Stack C-2180 Compressor engine 9 Upward Vertical Stack C-2190 Compressor engine 10 Upward Vertical Stack C-2200 Compressor engine 10 Upward Vertical Stack C-2200 Compressor engine 10 Upward Vertical Stack	Vertical Stack Upward Vertical Stack C-2180 Compressor engine 9 Upward Vertical Stack C-2190 Compressor engine 10 Compressor engine 10 Compressor engine 10 NSCR catalyst Vertical Stack C-2200 Compressor engine 10 NSCR catalyst	Vertical Stack Upward Vertical Stack C-2180 Compressor engine 9 Upward Vertical Stack C-2190 Compressor engine 10 Compressor engine 10 Compressor engine 10 NSCR catalyst C Compressor engine 10 NSCR catalyst C Compressor engine 10 Upward Vertical Stack C-2200 Compressor engine 11 C NSCR catalyst C Compressor engine 10 C C C C C C C C C C C C C C C C C C C	Vertical Stack Upward Vertical Stack C-2180 Compressor engine 9 Upward Vertical Stack C-2190 Compressor engine 10 C-2190 Compressor engine 10 Upward Vertical Stack C-2200 Compressor engine 10 Upward Vertical Stack C-2200 Compressor engine 11C NSCR catalyst Catalys	Vertical Stack Pressor engine 8 Catalyst CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	Vertical Stack					

12E	Upward Vertical Stack	C-2210	Compressor engine 12	12C	NSCR catalyst	С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	50.37 47.41 1.41 0.27 0.008 0.35 0.19 2084	220.44 207.47 6.16 1.18 0.04 1.54 0.81 9121	1.26 1.19 0.70 0.27 0.008 0.21 0.04 1990	5.51 5.19 3.08 1.18 0.04 0.92 0.19 8707	Gas/Vapor	EE	
13E	Upward Vertical Stack	C-2220	Compressor engine 13	13C	NSCR catalyst	С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	50.37 47.41 1.41 0.27 0.008 0.35 0.19 2084	220.44 207.47 6.16 1.18 0.04 1.54 0.81 9121	1.26 1.19 0.70 0.27 0.008 0.21 0.04 1990	5.51 5.19 3.08 1.18 0.04 0.92 0.19 8707	Gas/Vapor	EE	
14E	Upward Vertical Stack	G8000	Microtu rbine Genera tor			С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	0.24 0.66 0.06 0.04 0.02 0.006 0.004 799	1.05 2.89 0.26 0.18 0.09 0.03 0.02 3499	0.24 0.66 0.06 0.04 0.02 0.006 0.004 799	1.05 2.89 0.26 0.18 0.09 0.03 0.02 3499	Gas/Vapor	EE	
15E	Upward Vertical Stack	SV- 3110	Dehydr ator Still Vent 1	14C	Flare- 98% Control	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	8.23 1.75 0.36 0.80 0.001 0.22 0.36 456	36.05 7.67 1.58 3.52 0.004 0.97 1.59 1998	See 27E emissi ons		Gas/Vapor	EE	

16E	Used for fuel in 17E	FT-3110	Dehydr ator Flash Gas 1	Used for Fuel in 17E	95% Combu stion	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	24.20 0.81 0.028 0.035 2E-5 0.0032 0.74 1382	106.0 3.54 0.12 0.15 0.0001 0.014 3.25 6054	See 17E emissi ons		Gas/Vapor	EE	
17E	Upward Vertical Stack	R-3110	Dehydr ator Reboile r 1			С	8,760	NOx CO VOC PM10 SO2 Total HAPs CO2e	0.18 0.15 0.01 0.01 0.001 0.003 176.1	0.81 0.68 0.04 0.06 0.005 0.02 771	0.18 0.15 1.22 0.01 0.001 0.043 246.0	0.81 0.68 5.34 0.06 0.005 0.19 1077	Gas/Vapor	EE	
18E	Upward Vertical Stack	SV- 3210	Dehydr ator Still Vent 2	14C	Flare- 98% Control	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	8.23 1.75 0.36 0.80 0.001 0.22 0.36 456	36.05 7.67 1.58 3.52 0.004 0.97 1.59 1998	See 27E emissi ons		Gas/Vapor	EE	
19E	Used for fuel in 20E	FT-3210	Dehydr ator Flash Gas 2	Used for Fuel in 20E	95% Combu stion	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	24.20 0.81 0.028 0.035 2E-5 0.0032 0.74 1382	106.0 3.54 0.12 0.15 0.0001 0.014 3.25 6054	See 20E emissi ons		Gas/Vapor	EE	
20E	Upward Vertical Stack	R-3210	Dehydr ator Reboile r 2			С	8,760	NOx CO VOC PM10 SO2 Total HAPs CO2e	0.18 0.15 0.01 0.01 0.001 0.003 176.1	0.81 0.68 0.04 0.06 0.005 0.02 771	0.18 0.15 1.22 0.01 0.001 0.043 246.0	0.81 0.68 5.34 0.06 0.005 0.19	Gas/Vapor	EE	

21E	Upward Vertical Stack	TK- 9000	Settler Tank	13C	VRU- 98% capture	С	8,760	VOC Total HAPs CO2e	101.0 3.51 434	442.5 15.39 1901	2.02 0.070 8.9	8.85 0.31 39	Gas/Vapor	EE	
22E	Upward Vertical Stack	TK- 9200	Conde nsate Tank 1	13C	VRU- 98% capture	С	8,760	VOC Total HAPs CO2e	1.10 3.1e-3 0.67	4.80 1.37e-2 2.95	0.022 6.28e-5 0.016	0.10 2.75e-4 0.068	Gas/Vapor	EE	
23E	Upward Vertical Stack	TK- 9210	Conde nsate Tank 2	13C	VRU- 98% capture	С	8,760	VOC Total HAPs CO2e	1.10 3.1e-3 0.67	4.80 1.37e-2 2.95	0.022 6.28e-5 0.016	0.10 2.75e-4 0.068	Gas/Vapor	EE	
24E	Upward Vertical Stack	TK- 9100	Produc ed Water Tank 1	13C	VRU- 98% capture	С	8,760	VOC Total HAPs CO2e		3.3e-4 2.7e-7 0.013	1.5e-6 1.2e-9 9.9e-5	6.6e-6 5.3e-9 4.3e-4	Gas/Vapor	EE	
25E	Upward Vertical Stack	TK- 9110	Produc ed Water Tank 2	13C	VRU- 98% capture	С	8,760	VOC Total HAPs CO2e		3.3e-4 2.7e-7 0.013	1.5e-6 1.2e-9 9.9e-5	6.6e-6 5.3e-9 4.3e-4	Gas/Vapor	EE	
26E	Upward Vertical Stack	CATHT 1	Catalyti c Heater for Genera tor Fuel			С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	0.0029 0.0025 1.6 E-4 2.2 E-4 1.8 E-5 6 E-5 2 E-6 2.82	0.013 0.011 7.1 E-4 0.001 7.7 E-5 2.4 E-4 1 E-5	0.0029 0.0025 1.6 E-4 2.2 E-4 1.8 E-5 6 E-5 2 E-6 2.82	0.013 0.011 7.1 E-4 0.001 7.7 E-5 2.4 E-4 1 E-5	Gas/Vapor	EE	
27E	Upward Vertical Stack	FL- 1000	Flare combu stion device 1			С	8,760	NOx CO VOC PM10 Total HAPs CO2e	 	 	0.63 2.86 0.32 1.3e-4 0.07 1102	2.74 12.51 1.44 5.5e-4 0.31 4825	Gas/Vapor	EE	

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

- ¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.
- ² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).
- ³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂, H₂O, N₂, O₂, and Noble Gases.
- ⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- ⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- 6 Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).
- Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment J EMISSION POINTS DATA SUMMARY SHEET

Emission	Inner		Exit Gas		Emission Point Ele	evation (ft)	UTM Coordinates	s (km)
Point ID No.	Diameter (ft.)	Temp.	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ²	Northing	Easting
1E/1C	1.1	1223	8813	155	1068	TBD	4,341.7528	508.076
2E/2C	1.1	1223	8813	155	1068	TBD	4,341.7422	508.077
3E/3C	1.1	1223	8813	155	1068	TBD	4,341.7315	508.079
4E/4C	1.1	1223	8813	155	1068	TBD	4,341.7208	508.081
5E/5C	1.1	1223	8813	155	1068	TBD	4,341.7102	508.082
6E/6C	1.1	1223	8813	155	1068	TBD	4,341.6995	508.084
7E/7C	1.1	1223	8813	155	1068	TBD	4,341.6888	508.085
8E/8C	1.1	1223	8813	155	1068	TBD	4,341.6782	508.087
9E/9C	1.1	1223	8813	155	1068	TBD	4,341.6675	508.088
0E/10C	1.1	1223	8813	155	1068	TBD	4,341.6568	508.090
1E/11C	1.1	1223	8813	155	1068	TBD	4,341.6462	508.091
2E/12C	1.1	1223	8813	155	1068	TBD	4,341.7620	508.075
3E/13C	1.1	1223	8813	155	1068	TBD	4,341.7634	508.073
14E	0.5	535	4.0 kg/s mass flow	·	1068	~11	4,341.6041	508.047
17E	0.75	350	530	20	1068	~18	4,341.6768	508.024
20E	0.75	350	530	20	1068	~18	4,341.6708	508.025
26E	0.5	225	47	4	1068	~10	4,341.6041	508.047
27E	3	1030	2545	6	1068	20	4,341.6608	508.026
N . D 12F	1105	1: 4 255 B : 4	14E and 17E are grouped into 15	E 110E ('.1	D : 4 10F 22F			

¹ Give at operating conditions. Include inerts. ² Release height of emissions above ground level.

Attachment K. Fugitive Emissions Data Sum	nmary Sheet

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

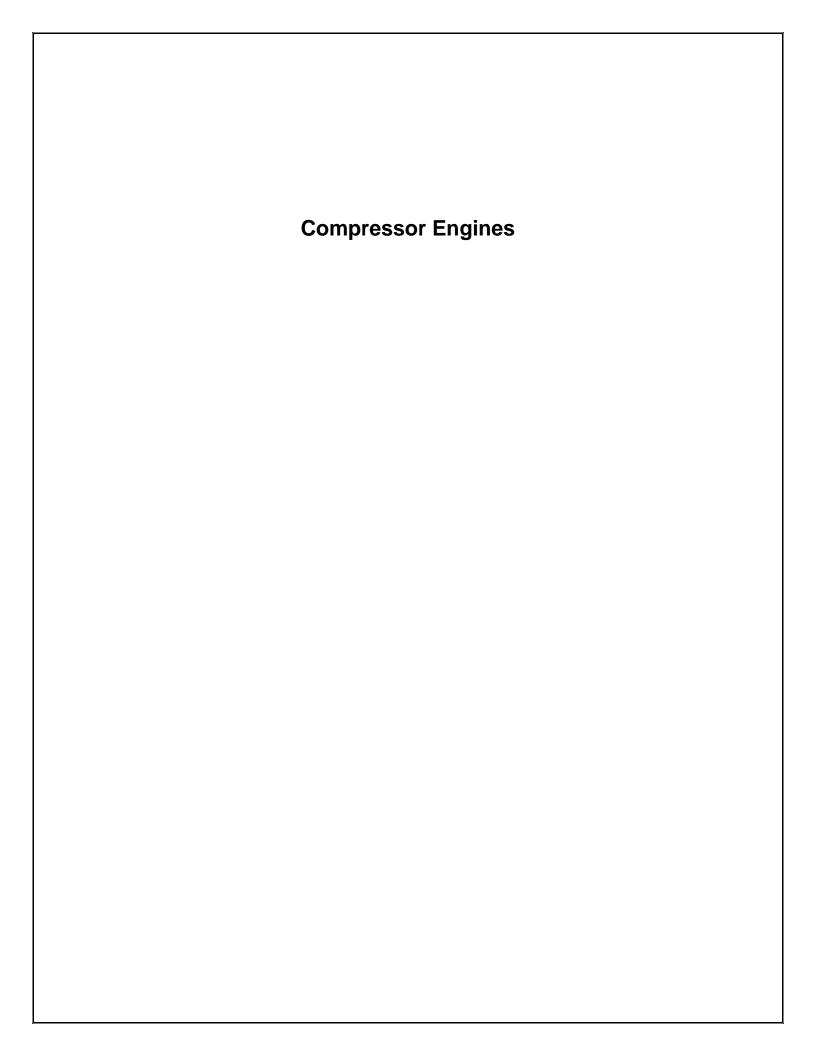
Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	⊠ Yes □ No
	☐ If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	☐ Yes ☐ No
	$\begin{tabular}{l} \hline \end{tabular} If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET. \\ \hline \end{tabular}$
3.)	Will there be Liquid Loading/Unloading Operations?
	⊠ Yes □ No
	$oxed{oxed}$ If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	☐ Yes ☐ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	⊠ Yes □ No
	$\hfill \square$ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	☐ Yes ☐ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	⊠ Yes □ No
	$\ \ \ \ \ \ \ \ \ \ \ \ \ $
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions mmary."

Page 1 of 2 Revision 2/11

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants - Chemical Name/CAS 1	Maximum Uncontrolled			Maximum Potential Controlled Emissions ³		
	Chemical Name/CAS	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴	
Haul Road/Road Dust Emissions Paved Haul Roads							
Unpaved Haul Roads	PM-10 PM-2.5	0.032 0.0032	0.14 0.014	0.032 0.0032	0.14 0.014	EE	
Storage Pile Emissions							
Loading/Unloading Operations	VOCs Total HAPs CO2e	44.98 0.13 52.0	6.77 0.02 5.28	44.98 0.13 52.0	6.77 0.02 5.28	EE	
Wastewater Treatment Evaporation & Operations							
Equipment Leaks	VOCs Total HAPs CO2e	0.81 0.023 22.5	3.57 0.10 99	0.81 0.023 22.5	3.57 0.10 99	EE	
General Clean-up VOC Emissions							
Other – Venting Episodes	VOCs Total HAPs CO2e	Does not apply	7.40 0.19 703	Does not apply	7.40 0.19 703	EE	

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.


Page 2 of 2 Revision 2/11

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Attachment L.	
Emission Unit Data Sheet	S

NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

Source Iden	ntification Number ¹	1	lE	2	EΕ	3	3E	
Engine Man	ufacturer and Model	Waukesha	a, 7044 GSI	Waukesha	, 7044 GSI	Waukesha	ı, 7044 GSI	
Manufactur	er's Rated bhp/rpm	1680 bhp	/1200 rpm	1680 bhp	/1200 rpm	1680 bhp	/1200 rpm	
Sou	arce Status ²	N	NS	NS NS		NS		
Date Installed	/Modified/Removed ³	Apri	1 2016	Apri	2016	Apri	1 2016	
Engine Manufactu	ared/Reconstruction Date ⁴	T	BD	T	BD	T	BD	
	Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	1	Vo	No		1	Vo	
	Engine Type ⁶	RI	B4S	RI	34S	RI	34S	
	APCD Type ⁷	NS	SCR	NS	SCR	NS	SCR	
	Fuel Type ⁸	F	PQ.	F	PQ.	I	PQ	
Engine, Fuel and	H ₂ S (gr/100 scf)		0		0		0	
Combustion Data	Operating bhp/rpm	1680 bhp	/1200 rpm	1680 bhp	/1200 rpm	1680 bhp	/1200 rpm	
Dutu	BSFC (Btu/bhp-hr)	8,	302	8,	302	4 GSI Waukesha rpm 1680 bhp N April TH N RE Orpm 1680 bhp 0 rpm 1680 bhp 1680 bhp 12, 108 8,7 12, 108 8,7 11,26 5,19 1,19 3,08 0,70 0,04 0,008 1,18 0,27	302	
	Fuel throughput (ft ³ /hr)	12	,420	12	420	12	,420	
	Fuel throughput (MMft ³ /yr)	108.80		10	108.80		8.80	
	Operation (hrs/yr)	8,	760	8,	760	8,	760	
Reference ⁹	Potential Emissions ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	
MD	NOx	1.26	5.51	1.26	5.51	1.26	5.51	
MD	СО	1.19	5.19	1.19	5.19	1.19	5.19	
MD	VOC	0.70	3.08	0.70	3.08	0.70	3.08	
AP	SO_2	0.008	0.04	0.008	0.04	0.008	0.04	
AP	PM_{10}	0.27	1.18	0.27	1.18	0.27	1.18	
MD	Formaldehyde	0.04	0.19	0.04	0.19	0.04	0.19	

Source Ide	ntification Number ¹	4	ŀΕ	5E		6E	
Engine Man	ufacturer and Model	Waukesha	, 7044 GSI	Waukesha	Waukesha, 7044 GSI Wau		ı, 7044 GSI
Manufactur	rer's Rated bhp/rpm	1680 bhp/1200 rpm		1680 bhp	1680 bhp/1200 rpm		/1200 rpm
Sor	urce Status ²	N	NS	N	NS	N	NS
Date Installed	d/Modified/Removed ³	April	1 2016	Apri	1 2016	Apri	1 2016
Engine Manufact	ured/Reconstruction Date ⁴	T	BD	T	BD	T	BD
	Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	No		No		N	No
	Engine Type ⁶	RI	34S	RI	34S	RI	34S
	APCD Type ⁷	NS	SCR	NS	SCR	NS	SCR
	Fuel Type ⁸	P	PQ	F	PQ	F	PQ
Engine, Fuel and	H ₂ S (gr/100 scf)		0		0		0
Combustion Data	Operating bhp/rpm	1680 bhp	/1200 rpm	1680 bhp	/1200 rpm	1680 bhp	/1200 rpm
Data	BSFC (Btu/bhp-hr)	8,3	302	8,	302	8,3	302
	Fuel throughput (ft ³ /hr)	12,	,420	12	,420	12,	,420
	Fuel throughput (MMft ³ /yr)	108	8.80	10	8.80	100	8.80
	Operation (hrs/yr)	8,	760	8,	108.80 8,760		760
Reference ⁹	Potential Emissions ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
MD	NO_X	1.26	5.51	1.26	5.51	1.26	5.51
MD	CO	1.19	5.19	1.19	5.19	1.19	5.19
MD	VOC	0.70	3.08	0.70	3.08	0.70	3.08
AP	SO_2	0.008	0.04	0.008	0.04	0.008	0.04
AP	PM_{10}	0.27	1.18	0.27	1.18	0.27	1.18
MD	Formaldehyde	0.04	0.19	0.04	0.19	0.04	0.19

Source Ide	ntification Number ¹	7	'E	8	BE	ç)E
Engine Man	ufacturer and Model	Waukesha	a, 7044 GSI	Waukesha	Waukesha, 7044 GSI Wau		ı, 7044 GSI
Manufactur	rer's Rated bhp/rpm	1680 bhp/1200 rpm		1680 bhp	/1200 rpm	1680 bhp/1200 rpm	
Sor	urce Status ²	N	NS	N	NS	N	NS
Date Installed	d/Modified/Removed ³	Apri	1 2016	April 2016 Apr		Apri	1 2016
Engine Manufact	ured/Reconstruction Date ⁴	T	BD	T	BD	T	BD
	Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	No		No		N	No
	Engine Type ⁶	RI	34S	RI	34S	RI	34S
	APCD Type ⁷	NS	SCR	NS	SCR	NS	SCR
	Fuel Type ⁸	F	PQ	I	PQ	F	PQ
Engine, Fuel and	H ₂ S (gr/100 scf)		0		0		0
Combustion Data	Operating bhp/rpm	1680 bhp	/1200 rpm	1680 bhp	/1200 rpm	1680 bhp	/1200 rpm
Data	BSFC (Btu/bhp-hr)	8,3	302	8,	302	8,3	302
	Fuel throughput (ft ³ /hr)	12,	,420	12	,420	12,	,420
	Fuel throughput (MMft ³ /yr)	108	8.80	10	8.80	100	8.80
	Operation (hrs/yr)	8,	760	8,	760	8,760	
Reference ⁹	Potential Emissions ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
MD	NO_X	1.26	5.51	1.26	5.51	1.26	5.51
MD	CO	1.19	5.19	1.19	5.19	1.19	5.19
MD	VOC	0.70	3.08	0.70	3.08	0.70	3.08
AP	SO ₂	0.008	0.04	0.008	0.04	0.008	0.04
AP	PM ₁₀	0.27	1.18	0.27	1.18	0.27	1.18
MD	Formaldehyde	0.04	0.19	0.04	0.19	0.04	0.19
			-		-		-

Source Ide	entification Number ¹	1	10E 11E		1	2E	
Engine Mar	nufacturer and Model	Waukesha	ı, 7044 GSI	Waukesha, 7044 GSI		Waukesha, 7044 GSI	
Manufactu	rer's Rated bhp/rpm	1680 bhp	/1200 rpm	1680 bhp	/1200 rpm	1680 bhp	/1200 rpm
So	ource Status ²	N	NS	1	IS	N	NS
Date Installe	d/Modified/Removed ³	Apri	1 2016	Apri	2016	Apri	1 2016
Engine Manufact	cured/Reconstruction Date ⁴	T	BD	T	BD	T	BD
	Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	Ν	No	No		1	No
	Engine Type ⁶	RI	34S	RI	34S	RI	34S
	APCD Type ⁷	NS	SCR	NS NS	NSCR PQ		SCR
	Fuel Type ⁸	F	PQ.	F	'Q	F	PQ.
Engine, Fuel and	H ₂ S (gr/100 scf)		0		0		0
Combustion Data	Operating bhp/rpm	1680 bhp	/1200 rpm	1680 bhp	/1200 rpm	1680 bhp	/1200 rpm
Data	BSFC (Btu/bhp-hr)	8,302		8,302		I Waukesha 1680 bhp/ N April TE N RB NS P (1680 bhp/ 8,3 12,4 108 8,7 r lbs/hr 1.26 1.19 0.70 0.008	302
	Fuel throughput (ft ³ /hr)	12,	,420	12	420	12.	,420
	Fuel throughput (MMft ³ /yr)	108	8.80	10	8.80	8,302 12,420 108.80 8,760	8.80
	Operation (hrs/yr)	8,	760	108.80 8,760		8,760	
Reference ⁹	Potential Emissions ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
MD	NO _X	1.26	5.51	1.26	5.51	1.26	5.51
MD	CO	1.19	5.19	1.19	5.19	1.19	5.19
MD	VOC	0.70	3.08	0.70	3.08	0.70	3.08
AP	SO_2	0.008	0.04	0.008	0.04	0.008	0.04
AP	PM ₁₀	0.27	1.18	0.27	1.18	0.27	1.18
MD	Formaldehyde	0.04	0.19	0.04 0.19		0.04	0.19

Source Idea	ntification Number ¹	13E			
Engine Man	ufacturer and Model	Waukesha, 7044 GSI			
Manufactur	er's Rated bhp/rpm	1680 bhp	/1200 rpm		
Sou	arce Status ²	N	NS		
Date Installed	d/Modified/Removed ³	Apri	1 2016		
	ured/Reconstruction Date ⁴	T	BD		
Is this a Certified Engine according t (Yes or No) ⁵	Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	1	No		
	Engine Type ⁶	RI	B4S		
	APCD Type ⁷	NS	SCR		
	Fuel Type ⁸	F	PQ		
Engine, Fuel and	H ₂ S (gr/100 scf)		0		
Combustion Data	Operating bhp/rpm	1680 bhp	/1200 rpm		
Data	BSFC (Btu/bhp-hr)	8,302			
	Fuel throughput (ft ³ /hr)	12,420			
	Fuel throughput (MMft ³ /yr)	10	8.80		
	Operation (hrs/yr)	8,	760		
Reference ⁹	Potential Emissions ¹⁰	lbs/hr	tons/yr		
MD	NO_X	1.26	5.51		
MD	СО	1.19	5.19		
MD	VOC	0.70	3.08		
AP	SO_2	0.008	0.04		
AP	PM ₁₀	0.27	1.18		
MD	Formaldehyde	0.04	0.19		

1. Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. If more than three (3) engines exist, please use additional sheets.

2. Enter the Source Status using the following codes:

NSConstruction of New Source (installation)ESExisting SourceMSModification of Existing SourceRSRemoval of Source

3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.

- 4. Enter the date that the engine was manufactured, modified or reconstructed.
- 5. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6. Enter the Engine Type designation(s) using the following codes:

LB2S Lean Burn Two Stroke RB4S Rich Burn Four Stroke LB4S Lean Burn Four Stroke

7. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F Air/Fuel Ratio IR Ignition Retard

HEIS High Energy Ignition System SIPC Screw-in Precombustion Chambers

PSC Prestratified Charge LEC Low Emission Combustion

NSCR Rich Burn & Non-Selective Catalytic Reduction SCR Lean Burn & Selective Catalytic Reduction

8. Enter the Fuel Type using the following codes:

PO Pipeline Quality Natural Gas RG Raw Natural Gas

9. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this *Compressor/Generator Data Sheet(s)*.

MD Manufacturer's Data AP AP-42
GR GRI-HAPCalcTM OT Other _____ (please list)

10. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

Lafferty Compressor Station - Ritchie County, WV

VHP - L7044GSI

Gas Compression

ENGINE SPEED (rpm):	1200	NOx SELECTION (g/bhp-hr):	Customer Catalyst
DISPLACEMENT (in3):	7040	COOLING SYSTEM:	JW, IC + OC
COMPRESSION RATIO:	8:1	INTERCOOLER WATER INLET (°F):	130
IGNITION SYSTEM:	ESM	JACKET WATER OUTLET (°F):	180
EXHAUST MANIFOLD:	Water Cooled	JACKET WATER CAPACITY (gal):	100
COMBUSTION:	Rich Burn, Turbocharged	AUXILIARY WATER CAPACITY (gal):	11
ENGINE DRY WEIGHT (lbs):	24250	LUBE OIL CAPACITY (gal):	190
AIR/FUEL RATIO SETTING:	0.38% CO	MAX. EXHAUST BACKPRESSURE (in. H2O):	18
ENGINE SOUND LEVEL (dBA)	104	MAX. AIR INLET RESTRICTION (in. H2O):	15
		EXHAUST SOUND LEVEL (dBA)	111

SITE CONDITIONS: FUEL: ALTITUDE (ft): Commercial Quality Natural Gas 1065 FUEL PRESSURE RANGE (psig): MAXIMUM INLET AIR TEMPERATURE (°F): 30 - 60 100 FUEL HHV (BTU/ft3): FUEL LHV (BTU/ft3): 1,241.1 FUEL WKI: 63.3 1,122.0

SITE SPECIFIC TECHNICAL DATA			MAX RATING AT 100 °F	SITE RATING AT MAXIMUM INLET AIR TEMPERATURE OF 100 °F		
POWER RATING		UNITS	AIR TEMP	100%	75%	50%
CONTINUOUS ENGINE POWER		BHP	1680	1680	1260	843
OVERLOAD		% 2/24 hr	10	10	-	-
MECHANICAL EFFICIENCY (LHV)		%	30.7	30.7	29.6	28.6
CONTINUOUS POWER AT FLYWHEEL		BHP	1680	1680	1260	843
based on no auxiliary engine driven equipment						
FUEL CONSUMPTION						
FUEL CONSUMPTION (LHV)		BTU/BHP-hr	8302	8302	8599	8920
FUEL CONSUMPTION (HHV)		BTU/BHP-hr	9183	9183	9512	9867
FUEL FLOW	based on fuel analysis LHV		207	207	161	112
HEAT REJECTION						
JACKET WATER (JW)		BTU/hr x 1000	4176	4175	3390	2530
LUBE OIL (OC)		BTU/hr x 1000	572	572	519	437
INTERCOOLER (IC)		BTU/hr x 1000	271	271	184	93
EXHAUST		BTU/hr x 1000	4216	4215	3101	1922
RADIATION		BTU/hr x 1000	707	707	644	537
EMISSIONS (ENGINE OUT):						
NOx (NO + NO2)		g/bhp-hr	13.6	13.6	14.8	16.5
CO		g/bhp-hr	12.8	12.8	12.5	11.4
THC		g/bhp-hr	2.3	2.3	2.3	2.3
NMHC		g/bhp-hr	0.87	0.87	0.81	0.67
NM, NEHC		g/bhp-hr	0.38	0.38	0.35	0.29
CO2		g/bhp-hr	526	526	545	565
CO2e		g/bhp-hr	562	562	579	593
CH2O		g/bhp-hr	0.05	0.05	0.05	0.05
CH4		g/bhp-hr	1.46	1.46	1.36	1.12
AIR INTAKE / EXHAUST GAS						
INDUCTION AIR FLOW		SCFM	2554	2554	1984	1376
EXHALIST GAS MASS FLOW		lh/hr	11877	11876	9226	6401

AIR INTAKE / EXHAUST GAS					
INDUCTION AIR FLOW	SCFM	2554	2554	1984	1376
EXHAUST GAS MASS FLOW	lb/hr	11877	11876	9226	6401
EXHAUST GAS FLOW at exhaust temp, 14.5 psia	ACFM	8895	8894	6692	4353
EXHAUST TEMPERATURE	°F	1225	1225	1172	1070

HEAT EXCHANGER SIZING		
TOTAL JACKET WATER CIRCUIT (JW)	BTU/hr x 1000	4735
TOTAL AUXILIARY WATER CIRCUIT (IC + OC)	BTU/hr x 1000	956

COOLING SYSTEM WITH ENGINE MOUNTED WATER PUMPS		
JACKET WATER PUMP MIN. DESIGN FLOW	GPM	450
JACKET WATER PUMP MAX. EXTERNAL RESTRICTION	psig	16
AUX WATER PUMP MIN. DESIGN FLOW	GPM	79
AUX WATER PUMP MAX. EXTERNAL RESTRICTION	psig	44

Lafferty Compressor Station - Ritchie County, WV

VHP - L7044GSI

Compi	

HYDROCARBONS: Mole or Volume % (Methane CH4 78,953 FUEL PRESSURE RANGE (psig): 30 - 60	FUEL COMPOSITION					
Ethane	HYDROCARBONS:	Mole or	Volume %		FUEL: Commercia	al Quality Natural Gas
Propose C3H8	Methane	CH4	78.953		FUEL PRESSURE RANGE (psig):	30 - 60
So-Butane	Ethane	C2H6	14.097		FUEL WKI:	63.3
Normal Butlane	Propane	C3H8	4.116			
Inches	Iso-Butane	I-C4H10	0.52		FUEL SLHV (BTU/ft3):	1102.46
Normal Pentane	Normal Butane	N-C4H10	1.003		FUEL SLHV (MJ/Nm3):	43.35
Hexane	Iso-Pentane	I-C5H12	0.244		, ,	
Heptane	Normal Pentane	N-C5H12	0.225		FUEL LHV (BTU/ft3):	1121.98
Heptane	Hexane	C6H14	0.307		FUEL LHV (MJ/Nm3):	44.12
Propene	Heptane	C7H16	0		,	
SUM HYDROCARBONS 99.465 FUEL DENSITY (SG): 0.70 NON-HYDROCARBONS: Nitrogen N2 0.402 Oxygen O2 0 6976:1996-02-0[125, V(0:101.325)]. Based on the fuel composition, supply pressure and temperature, liquid helium He 0 hydrogen O2 0.133 in the fuel. The fuel must not contain any liquid water. Carbon Monoxide CO 0 0 Walester accommends both of the following: Hydrogen H2 0 0 Hydrogen H2 0 0 Hydrogen H2O 0 0 Hydrogen H2O 0	Ethene	C2H4	0		FUEL HHV (BTU/ft3):	1241.13
Non-HYDROCARBONS: Nitrogen N2	Propene	C3H6	0		FUEL HHV (MJ/Nm3):	48.81
Nitrogen N2 0.402 Standard Conditions per ASTM D588.81 [60°F and 14.696psia] and ISO 676:1996-0.2152.5(1):01.3236]. Based on the fuel composition, supply pressure and temperature, liquid hydrocarbons may be present in the fuel. No liquid hydrocarbons are allowed in the fuel. The fuel hydrocarbons are allowed in the fuel hydrocarbons are allo		SUM HYDROCARBONS	99.465		FUEL DENSITY (SG):	0.70
Oxygen O2 0 Based on the tuel composition, supply pressure and temperature, liquid hydrocarbons may be present in the fuel. No liquid hydrocarbons are allowed in the fuel. The fuel must not contain any liquid water. Watershare commends both of the following: 1) Dew point of the fuel gas to be at least 20°F (11°C) below the measured temperature of the gas at the inlet of the engine fuel regulator. Water Vapor H2O 0 10 1, 1285) Water Vapor H2O 0 2 1, 133	NON-HYDROCARBONS:					
Helium He 0 0 He 0 0 He 0 0 He 0	Nitrogen	N2	0.402			and 14.696psia] and ISO
Helium He O Carbon Dioxide CO2 0.133 in the fuel. The fuel must not contain any liquid water. Carbon Monoxide CO 0 0 0 1 1 The fuel must not contain any liquid water. Water Vapor H2 0 0 1 1 Deep point of the fuel gas to the at least 20°F (11°C) below the measured temperature of the gas at the inlet of the engine fuel regulator. 2) A fuel filter separator to be used on all fuels except commercial quality natural gas. Refer to the Fuel and Lubrication's ection of 'Technical Data' or contact the Waukesha Application Engineering Department for additional information on fuels, or LHV and WKl' calculations. * Trademark of General Electric Company FUEL CONTAMINANTS Total Sulfur Compounds Total Halogen as Cloride Total Ammonia 0 % volume Total Halogen as Cloride 0 μg/BTU Siloxanes Tetramethyl silane Trimethyl silane Trimethyl silanol Hexamethyldisiloxane (L2) Hexamethyldisiloxane (L2) Hexamethyldisiloxane (L2) Octamethyltrisiloxane (L3) Octamethyltrisiloxane (L4) Decamethylterisiloxane (D4) Decamethylterisiloxane (D5) Dodecamethylocylotetrasiloxane (D5) Dodecamethylocylotetrasiloxane (D5) Dodecamethylocylotetrasiloxane (D6) Total Sulfur Compounds O μg/BTU Total Ammonia 0 μg/BTU Total Ammonia 0 μg/BTU Total Siloxanes (as Si) 0 μg/BTU Total Siloxanes (as Si) O μg/BTU Calculated fuel contaminant analysis will depend on the entered fuel composition and selected engine model.	Oxygen	O2				and temperature, liquid
Carbon Monoxide Hydrogen H2 0 Water Vapor H2O 0 Carbon Monoxide Hydrogen H2 0 Water Vapor H2O 0 Carbon Monoxide H2O 0 Water Vapor H2O 0 Carbon Monoxide H2O 0 Carbon Manoxide H2O 0 Carbon Monoxide H	Helium	He	0			
Hydrogen H2 0 0 temperature of the gas to be at least 20°F (11°C) below the measured temperature of the gas at the inter for the engine fuel regulator. TOTAL FUEL 100 Refer to the Fuel and Lubrication' section of Technical Data' or contact the Waukesha Application Engineering Department for additional information on fuels, or LHVI and Wfic raciuations. *Trademark of General Electric Company FUEL CONTAMINANTS Total Sulfur Compounds 0 % volume Total Halogen as Cloride 0 µg/BTU Total Halogen as Cloride 0 µg/BTU Total Halogen as Cloride 0 µg/BTU Total Ammonia 0 % volume Total Ammonia 0 µg/BTU Siloxanes Tetramethyl silane Trimethyl silano 0 % volume Hexamethyldisiloxane (L2) 0 % volume Hexamethyldisiloxane (L2) 0 % volume Hexamethyldisiloxane (L2) 0 % volume Hexamethyltrisiloxane (D3) 0 % volume Decamethylterisiloxane (D4) 0 % volume Decamethylterisiloxane (D4) 0 % volume Decamethylterisiloxane (L4) 0 % volume Decamethylterisiloxane (L5) 0 % volume Dodecamethylcyclothexasiloxane (D6) 0 % volume Do	Carbon Dioxide	CO2	0.133			ater.
Hydrogen H2 0 1 100 1 1	Carbon Monoxide	CO	0			1°C) bolow the measured
Water Vapor H2O TOTAL FUEL 100 FUEL CONTAMINANTS Total Sulfur Compounds	Hydrogen	H2	0			
TOTAL FUEL 100 Refer to the "Fuel and Lubrication's section of "Technical Data" or contact the Waukesha Application Engineering Department for additional information on fuels, or LHV and WKI" calculations. *Trademark of General Electric Company FUEL CONTAMINANTS Total Sulfur Compounds Total Sulfur Compounds Total Halogen as Cloride Total Halogen as Cloride Total Ammonia 0 % volume Total Halogen as Cloride Total Ammonia 0 ½ volume Total Ammonia 1 Total Siloxanes (as Si) 0 μg/BTU Total Siloxanes (as Si) 0 μg/BTU Total Siloxanes (as Si) 0 μg/BTU Calculated fuel contaminant analysis will depend on the entered fuel composition and selected engine model. Calculated fuel contaminant analysis will depend on the entered fuel composition and selected engine model. Calculated fuel contaminant analysis will depend on the entered fuel composition and selected engine model. Calculated fuel contaminant analysis will depend on the entered fuel composition and selected engine model. Calculated fuel contaminant analysis will depend on the entered fuel composition and selected engine model. Calculated fuel contaminant analysis will depend on the entered fuel composition and selected engine model. Calculated fuel contaminant analysis will depend on the entered fuel composition and selected engine model. Calculated fuel contaminant analysis will depend on the entered fuel composition and selected engine model. Calculated fuel contaminant analysis will depend on the entered fuel composition and selected engine model. Calculated fuel contaminant analysis will depend on the entered fuel composition and selected engine model. Calculated fuel contaminant analysis will depend on the entered fuel contaminant analysis will depend on the entered fuel contaminant analysis will depend on the entered fuel contaminant analysis will depend on the en	Water Vapor	H2O	0		2) A fuel filter separator to be used on all fuels ex-	
FUEL CONTAMINANTS Total Sulfur Compounds Total Halogen as Cloride Total Ammonia Total Ammonia Total Sulfure Total Ammonia Total Sulfure Total Sulfure Total Ammonia Total Sulfure Total Ammonia Total Sulfure Total Halogen as Cloride Total Ammonia Total Sulfure Total Halogen as Cloride Total Ammonia Total Sulfure Total Sulfure Total Halogen as Cloride Total Ammonia Total Siloxanes Total Siloxanes (as Si) Upg/BTU Total Siloxanes						boign Data' or contact the
FUEL CONTAMINANTS Total Sulfur Compounds Total Halogen as Cloride Total Ammonia Siloxanes Tetramethyl silane Trimethyl silanol Hexamethyldisiloxane (L2) Hexamethylcyclotrisiloxane (D3) Octamethyltrisiloxane (L3) Octamethyltrisiloxane (D4) Decamethyltycyclotexasiloxane (D5) Dodecamethylcyclohexasiloxane (L5) Dodecamethylcyclohexasiloxane (D6) FUEL CONTAMINANTS Total Sulfur Compounds O % volume Total Halogen as Cloride O % volume Total Halogen as Cloride O % volume Total Halogen as Cloride O % volume Total Ammonia O pg/BTU Total Siloxanes (as Si) O μg/BTU Total Siloxanes (as Si) O μg/BTU Calculated fuel contaminant analysis will depend on the entered fuel composition and selected engine model. O % volume O % volume Decamethyltetrasiloxane (L4) O % volume Dodecamethyltepotasiloxane (L5) O % volume Dodecamethylcyclohexasiloxane (D6) O % volume		TOTAL FUEL	100			
FUEL CONTAMINANTS Total Sulfur Compounds					fuels, or LHV and WKI* calculations.	
Total Sulfur Compounds Total Halogen as Cloride Total Halogen as Cloride Total Ammonia O % volume Total Halogen as Cloride Total Ammonia O % volume Total Halogen as Cloride O μg/BTU Total Ammonia O μg/BTU Total Ammonia O μg/BTU Total Siloxanes (as Si) O μg/BTU Total Siloxane (as Si) O μg/BTU Total Siloxanes (as Si) O μg/BTU Total Siloxanes (as Si) O μg/BTU Total Siloxanes (as Si) O μg/BTU Total Siloxane (as Si) O μg/BTU Total Siloxanes (as Si) O μg/BTU					* Trademark of General Electric Company	
Total Sulfur Compounds Total Halogen as Cloride Total Halogen as Cloride Total Ammonia O % volume Total Halogen as Cloride Total Ammonia O % volume Total Halogen as Cloride O μg/BTU Total Ammonia O μg/BTU Total Siloxanes (as Si) O μg/BTU Calculated fuel contaminant analysis will depend on the entered fuel composition and selected engine model. Octamethyltrisiloxane (L3) Octamethyltrisiloxane (L3) Octamethyltrisiloxane (L4) Decamethylcyclopetrasiloxane (D4) Decamethylcyclopentasiloxane (D5) Dodecamethylcyclopentasiloxane (L5) O % volume Dodecamethylcyclohexasiloxane (D6) O % volume Dodecamethylcyclohexasiloxane (D6) O % volume	ELIEL CONTAMINANTS					
Total Halogen as Cloride Total Ammonia O % volume Total Ammonia Total Halogen as Cloride O μg/BTU Total Ammonia Total Ammonia Total Halogen as Cloride O μg/BTU Total Siloxanes (as Si) O μg/BTU			0	% volumo	Total Sulfur Compounds	0 ug/RTH
Total Ammonia 0 % volume Total Ammonia 0 μg/BTU Siloxanes Total Siloxanes (as Si) 0 μg/BTU Calculated fuel contaminant analysis will depend on the entered fuel composition and selected engine model. Octamethyltrisiloxane (L3) Octamethyltrisiloxane (L4) Decamethyltetrasiloxane (L4) Decamethyltetrasiloxane (L5) Dodecamethylpentasiloxane (L5) Dodecamethylcyclohexasiloxane (D6) 0 % volume Dodecamethylcyclohexasiloxane (D6) 0 % volume			-			
Siloxanes Total Siloxanes (as Si) 0 μg/BTU Tetramethyl silane Trimethyl silanol Hexamethyldisiloxane (L2) Hexamethylcyclotrisiloxane (D3) Octamethyltrisiloxane (L3) Octamethyltrisiloxane (D4) Decamethyltetrasiloxane (L4) Decamethyltetrasiloxane (L4) Decamethylcyclopentasiloxane (D5) Dodecamethylpentasiloxane (L5) Dodecamethylcyclohexasiloxane (D6) Total Siloxanes (as Si) O μg/BTU Calculated fuel contaminant analysis will depend on the entered fuel composition and selected engine model. Calculated fuel composition and selected engine model. O % volume O % volume O % volume O % volume Dodecamethylcyclopentasiloxane (D5) O % volume Dodecamethylcyclohexasiloxane (D6) O % volume	<u> </u>		-	,	S .	
Tetramethyl silane Trimethyl silanol Hexamethyldisiloxane (L2) Hexamethylcyclotrisiloxane (D3) Octamethyltrisiloxane (D4) Decamethylterasiloxane (L4) Decamethylterasiloxane (D5) Dodecamethylcyclopentasiloxane (D5) Dodecamethylcyclopentasiloxane (L5) Dodecamethylcyclohexasiloxane (D6) O % volume Calculated fuel contaminant analysis will depend on the entered fuel composition and selected engine model. O' w volume Dodecamethylcyclopentasiloxane (D5) O % volume Dodecamethylcyclopentasiloxane (D6) O % volume	Total Allillollia		U	76 VOIGITIE	Total Allillollia	о ружто
Trimethyl silanol Hexamethyldisiloxane (L2) Hexamethylcyclotrisiloxane (D3) Octamethyltrisiloxane (L3) Octamethyltrisiloxane (D4) Decamethyltetrasiloxane (L4) Decamethyltetrasiloxane (D5) Dodecamethylpentasiloxane (D5) Dodecamethylpentasiloxane (L5) Dodecamethylcyclohexasiloxane (D6) O % volume					Total Siloxanes (as Si)	0 μg/BTU
Hexamethyldisiloxane (L2) Hexamethylcyclotrisiloxane (D3) Octamethyltrisiloxane (L3) Octamethylcyclotetrasiloxane (D4) Decamethylcyclopentasiloxane (D5) Dodecamethylcyclopentasiloxane (L5) Dodecamethylcyclohexasiloxane (D6) O % volume	Tetramethyl silane		0	% volume		
Hexamethylcyclotrisiloxane (D3) Octamethyltrisiloxane (L3) Octamethyltrisiloxane (D4) Decamethyltetrasiloxane (L4) Decamethylcyclopentasiloxane (D5) Dodecamethylpentasiloxane (L5) Dodecamethylcyclopexasiloxane (D6) O % volume			0	% volume		
Octamethyltrisiloxane (L3) Octamethyltrisiloxane (D4) Octamethylcyclotetrasiloxane (D4) Decamethyltetrasiloxane (L4) Decamethylcyclopentasiloxane (D5) Odecamethylpentasiloxane (L5) Odecamethylcyclohexasiloxane (D6) Odecamethylcyclohexasiloxane (D6) Odecamethylcyclohexasiloxane (D6) Odecamethylcyclohexasiloxane (D6) Odecamethylcyclohexasiloxane (D6)	Hexamethyldisiloxane (L2)		0	% volume	Calculated fuel contaminant analysis	s will depend on the
Octamethylcyclotetrasiloxane (D4) Decamethyltetrasiloxane (L4) Decamethylcyclopentasiloxane (D5) Dodecamethylpentasiloxane (L5) Dodecamethylcyclohexasiloxane (D6) 0 % volume 0 % volume	Hexamethylcyclotrisiloxane (D3)		0	% volume	entered fuel composition and selecte	ed engine model.
Decamethyltetrasiloxane (L4) Decamethylcyclopentasiloxane (D5) Dodecamethylpentasiloxane (L5) Dodecamethylcyclohexasiloxane (D6) O % volume Volume	Octamethyltrisiloxane (L3)		0	% volume		
Decamethylcyclopentasiloxane (D5) 0 % volume Dodecamethylpentasiloxane (L5) 0 % volume Dodecamethylcyclohexasiloxane (D6) 0 % volume	Octamethylcyclotetrasiloxane (D4)		0	% volume		
Dodecamethylpentasiloxane (L5) 0 % volume Dodecamethylcyclohexasiloxane (D6) 0 % volume	Decamethyltetrasiloxane (L4)		0	% volume		
Dodecamethylcyclohexasiloxane (D6) 0 % volume	Decamethylcyclopentasiloxane (D5	5)	0	% volume		
	Dodecamethylpentasiloxane (L5)		0	% volume		
	Dodecamethylcyclohexasiloxane (I	D6)	0	% volume		
	Others		0	% volume		

No water or hydrocarbon condensates are allowed in the engine. Requires liquids removal.

·

Lafferty Compressor Station - Ritchie County, WV

VHP - L7044GSI

NOTES

- 1. All data is based on engines with standard configurations unless noted otherwise.
- 2. Power rating is adjusted for fuel, site altitude, and site air inlet temperature, in accordance with ISO 3046/1 with tolerance of ± 3%.
- 3. Fuel consumption is presented in accordance with ISO 3046/1 with a tolerance of -0 / +5% at maximum rating. Fuel flow calculation based on fuel LHV and fuel consumption with a tolerance of -0/+5 %. For sizing piping and fuel equipment, it is recommended to include the 5% tolerance.
- 4. Heat rejection tolerances are ± 30% for radiation, and ± 8% for jacket water, lube oil, intercooler, and exhaust energy.
- 5. Emission levels for engines with GE supplied 3-way catalyst are given at catalyst outlet flange. For all other engine models, emission levels are given at engine exhaust outlet flange prior to any after treatment. Values are based on a new engine operating at indicated site conditions, and adjusted to the specified timing and air/fuel ratio at rated load. Catalyst out emission levels represent emission levels the catalyst is sized to achieve. Manual adjustment may be necessary to achieve compliance as catalyst/engine age. Catalyst-out emission levels are valid for the duration of the engine warranty. Emissions are at an absolute humidity of 75 grains H2O/lb (10.71 g H2O/kg) of dry air. Emission levels may vary subject to instrumentation, measurement, ambient conditions, fuel quality, and engine variation. Engine may require adjustment on-site to meet emission values, which may affect engine performance and heat output. NOx, CO, THC, and NMHC emission levels are listed as a not to exceed limit, all other emission levels are estimated. CO2 emissions based on EPA Federal Register/Vol. 74, No. 209/Friday, October 30, 2009 Rules and Regulations 56398, 56399 (3) Tier 3 Calculation Methodology, Equation C-5.
- 6. Air flow is based on undried air with a tolerance of ± 7%.
- 7. Exhaust temperature given at engine exhaust outlet flange with a tolerance of ± 75°F (42°C).
- 8. Exhaust gas mass flow value is based on a "wet basis" with a tolerance of \pm 7%.
- 9. Inlet air restrictions based on full rated engine load. Exhaust backpressure based on 158 PSI BMEP and 1200 RPM. Refer to the engine specification section of Waukesha's standard technical data for more information.
- 10. Cooling circuit capacity, lube oil capacity, and engine dry weight values are typical.
- 11. Fuel must conform to Waukesha's "Gaseous Fuel Specification" S7884-7 or most current version. Fuel may require treatment to meet current fuel specification.
- 12. Heat exchanger sizing values given as the maximum heat rejection of the circuit, with applied tolerances and an additional 5% reserve factor.
- 13. Fuel volume flow calculation in english units is based on 100% relative humidity of the fuel gas at standard conditions of 60°F and 14.696 psia (29.92 inches of mercury; 101.325 kPa).
- 14. Fuel volume flow calculation in metric units is based on 100% relative humidity of the fuel gas at a combustion temperature of 25°C and metering conditions of 0°C and 101.325 kPa (14.696 psia; 29.92 inches of mercury). This is expressed as [25, V(0;101.325)].
- 15. Engine sound data taken with the microphone at 1 m (3.3 ft) from the side of the engine at the approximate front-to-back centerline. Microphone height was at intake manifold level. Engine sound pressure data may be different at front, back and opposite side locations. Exhaust sound data taken with microphone 1 meter (3.3 ft) away and 1 meter (3.3 ft) to the side of the exhaust outlet.
- 16. Due to variation between test conditions and final site conditions, such as exhaust configuration and background sound level, sound pressure levels under site conditions may be different than those tabulated above.
- 17. Cooling system design flow is based on minimum allowable cooling system flow. Cooling system maximum external restriction is defined as the allowable restriction at the minimum cooling system flow.
- 18. Continuous Power Rating: The highest load and speed that can be applied 24 hours per day, seven days per week, 365 days per year except for normal maintenance at indicated ambient reference conditions and fuel. It is permissible to operate the engine at the indicated overload power, for two hours in every 24 hour period.
- 19. emPact emission compliance available for entire range of operable fuels; however, fuel system and/or O2 set point may need to be adjusted in order to maintain compliance.
- 20. In cold ambient temperatures, heating of the engine jacket water, lube oil and combustion air may be required. See Waukesha Technical Data.

SPECIAL REQUIREMENTS

Mi	icroturbine Generators	

NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

Source Ide	ntification Number ¹	1	4E				
Engine Mar	nufacturer and Model	Capstone C	600 Standard				
Manufactu	Manufacturer's Rated bhp/rpm		600 kWe				
So	urce Status ²	1	NS				
Date Installe	d/Modified/Removed ³	Marc	ch 2016				
Engine Manufact	ured/Reconstruction Date ⁴	Т	BD				
Is this a Certified	Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	N	J/A				
	Engine Type ⁶	N	J/A				
	APCD Type ⁷	N	J/A				
Engine,	Fuel Type ⁸	I	PQ				
Fuel and	H ₂ S (gr/100 scf)		0				
Combustion Data	Operating kWe	600					
	BSFC (Btu/kWe)	10,300					
	Fuel throughput (ft ³ /hr)	6,059					
	Fuel throughput (MMft ³ /yr)	53	3.08				
	Operation (hrs/yr)	8,	760				
Reference ⁹	Potential Emissions ¹⁰	lbs/hr	tons/yr			lbs/hr	tons/yr
MD	NOx	0.24	1.05				
MD	СО	0.66	2.89				
MD	VOC	0.06	0.26				
AP	SO_2	0.02	0.09				
AP	PM ₁₀	0.04	0.018				
AP	Formaldehyde	4.4e-4	0.02				
I	ı			1	1	I	

1. Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. If more than three (3) engines exist, please use additional sheets.

2. Enter the Source Status using the following codes:

NS Construction of New Source (installation) ES Existing Source
MS Modification of Existing Source RS Removal of Source

3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.

- 4. Enter the date that the engine was manufactured, modified or reconstructed.
- 5. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6. Enter the Engine Type designation(s) using the following codes:

	U	J 1	U	` /	U	U		
LB2S	Lean	Burn Tw	vo Strok	e			RB4S	Rich Burn Four Stroke

LB4S Lean Burn Four Stroke

7. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F	Air/Fuel Ratio	IK	Ignition Retard
HEIS	High Energy Ignition System	SIPC	Screw-in Precombustion Chambers
PSC	Prestratified Charge	LEC	Low Emission Combustion
NSCR	Rich Burn & Non-Selective Catalytic Reduction	SCR	Lean Burn & Selective Catalytic Reduction

8. Enter the Fuel Type using the following codes:

PQ Pipeline Quality Natural Gas RG Raw Natural Gas

9. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this *Compressor/Generator Data Sheet(s)*.

MD	Manufacturer's Data	AP	AP-42	
GR	GRI-HAPCalc TM	OT	Other	(please list)

10. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

C600 600kW Power Package High-pressure Natural Gas

World's largest air-bearing microturbine produces 600kW of clean, green and reliable power.

- High electrical efficiency over a very wide operating range
- Low maintenance air bearings require no lube oil or coolant
- Ultra-low emissions
- High availability part load redundancy
- Proven technology with tens of millions of operating hours
- Integrated utility synchronization and protection with a modular design
- 5 and 9 year Factory Protection Plans available
- · Remote monitoring and diagnostic capabilities
- Upgradable to 800kW or 1MW with field installed Capstone 200kW power modules
- Internal fuel gas compressor available for low fuel pressure Natural Gas applications

C600 600kW Power Package

Electrical Performance(1)

Electrical Power Output

Voltage	400-480 VAC
Electrical Service	3-Phase, 4 wire
Frequency	50/60 Hz, grid connect operation
	10-60 Hz, stand alone operation
Maximum Output Current	870A RMS @ 400V, grid connect operation
	720A RMS @ 480V, grid connect operation
	930A RMS, stand alone operation(2)
Electrical Efficiency LHV	33%

600kW

Fuel/Engine Characteristics(1)

Natural Gas HHV	30.7-47.5 MJ/m ³ (825-1,275 BTU/scf)
Inlet Pressure ⁽³⁾	517–552 kPa gauge (75–80 psig)
Fuel Flow HHV	7,200 MJ/hr (6,840,000 BTU/hr)
Net Heat Rate LHV	10.9 MJ/kWh (10,300 BTU/kWh)

Exhaust Characteristics(1)	Standard	CARB Version
NOx Emissions @ 15% O ₂ ⁽⁴⁾	< 9 ppmvd (18 mg/m³)	< 4 ppmvd (8 mg/m³)
NOx / Electrical Output(4)	0.14 g/bhp-hr (0.4 lb/MWhe)	0.05 g/bhp-hr (0.14 lb/MWhe)
Exhaust Gas Flow	4.0 kg/s (8.8 lbm/s)	4.0 kg/s (8.8 lbm/s)
Exhaust Gas Temperature	280°C (535°F)	280°C (535°F)
Exhaust Energy	4,260 MJ/hr (4,050,000 BTU/hr)	4,260 MJ/hr (4,050,000 BTU/hr)

Dimensions & Weight(5)

Width x Depth x Height 2.4 x 9.1 x 2.9 m

(96 x 360 x 114 in)

Weight - Grid Connect Model 12565 kg (27,700 lbs)
Weight - Dual Mode Model 15014 kg (33,100 lbs)

Minimum Clearance Requirements⁽⁶⁾

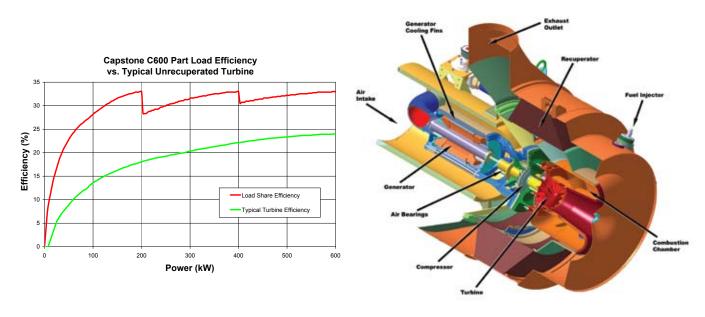
Vertical Clearance 0.6 m (24 in)

Horizontal Clearance

 Left & Right
 1.5 m (60 in)

 Front
 1.5 m (60 in)

 Rear
 1.8 m (72 in)


Sound Levels

Acoustic Emissions at Full Load Power

Nominal at 10 m (33 ft) 65 dBA

Planned Certifications

- UL 2200 and UL 1741 for natural gas operation under existing UL files⁽⁷⁾
- Will comply with IEEE 1547 and will meet statewide utility interconnection requirements for California Rule 21 and the New York State Public Service Commission
- Models will be available with optional equipment for CE marking

C200 Engine

- (1) Nominal full power performance at ISO conditions: 59°F, 14.696 psia, 60% RH
- 2) With linear load
- (3) Inlet pressure for standard natural gas at 39.4 MJ/Nm³ (1,000 BTU/scf) (HHV)
- 4) Emissions for standard natural gas at 39.4 MJ/Nm³ (1,000 BTU/scf) (HHV)
- 5) Approximate dimensions and weights
- (6) Clearance requirements may increase due to local code considerations
- (7) All models are planned to be UL Listed or available with optional equipment for CE marking Specifications are not warranted and are subject to change without notice.

Capstone

Technical Reference

Capstone MicroTurbineTM Systems Emissions

Summary

Capstone MicroTurbine™ systems are inherently clean and can meet some of the strictest emissions standards in the world. This technical reference is to provide customers with information that may be requested by local air permitting organizations or to compare air quality impacts of different technologies for a specific project. The preferred units of measure are "output based"; meaning that the quantity of a particular exhaust emission is reported relative to the useable output of the microturbine – typically in pounds per megawatt hour for electrical generating equipment. This technical reference also provides volumetric measurements in parts per million and milligrams per normal cubic meter. A conversion between several common units is also provided.

Maximum Exhaust Emissions at ISO Conditions

Table 1 below summarizes the exhaust emissions at full power and ISO conditions for different Capstone microturbine models. Note that the fuel can have a significant impact on certain emissions. For example landfill and digester gas can be made up of a wide variety of fuel elements and impurities, and typically contains some percentage of carbon dioxide (CO₂). This CO₂ dilutes the fuel, makes complete combustion more difficult, and results in higher carbon monoxide emissions (CO) than for pipeline-quality natural gas.

Table 1. Emission for Different Capstone Microturbine Models in [lb/MWhe]

Model	Fuel	NOx	СО	VOC (5)
C30 NG	Natural Gas (1)	0.64	1.8	0.23
CR30 MBTU	Landfill Gas (2)	0.64	22.0	1.00
CR30 MBTU	Digester Gas (3)	0.64	11.0	1.00
C30 Liquid	Diesel #2 (4)	2.60	0.41	0.23
C65 NG Standard	Natural Gas (1)	0.46	1.25	0.10
C65 NG Low NOx	Natural Gas (1)	0.17	1.30	0.10
C65 NG CARB	Natural Gas (1)	0.17	0.24	0.05
CR65 Landfill	Landfill Gas (2)	0.46	4.0	0.10
CR65 Digester	Digester Gas (3)	0.46	4.0	0.10
C200 NG	Natural Gas (1)	0.40	1.10	0.10
C200 NG CARB	Natural Gas (1)	0.14	0.20	0.04
CR200 Digester	Digester Gas (3)	0.40	3.6	0.10

Notes:

- (1) Emissions for standard natural gas at 1,000 BTU/scf (HHV) or 39.4 MJ/m3 (HHV)
- (2) Emissions for surrogate gas containing 42% natural gas, 39% CO2, and 19% Nitrogen
- (3) Emissions for surrogate gas containing 63% natural gas and 37% CO2
- (4) Emissions for Diesel #2 according to ASTM D975-07b
- (5) Expressed as Methane

Capstone Turbine Corporation • 21211 Nordhoff Street • Chatsworth • CA 91311 • USA Technical Reference: Microturbine System Emissions

Table 2 provides the same output-based information shown in Table 1, but expressed in grams per horsepower hour (g/hp-hr).

Table 2. Emission for Different Capstone Microturbine Models in [g/hp-hr]

Model	Fuel	NOx	СО	VOC (5)
C30 NG	Natural Gas (1)	0.22	0.60	0.078
CR30 MBTU	Landfill Gas (2)	0.22	7.4	0.340
CR30 MBTU	Digester Gas (3)	0.22	3.7	0.340
C30 Liquid	Diesel #2 (4)	0.90	0.14	0.078
C65 NG Standard	Natural Gas (1)	0.16	0.42	0.034
C65 NG Low NOx	Natural Gas (1)	0.06	0.44	0.034
C65 NG CARB	Natural Gas (1)	0.06	0.08	0.017
CR65 Landfill	Landfill Gas (2)	0.16	1.4	0.034
CR65 Digester	Digester Gas (3)	0.16	1.4	0.034
C200 NG	Natural Gas (1)	0.14	0.37	0.034
C200 NG CARB	Natural Gas (1)	0.05	0.07	0.014
CR200 Digester	Digester Gas (3)	0.14	1.3	0.034

Notes: - same as for Table 1

Emissions may also be reported on a volumetric basis, with the most common unit of measurement being parts per million. This is typically a measurement that is corrected to specific oxygen content in the exhaust and without considering moisture content. The abbreviation for this unit of measurement is "ppmvd" (parts per million by volume, dry) and is corrected to 15% oxygen for electrical generating equipment such as microturbines. The relationship between an output based measurement like pounds per MWh and a volumetric measurement like ppmvd depends on the characteristics of the generating equipment and the molecular weight of the criteria pollutant being measured. Table 3 expresses the emissions in ppmvd at 15% oxygen for the Capstone microturbine models shown in Table 1. Note that raw measurements expressed in ppmv will typically be lower than the corrected values shown in Table 3 because the microturbine exhaust has greater than 15% oxygen.

Another volumetric unit of measurement expresses the mass of a specific criteria pollutant per standard unit of volume. Table 4 expresses the emissions in milligrams per normal cubic meter at 15% oxygen. Normal conditions for this purpose are expresses as one atmosphere of pressure and zero degrees Celsius. Note that both the ppmvd and mg/m3 measurements are for specific oxygen content. A conversion can be made to adjust either unit of measurement to other reference oxygen contents, if required. Use the equation below to convert from one reference oxygen content to another:

Emissions at New O₂ =
$$\frac{(20.9 - \text{New O2 Percent})}{(20.9 - \text{Current O2 Percent})} \text{ X Emissions at Current O2}$$

For example, to express 9 ppmvd of NOx at 15% oxygen to ppmvd at 3% oxygen:

Emissions at 3% O2 =
$$\frac{(20.9 - 3.0)}{(20.9 - 15.0)}$$
 X 9 = 27 ppmvd

Table 3. Emission for Different Capstone Microturbine Models in [ppmvd] at 15% O2

Model	Fuel	NOx	СО	voc
C30 NG	Natural Gas (1)	9	40	9
CR30 MBTU	Landfill Gas (2)	9	500	40
CR30 MBTU	Digester Gas (3)	9	250	40
C30 Liquid	Diesel #2 (4)	35	9	9
C65 NG Standard	Natural Gas (1)	9	40	7
C65 NG Low NOx	Natural Gas (1)	4	40	7
C65 NG CARB	Natural Gas (1)	4	8	3
CR65 Landfill	Landfill Gas (2)	9	130	7
CR65 Digester	Digester Gas (3)	9	130	7
C200 NG	Natural Gas (1)	9	40	7
C200 NG CARB	Natural Gas (1)	4	8	3
CR200 Digester	Digester Gas (3)	9	130	7

Notes: same as Table 1

Table 4. Emission for Different Capstone Microturbine Models in [mg/m3] at 15% O2

Model	Fuel	NOx	СО	VOC (5)
C30 NG	Natural Gas (1)	18	50	6
CR30 MBTU	Landfill Gas (2)	18	620	30
CR30 MBTU	Digester Gas (3)	18	310	30
C30 Liquid	Diesel #2 (4)	72	11	6
C65 NG Standard	Natural Gas (1)	19	50	5
C65 NG Low NOx	Natural Gas (1)	8	50	5
C65 NG CARB	Natural Gas (1)	8	9	2
CR65 Landfill	Landfill Gas (2)	18	160	5
CR65 Digester	Digester Gas (3)	18	160	5
C200 NG	Natural Gas (1)	18	50	5
C200 NG CARB	Natural Gas (1)	8	9	2
CR200 Digester	Digester Gas (3)	18	160	5

Notes: same as Table 1

The emissions stated in Tables 1, 2, 3 and 4 are guaranteed by Capstone for new microturbines during the standard warranty period. They are also the expected emissions for a properly maintained microturbine according to manufacturer's published maintenance schedule for the useful life of the equipment.

Emissions at Full Power but Not at ISO Conditions

The maximum emissions in Tables 1, 2, 3 and 4 are at full power under ISO conditions. These levels are also the expected values at full power operation over the published allowable ambient temperature and elevation ranges.

Emissions at Part Power

Capstone microturbines are designed to maintain combustion stability and low emissions over a wide operating range. Capstone microturbines utilize multiple fuel injectors, which are switched on or off depending on the power output of the turbine. All injectors are typically on when maximum power is demanded, regardless of the ambient temperature or elevation. As the load requirements of the microturbine are decreased, injectors will be switched off to maintain stability and low emissions. However, the emissions relative to the lower power output may increase. This effect differs for each microturbine model.

Emissions Calculations for Permitting

Air Permitting agencies are normally concerned with the maximum amount of a given pollutant being emitted per unit of time (for example pounds per day of NOx). The simplest way to make this calculation is to use the maximum microturbine full electrical power output (expressed in MW) multiplied by the emissions rate in pounds per MWhe times the number of hours per day. For example, the C65 CARB microturbine operating on natural gas would have a NOx emissions rate of:

NOx = .17 X (65/1000) X 24 = .27 pounds per day

This would be representative of operating the equipment full time, 24 hours per day, at full power output of 65 kWe.

As a general rule, if local permitting is required, use the published agency levels as the stated emissions for the permit and make sure that this permitted level is above the calculated values in this technical reference.

Consideration of Useful Thermal Output

Capstone microturbines are often deployed where their clean exhaust can be used to provide heating or cooling, either directly or using hot water or other heat transfer fluids. In this case, the local permitting or standards agencies will usually consider the emissions from traditional heating sources as being displaced by the useful thermal output of the microturbine exhaust energy. This increases the useful output of the microturbine, and decreases the relative emissions of the combined heat and power system. For example, the CARB version C65 ICHP system with integral heat recovery can achieve a total system efficiency of 70% or more, depending on inlet water temperatures and other installation-specific characteristics. The electric efficiency of the CARB version C65 microturbine is 28% at ISO conditions. This means that the total NOx output based emissions, including the captured thermal value, is the electric-only emissions times the ratio of electric efficiency divided by total system efficiency:

 $NOx = .17 \times 28/70 = .068$ pounds per MWh (based on total system output)

This is typically much less than the emissions that would result from providing electric power using traditional central power plants, plus the emissions from a local hot water heater or boiler. In fact microturbine emissions are so low compared with traditional hot water heaters that installing a Capstone microturbine with heat recovery can actually decrease the local emissions of NOx and other criteria pollutants, without even considering the elimination of emissions from a remote power plant.

Greenhouse Gas Emissions

Many gasses are considered "greenhouse gasses", and agencies have ranked them based on their global warming potential (GWP) in the atmosphere compared with carbon dioxide (CO₂), as well as their ability to maintain this effect over time. For example, methane is a greenhouse gas with a GWP of 21. Criteria pollutants like NOx and organic compounds like methane are monitored by local air permitting authorities, and are subject to strong emissions controls. Even though some of these criteria pollutants can be more troublesome for global warming than CO₂, they are released in small quantities – especially from Capstone microturbines. So the major contributor of concern is carbon dioxide, or CO₂. Emission of CO₂ depends on two things:

- 1. Carbon content in the fuel
- 2. Efficiency of converting fuel to useful energy

It is for these reasons that many local authorities are focused on using clean fuels (for example natural gas compared with diesel fuel), achieving high efficiency using combined heat and power systems, and displacing emissions from traditional power plants using renewable fuels like waste landfill and digester gasses.

Table 5 shows the typical CO₂ emissions due to combustion for different Capstone microturbine models at full power and ISO conditions. The values do not include CO₂ that may already exist in the fuel itself, which is typical for renewable fuels like landfill and digester gas. These values are expressed on an output basis, as is done for criteria pollutants in Table 1. The table shows the pounds per megawatt hour based on electric power output only, as well as considering total useful output in a CHP system with total 70% efficiency (LHV). As for criteria pollutants, the relative quantity of CO₂ released is substantially less when useful thermal output is also considered in the measurement.

Table 5. CO₂ Emission for Capstone Microturbine Models in [lb/MWh]

Model	Fuel	Fuel C	
		Electric Only	70% Total CHP
C30 NG	Natural Gas (1)	1,690	625
CR30 MBTU	Landfill Gas (1)	1,690	625
CR30 MBTU	Digester Gas (1)	1,690	625
C30 Liquid	Diesel #2 (2)	2,400	855
C65 NG Standard	Natural Gas (1)	1,520	625
C65 NG Low NOx	Natural Gas (1)	1,570	625
C65 NG CARB	Natural Gas (1)	1,570	625
CR65 Landfill	Landfill Gas (1)	1,520	625
CR65 Digester	Digester Gas (1)	1,520	625
C200 NG	Natural Gas (1)	1,330	625
C200 NG CARB	Natural Gas (1)	1,330	625
CR200 Digester	Digester Gas (1)	1,330	625

Notes:

- (1) Emissions due to combustion, assuming natural gas with CO₂ content of 117 lb/MMBTU (HHV)
- (2) Emissions due to combustion, assuming diesel fuel with CO₂ content of 160 lb/MMBTU (HHV)

Useful Conversions

The conversions shown in Table 6 can be used to obtain other units of emissions outputs. These are approximate conversions.

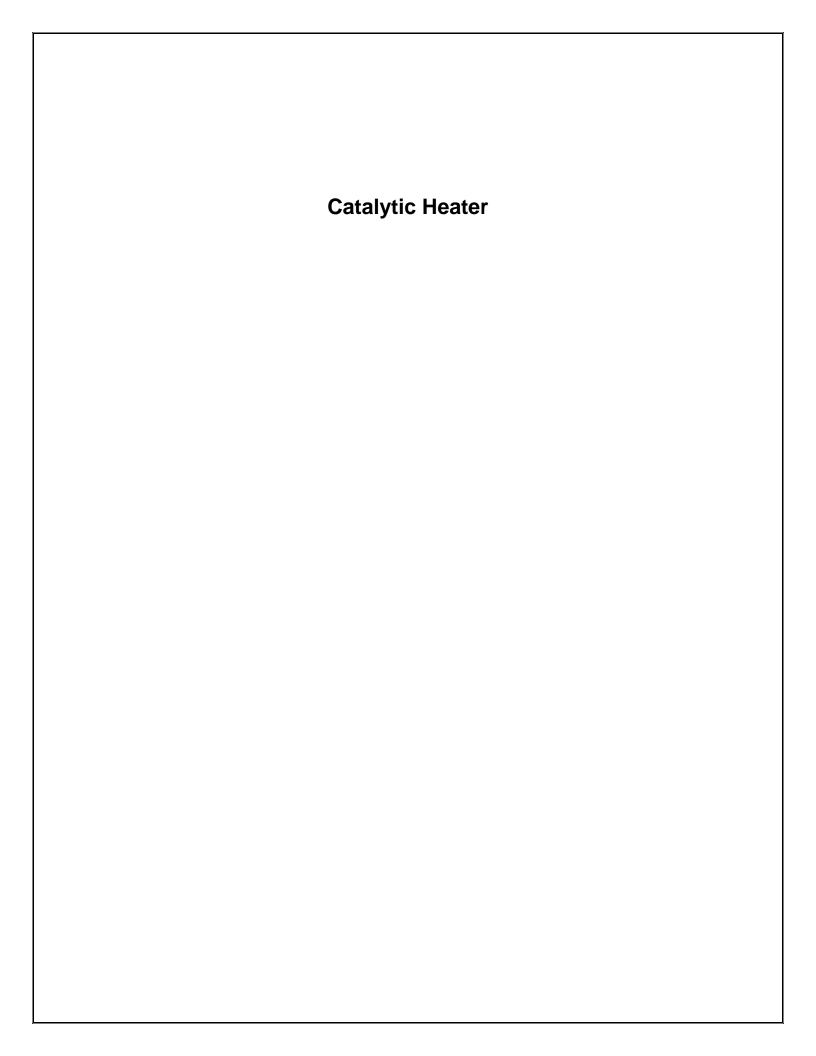
Table 6. Useful Unit Conversions

From	Multiply By	To Get
lb/MWh	0.338	g/bhp-hr
g/bhp-hr	2.96	lb/MWh
lb	0.454	kg
kg	2.20	lb
kg	1,000	g
hp (electric)	.746	kW
kW	1.34	hp (electric)
MW	1,000	kW
kW	0.001	MW

Definitions

- ISO conditions are defined as: 15 °C (59 °F), 60% relative humidity, and sea level pressure of 101.3 kPa (14.696 psia).
- HHV: Higher Heating Value
- LHV: Lower Heating Value
- kW_{th}: Kilowatt (thermal)
- kW_e: Kilowatt (electric)
- MWh: Megawatt-hour
- hp-hr: horsepower-hour (sometimes referred to as "electric horsepower-hour")
- Scf: Standard cubic foot (standard references ISO temperature and pressure)
- m3: Normal cubic meter (normal references 0 °C and one atmosphere pressure)

Capstone Contact Information


If questions arise regarding this technical reference, please contact Capstone Turbine Corporation for assistance and information:

Capstone Applications

Toll Free Telephone: (866) 4-CAPSTONE or (866) 422-7786

Fax: (818) 734-5385

E-mail: applications@capstoneturbine.com

Attachment L **EMISSIONS UNIT DATA SHEET GENERAL**

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*):

, 20E
Name or type and model of proposed affected source: Bruest HotCat Heater. Model 8000 24,000 Btu/hr
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour: Natural Gas as fuel - 30 scf/hr
4. Name(s) and maximum amount of proposed material(s) produced per hour: Heater is used to increase temperature of fuel gas to generators. Heater will be used to raise the temperature of the fuel gas by approximately 30 F (average from 45F to 75F).
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: Combustion process

The identification number which appears here must correspond to the air pollution control device identification number appearing on the List Form.

6.	Combustion Data (if applicable):			
Nat	(a) Type and amount in appropriate units of fuel(s) to be burned: atural Gas as fuel - 30 scf/hr			
	(b)	Chemical analysis of prand ash:	roposed fuel(s), excluding coal, in	cluding maximum percent sulfur
San	ne a	s fuel gas analysis - see a	ttached sheet	
	(c)	Theoretical combustion	air requirement (ACF/unit of fue	l):
		@	°F and	psia.
	(d)	Percent excess air:		
			rners and all other firing equipme	ent planned to be used:
24,0	000	Btu/hr heater. Natural ga	S	
	(f)	If coal is proposed as a coal as it will be fired:	source of fuel, identify supplier a	and seams and give sizing of the
	(a)	Proposed maximum de	esign heat input:	× 10 ⁶ BTU/hr.
7				
7. 24		ojected operating schedu	7	
Ho	urs/	Day	Days/Week	Weeks/Year 52

8.	Projected amount of pollutants that would be emitted from this affected source if no control devices were used:					
@		75 °F and	164 psia			
a.	NO _x	0.0029 lb/hr	grains/ACF			
b.	SO ₂	0.000018 lb/hr	grains/ACF			
c.	СО	0.0025 lb/hr	grains/ACF			
d.	PM ₁₀	0.00022 lb/hr	grains/ACF			
e.	Hydrocarbons	lb/hr	grains/ACF			
f.	VOCs	0.00016 lb/hr	grains/ACF			
g.	Pb	lb/hr	grains/ACF			
h.	Specify other(s)					
	Total HAP (including formaldehyde	0.00006 lb/hr	grains/ACF			
	CO2e	2.82 lb/hr	grains/ACF			
		lb/hr	grains/ACF			
		lb/hr	grains/ACF			

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. 				
MONITORING	RECORDKEEPING			
see Attachment O	see Attachment O			
REPORTING	TESTING			
A 1				
see Attachment O	see Attachment O			
	E PROCESS PARAMETERS AND RANGES THAT ARE STRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.			
	POSED RECORDKEEPING THAT WILL ACCOMPANY THE			
MONITORING.	OSED RECORDREEPING THAT WILL ACCOMPANT THE			
	POSED FREQUENCY OF REPORTING OF THE			
RECORDKEEPING.				
TESTING. PLEASE DESCRIBE ANY PROPOSED EMIS	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR			
POLLUTION CONTROL DEVICE.				
10. Describe all operating ranges and mainter	nance procedures required by Manufacturer to			
maintain warranty				
·				

Infrared Radiant Heaters

The Safest, Most Efficient Alternative Wherever Flameless Heat is Required

Catalytic heating is the product of intensive research efforts to quantify the effectiveness of catalysts in promoting the reaction of combustive gases with oxygen or air to produce heat. There is no flame to create a hazard, and catalytic heat can operate efficiently on low-cost natural gas, butane or propane.

The use of catalytic heaters has been approved and accepted for dozens of industrial and petrochemical applications.

How the Catalytic Principle Works

The normal ignition temperature of natural gas (80%) in air (20%) at atmosphere

pressure is given as 1260°F. In the presence of the catalyst, the reaction occurs with sufficient velocity to begin a chain reaction at 225°F. Thus, if natural gas is brought into contact with the catalyst at 225°F in the presence of oxygen, it is oxidized to carbon dioxide and water vapor. Sufficient heat is, therefore, evolved to raise the temperature of the bed of the heater and oxidation will continue as long as gas and oxygen are supplied.

No flame is produced under these conditions, since the gases are well below ignition temperature (1260°F). However, approximately the same amount of heat is produced as if the gas had been burned in the normal manner.

The thermal efficiency of a catalytic heater is substantially higher than a conventional heater. In the catalytic heating principle, a considerably larger proportion of the heat produced is radiant heat of wavelengths of 2–16 microns, and much less heat is required to heat the evolved gases.

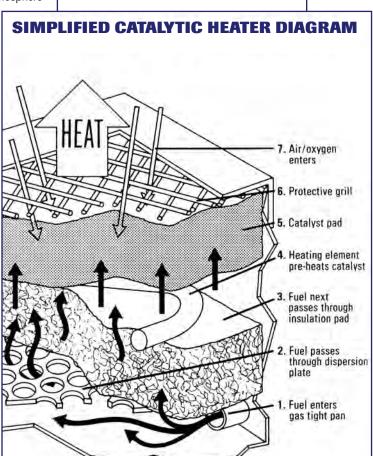
Practically no heat is utilized to heat the large volume of nitrogen associated with the oxygen as in a conventional heater because most of the heat content of the carbon dioxide and water is recovered as radiant heat.

In a catalytic heater, the temperature attained in the catalyst bed is determined by two factors: the flow of the gas to the catalyst bed, and the rate at which oxygen diffuses through the bed to replace what was consumed in the reaction.

If the rate of gas flow is too high, not enough oxygen can enter to completely burn the gas. If the rate is too low, the gas is burned deeper in the bed and the surface cools. Therefore, the temperature of a catalytic heater is self-limiting and the system will

operate stably for long periods of time without intervention as long as gas and air are supplied.

The Catalytic Principle


Catalytic heat is radiant heat. Radiant heat, like light, is electromagnetic wave energy that travels in straight lines at 186,000 miles per second, casts shadows, may be transmitted, absorbed or reflected by matter, and may be focused or dispersed by lenses or prisms of the proper material.

A source of radiant energy – such as a catalytic heater – floods the area around it with heat energy in the same way that light floods the area around it. The intensity of the heat energy varies with the square of the

distance (as does light) and travels any distance without loss as long as it does not contact matter which absorbs it.

The absorption of radiant energy by various materials is a property specific to each material. Certain wavelengths will be absorbed to a considerable extent, others less, and some very little or not at all. Thus, each molecular substance has an infrared absorption spectrum which is a fingerprint of that substance. The absorption data for many substances can be found in an atlas of infrared absorption spectra.

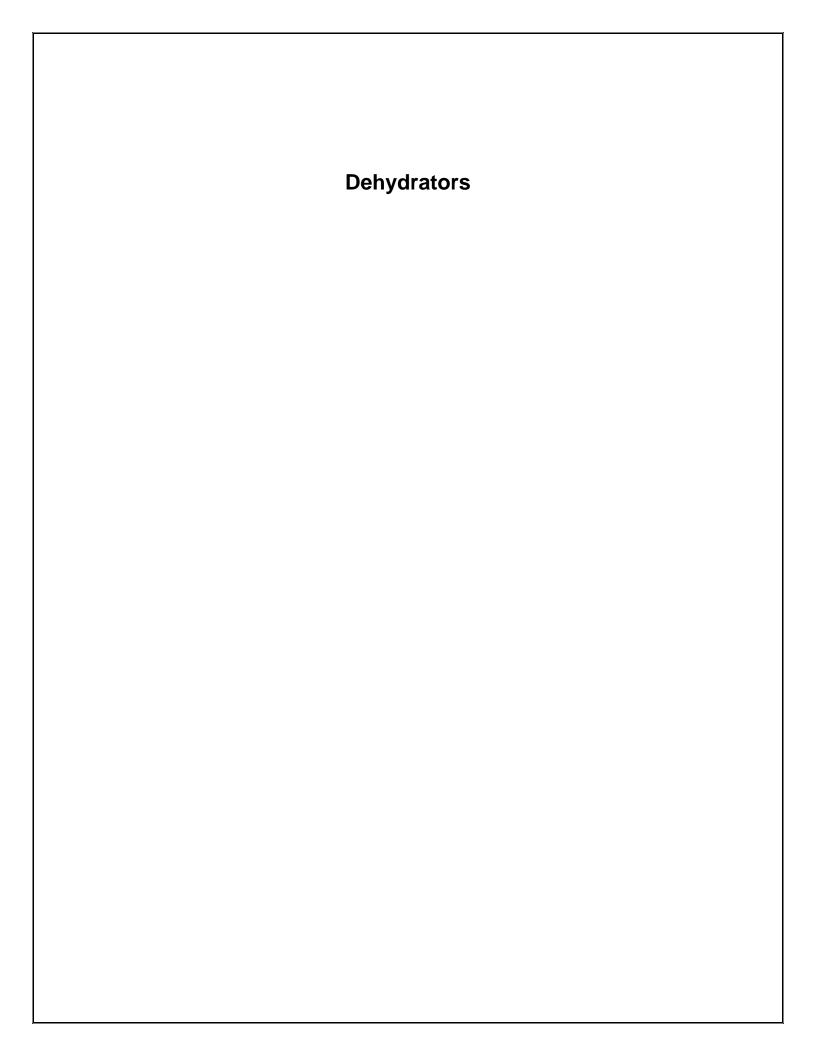
Since the absorption of radiant heat is highly selective, there are many excellent application opportunities. By selecting proper substances to act as a filter between the source and object to be heated, all but the desired wavelengths can be filtered out.

Sample Applications for Bruest Catalytic Heaters

- Compressor Gas Preheat
- Regulators and Control Valves
- Gas Wellhead Heaters
- Peak Shaving Vaporizer Valves
- Enclosures of all Types

- Oil Production Well Injection, Offshore Platform Approved
- Personnel, Fixed or Portable
- Space Heaters, Compressor Stations
- Pipeline Heaters

FREEZ-FITER PILOT-REGULATOR HEATER PREVENTS FREEZE-UPS


- Heats gas supply to controllers, pilots and instrument regulators
- Heat source Bruest flameless catalytic heater
- Fuel: natural gas, L.P. (propane) or butane gas
- Low fuel consumption
- FM models suitable for use in Class 1, Division 2, Group D locations
- CSA models suitable for use in Class 1, Division 1 and 2, Group D locations
- Single coil standard dual coil model available (use with 2 regulators)
- Low pressure fuel gas regulator comes with unit (maximum 50 PSI inlet pressure)
- Preheat fuel gas tube

FREEZ-FILTER SPECIFICATIONS

MODEL NO.	EXCHANGER COIL	HEATER	CASE DIMENSION
1800	3/8" OD - Type 304 Stainless Steel • Operating Pressure • 2500 PSI-Max. Test Pressure - 5000 PSI • Exchanger Coil Pipe Fittings - 1/4" NPT	Bruest-SR-8 Catalytic Heater• Start-up Voltage - 12 Volt or 120 Volt • Stainless Steel Case • 2500 BTU Input • Fuel - Natural Gas at 3 1/2" W.C. • LP Gas at 11" W.C.	Size 12" x 12" x 4" with 1" Fiberglass Insulation • Stainless Steel Case
4000	Same as Above	Bruest-SR-12 Catalytic Heater • Start-up Voltage 12 Volt or 120 Volt • Stainless Steel Case • 5000 BTU Input • Fuel-Natural Gas at 3 1/2" W.C. • LP Gas at 11" W.C.	Size 16" x 16" x 4" with 1" Fiberglass insulation • Stainless Steel Case

ACCESSORY OPTIONS

- High pressure fuel gas regulator; 6000 PSI max; 10-75 PSI outlet; Fisher 1301F
- Thermostat: 100° 200°F range (Invensys)
- Explosion-proof junction box is standard on CSA models and optional on FM models
- 16 ft. 12V electrical pigtail with battery clips for a standard or explosion-proof junction box
- 25 ft. 12V electrical pigtail with battery clips for a standard or explosion-proof junction box
- Nupro relief valve (set @ 45 PSI) 1/4" npt

West Virginia Department of Environmental Protection

Division of Air Quality

40 CFR Part 63; Subpart HH & HHH Registration Form

DIVISION OF AIR QUALITY: (304) 926-0475 WEB PAGE: http://www.wvdep.org

Complete this form for any oil and natural gas production or natural gas transmission and storage facility that uses an affected unit under HH/HHH, whether subject or not.

Section A: Facility Description				
Affected facility actual annual average natural gas throughput (scf/day): 145,000,000				
Affected facility actual annual average hydrocarbon liquid throughput: (bbl/day): 195				
The affected facility processes, upgrades, or stores hydrocarbon liquids prior to custody transfer. Yes No				
The affected facility processes, upgrades, or stores natural gas prior to the point at which natural gas No				
(NG) enters the NG transmission and storage source category or is delivered to the end user.				
The affected facility is: prior to a NG processing plant a NG processing plant				
prior to the point of custody transfer and there is no NG processing plant				
The affected facility transports or stores natural gas prior to entering the pipeline to a local Yes No				
distribution company or to a final end user (if there is no local distribution company).				
The affected facility exclusively processes, stores, or transfers black oil. Yes No				
Initial producing gas-to-oil ratio (GOR):scf/bbl API gravity:degrees				
Section B: Dehydration Unit (if applicable) 1				
Description: Lafferty Compressor Station Dehydrators (SV-3110 & SV-3210; FT-3110 & FT-3210; R-3110 &				
R-3210)				
Date of Installation: April 2016 Annual Operating Hours: 8,760 Burner rating (MMbtu/hr): 1.5				
Exhaust Stack Height (ft): TBD Stack Diameter (ft): TBD Stack Temp. (°F): TBD				
Glycol Type:				
Glycol Pump Type: Electric Gas If gas, what is the volume ratio?0.032ACFM/gpm				
Condenser installed?				
Incinerator/flare installed?				
Other controls installed?				
Wet Gas ² : Gas Temp.: _120_°F Gas Pressure _1,100 psig				
(Upstream of Contact Tower) Saturated Gas?				
Dry Gas: Gas Flowrate(MMSCFD) Actual Design72.5 each				
(Downstream of Contact Tower) Water Content5.0lb/MMSCF				
Lean Glycol: Circulation rate (gpm) Actual ³ TBD Maximum ⁴ 7.9				
Pump make/model: Kimray 45015PV				
Glycol Flash Tank (if applicable): Temp.:80°F Pressure5 psig Vented? Yes \[\scale \] No \[\scale \]				
If no, describe vapor control: Vent gas used in reboiler as fuel				
Stripping Gas (if applicable): Source of gas: Dry gas, if used Rate _9 scfm				

		Please atta	ch the following required dehydration unit information:			
1.	•		formation. See Page 43 of this document for an example of a gas flow schematic. It is not intended that the			
	applicant provide this level of detail for all sources. The level of detail that is necessary is to establish where the custody transfer points are located. This can be					
	accomplished by submitting a process flow diagram indicating custody transfer points and the natural gas flow. However, the DAQ reserves the right to request more detailed information in order to make the necessary decisions.					
2						
2.			n including mole percents of C ₁ -C ₈ , benzene, ethylbenzene, toluene, xylene and n-Hexane, using Gas Processors			
	, ,	, ,	e should be taken from the inlet gas line, downstream from any inlet separator, and using a manifold to remove collect the sample from the center of the gas line. GPA standard 2166 reference method or a modified version of			
		, (or similar) should be used				
3.		· · · /	n maximum Lean Glycol circulation rate and maximum throughput.			
4.		s of gas or hydrocarbon flow	,			
		Section	on C: Facility NESHAPS Subpart HH/HHH status			
		Subject to Su	abpart HH - applies, but is exempt through < 1 tpy benzene exemption			
A	ffected facility	Subject to Su	ıbpart HHH			
	status:					
(cl	hoose only one)	because:	Affected facility exclusively handles black oil			
	☐ The facility wide actual annual average NG throughput is < 650 thousand					
	scf/day and facility wide actual annual average hydrocarbon liquid is < 250 bpd					

☐ No affected source is present

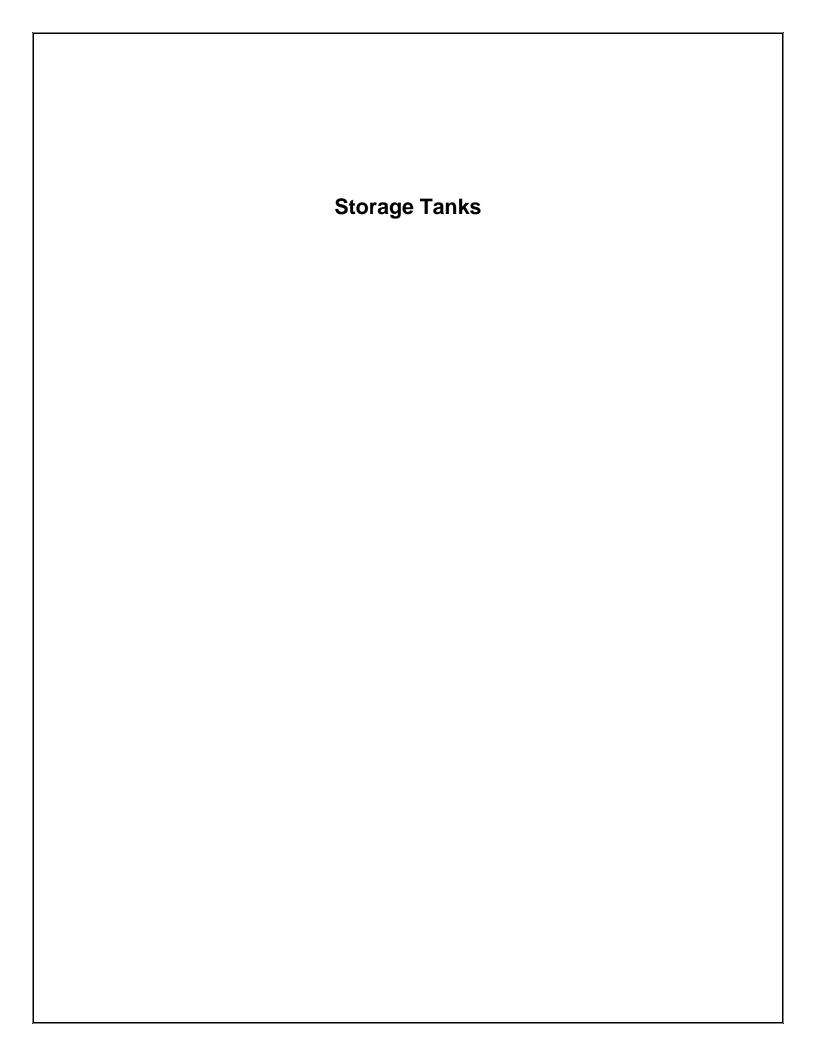
NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET

		Manufact	urer and Model	TE	TBD	
		Max Dry Gas Flow Rate (MMscf/day)		72.5		
		Design Heat Input (MMBtu/hr)		1.5		
		Design Typ	oe (DEG or TEG)	TEG		
	Glycol	Sour	ce Status ²	N	S	
Dehydra Da	tion Unit ata	Date Installed/	Modified/Removed ³	April 2016		
		Regenerator	Still Vent APCD ⁴	F	L	
		Fuel F	IV (Btu/scf)	1,1	22	
		H ₂ S Cont	ent (gr/100 scf)	()	
		Opera	tion (hrs/yr)	8,7	60	
Source ID #1	Vent	Reference ⁵	Potential Emissions ⁶	lbs/hr	tons/yr	
		AP	NO_X	0.18	0.81	
	- · · ·	AP	CO	0.15	0.68	
17E	Reboiler Vent	AP	VOC	0.010	0.044	
		AP	SO_2	0.0011	0.0048	
		AP	Design Heat Input (MMBtu/hr) Design Type (DEG or TEG) Source Status² Date Installed/Modified/Removed³ Regenerator Still Vent APCD⁴ Fuel HV (Btu/scf) H₂S Content (gr/100 scf) Operation (hrs/yr) Reference⁵ Potential Emissions⁶ AP NO _X AP CO AP VOC AP SO₂ AP PM₁0 RI-GLYCalc™ VOC RI-GLYCalc™ Ethylbenzene RI-GLYCalc™ Toluene RI-GLYCalc™ VOC RI-GLYCalc™ N-Hexane RI-GLYCalc™ VOC RI-GLYCalc™ N-Hexane RI-GLYCalc™ Ethylbenzene RI-GLYCalc™ VOC RI-GLYCalc™ Toluene RI-GLYCalc™ Toluene RI-GLYCalc™ N-Hexane RI-GLYCalc™ Ethylbenzene RI-GLYCalc™ Toluene RI-GLYCalc™ Toluene RI-GLYCalc™ Toluene RI-GLYCalc™ Toluene RI-GLYCalc™ Toluene RI-GLYCalc™ Toluene RI-GLYCalc™ Ethylbenzene RI-GLYCalc™ Ethylbenzene RI-GLYCalc™ Toluene RI-GLYCalc™ Toluene RI-GLYCalc™ Toluene RI-GLYCalc™ Toluene RI-GLYCalc™ Toluene	0.014	0.061	
	Glycol Regenerator	GRI-GLYCalc TM	VOC	0.16	0.72	
		GRI-GLYCalc TM	Benzene	0.0072	0.032	
15E		GRI-GLYCalc [™]	Ethylbenzene	0.00002	0.0001	
1312		GRI-GLYCalc TM	Toluene	0.016	0.070	
		GRI-GLYCalc [™]	Xylenes	0.0044	0.020	
		GRI-GLYCalc [™]	n-Hexane	0.0073	0.032	
		GRI-GLYCalc TM	VOC	1.21	5.30	
		GRI-GLYCalc [™]	Benzene	0.0014	0.0060	
16E	Flash Gas	GRI-GLYCalc [™]	Ethylbenzene	0.000001	0.000005	
101	Tank Vent	GRI-GLYCalc [™]	Toluene	0.0018	0.0077	
		GRI-GLYCalc [™]	Xylenes	0.0002	0.0007	
		GRI-GLYCalc™	n-Hexane	0.037	0.16	

		Manufacturer and Model		TBD		
		Max Dry Gas Flow Rate (mmscf/day)		72.5		
		Design Heat Input (mmBtu/hr)		1.5		
		Design Typ	e (DEG or TEG)	TEG		
	l Glycol	Sour	ce Status ²	N	S	
	ation Unit ata	Date Installed/	Modified/Removed ³	April 2016		
		Regenerator	Still Vent APCD ⁴	F	FL	
		Fuel F	IV (Btu/scf)	1,1	22	
		H ₂ S Cont	ent (gr/100 scf)	()	
		Opera	tion (hrs/yr)	8,7	60	
Source ID #1	Vent	Reference ⁵	Potential Emissions ⁶	lbs/hr	tons/yr	
		AP	NO_X	0.18	0.81	
	Reboiler Vent	AP	СО	0.15	0.68	
20E		AP	VOC	0.010	0.044	
		AP	SO_2	0.0011	0.0048	
		AP	PM_{10}	0.014	0.061	
		GRI-GLYCalc TM	VOC	0.16	0.72	
		GRI-GLYCalc TM	Benzene	0.0072	0.032	
18E	Glycol Regenerator	$\begin{array}{c cccc} AP & SO_2 & 0.0 \\ AP & PM_{10} & 0.0 \\ GRI\text{-}GLYCalc^{TM} & VOC & 0 \\ GRI\text{-}GLYCalc^{TM} & Benzene & 0.0 \\ GRI\text{-}GLYCalc^{TM} & Ethylbenzene & 0.0 \\ \end{array}$	0.00002	0.0001		
TOL	Still Vent	GRI-GLYCalc TM	Dry Gas Flow Rate (mmscf/day) Design Heat Input (mmBtu/hr) Design Type (DEG or TEG) Source Status² te Installed/Modified/Removed³ Regenerator Still Vent APCD⁴ Fuel HV (Btu/scf) H₂S Content (gr/100 scf) Operation (hrs/yr) erence⁵ Potential Emissions⁶ lb AP NOx 0 AP CO 0 AP VOC 0. AP SO₂ 0.0 AP PM₁0 0. GLYCalc™ Benzene 0.0 GLYCalc™ Xylenes 0.6 GLYCalc™ Benzene 0.0 GLYCalc™ N-Hexane 0.6 GLYCalc™ Benzene 0.0 GLYCalc™ Benzene 0.0 GLYCalc™ Benzene 0.0 GLYCalc™ N-Hexane 0.0 GLYCalc™ Benzene 0.0 GLYCalc™ Benzene 0.0 GLYCalc™ Toluene 0.0 GLYCalc™ N-Hexane 0.0 GLYCalc™ Benzene 0.0 GLYCalc™ Benzene 0.0 GLYCalc™ Toluene 0.0 GLYCalc™ Benzene 0.0 GLYCalc™ Benzene 0.0 GLYCalc™ Toluene 0.0 GLYCalc™ Toluene 0.0 GLYCalc™ Toluene 0.0	0.016	0.070	
		GRI-GLYCalc TM	Xylenes	0.0044	0.020	
		GRI-GLYCalc [™]	n-Hexane	0.0073	0.032	
		GRI-GLYCalc [™]	VOC	1.21	5.30	
		GRI-GLYCalc [™]	Benzene	0.0014	0.0060	
19E	Flash Gas	GRI-GLYCalc [™]	Ethylbenzene	0.000001	0.000005	
1712	Tank Vent	GRI-GLYCalc [™]	Toluene	0.0018	0.0077	
		GRI-GLYCalc [™]	Xylenes	0.0002	0.0007	
		GRI-GLYCalc [™]	n-Hexane	0.037	0.16	

- 1. Enter the appropriate Source Identification Numbers for the glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent. The glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a *Glycol Dehydration Unit Data Sheet* shall be completed for each, using Source Identification #s RBV-2 and RSV-2, RBV-3 and RSV-3, etc.
- 2. Enter the Source Status using the following codes:

NSConstruction of New SourceESExisting SourceMSModification of Existing SourceRSRemoval of Source


	modification	or removal.			
4.	Enter the Air	r Pollution Control Device	(APCD) type designation u	sing the following	g codes:
	NA	None	CD	Condenser	
	FL	Flare	CC	Condenser/Com	bustion Combination
	TO	Thermal Oxidizer			
5.	Enter the Po	tential Emissions Data Refe	erence designation using th	e following codes:	:
	MD	Manufacturer's Data	AP	AP-42	
	GR	GRI-GLYCalc TM	OT	Other	(please list)

3. Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source),

6. Enter the Reboiler Vent and glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalc Aggregate Calculations Report to this Glycol Dehydration Unit Data Sheet(s). This PTE data shall be incorporated in the Emissions Summary Sheet.

Include a copy of the GRI-GLYCalc TM analysis. This includes a printout of the aggregate calculations report, which shall include emissions reports, equipment reports, and stream reports.

*An explanation of input parameters and examples, when using GRI-GLYCalcTM is available on our website.

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

I. GENERAL INFORMATION (required)

Bulk Storage Area Name	2. Tank Name
Production Storage Tanks	Settling Tank
Tank Equipment Identification No. (as assigned on Equipment List Form) TK-9000	4. Emission Point Identification No. (as assigned on Equipment List Form) 21E
5. Date of Commencement of Construction (for existing tanks)	
· //·····	New Stored Material
7. Description of Tank Modification (if applicable)	
7A. Does the tank have more than one mode of operation?	
7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode).	
7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.):	
None	
II. TANK INFORMATION (required)	
8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height. 500 barrel	
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)
12	25
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)
24	12.5
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)
1	12.5
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume" and considers design liquid levels and overflow valve heights. 480 barrel	

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)	
2,989,350 14. Number of Turnovers per year (annual net throughpone)	8,190	
148		
15. Maximum tank fill rate (gal/min) TBD		
16. Tank fill method Submerged		
17. Complete 17A and 17B for Variable Vapor Space Ta	ank Systems	
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year	
18. Type of tank (check all that apply): ☐ Fixed Roof X vertical horizontal	flat roof cone roof X dome roof	
other (describe)		
External Floating Roof pontoon roof	double deck roof	
☐ Domed External (or Covered) Floating Roof		
☐ Internal Floating Roof☐ Variable Vapor Space☐ lifter roof		
☐ Pressurized spherical cylindrica	·	
☐ Underground		
Other (describe)		
III. TANK CONSTRUCTION & OPERATION INFORMATION (optional if providing TANKS Summary Sheets)		
19. Tank Shell Construction:		
Riveted Gunite lined Epoxy-coate		
20A. Shell Color Green 20B. Roof Colo	or Green 20C. Year Last Painted	
21. Shell Condition (if metal and unlined): ☑ No Rust ☐ Light Rust ☐ Dense Rust ☐ Not applicable		
22A. Is the tank heated? ☐ YES ☐ NO		
22B. If YES, provide the operating temperature (°F)		
22C. If YES, please describe how heat is provided to tank.		
23. Operating Pressure Range (psig): to	ambient	
24. Complete the following section for Vertical Fixed Roof Tanks Does Not Apply		
24A. For dome roof, provide roof radius (ft) 12		
24B. For cone roof, provide slope (ft/ft)		
25. Complete the following section for Floating Roof Tanks Does Not Apply		
25A. Year Internal Floaters Installed:		
25B. Primary Seal Type:		
25C. Is the Floating Roof equipped with a Secondary	Seal? YES NO	
25D. If YES, how is the secondary seal mounted? (check one) Shoe Rim Other (describe):		
25E. Is the Floating Roof equipped with a weather shi	ield? YES NO	

25F. Describe deck fittings; indica	te the number of ea	ch type of fitting:	
		S HATCH	
BOLT COVER, GASKETED:	UNBOLTED COV		UNBOLTED COVER, UNGASKETED:
BOLT COVER, GASKETED:	AUTOMATIC GAL UNBOLTED COV	JGE FLOAT WELL ER, GASKETED:	UNBOLTED COVER, UNGASKETED:
BUILT-UP COLUMN – SLIDING COVER, GASKETED:			PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:
PIP COLUMN – SLIDING COVER, G		R WELL PIPE COLUMN –	SLIDING COVER, UNGASKETED:
SLIDING COVER, GASKETED:	GAUGE-HATCH	/SAMPLE PORT SLIDING COVER	, UNGASKETED:
WEIGHTED MECHANICAL ACTUATION, GASKETED:			SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)
WEIGHTED MECHANICAL ACTUAT		BREAKER WEIGHTED MECH	ANICAL ACTUATION, UNGASKETED:
WEIGHTED MECHANICAL ACTUAT		VENT WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:
OPEN:	DECK DRAIN (3-	NCH DIAMETER) 90% CLOSED:	
1-INCH DIAMETER:	STUB	DRAIN	
OTHER (DESC	RIBE, ATTACH ADI	DITIONAL PAGES	IF NECESSARY)

26. Complete the following section for Internal Floating Roof Tanks Does Not Apply				
26A. Deck Type:				
26B. For Bolted decks, provide deck construction:				
26C. Deck seam:				
☐ Continuous sheet construction 5 feet wide ☐ Continuous sheet construction 6 feet wide				
Continuous sheet construction 7 feet wid				
Continuous sheet construction 5 × 7.5 fe				
☐ Continuous sheet construction 5 × 12 fe ☐ Other (describe)	et wide			
26D. Deck seam length (ft)	26E		ea of deck (ft²)	
For column supported tanks:	260	i. Dia	ameter of each column:	
26F. Number of columns:	/ti	.: -l: 7	TANIKO Oweren en Obres	4-)
IV. SITE INFORMANTION (27. Provide the city and state on which the data	• •			is)
Charleston, WV	d III tilis section	are be	iseu.	
28. Daily Average Ambient Temperature (°F) 65.08				
29. Annual Average Maximum Temperature (°F) 75.94				
30. Annual Average Minimum Temperature (°F	30. Annual Average Minimum Temperature (°F) 54.2			
31. Average Wind Speed (miles/hr) 6.05				
32. Annual Average Solar Insulation Factor (BT	32. Annual Average Solar Insulation Factor (BTU/(ft²-day)) 1,250.6			
33. Atmospheric Pressure (psia) 14.25				
V. LIQUID INFORMATION (optional if providing TANKS Summary Sheets)				
34. Average daily temperature range of bulk liq	uid: Pro	Max 3.2	2 Calculation	
34A. Minimum (°F)	34E	. Ma	aximum (°F)	
35. Average operating pressure range of tank:				
35A. Minimum (psig)	35E	. Ma	aximum (psig)	
36A. Minimum Liquid Surface Temperature (°F)		. Co	rresponding Vapor Pre	ssure (psia)
37A. Average Liquid Surface Temperature (°F)		. Co	rresponding Vapor Pre	ssure (psia)
65.08		11.01		
38A. Maximum Liquid Surface Temperature (°F) 38B. Corresponding Vapor Pressure (psia)			ssure (psia)	
39. Provide the following for each liquid or gas	to be stored in	tank.	Add additional pages if	necessary.
39A. Material Name or Composition	Condensate/wa	er mix		
39B. CAS Number				
39C. Liquid Density (lb/gal)	6.2			
39D. Liquid Molecular Weight (lb/lb-mole)	44.2			
39E. Vapor Molecular Weight (lb/lb-mole)	Vapor Molecular Weight (lb/lb-mole) 37.4			

Maximum Vapor Press	sure					
39F. True (psia)						
39G. Reid (psia) Months Storage per Yo	aar					
39H. From	Gai					
39I. To						
VI. EMISSIONS AND CONTROL DEVICE DATA (required)						
40. Emission Control I	Devices (check as many			, , ,		
☐ Carbon Adsorp		, 7,		117		
☐ Condenser ¹						
	☐ Conservation Vent (psig)					
Vacuum S	07		Pressure S	ettina		
	lief Valve (psig)			J		
☐ Inert Gas Blank						
☐ Insulation of Ta						
Liquid Absorpti						
Refrigeration of	,					
Rupture Disc (p						
☐ Vent to Incinera						
☐ Vent to memera ☐ Other¹ (describ		nit and yene	re recueled b	oak into avatam		
	oriate Air Pollution Cont	-	•	ack into system		
41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).						
	Ì	1		or elsewhere in the app	olication).	
Material Name &	Breathing Loss	Workin	g Loss	Annual Loss	lication). Estimation Method ¹	
	Ì	1				
Material Name &	Breathing Loss	Workin	g Loss	Annual Loss		
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 17,700 *Annual Loss includes	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 17,700 *Annual Loss includes	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 17,700 *Annual Loss includes	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 17,700 *Annual Loss includes	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 17,700 *Annual Loss includes	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 17,700 *Annual Loss includes	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 17,700 *Annual Loss includes	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 17,700 *Annual Loss includes	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 17,700 *Annual Loss includes	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 17,700 *Annual Loss includes	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 17,700 *Annual Loss includes	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 17,700 *Annual Loss includes	Estimation Method ¹	

 $^{^{1}}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

 $[\]boxtimes$ Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

1.	Bulk Storage Area Name	2.	Tank Name
	Production Storage Tanks		Produced Water Tank 1
3.	Tank Equipment Identification No. (as assigned on <i>Equipment List Form</i>) TK-9100	4.	Emission Point Identification No. (as assigned on <i>Equipment List Form</i>) 24E
5.	Date of Commencement of Construction (for existing	tank	(s)
6.	Type of change ⊠ New Construction □ N	New	Stored Material
7.	Description of Tank Modification (if applicable)		
	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)	☐ Yes
7B.	If YES, explain and identify which mode is covere completed for each mode).	ed by	y this application (Note: A separate form must be
7C.	Provide any limitations on source operation affecting variation, etc.): None	emi	ssions, any work practice standards (e.g. production
	II. TANK INFORM	ATIO	ON (required)
8.	Design Capacity (specify barrels or gallons). Use height.	the 0 bar	
9A.	Tank Internal Diameter (ft)	9B.	Tank Internal Height (or Length) (ft)
	12		20
10 <i>A</i>	A. Maximum Liquid Height (ft)	10E	Average Liquid Height (ft)
	19		10
11/	A. Maximum Vapor Space Height (ft)	11E	Average Vapor Space Height (ft)
	1		10
12.	Nominal Capacity (specify barrels or gallons). This i liquid levels and overflow valve heights.	is als 0 bar	

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)	
344,925	945	
14. Number of Turnovers per year (annual net throughpu	nt/maximum tank liquid volume) 21.6	
15. Maximum tank fill rate (gal/min) TBD		
16. Tank fill method	⊠ Splash ☐ Bottom Loading	
17. Complete 17A and 17B for Variable Vapor Space Tai	nk Systems	
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year	
18. Type of tank (check all that apply):	double deck roof upport self-supporting	
☐ Variable Vapor Space lifter roof☐ Pressurized spherical cylindrical☐ Underground☐ Other (describe)		
	ATION (optional if providing TANKS Summary Sheets)	
19. Tank Shell Construction:☐ Riveted ☐ Gunite lined ☐ Epoxy-coated	d rivets	
20A. Shell Color Green 20B. Roof Colo		
21. Shell Condition (if metal and unlined):	<u>'</u>	
	ust Not applicable	
22A. Is the tank heated? ☐ YES ☐ NO		
22B. If YES, provide the operating temperature (°F)		
22C. If YES, please describe how heat is provided to to	ank.	
23. Operating Pressure Range (psig): to amb	ient	
24. Complete the following section for Vertical Fixed Ro	of Tanks Does Not Apply	
24A. For dome roof, provide roof radius (ft) 12		
24B. For cone roof, provide slope (ft/ft)		
25. Complete the following section for Floating Roof Tai	nks Does Not Apply	
25A. Year Internal Floaters Installed:		
25B. Primary Seal Type:	·	
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO	
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):	
25E. Is the Floating Roof equipped with a weather ship	eld?	

25F. Describe deck fittings; indica	te the number of ea	ch type of fitting:	
		S HATCH	
BOLT COVER, GASKETED:	UNBOLTED COV		UNBOLTED COVER, UNGASKETED:
BOLT COVER, GASKETED:	AUTOMATIC GAL UNBOLTED COV	JGE FLOAT WELL ER, GASKETED:	UNBOLTED COVER, UNGASKETED:
BUILT-UP COLUMN – SLIDING COVER, GASKETED:			PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:
PIP COLUMN – SLIDING COVER, G		R WELL PIPE COLUMN –	SLIDING COVER, UNGASKETED:
SLIDING COVER, GASKETED:	GAUGE-HATCH	/SAMPLE PORT SLIDING COVER	, UNGASKETED:
WEIGHTED MECHANICAL ACTUATION, GASKETED:			SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)
WEIGHTED MECHANICAL ACTUAT		BREAKER WEIGHTED MECH	ANICAL ACTUATION, UNGASKETED:
WEIGHTED MECHANICAL ACTUAT		VENT WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:
OPEN:	DECK DRAIN (3-	NCH DIAMETER) 90% CLOSED:	
1-INCH DIAMETER:	STUB	DRAIN	
OTHER (DESC	RIBE, ATTACH ADI	DITIONAL PAGES	IF NECESSARY)

26. Complete the following section for Internal Floating R	oof Tanks Does Not Apply			
26A. Deck Type: Bolted Welded				
26B. For Bolted decks, provide deck construction:				
26C. Deck seam:				
☐ Continuous sheet construction 5 feet wide☐ Continuous sheet construction 6 feet wide				
Continuous sheet construction 7 feet wide				
 ☐ Continuous sheet construction 5 x 7.5 feet wide ☐ Continuous sheet construction 5 x 12 feet wide 				
Other (describe)				
26D. Deck seam length (ft)	26E. Area of deck (ft²)			
For column supported tanks:	26G. Diameter of each column:			
26F. Number of columns:				
IV. SITE INFORMANTION (optional i	f providing TANKS Summary Sheets)			
27. Provide the city and state on which the data in this se Charleston, WV	ection are based.			
28. Daily Average Ambient Temperature (°F)	65.08			
29. Annual Average Maximum Temperature (°F)	75.94			
30. Annual Average Minimum Temperature (°F)	54.2			
31. Average Wind Speed (miles/hr)	6.05			
32. Annual Average Solar Insulation Factor (BTU/(ft²-day	32. Annual Average Solar Insulation Factor (BTU/(ft²-day)) 1,250.6			
33. Atmospheric Pressure (psia) 14.25				
V. LIQUID INFORMATION (optional if providing TANKS Summary Sheets)				
34. Average daily temperature range of bulk liquid: ProM	Max 3.2 Calculation			
34A. Minimum (°F)	34B. Maximum (°F)			
35. Average operating pressure range of tank:				
35A. Minimum (psig)	35B. Maximum (psig)			
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)			
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)			
65.08	0.32			
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)			
39. Provide the following for each liquid or gas to be store	ed in tank. Add additional pages if necessary.			
39A. Material Name or Composition Produc	ed Water			
39B. CAS Number				
39C. Liquid Density (lb/gal) 8	.33			
39D. Liquid Molecular Weight (lb/lb-mole) 18	3.02			
39E. Vapor Molecular Weight (lb/lb-mole) 18	3.54			

Maximum Vapor Press 39F. True (psia) 39G. Reid (psia) Months Storage per Ye 39H. From					
39I. To					
VI. EMISSIONS AND CONTROL DEVICE DATA (required)					
40. Emission Control D				· · · · · ·	
☐ Carbon Adsorpt ☐ Condenser¹ ☐ Conservation V Vacuum S ☐ Emergency Rel ☐ Inert Gas Blank ☐ Insulation of Ta ☐ Liquid Absorption ☐ Refrigeration of ☐ Rupture Disc (p ☐ Vent to Incineration Other¹ (described) ¹ Complete approp	tion ¹ fent (psig) etting lief Valve (psig) set of nk with on (scrubber) ¹ Tank osig) ator ¹ e): Vapor Recovery Uniate Air Pollution Con	Jnit and vapor trol Device S	Pressure Se rs recycled ba Sheet.	etting ack into system	
41. Expected Emission	n Rate (submit Test Da	ata or Calcula	ations hara	محالا منا معمانييم مانييم	I! \
1	Trate (odbrine Tool De	ita or Oaloait	alions nere	or eisewhere in the ap	plication).
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	ı	Annual Loss (lb/yr)	Estimation Method ¹
Material Name &	Breathing Loss	Workin	g Loss	Annual Loss	
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹

 $^{^{1}}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

[⊠] Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

Bulk Storage Area Name	2. Tank Name
Production Storage Tanks	Produced Water Tank 2
Tank Equipment Identification No. (as assigned on Equipment List Form) TK-9110	Emission Point Identification No. (as assigned on Equipment List Form) 25E
5. Date of Commencement of Construction (for existing	tanks)
	New Stored Material
7. Description of Tank Modification (if applicable)	
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)
7B. If YES, explain and identify which mode is covered by this application (Note: A separate form mu completed for each mode).	
7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. produvariation, etc.):	
None	
II. TANK INFORM	ATION (required)
height.	the internal cross-sectional area multiplied by internal 0 barrel
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)
12	20
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)
19	10
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)
1	10
liquid levels and overflow valve heights.	s also known as "working volume" and considers design
38	0 barrel

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)	
344,925	945	
14. Number of Turnovers per year (annual net throughpu	nt/maximum tank liquid volume) 21.6	
15. Maximum tank fill rate (gal/min) TBD		
16. Tank fill method	⊠ Splash ☐ Bottom Loading	
17. Complete 17A and 17B for Variable Vapor Space Tai	nk Systems	
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year	
18. Type of tank (check all that apply):	double deck roof upport self-supporting	
☐ Variable Vapor Space lifter roof☐ Pressurized spherical cylindrical☐ Underground☐ Other (describe)		
	ATION (optional if providing TANKS Summary Sheets)	
19. Tank Shell Construction:☐ Riveted ☐ Gunite lined ☐ Epoxy-coated	d rivets	
20A. Shell Color Green 20B. Roof Colo		
21. Shell Condition (if metal and unlined):	<u>'</u>	
	ust Not applicable	
22A. Is the tank heated? ☐ YES ☐ NO		
22B. If YES, provide the operating temperature (°F)		
22C. If YES, please describe how heat is provided to to	ank.	
23. Operating Pressure Range (psig): to amb	ient	
24. Complete the following section for Vertical Fixed Ro	of Tanks Does Not Apply	
24A. For dome roof, provide roof radius (ft) 12		
24B. For cone roof, provide slope (ft/ft)		
25. Complete the following section for Floating Roof Tail	nks Does Not Apply	
25A. Year Internal Floaters Installed:		
25B. Primary Seal Type:	·	
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO	
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):	
25E. Is the Floating Roof equipped with a weather ship	eld?	

25F. Describe deck fittings; indica	te the number of ea	ch type of fitting:	
		S HATCH	
BOLT COVER, GASKETED:	UNBOLTED COV		UNBOLTED COVER, UNGASKETED:
BOLT COVER, GASKETED:	AUTOMATIC GAL UNBOLTED COV	JGE FLOAT WELL ER, GASKETED:	UNBOLTED COVER, UNGASKETED:
BUILT-UP COLUMN – SLIDING COVER, GASKETED:			PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:
PIP COLUMN – SLIDING COVER, G		R WELL PIPE COLUMN –	SLIDING COVER, UNGASKETED:
SLIDING COVER, GASKETED:	GAUGE-HATCH	/SAMPLE PORT SLIDING COVER	, UNGASKETED:
WEIGHTED MECHANICAL ACTUATION, GASKETED:			SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)
WEIGHTED MECHANICAL ACTUAT		BREAKER WEIGHTED MECH	ANICAL ACTUATION, UNGASKETED:
WEIGHTED MECHANICAL ACTUAT		VENT WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:
OPEN:	DECK DRAIN (3-	NCH DIAMETER) 90% CLOSED:	
1-INCH DIAMETER:	STUB	DRAIN	
OTHER (DESC	RIBE, ATTACH ADI	DITIONAL PAGES	IF NECESSARY)

26. Complete the following section for Internal Floating R	oof Tanks Does Not Apply			
26A. Deck Type: Bolted Welded				
26B. For Bolted decks, provide deck construction:				
26C. Deck seam:				
☐ Continuous sheet construction 5 feet wide☐ Continuous sheet construction 6 feet wide				
Continuous sheet construction 7 feet wide				
 ☐ Continuous sheet construction 5 x 7.5 feet wide ☐ Continuous sheet construction 5 x 12 feet wide 				
Other (describe)				
26D. Deck seam length (ft)	26E. Area of deck (ft²)			
For column supported tanks:	26G. Diameter of each column:			
26F. Number of columns:				
IV. SITE INFORMANTION (optional i	f providing TANKS Summary Sheets)			
27. Provide the city and state on which the data in this se Charleston, WV	ection are based.			
28. Daily Average Ambient Temperature (°F)	65.08			
29. Annual Average Maximum Temperature (°F)	75.94			
30. Annual Average Minimum Temperature (°F)	54.2			
31. Average Wind Speed (miles/hr)	6.05			
32. Annual Average Solar Insulation Factor (BTU/(ft²-day	32. Annual Average Solar Insulation Factor (BTU/(ft²-day)) 1,250.6			
33. Atmospheric Pressure (psia) 14.25				
V. LIQUID INFORMATION (optional if providing TANKS Summary Sheets)				
34. Average daily temperature range of bulk liquid: ProM	Max 3.2 Calculation			
34A. Minimum (°F)	34B. Maximum (°F)			
35. Average operating pressure range of tank:				
35A. Minimum (psig)	35B. Maximum (psig)			
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)			
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)			
65.08	0.32			
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)			
39. Provide the following for each liquid or gas to be store	ed in tank. Add additional pages if necessary.			
39A. Material Name or Composition Produc	ed Water			
39B. CAS Number				
39C. Liquid Density (lb/gal) 8	.33			
39D. Liquid Molecular Weight (lb/lb-mole) 18	3.02			
39E. Vapor Molecular Weight (lb/lb-mole) 18	3.54			

Maximum Vapor Press 39F. True (psia) 39G. Reid (psia) Months Storage per Ye 39H. From					
39I. To					
	VI. EMISSIONS A	ND CONTR	OL DEVICE	DATA (required)	
40. Emission Control D				· · · · · ·	
☐ Carbon Adsorpt ☐ Condenser¹ ☐ Conservation V Vacuum S ☐ Emergency Rel ☐ Inert Gas Blank ☐ Insulation of Ta ☐ Liquid Absorption ☐ Refrigeration of ☐ Rupture Disc (p ☐ Vent to Incineration Other¹ (described) ¹ Complete approp	tion ¹ fent (psig) etting lief Valve (psig) set of nk with on (scrubber) ¹ Tank osig) ator ¹ e): Vapor Recovery Uniate Air Pollution Con	Jnit and vapor trol Device S	Pressure Se rs recycled ba Sheet.	etting ack into system	
41. Expected Emission	n Rate (submit Test Da	ata or Calcula	ations hara	محالا منا معمانييم مانييم	I! \
1	Trate (odbrine Tool De	ita or Oaloak	alions nere	or eisewhere in the ap	plication).
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	ı	Annual Loss (lb/yr)	Estimation Method ¹
Material Name &	Breathing Loss	Workin	g Loss	Annual Loss	
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹

 $^{^{1}}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

[⊠] Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

Bulk Storage Area Name	2. Tank Name				
Production Storage Tanks	Condensate Tank 1				
 Tank Equipment Identification No. (as assigned on Equipment List Form) TK-9200 	Emission Point Identification No. (as assigned on Equipment List Form) 22E				
5. Date of Commencement of Construction (for existing	tanks)				
· ,, · · · · · · · · · · · · · · · · ·	New Stored Material				
7. Description of Tank Modification (if applicable)					
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)				
7B. If YES, explain and identify which mode is covere completed for each mode).	7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode).				
7C. Provide any limitations on source operation affecting variation, etc.):	emissions, any work practice standards (e.g. production				
None					
II. TANK INFORM	ATION (required)				
height.	the internal cross-sectional area multiplied by internal 0 barrel				
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)				
12	20				
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)				
19	10				
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)				
1	10				
liquid levels and overflow valve heights.	is also known as "working volume" and considers design 0 barrel				

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)
1,149,750 14. Number of Turnovers per year (annual net throughput)	3,150
The state of the s	72
15. Maximum tank fill rate (gal/min) TBD	
16. Tank fill method	
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
18. Type of tank (check all that apply): ☐ Fixed Roof X vertical horizontal — other (describe) ☐ External Floating Roof pontoon roof ☐ Domed External (or Covered) Floating Roof	flat roof cone roof X dome roof double deck roof
☐ Internal Floating Roof vertical column so ☐ Variable Vapor Space lifter roof ☐ Pressurized spherical cylindrica ☐ Underground ☐ Other (describe)	diaphragm
	IATION (optional if providing TANKS Summary Sheets)
19. Tank Shell Construction:☐ Riveted ☐ Gunite lined ☐ Epoxy-coate	ed rivets
20A. Shell Color Green 20B. Roof Colo	, ,
21. Shell Condition (if metal and unlined):	
	Rust Not applicable
22A. Is the tank heated? YES NO	
22B. If YES, provide the operating temperature (°F)	
22C. If YES, please describe how heat is provided to	tank.
23. Operating Pressure Range (psig): to amb	pient
24. Complete the following section for Vertical Fixed Ro	pof Tanks Does Not Apply
24A. For dome roof, provide roof radius (ft) 12	
24B. For cone roof, provide slope (ft/ft)	
25. Complete the following section for Floating Roof Ta	nks Does Not Apply
25A. Year Internal Floaters Installed:	
25B. Primary Seal Type:	<u></u>
25C. Is the Floating Roof equipped with a Secondary	Seal? YES NO
25D. If YES, how is the secondary seal mounted? (ch	eck one) Shoe Rim Other (describe):
25E. Is the Floating Roof equipped with a weather shi	ield? YES NO

25F. Describe deck fittings; indica	te the number of ea	ch type of fitting:	
		S HATCH	
BOLT COVER, GASKETED:	UNBOLTED COV		UNBOLTED COVER, UNGASKETED:
BOLT COVER, GASKETED:	AUTOMATIC GAL UNBOLTED COV	JGE FLOAT WELL ER, GASKETED:	UNBOLTED COVER, UNGASKETED:
BUILT-UP COLUMN – SLIDING COVER, GASKETED:			PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:
PIP COLUMN – SLIDING COVER, G		R WELL PIPE COLUMN –	SLIDING COVER, UNGASKETED:
SLIDING COVER, GASKETED:	GAUGE-HATCH	/SAMPLE PORT SLIDING COVER	, UNGASKETED:
WEIGHTED MECHANICAL ACTUATION, GASKETED:			SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)
WEIGHTED MECHANICAL ACTUAT		BREAKER WEIGHTED MECH	ANICAL ACTUATION, UNGASKETED:
WEIGHTED MECHANICAL ACTUAT		VENT WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:
OPEN:	DECK DRAIN (3-	NCH DIAMETER) 90% CLOSED:	
1-INCH DIAMETER:	STUB	DRAIN	
OTHER (DESC	RIBE, ATTACH ADI	DITIONAL PAGES	IF NECESSARY)

26. Complete the following section for Internal	Floating Ro	oof Tanks	☐ Does No	t Apply	
26A. Deck Type:	elded				
26B. For Bolted decks, provide deck constru	uction:				
26C. Deck seam:					
☐ Continuous sheet construction 5 feet wi ☐ Continuous sheet construction 6 feet wi					
Continuous sheet construction 7 feet wi	ide				
☐ Continuous sheet construction 5 x 7.5 f☐ Continuous sheet construction 5 x 12 fe					
Other (describe)					
26D. Deck seam length (ft)		26E. A	rea of deck (ft ²)		
For column supported tanks:		26G. D	iameter of each co	olumn:	
26F. Number of columns:					
IV. SITE INFORMANTION	` .		·	Sheets)	
27. Provide the city and state on which the dat Charleston, WV	a in this sec	ction are b	ased.		
28. Daily Average Ambient Temperature (°F)		65	.08		
29. Annual Average Maximum Temperature (°	F)	75	.94		
30. Annual Average Minimum Temperature (°F	=)	54	54.2		
31. Average Wind Speed (miles/hr)		6.0)5		
32. Annual Average Solar Insulation Factor (B	TU/(ft²-day)) 1,2	250.6		
33. Atmospheric Pressure (psia)		14	.25		
V. LIQUID INFORMATION	(optional if	providing	TANKS Summary	/ Sheets)	
34. Average daily temperature range of bulk lice	quid: ProM	Iax 3.2 Cal	culation		
34A. Minimum (°F)		34B. M	laximum (°F)		
35. Average operating pressure range of tank:					
35A. Minimum (psig)		35B. M	laximum (psig)		
36A. Minimum Liquid Surface Temperature	(°F)	36B. C	orresponding Vap	or Pressure (psia)	
37A. Average Liquid Surface Temperature ((°F)	37B. C	orresponding Vap	or Pressure (psia)	
65.08			1.01		
38A. Maximum Liquid Surface Temperature	· (°F)	38B. C	orresponding Vap	or Pressure (psia)	
39. Provide the following for each liquid or gas	to be store	d in tank.	Add additional pa	iges if necessary.	
39A. Material Name or Composition	Conde	ensate			
39B. CAS Number					
39C. Liquid Density (lb/gal)	6.	.1			
39D. Liquid Molecular Weight (lb/lb-mole)	110	6.0			
39E. Vapor Molecular Weight (lb/lb-mole)	49).9			
·	·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	

39F. True (psia) 39G. Reid (psia) Months Storage per Ye 39H. From	ear				
39I. To	VI EMICCIONO A	ND CONTD	OL DEVICE	DATA (no suring al)	
T			_	DATA (required)	
☐ Inert Gas Blank ☐ Insulation of Ta ☐ Liquid Absorptic ☐ Refrigeration of ☐ Rupture Disc (p ☐ Vent to Incinera ☐ Other¹ (describ ¹ Complete approp	tion ¹ /ent (psig) fetting lief Valve (psig) ket of ank with on (scrubber) ¹ f Tank psig) ator ¹ e): Vapor Recovery Unitate Air Pollution Con	Jnit and vapor trol Device S	Pressure Se rs recycled ba Sheet.	etting ack into system	nligation)
41. Expected Emission Material Name &	Breathing Loss	Workin	1	Annual Loss	pilcation).
CAS NO	(lh/hr)	A	11		Estimation Method ¹
VOC	(lb/hr) 0.010	Amount 0.012	Units lb/hr	(lb/yr)	Estimation Method ¹ O-ProMax 3.2
				(lb/yr)	
VOC Emissions are				(lb/yr)	
VOC Emissions are				(lb/yr)	
VOC Emissions are				(lb/yr)	
VOC Emissions are				(lb/yr)	
VOC Emissions are				(lb/yr)	
VOC Emissions are				(lb/yr)	
VOC Emissions are				(lb/yr)	

 $^{^{1}}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

[⊠] Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

1.	Bulk Storage Area Name	2.	Tank Name
	Production Storage Tanks		Condensate Tank 2
3.	Tank Equipment Identification No. (as assigned on <i>Equipment List Form</i>) TK-9210	4.	Emission Point Identification No. (as assigned on <i>Equipment List Form</i>) 23E
5.	Date of Commencement of Construction (for existing	tank	(S)
6.	Type of change ⊠ New Construction □ N	New	Stored Material
7.	Description of Tank Modification (if applicable)		
	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)	☐ Yes
7B.	If YES, explain and identify which mode is covered completed for each mode).	ed by	y this application (Note: A separate form must be
7C.	Provide any limitations on source operation affecting variation, etc.): None	emi	ssions, any work practice standards (e.g. production
	II. TANK INFORM	ATIO	ON (required)
8.	Design Capacity (specify barrels or gallons). Use height.	the 0 bar	
9A.	Tank Internal Diameter (ft)	9B.	Tank Internal Height (or Length) (ft)
	12		20
10 <i>P</i>	A. Maximum Liquid Height (ft)	10E	B. Average Liquid Height (ft)
	19		10
11/	A. Maximum Vapor Space Height (ft)	11E	3 1 1 3 ()
	1		10
12.	Nominal Capacity (specify barrels or gallons). This i liquid levels and overflow valve heights.	is als 0 bar	

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)
1,149,750 14. Number of Turnovers per year (annual net throughput)	3,150
The state of the s	72
15. Maximum tank fill rate (gal/min) TBD	
16. Tank fill method	
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
18. Type of tank (check all that apply): ☐ Fixed Roof X vertical horizontal — other (describe) ☐ External Floating Roof pontoon roof ☐ Domed External (or Covered) Floating Roof	flat roof cone roof X dome roof double deck roof
☐ Internal Floating Roof vertical column so ☐ Variable Vapor Space lifter roof ☐ Pressurized spherical cylindrica ☐ Underground ☐ Other (describe)	diaphragm
	IATION (optional if providing TANKS Summary Sheets)
19. Tank Shell Construction:☐ Riveted ☐ Gunite lined ☐ Epoxy-coate	ed rivets
20A. Shell Color Green 20B. Roof Colo	, ,
21. Shell Condition (if metal and unlined):	
	Rust Not applicable
22A. Is the tank heated? YES NO	
22B. If YES, provide the operating temperature (°F)	
22C. If YES, please describe how heat is provided to	tank.
23. Operating Pressure Range (psig): to amb	pient
24. Complete the following section for Vertical Fixed Ro	pof Tanks Does Not Apply
24A. For dome roof, provide roof radius (ft) 12	
24B. For cone roof, provide slope (ft/ft)	
25. Complete the following section for Floating Roof Ta	nks Does Not Apply
25A. Year Internal Floaters Installed:	
25B. Primary Seal Type:	<u></u>
25C. Is the Floating Roof equipped with a Secondary	Seal? YES NO
25D. If YES, how is the secondary seal mounted? (ch	eck one) Shoe Rim Other (describe):
25E. Is the Floating Roof equipped with a weather shi	ield? YES NO

25F. Describe deck fittings; indica	te the number of ea	ch type of fitting:	
		S HATCH	
BOLT COVER, GASKETED:	UNBOLTED COV		UNBOLTED COVER, UNGASKETED:
BOLT COVER, GASKETED:	AUTOMATIC GAL UNBOLTED COV	JGE FLOAT WELL ER, GASKETED:	UNBOLTED COVER, UNGASKETED:
BUILT-UP COLUMN – SLIDING COVER, GASKETED:			PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:
PIP COLUMN – SLIDING COVER, G		R WELL PIPE COLUMN –	SLIDING COVER, UNGASKETED:
SLIDING COVER, GASKETED:	GAUGE-HATCH	/SAMPLE PORT SLIDING COVER	, UNGASKETED:
WEIGHTED MECHANICAL ACTUATION, GASKETED:			SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)
WEIGHTED MECHANICAL ACTUAT		BREAKER WEIGHTED MECH	ANICAL ACTUATION, UNGASKETED:
WEIGHTED MECHANICAL ACTUAT		VENT WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:
OPEN:	DECK DRAIN (3-	NCH DIAMETER) 90% CLOSED:	
1-INCH DIAMETER:	STUB	DRAIN	
OTHER (DESC	RIBE, ATTACH ADI	DITIONAL PAGES	IF NECESSARY)

26. Complete the following section for Internal	Floating Ro	oof Tanks	☐ Does No	t Apply	
26A. Deck Type:	elded				
26B. For Bolted decks, provide deck constru	uction:				
26C. Deck seam:					
☐ Continuous sheet construction 5 feet wi ☐ Continuous sheet construction 6 feet wi					
Continuous sheet construction 7 feet wi	ide				
☐ Continuous sheet construction 5 x 7.5 f☐ Continuous sheet construction 5 x 12 fe					
Other (describe)					
26D. Deck seam length (ft)		26E. A	rea of deck (ft ²)		
For column supported tanks:		26G. D	iameter of each co	olumn:	
26F. Number of columns:					
IV. SITE INFORMANTION	` .		·	Sheets)	
27. Provide the city and state on which the dat Charleston, WV	a in this sec	ction are b	ased.		
28. Daily Average Ambient Temperature (°F)		65	.08		
29. Annual Average Maximum Temperature (°	F)	75	.94		
30. Annual Average Minimum Temperature (°F	=)	54	54.2		
31. Average Wind Speed (miles/hr)		6.0)5		
32. Annual Average Solar Insulation Factor (B	TU/(ft²-day)) 1,2	250.6		
33. Atmospheric Pressure (psia)		14	.25		
V. LIQUID INFORMATION	(optional if	providing	TANKS Summary	/ Sheets)	
34. Average daily temperature range of bulk lice	quid: ProM	Iax 3.2 Cal	culation		
34A. Minimum (°F)		34B. M	laximum (°F)		
35. Average operating pressure range of tank:					
35A. Minimum (psig)		35B. M	laximum (psig)		
36A. Minimum Liquid Surface Temperature	(°F)	36B. C	orresponding Vap	or Pressure (psia)	
37A. Average Liquid Surface Temperature ((°F)	37B. C	orresponding Vap	or Pressure (psia)	
65.08			1.01		
38A. Maximum Liquid Surface Temperature	· (°F)	38B. C	orresponding Vap	or Pressure (psia)	
39. Provide the following for each liquid or gas	to be store	d in tank.	Add additional pa	iges if necessary.	
39A. Material Name or Composition	Conde	ensate			
39B. CAS Number					
39C. Liquid Density (lb/gal)	6.	.1			
39D. Liquid Molecular Weight (lb/lb-mole)	110	6.0			
39E. Vapor Molecular Weight (lb/lb-mole)	49).9			
·	·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	

39F. True (psia) 39G. Reid (psia) Months Storage per Ye 39H. From	ear				
39I. To	VI EMICCIONO A	ND CONTD	OL DEVICE	DATA (no suring al)	
T			_	DATA (required)	
☐ Inert Gas Blank ☐ Insulation of Ta ☐ Liquid Absorptic ☐ Refrigeration of ☐ Rupture Disc (p ☐ Vent to Incinera ☐ Other¹ (describ ¹ Complete approp	tion ¹ /ent (psig) fetting lief Valve (psig) ket of ank with on (scrubber) ¹ f Tank psig) ator ¹ e): Vapor Recovery Unitate Air Pollution Con	Jnit and vapor trol Device S	Pressure Se rs recycled ba Sheet.	etting ack into system	nligation)
41. Expected Emission Material Name &	Breathing Loss	Workin	1	Annual Loss	pilcation).
CAS NO	(lh/hr)	A	11		Estimation Method ¹
VOC	(lb/hr) 0.010	Amount 0.012	Units lb/hr	(lb/yr)	Estimation Method ¹ O-ProMax 3.2
				(lb/yr)	
VOC Emissions are				(lb/yr)	
VOC Emissions are				(lb/yr)	
VOC Emissions are				(lb/yr)	
VOC Emissions are				(lb/yr)	
VOC Emissions are				(lb/yr)	
VOC Emissions are				(lb/yr)	
VOC Emissions are				(lb/yr)	

 $^{^{1}}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

[⊠] Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Bulk Loading and Fugitives	

Attachment L FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

M PM-10

k =	Particle size multiplier	0.80	0.36
s =	Silt content of road surface material (%)	4.8	4.8
p =	Number of days per year with precipitation >0.01 in.	160	160

Item Number	Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1	Condensate Tank Truck	4	40	1	0.19	1	365	NA	NA
2	Produced Water Tank Truck	4	40		0.19	1	365	NA	NA
3	Passenger Vehicles	4	3	-	0.19	1	1095	NA	NA
4									
5									
6									
7									
8									

Source: AP-42 Fifth Edition – 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$ lb/Vehicle Mile Traveled (VMT)

Where:

		PM	PM-10
k =	Particle size multiplier	0.80	0.36
s =	Silt content of road surface material (%)	4.8	4.8
S =	Mean vehicle speed (mph)		
W =	Mean vehicle weight (tons)	17.8	17.8
w =	Mean number of wheels per vehicle	4	4
p =	Number of days per year with precipitation >0.01 in.	160	160

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 \ lb] = Tons/year$

SUMMARY OF UNPAVED HAULROAD EMISSIONS

		Р	M		PM-10			
Item No.	Uncon	trolled	Controlled		Uncor	ntrolled	Controlled	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	0.025	0.11	0.025	0.11	0.0065	0.028	0.0065	0.028
2	0.025	0.11	0.025	0.11	0.0065	0.028	0.0065	0.028
3	0.076	0.33	0.076	0.33	0.019	0.085	0.019	0.085
4								
5								
6								
7								
8								
TOTALS	0.13	0.55	0.13	0.55	0.032	0.14	0.032	0.14

Page 1 of 2

FUGITIVE EMISSIONS FROM PAVED HAULROADS

INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

l =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface material silt content (%)	
L=	Surface dust loading (lb/mile)	

Item Number	Description	Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1							
2							
3							
4							
5							
6							
7							
8							

Source: AP-42 Fifth Edition – 11.2.6 Industrial Paved Roads

 $E = 0.077 \times I \times (4 \div n) \times (s \div 10) \times (L \div 1000) \times (W \div 3)^{0.7} =$

lb/Vehicle Mile Traveled (VMT)

Where:

I =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface meterial silt content (%)	
L=	Surface dust loading (lb/mile)	
W =	Average vehicle weight (tons)	

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 \ lb] = Tons/year$

SUMMARY OF PAVED HAULROAD EMISSIONS

Item No.	Uncon	trolled	Conti	
item No.	lb/hr	TPY	lb/hr	TPY
1				
2				
3				
4				
5				
6				
7				
8				
TOTALS				

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

tarik tracks.					
Identification Number (as assigned on Equipment List Form): LDOUT1					
1. Loading Area Name: Produced Fluids Loadout					
2. Type of cargo vessels accommodated at this rack or transfer point (check as many as apply): □ Drums □ Marine Vessels □ Rail Tank Cars X Tank Trucks					
None – use truck pumps					
Two – Condensate & Produced Water					
Four as each tank has a connection, but not likely that there will be four at one time. TK-9000 does not have a loading connection.					
cur at this loading area? X Does not apply					
5. Describe cleaning location, compounds and procedure for cargo vessels using this transfer point: N/A					
6. Are cargo vessels pressure tested for leaks at this or any other location? □ Yes X No If YES, describe:					

page of	
WVDEP-OAQ Revision	03-

7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):							
Maximum Jan Mar. Apr June July - Sept. Oct Dec.							
hours/day	10	10	10	10			
days/week	5	5	5	5			
weeks/quarter	all	all	all	all			

8. Bulk Liquid Data (add pages as necessary):						
Pump ID No.		N/A	N/A			
Liquid Name		Conden- sate	Produced Water			
Max. daily thro	oughput (1000 gal/day)	6.30	1.89			
Max. annual t	hroughput (1000 gal/yr)	2,299.5	689.85			
Loading Meth	od ¹	SUB	SUB			
Max. Fill Rate	(gal/min)	TBD	TBD			
Average Fill T	ime (min/loading)	TBD	TBD			
Max. Bulk Liq	uid Temperature (°F)	76	76			
True Vapor Pi	ressure ²	11.01	0.32			
Cargo Vessel	Condition ³	U	U			
Control Equip	ment or Method ⁴	None	None			
Minimum cont	rol efficiency (%)	0	0			
Maximum	Loading (lb/hr)	44.35	0.63			
Emission Rate	Annual (lb/yr)	13,490	58			
Estimation Method ⁵		EPA	EPA			
¹ BF = Bottom Fill SP = Splash Fill SUB = Submerged Fill						
² At maximum	bulk liquid temperature					

page __ of __ WVDEP-OAQ Revision 03-

³ B = Ballasted Vessel, C = Cleaned, U = Unc	leaned (dedicated service), O = other (describe)
⁴ List as many as apply (complete and submit	
Sheets):CA = Carbon Adsorption	LOA = Lean Oil AdsorptionCO =
Condensation SC =	= Scrubber (Absorption)CRA = Compressor-
	dation or Incineration
CRC = Compression-Refrigeration-Condensation	VB = Dedicated Vapor Balance (closed system)
O = other (descibe)	,
5 EDA — EDA Emission Factor as stated in AF	2.40

MB = Material Balance

TM = Test Measurement based upon test data submittal

O = other (describe)

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING see Attachment O	RECORDKEEPING see Attachment O
REPORTING see Attachment O	TESTING see Attachment O

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS

> page __ of __ WVDEP-OAQ Revision 03-

EPA = EPA Emission Factor as stated in AP-42

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

page __ of __ WVDEP-OAQ Revision 03-

Attachment L EMISSIONS UNIT DATA SHEET CHEMICAL PROCESS

	For chemical processes please fill out this sheet and all supplementary forms (see below) that apply. Please check all supplementary forms that have been completed.				
	☐ Emergency Vent Summary Sheet				
1.	 Chemical process area name and equipment ID number (as shown in Equipment List Form) Piping for Entire Facility. Piping not contained in equipment form. 				
2.	Standard Industrial Classification (4923	Codes (SICs) for process(es)			
3.	3. List raw materials and ☐ attach MSDSs Wet Natural Gas				
4.	List Products and Maximum Produ	uction and attach MSDSs			
De	scription and CAS Number	Maximum Hourly (lb/hr)	Maximum Annual (ton/year)		
	Dry Natural Gas	6 MMscf/hour	52,925 MMscf/year		
	Condensate	6.25 barrels/hour	54,750 barrels/year		
	Produced Water	1.875 barrels/hour	16,425 barrels/year		
5.	Complete the Emergency Vent Su	ummary Sheet for all emergency relief of	devices.		
6.	 Complete the Leak Source Data Sheet and describe below or attach to application the leak detection or maintenance program to minimize fugitive emissions. Include detection instruments, calibration gases or methods, planned inspection frequency, and record-keeping, and similar pertinent information. If subject to a rule requirement (e.g. 40CFR60, Subpart VV), please list those here. Leak Detection Plan yet to be determined. Not subject to any federal regulations. 				
7.	spill or release.	o application Accident Procedures to be Prevention, Control and Countermeasu			

8B.	 8A. Complete the <i>Toxicology Data Sheet</i> or attach to application a toxicology report (an up-to-date material safety data sheets (MSDS) may be used) outlining the currently known acute and chronic health effects of each compound or chemical entity emitted to the air. If these compounds have already been listed in Item 3, then a duplicate MSDS sheet is not required. Include data such as the OSHA time weighted average (TWA) or mutagenicity, teratogenicity, irritation, and other known or suspected effects should be addressed. Indicate where these are unknown, and provide references. 8B. Describe any health effects testing or epidemiological studies on these compounds that are being or may be conducted by the company or required under TSCA, RCRA or other federal regulations. Discuss the persistence 				
		ent of any emission (e.g. pe		les, etc.). source is subject to RCRA or 450	CSD25 places contact the
		ste Section of WVDEP, OAC			CONZO, please contact the
9A.	Types and amo	ounts of wastes to be dispos	ed:		
	Method of disponding Carrier:	osal and location of waste d	ispos	al facilities: Phone:	
		pproved USEDA/State Hear	ordou		
		• •		s Waste Landfill will be used dule for process or project as a who	ole (circle appropriate units)
	circle units:	(hrs/day) (hr/batch)		vs), (batches/day), (batches/week)	(days/yr), (weeks/year)
			(uay		
10A		24		7	52
10B		24		7	52
11.	Complete a Re	actor Data Sheet for each re	eacto	r in this chemical process.	
	· · · · · · · · · · · · · · · · · · ·			ach distillation column in this chem	ical process.
13. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.					
IVIOI	MONITORING RECORDKEEPING				
	Attachment O			see Attachment O	
REF	PORTING			TESTING	
see Attachment O		see Attachment O			
MONITORING. Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment operation or air pollution control device. RECORDKEEPING. Please describe the proposed recordkeeping that will accompany the monitoring. REPORTING. Please describe the proposed frequency of reporting of the recordkeeping.					
TESTING. Please describe any proposed emissions testing for this process equipment or air pollution control device.					
14. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty					

LEAK SOURCE DATA SHEET

Source Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (days) ³	Estimated Annual Emission Rate (lb/yr) ⁴
Pumps ⁵	light liquid VOC ^{6,7}				
	heavy liquid VOC8				
	Non-VOC ⁹				
Valves ¹⁰	Gas VOC	250	TBD	1	3,587 – EE
	Light Liquid VOC	42	TBD	1	1,339 – EE
	Heavy Liquid VOC				
	Non-VOC				
Safety Relief Valves ¹¹	Gas VOC				
	Non VOC				
Open-ended Lines ¹²	VOC				
	Non-VOC				
Sampling Connections ¹³	VOC				
	Non-VOC				
Compressors	VOC	33	TBD	1	926 – EE
	Non-VOC				
Flanges	Gas VOC	836	TBD	1	1,039 – EE
	Light Liquid VOC	175	TBD	1	245 – EE
	Non-VOC				
Other	VOC				
	Non-VOC				

¹⁻¹³ See notes on the following page.

Page 5 of 13 Revision 03/2007

Attachment L **EMISSIONS UNIT DATA SHEET GENERAL**

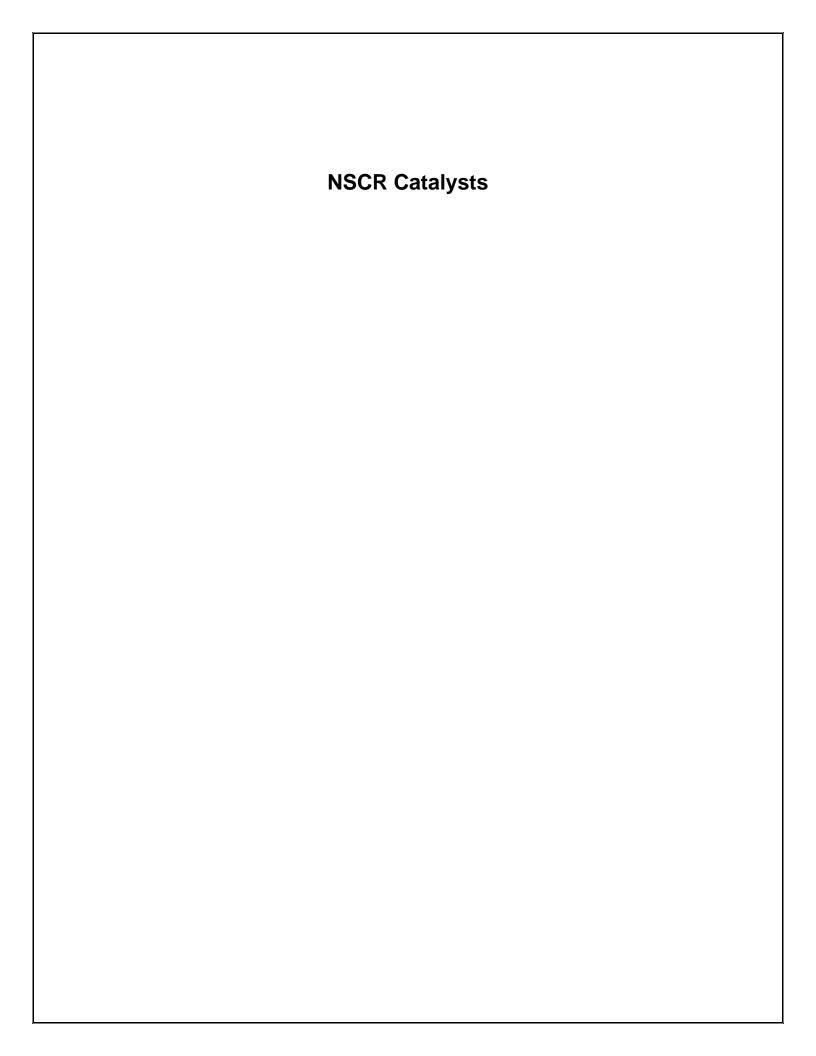
To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): Fugitive so no number assigned

radefithication Number (as assigned on Equipment List 1 only). Tragitive so no number assigned				
Name or type and model of proposed affected source:				
Fugitive emissions from venting episodes such as plant shutdowns and compressor start ups/shut downs.				
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants. 				
3. Name(s) and maximum amount of proposed process material(s) charged per hour:				
4. Name(s) and maximum amount of proposed material(s) produced per hour:				
 compressor blowdown - 0.044 tons VOC per event, 4.17 tons CO2e per event compressor startup - 0.005 tons VOC per event, 0.44 tons CO2e per event plant shutdown - 0.44 tons VOC per event, 41.72 tons CO2e per event pigging venting - 0.004 tons VOC per event, 0.42 tons CO2e per event 				
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:				
none				

The identification number which appears here must correspond to the air pollution control device identification number appearing on the List Form.

sulfur				
sia.				
(e) Type and BTU/hr of burners and all other firing equipment planned to be used:				
of the				
/hr.				
/hr.				


	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:				
@	@ venting events are uncontrolled °F and psia				
a.	NO _X	lb/hr	grains/ACF		
b.	SO ₂	lb/hr	grains/ACF		
c.	СО	lb/hr	grains/ACF		
d.	PM ₁₀	lb/hr	grains/ACF		
e.	Hydrocarbons	lb/hr	grains/ACF		
f.	VOCs	variable based on event lb/hr	grains/ACF		
g.	Pb	lb/hr	grains/ACF		
h.	Specify other(s)				
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. MONITORING RECORDKEEPING						
see Attachment O	see Attachment O					
see Attachment O	see Attachment O					
DEDODTING	TECTING					
REPORTING see Attachment O	TESTING see Attachment O					
MONITORING. PLEASE LIST AND DESCRIBE THE PROPOSED TO BE MONITORED IN ORDER TO DEMONITORES EQUIPMENT OPERATION/AIR POLLUTION	STRATE COMPLIANCE WITH THE OPERATION OF THIS					
RECORDKEEPING. PLEASE DESCRIBE THE PROPMONITORING.	OSED RECORDKEEPING THAT WILL ACCOMPANY THE					
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	POSED FREQUENCY OF REPORTING OF THE					
TESTING. PLEASE DESCRIBE ANY PROPOSED EMIS POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR					
10. Describe all operating ranges and mainter maintain warranty $\rm N/\rm A$	nance procedures required by Manufacturer to					

Attachment M. Air Pollution Control Device Sheets	

Attachment M Air Pollution Control Device Sheet

(OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): 1C - 13C

Equipment Information

1.	Manufacturer: EMIT Technologies Model No. RT-2415-T	ne: 1C – 13C – through C-2220 rst				
3.	Provide diagram(s) of unit describing capture syst capacity, horsepower of movers. If applicable, state					
4.	On a separate sheet(s) supply all data and calculation	ons used in selecting or de	esigning this collection device.			
5.	Provide a scale diagram of the control device showi	ng internal construction.				
6.	Submit a schematic and diagram with dimensions a	nd flow rates.				
	Guaranteed minimum collection efficiency for each page 4 – no capture of pollutants	pollutant collected:				
8.	Attached efficiency curve and/or other efficiency info	ormation.				
9.	Design inlet volume: 8,895 ACFM	10. Capacity:				
	11. Indicate the liquid flow rate and describe equipment provided to measure pressure drop and flow rate, if any. N/A					
12.	Attach any additional data including auxiliary equ control equipment.	ipment and operation det	ails to thoroughly evaluate the			
	13. Description of method of handling the collected material(s) for reuse of disposal. Replace Catalyst elements when necessary					
	Gas Stream	Characteristics				
14.	Are halogenated organics present? Are particulates present? Are metals present?	☐ Yes ☐ No ☐ Yes ☐ No ☐ Yes ☐ No				
15.	Inlet Emission stream parameters:	Maximum	Typical			
	Pressure (mmHg):	Not specified				
	Heat Content (BTU/scf):	1,400	1,122			
	Oxygen Content (%):	Not specified				
	Moisture Content (%):	Not specified				
	Relative Humidity (%):	Not specified				

Page 1 of 4 REVISED 03/15/2007

40							
16.	Type of pollutant(s) o ☐ Particulate (type)		□ SO _x	☐ Odor ☑ Other NOx	, CO, VOC, HC	HO, CH4	
17.	Inlet gas velocity:	1	156 ft/sec	18. Pollutant	specific gravity:		
19.	Gas flow into the col 8,895 ACF @		PSIA	20. Gas strea	m temperature: Inlet: Outlet:	1,225 1,225	°F °F
21.	21. Gas flow rate: Design Maximum: Average Expected: B,895 ACFM TBD ACFM			22. Particulate	e Grain Loading Inlet: Outlet:	in grains/scf: N	N/A
23.	23. Emission rate of each pollutant (specify) into and out of collector:						
	Pollutant IN Pollutant		lutant	Emission OUT Pollutant Co		Control	
		lb/hr	grains/acf	Capture	lb/hr	grains/acf	Efficiency %
				Efficiency %			/6
	A NOx	50.37			1.26		97.5
	A NOx B CO	50.37 47.41		%	1.26 1.19		
				%			97.5
	в со	47.41		% 	1.19		97.5 97.5
	B CO C VOC	47.41 1.41		% 	1.19 0.70		97.5 97.5 50
24.	B CO C VOC D HCHO	47.41 1.41 0.19 5.41	ht TBD	%	1.19 0.70 0.04	eter 1.10	97.5 97.5 50 76 70

Particulate Distribution

26. Complete the table:	Particle Size Distribution at Inlet to Collector	Fraction Efficiency of Collector
Particulate Size Range (microns)	Weight % for Size Range	Weight % for Size Range
0 – 2		
2 – 4		
4 – 6		
6 – 8		
8 – 10		
10 – 12		
12 – 16		
16 – 20		
20 – 30		
30 – 40		
40 – 50		
50 – 60		
60 – 70		
70 – 80		
80 – 90		
90 – 100		
>100		

27. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification): None 28. Describe the collection material disposal system: Catalyst elements can be cleaned and/or replaced; materials are not disposed on site. 29. Have you included Other Collectores Control Device in the Emissions Points Data Summary Sheet? yes 30. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. MONITORING: see Attachment O RECORDKEEPING: see Attachment O REPORTING: see Attachment O TESTING: see Attachment O MONITORING: Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment or air control device. Please describe the proposed recordkeeping that will accompany the monitoring. **RECORDKEEPING:** REPORTING: Please describe any proposed emissions testing for this process equipment on air pollution control device. TESTING: Please describe any proposed emissions testing for this process equipment on air pollution control device. 31. Manufacturer's Guaranteed Control Efficiency for each air pollutant. NOx: 97.5%, CO: 97.5%, VOC: 50%, HCHO: 76%, CH4: 70%. Due to variable load conditions, the catalyst efficiency may vary. The catalyst efficiencies listed above are typical based on expected operating conditions. Manufacturer data is for 96% for both NOx and CO; however, 97.5% is being used for permitting based on similar facilities in operation. 32. Manufacturer's Guaranteed Control Efficiency for each air pollutant. 33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. Inlet temperature range is 750 F - 1250 F. Engine must be operated between 50 - 100 % load. A/F ratio

controller must be set properly with fuel heating value of around 1400 Btu/scf. Engine lube oil shall contain less than 0.5 wt% sulfated ash. Catalyst must not be exposed to the following: antimony, arsenic, chromium, copper,

iron, lead, lithium, magnesium, mercury, nickel, phosphorous, potassium, silicon, sodium, sulfur, tin, zinc.

2585 Heartland Dr. Sheridan, WY 82801 Office: | Direct: +1 (307) 675.5081 riames@emittechnologies.com

Prepared For:Michele Steyskal

QUOTE: QUO-17098-T3P5

KLEINFELDER

INFORMATION PROVIDED BY WAUKESHA

Engine: L7044GSI
Horsepower: 1680
RPM: 1200
Compression Ratio: 8.0

Exhaust Flow Rate: 8895 CFM Exhaust Temperature: 1225 °F Reference: N/A

Fuel: Natural Gas

Annual Operating Hours: 8760

Uncontrolled Emissions

	<u>g/bhp-hr</u>	<u>Lb/Hr</u>	<u>Tons/Year</u>
NOx:	13.60	50.37	220.63
CO:	12.80	47.41	207.65
THC:	2.30	3.22	14.11
NMHC	0.87	3.22	14.11
NMNEHC:	0.38	1.41	6.16
HCHO:	0.05	0.19	0.81
O2:	0.30 %		

POST CATALYST EMISSIONS

	% Reduction	g/bhp-hr
NOx:	>96 %	<0.54
CO:	>96 %	<0.51
VOC:	>50 %	<0.19
HCHO:	>76 %	<0.01
CH4:	>70%	<0.44

CONTROL EQUIPMENT

Catalyst Element

Model: RT-2415-T

Catalyst Type: NSCR, Standard Precious Group Metals

Substrate Type: BRAZED

Manufacturer: EMIT Technologies, Inc

Element Quantity: 4

Element Size: Rectangle 24" x 15" x 3.5"

2585 Heartland Dr. Sheridan, WY 82801 Office: | Direct: +1 (307) 675.5081 riames@emittechnologies.com

WARRANTY

EMIT Technologies, Inc. warrants that the goods supplied will be free from defects in workmanship by EMIT Technologies, Inc. for a period of two (2) years from date of shipment. EMIT Technologies, Inc. will not be responsible for any defects which result from imprope use, neglect, failure to properly maintain or which are attributable to defects, errors or omissions in any drawings, specifications, plans or descriptions, whether written or oral, supplied to EMIT Technologies, Inc. by Buyer.

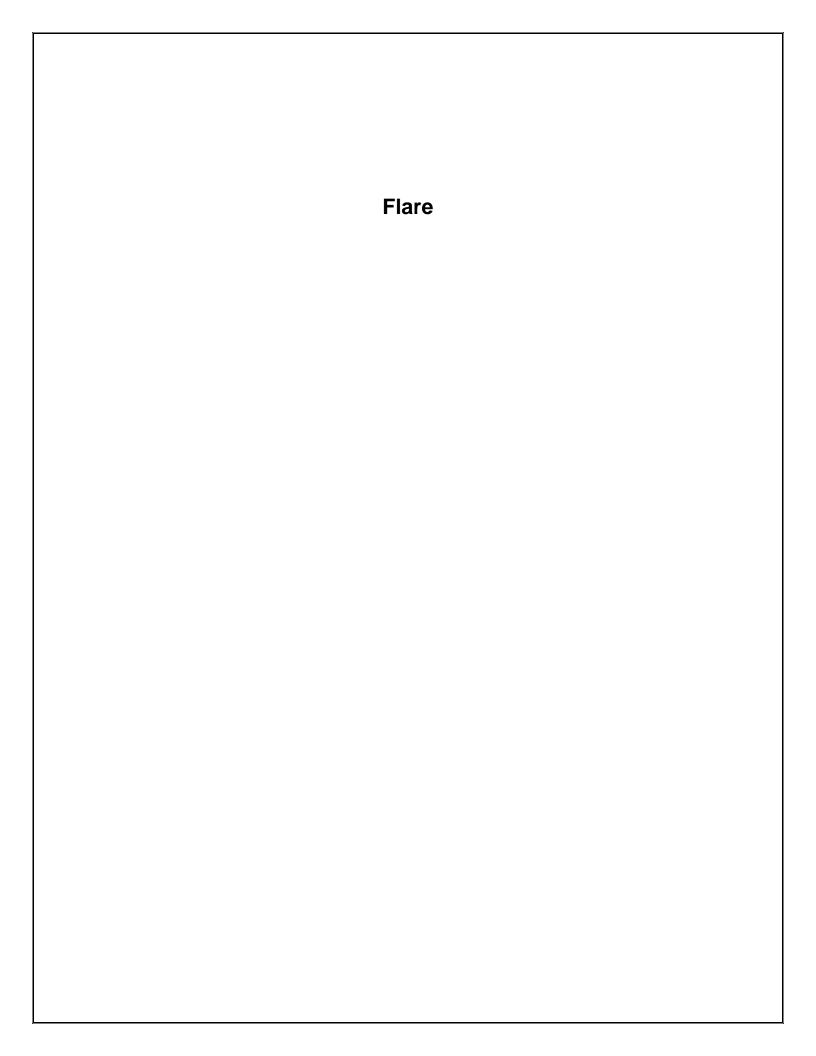
Catalyst performance using an EMIT Air/Fuel ratio controller is dependent upon properly defined set-points, variable with engine and fuel gas composition. Air/fuel ratio controller performance is guaranteed, but not limited, to fuel gas with a HHV content of 1400 BTU/SCF.

Catalyst performance will be guaranteed for a period of 1 year from installation, or 8760 operating hours, whichever comes first. The catalyst shall be operated with an automatic air/fuel ratio controller. The performance guarantee shall not cover the effects of excessive ash masking due to operation at low load, improper engine maintenance, or inappropriate bubrication oil. The performance guarantee shall not cover the effects of continuous engine misfires (cylinder or ignition) exposing the catalyst to excessive exothermic reaction temperatures. In most cases, excluding thermal deactivation, catalyst be performance is redeemable by means of proper washing (refer to EMIT Catalyst/Silencer Housing Manual for element wash information, or contact a local EMIT Sales representative).

The exhaust temperature operating range at the converter inlet is a minimum of 600°F for oxidation catalyst and 750 °F for NSCR catalyst, and a maximum of 1250°F.

If a properly functioning, high temperature shut down switch is not installed, thermal deactivation of catalyst at sustained temperatures above 1250°F is not covered. If excessive exposure to over oxygenation of NSCR catalyst occurs due to improperly functioning or non-existent Air/Fuel ratio control, then deactivation of catalyst is not warranted.

The catalyst conversion efficiencies (% reduction) will be guaranteed for engine loads of 50 to 100 percent. Standard Oxidation Catalyst conversion efficiencies (% reduction) will be guaranteed for fuel gas containing less than 1.5% mole fraction of non-methane, non-ethane hydrocarbons. Applications where fuel gas exceeds this level will require a Premium Oxidation Catalyst to maintain guaranteed VOC conversion efficiencies.


Engine lubrication oil shall contain less than 0.5 wt% Sulfated Ash with a maximum allowable specific oil consumption of 0.7 g/bhp-hr. The catalyst shall be limited to a maximum ash loading of 0.022 lb/ft3. Phosphorous and zinc additives are limited to 0.03 wt%. New or Reconstructed engines must operate for a minimum of 50 hours prior to catalyst installation, otherwise the warranty is void.

The catalyst must not be exposed to the following know poisoning agents, including: antimony, arsenic, chromium, copper, iron, lead, lithium, magnesium, mercury, nickel, phosphorous, potassium, silicon, sodium, sulfur, tin, and zinc. Total poison concentrations in the fuel gas must be limited to 0.25 ppm or less for catalyst to function properly.

Shipment - Promised shipping dates are approximate lead times from the point of manufacture and are not guaranteed. EMIT Technologies, Inc. will not be liable for any loss, damage or delay in manufacture or delivery resulting from any cause beyond its control including, but not limited to a period equal to the time lost by reason of that delay. All products will be crated as per best practice to prevent any damage during shipment. Unless otherwise specified, Buyer will pay for any special packing and shipping requirements. Acceptance of goods by common carrier constitutes delivery to Buyer. EMIT Technologies, Inc. shall not be responsible for goods damaged or lost in transit.

Terms: Credit is extended to purchaser for net 30 time period. If payment is not received in the net 30 timeframe, interest on the unpaid balance will accrue at a rate of 1.5% per month from the invoice date.

Order Cancellation Terms: Upon cancellation of an order once submittal of a Purchase Order has occurred, the customer will pay a 25% restocking fee for Catalyst Housings, Catalyst Elements, and Air/Fuel Ratio Controllers; 50% restocking fee for Cooler Top Solutions Exhaust System Accessories, and other Custom Built Products; 100% of all associated shipping costs incurred by EMIT; 100% of all project expenses incurred by EMIT for Field Services.

Attachment M Air Pollution Control Device Sheet

(FLARE SYSTEM)

Control Device ID No. (must match Emission Units Table): $14C\ (27E)$

Equipment Information

1.	Manufacturer: Abutec	2. Method:
	Model No. 100	☐ Other Describe
	9.2 MMBtu/hr	
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state I	m with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.
4.	Method of system used:	_
	Steam-assisted Air-assisted	☐ Pressure-assisted ☐ Non-assisted
5.	Maximum capacity of flare:	6. Dimensions of stack:
	9.2 MMBtu/hr	Diameter 3 ft.
_		Height 20 ft.
7.	Estimated combustion efficiency: (Waste gas destruction efficiency)	 Fuel used in burners:
	Estimated: 98 %	☐ Fuel Oil, Number
	Minimum guaranteed: 98 %	Other, Specify:
9.	Number of burners:	11. Describe method of controlling flame:
	Rating: 9,200,000 BTU/hr	Enclosed flare
10.	Will preheat be used? ☐ Yes ☐ No	
12.	Flare height: 20 ft	14. Natural gas flow rate to flare pilot flame per pilot light: 0.27 scf/min
13.	Flare tip inside diameter: 3 ft	16.4 scf/hr
15.	Number of pilot lights: 1	16. Will automatic re-ignition be used?
	Total 16,728 BTU/hr	☐ Yes
17.	If automatic re-ignition will be used, describe the method	hod:
40		
18.	Is pilot flame equipped with a monitor? \(\sum \) Yes If yes, what type? \(\sum \) Thermocouple \(\sum \) Infra-	□ No
		era with monitoring control room
	Other, Describe:	
	_ ,	
19.	Hours of unit operation per year: 8,760	

Steam Injection

		Steam	IIIJe	GLIOII		
20.	Will steam injection be used	d? ☐ Yes ⊠ No	21	. Steam pressure		PSIG
				Minimum Expected:		
22.	Total Steam flow rate:	LB/hr	23	. Temperature:		°F
24.	Velocity	ft/sec	25	. Number of jet streams		
26.	Diameter of steam jets:	in	27	. Design basis for steam in	-	
-	III. Water of the land	(a. II. d. 26 a (a. a. a. 2 a 2 a 2 a 2 a 2			B steam/L	B hvdrocarbon
28.	How will steam flow be con	trolled if steam injection	is us	ea <i>?</i>		
	Cha	aracteristics of the Wa	ste G	as Stream to be Burned		
29.	Name	Quantity Grains of H ₂ S/100 ft	3	Quantity (LB/hr, ft³/hr, etc)	Sour	ce of Material
	SV-3110	0		2640 scfh	Deh	y Still Vent
	SV-3210	0		2640 scfh	Deh	y Still Vent
30.	Estimate total combustible			5280 LB/hr o	r ACF/hr	
24	(Maximum mass flow rate of		4	housed sender seese and	.:1: 1	
31.	Estimated total flow rate to LB/hr or ACF/hr	flare including materials	to be	e burned, carrier gases, aux	killary fuel	, etc.:
32.	Give composition of carrier	gases:				
33	Temperature of emission st	ream:	24	Identify and describe all a	auviliany fu	uala ta ba burnad
	•	°F	34	 Identify and describe all a BTU/scf 	auxillary it	ieis to be burried.
	Heating value of emission s					BTU/scf
	Mean molecular weight of e	BTU/ft ³				BTU/scf
	MW =	emission sucam.				BTU/scf
35.	Temperature of flare gas:	> 1030 °F	36	. Flare gas flow rate:	scf/mi	n
37.	Flare gas heat content:	BTU/ft ³	38	. Flare gas exit velocity:	sc	f/min
39.	Maximum rate during emer	gency for one major pied	ce of	equipment or process unit:		scf/min
	Maximum rate during emer	• • • • • • • • • • • • • • • • • • • •			N/A	BTU/min
41.	Describe any air pollution reheating, gas humidification		outle	et gas conditioning proces	ses (e.g.,	gas cooling, gas
42.	Describe the collection mat	erial disposal system:				
43.	Have you included <i>Flare C</i>	ontrol Device in the Em	issio	ns Points Data Summary S	heet?	Yes
	•			· <i>j</i> -		

Please propose m proposed operating proposed emissions MONITORING: see Attachment O	g parameters. Please propose	eporting in order to demonstrate compliance with the testing in order to demonstrate compliance with the RECORDKEEPING: see Attachment O
REPORTING: see Attachment O		TESTING: see Attachment O
MONITORING: RECORDKEEPING: REPORTING:	monitored in order to demons equipment or air control device. Please describe the proposed re-	cocess parameters and ranges that are proposed to be strate compliance with the operation of this process cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air
TESTING:	Please describe any proposed pollution control device.	emissions testing for this process equipment on air
N/A – no ca	aranteed Capture Efficiency for eacapture efficiency	
98% contr	aranteed Control Efficiency for each	, C1, C2
	ng ranges and maintenance proce st range between 2 oz/in ² and 12	edures required by Manufacturer to maintain warranty. 20 psig

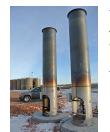
QUAD O COMPLIANCE INFORMATION & QUESTIONS

HOME

PRODUCTS ▼ SERVICE

COMPANY

MANUFACTURING


BLOG

CONTACT

ABUTEC 100

/ Products / ABUTEC 100

Don't combust - ABUTEC 100 is Quad O Approved

The ABUTEC 100 (SCUF MTF 2.7), has been approved by the Environmental Protection Agency (EPA) as having achieved specific performance requirements related to emissions. Read the full report here.

The announcement relieves owners and operators from the burden of performing thirdparty testing on approved combustion devices. Because the ABUTEC 20 and ABUTEC 100 have been approved, these owners and operators will save time and expense.

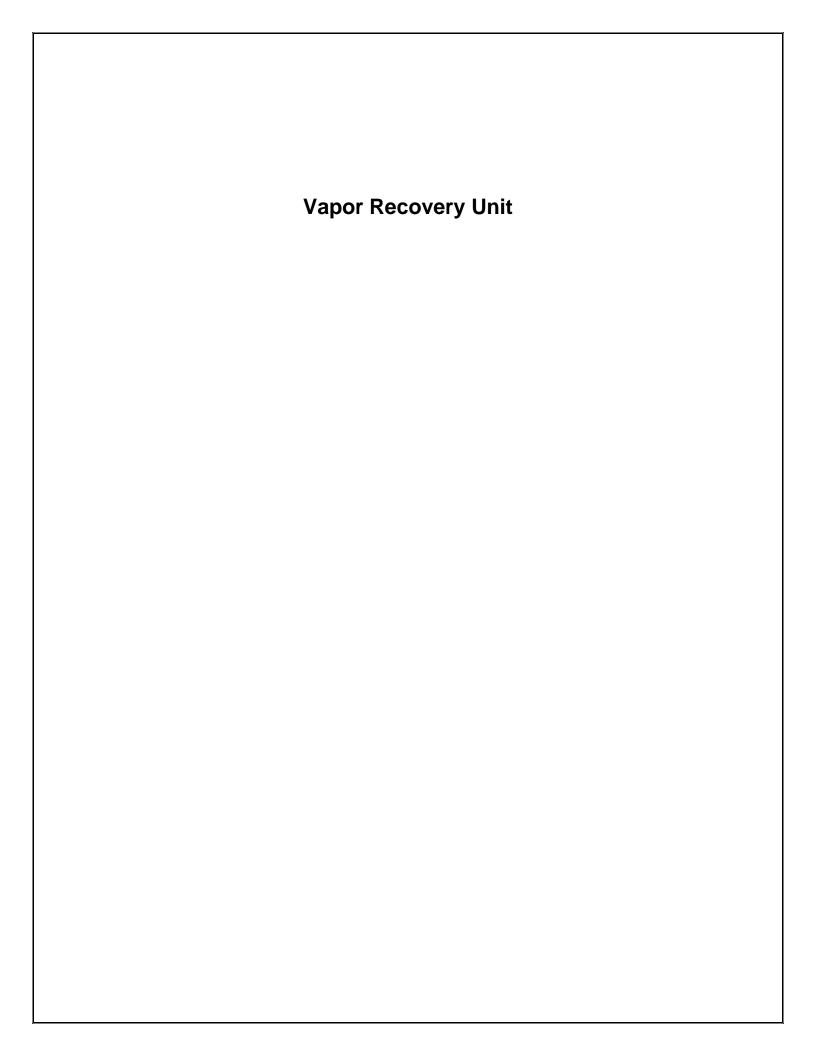
For larger sites that need a customizable solution for emission control, the ABUTEC 100 is an ideal addition. Because it meets all government regulations for vapor combustion, the ABUTEC 100 lets your facility remain compliant and in control of your emissions.

The reliability of the ABUTEC 100 is second to none, especially for remote locations without available electricity. It is able to be paired with other systems, giving your facility exactly the combustion you require. Additionally, the ABUTEC 100 is easy to install, and works in even the toughest environmental conditions.

View Oil and Gas Brochure

Read about the ABUTEC 100 in action

Key Features of the ABUTEC 100:


- Quad O Compliant Ready
- Local Service Team availability
- Low Capital and Operating Costs
- Meets 40 CFR 60.18 regulations
- Flexible & Scalable System
- Continuous pilot
- 99%+ Destruction Efficiency (Independent 3rd party tested)
- Very High Turndown Ratio
- Scalable flow rates from 20-100 MSCFD
- Inlet pressure as low as 2oz/in² and up to 120psig
- Capable of 9,212,400 BTU/hour
- TERO License from Three Affiliated Tribes
- Solar Panel functionality
- SCADA integration with control panel for remote monitoring
- Stainless steel construction

Customizing the ABUTEC 100

The ABUTEC 100 can be paired with the ABUTEC High Pressure (HP) units to give your site the high/low pressure solution it needs.

The HP 1500 and HP 3000 can be installed as a stand-alone unit, or paired with the ABUTEC 100 on the same skid or included on the same site on a different skid.

Attachment M Air Pollution Control Device Sheet

(OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): 14C (VRU-6000)

Equipment Information

1.	Manufacturer: TBD		ne: 14C (VRU-6000) ery Unit for Storage Tanks					
3.	Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.							
4.	On a separate sheet(s) supply all data and cald	culations used in selecting or de	esigning this collection device.					
5.	Provide a scale diagram of the control device s	showing internal construction.						
6.	Submit a schematic and diagram with dimension	ons and flow rates.						
clo	7. Guaranteed minimum collection efficiency for each pollutant collected: closed loop system, however claiming 98% efficiency. VRU-6000 is the primary VRU to collect storage tank vapors and VRU-6100 is the backup VRU in times when the primary VRU is undergoing maintenance or shutdown. In the unlikely event that both VRU-6000 and VRU-6100 are under maintenance or are shutdown, a bypass system is in place to route tank vapors to the facility inlet.							
8.	Attached efficiency curve and/or other efficience	cy information.						
9.	Design inlet volume: 40 Mscfd	10. Capacity: 40 Mscfd						
11. N/A	Indicate the liquid flow rate and describe equip	ment provided to measure pres	sure drop and flow rate, if any.					
12.	Attach any additional data including auxiliary control equipment.	equipment and operation de	tails to thoroughly evaluate the					
	Description of method of handling the collected lected materials get recycled back into gas s		al.					
	Gas Stro	eam Characteristics						
14.	Are halogenated organics present? Are particulates present? Are metals present?	☐ Yes No ☐ Yes						
15.	Inlet Emission stream parameters:	Maximum	Typical					
	Pressure (mmHg):	0.01 psig						
	Heat Content (BTU/scf):	Not specified						
	Oxygen Content (%):	Not specified						
	Moisture Content (%):	Not specified						
	Relative Humidity (%):	Not specified						

Page 1 of 3 REVISED 03/15/2007

16.	Type of pollutant(s) o		SOx		☐ Odor ☑ Other VOC	C, HAPs, C1, C2		
17.	Inlet gas velocity:	1	V/A ft/se	ec	18. Pollutant	specific gravity:		
19.	Gas flow into the col TBD ACF @		TBD PSI	IA	20. Gas strea	m temperature: Inlet: Outlet:	ambient ambient	°F °F
21.	21. Gas flow rate: Design Maximum: AVERAGE AVERAGE AVE				22. Particulate	e Grain Loading Inlet: Outlet:	in grains/scf: I	N/A
23.	23. Emission rate of each pollutant (specify) into and out of collector:							
	Pollutant	IN Pol	llutant		Emission			Control
		lb/hr	grains/a	acf	Capture Efficiency %	lb/hr	grains/acf	Efficiency %
	A VOC	103.21			98	2.06		N/A
	B HAPs	3.52			98	0.070		N/A
	C CO2e	435			98	8.91		N/A
	D							
	E							
24.	Dimensions of stacks	: Heig	ht TBD		ft.	Diame	eter TBD) ft.
25.	Supply a curve show rating of collector.	ving proposed co	ollection eff	ficien	cy versus gas	volume from 25	to 130 perce	nt of design

Particulate Distribution

26. Complete the table:	Particle Size Distribution at Inlet to Collector	Fraction Efficiency of Collector
Particulate Size Range (microns)	Weight % for Size Range	Weight % for Size Range
0 – 2		
2 – 4		
4 – 6		
6 – 8		
8 – 10		
10 – 12		
12 – 16		
16 – 20		
20 – 30		
30 – 40		
40 – 50		
50 – 60		
60 – 70		
70 – 80		
80 – 90		
90 – 100		
>100		

	pollution control device inlet and o midification): None	utlet gas conditioning processes (e.g., gas cooling, gas
28. Describe the colle system	ection material disposal system: C	closed loop system – vapors get recycled back into
29. Have you included	Other Collectores Control Device	ce in the Emissions Points Data Summary Sheet? Yes
Please propose i	ng parameters. Please propose	and Testing eporting in order to demonstrate compliance with the testing in order to demonstrate compliance with the
MONITORING: see A	ttachment O	RECORDKEEPING: see Attachment O
REPORTING: see Att	acimient o	TESTING: see Attachment O
MONITORING:		ocess parameters and ranges that are proposed to be strate compliance with the operation of this process
RECORDKEEPING: REPORTING:	Please describe the proposed re-	cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air
TESTING:		emissions testing for this process equipment on air
	uaranteed Control Efficiency for eac system. However, claiming 98% t	h air pollutant. to account for down time with a back up VRU.
	uaranteed Control Efficiency for eac system. However, claiming 98% to	h air pollutant. o account for down time with a back up VRU.
		edures required by Manufacturer to maintain warranty. and alerts systems for malfunctions.

Attachment M Air Pollution Control Device Sheet

(OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): 15C (VRU-6100)

Equipment Information

1.	Manufacturer: TBD	Control Device Nar Type: Vapor Recov	ne: 15C (VRU-6100) ery Unit for Storage Tanks								
3.	Provide diagram(s) of unit describing capture capacity, horsepower of movers. If applicable										
4.	On a separate sheet(s) supply all data and ca	lculations used in selecting or de	esigning this collection device.								
5.	Provide a scale diagram of the control device showing internal construction.										
6.	Submit a schematic and diagram with dimensi	ions and flow rates.									
	7. Guaranteed minimum collection efficiency for each pollutant collected: closed loop system, however claiming 98% efficiency. VRU-6000 is the primary VRU to collect storage tank vapors and VRU-6100 is the backup VRU in times when the primary VRU is undergoing maintenance or shutdown. In the unlikely event that both VRU-6000 and VRU-6100 are under maintenance or are shutdown, a bypass system is in place to route tank vapors to the facility inlet.										
8.	Attached efficiency curve and/or other efficiency information.										
9.	Design inlet volume: 40 Mscfd 10. Capacity: 40 Mscfd										
11. N/A	Indicate the liquid flow rate and describe equip	pment provided to measure pres	ssure drop and flow rate, if any.								
12.	Attach any additional data including auxiliar control equipment.	y equipment and operation de	tails to thoroughly evaluate the								
	Description of method of handling the collecte llected materials get recycled back into gas		al.								
	Gas Str	ream Characteristics									
14.	Are halogenated organics present? Are particulates present? Are metals present?	☐ Yes ☑ No ☐ Yes ☑ No ☐ Yes ☑ No									
15.	Inlet Emission stream parameters:	Maximum	Typical								
	Pressure (mmHg): 0.01 psig										
	Heat Content (BTU/scf): Not specified										
	Oxygen Content (%):	Not specified									
	Moisture Content (%):	Not specified									
	Relative Humidity (%):	Not specified									

Page 1 of 3 REVISED 03/15/2007

16.	Type of pollutant(s) o		SOx		☐ Odor ☑ Other VOC	C, HAPs, C1, C2		
17.	Inlet gas velocity:	1	V/A ft/se	ec	18. Pollutant	specific gravity:		
19.	Gas flow into the col TBD ACF @		TBD PSI	IA	20. Gas strea	m temperature: Inlet: Outlet:	ambient ambient	°F °F
21.	Gas flow rate: Design Maximum: Average Expected:	17.6	ACFM ACFM		22. Particulate	e Grain Loading Inlet: Outlet:	in grains/scf: I	N/A
23.	Emission rate of eac	h pollutant (spec	ify) into and	d out	of collector:			
	Pollutant	IN Pol	llutant		Emission	Control		
		lb/hr	grains/a	acf	Capture Efficiency %	lb/hr	grains/acf	Efficiency %
	A VOC	103.21			98	2.06		N/A
	B HAPs	3.52			98	0.070		N/A
	C CO2e	435			98	8.91		N/A
	D							
	E							
24.	Dimensions of stacks	: Heig	ht TBD		ft.	Diame	eter TBD) ft.
25.	Supply a curve show rating of collector.	ving proposed co	ollection eff	ficien	cy versus gas	volume from 25	to 130 perce	nt of design

Particulate Distribution

26. Complete the table:	Particle Size Distribution at Inlet to Collector	Fraction Efficiency of Collector
Particulate Size Range (microns)	Weight % for Size Range	Weight % for Size Range
0 – 2		
2 – 4		
4 – 6		
6 – 8		
8 – 10		
10 – 12		
12 – 16		
16 – 20		
20 – 30		
30 – 40		
40 – 50		
50 – 60		
60 – 70		
70 – 80		
80 – 90		
90 – 100		
>100		

	pollution control device inlet and o midification): None	utlet gas conditioning processes (e.g., gas cooling, gas
28. Describe the colle system	ection material disposal system: C	closed loop system – vapors get recycled back into
29. Have you included	Other Collectores Control Device	ce in the Emissions Points Data Summary Sheet? Yes
Please propose i	ng parameters. Please propose	and Testing eporting in order to demonstrate compliance with the testing in order to demonstrate compliance with the
MONITORING: see A	ttachment O	RECORDKEEPING: see Attachment O
REPORTING: see Att	acimient o	TESTING: see Attachment O
MONITORING:		ocess parameters and ranges that are proposed to be strate compliance with the operation of this process
RECORDKEEPING: REPORTING:	Please describe the proposed re-	cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air
TESTING:		emissions testing for this process equipment on air
	uaranteed Control Efficiency for eac system. However, claiming 98% t	h air pollutant. to account for down time with a back up VRU.
	uaranteed Control Efficiency for eac system. However, claiming 98% to	h air pollutant. o account for down time with a back up VRU.
		edures required by Manufacturer to maintain warranty. and alerts systems for malfunctions.



KAHUNA													
7/5/1/4/	20/20	_	Rev	Date		esc.		Project			Mntn		
VRU-10)0/20	U	Α	22-Jun	I F	В	JMW	Project N	lumber	0050.0	053.00		
								Location	_	Doddridge	County, WV		
								REV	Α	Date	9.8.2014		
Tank Van	~ " \ /D	פוו						Ву	JMW	CK			
Tank Vap	or vk	<u> </u>						Sheet	1	of	1		
				Site In	formation								
	Elevat	ion						1194					
	Temper	ature					-20	°F to 10	O°F				
	Servi	ce				Tank Vapors							
	Area Class	fication			Class 1 Div 2								
	Cod	e			ASME B31.8/API 619/ASME BPVC Section VIII								
	NAC	E						NA					
		Flov	w Conditio	ns					Compo	sition			
	Suc	ction	Inter	stage	Discl	narge	Mol %	Process	Int. Stg.	Fuel			
		in	out	in	out	in	out	C1	29.33	NA	NA		
Flow	Mscfd	40	$>\!\!<$	$>\!\!<$	$>\!\!<$	$>\!\!<$	40	C2	26.55	NA	NA		
Pressure	psig	0.01	$>\!\!<$	$>\!\!<$	$>\!\!<$	\times	200	C3	16.44	NA	NA		
Temperature	°F	100	$>\!\!<$	$>\!\!<$	$>\!\!<$	\times	**	iC4	2.72	NA	NA		
Density	lb/ft ³	0.093	$>\!\!<$	$>\!\!<$	$>\!\!<$	\times	1	nC4	5.83	NA	NA		
Specifc Gravity		1.28	$>\!\!<$	$>\!\!<$	$>\!\!<$	\times	1.28	iC5	2.13	NA	NA		
Horsepower	ВНР	**	$>\!\!<$	$>\!\!<$	$>\!\!<$	\times	**	nC5	2.05	NA	NA		
								C6+	8.06	NA	NA		
								H2O	6.00	NA	NA		
								CO2	0.89	NA	NA		
								H2S	0		NA		
								Dew/Bu	ıbble Point	98	3°F		
Frai	me			Dri	ver				Cooler				
MFG	**		Туре		Electric		Service		MAWP	@Temp	Duty		
Model Number	**		MFG		**		Process		NA	NA	NA		
Speed	**		Size		**		Lube Oil		**	**	**		
MAWP	**		Speed		**		Cooling W	ater	NA	NA	NA		
Horsepower	**		Design Fac	tor	**								
Volume Ratio	**		Accessorie	S	**								
Cooling	**												
Capacity Control	**												
Suction S				Oil Sep	erator				Panel				
Size	**		Size		**		MFG		**				
MAWP	**		MAWP		**		Model Nur	mber	**				
Design Temp	**		Design Ter	np	**								
MDMT	**		MDMT		**								
			Filters Type	e	**								
			Filter QTY		**								

Notes

- ** Denote information to be supplied by vendor.
- 1. Units are to be skid mounted but not enclosed.
- 2. Discharge gas does not need to be cooled for delivery into downstream piping but if necessary for package design temperature to be controlled between 100 °F and 140 °F.
- 3. All necessary instrumentation for operation is to be included in quote along with an inlet Oxygen sensor.

Attachme Supporting Emission	

Emissions Summary Total

Company:	Antero Midstream LLC
Facility Name:	Lafferty Compressor Station
Facility Location:	Ritchie County, West Virginia

UNCONTROLLED POTENTIAL EMISSION SUMMARY

					100HTROL		INTIAL LIVI	ISSION SU							CO ₂ e
Source	N	NOx CO			V	ос	S	O ₂	PN	1-10	HA	APs	Ps Formaldehyde		
Source	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	tpy
<u>Engines</u>															
Compressor Engine 1	50.37	220.44	47.41	207.47	1.41	6.16	0.008	0.04	0.27	1.18	0.35	1.54	0.19	0.81	9,121
Compressor Engine 2	50.37	220.44	47.41	207.47	1.41	6.16	0.008	0.04	0.27	1.18	0.35	1.54	0.19	0.81	9,121
Compressor Engine 3	50.37	220.44	47.41	207.47	1.41	6.16	0.008	0.04	0.27	1.18	0.35	1.54	0.19	0.81	9,121
Compressor Engine 4	50.37	220.44	47.41	207.47	1.41	6.16	0.008	0.04	0.27	1.18	0.35	1.54	0.19	0.81	9,121
Compressor Engine 5	50.37	220.44	47.41	207.47	1.41	6.16	0.008	0.04	0.27	1.18	0.35	1.54	0.19	0.81	9,121
Compressor Engine 6	50.37	220.44	47.41	207.47	1.41	6.16	0.008	0.04	0.27	1.18	0.35	1.54	0.19	0.81	9,121
Compressor Engine 7	50.37	220.44	47.41	207.47	1.41	6.16	0.008	0.04	0.27	1.18	0.35	1.54	0.19	0.81	9,121
Compressor Engine 8	50.37	220.44	47.41	207.47	1.41	6.16	0.008	0.04	0.27	1.18	0.35	1.54	0.19	0.81	9,121
Compressor Engine 9	50.37	220.44	47.41	207.47	1.41	6.16	0.008	0.04	0.27	1.18	0.35	1.54	0.19	0.81	9,121
Compressor Engine 10	50.37	220.44	47.41	207.47	1.41	6.16	0.008	0.04	0.27	1.18	0.35	1.54	0.19	0.81	9,121
Compressor Engine 11	50.37	220.44	47.41	207.47	1.41	6.16	0.008	0.04	0.27	1.18	0.35	1.54	0.19	0.81	9,121
Compressor Engine 12	50.37	220.44	47.41	207.47	1.41	6.16	0.008	0.04	0.27	1.18	0.35	1.54	0.19	0.81	9,121
Compressor Engine 13	50.37	220.44	47.41	207.47	1.41	6.16	0.008	0.04	0.27	1.18	0.35	1.54	0.19	0.81	9,121
<u>Turbines</u>															
Microturbine Generator 1	0.24	1.05	0.66	2.89	0.06	0.26	0.02	0.09	0.04	0.18	0.006	0.03	0.004	0.02	3,499
Catalytic Heater for Generator Fuel	0.003	0.01	0.002	0.01	0.0002	0.0007	0.00002	0.00008	0.0002	0.001	0.00006	0.0002	0.000002	0.00001	12
<u>Dehydrators</u>															
TEG Dehydrator Still Vent 1					8.23	36.05					1.75	7.67			1,998
TEG Dehydrator Still Vent 2					8.23	36.05					1.75	7.67			1,998
TEG Dehydrator Flash Tank 1					24.20	106.00					0.81	3.54			6,054
TEG Dehydrator Flash Tank 2					24.20	106.00					0.81	3.54			6,054
Reboiler 1	0.18	0.81	0.15	0.68	0.01	0.04	0.001	0.005	0.01	0.06	0.003	0.02	0.0001	0.0006	771
Reboiler 2	0.18	0.81	0.15	0.68	0.01	0.04	0.001	0.005	0.01	0.06	0.003	0.02	0.0001	0.0006	771
<u>Combustors</u>															
Flare and Pilot															
Hydrocarbon Loading															
Truck Loadout					44.98	6.77					0.13	0.02			5
Fugitive Emissions															
Component Leak Emissions					0.81	3.57					0.02	0.10			99
Venting Emissions						7.40						0.19			703
Haul Road Dust Emissions									0.03	0.14					
Storage Tanks															
Produced Water Tanks					0.0002	0.0007					1.21E-07	5.30E-07			0.03
Settler Tank					101.02	442.47					3.51	15.39			1,901
Condensate Tanks					2.19	9.60					0.006	0.03			6
Total Facility PTE =	655.43	2,868.33	617.27	2,701.35	232.25	834.33	0.13	0.57	3.62	15.85	13.35	58.23	2.41	10.56	142,447

Emissions Summary Total

Company:	Antero Midstream LLC
Facility Name:	Lafferty Compressor Station
Facility Location:	Ritchie County, West Virginia

CONTROLLED POTENTIAL EMISSION SUMMARY

	N	Ox	C	0	V	oc	l s	0,	PM	1-10	H.	\Ps	Formal	ldehyde	CO ₂ e
Source	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	tpy
Engines			12,111		,										
Compressor Engine 1	1.26	5.51	1.19	5.19	0.70	3.08	0.008	0.04	0.27	1.18	0.21	0.92	0.04	0.19	8,707
Compressor Engine 2	1.26	5.51	1.19	5.19	0.70	3.08	0.008	0.04	0.27	1.18	0.21	0.92	0.04	0.19	8,707
Compressor Engine 3	1.26	5.51	1.19	5.19	0.70	3.08	0.008	0.04	0.27	1.18	0.21	0.92	0.04	0.19	8,707
Compressor Engine 4	1.26	5.51	1.19	5.19	0.70	3.08	0.008	0.04	0.27	1.18	0.21	0.92	0.04	0.19	8,707
Compressor Engine 5	1.26	5.51	1.19	5.19	0.70	3.08	0.008	0.04	0.27	1.18	0.21	0.92	0.04	0.19	8,707
Compressor Engine 6	1.26	5.51	1.19	5.19	0.70	3.08	0.008	0.04	0.27	1.18	0.21	0.92	0.04	0.19	8,707
Compressor Engine 7	1.26	5.51	1.19	5.19	0.70	3.08	0.008	0.04	0.27	1.18	0.21	0.92	0.04	0.19	8,707
Compressor Engine 8	1.26	5.51	1.19	5.19	0.70	3.08	0.008	0.04	0.27	1.18	0.21	0.92	0.04	0.19	8,707
Compressor Engine 9	1.26	5.51	1.19	5.19	0.70	3.08	0.008	0.04	0.27	1.18	0.21	0.92	0.04	0.19	8,707
Compressor Engine 10	1.26	5.51	1.19	5.19	0.70	3.08	0.008	0.04	0.27	1.18	0.21	0.92	0.04	0.19	8,707
Compressor Engine 11	1.26	5.51	1.19	5.19	0.70	3.08	0.008	0.04	0.27	1.18	0.21	0.92	0.04	0.19	8,707
Compressor Engine 12	1.26	5.51	1.19	5.19	0.70	3.08	0.008	0.04	0.27	1.18	0.21	0.92	0.04	0.19	8,707
Compressor Engine 13	1.26	5.51	1.19	5.19	0.70	3.08	0.008	0.04	0.27	1.18	0.21	0.92	0.04	0.19	8,707
<u>Turbines</u>															
Microturbine Generator 1	0.24	1.05	0.66	2.89	0.06	0.26	0.02	0.09	0.04	0.18	0.006	0.03	0.004	0.02	3,499
Catalytic Heater for Generator Fuel	0.003	0.01	0.002	0.01	0.0002	0.0007	0.00002	0.00008	0.0002	0.001	0.00006	0.0002	0.000002	0.00001	12
<u>Dehydrators</u>															
TEG Dehydrator Still Vent 1															
TEG Dehydrator Still Vent 2															
TEG Dehydrator Flash Tank 1															
TEG Dehydrator Flash Tank 2															
Reboiler 1	0.18	0.81	0.15	0.68	1.22	5.34	0.001	0.005	0.01	0.06	0.04	0.19	0.0001	0.0006	1,077
Reboiler 2	0.18	0.81	0.15	0.68	1.22	5.34	0.001	0.005	0.01	0.06	0.04	0.19	0.0001	0.0006	1,077
<u>Combustion</u>															
Flare and Pilot	0.63	2.75	2.86	12.51	0.33	1.44	0.00001	0.00004	0.0001	0.0005	0.07	0.31			4,825
Hydrocarbon Loading															
Truck Loadout					44.98	6.77					0.13	0.02			5
Fugitive Emissions															
Component Leak Emissions					0.81	3.57					0.02	0.10			99
Venting Emissions						7.40						0.19			703
Haul Road Dust Emissions									0.03	0.14					
Storage Tanks															
Produced Water Tanks					0.000003	0.00001					2.42E-09	1.06E-08			0.0009
Settler Tank					2.02	8.85					0.07	0.31			39
Condensate Tanks					0.04	0.19					0.0001	0.0005			0.14
Total Facility PTE =	17.61	77.07	19.24	84.19	59.84	79.21	0.13	0.57	3.62	15.85	3.12	13.30	0.58	2.55	124,529

Controlled dehydrator still vent emissions are in the flare and pilot category.
 Controlled dehydrator flash tank emissions are in the reboiler category.

HAP Emissions Summary Total

Company:	Antero Midstream LLC
Facility Name:	Underwood Compressor Station
Facility Location:	Tyler County, West Virginia

CONTROLLED POTENTIAL EMISSION SUMMARY

Sauras	Ben	zene	Tolu	iene	Ethylb	enzene	Xyle	enes	n-He	xane
Source	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
<u>Engines</u>										
Compressor Engine 1	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012		
Compressor Engine 2	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012		
Compressor Engine 3	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012		
Compressor Engine 4	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012		
Compressor Engine 5	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012		
Compressor Engine 6	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012		
Compressor Engine 7	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012		
Compressor Engine 8	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012		
Compressor Engine 9	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012		
Compressor Engine 10	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012		
Compressor Engine 11	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012		
Compressor Engine 12	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012		
Compressor Engine 13	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012		
<u>Turbines</u>										
Microturbine Generator 1	7.42E-05	3.25E-04	8.03E-04	3.52E-03	1.98E-04	8.66E-04	3.96E-04	1.73E-03		
Catalytic Heater for Generator Fuel										
<u>Dehydrators</u>										
TEG Dehydrator Still Vent 1										
TEG Dehydrator Still Vent 2										
TEG Dehydrator Flash Tank 1										
TEG Dehydrator Flash Tank 2										
Reboiler 1	0.0014	0.0060	0.0018	0.0077	0.0000011	0.0000050	0.00020	0.00070	0.037	0.16
Reboiler 2	0.0014	0.0060	0.0018	0.0077	0.0000011	0.0000050	0.00020	0.00070	0.037	0.16
<u>Combustion</u>										
Flare and Pilot	0.014	0.063	0.032	0.14	0.000046	0.00020	0.0088	0.039	0.015	0.064
<u>Hydrocarbon Loading</u>										
Truck Loadout	0.0049	0.00071	0.0086	0.0013	0.0046	0.00070	0.013	0.0020	0.10	0.015
<u>Fugitive Emissions</u>										
Component Leak Emissions	0.00054	0.0024	0.00065	0.0028	0.000073	0.00032	0.00025	0.0011	0.021	0.093
Venting Emissions		0.0026		0.0045		0.0000041		0.00075		0.18
Haul Road Dust Emissions										
Storage Tanks										
Produced Water Tanks	1.47E-09	6.45E-09	5.89E-10	2.58E-09	9.74E-11	4.26E-10	2.26E-10	9.91E-10	3.44E-11	1.51E-10
Settler Tank	3.42E-03	1.50E-02	2.87E-03	1.25E-02	7.95E-04	3.48E-03	2.08E-03	9.12E-03	6.11E-02	2.68E-01
Condensate Tanks	4.49E-06	1.97E-05	8.36E-06	3.66E-05	4.51E-06	1.98E-05	1.27E-05	5.58E-05	9.54E-05	4.18E-04
Total Facility PTE =	0.31	1.35	0.15	0.62	0.010	0.025	0.060	0.21	0.27	0.95

Controlled dehydrator still vent emissions are in the flare and pilot category.
 Controlled dehydrator flash tank emissions are in the reboiler category.

Compressor Engine Emission Calculations

Company:	Antero Midstream LLC
Facility Name:	Lafferty Compressor Station
Facility Location:	Ritchie County, West Virginia
Source Description:	Compressor Engines

Source Information-Per Engine

Emission Unit ID:	C-2100	to C-2220
Engine Make/Model	Waukesha	L7044 GSI
Service	Comp	ression
Controls - Y or N / Type	Y	NSCR/AFRC
Site Horsepower Rating ¹	1,680	hp
Fuel Consumption (BSFC) ¹	8,302	Btu/(hp-hr)
Heat Rating ²	13.95	MMBtu/hr
Fuel Consumption ^{2,3}	108.80	MMscf/yr
Fuel Consumption ¹	12,420	scf/hr
Fuel Heating Value	1,122	Btu/scf
Operating Hours	8,760	hrs/yr

Notes:

- 1. Values from Waukesha specification sheet
- 2. Calculated values
- 3. Annual fuel consumption is 100% of maximum fuel consumption at 100% load.

Potential Emissions per Engine

	Uncontrolled					Controlled					
Pollutant	Emissio (lb/MMBtu)	n Factor (g/bhp-hr)	(lb/hr)	stimated Emission	ns² (tpy) 4	Emissio	n Factor (g/bhp-hr)	Esti (lb/hr)	imated Emissi (lb/yr) 4	ons ²	Source of Emissions Factors
NOx ^{1,5}		13.6	50.37	(,	220.44		0.34	1.26		5.51	Manufacturer's Specs - uncontrolled, Catalyst Specs - controlled
CO ^{1,5}		12.8	47.41		207.47		0.32	1.19		5.19	Manufacturer's Specs - uncontrolled, Catalyst Specs - controlled
VOC1		0.38	1.41		6.16		0.19	0.70		3.08	Manufacturer's Specs - uncontrolled, Catalyst Specs - controlled
SO ₂	5.88E-04		0.0082		0.04	5.88E-04		0.0082		0.04	AP-42, Chapter 3.2, Table 3.2-3
PM _{2.5} /PM ₁₀	1.94E-02		0.27		1.18	1.94E-02		0.27		1.18	AP-42, Chapter 3.2, Table 3.2-3
Total PM	1.94E-02		0.27		1.18	1.94E-02		0.27		1.18	AP-42, Chapter 3.2, Table 3.2-3
1,1,2,2-Tetrachloroethane	2.53E-05		0.0004	3.09	0.002	2.53E-05		0.0004	3.09	0.002	AP-42, Chapter 3.2, Table 3.2-3
1,3-Butadiene	6.63E-04		0.009	80.93	0.04	6.63E-04		0.009	80.93	0.04	AP-42, Chapter 3.2, Table 3.2-3
Acetaldehyde	2.79E-03		0.04	340.58	0.17	2.79E-03		0.04	340.58	0.17	AP-42, Chapter 3.2, Table 3.2-3
Acrolein	2.63E-03		0.04	321.05	0.16	2.63E-03		0.04	321.05	0.16	AP-42, Chapter 3.2, Table 3.2-3
Benzene	1.58E-03		0.02	192.87	0.10	1.58E-03		0.02	192.87	0.10	AP-42, Chapter 3.2, Table 3.2-3
Ethylbenzene	2.48E-05		0.0003	3.03	0.002	2.48E-05		0.0003	3.03	0.002	AP-42, Chapter 3.2, Table 3.2-3
Formaldehyde ¹		0.05	0.19	1,621	0.81		0.01	0.04	389.00	0.19	Manufacturer's Specs - uncontrolled, Catalyst Specs - controlled
Methanol	3.06E-03		0.04	373.54	0.19	3.06E-03		0.04	373.54	0.19	AP-42, Chapter 3.2, Table 3.2-3
Methylene Chloride	4.12E-05		0.0006	5.03	0.003	4.12E-05		0.0006	5.03	0.003	AP-42, Chapter 3.2, Table 3.2-3
PAH	1.41E-04		0.002	17.21	0.009	1.41E-04		0.002	17.21	0.009	AP-42, Chapter 3.2, Table 3.2-3
Toluene	5.58E-04		0.008	68.12	0.03	5.58E-04		0.008	68.12	0.03	AP-42, Chapter 3.2, Table 3.2-3
Xylenes	1.95E-04		0.003	23.80	0.01	1.95E-04		0.003	23.80	0.01	AP-42, Chapter 3.2, Table 3.2-3
Other HAPs ²	2.10E-04		0.003	25.61	0.01	2.10E-04		0.003	25.61	0.01	AP-42, Chapter 3.2, Table 3.2-3
Total HAPS			0.35	3,076	1.54			0.21	1,844	0.92	
Pollutant	Emissio (kg/MMBtu)	n Factor (g/bhp-hr)	(lb/hr)	stimated Emission	ns ² (tpy) ⁴	Emissio (kg/MMBtu)	n Factor (g/bhp-hr)	Esti (lb/hr)	imated Emissi (lb/yr) ⁴	ons ² (tpy) ⁴	Source of Emissions Factors
CO ₂ ¹		526	1,948		8,526		526	1,948		8,526	Manufacturer's Specs
CH ₄ ^{1,5}		1.46	5.41		23.66		0.44	1.62		7.10	Manufacturer's Specs - uncontrolled, Catalyst Specs - controlled
N ₂ O	0.0001		0.003		0.01	0.0001		0.003		0.01	40 CFR Part 98, Subpart C, Table C-2
CO ₂ e ²			2,084		9,121			1,990		8,707	40 CFR Part 98, Subpart A, Table A-1, effective January 2014

Notes

- 4. Annual Emissions are based on engines operating with 100% fuel of total fuel usage
- 5. Due to variable load conditions, the catalyst efficiency may vary. The catalyst efficiencies used in the emissions are typical based on expected operating conditions. The specification sheets show efficiencies of 96% for NOx and CO,

however, Antero is claiming 97.5% based on similar operating facilities. **Example Calculations**

lb/hr = (g/hp-hr) * (hp) * (1 lb/453.6 g) or (lb/MMBtu) * (MMBtu/hr)

tpy = (MMscf/yr) * (Btu/scf) * (10⁶ Btu/MMBtu) * (g/hp-hr) / (Btu/hp-hr) * (1 lb/453.59 g) * (1 ton/2000 lb) or (MMscf/yr) * (Btu/scf) * (lb/MMBtu) * (g/hp-hr) / (Btu/hp-hr) * (1 lb/453.59 g) * (1 ton/2000 lb) or (MMscf/yr) * (Btu/scf) * (lb/MMBtu) * (g/hp-hr) / (lb/mmbtu) * (lb/m

Microturbine Generator Emission Calculations

Company:	Antero Midstream LLC
Facility Name:	Lafferty Compressor Station
Facility Location:	Ritchie County, West Virginia
Source Description:	Microturbine Generators

Source Information

Emission Unit ID:	G	i-8000
Make/Model		C600 Standard
Microturbine Rating ²	600	kWe
Number of Microturbines ²	1	unit
Net Heat Rate	10,300	Btu/kWhe
Heat Input 1	6.18	MMBtu/hr
Operating Hours ²	8,760	hrs/yr

Notes:

1) Calculated

2) The Capstone C600 package is made up of three (3) 200 kWe units that can operate individually. While all three units may not be operating all at once, potential emissions are calculated as though all three are operating at 8,760 hours per year.

Potential Emissions per Generator

		U	ncontrolled			Controlled					
Pollutant	Emissio	on Factor	Esti	mated Emissi	ons ¹	Emissio	n Factor	Esti	imated Emissi	ons ¹	Source of Emissions Factors
Polititalit	(lb/MMBtu)	(lb/MWhe)	(lb/hr)	(lb/yr)	(tpy)	(lb/MMBtu)	(lb/MWhe)	(lb/hr)	(lb/yr)	(tpy)	Source of Emissions Factors
NOx		0.40	0.24		1.05		0.40	0.24		1.05	Manufacturer Specifications
co		1.10	0.66		2.89		1.10	0.66		2.89	Manufacturer Specifications
VOC		0.10	0.06		0.26		0.10	0.06		0.26	Manufacturer Specifications
SO ₂	3.40E-03		0.02		0.09	3.40E-03		0.02		0.09	AP-42, Chapter 3.1, Table 3.1-2a
PM _{2.5} /PM ₁₀	6.60E-03		0.04		0.18	6.60E-03		0.04		0.18	AP-42, Chapter 3.1, Table 3.1-2a
1,3-Butadiene	4.30E-07		2.66E-06	0.02	1.16E-05	4.30E-07		2.66E-06	0.023	1.16E-05	AP-42, Chapter 3.1, Table 3.1-3
Acetaldehyde	4.00E-05		2.47E-04	2.17	1.08E-03	4.00E-05		2.47E-04	2.17	1.08E-03	AP-42, Chapter 3.1, Table 3.1-3
Acrolein	6.40E-06		3.96E-05	0.35	1.73E-04	6.40E-06		3.96E-05	0.35	1.73E-04	AP-42, Chapter 3.1, Table 3.1-3
Benzene	1.20E-05		7.42E-05	0.65	3.25E-04	1.20E-05		7.42E-05	0.65	3.25E-04	AP-42, Chapter 3.1, Table 3.1-3
Ethylbenzene	3.20E-05		1.98E-04	1.73	8.66E-04	3.20E-05		1.98E-04	1.73	8.66E-04	AP-42, Chapter 3.1, Table 3.1-3
Formaldehyde	7.10E-04		4.39E-03	38.44	1.92E-02	7.10E-04		4.39E-03	38.44	1.92E-02	AP-42, Chapter 3.1, Table 3.1-3
Naphthalene	1.30E-06		8.03E-06	0.07	3.52E-05	1.30E-06		8.03E-06	0.07	3.52E-05	AP-42, Chapter 3.1, Table 3.1-3
PAH	2.20E-06		1.36E-05	0.12	5.96E-05	2.20E-06		1.36E-05	0.12	5.96E-05	AP-42, Chapter 3.1, Table 3.1-3
Propylene Oxide	2.90E-05		1.79E-04	1.57	7.85E-04	2.90E-05		1.79E-04	1.57	7.85E-04	AP-42, Chapter 3.1, Table 3.1-3
Toluene	1.30E-04		8.03E-04	7.04	3.52E-03	1.30E-04		8.03E-04	7.04	3.52E-03	AP-42, Chapter 3.1, Table 3.1-3
Xylenes	6.40E-05		3.96E-04	3.46	1.73E-03	6.40E-05		3.96E-04	3.46	1.73E-03	AP-42, Chapter 3.1, Table 3.1-3
Total HAPS			0.006	55.62	0.03			0.006	55.62	0.03	
Pollutant	Emissio	n Factor	Esti	mated Emissi	ons ¹	Emissio	n Factor	Estimated Emissions ¹		ons ¹	Source of Emissions Factors
Pollutarit	(kg/MMBtu)	(lb/MWhe)	(lb/hr)		(tpy)	(kg/MMBtu)	(lb/MWhe)	(lb/hr)		(tpy)	Source of Emissions Factors
CO ₂		1,330	798		3,495		1,330	798		3,495	Manufacturer Specifications
CH₄	0.001		0.01		0.06	0.001		0.01		0.06	40 CFR Part 98, Subpart C, Table C-2
N₂O	0.0001		0.001		0.006	0.0001		0.001		0.006	40 CFR Part 98, Subpart C, Table C-2
CO ₂ e			799		3,499			799		3,499	40 CFR Part 98, Subpart A, Table A-1, effective January 2014

Example Calculations

lb/hr = (lb/Mwhe) * kWe * (1 MWe/1000 kWe) or (lb/MMBtu) * (MMBtu/hr) or (kg/MMBtu) * (MMBtu/hr) * (2.21 lb/kg)

tpy = (lb/hr) * (hr/yr) * (ton/2000 lb)

Natural Gas Fueled Catalytic Heater Emissions

Company:	Antero Midstream LLC
Facility Name:	Lafferty Compressor Station
Location:	Ritchie County, West Virginia
Source Description:	Catalytic Heater for Generator Fuel

Source Information

Emission Unit ID:	CAT	HT1
Source Description:	Generator	Fuel Heater
Hours of Operation	8,760	hr/yr
Design Heat Rate	0.024	MMBtu/hr
Heater Efficiency	80%	
Fuel Heat Value	1,020	Btu/scf
Fuel Use	0.26	MMscf/yr

Emission Calculations per Heater

Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Pollutant	(lb/MMscf)	(lb/hr)	(tpy)	Source
NO_X	100	0.0029	0.013	AP-42 Ch. 1.4 Table 1.4-1
CO	84	0.0025	0.011	AP-42 Ch. 1.4 Table 1.4-1
VOC	5.5	0.00016	0.00071	AP-42 Ch. 1.4 Table 1.4-2
PM ₁₀	7.6	0.00022	0.0010	AP-42 Ch. 1.4 Table 1.4-2
SO ₂	0.6	0.000018	0.000077	AP-42 Ch. 1.4 Table 1.4-2
Formaldehyde	0.075	0.000002	0.000010	AP-42 Ch. 1.4 Table 1.4-3
Total HAPs (including HCHO) ¹	1.9	0.00006	0.00024	AP-42 Ch. 1.4 Table 1.4-3
Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Pollutant	(kg/MMBtu)	(lb/hr)	(tpy)	Source
Carbon Dioxide	53.06	2.81	12	40 CFR Part 98, Subpart C, Table C-1
Methane	0.001	0.0001	0.00023	40 CFR Part 98, Subpart C, Table C-2
Nitrous Oxide	0.0001	0.00001	0.000023	40 CFR Part 98, Subpart C, Table C-2
CO ₂ e		2.82	12	40 CFR Part 98, Subpart A, Table A-1

^{1.} Only those HAP pollutants above detection thresholds were included.

Sample Calculations:

Fuel Consumption (MMscf/yr) = Heater Size (MMBtu/hr) * Hours of Operation (hrs/yr)

Fuel Heat Value (Btu/scf) * Heater Efficiency

Emissions (tons/yr) = Emission Factor (lbs/MMscf) * Fuel Consumption (MMscf/yr)

2,000 (lbs/ton)

Dehydrator Emissions

Company:	Antero Midstream LLC
Facility Name:	Lafferty Compressor Station
Facility Location:	Ritchie County, West Virginia
Source Description:	Dehydrator Units

Potential Emissions per Dehydrator

	Emission Unit ID:	SV-3110/SV-3210	Emission Unit ID:	FT-3110/FT-3210
Pollutant	Dehydrato	r Still Vent	Flash Ta	ank Gas
Pollutant	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Uncontrolled Emissions 1				
VOC	8.23	36.05	24.20	106.00
Total HAPs	1.75	7.67	0.81	3.54
Benzene	0.36	1.58	0.028	0.12
Toluene	0.80	3.52	0.035	0.15
Ethylbenzene	0.0010	0.0043	0.00002	0.0001
Xylenes	0.22	0.97	0.0032	0.014
n-Hexane	0.36	1.59	0.74	3.25
Methane	18.24	79.90	55.25	242.01
Carbon Dioxide	0.14	0.61	0.80	3.49
CO ₂ e	456	1,998	1,382	6,054
Controlled Emissions 2,3	FL-1	1000	R-3110	/R-3210
VOC	0.16	0.72	1.21	5.30
Total HAPs	0.035	0.15	0.040	0.18
Benzene	0.0072	0.032	0.0014	0.0060
Toluene	0.016	0.070	0.0018	0.0077
Ethylbenzene	0.00002	0.0001	0.000001	0.000005
Xylenes	0.0044	0.020	0.0002	0.0007
n-Hexane	0.0073	0.032	0.037	0.16
Methane	0.36	1.60	2.76	12.10
Carbon Dioxide	0.14	0.61	0.80	3.49
CO ₂ e	9.3	40.6	69.9	306.0

¹Output from GRI-GLYCalc 4.0 for both the still vent and flash tank gas emissions

²Controlled emissions assume that the glycol still vent is equipped with a condenser and is controlled by a combustor with at least 98% control efficiency. Controlled emissions are shown with FL-1000 in summary tables.

³Flash tank gas is used in the reboiler as the primary fuel source. Assumed 95% combustion of flash tank gas. Controlled emissions are shown with R-3110 and R-3210 in the summary tables.

Natural Gas Fueled Dehydrator Reboiler Combustion Emissions

Company:	Antero Midstream LLC
Facility Name:	Lafferty Compressor Station
Location:	Ritchie County, West Virginia
Source Description:	Dehydrator Reboilers

Source Information

Emission Unit ID:	R-3110 & R-3210		
Source Description:	Dehydrator Reboiler		
Hours of Operation	8,760	hr/yr	
Design Heat Rate	1.5	MMBtu/hr	
Heater Efficiency	0.8		
Fuel Heat Value	1,020	Btu/scf	
Fuel Use	16.1	MMscf/yr	

Emission Calculations per Reboiler

Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Foliutant	(lb/MMscf)	(lb/hr)	(tpy)	Source
NO_X	100	0.18	0.81	AP-42 Ch. 1.4 Table 1.4-1
CO	84	0.15	0.68	AP-42 Ch. 1.4 Table 1.4-1
VOC	5.5	0.01	0.04	AP-42 Ch. 1.4 Table 1.4-2
PM ₁₀	7.6	0.01	0.06	AP-42 Ch. 1.4 Table 1.4-2
SO ₂	0.6	0.001	0.005	AP-42 Ch. 1.4 Table 1.4-2
Formaldehyde	0.075	0.0001	0.0006	AP-42 Ch. 1.4 Table 1.4-3
Total HAPs (including HCHO)	1.9	0.003	0.02	AP-42 Ch. 1.4 Table 1.4-3
Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Pollutant	(kg/MMBtu)	(lb/hr)	(tpy)	Source
Carbon Dioxide	53.06	175.89	770	40 CFR Part 98, Subpart C, Table C-1
Methane	0.001	0.003	0.01	40 CFR Part 98, Subpart C, Table C-2
Nitrous Oxide	0.0001	0.0003	0.001	40 CFR Part 98, Subpart C, Table C-2
CO₂e		176.08	771	40 CFR Part 98, Subpart A, Table A-1

Sample Calculations:

Fuel Consumption (MMscf/yr) = Heater Size (MMBtu/hr) * Hours of Operation (hrs/yr)

Fuel Heat Value (Btu/scf) * Heater Efficiency

Emissions (tons/yr) = Emission Factor (lbs/MMscf) * Fuel Consumption (MMscf/yr)

2,000 (lbs/ton)

Flare Combustion Emissions

Company:	Antero Midstream LLC
Facility Name:	Lafferty Compressor Station
Facility Location:	Ritchie County, West Virginia
Source Description:	Flare for Dehydrator Still Vent Gas
Emission Unit ID:	FL-1000

Combusted Gas Emissions

Flare Heat Input: 9.21 MMBtu/hr Hours of Operation: 8,760 hr/yr

Pollutant	Emission Factor ¹ (lb/MMBtu)	Emissions (lbs/hr)	Emissions (tons/yr)
Particulate Matter (PM/PM ₁₀ /PM _{2.5})	N/A - \$	Smokeless Desig	gn
Nitrogen Oxides (NO _x)	0.068	0.63	2.74
Carbon Monoxide (CO)	0.31	2.86	12.51

¹ Emission Factors from Table 13.5-1 and 13.5-2 of AP-42 Section 13.5 (April 2015)

Pilot Emissions

Pilot Heating Value: 1,020 Btu/scf Hours of Operation: 8,760 hr/yr Total Pilot Natural Gas Usage: 1.64E-05 MMscf/hr

Pollutant	Emission Factor	Emissions	Emissions
Foliutalit	(lb/MMscf)	(lbs/hr)	(tons/yr)
Particulate Matter (PM/PM ₁₀ /PM _{2.5}) ²	7.6	1.25E-04	5.46E-04
Nitrogen Oxides (NOx)	100	1.64E-03	7.18E-03
Sulfur Dioxide (SO ₂) ²	0.6	9.84E-06	4.31E-05
Carbon Monoxide (CO) ²	84	1.38E-03	6.03E-03
Volatile Organic Compounds (VOC) ²	5.5	9.02E-05	3.95E-04
Total HAPs ^{2,3}	1.88	3.08E-05	1.35E-04

² Emission Factors from AP-42 Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4 (7/98).

Total Flare Emissions

Pollutant	Emission Rate (lbs/hr)	Emission Rate (tons/year)
Particulate Matter (PM/PM ₁₀ /PM _{2.5})	1.25E-04	5.46E-04
Nitrogen Oxides (NOx)	0.63	2.75
Sulfur Dioxide (SO ₂)	9.84E-06	4.31E-05
Carbon Monoxide (CO)	2.86	12.51
Volatile Organic Compounds (VOC)	9.02E-05	3.95E-04
Total HAPs	3.08E-05	1.35E-04

Greenhouse Gas Emissions

Pollutant	Emission Factor (kg/MMBtu)	Emissions (lb/hr)	Emissions (tpy)	Emission Factor Source
Carbon Dioxide	53.06	1,082	4,739	40 CFR Part 98, Subpart C, Table C-1
Methane	0.001	0.020	0.089	40 CFR Part 98, Subpart C, Table C-2
Nitrogen Dioxide	0.0001	0.0020	0.0089	40 CFR Part 98, Subpart C, Table C-2
CO ₂ e		1,083	4,744	40 CFR Part 98, Subpart A, Table A-1

³ Sum of Emissions Factors published for pollutants classified as "HAPS" under AP-42 Table 1.4-3.

Settling Tank Flashing Emissions

Company:	Antero Midstream LLC
Facility Name:	Lafferty Compressor Station
Facility Location:	Ritchie County, West Virginia
Source Description:	Settling Tank
Emission Unit ID:	TK-9000

Settling Tank Flashing Emissions

Settling Tank Flashing Emission	Uncontrolled Flashing	Uncontrolled	Controlled Flashing	Controlled Flashing
Component	Emissions ¹ (lb/hr)	Flashing Emissions (tons/yr)	Emissions ^{2,3} (lb/hr)	Emissions ^{2,3} (tons/yr)
Methane	17.31	75.82	0.35	1.52
Ethane	32.46	142.17	0.65	2.84
Propane	38.26	167.58	0.77	3.35
i-Butane	9.71	42.52	0.19	0.85
n-Butane	22.95	100.53	0.46	2.01
i-Pentane	8.04	35.20	0.16	0.70
n-Pentane	8.23	36.06	0.16	0.72
i-Hexanes	4.60	20.13	0.092	0.40
Heptanes	2.86	12.53	0.057	0.25
Octanes	1.18	5.18	0.024	0.10
Nonanes	0.18	0.79	0.0036	0.016
Decanes+	0.01	0.04	0.00017	0.00073
n-Hexane	3.05	13.37	0.061	0.27
Benzene	0.17	0.75	0.0034	0.015
Toluene	0.14	0.63	0.0029	0.013
Ethylbenzene	0.04	0.17	0.00079	0.0035
Xylenes	0.10	0.45	0.0021	0.0091
Nitrogen	0.11	0.46	0.11	0.46
Carbon Dioxide	0.20	0.88	0.20	0.88
Water	1.52	6.65	1.52	6.65
VOC Subtotal	99.53	435.92	1.99	8.72
HAP Subtotal	3.51	15.37	0.070	0.31
CO₂e Subtotal	432.99	1896.50	8.86	38.79
Total	151.12	661.91	4.81	21.07

Notes

- 1. Flashing emissions calculated by ProMax 3.2. Flashing only occurs in the settling tank as all pressurized fluids flow into the settling tank and then separate out at atmospheric conditions to the condensate and produced water tanks.
- 2. Tanks are controlled by a VRU with assumed 98% capture efficiency; but will likely be higher as vapors are recycled back into the system
- 3. VRU-6000 is the primary VRU to collect storage tank vapors and VRU-6100 is the backup VRU in times when the primary VRU is undergoing maintenance or shutdown. In the unlikely event that both VRU-6000 and VRU-6100 are under maintenance or are shutdown, a bypass system is in place to route tank vapors to the facility inlet.

Storage Tank Working and Breathing Emissions

Company:	Antero Midstream LLC
Facility Name:	Lafferty Compressor Station
Facility Location:	Ritchie County, West Virginia
Source Description:	Condensate, Settling, and Produced Water Tanks
Emission Unit ID:	TK-9000, TK-9100, TK-9110, TK-9200, TK-9210

TANK	Uncontrolled VOC	Uncontrolled Benzene	Uncontrolled Toluene	Uncontrolled Ethylbenzene	Uncontrolled Xylene	Uncontrolled n-Hexane	Uncontrolled CH₄	Uncontrolled CO₂e
DESCRIPTION	Emissions ¹	Emissions ¹	Emissions ¹	Emissions ¹	Emissions ¹	Emissions ¹	Emissions ¹	Emissions
	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)
400 bbl Hydrocarbon Storage Tank (TK-9200)	4.80	4.92E-04	9.16E-04	4.94E-04	1.40E-03	1.05E-02	0.12	2.95
400 bbl Hydrocarbon Storage Tank (TK-9210)	4.80	4.92E-04	9.16E-04	4.94E-04	1.40E-03	1.05E-02	0.12	2.95
500 bbl Settling Tank (TK-9000)	6.55	6.72E-04	1.25E-03	6.74E-04	1.90E-03	1.43E-02	0.16	4.03
400 bbl Produced Water Storage Tank ² (TK-9100)	0.00033	1.61E-07	6.45E-08	1.07E-08	2.48E-08	3.77E-09	0.00051	0.013
400 bbl Produced Water Storage Tank ² (TK-9110)	0.00033	1.61E-07	6.45E-08	1.07E-08	2.48E-08	3.77E-09	0.00051	0.013
TOTAL	16.15	0.00166	0.0031	0.0017	0.0047	0.035	0.40	9.97

TANK	Controlled VOC	Controlled Benzene	Controlled Toluene	Controlled Ethylbenzene	Controlled Xylene	Controlled n-Hexane	Controlled CH ₄	Controlled CO₂e
DESCRIPTION	Emissions ^{1,3}	Emissions ^{1,3}	Emissions ^{1,3}	Emissions ^{1,3}	Emissions ^{1,3}	Emissions ^{1,3}	Emissions ^{1,3}	Emissions
	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)
400 bbl Hydrocarbon Storage Tank (TK-9200)	0.10	9.84E-06	1.83E-05	9.88E-06	2.79E-05	2.09E-04	0.0024	0.068
400 bbl Hydrocarbon Storage Tank (TK-9210)	0.10	9.84E-06	1.83E-05	9.88E-06	2.79E-05	2.09E-04	0.0024	0.068
500 bbl Settling Tank (TK-9000)	0.13	1.34E-05	2.50E-05	1.35E-05	3.81E-05	2.85E-04	0.0032	0.093
400 bbl Produced Water Storage Tank ² (TK-9100)	6.64E-06	3.23E-09	1.29E-09	2.13E-10	4.95E-10	7.53E-11	1.03E-05	0.00043
400 bbl Produced Water Storage Tank ² (TK-9110)	6.64E-06	3.23E-09	1.29E-09	2.13E-10	4.95E-10	7.53E-11	1.03E-05	0.00043
TOTAL	0.32	3.31E-05	6.16E-05	3.32E-05	9.39E-05	7.03E-04	0.0079	0.23

Notes

- 1. ProMax 3.2 used to calculate standing, working, and breathing (S,W,B) emissions
- 2. Produced water assumed to have no more than 10% hydrocarbon liquid
- 3. Tanks are controlled by a VRU with assumed 98% capture efficiency; but will likely be higher as vapors are recycled back into the system.
- 4. VRU-6000 is the primary VRU to collect storage tank vapors and VRU-6100 is the backup VRU in times when the primary VRU is undergoing maintenance or shutdown. In the unlikely event that both VRU-6000 and VRU-6100 are under maintenance or are shutdown, a bypass system is in place to route tank vapors to the facility inlet.

Truck Loading Emissions

Company:	Antero Midstream LLC
Facility Name:	Lafferty Compressor Station
Facility Location:	Ritchie County, West Virginia
Source Description:	Production Liquids Truck Loadout
Emission Unit ID:	LDOUT1

AP - 42, Chapter 5.2 $L_L = 12.46 \times S \times P \times M / T$

L_L = Loading Loss Emission Factor (lbs VOC/1000 gal loaded)

S = Saturation Factor

P = True Vapor Pressure of the Loaded Liquid (psia)

M = Vapor Molecular Weight of the Loaded Liquid (lbs/lbmol)

T = Temperature of Loaded Liquid (°R)

VOC Emissions (tpy) = L_L (lbs VOC/1000 gal) * 42 gal/bbl * 365 days/year * production (bbl/day)

1000 gal * 2000 lbs/ton

						L _L	Production	VOC	Benzene	Toluene	E-Benzene	Xylene	n-Hexane	CH4	CO2e
Source	S ¹	P (psia) ²	M ³	T (°F)4	T (ºR)	(lb/1000 gal)	(bbl/day)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Condensate	0.6	11.0	37.4	65	524.75	5.87	150	6.74	0.00069	0.0013	0.00069	0.0020	0.015	0.17	4.15
Produced Water	0.6	0.32	18.5	65	524.75	0.08	45	0.03	1.40E-05	5.59E-06	9.23E-07	2.15E-06	3.26E-07	0.044	1.13

- Notes: 1. Saturation factor from AP-42, Table 5.2-1 (Submerged loading (bottom loading): dedicated normal service)
 - 2. True vapor pressure and molecular weight are estimated from tank-specific ProMax 3.2 simulations for both liquids.
 - 3. Temperature based on the annual average temperature of Charleston, WV retrieved from ProMax working and breathing report.
 - 4. HAP and CO2e emissions calculated with weight percentages of the working and breathing vent gas from the ProMax 3.2 simulation

Assume 1 truck loaded per hour, 180 bbl truck, for short term emissions

						Լլ	Loading	VOC	Benzene	Toluene	E-Benzene	Xylene	n-Hexane	CH4	CO2e
Source	S ¹	P (psia) ²	M ³	T (°F)4	T (ºR)	(lb/1000 gal)	bbl/hr	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
Condensate	0.6	11.0	37.4	65	524.75	5.87	180	44.35	0.0045	0.0085	0.0046	0.013	0.10	1.09	27.3
Produced Water	0.6	0.32	18.5	65	524.75	0.08	180	0.63	3.06E-04	1.22E-04	2.02E-05	4.70E-05	7.15E-06	0.97	24.7

Component Fugitive Emissions

Company:	Antero Midstream LLC
Facility Name:	Lafferty Compressor Station
Facility Location:	Ritchie County, West Virginia
Source Description:	Fugitive Emissions - Component Leaks

VOC Fugitive Emissions											
Equipment Type and Service	Number of	Hours of Operation	THC Emission Factor ²	VOC Weight	THC Emissions	VOC Emissions					
	Units 1	(hours/yr)	(kg/hr-unit)	Fraction ³	(tpy)	(tpy)					
Flanges - Gas Service	836	8,760	3.90E-04	0.16	3.16	0.52					
Valves - Gas Service	250	8,760	4.50E-03	0.16	10.89	1.79					
Compressor Seals Gas Service	33	8,760	8.80E-03	0.16	2.81	0.46					
Flanges - Liquid Service	175	8,760	1.10E-04	0.66	0.19	0.12					
Valves - Liquid Service	42	8,760	2.50E-03	0.66	1.02	0.67					
Total Emissions (tons/yr)					18.06	3.57					

	HAPs Fugitive Emissions											
Equipment Type	Benzene	Benzene	Toluene	Toluene	Ethylbenzene	Ethylbenzene	Xylene	Xylene	n-Hexane	n-Hexane		
and Service	Weight	Emissions	Weight	Emissions	Weight	Emissions	Weight	Emissions	Weight	Emissions		
	Fraction ³	(tpy)	Fraction ³	(tpy)	Fraction ³	(tpy)	Fraction ³	(tpy)	Fraction ³	(tpy)		
Flanges - Gas Service	5.81E-05	0.00018	9.94E-05	0.00031	9.03E-08	0.00000029	1.66E-05	0.000052	4.08E-03	0.013		
Valves - Gas Service	5.81E-05	0.00063	9.94E-05	0.0011	9.03E-08	0.0000010	1.66E-05	0.00018	4.08E-03	0.044		
Compressor Seals Gas Service	5.81E-05	0.00016	9.94E-05	0.00028	9.03E-08	0.00000025	1.66E-05	0.000047	4.08E-03	0.011		
Flanges - Liquid Service	1.15E-03	0.000213	9.58E-04	0.00018	2.65E-04	0.000049	6.94E-04	0.00013	2.04E-02	0.0038		
Valves - Liquid Service	1.15E-03	0.00116	9.58E-04	0.00097	2.65E-04	0.00027	6.94E-04	0.00071	2.04E-02	0.021		
Total Emissions (tons/yr)		0.0024		0.0028		0.00032		0.0011		0.093		

¹⁾ Component counts from similar facilities.

³⁾ Gas and liquid weight fractions from representative analyses..

GHG Fugitive Emissions											
Equipment Type	Number	Hours of	Emission	CH₄	CO ₂	CH₄	CO ₂	CO₂e			
and Service	of	Operation	Factor ²	Concentration ³	Concentration ³	Emissions	Emissions	Emissions			
	Units ¹	(hours/yr)	(scf/hr-unit)			(tpy)	(tpy)	(tpy)			
Flanges	1,011	8,760	0.003	0.98	0.011	0.55	0.017	13.72			
Valves - Gas Service	250	8,760	0.027	0.98	0.011	1.22	0.038	30.54			
Valves - Liquid Service	42	8,760	0.050	0.98	0.011	0.38	0.012	9.50			
Compressor Seals	33	8,760	0.300	0.98	0.011	1.79	0.055	44.79			
Total Emissions (tons/yr)			_			3.94	0.12	98.56			

¹⁾ Component counts from similar facilities.

²⁾ API average emission factors are for oil and gas production operations - Table 2.4, EPA Protocol for Equipment Leak Emission Estimates - 1995.

²⁾ Emission factors from 40 CFR Part 98 Subpart W, Table W1-A; Gas service where available, else light crude service

³⁾ CH₄ and CO₂ concentrations as defined in 40 CFR Part 98.233(r)

Fugitive Emissions From Venting Episodes

Company:	Antero Midstream LLC
Facility Name:	Lafferty Compressor Station
Facility Location:	Ritchie County, West Virginia
Source Description:	Fugitive Emissions-Venting Episodes

VOC Venting Emissions						
Type of Event ¹	Number Of Events (event/yr)	Amount Vented per Event (scf/event)	Molecular Weight of Vented Gas (lb/lb-mol)	Total Emissions (ton/yr)	VOC Weight Fraction⁴	VOC Emissions (ton/yr)
Compressor Blowdown ²	132	10,000	20.41	35.49	0.16	5.80
Compressor Startup ³	132	1,050	20.41	3.73	0.16	0.61
Plant Shutdown	2	100,000	20.41	5.38	0.16	0.88
Pigging Venting	26	1,000	20.41	0.70	0.16	0.11
Total Emissions (tons/yr)					_	7.40

HAPs Venting Emissions										
Type of Event ¹	Benzene	Benzene	Toluene	Toluene	Ethylbenzene	Ethylbenzene	Xylene	Xylene	n-Hexane	n-Hexane
	Weight	Emissions	Weight	Emissions	Weight	Emissions	Weight	Emissions	Weight	Emissions
	Fraction ⁴	(tpy)	Fraction ⁴	(tpy)	Fraction⁴	(tpy)	Fraction⁴	(tpy)	Fraction ⁴	(tpy)
Compressor Blowdown ²	5.77E-05	0.0020	9.85E-05	0.0035	8.96E-08	0.0000032	1.65E-05	0.00058	4.05E-03	0.14
Compressor Startup ³	5.77E-05	0.00021	9.85E-05	0.00037	8.96E-08	0.00000033	1.65E-05	0.000061	4.05E-03	0.015
Plant Shutdown	5.77E-05	0.00031	9.85E-05	0.00053	8.96E-08	0.00000048	1.65E-05	0.000089	4.05E-03	0.022
Pigging Venting	5.77E-05	0.000040	9.85E-05	0.000069	8.96E-08	0.000000063	1.65E-05	0.000012	4.05E-03	0.0028
Total Emissions (tons/yr)		0.0026		0.0045		0.0000041		0.00075		0.18

GHG Venting Emissions								
	Number	Amount	Molecular					
Type of Event ¹	Of	Vented per	Weight of	CH₄	CO ₂	CH₄	CO ₂	CO₂e
	Events	Event	Vented Gas	Weight	Weight	Emissions	Emissions	Emissions
	(event/yr)	(scf/event)	(lb/lb-mol)	Fraction ⁴	Fraction ⁴	(ton/yr)	(ton/yr)	(tpy)
Compressor Blowdown ²	132	10,000	20.41	0.62	0.0029	22.02	0.10	550.73
Compressor Startup ³	132	1,050	20.41	0.62	0.0029	2.31	0.011	57.83
Plant Shutdown	2	100,000	20.41	0.62	0.0029	3.34	0.015	83.44
Pigging Venting	26	1,000	20.41	0.62	0.0029	0.43	0.0020	10.85
Total Emissions (tons/yr)						28.11	0.13	702.84

¹⁾ Estimated number of events and venting per event from engineering based on other facilities

²⁾ Total number of compressor blowdowns based on 12 blowdowns per compressor.

³⁾ Total number of compressor startups based on 12 starts per compressor.

⁴⁾ Weight Fraction is from a gas analysis that will be typical for the facility

Fugitive Dust Emissions

Company:	Antero Midstream LLC
Facility Name:	Lafferty Compressor Station
Facility Location:	Ritchie County, West Virginia
Source Description:	Fugitive Dust Emissions

Gravel Access Road	Loaded Truck Weight ¹	Trips per year ²	Trips per day ²	Distance per (truck in ar	•	VMT per year ⁴
	tons			feet	miles	miles
Condensate Tank Truck	40.00	365	1.0	1,000	0.19	69
Produced Water Tank Truck	40.00	365	1.0	1,000	0.19	69
Passenger Vehicles	3.00	1,095	3.0	1,000	0.19	207

Equation Parameter	PM-10/PM2.5	PM-Total
E, annual size-specific emission factor for PM ₁₀ & PM _{2.5} (upaved industrial roads) extrapolated for natural mitigation ⁶	see table below	see table below
k , Particle size multiplier for particle size range (PM ₁₀), (lb/VMT) (Source: AP-42 Table 13.2.2-2)	1.5	4.9
k , Particle size multiplier for particle size range (PM _{2.5}), (lb/VMT) (Source: AP-42 Table 13.2.2-2)	0.15	4.9
s, surface material silt content, (%) (Source: AP-42 Table 13.2.2-1)	4.8	4.8
W, mean weight (tons) of the vehicles traveling the road	17.8	17.8
a , constant for PM_{10} and $PM_{2.5}$ on industrial roads (Source: AP-42 Table 13.2.2-2)	0.9	0.7
b , constant for PM ₁₀ and PM _{2.5} on industrial roads (Source: AP-42 Table 13.2.2-2)	0.45	0.45
P, number of "wet" days with at least 0.254 mm (0.01 in) of precipitation during the averaging period, based on AP-42 Figure 13.2.2-1.	160	160

$$E = \left[k \left(\frac{s}{12} \right)^a \times \left(\frac{W}{3} \right)^b \right] \times (365 - P/365)$$

Source of Equation: AP-42 Section 13.2.2

PM₁₀ Emissions

Emission Factor (lb/VMT)	Vehicle miles traveled (VMT/yr)	Annual Uncontrolled PM ₁₀ Emissions (tpy)
0.82	346	0.14

PM_{2.5} Emissions

Emission Factor (lb/VMT)	Vehicle miles traveled (VMT/yr)	Annual Uncontrolled PM _{2.5} Emissions (tpy)
0.082	346	0.014

PM- Total Emissions

Emission Factor (lb/VMT)	Vehicle miles traveled (VMT/yr)	Annual Uncontrolled PM-Total Emissions (tpy)
3.23	346	0.56

Table Notes:

- ${\bf 1.}\ Loaded\ truck\ weight\ is\ based\ on\ typical\ weight\ limit\ for\ highway\ vehicles.$
- 2. Based on production, it's assumed a maximum of one condensate truck (180 bbl truck) and one produced water truck (180 bbl truck) will be onsite per day.
- 3. Distance per round trip is based on the proposed site layout. The one way distance is measured as 2,200 feet for the gravel access road and 150 feet on the dirt pad one way.

Facility Gas Analysis

	MOL %	MW	Component Weight lb/lb-mol	Wt. Fraction
Methane	78.953	16.04	12.66	0.62
Ethane	14.097	30.07	4.24	0.21
Propane	4.116	44.10	1.82	0.09
i-Butane	0.520	58.12	0.30	0.015
n-Butane	1.003	58.12	0.58	0.029
i-Pentane	0.244	72.15	0.18	0.009
n-Pentane	0.225	72.15	0.16	0.008
Hexanes+	0.207	100.00	0.21	0.010
n-Hexane	0.096	86.18	0.083	0.0041
Benzene	0.0015	78.11	0.0012	0.000058
Toluene	0.0022	92.14	0.0020	0.00010
Ethylbenzene	0.000002	106.17	0.000018	0.0000001
Xylenes	0.00032	106.16	0.00034	0.00002
Nitrogen	0.402	28.01	0.11	0.0055
Carbon Dioxide	0.133	44.01	0.058	0.0029
Totals	100.0		20.41	1.00

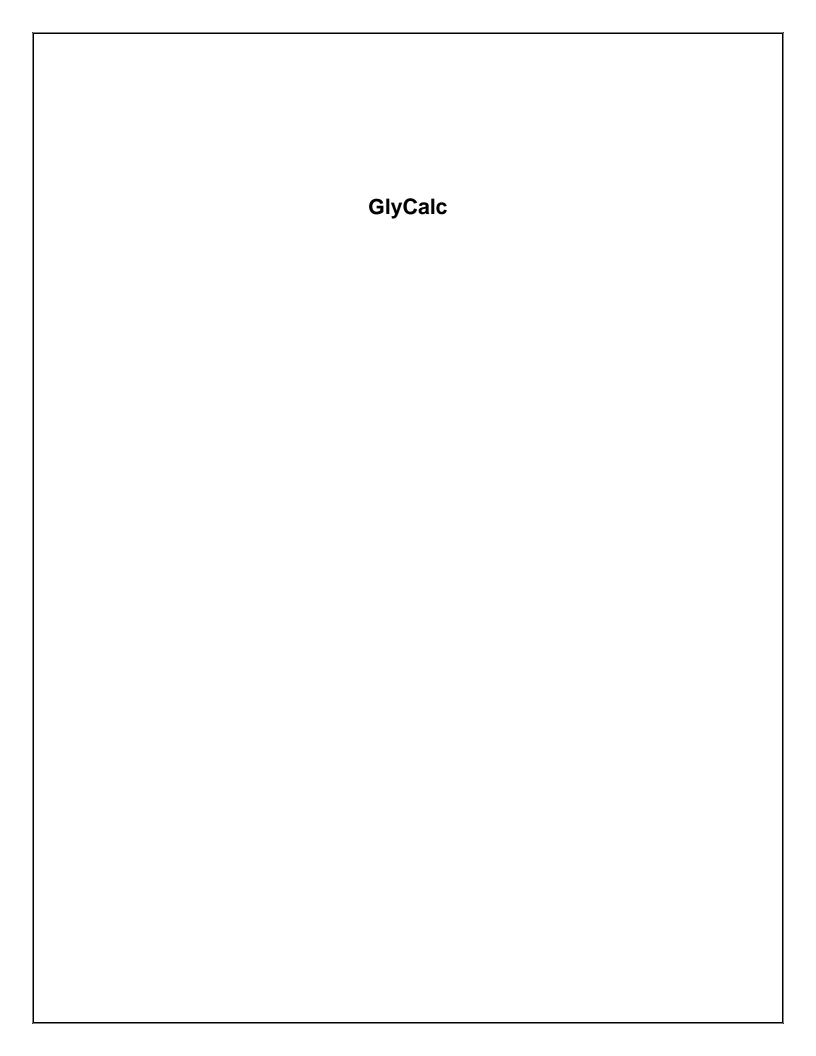
Molecular weight	20.41
VOC weight fraction	0.16
Methane weight fraction	0.62
THC weight fraction	0.99
VOC of THC wt fraction	0.16
CH4 of THC wt fraction	0.63
Benzene of THC wt fraction	0.000058
Toluene of THC wt fraction	0.00010
E-benzene of THC wt fraction	0.00000
Xylene of THC wt fraction	0.00002
n-Hexane of THC wt fraction	0.0041

Myrtle Unit 2H analysis with BTEX relative fractions from similar wells

Facility Tank Vent Gas Analysis

	MOL %	MW	Component Weight Ib/Ib-mol	Wt. Fraction
Methane	26.708	16.04	4.28	0.115
Ethane	26.716	30.07	8.03	0.21
Propane	21.475	44.10	9.47	0.25
i-Butane	4.133	58.12	2.40	0.064
n-Butane	9.773	58.12	5.68	0.15
i-Pentane	2.757	72.15	1.99	0.053
n-Pentane	2.824	72.15	2.04	0.054
Other Hexanes	1.320	86.18	1.14	0.030
Heptanes	0.707	100.20	0.71	0.019
Octanes	0.256	114.23	0.29	0.0078
Nonanes	0.035	128.26	0.044	0.0012
Decanes+	0.001	142.28	0.0016	0.000043
n-Hexane	0.877	86.18	0.76	0.020
Benzene	0.054	78.11	0.042	0.00113
Toluene	0.038	92.14	0.035	0.00095
Ethylbenzene	0.009	106.17	0.010	0.00026
Xylenes	0.024	106.16	0.026	0.00069
Nitrogen	0.093	28.01	0.026	0.00070
Carbon Dioxide	0.113	44.01	0.050	0.0013
Water	2.086	18.02	0.38	0.0101
Totals	100.00		37.40	1.00

Molecular weight	37.40
VOC weight fraction	0.66
Methane weight fraction	0.115
THC weight fraction	0.99
VOC of THC wt fraction	0.67
CH4 of THC wt fraction	0.116
Benzene of THC wt fraction	0.00115
Toluene of THC wt fraction	0.00096
E-benzene of THC wt fraction	0.00027
Xylene of THC wt fraction	0.00069
n-Hexane of THC wt fraction	0.020


Tank vent gas is the Settling Tank flash gas stream from the ProMax 3.2 simulation

Facility Pressurized Liquid Analysis

	MOL %	MOL %	MOL %	MOL %
	Prunty 1H	Seaborne 1H	Average	Water
Methane	4.766	7.703	6.235	0.6235
Ethane	5.726	7.916	6.821	0.6821
Propane	6.545	7.595	7.070	0.7070
i-Butane	2.067	2.047	2.057	0.2057
n-Butane	6.083	6.037	6.060	0.6060
i-Pentane	3.770	3.263	3.517	0.3517
n-Pentane	4.872	4.477	4.675	0.4675
Other Hexanes	4.766	5.314	5.040	0.5040
Heptanes	10.970	12.616	11.793	1.1793
Octanes	13.091	14.845	13.968	1.3968
Nonanes	5.657	6.279	5.968	0.5968
Decanes+	24.100	13.338	18.719	1.8719
n-Hexane	4.430	4.853	4.642	0.4642
Benzene	0.283	0.310	0.297	0.0297
Toluene	0.744	0.818	0.781	0.0781
Ethylbenzene	0.510	0.657	0.584	0.0584
Xylenes	1.570	1.883	1.727	0.1727
Nitrogen	0.018	0.026	0.022	0.0022
Carbon Dioxide	0.031	0.022	0.027	0.0027

C10+ specific gravity	0.8007	0.7987	0.7997
C10+ MW	204.60	163.60	184.100
API	59.13	63.19	61.16

Liquid analysis is the average of two representative analyses from the field. The pressurized water analysis assumes 10% hydrocarbons.

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES

Case Name: Lafferty Compressor Station

File Name: W:\20161767 Antero Lafferty and Underwood CS Air\2.0 Technical Information\2.9

- Deliverables to Client\Lafferty CS\Model Files\Dehy Runs\Lafferty Dehy.ddf

Date: November 24, 2015

DESCRIPTION:

Description: One (1) 72.5 MMscf/day TEG dehydration

Kimray 45015 PV glycol pump

Annual Hours of Operation: 8760.0 hours/yr

WET GAS:

Temperature: 120.00 deg. F Pressure: 1100.00 psig Pressure:

Wet Gas Water Content: Saturated

Component	Conc. (vol %)
Carbon Dioxide	0.1330
Nitrogen	0.4020
Methane	78.9530
Ethane	14.0970
Propane	4.1160
Isobutane	0.5200
n-Butane	1.0030
Isopentane	0.2440
n-Pentane	0.2250
n-Hexane	0.0960
Other Hexanes	0.2070
Benzene	0.0015
Toluene	0.0022
Ethylbenzene	0.0000
Xylenes	0.0003

DRY GAS:

Flow Rate: 72.5 MMSCF/day Water Content: 5.0 lbs. H2O/MMSCF

LEAN GLYCOL:

Glycol Type: TEG

Water Content: 1.5 wt% H2O Flow Rate: 7.9 gpm

PUMP:

Glycol Pump Type: Gas Injection

Gas Injection Pump Volume Ratio: 0.032 acfm gas/gpm glycol

FLASH TANK:

Flash Control: Combustion device

Flash Control Efficiency: 95.00 %
Temperature: 80.0 deg. F
Pressure: 5.0 psig

STRIPPING GAS:

Source of Gas: Dry Gas

Gas Flow Rate: 9.000 scfm

REGENERATOR OVERHEADS CONTROL DEVICE:

Control Device: Condenser

Temperature: 200.0 deg. F Pressure: 14.7 psīa

Control Device: Combustion Device

Destruction Efficiency: 98.0 %
Excess Oxygen: 0.0 %
Ambient Air Temperature: 0.0 deg. F

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Lafferty Compressor Station

File Name: W:\20161767 Antero Lafferty and Underwood CS Air\2.0 Technical Information\2.9

- Deliverables to Client\Lafferty CS\Model Files\Dehy Runs\Lafferty Dehy.ddf

Date: November 24, 2015

DESCRIPTION:

Description: One (1) 72.5 MMscf/day TEG dehydration

unit

Kimray 45015 PV glycol pump

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.3648	8.756	1.5979
Ethane	0.1283	3.078	0.5618
Propane	0.0623	1.495	0.2729
Isobutane	0.0118	0.283	0.0517
n-Butane	0.0262	0.630	0.1149
Isopentane	0.0082	0.198	0.0361
n-Pentane	0.0090	0.215	0.0393
n-Hexane	0.0073	0.175	0.0319
Other Hexanes	0.0120	0.288	0.0526
Benzene	0.0072	0.173	0.0317
Toluene	0.0160	0.385	0.0703
Ethylbenzene	<0.0001	<0.001	0.0001
Xylenes	0.0044	0.107	0.0195
Total Emissions	0.6577	15.784	2.8806
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	0.6577	15.784	2.8806
	0.1646	3.950	0.7209
	0.0350	0.840	0.1534
	0.0277	0.666	0.1215

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	18.2414	437.793	79.8972
Ethane	6.4132	153.917	28.0899
Propane	3.1150	74.759	13.6436
Isobutane	0.5904	14.169	2.5859
n-Butane	1.3121	31.491	5.7471
Isopentane	0.4120	9.887	1.8044
n-Pentane	0.4488	10.772	1.9659
n-Hexane	0.3638	8.731	1.5935
Other Hexanes	0.6007	14.416	2.6309
Benzene	0.3617	8.680	1.5841
Toluene	0.8026	19.263	3.5155
Ethylbenzene	0.0010	0.023	0.0043

Xylenes	0.2224	5.338	Page: 2 0.9741
Total Emissions	32.8850	789.239	144.0362
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	32.8850 8.2304 1.7515 1.3877	789.239 197.530 42.035 33.304	144.0362 36.0491 7.6715 6.0780
FLASH GAS EMISSIONS			
Component	lbs/hr	lbs/day	tons/yr
Methane Ethane Propane Isobutane n-Butane	2.7627 1.2401 0.6156 0.1101 0.2380	66.305 29.762 14.774 2.642 5.712	12.1007 5.4316 2.6963 0.4821 1.0425
Isopentane n-Pentane n-Hexane Other Hexanes Benzene	0.0654 0.0669 0.0371 0.0737 0.0014	1.569 1.606 0.891 1.768 0.033	0.2864 0.2931 0.1625 0.3227 0.0060
Toluene Ethylbenzene Xylenes	0.0018 <0.0001 0.0002	0.042 <0.001 0.004	0.0077 <0.0001 0.0007
Total Emissions	5.2129	125.109	22.8323
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	5.2129 1.2101 0.0404 0.0033	125.109 29.041 0.970 0.079	22.8323 5.3000 0.1770 0.0145
FLASH TANK OFF GAS			
Component	lbs/hr	lbs/day	tons/yr
Methane Ethane Propane Isobutane n-Butane	55.2543 24.8018 12.3117 2.2015 4.7601	1326.104 595.244 295.481 52.837 114.243	242.0140 108.6320 53.9253 9.6427 20.8493

Component	lbs/hr	lbs/day	tons/yr
Methane Ethane Propane Isobutane n-Butane	55.2543 24.8018 12.3117 2.2015 4.7601	595.244 295.481	53.9253
Isopentane n-Pentane n-Hexane Other Hexanes Benzene	1.3078 1.3383 0.7422 1.4733 0.0275		5.7283 5.8616 3.2508 6.4531 0.1205
Toluene Ethylbenzene Xylenes	0.0354 <0.0001 0.0032		0.1549 0.0001 0.0139
Total Emissions	104.2572	2502.172	456.6464
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	104.2572 24.2010 0.8083 0.0661	580.824	106.0004

CONDENSER AND COMBUSTION DEVICE

Condenser Outlet Temperature: 200.00 deg. F Condenser Pressure: 14.70 psia Condenser Duty: 1.90e-001 MM BTU/hr Produced Water: 11.91 bbls/day
Ambient Temperature: 0.00 deg. F
Excess Oxygen: 0.00 %
Combustion Efficiency: 98.00 %

Supplemental Fuel Requirement: 1.90e-001 MM BTU/hr

Component	Emitted	Destroyed
Methane	2.00%	98.00%
Ethane	2.00%	98.00%
Propane	2.00%	98.00%
Isobutane	2.00%	98.00%
n-Butane	2.00%	98.00%
Isopentane	2.00%	98.00%
n-Pentane	2.00%	98.00%
n-Hexane	2.00%	98.00%
Other Hexanes	2.00%	98.00%
Benzene	2.00%	98.00%
Toluene	2.00%	98.00%
Ethylbenzene	2.00%	98.00%
Xylenes	2.00%	98.00%

ABSORBER

Calculated Absorber Stages: 1.99
Specified Dry Gas Dew Point: 5.00 lbs. H2O/MMSCF
Temperature: 120.0 deg. F
Pressure: 1100.0 psig
Dry Gas Flow Rate: 72.5000 MMSCF/day
Glycol Losses with Dry Gas: 4.3851 lb/hr
Wet Gas Water Content: Saturated
Calculated Wet Gas Water Content: 95.04 lbs. H2O/MMSCF
Calculated Lean Glycol Recirc. Ratio: 1.75 gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	5.25%	94.75%
Carbon Dioxide	99.86%	0.14%
Nitrogen	99.99%	0.01%
Methane	99.99%	0.01%
Ethane	99.97%	0.03%
Propane	99.95%	0.05%
Isobutane	99.94%	0.06%
n-Butane	99.93%	0.07%
Isopentane	99.94%	0.06%
n-Pentane	99.92%	0.08%
n-Hexane	99.89%	0.11%
Other Hexanes	99.91%	0.09%
Benzene	95.89%	4.11%
Toluene	94.87%	5.13%
Ethylbenzene	94.14%	5.86%

Xylenes 91.71% 8.29%

FLASH TANK

Flash Control: Combustion device

Flash Control Efficiency: 95.00 %
Flash Temperature: 80.0 deg. F
Flash Pressure: 5.0 psig

Component	Left in Glycol	Removed in Flash Gas
Water Carbon Dioxide Nitrogen Methane Ethane	99.89% 6.67% 0.36% 0.40% 1.52%	93.33% 99.64%
Propane Isobutane n-Butane Isopentane n-Pentane	4.15% 6.79% 9.21% 11.26% 14.28%	95.85% 93.21% 90.79% 88.74% 85.72%
n-Hexane Other Hexanes Benzene Toluene Ethylbenzene	25.18% 19.60% 93.25% 96.10% 98.01%	74.82% 80.40% 6.75% 3.90% 1.99%
Xylenes	98.77%	1.23%

REGENERATOR

Regenerator Stripping Gas:

Dry Product Gas

Stripping Gas Flow Rate: 9.0000 scfm

Component	Remaining in Glycol	Distilled Overhead
Water Carbon Dioxide Nitrogen Methane Ethane	19.71% 0.00% 0.00% 0.00% 0.00%	100.00% 100.00% 100.00%
Propane Isobutane n-Butane Isopentane n-Pentane	0.00% 0.00% 0.00% 2.63% 2.26%	100.00%
n-Hexane Other Hexanes Benzene Toluene Ethylbenzene	1.42% 3.41% 5.31% 8.17% 10.57%	98.58% 96.59% 94.69% 91.83% 89.43%
Xylenes	13.07%	86.93%

STREAM REPORTS:

WET GAS STREAM

Temperature: 120.00 deg. F Pressure: 1114.70 psia Flow Rate: 3.03e+006 scfh

Component		Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	2.00e-001 1.33e-001 4.01e-001 7.88e+001 1.41e+001	4.66e+002 8.97e+002 1.01e+005
Isobutane n-Butane Isopentane	4.11e+000 5.19e-001 1.00e+000 2.44e-001 2.25e-001	2.41e+003 4.64e+003 1.40e+003
Other Hexanes Benzene	1.50e-003 2.20e-003	1.42e+003 9.33e+000 1.61e+001
Xylenes Total Components	3.19e-004 100.00	

DRY GAS STREAM

Temperature: 120.00 deg. F Pressure: 1114.70 psia Flow Rate: 3.02e+006 scfh

Component		Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	1.05e-002 1.33e-001 4.02e-001 7.89e+001 1.41e+001	4.65e+002 8.96e+002 1.01e+005
Isobutane n-Butane Isopentane	4.11e+000 5.20e-001 1.00e+000 2.44e-001 2.25e-001	2.41e+003 4.64e+003 1.40e+003
Other Hexanes Benzene	1.44e-003 2.09e-003	1.42e+003 8.95e+000 1.53e+001
Xylenes Total Components	2.94e-004 100.00	

LEAN GLYCOL STREAM

Temperature: 120.00 deg. F Flow Rate: 7.92e+000 gpm

Component Conc. Loading (wt%) (lb/hr) TEG 9.85e+001 4.39e+003 Water 1.50e+000 6.69e+001 Carbon Dioxide 1.46e-012 6.53e-011 Nitrogen 2.83e-013 1.26e-011 Methane 9.22e-018 4.11e-016 Ethane 1.13e-007 5.06e-006 Propane 6.07e-009 2.71e-007 Isobutane 8.95e-010 3.99e-008 n-Butane 1.81e-009 8.07e-008 Isopentane 9.79e-005 4.36e-003 n-Pentane 1.13e-004 5.04e-003 n-Hexane 7.96e-005 3.55e-003 Other Hexanes 2.74e-004 1.22e-002 Benzene 4.53e-004 2.02e-002 Toluene 1.60e-003 7.11e-002 Ethylbenzene 2.58e-006 1.15e-004 Xylenes 7.48e-004 3.34e-002 -----Total Components 100.00 4.46e+003

RICH GLYCOL AND PUMP GAS STREAM

Temperature: 120.00 deg. F Pressure: 1114.70 psia Flow Rate: 8.69e+000 gpm

NOTE: Stream has more than one phase.

Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.07e+001 7.02e+000 1.76e-002 1.05e-002 1.15e+000	3.40e+002 8.52e-001 5.10e-001
Propane Isobutane	5.21e-001 2.66e-001 4.88e-002 1.08e-001 3.05e-002	1.28e+001 2.36e+000 5.24e+000
n-Hexane Other Hexanes Benzene	3.23e-002 2.05e-002 3.79e-002 8.43e-003 1.87e-002	9.92e-001 1.83e+000 4.08e-001
Ethylbenzene Xylenes Total Components	5.34e-003	

Temperature: 80.00 deg. F Pressure: 19.70 psia Flow Rate: 1.82e+003 scfh

Component Conc. Loading (vol%) (lb/hr) Water 4.25e-001 3.67e-001 Carbon Dioxide 3.78e-001 7.96e-001 Nitrogen 3.79e-001 5.08e-001 Methane 7.19e+001 5.53e+001 Ethane 1.72e+001 2.48e+001 Propane 5.83e+000 1.23e+001 Isobutane 7.91e-001 2.20e+000 n-Butane 1.71e+000 4.76e+000 Isopentane 3.79e-001 1.31e+000 n-Pentane 3.87e-001 1.34e+000 n-Hexane 1.80e-001 7.42e-001 Other Hexanes 3.57e-001 1.47e+000 Benzene 7.35e-003 2.75e-002 Toluene 8.01e-003 3.54e-002 Ethylbenzene 4.36e-006 2.22e-005 Xylenes 6.24e-004 3.17e-003

FLASH TANK GLYCOL STREAM

Total Components 100.00 1.06e+002

Temperature: 80.00 deg. F Flow Rate: 8.46e+000 gpm

Conc. Loading (wt%) (lb/hr) Component _____ TEG 9.27e+001 4.39e+003 Water 7.17e+000 3.39e+002 Carbon Dioxide 1.20e-003 5.68e-002 Nitrogen 3.85e-005 1.82e-003 Methane 4.64e-003 2.19e-001 Ethane 8.07e-003 3.82e-001 Propane 1.13e-002 5.33e-001 Isobutane 3.39e-003 1.60e-001 n-Butane 1.02e-002 4.83e-001 Isopentane 3.51e-003 1.66e-001 n-Pentane 4.71e-003 2.23e-001 n-Hexane 5.28e-003 2.50e-001 Other Hexanes 7.59e-003 3.59e-001 Benzene 8.04e-003 3.80e-001 Toluene 1.84e-002 8.71e-001 Ethylbenzene 2.31e-005 1.09e-003 Xylenes 5.40e-003 2.55e-001 -----Total Components 100.00 4.73e+003

FLASH GAS EMISSIONS

Flow Rate: 6.68e+003 scfh

Control Method: Combustion Device

Control Efficiency: 95.00

Component		Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	6.20e+001 3.65e+001 1.03e-001 9.78e-001 2.34e-001	2.83e+002 5.08e-001 2.76e+000
Isobutane n-Butane Isopentane	7.92e-002 1.08e-002 2.32e-002 5.14e-003 5.26e-003	1.10e-001 2.38e-001 6.54e-002
Other Hexanes Benzene	9.99e-005 1.09e-004	7.37e-002 1.38e-003 1.77e-003
Xylenes	8.49e-006	1.59e-004
Total Components	100.00	4.86e+002

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 6.31e+003 scfh

Component		Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	9.10e+001 1.91e-002 3.48e-002 6.84e+000 1.28e+000	1.40e-001 1.62e-001 1.82e+001
Isobutane n-Butane Isopentane	4.25e-001 6.11e-002 1.36e-001 3.43e-002 3.74e-002	5.90e-001 1.31e+000 4.12e-001
Other Hexanes Benzene	2.78e-002 5.24e-002	6.01e-001 3.62e-001 8.03e-001
Xylenes Total Components	1.26e-002 100.00	

CONDENSER PRODUCED WATER STREAM

Temperature: 200.00 deg. F

Temperature: 200.00 deg. F Flow Rate: 3.48e-001 gpm

Component Conc. Loading (wt%) (lb/hr) (ppm)

ra	ge:	9
Water 1.00e+002 1.74e+002 999	991.	
Carbon Dioxide 2.33e-005 4.06e-005	0.	
Nitrogen 1.19e-006 2.06e-006	0.	
Methane 2.14e-004 3.73e-004	2.	
Ethane 7.93e-005 1.38e-004	1.	
Propane 5.20e-005 9.04e-005	1.	
Isobutane 4.97e-006 8.65e-006	0.	
n-Butane 1.35e-005 2.35e-005	0.	
Isopentane 2.70e-006 4.70e-006	0.	
n-Pentane 3.04e-006 5.29e-006	0.	
n-Hexane 1.79e-006 3.12e-006	0.	
Other Hexanes 2.50e-006 4.34e-006	0.	
Benzene 1.56e-004 2.71e-004	2.	
Toluene 2.53e-004 4.39e-004	3.	
Ethylbenzene 2.10e-007 3.65e-007	0.	
Xylenes 6.09e-005 1.06e-004	1.	
Total Components 100.00 1.74e+002 999	999.	

CONDENSER RECOVERED OIL STREAM

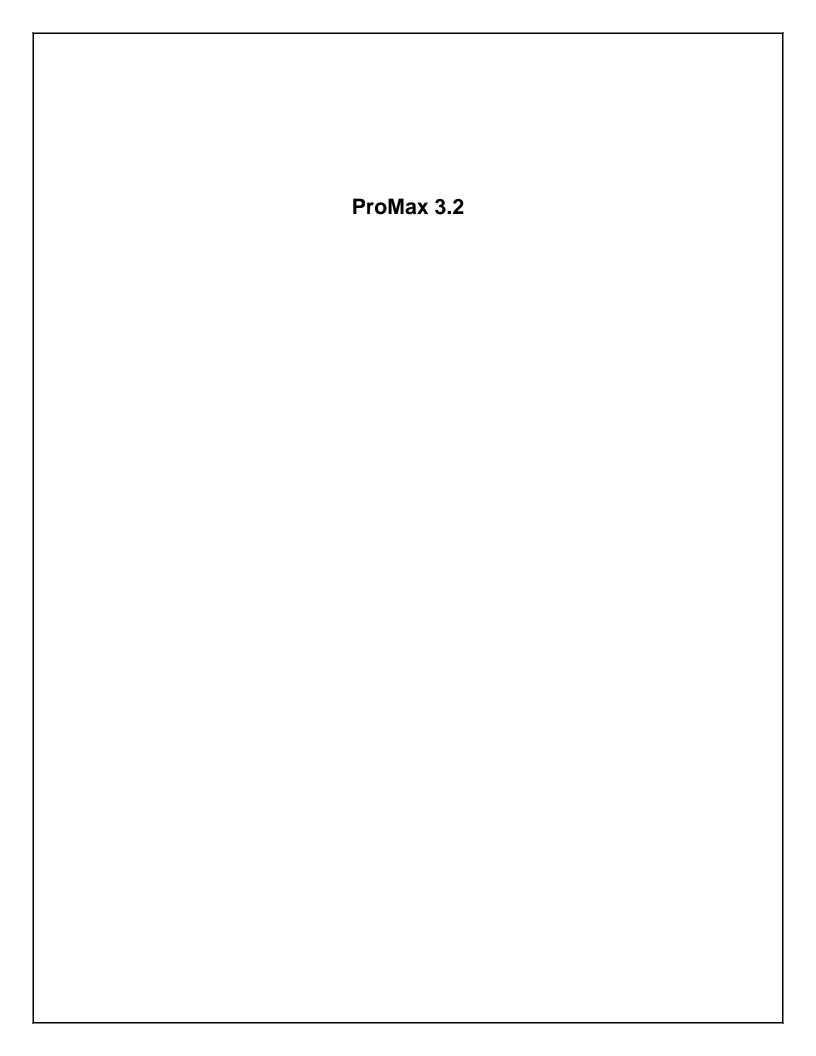
Temperature: 200.00 deg. F

The calculated flow rate is less than 0.000001 #mol/hr. The stream flow rate and composition are not reported.

CONDENSER VENT STREAM

Temperature: 200.00 deg. F Pressure: 14.70 psia Flow Rate: 2.64e+003 scfh

Component		Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	7.85e+001 4.56e-002 8.30e-002 1.63e+001 3.06e+000	1.40e-001 1.62e-001 1.82e+001
Isobutane n-Butane Isopentane	1.01e+000 1.46e-001 3.24e-001 8.19e-002 8.92e-002	5.90e-001 1.31e+000 4.12e-001
Other Hexanes Benzene	6.64e-002 1.25e-001	6.01e-001 3.61e-001 8.02e-001
Xylenes Total Components	3.00e-002 100.00	


COMBUSTION DEVICE OFF GAS STREAM

Temperature: 1000.00 deg. F Pressure: 14.70 psia

Flow Rate: 1.13e+001 scfh

Component	Conc. (vol%)	Loading (lb/hr)
Ethane Propane Isobutane	7.62e+001 1.43e+001 4.73e+000 6.81e-001 1.51e+000	1.28e-001 6.23e-002 1.18e-002
n-Hexane Other Hexanes	4.17e-001 2.83e-001	8.98e-003 7.28e-003 1.20e-002
Ethylbenzene	5.83e-001 6.17e-004 1.40e-001	1.96e-005
Total Components	100.00	6.58e-001

Process Streams		Condensate	Flash Gas	Pressurized Condensate	Pressurized Water	Produced Water	1
Composition	Status:	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	Settling Tank	Settling Tank		-	Settling Tank	Mixer
	To Block:		-	Mixer	Mixer	-	Settling Tank
Mole Fraction		%	%	%	%	%	%
Methane		0.132527	26.7076	6.23481*	0.623*	0.000694550	2.02728
Ethane		0.886452	26.7159	6.82080*	0.682*	0.000829304	2.21815
Propane		2.75890	21.4746	7.06979*	0.707*	0.000791958	2.29921
i-Butane n-Butane		1.42980 4.92064	4.13342 9.77348	2.05694* 6.05982*	0.206* 0.606*	5.15329E-05 0.000262009	0.669173 1.97075
i-Pentane		3.71954	2.75709	3.51689*	0.352*	5.28236E-05	1.14397
n-Pentane		5.19029	2.82449	4.67486*	0.467*	5.16244E-05	1.51996
2-Methylpentane		6.10778	1.31974	5.03985*	0.504*	1.13144E-05	1.63904
n-Heptane		14.9954	0.706604	11.7926*	1.179*	6.73136E-06	3.83493
n-Octane		17.9345	0.256091	13.9676*	1.397*	1.35941E-06	4.54262
n-Nonane		7.68521	0.0346369	5.96782*	0.597*	3.01764E-07	1.94098
n-Hexane		5.72516	0.876636	4.64186*	0.464*	6.02700E-06	1.50946
Benzene		0.367237	0.0541806	0.296991*	0.03*	0.000209857	0.0968111
Toluene		0.994998	0.0384036	0.780977*	0.078*	0.000122291	0.253911
Ethylbenzene		0.748987	0.00923304	0.583982*	0.058*	2.82117E-05	0.189620
p-Xylene Nitrogen		2.22027 0.000144097	0.0241591 0.0933501	1.72695* 0.0219993*	0.173* 0.002*	6.88461E-05 1.18445E-06	0.561855 0.00700458
Carbon Dioxide		0.000144097	0.0933501	0.0219993	0.002	6.22462E-05	0.00700458
Water		0.0446265	2.08648	0*	90*	99.9967	67.4787
Decanes+		24.1354	0.00111796	18.7184*	1.872*	1.40507E-08	6.08760
Mass Fraction		%	%	%	%	%	%
Methane		0.0183301	11.4555	1.01598*	0.383529*	0.000618463	0.736243
Ethane		0.229807	21.4782	2.08326*	0.786943*	0.00138412	1.50990
Propane		1.04886	25.3179	3.16658*	1.19634*	0.00193837	2.29514
i-Butane		0.716484	6.42331	1.21437*	0.459461*	0.000166252	0.880474
n-Butane		2.46576	15.1879	3.57759*	1.35162*	0.000845275	2.59304
i-Pentane		2.31369	5.31848	2.57737*	0.974566*	0.000211542	1.86845
n-Pentane 2-Methylpentane		3.22856	5.44850	3.42600*	1.29296*	0.000206740	2.48255 3.19748
z-ivietnyipentarie n-Heptane		4.53790 12.9545	3.04074 1.89304	4.41154* 12.0026*	1.66668* 4.53346*	5.41194E-05 3.74385E-05	3.19746 8.69899
n-Octane		17.6625	0.782125	16.2063*	6.12365*	8.61913E-06	11.7467
n-Nonane		8.49804	0.118774	7.77463*	2.93825*	2.14824E-06	5.63548
n-Hexane		4.25362	2.01981	4.06316*	1.53441*	2.88286E-05	2.94469
Benzene		0.247316	0.113153	0.235640*	0.0899244*	0.000909870	0.171190
Toluene		0.790408	0.0946063	0.730917*	0.275788*	0.000625425	0.529612
Ethylbenzene		0.685557	0.0262080	0.629753*	0.236292*	0.000166245	0.455724
p-Xylene		2.03225	0.0685756	1.86230*	0.704802*	0.000405695	1.35034
Nitrogen		3.48024E-05	0.0699179	0.00625986*	0.00214998*	1.84171E-06	0.00444205
Carbon Dioxide		0.000813382	0.132788	0.0120694*	0.00506649*	0.000152054	0.00897200
Water Decanes+		0.00693141 38.3086	1.00499 0.00550284	0* 35.0036*	62.2190* 13.2251*	99.9922 1.43580E-07	27.5197 25.3709
Mass Flow		lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
Methane		0.290292	17.3116	13.5494*	4.05655*	0.00406025	17.6060
Ethane		3.63944	32.4580	27.7831*	8.32343*	0.00908683	36.1065
Propane		16.6108	38.2607	42.2306*	12.6536*	0.0127255	54.8842
i-Butane		11.3469	9.70696	16.1953*	4.85968*	0.00109145	21.0550
n-Butane		39.0502	22.9522	47.7120*	14.2959*	0.00554929	62.0079
i-Pentane		36.6419	8.03734	34.3727*	10.3079*	0.00138879	44.6806
n-Pentane		51.1306	8.23382	45.6902*	13.6755*	0.00135726	59.3658
2-Methylpentane		71.8665	4.59520	58.8337*	17.6284*	0.000355298	76.4621
n-Heptane		205.160	2.86078	160.071*	47.9500*	0.000245786	208.021
n-Octane		279.721	1.18195		64.7693*	5.65852E-05	280.903
n-Nonane n-Hexane		134.583 67.3645	0.179492 3.05235	103.685* 54.1877*	31.0776* 16.2293*	1.41033E-05 0.000189262	134.763 70.4170
Benzene		3.91673	0.170999	3.14258*	0.951122*	0.00597336	4.09370
Toluene		12.5177	0.142970	9.74776*	2.91698*	0.00337330	12.6647
Ethylbenzene		10.8571	0.0396058	8.39860*	2.49924*	0.00109141	10.8978
p-Xylene		32.1846	0.103632	24.8363*	7.45462*	0.00266342	32.2909
Nitrogen		0.000551164	0.105661	0.0834836*	0.0227402*	1.20909E-05	0.106224
Carbon Dioxide		0.0128815	0.200670	0.160962*	0.0535878*	0.000998248	0.214550
Water		0.109772	1.51875		658.085*	656.456	658.085
Decanes+		606.692	0.00831595	466.820*	139.881*	9.42610E-07	606.701

Process Streams		Condensate	Flash Gas	Pressurized Condensate F	Pressurized Water	Produced Water	1
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	Settling Tank	Settling Tank	-		Settling Tank	Mixer
	To Block:	-		Mixer	Mixer	-	Settling Tank
Property	Units						
Temperature	°F	65.08	65.08*	120*	120*	65.08	119.795
Pressure	psig	0	0	300*	300*	0*	300
Mole Fraction Vapor	%	0	100	0	0	0	(
Mole Fraction Light Liquid	%	100	0	100	9.98293	100	32.5483
Mole Fraction Heavy Liquid	%	0	0	0	90.0171	0	67.4517
Molecular Weight	lb/lbmol	115.988	37.4018	98.4489	26.0592	18.0161	44.1737
Mass Density	lb/ft^3	45.4113	0.0988480	42.3099	52.6052	62.3189	46.3351
Molar Flow	lbmol/h	13.6540	4.04047	13.5465	40.5881	36.4400	54.1345
Mass Flow	lb/h	1583.70	151.121	1333.63	1057.69	656.507	2391.32
Vapor Volumetric Flow	ft^3/h	34.8745	1528.82	31.5206	20.1062	10.5346	51.6094
Liquid Volumetric Flow	gpm	4.34799	190.606	3.92985	2.50675	1.31341	6.43441
Std Vapor Volumetric Flow	MMSCFD	0.124356	0.0367991	0.123376	0.369661	0.331882	0.493037
Std Liquid Volumetric Flow	sgpm	4.37500	0.653305	3.86667*	2.47414*	1.31250	6.34081
Compressibility		0.00666544	0.987429	0.117711	0.0250598	0.000754435	0.0482452
Specific Gravity		0.728107	1.29138	0.678380	0.843450	0.999197	0.742919
API Gravity		62.2058		67.8986	32.2755	10.0158	52.2901
Enthalpy	Btu/h	-1.35864E+06	-178418	-1.15488E+06	-4.80682E+06	-4.48582E+06	-5.96170E+06
Mass Enthalpy	Btu/lb	-857.895	-1180.63	-865.967	-4544.63	-6832.85	-2493.05
Mass Cp	Btu/(lb*°F)	0.481330	0.413980	0.526768	0.810095	0.983556	0.651970
Ideal Gas CpCv Ratio		1.04810	1.14824	1.05184	1.21226	1.32607	1.11966
Dynamic Viscosity	cP	0.598792	0.00874600	0.319202	0.453923	1.06069	0.372110
Kinematic Viscosity	cSt	0.823173	5.52358	0.470980	0.529001	1.06255	0.493951
Thermal Conductivity	Btu/(h*ft*°F)	0.0706803	0.0119007	0.0645385	0.225125	0.344705	0.127068
Net Ideal Gas Heating Value	Btu/ft^3	5828.37	1952.60	4968.50	496.871	0.0701620	1615.84
Net Liquid Heating Value	Btu/lb	18911.7	19663.2	18996.0	6517.44	-1058.21	13476.7
Gross Ideal Gas Heating Value	Btu/ft^3	6258.71	2127.95	5342.24	579.526	50.3841	1771.33
Gross Liquid Heating Value	Btu/lb	20319.6	21442.3	20436.7	7721.09	1.58305	14812.5

Settling Tank Working and Breathing:	195 bbl/day	
True vapor pressure at average temp average temp Max temp	11.01 65.08 75.94	psia F F
Single Condensate Tank Working and Breathing:	75 bbl/day	
True vapor pressure at average temp average temp Max temp	11.01 65.08 75.94	psia F F
Single Produced Water Tank Working and Breathing:	22.5 bbl/day	
True vapor pressure at average temp average temp Max temp	0.3158 65.08 75.94	psia F F

Promax AP-42 Emissions Report Annual Emissions Settling Tank

Components	Working Losses (ton/yr)	Breathing Losses (ton/yr)	Total Losses (ton/yr)
Mixture	6.087	3.07	9.157
Methane	0.1069	0.0539	0.1608
Ethane	1.618	0.8162	2.434
Propane	1.756	0.8856	2.642
i-Butane	0.4394	0.2216	0.6611
n-Butane	1.037	0.5231	1.56
i-Pentane	0.3576	0.1803	0.5379
n-Pentane	0.3678	0.1855	0.5533
2-Methylpenta	0.2076	0.1047	0.3122
n-Heptane	0.1202	0.06063	0.1809
n-Octane	0.04841	0.02442	0.07282
n-Nonane	0.006896	0.003478	0.01037
n-Hexane	0.009478	0.004781	0.01426
Benzene	0.0004464	0.0002252	0.0006716
Toluene	0.0008307	0.000419	0.00125
Ethylbenzene	0.0004481	0.000226	0.000674
p-Xylene	0.001265	0.0006381	0.001903
Nitrogen	8.03E-05	4.05E-05	0.0001208
Carbon Dioxic	0.00812	0.004096	0.01222
Water	2.70E-05	1.36E-05	4.06E-05
Decanes+	0.0002782	0.0001403	0.0004186

Promax AP-42 Emissions Report Annual Emissions Single Condensate Tank

Working Losses (ton/yr)	Breathing Losses (ton/yr)	Total Losses (ton/yr)
3.692	3.019	6.711
0.06482	0.05301	0.1178
0.9814	0.8027	1.784
1.065	0.871	1.936
0.2665	0.218	0.4845
0.6289	0.5144	1.143
0.2168	0.1774	0.3942
0.2231	0.1824	0.4055
0.1259	0.103	0.2288
0.07291	0.05963	0.1325
0.02936	0.02401	0.05337
0.004182	0.003421	0.007603
0.005748	0.004702	0.01045
0.0002707	0.0002214	0.0004922
0.0005038	0.0004121	0.0009159
0.0002717	0.0002223	0.000494
0.0007673	0.0006276	0.001395
4.87E-05	3.98E-05	8.85E-05
0.004925	0.004028	0.008953
1.64E-05	1.34E-05	2.97E-05
0.0001687	0.000138	0.0003067
	3.692 0.06482 0.9814 1.065 0.2665 0.6289 0.2168 0.2231 0.1259 0.07291 0.02936 0.004182 0.005748 0.0002707 0.0005038 0.0002717 0.0007673 4.87E-05 0.004925 1.64E-05	3.692 3.019 0.06482 0.05301 0.9814 0.8027 1.065 0.871 0.2665 0.218 0.6289 0.5144 0.2168 0.1774 0.2231 0.1824 0.1259 0.103 0.07291 0.05963 0.02936 0.02401 0.004182 0.003421 0.005748 0.004702 0.0002707 0.0002214 0.0005038 0.0004121 0.0002717 0.0002223 0.0007673 0.0006276 4.87E-05 3.98E-05 0.004925 0.004028 1.64E-05 1.34E-05

Promax AP-42 Emissions Report Annual Emissions Single Produced Water Tank

Components	Working Losses (ton/yr)	Breathing Losses (ton/yr)	Total Losses (ton/yr)
Mixture	0.02367	0.0229	0.04657
Methane	0.0002608	0.0002523	0.000513
Ethane	0.0004715	0.0004562	0.0009277
Propane	0.0001474	0.0001426	0.00029
i-Butane	3.73E-06	3.61E-06	7.34E-06
n-Butane	1.53E-05	1.48E-05	3.00E-05
i-Pentane	1.31E-06	1.27E-06	2.57E-06
n-Pentane	9.39E-07	9.09E-07	1.85E-06
2-Methylpenta	8.04E-08	7.78E-08	1.58E-07
n-Heptane	1.08E-08	1.04E-08	2.12E-08
n-Octane	6.13E-10	5.93E-10	1.21E-09
n-Nonane	5.50E-11	5.32E-11	1.08E-10
n-Hexane	1.91E-09	1.85E-09	3.77E-09
Benzene	8.20E-08	7.93E-08	1.61E-07
Toluene	3.28E-08	3.17E-08	6.45E-08
Ethylbenzene	5.42E-09	5.24E-09	1.07E-08
p-Xylene	1.26E-08	1.22E-08	2.48E-08
Nitrogen	4.99E-07	4.82E-07	9.81E-07
Carbon Dioxic	8.94E-05	8.65E-05	0.000176
Water	0.02268	0.02194	0.04462
Decanes+	3.59E-14	3.47E-14	7.06E-14

Monitoring, Reco	Attachment O. ordkeeping, Reportin	g, and Testing Plans

Monitoring, Recordkeeping, Reporting, and Testing Plans

The following is a summary of the methods to comply with the requirements of West Virginia Division of Air Quality (WVDAQ) 45CSR13 rules and regulations for the Lafferty Compressor Station, including federal and state regulatory requirements.

1. Summary of Key Operational Throughput Limits

- a. Maximum wet gas throughput into each Dehy: 72.5 MMscf/day or 26,463 MMscf/year.
- b. Maximum liquids loaded out: 2,989,350 gallons per year.
- c. Maximum fuel use of all compressor engines is 1,414,389,600 scf/year

2. Operational Requirements

- a. Compressor engines will operate with the catalytic converter in place at all times and will be fueled by natural gas only.
- b. Catalysts installed on all compressor engines will be operated per manufacturer instructions.
- c. Reciprocating compressor rod packing will be replaced within 36 months of last packing/startup or within 26,000 operating hours, whichever comes first.
- d. Microturbines will be fueled by natural gas only.
- e. Each Dehy Reboiler will operate at no more than 1.5 MMBtu/hr and fueled only by natural gas or off-gases from the Dehydrator flash tanks.
- f. No fuel-burning unit of any kind will have opacity greater than 10 percent based on a six minute block average observation.
- g. The Dehy Flare capacity will not exceed 9.2 MMBtu/hr, will achieve 98 percent destruction efficiency, will operate at all times that gas is vented to it, will have a flame present at all times, and will have no visible emissions other than for periods not to exceed a total of 5 minutes during any 2 consecutive hours.
- h. The flare will be operated per manufacturer instructions.
- Produced water, Condensate, and Settling storage tanks potential emissions will be routed to the VRUs with recovery greater than 98 percent at all times.
- j. Storage tanks will be covered and routed to a closed vent system with no detectable emissions.
- k. Liquid loadout trucks will use the submerged-fill method.
- I. Dehydrator still vents will be controlled by the flare.

3. Monitoring

- a. Non-certified engines will be stack tested within 1 year of startup and every 8,760 hours of operation thereafter.
- b. Catalyst inlet temperature will be monitored.
- c. Compressor run time or number of months since compressor rod repacking will be monitored or tracked.

- d. Daily, monthly, and rolling 12-month average wet gas throughput for the Dehy will be monitored.
- e. Initial Method 22 observation of the Reboiler exhaust and flare will be conducted for a minimum of 2 hours.
- f. Monthly Method 22 observations of the Reboiler exhaust and flare will be conducted for a minimum of 10 minutes each.
- g. Monthly olfactory, visual, and auditory inspections will be conducted of the tanks closed vent and control system (flare) for leaks or defects that could result in emissions. Leaks will be repaired as soon as practicable (no later than 5 days for first attempt).
- h. The presence of flare flame will continuously be monitored.
- i. Monthly and rolling twelve-month average amount of liquids loaded out will be monitored.

4. Recordkeeping

- a. Records will be kept for a minimum of 5 years.
- b. Records of inspection, observations, preventive maintenance, malfunctions, and shutdowns of all onsite equipment will be kept.
- c. Records of the date, time, duration of each time that a flame is not present at the flare and startup, shutdown, malfunctions of the flare will be kept.
- d. Records of engine maintenance and engine run time will be kept.
- e. Records of catalyst inlet temperature will be kept.
- f. Records of the actual annual average natural gas throughput in the dehy will be kept.

5. Notifications and Reports

- a. WVDAQ will be notified within 30 calendar days of commencement of construction.
- b. WVDAQ will be notified within 30 calendar days of startup.
- c. Upon startup, a Certificate to Operate (CTO) application will be filed and fees to WVDAQ will be paid for the period from startup to the following June 30 and then annually renew the CTO and pay fees. CTO will be maintained on-site.
- d. An annual report of compliance with 40 CFR 60 Subpart OOOO for the compressors and storage tanks (for settling tank only) will be submitted within 90 days after one year of operation (i.e., within 90 days after 12 months after initial startup).
- e. For stack testing, a protocol will be filed at least 30 days prior to test and WVDAQ and EPA will be notified of the test at least 15 days prior to test. Results will be reported within 60 days of the test.
- f. If operations are suspended for 60 days or more, WVDAQ will be notified within 2 weeks after the 60th day.

Attachment P. Public Notice

AIR QUALITY PERMIT NOTICE Notice of Application – Lafferty Compressor Station

Notice is given that Antero Midstream LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a 45CSR13 Construction Permit for a Natural Gas Compressor Station located southwest of Pennsboro and east of County Road 10/4, in Richie County, West Virginia. The latitude and longitude coordinates are: 39.224177N, 80.906268W.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be: Nitrogen Oxides (NOx) – 77.07 tons per year (tpy); Carbon Monoxide (CO) – 84.19 tpy; Volatile Organic Compounds (VOC) – 79.21 tpy; Particulate Matter less than 10 μ m (PM₁₀) – 15.85 tpy; Particulate Matter less than 2.5 μ m (PM_{2.5}) – 15.72 tpy; Sulfur Dioxide (SO₂) – 0.57 tpy; Formaldehyde – 2.55 tpy; Benzene – 1.35 tpy; Toluene – 0.62 tpy; Ethylbenzene – 0.025 tpy; Xylenes – 0.21 tpy; n-Hexane – 0.95 tpy; and Carbon Dioxide equivalent (CO₂e) – 124,529 tpy.

Startup of operation is planned to begin on or about the 1st day of December 2016, with construction starting prior to that date. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated this the 30th day of November 2015.

By: Antero Midstream LLC
Barry Schatz
Midstream Environmental Supervisor
1615 Wynkoop Street
Denver, CO 80202

Attachment R. Authority/Delegation of Authority			

Attachment R AUTHORITY OF CORPORATION OR OTHER BUSINESS ENTITY (DOMESTIC OR FOREIGN)

TO:	The West Virginia Depa Division of Air Quality	artment of Enviror	ımental Protectio	n,
DATE:	October 15	, 2014	_	
ATTN.:	Director			
Corporation's	s / other business entity'	s Federal Employ	er I.D. Number _	46-5517375
Protection, D	ndersigned hereby files of the properties of Air Quality, and the name which is used ity.	permit application	and hereby certi	fies that the said
Furthe	er, the corporation or the	business entity c	ertifies as follows	:
	Luz C. Slauter a re(s) and in that capacity ity and may obligate and		e interest of the c	orporation or the
(2) State of Wes	The corporation or the t Virginia.	business entity is	authorized to do	business in the
	If the corporation ove(s), the corporation or the corporation or the corporation or the corporation of Environmenta	he business entity	shall notify the Dir	ector of the West
Mark I	D. Mauz, Vice President			
(Vice Presid official in cha	Other Authorized Office lent, Secretary, Treasurge of a principal busine on or the business entity	rer or other ss function of		
	resident, then the corportation that the corportation is stating legal authors ess entity).			
Secretary				
		ero Midstream LL0		
	Name of Co	rporation or busine	ess entity	