November 5, 2015

Mr. William F. Durham Director, West Virginia Division of Air Quality West Virginia Department of Environmental Protection 601 57th Street SE Charleston, West Virginia 25304

Dear Mr. Durham:

Subject:

Application for R13 Permit Revision Greer Limestone (Plant ID: 061-00003)

CEC Project 144-197

Greer Limestone is submitting this application for an R13 permit modification to reflect several pieces of equipment that have been replaced with like-kind equipment. Additionally, a comprehensive inventory of on-site equipment identified several emission sources which are not included in current permits that the facility wishes to incorporate into this permit revision. No new processes or equipment (other than the noted replacements) are being added to the facility, and maximum production capacity has not changed.

Hours of operation throughout the application reflect nominal operating conditions at the facility; however, potential to emit (PTE) is calculated based on maximum hourly and/or annual production throughputs. Greer requests that permit compliance be demonstrated using throughput tonnages rather than hours of operation, as the former is a more representative determinant of process emissions. Should you have any questions, please do not hesitate to contact us at 412-429-2324.

Very truly yours,

CIVIL & ENVIRONMENTAL CONSULTANTS, INC.

Jennifer L. Garlock

Assistant Project Manager

Dennis D. Ritter

Principal

Attachment

144-197-L-R13 Permit Revision/P

Table of Contents

R13 Revision Application Form

Attachment A – Business Registration Certificate

Attachment B – Area Map

Attachment C – Installation and Startup Schedule

Attachment D – Regulatory Discussion

Attachment E – Facility Plot Plan

Attachment F – Detailed Process Flow Diagrams

Attachment G – Process Description

Attachment I – Emission Units Table

Attachment J – Emission Points Data Summary Sheet

Attachment K – Fugitive Emissions Data Summary Sheet

Attachment L – Emissions Unit Data Sheets

Attachment M – Air Pollution Control Device Sheets

Attachment N – Supporting Emissions Calculations

Attachment P – Public Notice

Greer Limestone – Masontown

Plant ID: 061-00003 R13 Revision Application

WEST VIRGINIA DEPARTMENT OF **ENVIRONMENTAL PROTECTION**

DIVISION OF AIR QUALITY

APPLICATION FOR NSR PERMIT *AND*

601 57" Street, SE Charleston, WV 25304 (304) 926-0475 www.dep.wv.gov/dag	TI	TITLE V PERMIT REVISION (OPTIONAL)			
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOW CONSTRUCTION MODIFICATION RELOCATION CLASS I ADMINISTRATIVE UPDATE TEMPORARY AFTER-THE-FAC	ADMINISTRAT SIGNIFICANT IF ANY BOX ABO INFORMATION A	PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY): ADMINISTRATIVE AMENDMENT MINOR MODIFICATION SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION			
FOR TITLE V FACILITIES ONLY: Please refer to "Title V Re (Appendix A, "Title V Permit Revision Flowchart") and abi	ility to operate with the o				
Section	on I. General				
1. Name of applicant (as registered with the WV Secretary Greer Industries, Inc. d.b.a. Greer Limestone Company	= -	2. Federal Employer ID No. <i>(FEIN):</i> 34-073-7241			
Name of facility (if different from above): Greer Limestone		4. The applicant is the: ☐ OWNER ☐ OPERATOR ☒ BOTH			
5A. Applicant's mailing address: 8477 Veteran's Memorial Highway Masontown, West Virginia 26542	5B. Facility's prese 5630 Earl L. Core Morgantown, Wes				
 6. West Virginia Business Registration. Is the applicant a If YES, provide a copy of the Certificate of Incorporatic change amendments or other Business Registration Ce If NO, provide a copy of the Certificate of Authority/Auamendments or other Business Certificate as Attachments 	ion/Organization/Limi ertificate as Attachmen uthority of L.L.C./Regi	ted Partnership (one page) including any name t A.			
7. If applicant is a subsidiary corporation, please provide the	e name of parent corpo	ration: NA			
8. Does the applicant own, lease, have an option to buy or control of the second of t	otherwise have control	of the proposed site? X YES			
9. Type of plant or facility (stationary source) to be constructed , modified , relocated , administratively updated or temporarily permitted (e.g., coal preparation plant, primary crusher, etc.): Limestone Processing 10. North American Industry Classification System (NAICS) code for the facility: 212312					
11A. DAQ Plant ID No. (for existing facilities only): 061-00003		List all current 45CSR13 and 45CSR30 (Title V) permit numbers associated with this process (for existing facilities only): R13-1303D			
All of the required forms and additional information can be fou	ınd under the Permitting	Section of DAQ's website, or requested by phone.			

12A.							
 For Modifications, Administrative Updates or Te present location of the facility from the nearest stat 		please provide directions to the					
 For Construction or Relocation permits, please proad. Include a MAP as Attachment B. 	For Construction or Relocation permits , please provide directions to the <i>proposed new site location</i> from the nearest state road. Include a MAP as Attachment B .						
Facility is located on WV Route 7, approximately	3.5 miles northwest of Masontown, WV	7.					
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:					
NA	Masontown	Monongalia					
12.E. UTM Northing (KM): 4,381.173	12F. UTM Easting (KM): 598.895	12G. UTM Zone: 17					
13. Briefly describe the proposed change(s) at the facili	ty:						
Replace existing radial stackers and screens, include as- the potential to emit.		nt not permitted, and re-calculate					
 14A. Provide the date of anticipated installation or chan If this is an After-The-Fact permit application, providing did happen: Radial stackers (6) were replain 2014. 	ride the date upon which the proposed	14B. Date of anticipated Start-Up if a permit is granted:					
14C. Provide a Schedule of the planned Installation of application as Attachment C (if more than one unit		units proposed in this permit					
15. Provide maximum projected Operating Schedule of Hours Per Day 24 Days Per Week 7	of activity/activities outlined in this application Weeks Per Year 52	ation:					
16. Is demolition or physical renovation at an existing fa	cility involved?						
17. Risk Management Plans. If this facility is subject to	112(r) of the 1990 CAAA, or will become	e subject due to proposed					
changes (for applicability help see www.epa.gov/cep	po), submit your Risk Management Pla	n (RMP) to U. S. EPA Region III.					
18. Regulatory Discussion. List all Federal and State	air pollution control regulations that you	believe are applicable to the					
proposed process (if known). A list of possible application	able requirements is also included in Atta	achment S of this application					
(Title V Permit Revision Information). Discuss applica	ability and proposed demonstration(s) of	compliance (if known). Provide this					
information as Attachment D.							
Section II. Additional att	achments and supporting d	ocuments.					
19. Include a check payable to WVDEP – Division of Air	Quality with the appropriate application	fee (per 45CSR22 and					
45CSR13).	ur analization nasles re						
20. Include a Table of Contents as the first page of you21. Provide a Plot Plan, e.g. scaled map(s) and/or sket		rty on which the stationary					
source(s) is or is to be located as Attachment E (R		ity on which the stationary					
 Indicate the location of the nearest occupied structure 							
 Provide a Detailed Process Flow Diagram(s) show device as Attachment F. 	wing each proposed or modified emission	ns unit, emission point and control					
$23. \ \ \text{Provide a Process Description as Attachment G.}$							
 Also describe and quantify to the extent possible 	all changes made to the facility since the	e last permit review (if applicable).					
All of the required forms and additional information can be	e found under the Permitting Section of DA	Q's website, or requested by phone.					

24.	Provide Material Safety Data Sheets	(MSDS) for all materials proces	sed, used or produced as Attachment H.
– F	or chemical processes, provide a MSD	S for each compound emitted to	the air.
25.	Fill out the Emission Units Table and	provide it as Attachment I.	
26.	Fill out the Emission Points Data Sur	nmary Sheet (Table 1 and Tab	le 2) and provide it as Attachment J.
27.	Fill out the Fugitive Emissions Data	Summary Sheet and provide it	as Attachment K.
28.	Check all applicable Emissions Unit I	Data Sheets listed below:	
	Bulk Liquid Transfer Operations	☐ Haul Road Emissions	☐ Quarry
	Chemical Processes	☐ Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage
	Concrete Batch Plant	☐ Incinerator	Facilities
	Grey Iron and Steel Foundry	☐ Indirect Heat Exchanger	☐ Storage Tanks
	General Emission Unit, specify:		
	out and provide the Emissions Unit Da		
	Check all applicable Air Pollution Con		
	Absorption Systems	□ Baghouse □ Baghouse	☐ Flare
_	Adsorption Systems	Condenser	☐ Mechanical Collector
	Afterburner	☐ Electrostatic Precipitat	or Wet Collecting System
	Other Collectors, specify		
- ::::	and an dispersion that the Air Palletian Court		
	out and provide the Air Pollution Cont		
30.	Items 28 through 31.	ilculations as Attachment N, o	r attach the calculations directly to the forms listed in
31.		compliance with the proposed er	proposed monitoring, recordkeeping, reporting and nissions limits and operating parameters in this permit
>		not be able to accept all measu	ner or not the applicant chooses to propose such res proposed by the applicant. If none of these plans de them in the permit.
32.	Public Notice. At the time that the ap	oplication is submitted, place a	Class I Legal Advertisement in a newspaper of general
	circulation in the area where the sourc	e is or will be located (See 45CS	SR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>
	Advertisement for details). Please su	bmit the Affidavit of Publication	on as Attachment P immediately upon receipt.
33.	Business Confidentiality Claims. Do		dential information (per 45CSR31)?
	☐ YES	NO	
>		g the criteria under 45CSR§31-4	nitted as confidential and provide justification for each 1.1, and in accordance with the DAQ's "Precautionary instructions as Attachment Q.
	Sec	ction III. Certification of	of Information
34.	Authority/Delegation of Authority. Check applicable Authority Form belo		ner than the responsible official signs the application.
	Authority of Corporation or Other Busine	ess Entity	Authority of Partnership
	Authority of Governmental Agency		Authority of Limited Partnership
	mit completed and signed Authority F		•
	· · · · · · · · · · · · · · · · · · ·		ermitting Section of DAQ's website, or requested by phone.

35A. Certification of Information. To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§2.28) or Authorized Representative shall check the appropriate box and sign below. Certification of Truth, Accuracy, and Completeness	30-				
, -	50-				
	- 1				
I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in the application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief a reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of stationary source described herein in accordance with this application and any amendments thereto, as well as the Department Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rule and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). I business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality with notified in writing within 30 days of the official change.	fter the t of s the				
Compliance Certification	ec.				
Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby ce that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application a compliance with all applicable requirements. SIGNATURE DATE: 10 / 22 / 15	tity re in				
(Please use blue ink) (Please use blue ink)					
35B. Printed name of signee: J. Robert Gwynne 35C. Title: Vice President/General Counsel					
35D. E-mail: gwynne@greerindustries.com					
36A. Printed name of contact person (if different from above): Scott R. Kisner 36B. Title: Environmental Complia Manager	nce				
36C. E-mail: skisner@greerlime.com 36D. Phone: (304) 567-2141 36E. FAX: (304) 567-3007					
PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDED WITH THIS PERMIT APPLICATION:	in Si				
Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment H: Material Safety Data Summary Sheet Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section, at the					
address listed on the first page of this application. Please DO NOT fax permit applications.					
FOR AGENCY USE ONLY – IF THIS IS A TITLE V SOURCE: Forward 1 copy of the application to the Title V Permitting Group and: For Title V Administrative Amendments: NSR permit writer should notify Title V permit writer of draft permit, For Title V Minor Modifications: Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt, NSR permit writer should notify Title V permit writer of draft permit. For Title V Significant Modifications processed in parallel with NSR Permit revision:					
 □ NSR permit writer should notify a Title V permit writer of draft permit, □ Public notice should reference both 45CSR13 and Title V permits, □ EPA has 45 day review period of a draft permit. 					

ATTACHMENT A BUSINESS REGISTRATION CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO:

GREER INDUSTRIES INC ROUTE 7 10 MILES EAST MORGANTOWN, WV 26505

BUSINESS REGISTRATION ACCOUNT NUMBER:

1027-2435

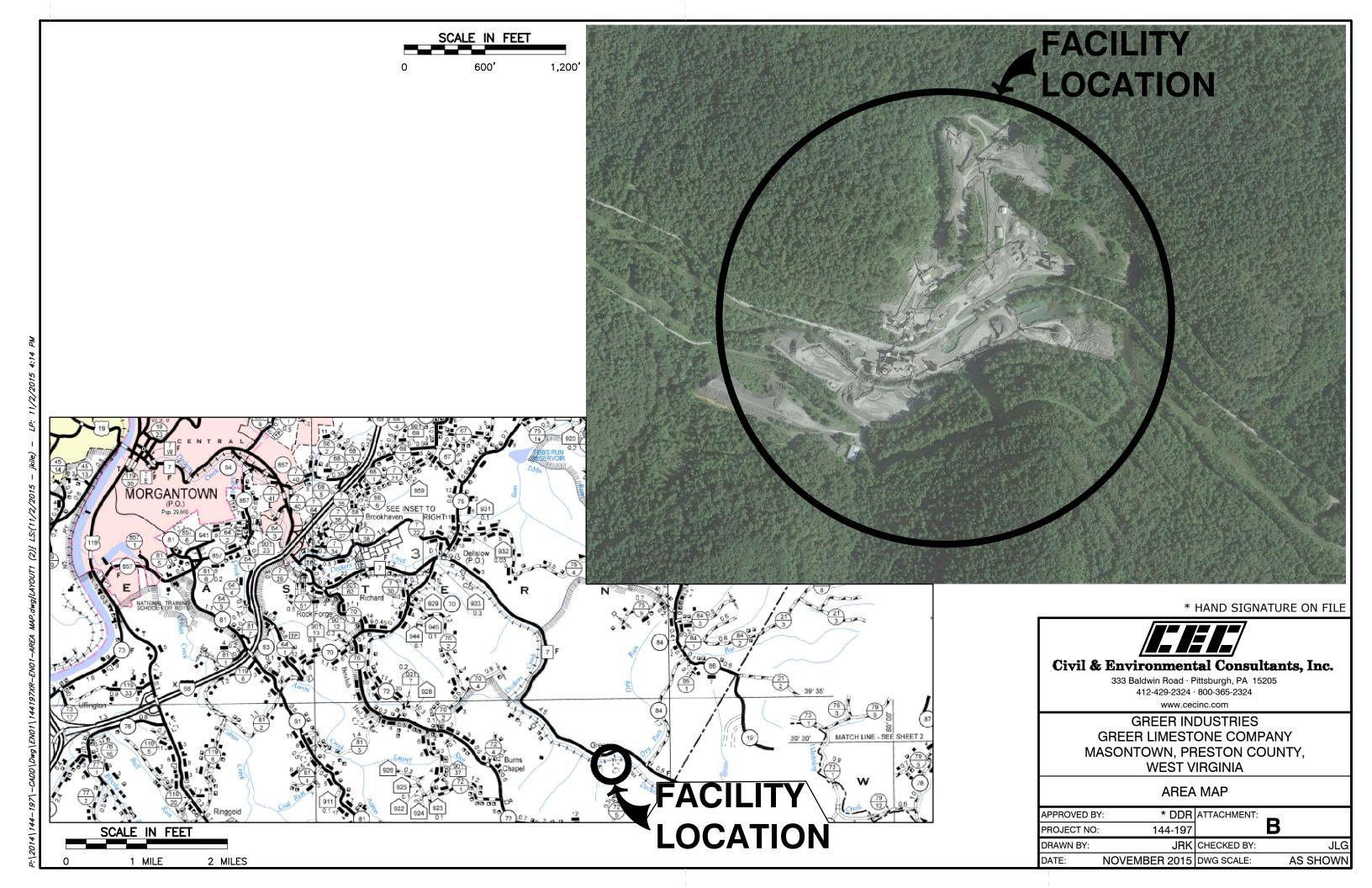
This certificate is issued on:

06/24/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with W.Va. Code § 11-12.

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued.


This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.1 L0502708992 ATTACHMENT B

AREA MAP

ATTACHMENT C INSTALLATION AND STARTUP SCHEDULE

ATTACHMENT C

INSTALLATION AND STARTUP SCHEDULE

Greer Industries, Inc. d.b.a. Greer Limestone Company's (Greer) Masontown Facility (Masontown) has replaced surge bin SB-037 (#1 Mill) with an equivalently sized new bin (2014), and has also replaced the following existing 24" radial stackers with Thor (or equivalent) 36" radial stackers:

- ST-130 No. 2 Mill (April 2013),
- ST-131 No. 2 Mill (July 2012),
- ST-132 No. 2 Mill (April 2012),
- ST-439 Crusher Run (April 2015), and
- ST-440 Crusher Run (July 2014).

The facility proposes the following additional changes:

- Replace Screen No. 2 (SC-153, No. 2 Mill) with a new Allis Chalmers 8'x20' screen,
- Existing Screen No. 2 (currently SC-153) will be refurbished and used to replace Screen No. 1 (SC-152, No. 2 Mill),
- Deister Screen SC-231 (Sand Plant) will be replaced with a refurbished pre-2009 screen.

These proposed changes will occur in January/February 2016, or when the permit is issued, whichever is later.

ATTACHMENT D REGULATORY DISCUSSION

ATTACHMENT D

REGULATORY DISCUSSION

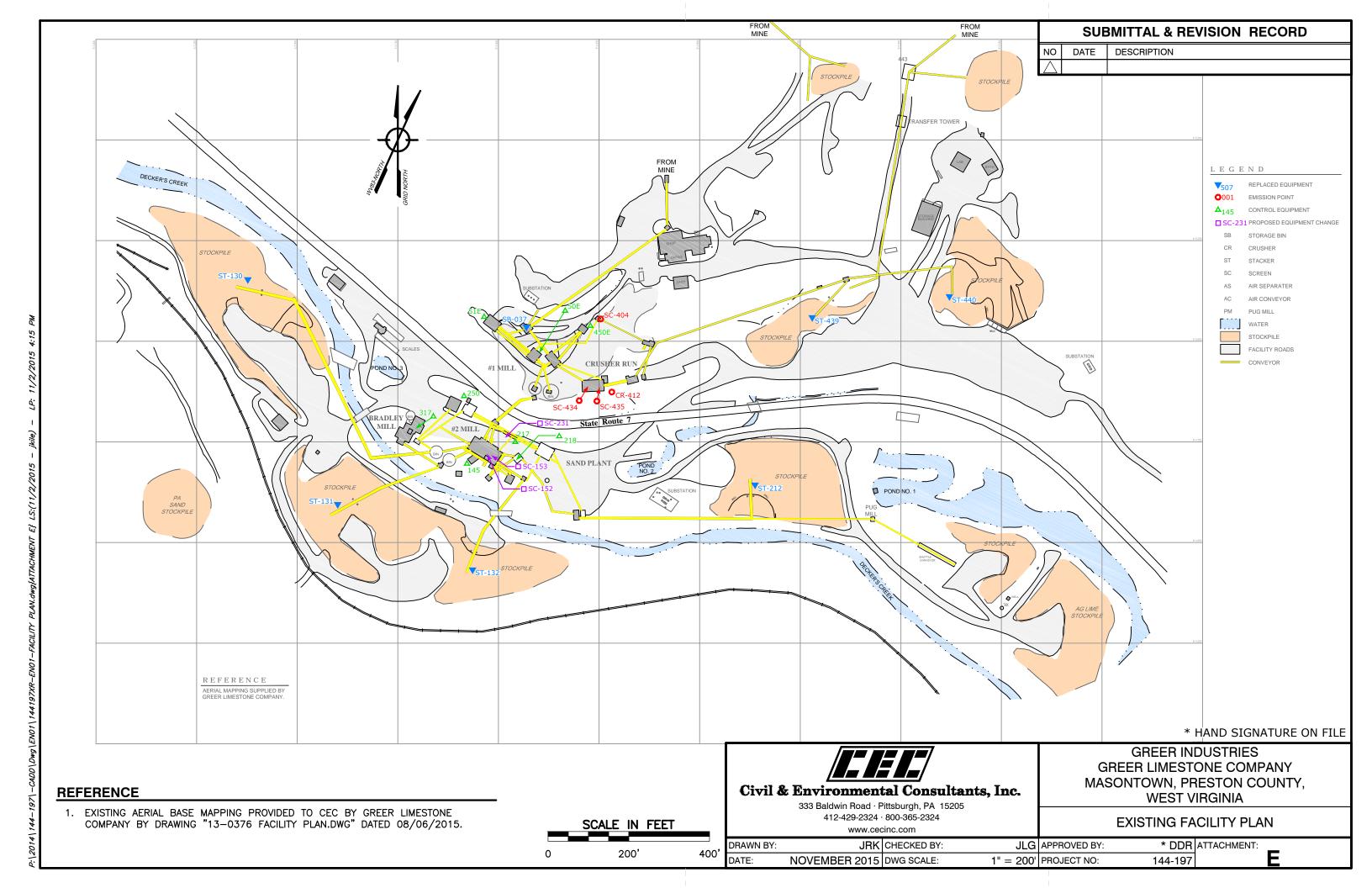
The proposed facility is required to comply with the requirements contained in the applicable state and federal regulations, as follows:

• 45 CSR 7

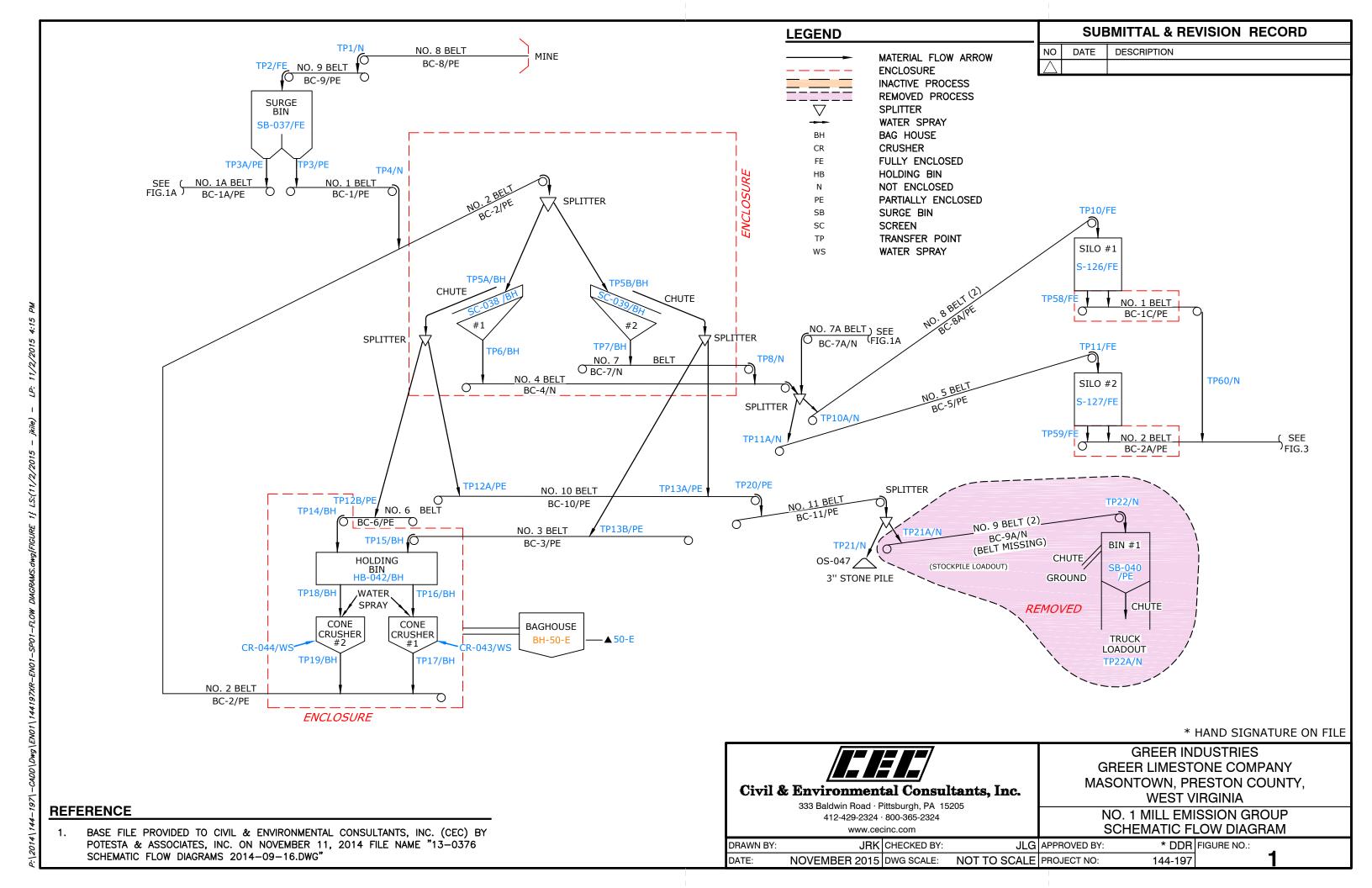
The purpose of this Rule is to prevent and control particulate matter (PM) emissions from manufacturing and associated operations. The Rule sets limits for opacity of visible emissions, PM emission limits from source operations and control equipment, and requires control of fugitive PM to the lowest level reasonably achievable, using process equipment design, control equipment design, or operation and maintenance procedures. It requires all sources of PM emissions to obtain permits and meet reporting and testing requirements.

• 45 CSR 13

45 CSR 13 requires permits for new, modified, and relocated minor sources of air pollutants. The Rule outlines the procedures for obtaining and modifying permits, and requires compliance with all permit conditions.


• 40 CFR 60 Subpart OOO

40 CFR 60 Subpart OOO contains the revised New Source Performance Standard (NSPS) for Nonmetallic Mineral Processing Plants. The facility is subject to this NSPS because it qualifies as a fixed nonmetallic mineral processing plant and portions of the facility commenced construction after August 31, 1983. Requirements include limits on opacity from crushers, screeners, conveyors, and other affected sources; a PM emission limit on baghouses; performance testing; and recordkeeping. The baghouses currently at this facility were all manufactured prior to April 22, 2008 and are therefore subject to the pre-2008 PM emission limit of 0.022 grains per dry standard cubic foot, and are not subject to the additional monitoring requirements for baghouses in the revised NSPS.


The baghouse associated with the replacement Screen No. 2 (SC-153 in No. 2 Mill) will be subject to the post-2008 revised PM emission limit of 0.014 grains per dry standard cubic foot and the additional monitoring requirements in the revised standard.

45 CSR 16 formally incorporates this federal regulation into the West Virginia regulations.

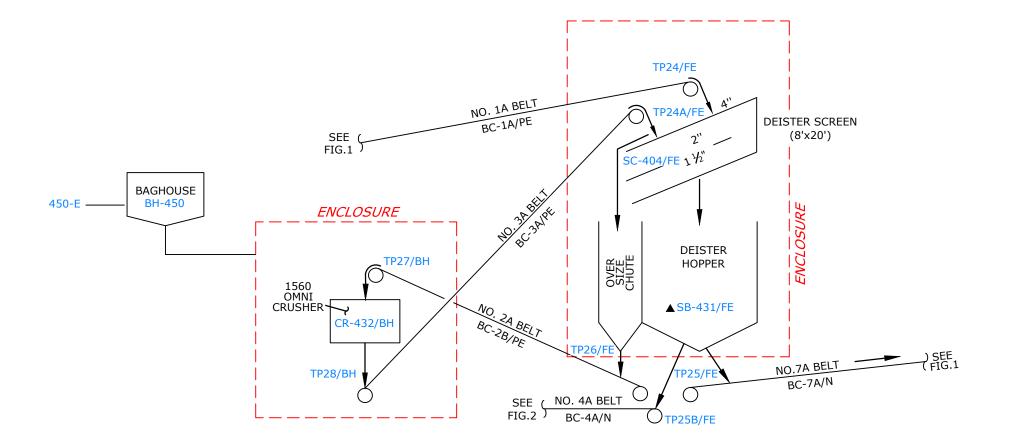
ATTACHMENT E FACILITY PLOT PLAN

ATTACHMENT F DETAILED PROCESS FLOW DIAGRAMS

SUBMITTAL & REVISION RECORD DATE DESCRIPTION

LEGEND

CR


SB

SC

WS

MATERIAL FLOW ARROW **ENCLOSURE INACTIVE PROCESS** REMOVED PROCESS SPLITTER WATER SPRAY BAG HOUSE CRUSHER FULLY ENCLOSED HOLDING BIN NOT ENCLOSED PARTIALLY ENCLOSED SURGE BIN SCREEN TRANSFER POINT

WATER SPRAY

* HAND SIGNATURE ON FILE

Civil & Environmental Consultants, Inc.

333 Baldwin Road · Pittsburgh, PA 15205 412-429-2324 · 800-365-2324 www.cecinc.com

JRK CHECKED BY:

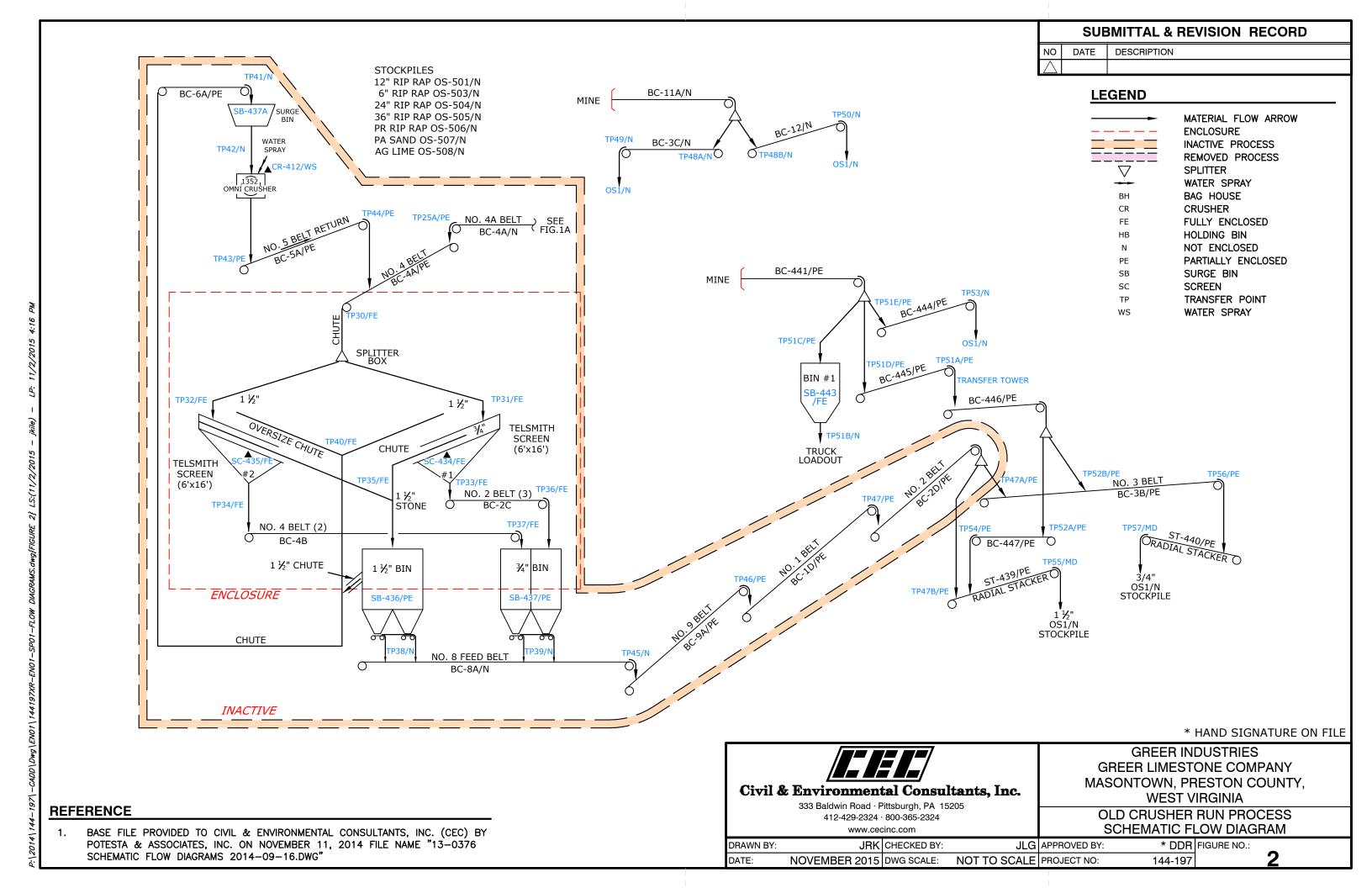
JLG APPROVED BY:

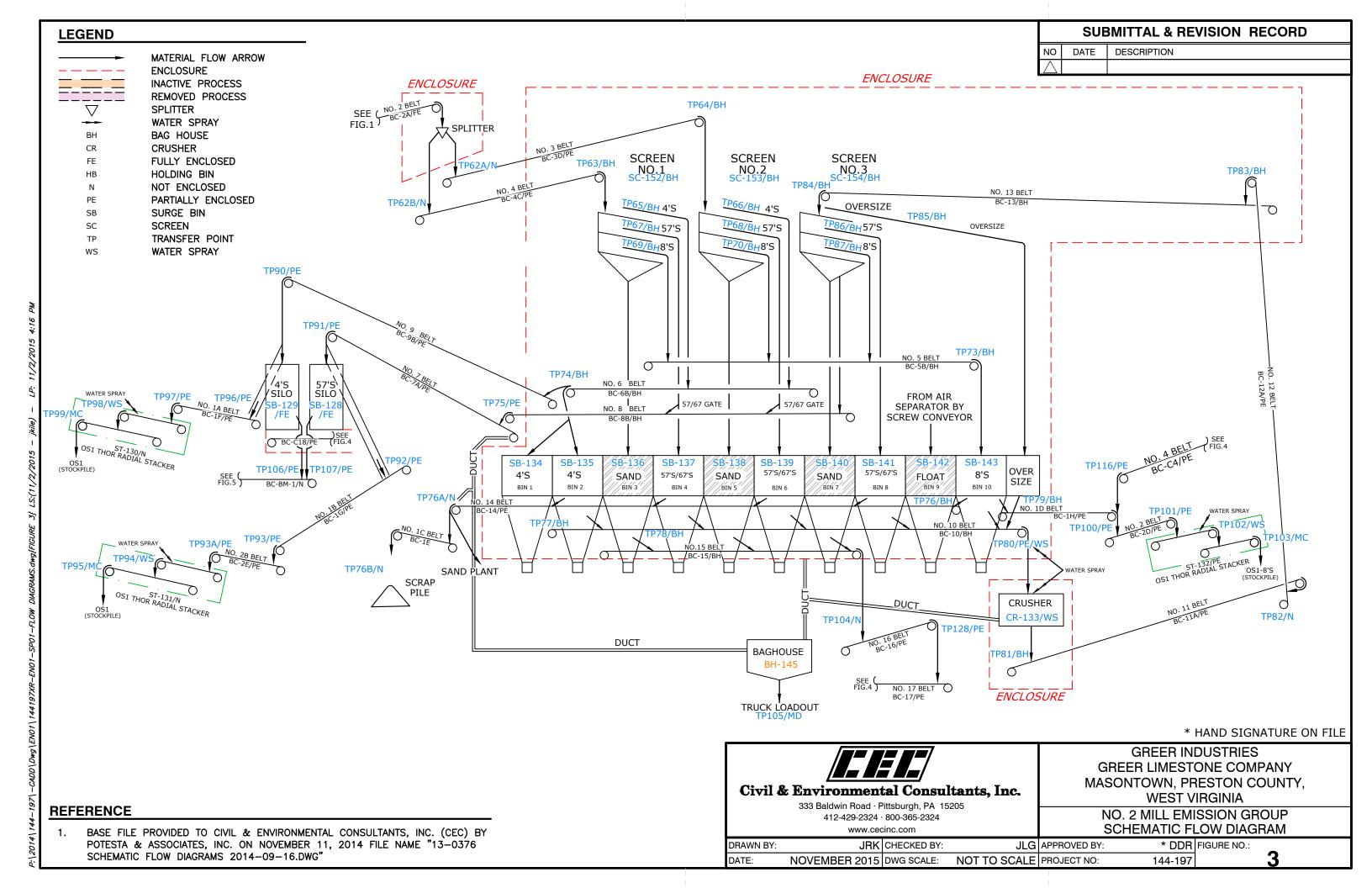
NO. 1 MILL EMISSION GROUP (CONT.) SCHEMATIC FLOW DIAGRAM * DDR FIGURE NO.:

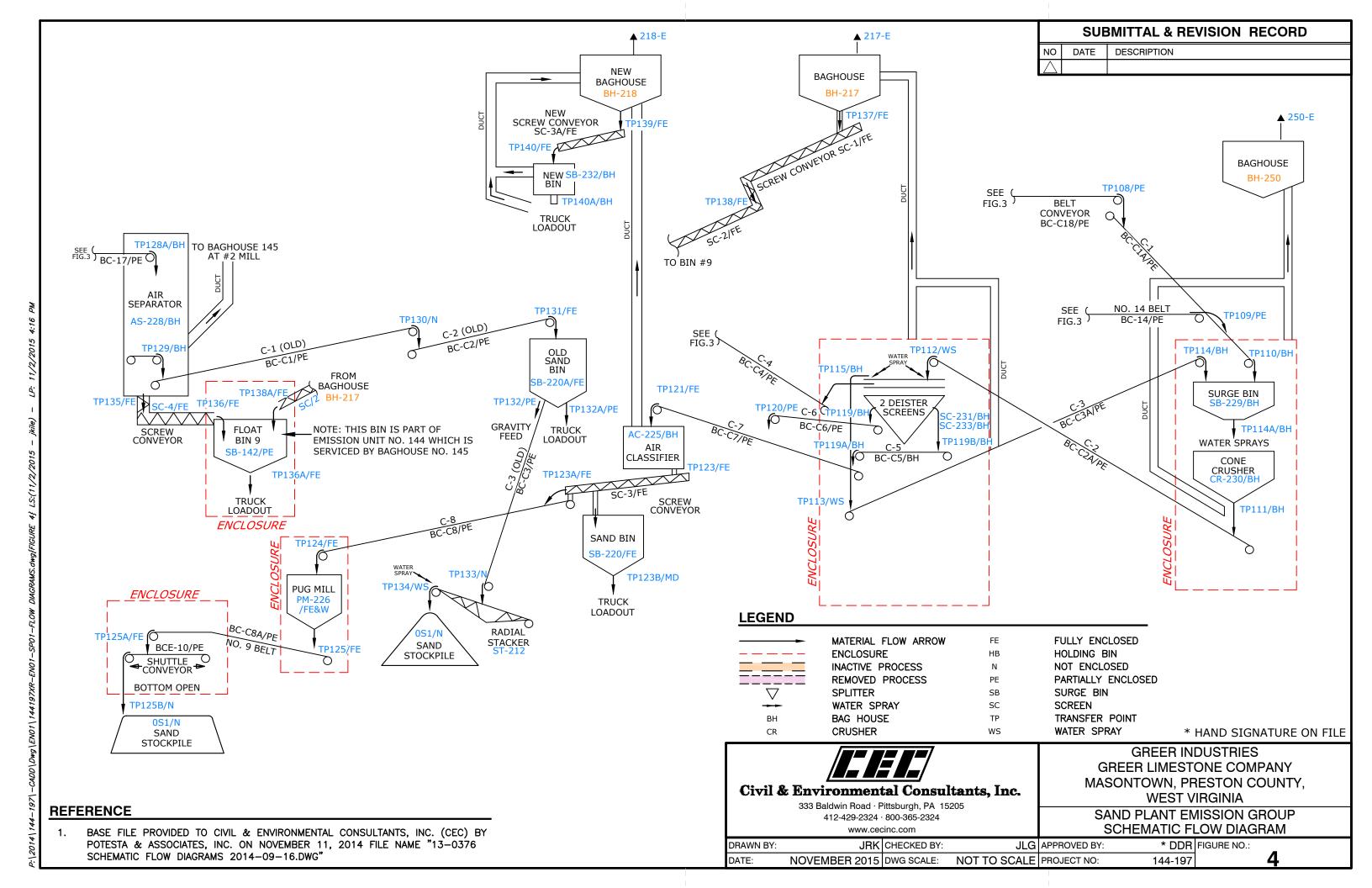
144-197

GREER INDUSTRIES GREER LIMESTONE COMPANY MASONTOWN, PRESTON COUNTY,

WEST VIRGINIA


REFERENCE


BASE FILE PROVIDED TO CIVIL & ENVIRONMENTAL CONSULTANTS, INC. (CEC) BY POTESTA & ASSOCIATES, INC. ON NOVEMBER 11, 2014 FILE NAME "13-0376 SCHEMATIC FLOW DIAGRAMS 2014-09-16.DWG"

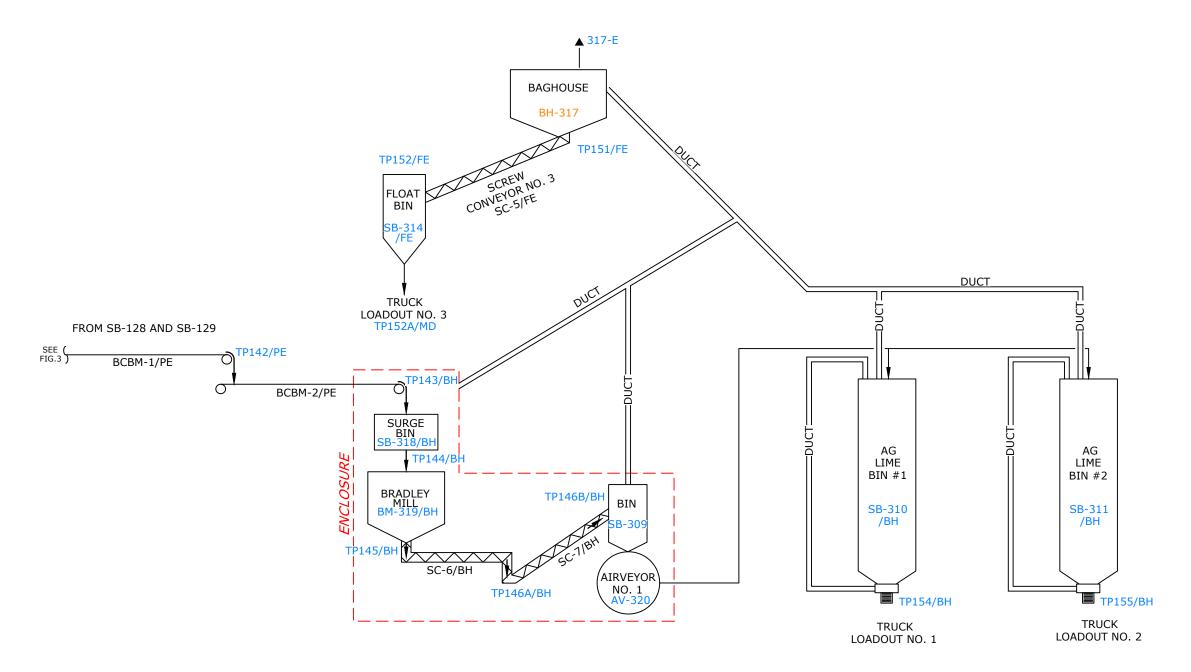

DRAWN BY: DATE:

NOVEMBER 2015 DWG SCALE:

NOT TO SCALE PROJECT NO:

SUBMITTAL & REVISION RECORD DATE DESCRIPTION

LEGEND


TP

WS

MATERIAL FLOW ARROW **ENCLOSURE** INACTIVE PROCESS REMOVED PROCESS **SPLITTER** WATER SPRAY BAG HOUSE CR CRUSHER FE FULLY ENCLOSED HOLDING BIN ΗВ NOT ENCLOSED PΕ PARTIALLY ENCLOSED SB SURGE BIN SC SCREEN

TRANSFER POINT

WATER SPRAY

* HAND SIGNATURE ON FILE

Civil & Environmental Consultants, Inc.

333 Baldwin Road · Pittsburgh, PA 15205 412-429-2324 · 800-365-2324 www.cecinc.com

DRAWN BY: JRK CHECKED BY:

DATE:

NOVEMBER 2015 DWG SCALE:

JLG APPROVED BY: NOT TO SCALE PROJECT NO: 144-197

BRADLEY MILL EMISSION GROUP SCHEMATIC FLOW DIAGRAM * DDR FIGURE NO.:

WEST VIRGINIA

GREER INDUSTRIES GREER LIMESTONE COMPANY MASONTOWN, PRESTON COUNTY,

REFERENCE

POTESTA & ASSOCIATES, INC. ON NOVEMBER 11, 2014 FILE NAME "13-0376 SCHEMATIC FLOW DIAGRAMS 2014-09-16.DWG"

BASE FILE PROVIDED TO CIVIL & ENVIRONMENTAL CONSULTANTS, INC. (CEC) BY

ATTACHMENT G PROCESS DESCRIPTION

ATTACHMENT G

PROCESS DESCRIPTION

This Attachment describes the flow of materials through the facility. For permitting purposes the facility has been divided into five (5) processes: No. 1 Mill System, the Crusher Run System, No. 2 Mill System, the Sand System, and the Bradley Mill System. Each process area in the facility has a corresponding process flow diagram in Attachment F, as referenced in the section heading.

Equipment that has been or will be replaced is noted in the text; see Attachment C for the actual or proposed installation dates. This application also includes the existing equipment at the facility including grandfathered equipment and as-built equipment.

No. 1 Mill System (Attachment F Figures 1 and 1A)

Material exits the mine on No. 8 Belt (BC-8) and is transferred (TP1/N) to BC-9 then to Surge Bin SB-037 (TP2/FE), which was replaced with an equivalent bin in 2014. Material from SB-037 can be transferred to either BC-1A or BC-1 (TP3/PE). BC-1 transfers (TP4/N) to BC-2 to Screen No.1 (SC-038) and Screen No. 2 (SC-039) which are in a fully enclosed structure. Oversize material from SC-038 goes to BC-6 or BC-10. Oversize material from SC-039 goes to BC-3 or BC-10. BC-3 (TP15/BH) and BC-6 (TP14/BH) feed holding bin HB-042 which feeds Cone Crushers No. 1 (CR-043, TP16/BH) and No. 2. (CR-044, TP18/BH). CR-043 and CR-044 are controlled by water sprays. Crushed material from CR-043 (TP17/BH) and CR-044 (TP19/BH) transfers to BC-2 and back to the screens. BC-10 transfers (TP20/PE) to BC-11 to ground (TP21/N). Pass through material from SC-038 transfers (TP6/BH) to BC-4. Pass through material from SC-039 transfers (TP7/BH) to BC-7 then to BC-4 (TP-8/N). BC-4 transfers to BC-8A (TP10A/N) to Silo No. 1 (S-126, TP10/FE) and to BC-5 (TP11A/N) to Silo No. 2 (S-127) (TP11/FE). Silo No. 1 transfers to BC-1C (TP58/FE) then BC-2A (TP60/N); Silo No. 2 transfers to BC-2A (TP59/FE). Belt BC-2A feeds material to the No. 2 Mill System.

Material from SB-037 transferred to BC-1A is sent to the Deister Screen SC-404 (TP24/FE). Screen oversize transfers to BC-2B (TP26/FE) then to the Omni Crusher CR-432 (TP-27/BH). Crushed material transfers (TP-28/BH) to BC-3A and is returned to SC-404. Screen pass through enters the Deister Hopper SB-431 and transfers to conveyor BC-4A (TP25B/FE) or BC-7A (TP25/FE). Material from BC-7A is routed to BC-8A (TP10A/N) and BC-5 (TP11A/N). Material from BC-4A is sent to the Crusher Run System.

Crusher Run System (Attachment F Figure 2)

Material from BC-4A enters a chute (TP30/PE) and is split by splitter box to Telesmith Screen No. 1 (SC-434) (TP31/FE) and Telesmith Screen No. 2 (SC-435) (TP32/FE). Oversize from the screens transfers (TP40/N) to BC-6A to surge bin SB-437A (TP41/N) to Omni Crusher CR-412 (TP42/WS). Crushed material transfers (TP43/N) to BC-5A and back to the splitter box

(TP44/N). First deck pass through from each screen transfers (TP35/FE) via a chute to 11/2" Bin SB-436. Second deck pass through from the SC-434 transfers (TP33/FE) to BC-2C to 3/4" Bin SB-437 (TP36/FE). Second deck pass through from the SC-435 transfers (TP34/FE) to BC-4B to SB-437 (TP37/FE). Material from SB-436 and SB-437 leave each bin by belt feeder (TP38/N, TP39/N) to BC-8A to BC-9A (TP45/N) to BC-1D (TP46/PE) to BC-2D (TP47/PE) and then to either radial stacker ST-439 (replaced April 2015) or BC-3B (TP54/N). ST-439 has two (2) belts with an internal transfer (TP54B/N) and then transfers to stockpile OS1/N (TP55/WS). BC-3B transfers (TP56/N) to radial stacker ST-440 (replaced July 2014) which has two (2) belts with an internal transfer (TP56A/N) and then transfers to stockpile OS1/N (TP57/WS).

Material is also crushed underground in the mine. Material leaves the mine via one portal on BC-11A to BC-3C (TP48A/N) and BC-12 (TP48B/N) to stockpile OS1/N (TP49/N, TP50/N). From a second portal crushed material leaves the mine on BC-441 and transfers to Loadout Bin SB-443 (TP51C/PE), BC-444 (TP51E/PE), or BC-445 (TP51D/PE). Material from SB-443 is transferred to truck (TP51B/N). Material from BC-444 is transferred to stockpile OS1/N (TP53/N). Material from BC-445 is transferred via a transfer tower to BC-446 (TP51A/PE), then to BC-3B (TP52B/PE) or BC-447 (TP52A/PE). BC-447 transfers (TP54A/PE) to ST-439 to stockpile OS1/N (TP55/MD).

No. 2 Mill System (Attachment F Figure 3)

From the No. 1 Mill System, BC-2A splits to BC-4C (TP62B/N) then Screen No. 1 (SC-152, to be replaced) (TP63/BH), and BC-3D (TP62A/N) to Screen No. 2 (SC-153, to be replaced) (TP64/BH). 4's from Screen No. 1 and No. 2 transfer (TP65/BH, TP66/BH) to BC-6B, then to Bin 1 (SB-134), Bin 2 (SB-135), or BC-9B (TP74/BH). Bin 1 and Bin 2 transfer to truck; BC-9B transfers (TP90/PE) to the 4's Silo SB-129. From the 4's Silo material can be sent to the Bradley Mill (BC-BM-1), the Sand Plant (BC-C18), or BC-1F. BC-1F transfers (TP97/WS) to radial stacker ST-130 (replaced April 2013). ST-130 has two (2) belts with an internal transfer (TP98/MC) then transfers (TP99/MC) to stockpile OS1/N. 57's from Screen No. 1 and No. 2 transfer (TP67/BH, TP68/BH) to BC-8B, or to Bin 4 (SB-137) and Bin 6 (SB-139). BC-8B transfers (TP75/PE) to BC-7A to the 57's Silo SB-128 (TP91/PE). From the 57's Silo material can be sent to the Bradley Mill (BC-BM-1), the Sand Plant (BC-C18), or BC-1G. BC-1G transfers (TP93/PE) to BC-2E to radial stacker ST-131 (TP93A/WS), which was replaced in July 2012. ST-131 has two (2) belts with an internal transfer (TP94/MC) which then transfers (TP95/MC) to stockpile OS1/N. 8's from Screen No. 1 and No. 2 transfer (TP69/BH, TP70/BH) to BC-5B, then to Bin 10 (SB-143). The pass through from Screen No. 1 and No. 2 is transferred to Sand Bins 3 and 5. Bins 1-10 transfer to truck. The 4's, 8's, and 57's bins transfer to BC-14 (TP76/BH) or BC-10 (TP77/BH). BC-14 transfers (TP76A/N) to BC-1E to a scrap pile (TP76B/N) or to the Sand Plant. BC-10 transfers (TP80/PE/WS) to crusher CR-133 to BC-11A (TP81/BH) to BC-12A (TP82/N) to BC-13 (TP83/BH) and transfers (TP84/BH) to Screen No. 3 (SC-154). 57's from Screen No. 3 transfer (TP86/BH) to Bin 8 (SB-141). 8's from Screen No. 3 transfer (TP87/BH) to BC-5B then to Bin 10 (SB-143). Pass through from Screen No. 3 transfers (TP87/BH) to Bin 7 (SB-140). 8's from Bin 10 transfer (TP79/BH) to BC-1H to BC-2D (TP100/WS). BC-2D transfers (TP101/WS) to radial stacker ST-132 (replaced in April 2012). ST-132 has two (2) belts with an internal transfer (TP102/MC) which then transfers

(TP103/MC) to stockpile OS1/N. Sand from Bins 3, 5, and 7 transfer to BC-15 (TP78/BH), to BC16 (TP104/N), then to BC-17 which feeds to the Air Separator of the sand plant.

Sand Plant System (Attachment F Figure 4)

Material from the No. 2 Mill System enters the Sand Plant in three (3) ways: from Silos SB-128 and SB-129 on BC-C18, from BC-14, and from BC-17. BC-C18 transfers to BC-C1A (TP108/PE) to Surge Bin SB-229 (TP110/BH). BC-14 transfers (TP109/PE) to BC-C1A. SB-229 feeds Cone Crusher CR-230 (TP114A/BH) to BC-C2A (TP111/BH) to two (2) Deister Screens SC-231 (to be replaced) and SC-233 (TP112/WS). The enclosure containing SB-229 and CR-230 is controlled by a baghouse (BH-250). Oversize from the screens is sent (TP113/WS) back to SB-229 via BC-C3A (TP114/BH). Second deck material is transferred (TP115/BH) to BC-C4 to BC-2D (TP116/PE) of the No. 2 Mill System. Pass through material from SC-231 is transferred to BC-C6 (TP119/BH) to BC-C7 (TP120/PE). Pass through material from SC-233 is transferred to BC-C5 (TP119B/BH) to BC-C7 (TP119A/BH). BC-C7 transfers (TP121/FE) to the Air Classifier AC-225. The Air Classifier transfers (TP123/FE) to screw conveyor SC-3 to the Sand Bin (SB-220) to truck (TP123B/MD) or to BC-C8 (TP123A/FE) to Pug Mill (PM-226) (TP124/FE) to BC-C8A (TP125/FE) to covered shuttle conveyor BCE-10 (TP125A/FE) to stockpile OS1/N (TP125B/MD).

Material from BC-17 is sent to the Air Separator (AS-228) (TP128A/BH) and is transferred to BC-C1 (TP129/BH) or to screw conveyor SC-4 (TP135/FE). SC-4 transfers (TP136/FE) to Float Bin 9 of No. 2 Mill System to truck (TP136A/FE). BC-C1 transfers to BC-C2 (TP130/N) to Sand Bin SB-220A for loadout to truck (TP132A/PE) or transfer (TP132/PE) to BC-C3 to radial stacker ST-212 (TP133/N). ST-212 transfers (TP134/WS) to stockpile OS1/N.

Collected material in Baghouse BH-217 (controlling the Deister screen enclosure) is sent (TP137/FE) to screw conveyor SC-1 to screw conveyor SC-2 (TP138/FE) to Float Bin 9 (TP138A/FE) for truck loadout (TP136A/FE). Material from Baghouse BH-218 (controlling the Air Classifier) is sent by screw conveyor SC-3A (TP139/FE, TP140/FE) to Bin SB-232 for loadout to truck (TP140A/BH).

Bradley Mill System (Attachment F Figure 5)

Material from the No. 2 Mill System enters the Sand Plant from Silos SB-128 and SB-129 on BCBM-1 to BCBM-2 (TP142/PE) to Surge Bin SB-318 (TP143/BH). SB-318 feeds (TP144/BH) the Bradley Mill (BM-319) to screw conveyor SC-6 (TP145/BH) to SC-7 (TP146A/BH) to Bin SB-309 (TP146B/BH). SB-309 feeds Airveyor No. 1 (AV-320) which transfers through a piping system to Ag Lime Bin No. 1 (SB-310) and Ag Lime Bin No. 2 (SB-311). Each Ag Lime Bin loads out to truck (TP154/BH and TP155/BH). Material collected in Baghouse BH-317 is transferred (TP151/FE) to screw conveyor SC-5 to Float bin SB-314 (TP152/FE) to truck (TP152A/MD).

ATTACHMENT I EMISSION UNITS TABLE

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Black-Existing; Red-Modified or existing not in permit; Grey-Removed; (G) - Grandfathered

	Diagn 2	Albung, Itea Modified of Calbung I	not in ponnit, or sy	1101110100, (0)	Grandiatricica	
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device 4
		No.	1 Mill System			
BC-8	BC-8	No. 8 Belt	Pre 1988	1,350 tph	No Change (G)	PE
BC-9	BC-9	No. 9 Belt	Pre 1988	1,350 tph	No Change (G)	PE
SB-037	SB-037	Surge Bin	2014	1,350 tons	Replacement	FE
BC-1	BC-1	No. 1 Belt	Pre 1988	750 tph	No Change (G)	PE
BC-2	BC-2	No. 2 Belt	Pre 1988	1,500 tph	No Change (G)	PE
SC-038	51-E	No. 1 Screen	Pre 1988	750 tph	No Change (G)	FE/BH-51
SC-039	51-E	No. 2 Screen	Pre 1988	750 tph	No Change (G)	FE/BH-51
BC-7	BC-7	No. 7 Belt	Pre 1988	750 tph	No Change (G)	N
BC-4	BC-4	No. 4 Belt	Pre 1988	750 tph	No Change (G)	N
BC-3	BC-3	No. 3 Belt	Pre 1988	750 tph	No Change (G)	PE
BC-6	BC-6	No. 6 Belt	Pre 1988	750 tph	No Change (G)	PE
HB-042	50-E	Holding Bin	Pre 1988	750 tph	No Change (G)	FE/BH-50
CR-043	50-E	Cone Crusher No. 1	Pre 1988	290 tph	No Change (G)	WS/BH-50
CR-044	50-E	Cone Crusher No. 2	Pre 1988	460 tph	No Change (G)	WS/BH-50
BC-10	BC-10	No. 10 Belt	Pre 1988	750 tph	No Change (G)	PE
BC-11	BC-11	No. 11 Belt	Pre 1988	750 tph	No Change (G)	PE
BC-9A	BC-9A	No. 9 Belt	Pre 1988	900 tph	Removed	N
SB-040	SB-040	Bin No. 1	Pre 1988	900 tph	Removed	PE
BC-1B	BC-1B	No. 1B Belt	Pre 1988	900 tph	Removed	N
NA	NA	Washer	Pre 1988	900 tph	Removed	N
BC-8A	BC-8A	No. 8 Belt	Pre 1988	1,350 tph	Existing not in permit	PE
S-126	S-126	Silo No. 1	Pre 1988	1,350 tph	No Change (G)	FE
BC-5	BC-5	No. 5 Belt	Pre 1988	1,350 tph	No Change (G)	PE

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Black-Existing; Red-Modified or existing not in permit; Grey-Removed; (G) - Grandfathered

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
		No. 1	Mill System			
S-127	S-127	Silo No. 2	Pre 1988	1,350 tph	No Change (G)	FE
BC-1C	BC-1C	No. 1 Belt	Pre 1988	1,350 tph	No Change (G)	PE
BC-2A	BC-2A	No. 2 Belt	Pre 1988	1,350 tph	No Change (G)	PE
BH-50	50-E	Dust Collector	Pre 1988	4,400 ACFM	No Change	NA
BH-51	51-E	Dust Collector	Pre 1988	9,600 ACFM	No Change	NA
BC-1A	BC-1A	No. 1A Belt	Pre 1988	600 tph	No Change (G)	PE
SC-404	SC-404	Deister Screen	Pre 1988	600 tph	No Change (G)	FE
SB-431	SB-431	Deister Hopper	Pre 1988	600 tph	No Change (G)	FE
BC-7A	BC-7A	No. 7A Belt	Pre 1988	600 tph	No Change (G)	N
BC-4A	BC-4A	No. 4A Belt	Pre 1988	330 tph	No Change (G)	N
BC-2B	BC-2B	No. 2A Belt	Pre 1988	600 tph	No Change (G)	PE
CR-432	450-E	Omni Crusher	Pre 1988	600 tph	No Change (G)	BH-450
BC-3A	BC-3A	No. 3A Belt	Pre 1988	600 tph	No Change (G)	PE
BH-450	450-E	Dust Collector	Pre 1988	9,600 ACFM	No Change	NA

¹ For Emission Units (or \underline{S} ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For \underline{E} mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

Note: N = no control; PE = partial enclosure; FE = full enclosure; WS = water spray; BH = baghouse

³ New, modification, removal ⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Black-Existing; Red-Modified or existing not in permit; Grey-Removed; (G) - Grandfathered

		3, 3		, (-)					
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴			
	Old and New Crusher Run System								
SC-434	SC-434	Telesmith Screen No. 1	Pre 1988	330 tph	No Change (G)	FE			
SC-435	SC-435	Telesmith Screen No. 2	Pre 1988	330 tph	No Change (G)	FE			
BC-2C	BC-2C	No. 2 Belt	Pre 1988	330 tph	No Change (G)	FE			
BC-4B	BC-4B	No. 4 Belt	Pre 1988	330 tph	No Change (G)	FE			
SB-436	SB-436	1 ½ Bin	Pre 1988	330 tph	No Change (G)	PE			
SB-437	SB-437	³ / ₄ Bin	Pre 1988	330 tph	No Change (G)	PE			
BC-8A	BC-8A	No. 8 Feed Belt	Pre 1988	660 tph	No Change (G)	N			
BC-9A	BC-9A	No. 9 Belt	Pre 1988	660 tph	No Change (G)	PE			
BC-1D	BC-1D	No. 1 Belt	Pre 1988	660 tph	No Change (G)	PE			
BC-2D	BC-2D	No. 2 Belt	Pre 1988	660 tph	No Change (G)	PE			
BC-4A	BC-4A	No. 4 Belt	Pre 1988	660 tph	No Change (G)	PE			
BC-6A	BC-6A	Belt Conveyor	Pre 1988	330 tph	No Change (G)	PE			
CR-412	CR-412	Omni Crusher	Pre 1988	330 tph	No Change (G)	WS			
BC-5A	BC-5A	No. 5 Belt Return	Pre 1988	330 tph	No Change (G)	PE			
SB-437A	SB-437A	Surge Bin	Pre 1988	330 tph	Existing Not in Permit	PE			
ST-439	ST-439	1 1/2" Radial Stacker	April 2015	580 tph	Replacement	PE			
BC-3B	BC-3B	No. 3 Belt	Pre 1988	580 tph	No Change (G)	PE			
ST-440	ST-440	³ / ₄ " Radial Stacker	July 2014	580 tph	Replacement	PE			
BC-11A	BC-11A	Belt Conveyor	Pre 1988	400 tph	No Change (G)	N			
BC-3C	BC-3C	Belt Conveyor	Pre 1988	50 tph	No Change (G)	N			
BC-12	BC-12	Belt Conveyor	Pre 1988	50 tph	No Change (G)	N			
BC-441	BC-441	Belt Conveyor (S-441)	2004	250 tph	No Change	PE			
SB-443	SB-443	Truck Loadout Bin	2004	250 tons	No Change	FE			
BC-444	BC-444	Belt Conveyor (S-444)	2004	250 tph	No Change	PE			
BC-445	BC-445	Belt Conveyor (S-445)	2004	250 tph	No Change	PE			

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Black-Existing; Red-Modified or existing not in permit; Grey-Removed; (G) - Grandfathered

Black Existing, New Wooding for the permit, Grey Nemevou, (C) Grandiathorea						
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
	Old and New Crusher Run System					
BC-446	BC-446	Belt Conveyor (S-446)	2004	250 tph	No Change	PE
BC-447	BC-447	Belt Conveyor	2004	580 tph	Existing Not in Permit	PE
SB-442	SB-442	50 ton Sand Dump Hopper			Removed	

¹ For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

Note: N = no control; PE = partial enclosure; FE = full enclosure; WS = water spray; BH = baghouse

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

New, modification, removal

⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Black-Existing; Red-Modified or existing not in permit; Grey-Removed; (G) - Grandfathered

	Diaon L	-xisting, real Modified of existing i	not in pointit, erroy	rtorrio voa, (C)	Orandiathered	
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
		No.	2 Mill System			
BC-3D	BC-3D	No. 3 Belt	1988	1,350 tph	No Change	PE
BC-4C	BC-4C	No. 4 Belt	1988	1,350 tph	No Change	PE
BH-145	145-E	Dust Collector	1988	30,000 ACFM	No Change	NA
SC-152	145-E	No. 1 Screen	2016	1,350 tph	Replacement	BH-145
SC-153	145-E	No. 2 Screen	2016	1,350 tph	Replacement	BH-145
SC-154	145-E	No. 2 Screen	1988	400 tph	No Change	BH-145
BC-5B	145-E	No. 5 Belt	1988	400 tph	No Change	BH-145
BC-6B	145-E	No. 6 Belt	1988	400 tph	No Change	BH-145
BC-9B	BC-9B	No. 9 Belt	1988	400 tph	No Change	PE
SB-128	SB-128	4's Silo	1988	400 tph	No Change	FE
BC-1F	BC-1F	No. 1A Belt	1988	400 tph	No Change	PE
ST-130	ST-130	4's Thor Radial Stacker	2013	400 tph	Replacement	WS
BC-8B	145-E	No. 8 Belt	1988	400 tph	No Change	BH-145
BC-7A	BC-7A	No. 7 Belt	1988	400 tph	No Change	PE
SB-129	SB-129	57's Silo	1988	400 tph	No Change	FE
BC-1G	BC-1G	No. 1B Belt	1988	400 tph	No Change	PE
BC-2E	BC-2E	No. 2B Belt	1988	400 tph	No Change	PE
ST-131	ST-131	57's Thor Radial Stacker	2013	400 tph	Replacement	WS
BC-1H	BC-1H	No. 1D Belt	1988	400 tph	No Change	PE
BC-2D	BC-2D	No. 2 Belt	1988	550 tph	No Change	PE
ST-132	ST-132	8's Thor Radial Stacker	2013	550 tph	Replacement	PE
BC-14	BC-14	No. 14 Belt	1988	400 tph	No Change	PE
BC-1E	BC-1E	No. 1C Belt	1988	400 tph	No Change	PE
BC-10	145-E	No. 10 Belt	1988	400 tph	Existing Not in Permit	BH-145

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Black-Existing; Red-Modified or existing not in permit; Grey-Removed; (G) - Grandfathered

				· ,					
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴			
	No. 2 Mill System								
CR-133	145-E	Crusher	1988	400 tph	No Change	WS/BH-145			
BC-11A	BC-11A	No. 11 Belt	1988	400 tph	No Change	PE			
BC-12A	BC-12A	No. 12 Belt	1988	400 tph	No Change	PE			
BC-13	145-E	No. 13 Belt	1988	400 tph	No Change	BH-145			
BC-15	145-E	No. 15 Belt	1988	200 tph	No Change	BH-145			
BC-16	BC-16	No. 16 Belt	1988	200 tph	No Change	PE			
SB-134	145-E	4's bin 1	1988	400 tph	No Change	BH-145			
SB-135	145-E	4's bin 2	1988	400 tph	No Change	BH-145			
SB-136	145-E	Sand bin 3	1988	400 tph	No Change	BH-145			
SB-137	145-E	57's/67's bin 4	1988	400 tph	No Change	BH-145			
SB-138	145-E	Sand bin 5	1988	400 tph	No Change	BH-145			
SB-139	145-E	57's/67's bin 6	1988	400 tph	No Change	BH-145			
SB-140	145-E	Sand bin 7	1988	400 tph	No Change	BH-145			
SB-141	145-E	57's/67's bin 8	1988	400 tph	No Change	BH-145			
SB-143	145-E	8's bin 10	1988	400 tph	No Change	BH-145			
BC-17	BC-17	No. 17 Belt	1988	200 tph	Existing not in permit	PE			
SB-142	145-E	Float Bin 9	1988	400 tph	No Change	BH-145			

¹ For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

Note: N = no control; PE = partial enclosure; FE = full enclosure; WS = water spray; BH = baghouse

³ New, modification, removal

⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Black-Existing; Red-Modified or existing not in permit; Grey-Removed; (G) - Grandfathered

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴			
	Sand Plant								
AS-228	145-E	Air Separator	Pre-1988	200 tph	No Change	BH-145			
SC-4	SC-4	Screw Conveyor	1988	200 tph	Existing Not in Permit	FE			
BC-C2	BC-C2	C-2 Belt (old)	1988	200 tph	No Change	PE			
SB-220A	SB-220A	Old Sand Bin	1988	200 tph	Existing Not in Permit	FE			
BC-C3	BC-C3	C-3 Belt (old)	1988	200 tph	No Change	PE			
ST-212	ST-212	Radial Stacker	1998	200 tph	No Change	WS			
BC-C18	BC-C18	C18 Belt	1988	150 tph	No Change	PE			
BC-C1	BC-C1	C-1 Belt (old)	1988	200 tph	No Change	PE			
BC-C1A	BC-C1A	C-1 Belt	1988	550 tph	No Change	PE			
SB-229	250-E	Surge Bin	1995	150 tph	No Change	BH-250			
CR-230	250-E	Cone Crusher	1995	150 tph	No Change	BH-250			
BC-C2A	BC-C2A	C-2 Belt	1988	150 tph	No Change	PE			
SC-231	217-E	Deister Screen	2016	75 tph	Replacement	BH-217			
SC-233	217-E	Deister Screen	1995	75 tph	No Change	BH-217			
BC-C3A	BC-C3A	C-3 Belt	1988	150 tph	No Change	PE			
BC-C4	BC-C4	C-4 Belt	1988	150 tph	No Change	PE			
BC-C7	BC-C7	C-7 Belt	1988	300 tph	No Change	PE			
BC-C6	BC-C6	C-6 Belt	1988	150 tph	Existing Not in Permit	PE			
AC-225	218-E	Air Classifier	1997	300 tph	No Change	BH-218			
SC-3	SC-3	Screw Conveyor	1988	150 tph	No Change	FE			
SB-220	SB-220	New Sand Bin	1997	150 tph	No Change	FE			
BC-C8	BC-C8	C-8 Belt	1988	150 tph	No Change	PE			
PM-226	PM-226	Pug Mill	1997	150 tph	No Change	FE/WS			

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Black-Existing; Red-Modified or existing not in permit; Grey-Removed; (G) - Grandfathered

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴			
	Sand Plant								
BC-C8A	BC-C8A	No. 9 Belt	1988	150 tph	Existing Not in Permit	PE			
BCE-10	BCE-10	Shuttle Conveyor (S-215)	1995	150 tph	No Change	PE			
BH-217	217-E	Dust Collector	2002	37,000 ACFM	No Change	NA			
SC-1	SC-1	Screw Conveyor	1988	150 tph	Existing Not in Permit	FE			
SC-2	SC-2	Screw Conveyor	1988	150 tph	No Change	FE			
BC-C5	BC-C5	C-5 Belt	1995	150 tph	Existing Not in Permit	ВН			
BH-218	218-E	Dust Collector	1997	4,400 ACFM	No Change	NA			
SC-3A	SC-3A	Screw Conveyor	1988	150 tph	Existing Not in Permit	FE			
SB-232	218-E	Storage Bin	1997	150 tph	No Change	BH-218			
BH-250	250-E	Dust Collector	2002	7,300 ACFM	No Change	NA			
SB-227	SB-227	Storage Bin			Removed				
C-11	C-11	C-11 belt			Removed				

¹ For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

Note: N = no control; PE = partial enclosure; FE = full enclosure; WS = water spray; BH = baghouse

New, modification, removal

For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Black-Existing; Red-Modified or existing not in permit; Grey-Removed; (G) - Grandfathered

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
		Bra	adley Mill			
BCBM-1	BCBM-1	Belt Conveyor	1991	50 tph	Existing Not in Permit	PE
BCBM-2	BCBM-2	Belt Conveyor	1991	50 tph	Existing Not in Permit	PE
SB-318	317-E	Surge Bin	1991	50 tph	No Change	BH-317
BM-319	317-E	Bradley Mill	1991	50 tph	No Change	BH-317
SC-6	SC-6	Screw Conveyor	1991	50 tph	Rename SC-2 as SC-6	FE
SC-7	SC-7	Screw Conveyor	1991	50 tph	Rename SC-3 as SC-7	FE
SB-309	317-E	Bin	1991	50 tph	No Change	BH-317
AV-320	317-E	Airveyor No. 1	1991	50 tph	No Change	BH-317
SB310	317-E	Ag Lime Bin No. 1	1991	50 tph	No Change	BH-317
SB311	317-E	Ag Lime Bin No. 2	1991	50 tph	No Change	BH-317
SC-5	SC-5	Screw Conveyor No. 3	1991	50 tph	Rename SC-1 as SC-5	FE
BH-317	317-E	Dust Collector	1991	8,500 ACFM	No Change	NA
SB-314	SB-314	Float Bin	1991	50 tph	No Change	FE
		Fac	ility-Wide			
OS1	OS1	Stockpile (multiple piles of various stone sizes)	Pre 1988	3.24 MM tons	Combine stockpiles	N

¹ For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

Note: N = no control; PE = partial enclosure; FE = full enclosure; WS = water spray; BH = baghouse

³ New, modification, removal ⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

ATTACHMENT J EMISSION POINTS DATA SUMMARY SHEETS

Attachment J – Emission Points Data Summary Sheet

	Table 1: Emissions Data No. 1 Mill System and Crusher Run System														
Emission Point ID No. (Must match	Point ID No. (Must Emission		Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		tion Control evice It match Units Table & t Plan)	Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants Chemical Name/CAS ³	Maximum Uncont Emissi	rolled	Maximum F Controlled E		Emission Form or Phase (At exit	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
Emission Units Table-& Plot Plan)	Type	ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	conditions, Solid, Liquid or Gas/Vapor)		
TP1 to 60, nonconse cutive	NA	TP1 to 60	Transfer Points	Various	Various	NA	NA	PM PM10 PM2.5	156.30 74.43 11.16	156.77 74.65 11.20	72.06 34.31 5.15	72.58 34.56 5.18	Solid Solid Solid	EE	NA
CR-412	NA	CR-412	Omni Crusher	WS	Water Spray	NA	NA	PM PM10 PM2.5	1.78 0.89 0.09	1.70 0.85 0.09	0.53 0.27 0.03	0.51 0.26 0.03	Solid Solid Solid	EE	NA
50-E	Vert	CR-043 CR-044 HB-042	Cone Crushers	BH*	Baghouse	NA	NA	PM PM10 PM2.5	N/A	N/A	0.83 0.40 0.06	3.63 1.73 0.26	Solid Solid Solid	EE	NA
450-E	Vert	CR-432	Omni Crusher	BH*	Baghouse	NA	NA	PM PM10 PM2.5	N/A	N/A	0.83 0.40 0.06	3.63 1.73 0.26	Solid Solid Solid	EE	NA
SC-404	NA	SC-404	Deister Screen	FE	Full Enclosure	NA	NA	PM PM10 PM2.5	15.00 5.22 0.80	14.34 4.99 0.76	3.00 1.04 0.16	2.87 1.00 0.15	Solid Solid Solid	EE	NA
SC-434 SC-435	NA	SC-434 SC-435	Telesmith Screens	FE	Full Enclosure	NA	NA	PM PM10 PM2.5	16.50 5.74 0.87	15.78 5.49 0.84	3.30 1.15 0.17	3.16 1.10 0.17	Solid Solid Solid	EE	NA

^{*}For baghouse emissions we are requesting the pre-2008 OOO limit of 0.022 grains/scf

	Table 1: Emissions Data No. 2 Mill System														
Emission Point ID No. (Must match	Emission Point	Through This Point (Must match (Do (Mus Emission	lution Control Device Lust match In Units Table & lot Plan) Vent Time for Emission Unit (chemical processes only)		on Unit <i>mical</i> esses	All Regulated Pollutants Chemical Name/CAS ³	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
Emission Units Table-& Plot Plan)	Type ¹	ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	conditions, Solid, Liquid or Gas/Vapor)		
TP62 to 128, nonconse cutive	NA	TP62 to 128	Transfer Points	Various	Various	NA	NA	PM PM10 PM2.5	71.64 34.11 5.12	73.78 35.13 5.27	26.90 12.81 1.92	27.83 13.25 1.99	Solid Solid Solid	EE	NA
145-E	Vert	SC-152 SC-153 SC-154 CR-133 AS-228	Screens Crusher Air Separato	BH*	Baghouse	NA	NA	PM PM10 PM2.5	N/A	N/A	5.66 2.69 0.40	24.78 11.80 1.77	Solid Solid Solid	EE	NA

^{*}For baghouse emissions we are requesting the pre-2008 OOO limit of 0.022 grains/scf

	Table 1: Emissions Data Sand Plant System														
Emission Point ID No. (Must Emission match Point		Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants Chemical Name/CAS ³	Maximum Uncon Emiss	trolled	Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
Emission Units Table-& Plot Plan)	Type ¹	ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	conditions, Solid, Liquid or Gas/Vapor)		
TP108 to 140, nonconse cutive	NA	TP108 to 140	Transfer Points	Various	Various	NA	NA	PM PM10 PM2.5	26.03 12.40 1.86	35.46 16.89 2.53	6.13 2.92 0.44	8.44 4.02 0.60	Solid Solid Solid	EE	NA
250-E	Vert	CR-230	Cone Crusher	BH*	Baghouse	NA	NA	PM PM10 PM2.5	N/A	N/A	1.38 0.66 0.10	6.03 2.87 0.43	Solid Solid Solid	EE	NA
217-E	Vert	SC-231 SC-233	Deister Screens	BH*	Baghouse	NA	NA	PM PM10 PM2.5	N/A	N/A	6.98 3.32 0.50	30.56 14.55 2.18	Solid Solid Solid	EE	NA
218-E	Vert	AC-225	Air Classifie r	BH*	Baghouse	NA	NA	PM PM10 PM2.5	N/A	N/A	0.83 0.40 0.06	3.63 1.73 0.26	Solid Solid Solid	EE	NA

^{*}For baghouse emissions we are requesting the pre-2008 OOO limit of 0.022 grains/scf

	Table 1: Emissions Data Bradley Mill System														
Emission Point ID No. (Must Emission match Point		Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants Chemical Name/CAS ³	Maximum Uncon Emiss	trolled	Maximum Controlled E		Emission Form or Phase (At exit	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
Emission Units Table-& Plot Plan)	Type ¹	ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	conditions, Solid, Liquid or Gas/Vapor)		
317-E	Vert	TP143 to TP155, noncons ecutive BM-319 AV-320	Transfer Points Bradley Mill	ВН*	Baghouse	NA	NA	PM PM10 PM2.5	N/A	N/A	1.60 0.76 0.11	7.02 3.34 0.50	Solid Solid Solid	EE	NA
TP142, TP151, TP152 TP152A	NA	TP142 TP151 TP152 TP152A	Transfer Points	NA	NA	NA	NA	PM PM10 PM2.5	2.09 1.00 0.15	2.97 1.41 0.21	0.24 0.11 0.02	0.32 0.15 0.02	Solid Solid Solid	EE	NA

^{*}For baghouse emissions we are requesting the pre-2008 OOO limit of 0.022 grains/scf

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

- ¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.
- 2 Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (i.e., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).
- 3 List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS2, VOCs, H2S, Inorganics, Lead, Organics, O3, NO, NO2, SO2, SO3, all applicable Greenhouse Gases (including CO2 and methane), etc. DO NOT LIST H2, H2O, N2, O2, and Noble Gases.
- 4 Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- 5 Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- 6 Indicate the method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).
- 7 Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m3) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO2, use units of ppmv (See 45CSR10).

	Table 2: Release Parameter Data												
			Exit Gas		Emission Point El	evation (ft)	UTM Coordinat	es (km)					
Emission Point ID No. (Must match Emission Units Table)	Inner Diameter (ft.)	Temp. (°F)	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting					
50-E	1.0	Ambient	4,400	93	1525	17	4381.05223	598.93236					
450-E	1.5	Ambient	4,400	42	1534	15	4381.09202	598.94991					
145-E	1.5	Ambient	30,000	283	1447	50	4380.95982	598.91844					
217-E	3.0	Ambient	37,000	87	1448	40	4380.98680	598.94366					
218-E	2.7	Ambient	4,400	13	1449	48	4380.97681	598.94870					
250-E	1.7	Ambient	7,300	54	1449	26	4381.00042	598.90129					
317-E	2.33	Ambient	8,500	33	1446	50	4380.96070	598.86427					

¹ Give at operating conditions. Include inerts. ² Release height of emissions above ground level.

ATTACHMENT K FUGITIVE EMISSIONS DATA SUMMARY SHEET

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	∑ Yes □ No
	☐ If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	$\begin{tabular}{l} \hline \end{tabular} If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET. \\ \hline \end{tabular}$
3.)	Will there be Liquid Loading/Unloading Operations?
	☐ Yes ☐ No
	☐ If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	☐ Yes ☐ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	☐ Yes ☐ No
	$\hfill \square$ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	☐ Yes ☐ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	☐ Yes ☐ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions mmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants - Chemical Name/CAS 1	Maximum Uncontrolled		Maximum P Controlled En		Est. Method Used ⁴
	Chemical Name/CAS	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads	N/A					
Unpaved Haul Roads	PM PM10 PM2.5	394.31 116.18 11.72	377.05 111.10 11.21	118.29 34.86 3.52	113.12 33.33 3.36	EE
Storage Pile Emissions	PM PM10 PM2.5	8.03 3.82 0.57	35.15 16.74 2.51	8.03 3.82 0.57	35.15 16.74 2.51	EE
Loading/Unloading Operations	Truck loadout included as transfer points on Attachment J					
Wastewater Treatment Evaporation & Operations	N/A					
Equipment Leaks	N/A					
General Clean-up VOC Emissions	N/A					
Other	N/A					

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

Page K2 of K2 Revision 2/11

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

ATTACHMENT L EMISSION UNIT DATA SHEETS

Attachment L FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

1 PM-10

k =	Particle size multiplier	0.80	0.36
s =	Silt content of road surface material (%)	10	10
p =	Number of days per year with precipitation >0.01 in.	157	157

Item Number	Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1	Trucking		28		1.0	54	103,275	WS	70
2	Endloaders		95		0.02	135	258,188	WS	70
3									
4									
5									
6									
7									
8									

Source: AP-42 Fifth Edition - 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$ lb/Vehicle Mile Traveled (VMT)

Where:

		PM	PM-10
k =	Particle size multiplier	0.80	0.36
s =	Silt content of road surface material (%)	10	10
S =	Mean vehicle speed (mph)	N/A	N/A
W =	Mean vehicle weight (tons)	varies	varies
w =	Mean number of wheels per vehicle	N/A	N/A
p =	Number of days per year with precipitation >0.01 in.	157	157

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 \ lb] = Tons/year$

SUMMARY OF UNPAVED HAULROAD EMISSIONS

		Р	М			PM	-10	
Item No.	Uncor	trolled	Cont	rolled	Uncor	trolled	Cont	rolled
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	362.88	347.00	108.86	104.1	106.92	102.24	32.08	30.67
2	31.43	30.05	9.43	9.02	9.26	8.86	2.78	2.66
3								
4								
5								
6								
7								
8								
TOTALS	394.31	377.05	118.29	113.12	116.18	111.10	34.86	33.33

FUGITIVE EMISSIONS FROM PAVED HAULROADS - NOT APPLICABLE

INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

I =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface material silt content (%)	
L=	Surface dust loading (lb/mile)	

Item Number	Description	Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1							
2							
3							
4							
5							
6							
7							
8							

Source: AP-42 Fifth Edition – 11.2.6 Industrial Paved Roads

 $E = 0.077 \times I \times (4 \div n) \times (s \div 10) \times (L \div 1000) \times (W \div 3)^{0.7} =$

Ib/Vehicle Mile Traveled (VMT)

Where:

I =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface meterial silt content (%)	
L=	Surface dust loading (lb/mile)	
W =	Average vehicle weight (tons)	

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 lb] = Tons/year$

SUMMARY OF PAVED HAULROAD EMISSIONS

	Uncon	trolled	Controlled		
Item No.	lb/hr	TPY	lb/hr	TPY	
1					
2					
3					
4					
5					
6					
7					
8					
TOTALS					

Attachment L Emission Unit Data Sheet

(NONMETALLIC MINERALS PROCESSING)

Control Device ID No. (must match List Form):

Equipment Information

1.	Plant Type:					
	☐ Hot-mix asphalt pavement	facility that redu	uces the size of	nonmetallic minera	als embedded in	recycled asphalt
	•	hers or arindina	mills and containi	ng a stand-alone sci	reening operation	
	Sand and gravel p Sand and g Sand and g		☐ Common clay p	-	3 -1	
	Crushed stone pla		 ☐ Pumice plant			
	Other, specify		•			
2.		ixed Plant ortable Plant	3	. Plant Capacity:		tons/hr
4.	Underground mine:		□ No 5	. Storage:	☑ Open 🗵	Enclosed
6.	Emission Facility Type	Equipment Type Used	ID Number of Emission Unit	Manufacturer	Model Numbe Serial Numbe	
	Conveyors	BC - Belt Conveyor	See Attachment I			
	Crusher	various	See Attachment I			
	Secondary Crushers					
	Tertiary Crushers					
	Grinder					
	Hoppers					
	Rock Drills					
	Screens	various	See Attachment I			
	Enclosed Storage	various	See Attachment I			
	Other					
	Other					
	Other					
		Onera	tion Rate	Annual		Air Pollution
	Emission Facility	Design	Design	Production	Number of Units	Control Device
	Туре	Ton/hr	Ton/hr	Tons/year	Units	Used
	Conveyors	various			85	PE/FE/BH
	Crusher	various			8	FE/BH/WS
	Secondary Crushers					
	Tertiary Crushers					
	Grinder					
	Hoppers					
	Rock Drills					
	Screens	various			10	FE/BH
	Enclosed Storage	various			22	PE/FE/BH
	Other					
	Other					
	Other					

7. Provide a diagram and/or schematic that shows the proposed process of the operation or plant. The diagram and/or schematic is to show all sources, components and facets of the operation or plant in an understandable line sequence of the operation. The diagram should include all the equipment involved in the operation; such as conveyors, transfer points, stockpiles, crushers, facilities, vents, screens, truck dump bins, truck, barge and railcar loading and unloading, etc. Appropriate sizing and specifications of equipment should be included in the diagram. The diagram shall logical follow the entire process load-in to load-out.

8.	Roads	Paved Miles of	Unpaved Miles Watered		ered	Other Control		
		Road	of Road	Miles	Frequency	(Specify)		
	Plant Yard	N/A	2.1	2.1	2-4 times per day	Calcium chloride applied every three		
	Access Roads	N/A	All roads onsite are considered both plant roads and access roads.			months during dry season		

9. Vehicle Type

.	Mean Vehicle		Mean Vehicle Weight in Tons		Distance Traveled per Round Trip		
Vehicle Type	Speed in mph	Empty	Full	of Wheels	Paved Feet or Miles	Unpaved Feet or Miles	
Raw Aggregate		15	40			1.0 mi	
Loaders		90	100			0.02 mi	
Product Trucks		15	40			1.0 mi	
Other							
Other							
Other							
Other							

10. Describe all proposed materials storage facilities associated with the **Emission Units** listed.

Various holding bins, surge bins, storage bins, and stock piles store materials throughout the facility, as detailed in the following section of this Attachment (Storage Activity).

Storage Activity - #1 Mill and Crusher Run

ID of Emission Unit	SB-037	HB-042	S-126	S-127	SB-431
Type Storage	B - Bin or Storage	B - Bin or Storage	B - Bin or Storage	B - Bin or Storage	B - Bin or Storage
Material Stored	Aggregates	Aggregates	Aggregates	Aggregates	Aggregates
Typical Moisture Content (%)	2	2	2	2	2
Avg % of material passing through 200 mesh sieve	NA	NA	NA	NA	NA
Maximum Total Yearly Throughput in storage (tons)	2,581,875 tpy	2,581,875 tpy	2,581,875 tpy	2,581,875 tpy	1,147,500 tpy
Maximum Stockpile Base Area (ft²)					
Maximum Stockpile height (ft)					
Dust control method applied to storage	N - None	N - None	N - None	N - None	N - None
Method of material load-in to bin or stockpile	SS - Stationary Con-	SS - Stationary Con	SS - Stationary Con	SS - Stationary Con	SS - Stationary Con
Dust control method applied during load-in	FE - Full Enclosures	EB - Enclosed and E	FE - Full Enclosures	FE - Full Enclosures	FE - Full Enclosures
Method of material load- out to bin or stockpile	FC - Fixed Height C	FC - Fixed Height C	FC - Fixed Height Cl	FC - Fixed Height Cl	FC - Fixed Height Ch
Dust control method applied during load-out	N - None	WS - Water Sprays	FE - Full Enclosures	FE - Full Enclosures	FE - Full Enclosures

Storagepiles	Estimated Annual Tons	Turnover Rate (Ton/Month)	Wetted as Piled	Number of Sides Enclosed	Other Dust Control	Loading Method (Loader, Conveyor) IN/OUT
Coarse: over 1"						
Fine: 1" to 1/4"						
1/4" and less						
MFG. Sand						
Other, specify						

Storage Activity – #1 Mill and Crusher Run

ID of Emission Unit	SB-443	SB-436	SB-437	SB-437A	
Type Storage	B - Bin or Storage S	B - Bin or Storage S	B - Bin or Storage S	E - Enclosure (wall b	
Material Stored	Aggregates	Aggregates	Aggregates	Aggregates	
Typical Moisture Content (%)	2	2	2	2	
Avg % of material passing through 200 mesh sieve	NA	NA	NA	NA	
Maximum Total Yearly Throughput in storage (tons)		631,125 tpy	631,125 tpy	631,125 tpy	
Maximum Stockpile Base Area (ft²)					
Maximum Stockpile height (ft)					
Dust control method applied to storage	N - None	N - None	N - None	N - None	
Method of material load-in to bin or stockpile	SS - Stationary Con	SS - Stationary Con	SS - Stationary Con-	SS - Stationary Con	
Dust control method applied during load-in	FE - Full Enclosures	FE - Full Enclosures	FE - Full Enclosures	N - None	
Method of material load- out to bin or stockpile	FC - Fixed Height C	FC - Fixed Height Cl	FC - Fixed Height Cl	FC - Fixed Height Cl	
Dust control method applied during load-out	N - None	N - None	N - None	WS - Water Sprays	

Storagepiles	Estimated Annual Tons	Turnover Rate (Ton/Month)	Wetted as Piled	Number of Sides Enclosed	Other Dust Control	Loading Method (Loader, Conveyor) IN/OUT
Coarse: over 1"						
Fine: 1" to 1/4"						
1/4" and less						
MFG. Sand						
Other, specify						

Storage Activity – #2 Mill

ID of Emission Unit	SB-128	SB-129	SB-134, SB- 135	SB-136, SB- 138, SB-140	SB-137, SB- 139, SB-141
Type Storage	B - Bin or Storage S	B - Bin or Storage S	B - Bin or Storage S	B - Bin or Storage Si	B - Bin or Storage Si
Material Stored	57s	4s	4s	Sand	57s/67s
Typical Moisture Content (%)	2	2	2	2	2
Avg % of material passing through 200 mesh sieve	NA	NA	NA	NA	NA
Maximum Total Yearly Throughput in storage (tons)	957,403 tpy	898,049 tpy	898,049 tpy	898,049 tpy	898,049 tpy
Maximum Stockpile Base Area (ft ²)					
Maximum Stockpile height (ft)					
Dust control method applied to storage	N - None	N - None	N - None	N - None	N - None
Method of material load-in to bin or stockpile	SS - Stationary Con-	SS - Stationary Con-	SS - Stationary Con	SS - Stationary Con-	SS - Stationary Con
Dust control method applied during load-in	FE - Full Enclosures	FE - Full Enclosures	EB - Enclosed and E	EB - Enclosed and E	EB - Enclosed and E
Method of material load- out to bin or stockpile	FC - Fixed Height Cl	FC - Fixed Height Cl	FC - Fixed Height C	FC - Fixed Height Cl	FC - Fixed Height Ch
Dust control method applied during load-out	N - None	N - None	N - None	N - None	N - None

Storagepiles	Estimated Annual Tons	Turnover Rate (Ton/Month)	Wetted as Piled	Number of Sides Enclosed	Other Dust Control	Loading Method (Loader, Conveyor) IN/OUT
Coarse: over 1"						
Fine: 1" to 1/4"						
1/4" and less						
MFG. Sand						
Other, specify						

Storage Activity – #2 Mill

				1
ID of Emission Unit	SB-142	SB-143		
Type Storage	B - Bin or Storage S	B - Bin or Storage S		
Material Stored	Float/Agg.	8s		
Typical Moisture Content (%)	2	2		
Avg % of material passing through 200 mesh sieve	NA	NA		
Maximum Total Yearly Throughput in storage (tons)	898,049 tpy	898,049 tpy		
Maximum Stockpile Base Area (ft²)				
Maximum Stockpile height (ft)				
Dust control method applied to storage	N - None	N - None		
Method of material load-in to bin or stockpile	SS - Stationary Con-	SS - Stationary Con-		
Dust control method applied during load-in	EB - Enclosed and E	EB - Enclosed and E		
Method of material load- out to bin or stockpile	FC - Fixed Height C	FC - Fixed Height Cl		
Dust control method applied during load-out	N - None	N - None		

Storagepiles	Estimated Annual Tons	Turnover Rate (Ton/Month)	Wetted as Piled	Number of Sides Enclosed	Other Dust Control	Loading Method (Loader, Conveyor) IN/OUT
Coarse: over 1"						
Fine: 1" to 1/4"						
1/4" and less						
MFG. Sand						
Other, specify						

Storage Activity – Sand Plant

ID of Emission Unit	SB-220A	SB-229	SB-220	SB-232	
Type Storage	B - Bin or Storage S	B - Bin or Storage S	B - Bin or Storage S	B - Bin or Storage Si	
Material Stored	Sand	Aggregates	Sand	Aggregates	
Typical Moisture Content (%)	2	2	2	2	
Avg % of material passing through 200 mesh sieve	NA	NA	NA	NA	
Maximum Total Yearly Throughput in storage (tons)	573,750 tpy	430,313 tpy	430,313 tpy	430,313 tpy	
Maximum Stockpile Base Area (ft²)					
Maximum Stockpile height (ft)					
Dust control method applied to storage	N - None	N - None	N - None	N - None	
Method of material load-in to bin or stockpile	SS - Stationary Con-	SS - Stationary Con-	SS - Stationary Con	SS - Stationary Con	
Dust control method applied during load-in	FE - Full Enclosures	EB - Enclosed and E	FE - Full Enclosures	EB - Enclosed and E	
Method of material load- out to bin or stockpile	FC - Fixed Height Cl	FC - Fixed Height Cl	TC - Telescoping Ch	FC - Fixed Height Cl	
Dust control method applied during load-out	N - None	WS - Water Sprays	MD - Minimization of	EB - Enclosed and E	

Storagepiles	Estimated Annual Tons	Turnover Rate (Ton/Month)	Wetted as Piled	Number of Sides Enclosed	Other Dust Control	Loading Method (Loader, Conveyor) IN/OUT
Coarse: over 1"						
Fine: 1" to 1/4"						
1/4" and less						
MFG. Sand						
Other, specify						

Storage Activity – Bradley Mill

ID of Emission Unit	SB-318	SB-309	SB-310	SB-311	SB-314
Type Storage	B - Bin or Storage S	B - Bin or Storage S	B - Bin or Storage S	B - Bin or Storage S	B - Bin or Storage Si
Material Stored	Aggregates	Aggregates	B - Bin or Storage S Ag Lime Ag Lime 2 NA NA 143,438 tpy 143,438 tpy		Aggregates
Typical Moisture Content (%)	2	2	2	2	2
Avg % of material passing through 200 mesh sieve	NA	NA	NA	NA	NA
Maximum Total Yearly Throughput in storage (tons)	143,438 tpy	143,438 tpy	143,438 tpy	143,438 tpy	143,438 tpy
Maximum Stockpile Base Area (ft ²)					
Maximum Stockpile height (ft)					
Dust control method applied to storage	N - None	N - None	N - None	N - None	N - None
Method of material load-in to bin or stockpile	SS - Stationary Con	SS - Stationary Con	SS - Stationary Con-	SS - Stationary Con-	SS - Stationary Con
Dust control method applied during load-in	EB - Enclosed and E	EB - Enclosed and E	EB - Enclosed and E	EB - Enclosed and E	FE - Full Enclosures
Method of material load- out to bin or stockpile	FC - Fixed Height C	FC - Fixed Height Cl	FC - Fixed Height Cl	FC - Fixed Height Cl	TC - Telescoping Ch
Dust control method applied during load-out	EB - Enclosed and E	EB - Enclosed and E	EB - Enclosed and E	EB - Enclosed and E	MD - Minimization of

Storagepiles	Estimated Annual Tons	Turnover Rate (Ton/Month)	Wetted as Piled	Number of Sides Enclosed	Other Dust Control	Loading Method (Loader, Conveyor) IN/OUT
Coarse: over 1"						
Fine: 1" to 1/4"						
1/4" and less						
MFG. Sand						
Other, specify						

Conveying and Transfer Describe the conveying system including transfer points associated with proposed Emission Units (crushers, etc...). See Process Flow Diagrams in Attachment F and Process Description in Attachment G.

Describe any methods of emission control to be used with these proposed conveying systems:

Partial enclosures (PE) on conveyors, full enclosure (FE) within buildings, baghouses (BH), water sprays (WS), and minimized drop distances (MD) are utilized throughout the facility, as discussed in the Process Description and noted on the Process Flow Diagrams.

ID of Emission	Type Conveyor or	Material Handled [Note nominal size of	Material or Tran	Conveying sfer Rate	Dust Control Measures	Approximate Material
Unit	Transfer Point	nominal size of material transferred (e.g. ¾" × 0)]	Max. TPH	Maximum TPY	Applied	Moisture Content (%)
See attached						

Crushing and Screening - #1 Mill

Type	-		rasilling and c	creening - #1	141111		
Material Sized 1.5" to 3" 1.5" to 3" to 1.5" 1.649,850 751,850 918,000 1.147,500 1.147,	ID of Emission Unit	SC-038	SC-039	CR-043	CR-044	SC-404	CR-432
Material Sized Throughput: Tons/hr		DD - Double-Dec	DD - Double-Dec	BM - Dall Mill	BM - Dall Mill	DD - Double-Dec	BM - Dall Mill
Tons/hr	Material Sized	1.5" to 3"	1.5" to 3"	1.5" to 3"	1.5" to 3"	1.5"	1.5"
Tons/yr	Material Sized Throughp	ut:					
Material sized from/to 3" to 1.5" 3" to 1.5" 3" to 1.5" 3" to 1.5" 1.5" to 3/4" 1.5" to 3/4" Typical contend as crushed or screened (%) 5 5 5 5 5 5 5 5 Dust control methods applied FE - Full Enclosu FE - Full Enclosu WS - Water Spra WS - Water Spra FE - Full Enclosu EB - Enclosed applied EB - Full Enclosu EB - Enclosed applied EB - Full Enclosu EB - Enclosed applied	Tons/hr	750	750	290	460	600	600
Typical moisture content as crushed or screened (%) 5 5 5 5 5 5 5 5 5	Tons/yr	1,649,850	1,649,850	731,850	918,000	1,147,500	1,147,500
Dust control methods applied Stack Parameters:	Material sized from/to	3" to 1.5"	3" to 1.5"	3" to 1.5"	3" to 1.5"	1.5" to 3/4"	1.5" to 3/4"
Stack Parameters: Height (ft) N/A N/A N/A 17 17 N/A 15	content as crushed or	5	5	5	5	5	5
Height (ft) N/A N/A 17 17 N/A 15		FE - Full Enclosu	FE - Full Enclosu	WS - Water Spra	WS - Water Spra	FE - Full Enclosu	EB - Enclosed an
Diameter (ft)	Stack Parameters:						
Volume (ACFM) 4,400 4,400 4,400 Temp (°F) ambient ambient ambient Maximum operating schedule: Hour/day 10 10 10 10 10 10 10 Day/year 255	Height (ft)	N/A	N/A	17	17	N/A	15
Temp (°F) ambient ambient ambient Maximum operating schedule: Hour/day 10	Diameter (ft)			1.0	1.0		1.5
Maximum operating schedule: Hour/day 10 10 10 10 10 10 Day/year 255 255 255 255 255 255 Hour/year 2,550 2,550 2,550 2,550 2,550 2,550 2,550 Approximate Percentage of Operation from: Jan – Mar 25 25 25 25 25 25 April – June 25 25 25 25 25 25 July – Sept 25 25 25 25 25 25 Oct – Dec 25 25 25 25 25 25 Maximum Particulate Emissions: LB/HR See 51-E See 51-E See 50-E See 50-E 3.00 See 450-E	Volume (ACFM)			4,400	4,400		4,400
Hour/day 10 255 255 255 255 255 255 255 25	Temp (°F)			ambient	ambient		ambient
Day/year 255 255 255 255 255 Hour/year 2,550 2,550 2,550 2,550 2,550 2,550 Approximate Percentage of Operation from: Jan – Mar 25 25 25 25 25 25 April – June 25 25 25 25 25 25 25 July – Sept 25 25 25 25 25 25 25 Oct – Dec 25 25 25 25 25 25 25 Maximum Particulate Emissions: LB/HR See 51-E See 50-E See 50-E See 50-E 3.00 See 450-E	Maximum operating sch	edule:					
Hour/year 2,550 2,550 2,550 2,550 2,550 2,550 Approximate Percentage of Operation from: Jan – Mar 25 25 25 25 25 April – June 25 25 25 25 25 25 July – Sept 25 25 25 25 25 25 Oct – Dec 25 25 25 25 25 25 Maximum Particulate Emissions: LB/HR See 51-E See 51-E See 50-E See 50-E 3.00 See 450-E	Hour/day	10	10	10	10	10	10
Approximate Percentage of Operation from: Jan – Mar 25 25 25 25 25 25 April – June 25 25 25 25 25 25 25 July – Sept 25 25 25 25 25 25 25 Oct – Dec 25 25 25 25 25 25 25 Maximum Particulate Emissions: LB/HR See 51-E See 51-E See 50-E See 50-E 3.00 See 450-E	Day/year	255	255	255	255	255	255
Jan – Mar 25 25 25 25 25 April – June 25 25 25 25 25 July – Sept 25 25 25 25 25 Oct – Dec 25 25 25 25 25 Maximum Particulate Emissions: LB/HR See 51-E See 51-E See 50-E See 50-E 3.00 See 450-E	Hour/year	2,550	2,550	2,550	2,550	2,550	2,550
April – June 25 25 25 25 25 July – Sept 25 25 25 25 25 25 Oct – Dec 25 25 25 25 25 25 Maximum Particulate Emissions: LB/HR See 51-E See 51-E See 50-E See 50-E 3.00 See 450-E	Approximate Percentage	of Operation	from:				
July – Sept 25 25 25 25 25 Oct – Dec 25 25 25 25 25 Maximum Particulate Emissions: LB/HR See 51-E See 51-E See 50-E See 50-E 3.00 See 450-E	Jan – Mar	25	25	25	25	25	25
Oct - Dec 25 25 25 25 25 25 Maximum Particulate Emissions: LB/HR See 51-E See 51-E See 50-E See 50-E 3.00 See 450-E	April – June	25	25	25	25	25	25
Maximum Particulate Emissions:LB/HRSee 51-ESee 51-ESee 50-ESee 50-E3.00See 450-E	July – Sept	25	25	25	25	25	25
LB/HR See 51-E See 51-E See 50-E See 50-E 3.00 See 450-E	Oct – Dec	25	25	25	25	25	25
	Maximum Particulate En	nissions:					
Ton Magr	LB/HR	See 51-E	See 51-E	See 50-E	See 50-E	3.00	See 450-E
1011/ Tear 2.07	Ton/Year					2.87	

Crushing and Screening – Crusher Run

	illing and ocie	ening – Grusn			
CR-412	SC-434	SC-435			
BM - Dall Mill	DD - Double-Dec	DD - Double-Dec			
3/4" to 2"	3/4" to 2"	3/4" to 2"			
ut:					
330	330	330			
631,125	631,125	631,125			
2" to 3/4"	2" to 3/4"	2" to 3/4"			
5	5	5			
WS - Water Spra	FE - Full Enclosu	FE - Full Enclosu			
N/A	N/A	N/A			
edule:					
10	10	10			
255	255	255			
2,550	2,550	2,550			
of Operation	from:				Ţ
25	25	25			
25	25	25			
25	25	25			
25	25	25			
nissions:	 	 			1
0.53	1.65	1.65			
0.51	1.58	1.58			
	CR-412 BM - Dall Mill 3/4" to 2" ut: 330 631,125 2" to 3/4" 5 WS - Water Spray N/A N/A Pedule: 10 255 2,550 Pof Operation 25 25 25 25 10: 25 25 25 10: 10: 25 25 25 25 10: 10: 25 25 25 25 25 25 25 25 25 2	CR-412 SC-434 BM - Dall Mill DD - Double-Dec 3/4" to 2" 3/4" to 2" ut: 330 330 631,125 631,125 2" to 3/4" 2" to 3/4" 5 5 WS - Water Spra FE - Full Enclosu N/A N/A action 10 255 255 2,550 2,550 action 5 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25	CR-412 SC-434 SC-435 BM - Dall Mill DD - Double-Dec DD - Double-Dec 3/4" to 2" 3/4" to 2" 3/4" to 2" ut: 330 330 330 631,125 631,125 631,125 2" to 3/4" 2" to 3/4" 2" to 3/4" 5 5 5 WS - Water Spra FE - Full Enclosu FE - Full Enclosu N/A N/A N/A actual: 10 10 10 255 255 255 2,550 2,550 2,550 action from: 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25	CR-412 SC-434 SC-435 BM - Dall Mill DD - Double-Dec DD - Double-Dec 3/4" to 2" 3/4" to 2" 3/4" to 2" ut: 330 330 330 631,125 631,125 631,125 2" to 3/4" 2" to 3/4" 2" to 3/4" 5 5 5 WS - Water Spra FE - Full Enclosu FE - Full Enclosu N/A N/A N/A N/A N/A N/A acdule: 10 10 255 255 255 2,550 2,550 2,550 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 <th>CR-412 SC-434 SC-435 BM - Dall Mill DD - Double-Dec DD - Double-Dec 3/4" to 2" 3/4" to 2" 3/4" to 2" 330 330 330 631,125 631,125 631,125 2" to 3/4" 2" to 3/4" 2" to 3/4" 5 5 5 WS - Water Spra FE - Full Enclosu FE - Full Enclosu FE - Full Enclosu N/A N/A N/A N/A N/A Polyphysical Section of the section of the</th>	CR-412 SC-434 SC-435 BM - Dall Mill DD - Double-Dec DD - Double-Dec 3/4" to 2" 3/4" to 2" 3/4" to 2" 330 330 330 631,125 631,125 631,125 2" to 3/4" 2" to 3/4" 2" to 3/4" 5 5 5 WS - Water Spra FE - Full Enclosu FE - Full Enclosu FE - Full Enclosu N/A N/A N/A N/A N/A Polyphysical Section of the

Crushing and Screening - #2 Mill

		rusining and c	creening - #2			
ID of Emission Unit	CR-133	SC-152	SC-153	SC-154		
Type Crusher or Screen	BM - Dall Mill	DD - Double-Dec	DD - Double-Dec	DD - Double-Dec		
Material Sized	various	various	various	various		
Material Sized Throughp	ut:				•	
Tons/hr	400	1,350	1,350	400		
Tons/yr	765,000	2,581,875	2,581,875	765,000		
Material sized from/to	various	various	various	various		
Typical moisture content as crushed or screened (%)	10	2	2	2		
Dust control methods applied	WS - Water Spra	EB - Enclosed an	EB - Enclosed an	EB - Enclosed an		
Stack Parameters:						
Height (ft)	50	50	50	50		
Diameter (ft)	1.5	1.5	1.5	1.5		
Volume (ACFM)	30,000	30,000	30,000	30,000		
Temp (°F)	ambient	ambient	ambient	ambient		
Maximum operating sch	edule:					
Hour/day	10	10	10	10		
Day/year	255	255	255	255		
Hour/year	2,550	2,550	2,550	2,550		
Approximate Percentage	of Operation	from:				
Jan – Mar	25	25	25	25		
April – June	25	25	25	25		
July – Sept	25	25	25	25		
Oct – Dec	25	25	25	25		
Maximum Particulate Em	nissions:					
LB/HR	See 145-E	See 145-E	See 145-E	See 145-E		
Ton/Year						

Crushing and Screening – Sand Plant

	Oi u	Silling and oci	cerning – Sand	· · · · · · · · · · · · · · · · · · ·	
ID of Emission Unit	CR-230	SC-231	SC-233	AC-225	AS-228
Type Crusher or Screen	BM - Dall Mill	DD - Double-Dec	DD - Double-Dec	Air Classifier	Air Separator
Material Sized	4s, 57s	Aggregates	Aggregates	Sand	Sand
Material Sized Throughp	ut:				
Tons/hr	150	75	75	300	200
Tons/yr	430,313	215,156	215,156	860,625	573,750
Material sized from/to	various	various	various	Sand	Sand
Typical moisture content as crushed or screened (%)	10	10	10	2	2
Dust control methods applied	WS - Water Spra	WS - Water Spra	WS - Water Spray	EB - Enclosed an	EB - Enclosed an
Stack Parameters:					
Height (ft)	26	40	40	48	50
Diameter (ft)	1.7	3.0	3.0	2.7	1.5
Volume (ACFM)	7,300	37,000	37,000	4,400	30,000
Temp (°F)	ambient	ambient	ambient	ambient	ambient
Maximum operating scho	edule:				
Hour/day	10	10	10	10	10
Day/year	255	255	255	255	255
Hour/year	2,550	2,550	2,550	2,550	2,550
Approximate Percentage	of Operation	from:			
Jan – Mar	25	25	25	25	25
April – June	25	25	25	25	25
July – Sept	25	25	25	25	25
Oct – Dec	25	25	25	25	25
Maximum Particulate Em	nissions:				
LB/HR	See 250-E	See 217-E	See 217-E	See 218-E	See 145-E
Ton/Year					

Crushing and Screening – Bradley Mill

ID of Emission Unit	BM-319							
Type Crusher or Screen	BM - Dall Mill							
Material Sized	Aggregates							
Material Sized Throughput:								
Tons/hr	50							
Tons/yr	143,438							
Material sized from/to	Ag lime							
Typical moisture content as crushed or screened (%)	2							
Dust control methods applied	EB - Enclosed an							
Stack Parameters:								
Height (ft)	50							
Diameter (ft)	2.33							
Volume (ACFM)	8,500							
Temp (°F)	ambient							
Maximum operating sch	edule:		1					
Hour/day	10							
Day/year	255							
Hour/year	2,550							
Approximate Percentage	of Operation	from:	1	Γ				
Jan – Mar	25							
April – June	25							
July – Sept	25							
Oct – Dec	25							
Maximum Particulate En	Maximum Particulate Emissions:							
LB/HR	See 317-E							
Ton/Year								

List emission sources with request information: Max. Amount of Crushed or Date of **Operating Schedule** Type of **ID** of Emission Stone Input to Screened **Emission Emission Unit** Actual Design Emission Unit From/To **Unit was** and Use (hrs/yr) (hrs/yr) (lb/hr) (size) Manufacture See above List emission sources with request information: Maximum expected emissions from Emission Unit without Air Pollution Control Equipment **ID** of Emission SO₂ CO VOC PM_{10} NO_x Unit (lbs/hr) (lbs/hr) (lbs/hr) (lbs/hr) (lbs/hr) See Attachment J Maximum expected emissions from Emission Unit without Air Pollution Control Equipment **ID** of Emission PM_{10} SO₂ CO NO_x VOC Unit (tons/yr) (tons/yr) (tons/yr) (tons/yr) (tons/yr) See Attachment J

Please fill out a separate Air Pollution Control Device Sheet for each Emission Unit equipped with an air pollution control system.
What type of stone will be quarried at this site?
Limestone
How will it be quarried?
☐ Sawing
☐ Blasting
Other, Specify: Underground mine
If blasting is checked, complete the following:
☐ Frequency of blasting:
☐ What method of air pollution control will be employed during drilling and blasting?

	ID of Emission Type Conveyor or		Material Handled [Note nominal size of material transferred	Material Conveying or Transfer Rate		Dust Control	Approximate Material Moisture	
Location	Unit	Transfer Point	Description	(e.g. 3/4" x 0)]	Max tph	Max tpy	Measures Applied	Content (%)
#1 Mill	BC-1	BC	From SB-037 to BC-2	various	750	1,649,850	PE	2
#1 Mill	BC-10	BC	From SC-038 and SC-039 to BC-11	various	750	1,434,375	PE	2
#1 Mill	BC-11	BC	From BC-10 to stockpile	various	750	1,434,375	PE	2
#1 Mill	BC-1A	BC	From SB-037 to SC-404 (Deister screen)	various	600	1,147,500	PE	2
#1 Mill	BC-1C	BC	From S-126 to BC-2A to #2 Mill	various	1,350	2,581,875	PE	2
#1 Mill	BC-2	BC	From Cone Crushers (043, 044) to screens 038, 039	various	1,500	3,299,700	PE	2
#1 Mill	BC-2A	BC	From S-126 and S-127 to #2 Mill	various	1,350	2,581,875	PE	2
#1 Mill	BC-2B	ВС	From Deister screen (SC-404) oversize chute to omnicrusher (CR-432)	various	600	1,147,500	PE	2
#1 Mill	BC-3	BC	From SC-039 to HB-042 and crushers	various	750	1,434,375	PE	2
#1 Mill	BC-3A	BC	From CR-432 to SC-404	various	600	1,147,500	PE	2
#1 Mill	BC-4	BC	From SC-038 to splitter, S-126 and S-127	various	750	1,649,850	FE/BH	2
#1 Mill	BC-4A	ВС	From Deister hopper (SB-431) to enclosure with telesmith screens	various	330	631,125	N	2
#1 Mill	BC-5	BC	From BC-4 to S-127	various	1,350	2.581.875	PE	2
#1 Mill	BC-6	BC	From SC-038 to HB-042	various	750	1,434,375	PE	2
#1 Mill	BC-7	BC	From SC-039 to BC-4 and then splitter	various	750	1,434,375	FE/BH	2
#1 Mill	BC-7A	BC	From Deister hopper to silos S-126, S-127	various	600	1,147,500	N N	2
#1 Mill	BC-8	BC	From mine to BC-9	various	1,350	2,581,875	PE	2
#1 Mill	BC-9	BC	From BC-8 to SB-037	various	1,350	2,581,875	PE	2
#1 Mill	BC-8A	BC	From screens/splitter to S-126	various	1,350	2,581,875	PE	2
Crusher Run	BC-441	BC	From mine to SB-443, BC-444, or BC-445	various	250	669,375	PE	2
Crusher Run	BC-444	BC	From BC-441 to stockpile	various	250	669,375	PE	2
Crusher Run	BC-446	BC	From BC-445 to splitter	various	250	669,375	PE	2
Crusher Run	BC-445	BC	From BC-441 to BC-446	various	250	669,375	PE	2
Crusher Run	BC-1D	BC	From BC-9A to BC-2D	various	660	1,262,250	PE	2
Crusher Run	BC-2C	BC	From SC-434 to SB-437	3/4"	330	631,125	FE	2
Crusher Run	BC-2D	BC	From BC-1D to either BC-3B (3/4") or ST-439 (1 1/2")	various	660	1,262,250	PE	2
Crusher Run	BC-3B	BC	From BC-446 to ST-440 and stockpile	3/4"	580	1,300,500	PE	2
Crusher Run	BC-4A	BC	From SB-431/No. 4A belt to chute into telsmith screens	various	660	1,262,250	PE	2
Crusher Run	BC-4B	BC	From SC-435 to SB-437	3/4"	330	631,125	FE	2
Crusher Run	BC-5A	BC	From CR-412 to BC-4A and then screens	various	330	631,125	PE	2
Crusher Run	BC-6A	BC	Oversize from screens to SB-437A	various	330	631,125	PE	2
Crusher Run	BC-8A	BC	From bins SB-436 and SB-437 to BC-9A	various	660	1,262,250	N	2
Crusher Run	BC-9A	BC	From BC-8A to BC-1D	various	660	1,262,250	PE	2
Crusher Run	BC-447	BC	From BC-446 to ST-439	1 1/2"	580	1,300,500	PE	2
Crusher Run	BC-11A	BC	From mine to either BC-3C or BC-12	various	100	286,875	N	2
Crusher Run	BC-12	BC	From BC-11A to stockpile	various	50	143,438	N	2
Crusher Run	BC-3C	BC	From BC-11A to stockpile	various	50	143,438	N	2
Crusher Run	ST-439	ST	From BC-447 to stockpile	1 1/2"	580	1,300,500	PE	2
Crusher Run	ST-440	ST	From BC-3B to stockpile	3/4"	580	1,300,500	PE	2

	ID of Emission	ion Type Conveyor or		Material Handled [Note nominal size of material transferred	R	eying or Transfer aate	Dust Control	Approximate Material Moisture
Location	Unit	Transfer Point	Description	(e.g. 3/4" x 0)]	Max tph	Max tpy	Measures Applied	Content (%)
#2 Mill	BC-11A		From CR-133 to BC-12A and back to SC-154	various	400	765,000	PE	2
#2 Mill	BC-12A		From BC-11A to BC-13	various	400	765,000	PE	2
#2 Mill	BC-13		From BC-12A to SC-154	various	400	765,000	BH	2
#2 Mill	BC-14	BC	From storage bins to BC-1E and stockpile	various	400	765,000	PE	2
#2 Mill	BC-16		From BC-15 to BC-17	various	200	523,862	PE	2
#2 Mill	BC-1E		From BC-14 to stockpile	various	400	765,000	PE	2
#2 Mill	BC-1F	BC	From SB-129 to ST-130	4s	400	898,049	PE	2
#2 Mill	BC-1G	BC	From SB-128 to BC-2E and ST-131	57s	400	957,403	PE	2
#2 Mill	BC-1H	BC	From SB-143 (8s bin) to BC-2D to ST-132	8s	400	765,000	PE/WS	2
#2 Mill	BC-2E	BC	From BC-1G to ST-131	57s	400	957,403	PE/WS	2
#2 Mill	BC-3D	BC	From BC-2A to SC-153 (Screen 2)	various	1,350	2,581,875	ВН	2
#2 Mill	BC-4C	BC	From BC-2A to SC-152 (Screen 1)	various	1,350	2,581,875	ВН	2
#2 Mill	BC-5B	BC	From all three screens to SB-143	8s	400	765,000	ВН	2
#2 Mill	BC-6B	BC	From all three screens to BC-9B	4s	400	898,049	ВН	2
#2 Mill	BC-7A	BC	From BC-8B to SB-128	57s	400	957,403	PE	2
#2 Mill	BC-8B	BC	From all three screens to BC-7A	57s	400	957,403	ВН	2
#2 Mill	BC-9B	BC	From BC-6B to SB-129	4s	400	898,049	PE	2
#2 Mill	BC-2D	ВС	From BC-1H and BC-C4 to ST-132	8s	550	1,051,875	PE	2
#2 Mill	BC-10	BC	From storage bins to CR-133	various	400	765,000	ВН	2
#2 Mill	BC-15	BC	From storage bins to BC-16	various	200	523,862	BH	2
#2 Mill	BC-17	BC	From BC-16 to AS-228 in Sand Plant	various	200	523,862	PE	2
#2 Mill	ST-130		From 4's silo/BC-1F to stockpile	4s	400	898.049	WS	2
#2 Mill	ST-131		From 57s silo/BC-2E to stockpile	57s	400	957,403	WS	2
#2 Mill	ST-132		From BC-2D to stockpile	8s	550	1,051,875	WS	2
Sand Plant	BC-C1		From AS-228 to BC-C2	Sand	200	573,750	PE	2
Sand Plant	BC-C1A		From BC-C18 to SB-229	various	550	1,195,313	PE	2
Sand Plant	BC-C2		From BC-C1 to SB-220A	various	200	573,750	PE	2
Sand Plant	BC-C2A		From CR-230 to Deister screens	various	150	430,313	BH/PE/WS	2
Sand Plant	BC-C3		From SB-220A to ST-212/stockpile	Sand	200	573,750	PE	2
Sand Plant	BC-C3A		From Deister screens to SB-229	various	150	430,313	PE/BH	2
Sand Plant	BC-C4		From Deister screens to BC-2D (#2 Mill)	various	150	286,875	PE	2
Sand Plant	BC-C5		From Deister screens to BC-C7	various	150	430,313	BH	2
Sand Plant	BC-C7		From BC-C5 and BC-C6 to AC-225	various	300	860,625	PE	2
Sand Plant	BC-C8		From SC-3 to Pug Mill (PM-226)	various	150	430,313	PE	2
Sand Plant	BCE-10		From BC-C8A to stockpile	Sand	150	430,313	PE	2
Sand Plant	BC-C18		From SB-128 and SB-129 to BC-C1A	4s & 57s	150	430,313	PE	2
Sand Plant	BC-C18		From Deister screens to BC-C7	various	150	430,313	PE	2
Sand Plant	BC-C8A		From PM-226 to BCE-10 (shuttle conveyor)	various	150	430,313	PE PE	2
Sand Plant	SC-2		From SC-1 (from BH-217) to SB-142 (in #2 Mill)	various	150	430,313	FE	2
Sand Plant	SC-2 SC-3		From AC-225 to either SB-220 or BC-C8	various	150	430,313	FE FE	2
Sand Plant Sand Plant	SC-3 SC-4		From AS-228 to SB-142 (in #2 Mill)		200	430,313 573,750	FE FE	2
Sand Plant Sand Plant	SC-4 SC-1		From BH-217 to SC-2	various	150	430,313	FE FE	2
			From BH-217 to SC-2 From BH-218 to SB-232	various		,	FE FE	
Sand Plant Sand Plant	SC-3A ST-212		From BC-C3 to stockpile	various Sand	150 200	430,313 573,750	WS FE	2 2

	ID of Emission	Type Conveyor or		Material Handled [Note nominal size of material transferred		ying or Transfer ate	Dust Control	Approximate Material Moisture
Location	Unit	Transfer Point	Description	(e.g. 3/4" x 0)]	Max tph	Max tpy	Measures Applied	Content (%)
Bradley	BCBM-1	BC	From SB128 and SB-129 to BCBM-2	4s & 57s	50	143,438	PE	2
Bradley	BCBM-2	BC	From BCBM-1 to Sb-318	4s & 57s	50	143,438	PE	2
Bradley	SC-5 (old SC-1)	Screw	From BH-317 to SB-314	various	50	143,438	FE	2
Bradley	SC-6 (old SC-2)	Screw	From BM-319 to SC-7	various	50	143,438	ВН	2
Bradley	SC-7 (old SC-3)	Screw	From SC-6 to SB-309	various	50	143,438	ВН	2

ATTACHMENT M AIR POLLUTION CONTROL DEVICE SHEETS

Attachment M Air Pollution Control Device Sheet

(BAGHOUSE)

Control Device ID No. (must match Emission Units Table): 50-E (BH-50)

Equipment Information and Filter Characteristics

1.	Manufacturer: Pinnacle	2. Total number of compartments: 1	
	Model No. APC Model 634	Number of compartment online operation: 1	for normal
4.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state		
5.	Baghouse Configuration:		on
6.	Filter Fabric Bag Material: Nomex nylon Wool Polyester Polypropylene Acrylics Ceramics	7. Bag Dimension: Diameter 13 Length 3.33	in. ft.
	☐ Fiber Glass ☐ Cotton Weight oz./sq.yd	8. Total cloth area: 272	ft ²
	Teflon Thickness in	9. Number of bags: 24	
	☐ Others, specify Gore-Tex	10. Operating air to cloth ratio: 16.2 to 1	ft/min
11.	Baghouse Operation: Continuous	Automatic Intermittent	
12.	Method used to clean bags: Mechanical Shaker Sonic Cleaning Pneumatic Shaker Reverse Air Flow Bag Collapse Pulse Jet Manual Cleaning Reverse Jet	☐ Reverse Air Jet ☐ Other:	
13.	Cleaning initiated by: ☑ Timer ☐ Expected pressure drop range in. of water	☐ Frequency if timer actuated☐ Other	
14.	Operation Hours: Max. per day: 15 Max. per yr: 3,825	15. Collection efficiency: Rating: 98 Guaranteed minimum: Not stated	% %
	Gas Stream C	haracteristics	
16.	Gas flow rate into the collector: 4,400 ACFM ACFM: Design: 4,400 PSIA Maximum: 14		PSIA age 14.7
17.	Water Vapor Content of Effluent Stream: NA	lb. Water/lb. Dry Air	ago 14.7
	Gas Stream Temperature: ambient °F	19. Fan Requirements: 10.6 OR	hp ft³/min
20.	Stabilized static pressure loss across baghouse. Pre	ssure Drop: High 5	in. H ₂ O in. H ₂ O
21.	Particulate Loading: Inlet:		grain/scf

22. Type of Pollutant(s) to be collected (if particulate give specific type): Limestone dust at 70 PCF						
23. Is there any SO ₃ in the emission s	stream?	⊠ No □ Y	es SC	₃ cont	ent:	ppmv
24. Emission rate of pollutant (specify) into and o	ut of collector at	maximum	desigr	operating cond	itions:
				OUT		
Pollutant		lb/hr	grains/	acf	lb/hr	grains/acf
PM					0.83	0.022
PM10/PM2.5					0.40/0.06	
25. Complete the table:	Particle S	Size Distribution to Collector	at Inlet	Fra	ction Efficiency	of Collector
Particulate Size Range (microns)	Weig	ht % for Size Ra	inge	,	Weight % for Si	ze Range
0 – 2						
2 – 4						
4 – 6						
6 – 8						
8 – 10						
10 – 12						
12 – 16						
16 – 20						
20 – 30						
30 – 40						
40 – 50						
50 – 60						
60 – 70						
70 – 80						
80 – 90						
90 – 100						
>100						

26. How is filter monitored for indications of deterioration (e.g., broken bags)? ☐ Continuous Opacity
Pressure Drop
☐ Alarms-Audible to Process Operator ☐ Visual opacity readings, Frequency:
Other, specify:
27. Describe any recording device and frequency of log entries:
The operator checks the baghouse at the beginning of each shift of operation to verify that it is operating
and that there are no visible emissions. Pressure drop is checked as part of regularly scheduled
preventative maintenance activities.
28. Describe any filter seeding being performed:
NA
29. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas
reheating, gas humidification): NA
30. Describe the collection material disposal system:
Dust collector is equipped with a pyramidal hopper with a 55 degree valley angle. The hopper is equipped with a
flanged dust discharge opening 12" x 12" and a manual slide gate. The dust removed from this unit is collected in a portable container and utilized. Some of the dust is sold as a product and excess dust is re-deposited inside the
mine.
24. Here you is shaded Bowheres Control Device in the Emission Deints Date Comment Charles
31. Have you included <i>Baghouse Control Device</i> in the Emissions Points Data Summary Sheet? Yes

32. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.							
MONITORING:		RECORDKEEPING:					
None proposed.		None proposed.					
DEDODENIA		77.07.110					
REPORTING:		TESTING:					
None proposed.		None proposed.					
MONITORING:		ocess parameters and ranges that are proposed to be strate compliance with the operation of this process					
RECORDKEEPING: REPORTING:	Please describe the proposed re Please describe any proposed	ecordkeeping that will accompany the monitoring. I emissions testing for this process equipment on air					
TESTING:	pollution control device. Please describe any proposed pollution control device.	emissions testing for this process equipment on air					
33. Manufacturer's Gua	aranteed Capture Efficiency for ea	ch air pollutant.					
98%							
34. Manufacturer's Gua	aranteed Control Efficiency for each	ch air pollutant.					
99%							
35. Describe all operat	ing ranges and maintenance proce	edures required by Manufacturer to maintain warranty.					
_		e maintenance per manufacturer specifications. The ending on quarry crushing operations.					

(BAGHOUSE)

Control Device ID No. (must match Emission Units Table): 145-E (BH-145)

1. Manufacturer: Pinnacle	2. Total number of compartments: 1
Model No. APC Model 6P-384-10-RA	3. Number of compartment online for normal operation: 1
 Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state 	em with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.
5. Baghouse Configuration:	☐ Closed Pressure ☐ Closed Suction anced Fabric
6. Filter Fabric Bag Material: Nomex nylon Wool Polyester Polypropylene Acrylics Ceramics	7. Bag Dimension: Diameter 6 in. Length 10 ft.
☐ Fiber Glass ☐ Cotton Weight oz./sq.yd	8. Total cloth area: 6,032 ft ²
☐ Teflon Thickness in	9. Number of bags: 384
Others, specify Gortex	10. Operating air to cloth ratio: 5 to 1 ft/min
11. Baghouse Operation: Continuous	Automatic Intermittent
12. Method used to clean bags: ☐ Mechanical Shaker ☐ Sonic Cleaning ☐ Pneumatic Shaker ☐ Reverse Air Flow ☐ Bag Collapse ☐ Pulse Jet ☐ Manual Cleaning ☐ Reverse Jet	☐ Reverse Air Jet ☐ Other:
13. Cleaning initiated by: ☐ Timer ☐ Expected pressure drop range in. of water	☐ Frequency if timer actuated ☐ Other
14. Operation Hours: Max. per day: 15 Max. per yr: 3,825	15. Collection efficiency: Rating: 98 % Guaranteed minimum: %
Gas Stream C	Characteristics
16. Gas flow rate into the collector: 30,000 ACFN	
ACFM: Design: 30,000 PSIA Maximum: 1	· · · · · · · · · · · · · · · · · · ·
17. Water Vapor Content of Effluent Stream: NA	lb. Water/lb. Dry Air
18. Gas Stream Temperature: ambient °F	19. Fan Requirements: 10.6 hp OR ${\rm ft}^3/{\rm min}$
20. Stabilized static pressure loss across baghouse. Pre	
21. Particulate Loading: Inlet:	grain/scf Outlet: 0.022 grain/scf

22. Type of Pollutant(s) to be collected (if particulate give specific type): Limestone dust at 70 PCF							
On the theory and CO in the emission	-t		·				
23. Is there any SO ₃ in the emission s				ont		ppmv	
24. Emission rate of pollutant (specify	/) into and o	IN			esign operating conditions: OUT		
Pollutant		lb/hr	grains/	acf	lb/hr	grains/acf	
PM					5.66	0.022	
PM10/PM2.5					2.69 / 0.40		
25. Complete the table:	Particle S	Size Distribution at Inlet to Collector Fraction Efficien				of Collector	
Particulate Size Range (microns)	Weig	ht % for Size Ra	ange		Weight % for Si	ze Range	
0 – 2							
2 – 4							
4 – 6							
6 – 8							
8 – 10							
10 – 12							
12 – 16							
16 – 20							
20 – 30							
30 – 40							
40 – 50							
50 – 60							
60 – 70							
70 – 80							
80 – 90							
90 – 100							
>100							

26.	How is filter monitored for indications of deterioration (e.g., broken bags)? Continuous Opacity
	□ Pressure Drop
	☐ Alarms-Audible to Process Operator ☐ Visual opacity readings, Frequency:
	Other, specify:
27.	Describe any recording device and frequency of log entries:
	The operator checks the baghouse at the beginning of each shift of operation to verify that it is
	operating and that there are no visible emissions. Pressure drop is checked as part of regularly
	scheduled preventative maintenance activities.
28.	Describe any filter seeding being performed:
	NA
29.	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
	reneating, gas numumcation).
	NA
20	Describe the collection meterial disposal quetoms
30.	Describe the collection material disposal system:
	Dust collector is equipped with a pyramidal hopper with a 55 degree valley angle. The hopper is equipped
	with a flanged dust discharge opening 12" x 12" and a manual slide gate. The dust removed from this unit is collected in a portable container and utilized. Some of the dust is sold as a product and excess dust is re-
	deposited inside the mine.
31.	Have you included <i>Baghouse Control Device</i> in the Emissions Points Data Summary Sheet? Yes
	j zama a a a a a a a a a a a a a a a a a

32. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the						
proposed operating parameters. Please propose testing in order to demonstrate compliance with the						
proposed emission MONITORING:	is limits.	RECORDKEEPING:				
MONTONING.		RECORDICET INC.				
None proposed.		None proposed.				
REPORTING:		TESTING:				
None proposed.		None proposed.				
rione proposed.		Trone proposed.				
MONITORING:		ocess parameters and ranges that are proposed to be strate compliance with the operation of this process				
DECORDIZERING.	equipment or air control device.					
RECORDKEEPING: REPORTING:		cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air				
TESTING:	pollution control device.	emissions testing for this process equipment on air				
TESTING: Please describe any proposed emissions testing for this process equipment on a pollution control device.						
33. Manufacturer's Guaranteed Capture Efficiency for each air pollutant.						
98%						
34. Manufacturer's Gu	aranteed Control Efficiency for each	ch air pollutant.				
99%						
99%						
35. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.						
35. Describe all operat	ing ranges and maintenance proce	edures required by Manufacturer to maintain warranty.				
		e maintenance per manufacturer specifications. The ending on quarry crushing operations.				

(BAGHOUSE)

Control Device ID No. (must match Emission Units Table): 217-E (BH-217)

1.	Manufacturer: Mikropulsaire	2. Total number of compartments: 1	
	Model No.	3. Number of compartment online for operation: 1	normal
4.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state I		
5.	Baghouse Configuration: (check one) □ Open Pressure □ Electrostatically Enha	☐ Closed Pressure ☐ Closed Suction unced Fabric	
6.	Filter Fabric Bag Material: Nomex nylon Wool Polyester Polypropylene Acrylics Ceramics	7. Bag Dimension: Diameter 4.5 Length 5	in. ft.
	Fiber Glass	8. Total cloth area: 1,885	ft ²
	☐ Cotton Weight oz./sq.yd ☐ Teflon Thickness in	9. Number of bags: 320	
	Others, specify Gortex	10. Operating air to cloth ratio: 19.6 to 1	ft/min
11.	Baghouse Operation: Continuous	Automatic Intermittent	
12.	Method used to clean bags: ☐ Mechanical Shaker ☐ Sonic Cleaning ☐ Pneumatic Shaker ☐ Reverse Air Flow ☐ Bag Collapse ☐ Pulse Jet ☐ Manual Cleaning ☐ Reverse Jet	☐ Reverse Air Jet ☐ Other:	
13.	Cleaning initiated by: ☐ Timer ☐ Expected pressure drop range in. of water	☐ Frequency if timer actuated ☐ Other	
14.	Operation Hours: Max. per day: 15 Max. per yr: 3,825	15. Collection efficiency: Rating: 98 Guaranteed minimum:	% %
	Gas Stream C	haracteristics	
16.	Gas flow rate into the collector: 37,000 ACFM ACFM: Design: 37,000 PSIA Maximum: 14		PSIA PSIA
17.	Water Vapor Content of Effluent Stream: NA	lb. Water/lb. Dry Air	
18.	Gas Stream Temperature: ambient °F	19. Fan Requirements: 10.6 OR	hp ft³/min
20.	Stabilized static pressure loss across baghouse. Pre	ssure Drop: High 5 Low 2	in. H ₂ O in. H ₂ O
21.	Particulate Loading: Inlet:	grain/scf Outlet: 0.022 grain/scf	ain/scf

22.	22. Type of Pollutant(s) to be collected (if particulate give specific type): Limestone dust at 70 PCF						
23.	Is there any SO ₃ in the emission s	stream?		es SC	o ₃ cont	ent:	ppmv
	Emission rate of pollutant (specify						
	(op-on)	,	IN			OUT	
	Pollutant		lb/hr	grains/	acf	lb/hr	grains/acf
	PM					6.98	0.022
	PM10/PM2.5					3.32 / 0.50	
25.	Complete the table:	Particle S	Size Distribution to Collector	at Inlet	Fra	ction Efficiency	of Collector
Pa	rticulate Size Range (microns)	Weigl	ht % for Size Ra	inge		Weight % for Si	ze Range
	0 – 2						
	2 – 4						
	4 – 6						
	6 – 8						
	8 – 10						
	10 – 12						
	12 – 16						
	16 – 20						
	20 – 30						
	30 – 40						
	40 – 50						
	50 – 60						
	60 – 70						
	70 – 80						
	80 – 90						
	90 – 100						
	>100						

26.	How is filter monitored for indications of deterioration (e.g., broken bags)? Continuous Opacity
	□ Pressure Drop
	☐ Alarms-Audible to Process Operator ☐ Visual opacity readings, Frequency:
	Other, specify:
27.	Describe any recording device and frequency of log entries:
	The operator checks the baghouse at the beginning of each shift of operation to verify that it is
	operating and that there are no visible emissions. Pressure drop is checked as part of regularly
	scheduled preventative maintenance activities.
28.	Describe any filter seeding being performed:
	NA
29.	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
	reneating, gas numumcation).
	NA
20	Describe the collection meterial disposal quetom:
30.	Describe the collection material disposal system:
	Dust collector is equipped with a pyramidal hopper with a 55 degree valley angle. The hopper is equipped
	with a flanged dust discharge opening 12" x 12" and a manual slide gate. The dust removed from this unit is collected in a portable container and utilized. Some of the dust is sold as a product and excess dust is re-
	deposited inside the mine.
31.	Have you included <i>Baghouse Control Device</i> in the Emissions Points Data Summary Sheet? Yes
	j zama a a a a a a a a a a a a a a a a a

32. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.					
MONITORING:		RECORDKEEPING:			
None proposed.		None proposed.			
REPORTING:		TESTING:			
None proposed.		None proposed.			
MONITORING:		ocess parameters and ranges that are proposed to be strate compliance with the operation of this process			
RECORDKEEPING: REPORTING:		cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air			
TESTING: Please describe any proposed emissions testing for this process equipment on pollution control device.					
33. Manufacturer's Gu	aranteed Capture Efficiency for ea	ch air pollutant.			
98%					
34. Manufacturer's Gu	aranteed Control Efficiency for each	ch air pollutant.			
99%					
OF Described Headers		- Land and the Man fact and a solution are set			
35. Describe all operat	ing ranges and maintenance proce	edures required by Manufacturer to maintain warranty.			
		e maintenance per manufacturer specifications. The ending on quarry crushing operations.			

(BAGHOUSE)

Control Device ID No. (must match Emission Units Table): 218-E (BH-218)

1.	Manufacturer: General Electric	2. Total number of compartments: 1	
	Model No. Pulse Jet Model GE-266	3. Number of compartment online for operation: 1	normal
4.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state I		
5.	Baghouse Configuration:		
6.	Filter Fabric Bag Material: Nomex nylon Wool Polyester Polypropylene Acrylics Ceramics Fiber Glass	7. Bag Dimension: Diameter 6 Length 12	in. ft.
	☐ Cotton Weight oz./sq.yd	8. Total cloth area: 5,014	ft ²
	Teflon Thickness in	9. Number of bags: 266	
	Others, specify	10. Operating air to cloth ratio: 1.9 to 1	ft/min
11.	Baghouse Operation:	Automatic Intermittent	
12.	Method used to clean bags: ☐ Mechanical Shaker ☐ Sonic Cleaning ☐ Pneumatic Shaker ☐ Reverse Air Flow ☐ Bag Collapse ☐ Pulse Jet ☐ Manual Cleaning ☐ Reverse Jet	☐ Reverse Air Jet ☐ Other:	
13.	Cleaning initiated by: ☑ Timer ☐ Expected pressure drop range in. of water	☐ Frequency if timer actuated ☐ Other	
14.	Operation Hours: Max. per day: 15 Max. per yr: 3,825	15. Collection efficiency: Rating: 98 Guaranteed minimum:	% %
	Gas Stream C	haracteristics	
16.	Gas flow rate into the collector: 9,600 ACFM ACFM: Design: 9,600 PSIA Maximum: 14		PSIA PSIA
17.	Water Vapor Content of Effluent Stream: NA	lb. Water/lb. Dry Air	
18.	Gas Stream Temperature: ambient °F	19. Fan Requirements: 27.2 OR	hp ft³/min
20.	Stabilized static pressure loss across baghouse. Pre	ssure Drop: High 7 Low 3	in. H ₂ O in. H ₂ O
21.	Particulate Loading: Inlet:	grain/scf Outlet: 0.022 grain/scf	ain/scf

22. Type of Pollutant(s) to be collected (if particulate give specific type): Limestone dust at 70 PCF						
23. Is there any SO ₃ in the emission s				₃ cont		ppmv
24. Emission rate of pollutant (specify) into and o	İ	maximum N	desigr	n operating cond O l	
Pollutant		lb/hr	grains/			grains/acf
PM					0.83	0.022
PM10/PM2.5					0.40 / 0.06	
25. Complete the table:	Particle S	Size Distribution to Collector	at Inlet	Fra	ction Efficiency	of Collector
Particulate Size Range (microns)	Weigl	ht % for Size Ra	inge		Weight % for Si	ze Range
0 – 2						
2 – 4						
4 – 6						
6 – 8						
8 – 10						
10 – 12						
12 – 16						
16 – 20						
20 – 30						
30 – 40						
40 – 50						
50 – 60						
60 – 70						
70 – 80						
80 – 90						
90 – 100						
>100						

26.	How is filter monitored for indications of deterioration (e.g., broken bags)? Continuous Opacity
	□ Pressure Drop
	☐ Alarms-Audible to Process Operator ☐ Visual opacity readings, Frequency:
	Other, specify:
27.	Describe any recording device and frequency of log entries:
	The operator checks the baghouse at the beginning of each shift of operation to verify that it is
	operating and that there are no visible emissions. Pressure drop is checked as part of regularly
	scheduled preventative maintenance activities.
28.	Describe any filter seeding being performed:
	NA
29.	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
	reneating, gas numumcation).
	NA
20	Describe the collection meterial disposal quetom:
30.	Describe the collection material disposal system:
	Dust collector is equipped with a pyramidal hopper with a 55 degree valley angle. The hopper is equipped
	with a flanged dust discharge opening 12" x 12" and a manual slide gate. The dust removed from this unit is collected in a portable container and utilized. Some of the dust is sold as a product and excess dust is re-
	deposited inside the mine.
31.	Have you included <i>Baghouse Control Device</i> in the Emissions Points Data Summary Sheet? Yes
	j zama a a a a a a a a a a a a a a a a a

32. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the							
proposed operating parameters. Please propose testing in order to demonstrate compliance with the							
proposed emission MONITORING:	is limits.	RECORDKEEPING:					
MONTONING.		RECORDICET INC.					
None proposed.		None proposed.					
REPORTING:		TESTING:					
None proposed.		None proposed.					
rione proposed.		Trone proposed.					
MONITORING:		ocess parameters and ranges that are proposed to be strate compliance with the operation of this process					
DECORDIZERING.	equipment or air control device.						
RECORDKEEPING: REPORTING:		ecordkeeping that will accompany the monitoring. If emissions testing for this process equipment on air					
TESTING:	pollution control device.	d emissions testing for this process equipment on air					
TEOTING.	pollution control device.	chilosions testing for this process equipment on an					
33. Manufacturer's Gua	aranteed Capture Efficiency for ea	ch air pollutant.					
98%							
34. Manufacturer's Gu	aranteed Control Efficiency for each	ch air pollutant.					
99%							
99%							
25 Describe all aparet	ing ranges and maintanance pres	adures required by Monufacturer to maintain warrents					
35. Describe all operat	ing ranges and maintenance proce	edures required by Manufacturer to maintain warranty.					
		e maintenance per manufacturer specifications. The ending on quarry crushing operations.					

(BAGHOUSE)

Control Device ID No. (must match Emission Units Table): 250-E (BH-250)

1.	Manufacturer: Pinnacle	2. Total number of compartments: 1	
	Model No. APC Model 634	Number of compartment online for operation: 1	normal
4.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state		
5.	Baghouse Configuration: (check one) □ Open Pressure □ Electrostatically Enhance □ Other, Specify	☐ Closed Pressure ☐ Closed Suction anced Fabric	
6.	Filter Fabric Bag Material: Nomex nylon Wool Polyester Polypropylene Acrylics Ceramics	7. Bag Dimension: Diameter 13 Length 3.33	in. ft.
	☐ Fiber Glass ☐ Cotton Weight oz./sq.yd	8. Total cloth area: 272	ft ²
	☐ Cotton Weight oz./sq.yd ☐ Teflon Thickness in	9. Number of bags: 24	
	Others, specify Gortex	10. Operating air to cloth ratio: 16.2 to 1	ft/min
11.	Baghouse Operation: Continuous	Automatic Intermittent	
12.	Method used to clean bags: ☐ Mechanical Shaker ☐ Sonic Cleaning ☐ Pneumatic Shaker ☐ Reverse Air Flow ☐ Bag Collapse ☐ Pulse Jet ☐ Manual Cleaning ☐ Reverse Jet	☐ Reverse Air Jet ☐ Other:	
13.	Cleaning initiated by: ☐ Timer ☐ Expected pressure drop range in. of water	☐ Frequency if timer actuated ☐ Other	
14.	Operation Hours: Max. per day: 15 Max. per yr: 3,825	15. Collection efficiency: Rating: 98 Guaranteed minimum:	% %
	Gas Stream C	haracteristics	
16.	Gas flow rate into the collector: 4,400 ACFM ACFM: Design: 4,400 PSIA Maximum: 14		PSIA PSIA
17.	Water Vapor Content of Effluent Stream: NA	lb. Water/lb. Dry Air	1 01/4
-	Gas Stream Temperature: ambient °F	19. Fan Requirements: 10.6 OR	hp ft³/min
20.	Stabilized static pressure loss across baghouse. Pre	essure Drop: High 5 Low 2	in. H ₂ O in. H ₂ O
21.	Particulate Loading: Inlet:		ain/scf

22. Type of Pollutant(s) to be collected (if particulate give specific type): Limestone dust at 70 PCF						
23. Is there any SO_3 in the emission s	stream?		es SC) ₃ cont	ent:	ppmv
24. Emission rate of pollutant (specify						
, , , , , , , , , , , , , , , , , , ,	,	l	N	3	OL	
Pollutant		lb/hr	grains/	acf	lb/hr	grains/acf
PM					1.38	0.022
PM10/PM2.5					0.66 / 0.10	
25. Complete the table:	Particle S	Size Distribution to Collector	at Inlet	Fra	ction Efficiency	of Collector
Particulate Size Range (microns)	Weigl	ht % for Size Ra	ange		Weight % for Si	ze Range
0 – 2						
2 – 4						
4 – 6						
6 – 8						
8 – 10						
10 – 12						
12 – 16						
16 – 20						
20 – 30						
30 – 40						
40 – 50						
50 – 60						
60 – 70						
70 – 80						
80 – 90						
90 – 100						
>100						

26.	How is filter monitored for indications of deterioration (e.g., broken bags)? Continuous Opacity
	□ Pressure Drop
	☐ Alarms-Audible to Process Operator ☐ Visual opacity readings, Frequency:
	Other, specify:
27.	Describe any recording device and frequency of log entries:
	The operator checks the baghouse at the beginning of each shift of operation to verify that it is
	operating and that there are no visible emissions. Pressure drop is checked as part of regularly
	scheduled preventative maintenance activities.
28.	Describe any filter seeding being performed:
	NA
29.	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
	reneating, gas numumcation).
	NA
20	Describe the collection meterial disposal quetom:
30.	Describe the collection material disposal system:
	Dust collector is equipped with a pyramidal hopper with a 55 degree valley angle. The hopper is equipped
	with a flanged dust discharge opening 12" x 12" and a manual slide gate. The dust removed from this unit is collected in a portable container and utilized. Some of the dust is sold as a product and excess dust is re-
	deposited inside the mine.
31.	Have you included <i>Baghouse Control Device</i> in the Emissions Points Data Summary Sheet? Yes
	j zama a dirina di a dirina di a d

32. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.						
MONITORING:		RECORDKEEPING:				
None proposed.		None proposed.				
REPORTING:		TESTING:				
None proposed.		None proposed.				
None proposed.		None proposed.				
MONITODING	Diagon list and describe the sur					
MONITORING:	monitored in order to demons	ocess parameters and ranges that are proposed to be strate compliance with the operation of this process				
RECORDKEEPING:	equipment or air control device. Please describe the proposed re	cordkeeping that will accompany the monitoring.				
REPORTING:	Please describe any proposed	d emissions testing for this process equipment on air				
TESTING:	pollution control device. Please describe any proposed pollution control device.	emissions testing for this process equipment on air				
33. Manufacturer's Gua	aranteed Capture Efficiency for ea	ch air pollutant.				
98%						
34. Manufacturer's Gua	aranteed Control Efficiency for each	ch air pollutant.				
99%						
35. Describe all operat	ing ranges and maintenance proce	edures required by Manufacturer to maintain warranty.				
_		e maintenance per manufacturer specifications. The ending on quarry crushing operations.				

(BAGHOUSE)

Control Device ID No. (must match Emission Units Table): 317-E (BH-317)

1.	Manufacturer: Brooks	2. Total number of compartments: 1	
	Model No. Pulsking M100S	Number of compartment online for operation: 1	normal
4.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state		
5.	Baghouse Configuration: (check one) □ Open Pressure □ Electrostatically Enha	☐ Closed Pressure ☐ Closed Suction anced Fabric	
6.	Filter Fabric Bag Material: Nomex nylon Wool Polyester Polypropylene Acrylics Ceramics Fiber Glass	 7. Bag Dimension: Diameter 6 Length 12 8. Total cloth area: 1,885 	in. ft.
	Cotton Weight oz./sq.yd	9. Number of bags: 100	
	☐ Teflon Thickness in ☐ Others, specify Gortex	<u> </u>	6.1
	<u> </u>	10. Operating air to cloth ratio: 4.5 to 1	ft/min
11.	Baghouse Operation: Continuous	Automatic Intermittent	
12.	Method used to clean bags: ☐ Mechanical Shaker ☐ Sonic Cleaning ☐ Pneumatic Shaker ☐ Reverse Air Flow ☐ Bag Collapse ☐ Pulse Jet ☐ Manual Cleaning ☐ Reverse Jet	☐ Reverse Air Jet ☐ Other:	
13.	Cleaning initiated by: ☐ Timer ☐ Expected pressure drop range in. of water	☐ Frequency if timer actuated ☐ Other	
14.	Operation Hours: Max. per day: 15 Max. per yr: 3,825	15. Collection efficiency: Rating: 98 Guaranteed minimum: Not stated	% %
	Gas Stream C	haracteristics	
16.	Gas flow rate into the collector: 8,500 ACFM ACFM: Design: 8,500 PSIA Maximum: 14		PSIA PSIA
17.	Water Vapor Content of Effluent Stream: NA	lb. Water/lb. Dry Air	
18.	Gas Stream Temperature: ambient °F	19. Fan Requirements: 10.6 OR	hp ft ³ /min
20.	Stabilized static pressure loss across baghouse. Pre	ssure Drop: High 5 Low 2	in. H ₂ O in. H ₂ O
21.	Particulate Loading: Inlet:		ain/scf

22. Type of Pollutant(s) to be collected (if particulate give specific type): Limestone dust at 70 PCF						
23. Is there any SO ₃ in the emission s	stream?	⊠ No □ Y	es SC	₃ cont	ent:	ppmv
24. Emission rate of pollutant (specify) into and o	ut of collector at	maximum	desigr	n operating cond	itions:
		ll II			Ol	
Pollutant		lb/hr	grains/	acf	lb/hr	grains/acf
PM					1.60	0.022
PM10/PM2.5					0.76 / 0.11	
25. Complete the table:	Particle S	Size Distribution to Collector	at Inlet	Fra	ction Efficiency	of Collector
Particulate Size Range (microns)	Weig	ht % for Size Ra	nge		Weight % for S	ze Range
0 – 2						
2 – 4						
4 – 6						
6 – 8						
8 – 10						
10 – 12						
12 – 16						
16 – 20						
20 – 30						
30 – 40						
40 – 50						
50 – 60						
60 – 70						
70 – 80						
80 – 90						
90 – 100						
>100						

26.	How is filter monitored for indications of deterioration (e.g., broken bags)? Continuous Opacity
	□ Pressure Drop
	☐ Alarms-Audible to Process Operator ☐ Visual opacity readings, Frequency:
	Other, specify:
27.	Describe any recording device and frequency of log entries:
	The operator checks the baghouse at the beginning of each shift of operation to verify that it is
	operating and that there are no visible emissions. Pressure drop is checked as part of regularly
	scheduled preventative maintenance activities.
28.	Describe any filter seeding being performed:
	NA
29.	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
	reneating, gas numumcation).
	NA
20	Describe the collection meterial disposal quetom:
30.	Describe the collection material disposal system:
	Dust collector is equipped with a pyramidal hopper with a 55 degree valley angle. The hopper is equipped
	with a flanged dust discharge opening 12" x 12" and a manual slide gate. The dust removed from this unit is collected in a portable container and utilized. Some of the dust is sold as a product and excess dust is re-
	deposited inside the mine.
31.	Have you included <i>Baghouse Control Device</i> in the Emissions Points Data Summary Sheet? Yes
	j zama a dirina di a dirina di a d

32. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.						
MONITORING:		RECORDKEEPING:				
None proposed.		None proposed.				
DEDODTING:		TEOTING.				
REPORTING:		TESTING:				
None proposed.		None proposed.				
MONITORING:		ocess parameters and ranges that are proposed to be strate compliance with the operation of this process				
RECORDKEEPING: REPORTING: TESTING:	equipment or air control device. Please describe the proposed re Please describe any proposed pollution control device. Please describe any proposed	ecordkeeping that will accompany the monitoring. d emissions testing for this process equipment on air				
33 Manufacturer's Gu	pollution control device. aranteed Capture Efficiency for ea	ch air pollutant				
98%	aranteed Capture Eniciency for ea	on all politicant.				
24 Manufacturar's Cu	aranteed Control Efficiency for eac	sh air nallutant				
	aranteed Control Efficiency for each	an ponutant.				
99%						
35. Describe all operat	ing ranges and maintenance proce	edures required by Manufacturer to maintain warranty.				
The unit receives periodic inspection and preventive maintenance per manufacturer specifications. The unit operates outdoors and functions year round depending on quarry crushing operations.						

(BAGHOUSE)

Control Device ID No. (must match Emission Units Table): 450-E (BH-450)

1.	Manufacturer: Pinnacle	2. Total number of compartments: 1				
	Model No. 334 Cartridge Dust Collector	3. Number of compartment online for operation: 1	normal			
4.	Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air vo capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.					
5.	Baghouse Configuration: (check one) □ Open Pressure □ Electrostatically Enha	☐ Closed Pressure ☐ Closed Suction Inced Fabric				
6.	Filter Fabric Bag Material: Nomex nylon Wool Polyester Polypropylene Acrylics Ceramics	7. Bag Dimension: Diameter 13 Length 40	in. ft.			
	Fiber Glass	8. Total cloth area: 1,080	ft ²			
	☐ Cotton Weight oz./sq.yd ☐ Teflon Thickness in	9. Number of bags: 12 cartridges				
	☐ Others, specify Gortex	10. Operating air to cloth ratio: 4.1 to 1	ft/min			
11.	Baghouse Operation: Continuous	Automatic Intermittent				
12.	Method used to clean bags: ☐ Mechanical Shaker ☐ Sonic Cleaning ☐ Pneumatic Shaker ☐ Reverse Air Flow ☐ Bag Collapse ☐ Pulse Jet ☐ Manual Cleaning ☐ Reverse Jet	Reverse Air Jet Other:				
13.	Cleaning initiated by: ☐ Timer ☐ Expected pressure drop range in. of water	☐ Frequency if timer actuated ☐ Other				
14.	Operation Hours: Max. per day: 15 Max. per yr: 3,825	15. Collection efficiency: Rating: 98 Guaranteed minimum:	% %			
	Gas Stream C	haracteristics				
16.	Gas flow rate into the collector: 4,400 ACFM: Design: 4,400 PSIA Maximum: 4,		PSIA			
17.	Water Vapor Content of Effluent Stream: NA	lb. Water/lb. Dry Air				
18.	Gas Stream Temperature: 70 °F	19. Fan Requirements: 10.6 OR	hp ft ³ /min			
20.	Stabilized static pressure loss across baghouse. Pre	ssure Drop: High 5 Low 2	in. H ₂ O in. H ₂ O			
21.	Particulate Loading: Inlet: 2		nin/scf			

22. Type of Pollutant(s) to be collected (if particulate give specific type): Limestone dust at 70 PCF						
23. Is there any SO_3 in the emission s	stream?		es SC) ₃ cont	ent:	ppmv
24. Emission rate of pollutant (specify						
, , , , , , , , , , , , , , , , , , ,	,	İ	N	3	OL	
Pollutant		lb/hr	grains/	acf	lb/hr	grains/acf
PM					0.83	0.022
PM10/PM2.5					0.40 / 0.06	
25. Complete the table:	Particle S	Size Distribution to Collector	at Inlet	Fra	ction Efficiency	of Collector
Particulate Size Range (microns)	Weigl	ht % for Size Ra	ange		Weight % for Si	ze Range
0 – 2						
2 – 4						
4 – 6						
6 – 8						
8 – 10						
10 – 12						
12 – 16						
16 – 20						
20 – 30						
30 – 40						
40 – 50						
50 – 60						
60 – 70						
70 – 80						
80 – 90						
90 – 100						
>100						

26.	How is filter monitored for indications of deterioration (e.g., broken bags)? Continuous Opacity
	□ Pressure Drop
	☐ Alarms-Audible to Process Operator ☐ Visual opacity readings, Frequency:
	Other, specify:
27.	Describe any recording device and frequency of log entries:
	The operator checks the baghouse at the beginning of each shift of operation to verify that it is
	operating and that there are no visible emissions. Pressure drop is checked as part of regularly
	scheduled preventative maintenance activities.
28.	Describe any filter seeding being performed:
	NA
29.	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
	reneating, gas numumcation).
	NA
20	Describe the collection meterial disposal quetoms
30.	Describe the collection material disposal system:
	Dust collector is equipped with a pyramidal hopper with a 55 degree valley angle. The hopper is equipped
	with a flanged dust discharge opening 12" x 12" and a manual slide gate. The dust removed from this unit is collected in a portable container and utilized. Some of the dust is sold as a product and excess dust is re-
	deposited inside the mine.
31.	Have you included <i>Baghouse Control Device</i> in the Emissions Points Data Summary Sheet? Yes
	j zama a dirina di a dirina di a d

Please propose m	g parameters. Please propose	and Testing eporting in order to demonstrate compliance with the testing in order to demonstrate compliance with the
MONITORING:		RECORDKEEPING:
None proposed.		None proposed.
REPORTING:		TESTING:
KEFORTING.		TESTING.
None proposed.		None proposed.
MONITORING:		ocess parameters and ranges that are proposed to be strate compliance with the operation of this process
RECORDKEEPING:	Please describe the proposed re	cordkeeping that will accompany the monitoring.
REPORTING:	Please describe any proposed pollution control device.	emissions testing for this process equipment on air
TESTING:	•	emissions testing for this process equipment on air
33. Manufacturer's Gua	aranteed Capture Efficiency for ea	ch air pollutant.
98%		
7070		
O.A. Manufacturaria O	ananta ad Ocartus I Efficiency for according	ala alla alla della
34. Manufacturer's Gua	aranteed Control Efficiency for each	ch air poliutant.
99%		
35. Describe all operat	ing ranges and maintenance proce	edures required by Manufacturer to maintain warranty.
The unit receives per	riodic inspection and preventive	e maintenance per manufacturer specifications. The
_		ending on quarry crushing operations.
	, ,	

ATTACHMENT N SUPPORTING EMISSIONS CALCULATIONS

Civil & Environmental Consultants
Checked By: DDR
11/5/2015
Date: 8/14/15

Proposed Facility Emissions

Total Facility	Uncontrolled		Controlled	
	lb/hr tpy		lb/hr	tpy
PM	1,462.91	3,678.98	256.58	343.27
PM10	522.76	1,300.02	99.92	142.16
PM2.5	73.22	191.82	13.27	19.68

Point Sources

Total	Uncontrolled		Controlled	
Point Source	lb/hr	tpy	lb/hr	tpy
PM	1,060.58	3,266.78	130.27	195.00
PM10	402.75	1,172.18	61.24	92.10
PM2.5	60.93	178.10	9.18	13.81

No. 1 Mill	Uncontrolled Controlled		rolled	
	lb/hr	lb/hr tpy		tpy
PM	229.78	232.64	80.55	86.39
PM10	100.68	101.74	37.56	40.38
PM2.5	15.06	15.22	5.63	6.05

No. 2 Mill	Uncor	Uncontrolled		rolled
	lb/hr	lb/hr tpy		tpy
PM	149.94	148.65	32.56	52.61
PM10	61.48	61.31	15.50	25.05
PM2.5	9.27	9.24	2.33	3.76

Sand Plant	Uncontrolled		Uncontrolled Controlled	
	lb/hr tpy		lb/hr	tpy
PM	678.77	2,882.51	15.31	48.66
PM10	239.59	1,007.73	7.29	23.17
PM2.5	36.45	153.43	1.09	3.48

Bradley Mill	Uncontrolled		radley Mill Uncontrolled Controlled		rolled
	lb/hr tpy		lb/hr	tpy	
PM	2.09	2.97	1.84	7.34	
PM10	1.00	1.41	0.88	3.50	
PM2.5	0.15	0.21	0.13	0.52	

Civil & Environmental Consultants	Checked By: DDR
11/5/2015	Date: 8/14/15

Proposed Facility Emissions

Fugitive Sources

Total	Uncontrolled		Controlled	
Fugitive Source	lb/hr	tpy	lb/hr	tpy
PM	402.34	412.20	126.32	148.27
PM10	120.00	127.84	38.68	50.07
PM2.5	12.29	13.72	4.09	5.87

Stockpiles	Uncor	Uncontrolled		rolled
	lb/hr	lb/hr tpy		tpy
PM	8.03	35.15	8.03	35.15
PM10	3.82	16.74	3.82	16.74
PM2.5	0.57	2.51	0.57	2.51

Haulroads	Uncontrolled		Controlled	
	lb/hr	tpy	lb/hr	tpy
PM	394.31	377.05	118.29	113.12
PM10	116.18	111.10	34.86	33.33
PM2.5	11.72	11.21	3.52	3.36

Civil & Environmental Consultants
Checked By: DDR
11/5/2015
Date: 8/14/15

11/5/2015								Date: 8/14
Dust Collectors								
							Cont	rolled
Emission Point	Equipment	Control Device	Air Flow	Annual	Regulated	Emission	Hourly	Annual
ID Number	Description	ID Number		Air Flow	Pollutant	Limit ⁽³⁾	Emissions	Emission
			(ACFM)	(ACF x 10 ⁶)		(grains/ACF)	(lb/hr)	(tpy)
	No. 1 Mill Cone Crusher				PM	,	0.83	3.63
50-E	Baghouse	BH-50	4,400	2,313	PM10	0.022	0.40	1.73
					PM2.5		0.06	0.26
Emission Point	Equipment	Control Device	Air Flow	Annual	Regulated	Emission	Hourly	Annual
ID Number	Description	ID Number		Air Flow	Pollutant	Limit ⁽³⁾	Emissions	Emission
	•		(ACFM)	(ACF x 10 ⁶)		(grains/ACF)	(lb/hr)	(tpy)
	Omni Crusher		(rici wi)	(MCI X IO)	PM	(grams/rer)	0.83	3.63
450-E	Baghouse	BH-450	4,400	2,313	PM10	0.022	0.40	1.73
430 E	Bugnouse	BH 450	1,100	2,313	PM2.5	0.022	0.06	0.26
<u>-</u>		+		!	1112.3	<u> </u>	0.00	0.20
					Regulated		Hourly	Annual
					Pollutant		Emissions	Emission
						No. 1 Mill	(lb/hr)	(tpy)
					PM	Baghouse Total	1.66	7.27
					PM10		0.79	3.46
					PM2.5		0.12	0.52
Emission Point	Equipment	Control Device	Air Flow	Annual	Regulated	Emission	Hourly	Annual
ID Number	Description	ID Number		Air Flow	Pollutant	Limit ⁽³⁾	Emissions	Emission
1D I vallioer	Bescription	15 Tumber	(ACEM)	(ACF x 10 ⁶)	Tonutunt			
		+	(ACFM)	(ACF x 10°)	PM	(grains/ACF)	(lb/hr) 5.66	(tpy) 24.78
145 E	No. 2 Mill Dockouse	DII 145	30,000	15,768	PM10	0.022	2.69	11.80
145-E	No. 2 Mill Baghouse	BH-145	30,000	13,708	PM10 PM2.5	0.022	0.40	1.77
<u> </u>		<u> </u>		ļ	1 1412.3	ļ	0.40	1.//
					Regulated		Hourly	Annual
					Pollutant		Emissions	Emission
						No. 2 Mill	(lb/hr)	(tpy)
					PM	Baghouse Total	5.66	24.78
					PM10		2.69	11.80
					PM2.5		0.40	1.77
								,
Emission Point	Equipment	Control Device	Air Flow	Annual	Regulated	Emission	Hourly	Annual
ID Number	Description	ID Number		Air Flow	Pollutant	Limit ⁽³⁾	Emissions	Emission
	1		(ACFM)	(ACF x 10 ⁶)		(grains/ACF)	(lb/hr)	(tpy)
	Sand Plant Deister Screen	1	(/	(// // // // // // // // // // // //	PM	(8)	6.98	30.56
217-E	Baghouse	BH-217	37,000	19,447	PM10	0.022	3.32	14.55
			,		PM2.5		0.50	2.18
Emission Point	Equipment	Control Device	Air Flow	Annual	Regulated	Emission	Hourly	Annual
ID Number	Description	ID Number		Air Flow	Pollutant	Limit ⁽³⁾	Emissions	Emission
1,0,,,,,	Description	125 1 (411100)	(ACFM)	(ACF x 10 ⁶)	1 011444111	(grains/ACF)	(lb/hr)	(tpy)
	Sand Plant Air Classifier	+	(ACFIVI)	(ACF X 10)	PM	(grains/ACF)	0.83	3.63
218-E	Baghouse	BH-218	4,400	2,313	PM10	0.022	0.40	1.73
410-E	Dagnouse	DH-218	4,400	2,313	PM10 PM2.5	0.022	0.40	0.26
		+ +			F 1VI2.3		0.00	0.20

Checked By: DDR Date: 8/14/15 Civil & Environmental Consultants

Duct	Collec	tore

11/5/2015

Dubt Comectors								
Emission Point	Equipment	Control Device	Air Flow	Annual	Regulated	Emission	Hourly	Annual
ID Number	Description	ID Number		Air Flow	Pollutant	Limit ⁽³⁾	Emissions	Emissions
			(ACFM)	(ACF x 10 ⁶)		(grains/ACF)	(lb/hr)	(tpy)
	Sand Plant Cone Crusher				PM		1.38	6.03
250-E	Baghouse	BH-250	7,300	3,837	PM10	0.022	0.66	2.87
					PM2.5		0.10	0.43

Regulated		Hourly	Annual
Pollutant		Emissions	Emissions
	Sand Plant	(lb/hr)	(tpy)
PM	Baghouse Total	9.18	40.22
PM10		4.37	19.15
PM2.5		0.66	2.87

Emission Point	Equipment	Control Device	Air Flow	Annual	Regulated	Emission	Hourly	Annual
ID Number	Description	ID Number		Air Flow	Pollutant	Limit ⁽³⁾	Emissions	Emissions
			(ACFM)	(ACF x 10 ⁶)		(grains/ACF)	(lb/hr)	(tpy)
	Bradley Mill				PM		1.60	7.02
317-E	Baghouse	BH-317	8,500	4,468	PM10	0.022	0.76	3.34
					PM2.5		0.11	0.50

1. PM conversion to PM10 and PM2.5: Partlicle size multipliers (k) AP42 Section 13.2.4-4 (11/06):

	PM	PM10	PM2.5
	0.74	0.35	0.053
,	Conversion Factor	2.1	14

Regulated Pollutant	Bradley Mill	Hourly Emissions (lb/hr)	Annual Emissions
PM	Baghouse Total	(/	(tpy) 7.02
PM10		0.76	3.34
PM2 5		0.11	0.50

Civil & Environmental Consultants	Checked By: DDR
11/5/2015	Date: 8/14/15

Transfer Points No. 1 Mill and Crusher Run System

 $E(lbs/ton) = k*(0.0032)*[(U/5)^1.3]/[(M/2)^1.4]$

Transfer Points

Transfer Point	Material	Material	Control	Control	P	M	Pl	M
ID Number	Throughput	Throughput	Device	Efficiency		trolled	Contr	
	(tph)	(tpy)		(%)	(lb/hr)		(lb/hr)	(tpy)
TP1	1,350	2,581,875	N	0	5.00	4.78	5	4.78
TP2	1,350	2,581,875	FE	80	5.00	4.78	1	0.96
TP3	750	1,649,850	N	0	2.78	3.05	2.78	3.05
TP3A	600	1,147,500	PE	50	2.22	2.12	1.11	1.06
TP4	750	1,649,850	N	0	2.78	3.05	2.78	3.05
TP5A	750	1,649,850	FE	80	2.78	3.05	0.56	0.61
TP5B	750	1,649,850	FE	80	2.78	3.05	0.56	0.61
TP6	750	1,649,850	FE	80	2.78	3	0.56	0.61
TP7	750	1,434,375	FE	80	2.78	2.65	0.56	0.53
TP8	750	1,434,375	N	0	2.78	2.65	2.78	2.65
TP10	1,350	2,581,875	FE	80	5.00	4.78	1	0.96
TP10A	1,350	2,581,875	N	0	5.00	4.78	5	4.78
TP11	1,350	2,581,875	FE	80	5.00	4.78	1	0.96
TP11A	1,350	2,581,875	N	0	5.00	4.78	5	4.78
TP12A	750	1,434,375	PE	50	2.78	2.65	1.39	1.33
TP12B	750	1,434,375	PE	50	2.78	2.65	1.39	1.33
TP13A	750	1,434,375	PE	50	2.78	2.65	1.39	1.33
TP13B	750	1,434,375	PE	50	2.78	2.65	1.39	1.33
TP14	750	1,434,375	BH	99	2.78	2.65	See B	H-50
TP15	750	1,434,375	BH	99	2.78	3	See B	H-50
TP16	290	731,850	FE/WS	94	1.07	1.35	See B	H-50
TP17	290	731,850	BH	99	1.07	1.35	See B	H-50
TP18	460	918,000	FE/WS	94	1.70	2	See B	H-50
TP19	460	918,000	BH	99	1.70	2	See B	H-50
TP20	750	1,434,375	PE	50	2.78	3	1.39	1.33
TP21	750	1,434,375	N	0	2.78	3	2.78	2.65
TP24	600	1,147,500	FE	80	2.22	2	0.44	0.42
TP24A	600	1,147,500	FE	80	2.22	2	0.44	0.42
TP25	600	1,147,500	FE	80	2.22	2	0.44	0.42
TP25B	330	631,125	FE	80	1.22	1	0.24	0.23
TP26	600	1,147,500	FE	80	2.22	2	0.44	0.42
TP27	600	1,147,500	BH	99	2.22	2	See B	H-450
TP28	600	1,147,500	BH	99	2.22	2	See B	H-450
TP30	660	1,262,250	FE	80	2.44	2	0.49	0.47
TP31	330	631,125	FE	80	1.22	1	0.24	0.23
TP32	330	631,125	FE	80	1.22	1	0.24	0.23
TP33	330	631,125	FE	80	1.22	1	0.24	0.23
TP34	330	631,125	FE	80	1.22	1	0.24	0.23
TP35	330	631,125	FE	80	1.22	1	0.24	0.23
TP36	330	631,125	FE	80	1.22	1	0.24	0.23
TP37	330	631,125	FE	80	1.22	1	0.24	0.23
TP38	330	631,125	N	0	1.22	1	1.22	1.17
TP39	330	631,125	N	0	1.22	1	1.22	1.17
TP41	330	631,125	N	0	1.22	1	1.22	1.17
TP42	330	631,125	WS	70	1.22	1	0.37	0.35
TP43	330	631,125	PE	50	1.22	1	0.61	0.59
TP44	330	631,125	PE	50	1.22	1	0.61	0.59
TP45	660	1,262,250	N	0	2.44	2	2.44	2.34
TP46	660	1,262,250	PE	50	2.44	2	1.22	1.17
TP47	660	1,262,250	PE	50	2.44	2	1.22	1.17
TP47A	660	1,262,250	PE	50	2.44	2	1.22	1.17
TP47B	660	1,262,250	PE	50	2.44	2	1.22	1.17

Transfer Points No. 1 Mill and Crusher Run System

 $E(lbs/ton) = k*(0.0032)*[(U/5)^1.3]/[(M/2)^1.4] \\ Where:$

/here:	PM
k = particle size multiplier (demensionless)	0.74
U = Mean Wind Speed (MPH)	7
M = Material Moisture Content (%)	2
E = Emission Factor (lbs/ton)	0.0037

Transfer Points

Transfer Points								
TP48A	50	143437.5	N	0	0.19	0.27	0.19	0.27
TP48B	50	143437.5	N	0	0.19	0.27	0.19	0.27
TP49	50	143437.5	N	0	0.19	0.27	0.19	0.27
TP50	50	143437.5	N	0	0.19	0.27	0.19	0.27
TP51A	250	669,375	PE	50	0.93	1.24	0.47	0.62
TP51B	250	669,375	N	0	0.93	1.24	0.93	1.24
TP51C	250	669,375	PE	50	0.93	1.24	0.47	0.62
TP51D	250	669,375	PE	50	0.93	1.24	0.47	0.62
TP51E	250	669,375	PE	50	0.93	1.24	0.47	0.62
TP52A	250	669,375	PE	50	0.93	1.24	0.47	0.62
TP52B	250	669,375	PE	50	0.93	1.24	0.47	0.62
TP53	250	669,375	N	0	0.93	1.24	0.93	1.24
TP54	580	1,300,500	PE	50	2.15	2.41	1.08	1.21
TP55	580	1,300,500	MD	70	2.15	2.41	0.65	0.72
TP56	580	1,300,500	PE	50	2.15	2.41	1.08	1.21
TP57	580	1,300,500	MD	70	2.15	2.41	0.65	0.72
TP58	1,350	2,581,875	FE	80	5.00	4.78	1	0.96
TP59	1,350	2,581,875	FE	80	5.00	4.78	1	0.96
TP60	1,350	2,581,875	N	0	5.00	4.78	5	4.78
•				Total PM	156.30	156.77	72.06	72.58
				Total PM10	74.43	74.65	34.31	34.56
			-	Total PM2.5	11.16	11.20	5.15	5.18

Notes:

1. PM conversion to PM10 and PM2.5:

	PM	PM10	PM2.5
	0.74	0.35	0.053
Con	version Factor	2.1	14

- Rates/throughputs set to zero are not in the worst case material flow.
 Control efficiencies are as follows:

Con	trol Efficiencie	es					
Type %							
None	N	0					
Partial enclosure	PE	50					
Full enclosure	FE	80					
Baghouse	BH	99					
Water spray	WS	70					
Minimize drop	MD	70					

Civil & Environmental Consultants	Checked By: DDR
11/5/2015	Date: 8/14/15

Crushing and Screening No. 1 Mill

	PM	PM10	
Emission Factors	(lb/ton)	(lb/ton)	Source
Primary Crushing	0.002	0.001	DAQ G40-B Emissions Worksheet
Secondary & Tertiary Crushing	0.0054	0.0024	DAQ G40-B Emissions Worksheet
Screening	0.025	0.0087	DAQ G40-B Emissions Worksheet

Totals for Crushing and Screening							
	Uncon	trolled	Cont	rolled			
	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)			
PM	73.48	75.87	6.83	6.54			
PM10	26.25	27.09	2.46	2.35			

0.36

0.35

4.02

PM2.5

3.89

Crusher Emissions

Crusher Identification	ID	Thro	oughput	Control	Contol	Uncon	trolled	Cont	rolled
		(ton/hr)	(tons/yr)	Type	Efficiency (%)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
Cone Crusher	CR-043	290	731,850	FE+WS	94	0.58	0.73	See I	BH-50
Cone Crusher	CR-044	460	918000	FE+WS	94	0.92	0.92	See I	BH-50
Omni Crusher 1560	CR-432	600	1,147,500	BH	99	1.20	1.15	See B	H-450
Omni Crusher 1352	CR-412	330	631,125	WS	70	1.78	1.70	0.53	0.51
					PM	4.48	4.50	0.53	0.51
PM10			2.24	2.25	0.27	0.26			
PM2.5				0.24	0.24	0.03	0.03		

Screen Emissions

Screen Identification	ID	Thro	oughput	Control	Contol	Uncon	trolled	Cont	trolled
		(ton/hr)	(tons/yr)	Type	Efficiency (%)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
Screen	SC-038	750	1,649,850	ВН	99	18.75	20.62	See 1	BH-51
Screen	SC-039	750	1,649,850	ВН	99	18.75	20.62	See 1	BH-51
Deister Screen	SC-404	600	1,147,500	FE	80	15.00	14.34	3.00	2.87
Telesmith Screen	SC-434	330	631,125	FE	80	8.25	7.89	1.65	1.58
Telesmith Screen	SC-435	330	631,125	FE	80	8.25	7.89	1.65	1.58
					PM	69.00	71.37	6.30	6.03
					PM10	24.01	24.84	2.19	2.10
					PM2.5	3.66	3.78	0.33	0.32

Notes:

1. PM conversion to PM10 and PM2.5:

PM	PM10	PM2.5
0.74	0.35	0.053

- 2. Rates/throughputs set to zero are not in the worst case material flow.
- 3. Control efficiencies are as follows:

Control Efficiencies					
Туре	%				
None	N	0			
Partial enclosure	PE	50			
Full enclosure	FE	80			
Baghouse	BH	99			
Water spray	WS	70			
Minimize drop	MD	70			

Civil & Environmental Consultants	Checked By: DDR
11/5/2015	Date: 8/14/15

Transfer Points No. 2 Mill

 $E(lbs/ton) = k*(0.0032)*[(U/5)^1.3]/[(M/2)^1.4]$

 $\begin{array}{lll} \mbox{Where:} & \mbox{PM} \\ \mbox{$k = $particle size multiplier (demensionless)} & 0.74 \\ \mbox{$U = $Mean Wind Speed (MPH)} & 7 \\ \mbox{$M = $Material Moisture Content (\%)} & 2 \\ \mbox{$E = Emission Factor (lbs/ton)} & 0.0037 \\ \end{array}$

Transfer Points

Transfer Points								
Transfer Point	Material	Material	Control	Control		M	Pl	
ID Number	Throughput	Throughput	Device	Efficiency		trolled		rolled
	(tph)	(tpy)		(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
TP62A	1,350	2,581,875	N	0	5.00	4.78	5	4.78
TP62B	1,350	2,581,875	N	0	5.00	4.78	5	4.78
TP63	1,350	2,581,875	BH	99	5.00	4.78	See B	
TP64	1,350	2,581,875	BH	99	5.00	4.78	See B	
TP65	200	449,025	BH	99	0.74	0.83	See B	
TP66	200	449,025	BH	99	0.74	0.83	See B	H-145
TP67	133	319,134	BH	99	0.49	0.59	See B	
TP68	133	319,134	BH	99	0.49	0.59	See B	H-145
TP69	133	255,000	BH	99	0.49	0.47	See B	H-145
TP70	133	255,000	BH	99	0.49	0.47	See B	H-145
TP73	400	765,000	BH	99	1.48	1.42	See B	H-145
TP74	400	898,049	BH	99	1.48	1.66	See B	H-145
TP75	400	957,403	PE	50	1.48	1.77	0.74	0.89
TP76	400	765,000	BH	99	1.48	1.42	See B	H-145
TP76A	400	765,000	N	0	1.48	1.42	1.48	1.42
TP76B	400	765,000	N	0	1.48	1.42	1.48	1.42
TP77	400	765,000	BH	99	1.48	1.42	See B	H-145
TP78	200	523,862	BH	99	0.74	0.97	See B	H-145
TP79	400	765,000	BH	99	1.48	1.42	See B	H-145
TP80	400	765,000	PE/WS	85	1.48	1.42	See B	H-145
TP81	400	765,000	BH	99	1.48	1.42	See B	H-145
TP82	400	765,000	N	0	1.48	1.42	1.48	1.42
TP83	400	765,000	BH	99	1.48	1.42	See B	H-145
TP84	400	765,000	BH	99	1.48	1.42	See B	H-145
TP85	133	190,866	BH	99	0.49	0.35	See B	H-145
TP86	133	319,134	BH	99	0.49	0.59	See B	H-145
TP87	133	255,000	BH	99	0.49	0.47	See B	H-145
TP90	400	898,049	PE	50	1.48	1.66	0.74	0.83
TP91	400	957,403	PE	50	1.48	1.77	0.74	0.89
TP92	400	957,403	PE	50	1.48	1.77	0.74	0.89
TP93	400	957,403	PE	50	1.48	1.77	0.74	0.89
TP93A	400	957,403	PE	50	1.48	1.77	0.74	0.89
TP94	400	957,403	WS	70	1.48	1.77	0.44	0.53
TP95	400	957,403	MD	70	1.48	1.77	0.44	0.53
TP96	400	898,049	PE	50	1.48	1.66	0.74	0.83
TP97	400	898,049	PE	50	1.48	1.66	0.74	0.83
TP98	400	898,049	WS	70	1.48	1.66	0.44	0.50
TP99	400	898,049	MD	70	1.48	1.66	0.44	0.50
TP100	550	1,051,875	PE	50	2.04	1.95	1.02	0.98
TP101	550	1,051,875	PE	50	2.04	1.95	1.02	0.98
TP102	550	1,051,875	WS	70	2.04	1.95	0.61	0.59
TP103	550	1,051,875	MD	70	2.04	1.95	0.61	0.59
		, ,						

Civil & Environmental Consultants	Checked By: DDR
11/5/2015	Date: 8/14/15

Transfer Points No. 2 Mill

 $E(lbs/ton) = k*(0.0032)*[(U/5)^1.3]/[(M/2)^1.4]$

Where:	PM
k = particle size multiplier (demensionless)	0.74
U = Mean Wind Speed (MPH)	7
M = Material Moisture Content (%)	2
E = Emission Factor (lbs/ton)	0.0037

Transfer Points

TP104	200	523,862	N	0	0.74	0.97	0.74	0.97
TP105	25	2,478	MD	70	0.09	0.00	0.03	0.00
TP106	25	71,719	PE	50	0.09	0.13	0.05	0.07
TP107	25	71,719	PE	50	0.09	0.13	0.05	0.07
TP116	150	286,875	PE	50	0.56	0.53	0.28	0.27
TP128	200	523,862	PE	50	0.74	0.97	0.37	0.49
	Total PM						26.90	27.83
Total PM10 34.11 35.13							12.81	13.25
Total PM2.5 5.12 5.27 1.92 1.99								

Notes:

1. PM conversion to PM10 and PM2.5:

	PM	PM10	PM2.5
	0.74	0.35	0.053
Con	version Factor	2.1	14

- 2. Rates/throughputs set to zero are not in the worst case material flow.
- 3. Control efficiencies are as follows:

Control Efficiencies						
Тур	%					
None	N	0				
Partial enclosure	PE	50				
Full enclosure	FE	80				
Baghouse	BH	99				
Water spray	WS	70				
Minimize drop	MD	70				

Checked By: DDR Date: 8/14/15 Civil & Environmental Consultants 11/5/2015

Crushing and Screening No. 2 Mill

	PM	PM10	
Emission Factors	(lb/ton)	(lb/ton)	Source
Primary Crushing	0.002	0.001	DAQ G40-B Emissions Worksheet
Secondary & Tertiary Crushing	0.0054	0.0024	DAQ G40-B Emissions Worksheet
Screening	0.025	0.0087	DAQ G40-B Emissions Worksheet

Totals for Crushing and Screening									
	Uncon	trolled	Controlled						
	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)					
PM	78.30	74.87							
M10	27.37	26.17	See E	H-145					
M2.5	4.15	3.97							

PM:

PM2.5

Crusher Emissions

Crusher Emissions										
Crusher Identification	ID	Thr	oughput	Control	Contol	Uncontrolled		Controlled		
		(ton/hr)	(tons/yr)	Type	Efficiency (%)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)	
	CR-133 400 765,000		ВН	99	0.80 0.77					
PM						0.80	0.77	Soo E	3H-145	
PM10						0.40	0.38	See I	011-143	
PM2.5						0.04	0.04			

Screen Emissions

Screen Identification	ID	Throughput		Throughput Control Contol		Uncontrolled		Controlled	
		(ton/hr)	(tons/yr)	Type	Efficiency (%)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
Screen No. 1	SC-152	1,350	2,581,875						
Screen No. 2	SC-153		2,581,875	ВН	99	33.75	32.27		
Screen No. 3	SC-154	400	765,000	BH	99	10.00	9.56	See BH	I 145
	PM 77.50						74.11	See Bi	1-143
							25.79		
							3.93		

Notes:

1. PM conversion to PM10 and PM2.5:

		, .
PM	PM10	PM2.5
0.74	0.35	0.053

- 2. Rates/throughputs set to zero are not in the worst case material flow.
- 3. Control efficiencies are as follows:

Control Efficiencies						
Туре	%					
None	N	0				
Partial enclosure	PE	50				
Full enclosure	FE	80				
Baghouse	BH	99				
Water spray	WS	70				
Minimize drop	MD	70				

Civil & Environmental Consultants	Checked By: DDR
11/5/2015	Date: 8/14/15

Transfer Points Sand Plant

 $E(lbs/ton) = k*(0.0032)*[(U/5)^1.3]/[(M/2)^1.4]$

Where:	PM
k = particle size multiplier (demensionless)	0.74
U = Mean Wind Speed (MPH)	7
M = Material Moisture Content (%)	2
E = Emission Factor (lbs/ton)	0.0037

Transfer Points

Transfer Points									
Transfer Point	Material	Material	Control	Control	PM		Pl		
ID Number	Throughput	Throughput	Device	Efficiency	Uncon	trolled	Controlled		
	(tph)	(tpy)		(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
TP108	150	430,313	PE	50	0.56	0.80	0.28	0.40	
TP109	400	765,000	PE	50	1.48	1.42	0.74	0.71	
TP110	550	1,195,313	BH	99	2.04	2.21	See Bl	H-250	
TP111	150	430,313	BH	99	0.56	0.80	See Bl		
TP112	150	430,313	WS/BH	99.7	0.56	0.80	See Bl	H-217	
TP113	150	430,313	WS/BH	99.7	0.56	0.80	See Bl	H-217	
TP114	150	430,313	BH	99	0.56	0.80	See Bl		
TP114A	150	430,313	BH	99	0.56	0.80	See Bl	H-250	
TP115	150	286,875	FE	80	0.56	0.53	See Bl	H-217	
TP119	150	430,313	BH	99	0.56	0.80	See Bl	H-217	
TP119A	150	430,313	BH	99	0.56	0.80	See Bl	H-217	
TP119B	150	430,313	FE	80	0.56	0.80	See Bl	H-217	
TP120	150	430,313	PE	50	0.56	0.80	0.28	0.40	
TP121	300	860,625	FE	80	1.11	1.59	0.22	0.32	
TP123	150	430,313	FE	80	0.56	0.80	0.11	0.16	
TP123A	150	430,313	FE	80	0.56	0.80	0.11	0.16	
TP123B	150	430,313	MD	70	0.56	0.80	0.17	0.24	
TP124	150	430,313	FE	80	0.56	0.80	0.11	0.16	
TP125	150	430,313	FE	80	0.56	0.80	0.11	0.16	
TP125A	150	430,313	FE	80	0.56	0.80	0.11	0.16	
TP125B	150	430,313	N	0	0.56	0.80	0.56	0.80	
TP128A	200	523,862	FE	80	0.74	0.97	See Bl	H-145	
TP129	200	573,750	BH	99	0.74	1.06	See Bl	H-145	
TP130	200	573,750	N	0	0.74	1.06	0.74	1.06	
TP131	200	573,750	FE	80	0.74	1.06	0.15	0.21	
TP132	200	573,750	PE	50	0.74	1.06	0.37	0.53	
TP132A	0	0	PE	50	0.00	0.00	0.00	0.00	
TP133	200	573,750	N	0	0.74	1.06	0.74	1.06	
TP134	200	573,750	WS	70	0.74	1.06	0.22	0.32	
TP135	200	573,750	FE	80	0.74	1.06	0.15	0.21	
TP136	200	573,750	FE	80	0.74	1.06	0.15	0.21	
TP136A	350	1,004,063	FE	80	1.30	1.86	0.26	0.37	
TP137	150	430,313	FE	80	0.56	0.80	0.11	0.16	
TP138	150	430,313	FE	80	0.56	0.80	0.11	0.16	
TP138A	150	430,313	FE	80	0.56	0.80	0.11	0.16	
TP139	150	430,313	FE	80	0.56	0.80	0.11	0.16	
TP140	150	430,313	FE	80	0.56	0.80	0.11	0.16	
TP140A	150	430,313	BH	99	0.56	0.80	See Bl	H-218	
				Total PM	26.03	35.46	6.13	8.44	
				Total PM10	12.40	16.89	2.92	4.02	
				Total PM2.5	1.86	2.53	0.44	0.60	

1. PM conversion to PM10 and PM2.5: Partlicle size multipliers (k) AP42 Section 13.2.4-4 (11/06):

	PM	PM10	PM2.5
	0.74	0.35	0.053
Con	version Factor	2.1	14

- 2. Rates/throughputs set to zero are not in the worst case material flow.
 3. Control efficiencies are as follows:

Control Efficiencies					
Тур	%				
None	N	0			
Partial enclosure	PE	50			
Full enclosure	FE	80			
Baghouse	BH	99			
Water spray	WS	70			
Minimize drop	MD	70			

Civil & Environmental Consultants	Checked By: DDR
11/5/2015	Date: 8/14/15

Crushing and Screening Sand Plant

	PM	PM10	
Emission Factors	(lb/ton)	(lb/ton)	Source
Primary Crushing	0.002	0.001	DAQ G40-B Emissions Worksheet
Secondary & Tertiary Crushing	0.0054	0.0024	DAQ G40-B Emissions Worksheet
Screening	0.025	0.0087	DAQ G40-B Emissions Worksheet

Totals for Crushing and Screening							
	Uncor	itrolled	Controlled				
	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)			
PM	652.74	2,847.05	0.00	0.00			
PM10	227.20	990.84	0.00	0.00			
PM2.5	34.59	150.89	0.00	0.00			

Crusher Emissions

Clusiici Elliissiolis									
Crusher Identification	ID	Thr	oughput	Control	Contol	Uncor	ntrolled	Cont	trolled
		(ton/hr)	(tons/yr)	Type	Efficiency (%)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
Cone Crusher	CR-230	150	430,313	WS/BH	99.7	0.30	0.43		
					PM	0.30	0.43	Can I	3H-250
					PM10	0.15	0.22	See E	on-230
					PM2.5	0.02	0.02	1	

Screen Emissions

oci celi Elilissions									
Screen Identification	ID	Thr	oughput	Control	Contol	Uncor	trolled	Contr	olled
		(ton/hr)	(tons/yr)	Type	Efficiency (%)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
Deister Screen No. 1	SC-231	75	215,156	BH	99	1.88	2.69		
Deister Screen No. 2	SC-233	75	215,156	BH	99	1.88	2.69	9	
PM				3.75	5.38	See Bl	H-217		
					PM10	1.31	1.87		
					PM2.5	0.20	0.29		

Air Classifier Emissions¹

All Classifici Ellissions								
Equipment Identification	ID	Thr	oughput	Control	Contol	Uncor	ntrolled	Controlled
		(ton/hr)	(tons/yr)	Type	Efficiency (%)	(lb/hr)	(tons/yr)	(lb/hr) (tons/yr
Air Classifier	AC-225	300	860,625	BH	99	82.97	363.41	
PM				82.97	363.41	See BH-218		
					PM10	28.87	126.47	See BH-218
					PM2.5	4.40	19.26	

Air Separator Emissions¹

	in ocparator Emissions									
	Equipment Identification	ID	Thre	oughput	Control	Contol	Uncor	ntrolled	Cont	rolled
			(ton/hr)	(tons/yr)	Type	Efficiency (%)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
	Air Separator	AS-228	S-228 200 573,750 BH 99		99	565.71	2,477.83			
	PM				565.71	2,477.83	Coo E	BH-145		
PM10				196.87	862.28	366 E	оп-143			
						PM2.5	29.98	131.32		

Notes:

- 1. Uncontrolled values are back calculated using the baghouse control efficiency.
- 2. PM conversion to PM10 and PM2.5:

PM	PM10	PM2.5
0.74	0.35	0.053

- 3. Rates/throughputs set to zero are not in the worst case material flow.
- 4. Control efficiencies are as follows:

Control Efficiencies					
Туре	%				
None	N	0			
Partial enclosure	PE	50			
Full enclosure	FE	80			
Baghouse	BH	99			
Water spray	WS	70			
Minimize drop	MD	70			

Civil & Environmental Consultants	Checked By: DDR
11/5/2015	Date: 8/14/15

Transfer Points Bradley Mill

 $E(lbs/ton) = k*(0.0032)*[(U/5)^1.3]/[(M/2)^1.4]$

here:	PM
k = particle size multiplier (demensionless)	0.74
U = Mean Wind Speed (MPH)	7
M = Material Moisture Content (%)	2
E = Emission Factor (lbs/ton)	0.0037

Uncontrolled Pneumatic Transfer Emission Factors³ PM 0.74 lb/ton

Transfer Points

TIGHTOTOT TOTAL								
Transfer Point	Material	Material	Control	Control	Pl	M	PM	
ID Number	Throughput	Throughput	Device	Efficiency	Uncon	trolled	Controll	ed
	(tph)	(tpy)		(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
TP142	50	143,438	PE	50	0.19	0.27	0.1	0.14
TP143	50	143,438	BH	99	0.19	0.27	See BH-3	317
TP144	50	143,438	BH	99	0.19	0.27	See BH-3	317
TP145	50	143,438	BH	99	0.19	0.27	See BH-3	317
TP146A	50	143,438	BH	99	0.19	0.27	See BH-3	317
TP146B	50	143,438	BH	99	0.19	0.27	See BH-3	317
TP151	50	143,438	FE	80	0.19	0.27	0.04	0.05
TP152	50	143,438	FE	80	0.19	0.27	0.04	0.05
TP152A	50	143,438	MD	70	0.19	0.27	0.06	0.08
TP154	50	143,438	BH	99	0.19	0.27	See BH-3	317
TP155	50	143,438	BH	99	0.19	0.27	See BH-3	317
				Total PM	2.09	2.97	0.24	0.32
			,	Total PM10	1.00	1.41	0.11	0.15
			7	Total PM2.5	0.15	0.21	0.02	0.02

Notes:

1. PM conversion to PM10 and PM2.5:

	PM	PM10	PM2.5
	0.74	0.35	0.053
Con	version Factor	2.1	14

- 2. Rates/throughputs set to zero are not in the worst case material flow.
- 3. PM emission factor from AP42 Table 11.12-2. PM10 and PM2.5 calculated based on above conversion factors.
- 4. Control efficiencies are as follows:

Control Efficiencies						
Тур	%					
None	N	0				
Partial enclosure	PE	50				
Full enclosure	FE	80				
Baghouse	BH	99				
Water spray	WS	70				
Minimize drop	MD	70				

Civil & Environmental Consultants	Checked By: DDR
11/5/2015	Date: 8/14/15

Crushing and Screening Bradley Mill

	PM	PM10						
Emission Factors	(lb/ton)	(lb/ton)	Source	_	Totals for	Crushing a	nd Screen	ing
Primary Crushing	0.002	0.001	DAQ G40-B Emissions Worksheet		Uncon	trolled	Con	trolled
Secondary & Tertiary Crushing	0.0054	0.0024	DAQ G40-B Emissions Worksheet		(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
Screening	0.025	0.0087	DAQ G40-B Emissions Wor	PM	0.10	0.14		•
			_	PM10	0.05	0.07	See I	3H-317
				PM2.5	0.01	0.01		

Crusher Emissions

Crusher Identification	ID	Th	roughput	Control	Control	Uncon	trolled	Con	trolled
		(ton/hr)	(tons/yr)	Type	Efficiency (%)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
Bradley Mill	BM-319	50	143,438	BH	99	0.1	0.143438		
PM				0.10	0.14	Saa I	3H-317		
PM10					0.05	0.07	500 1	511-517	
					PM2.5	0.005	0.008		

Notes:

1. PM conversion to PM10 and PM2.5:

PM	PM10	PM2.5
0.74	0.35	0.053

- 2. Rates/throughputs set to zero are not in the worst case material flow.
- 3. Control efficiencies are as follows:

Control Efficiencies					
Туре		%			
None	N	0			
Partial enclosure	PE	50			
Full enclosure	FE	80			
Baghouse	BH	99			
Water spray	WS	70			
Minimize drop	MD	70			

Greer Limestone Plant ID: 061-00003
R13 Revision

Civil & Environmental Consultants
Checked By: DDR
11/5/2015
Date: 8/14/15

Facility Stockpiles

Reference: AP-42 Section 11.2.3, Fugitive Emissions (May, 1983), Equation #2

E = 1.7 (s/1.5) ((365-p)/235) (f/15)

$\mathbf{E} =$?	Emissions factor, pound per day per acre, (lb/day/acre)
s =	8	Silt content of material (%)
p =	157	number of days with at least 0.254 mm (0.01 in.) of precipitation per year
f =	20	Time wind speed exceeds 12 mph (%)

E = **10.700** lb/day/acre

Stockpile	Stockpile	Base Area	Control	Control Eff.	Uncontrolle	d Emissions	Controlle	d Emissions
ID	Material	(acres)	Device	(%)	lb/hr	tpy	lb/hr	tpy
OS1	Aggregate	18.0	N	0	8.03	35.15	8.03	35.15
				PM:	8.03	35.15	8.03	35.15
				PM10:	3.82	16.74	3.82	16.74
				PM2.5	0.57	2.51	0.57	2.51

1. PM conversion to PM10 and PM2.5:

PM	PM10	PM2.5
0.74	0.35	0.053
Conversion Factor	2.1	14

Plant ID: 061-00003 Greer Limestone R13 Revision

Checked By: DDR Date: 8/14/15 Civil & Environmental Consultants 11/5/2015

Unpaved Haulroads

PM

Source	Vehicle Trips	Vehicle Trips	Miles	Emission	Uncontrolled	Uncontrolled	Control	Control	Controlled	Controlled
	per Hour	per Year	per Trip	Factor (1)			Device	Efficiency		
				(lb/VMT)	(lb/hr)	(tpy)		(%)	(lb/hr)	(tpy)
Trucks In/Out	54	103,275	1.0	6.72	362.88	347.00	Water Truck	70	108.86	104.1
Endloaders	135	258,188	0.02	11.64	31.43	30.05	Water Truck	70	9.43	9.02
	•			Total	394.31	377.05		Total	118.29	113.12

PM10

Source	Vehicle Trips	Vehicle Trips	Miles	Emission	Uncontrolled	Uncontrolled	Control	Control	Controlled	Controlled
	per Hour	per Year	per Trip	Factor (1)			Device	Efficiency		
				(lb/VMT)	(lb/hr)	(tpy)		(%)	(lb/hr)	(tpy)
Trucks In/Out	54	103,275	1.0	1.98	106.92	102.24	Water Truck	70	32.08	30.67
Endloaders	135	258,188	0.02	3.43	9.26	8.86	Water Truck	70	2.78	2.66
				Total	116.18	111.10		Total	34.86	33.33

PM2 5

1 1/12.3										
Source	Vehicle Trips	Vehicle Trips	Miles	Emission	Uncontrolled	Uncontrolled	Control	Control	Controlled	Controlled
	per Hour	per Year	per Trip	Factor (1)			Device	Efficiency		
				(lb/VMT)	(lb/hr)	(tpy)		(%)	(lb/hr)	(tpy)
Trucks In/Out	54	103,275	1.0	0.20	10.80	10.33	Water Truck	70	3.24	3.1
Endloaders	135	258,188	0.02	0.34	0.92	0.88	Water Truck	70	0.28	0.26
	-			Total	11.72	11.21		Total	3.52	3.36

Emission F	'actors'		
PM	PM10	PM2.5	
4.9	1.5	0.15	dimensionless, particle size multiplier
10	10	10	%, surface material silt content
28	28	28	tons, mean vehicle weight
95	95	95	
0.7	0.9	0.9	constants
0.45	0.45	0.45	constants
157	157	157	no. days/year with 0.1 in of rain
6.72	1.98	0.20	lb/VMT Trucks
11.64	3.43	0.34	lb/VMT Endloaders
	Trucking	Endloaders	
Hauled (tpy) =	2,581,875	2,581,875	
Weight (tons) =	25	10	
cles Per Year =	103,275	258,188	
Hauled (tph) =	1,350	1,350	
Weight (tons) =	25	10	
eles Per Hour =	54	135	
Weight (tons) =	15	90	
Weight (tons) =	40	100	
reight (tolls) =			
Weight (tons) =	28	95	
֡	PM 4.9 10 28 95 0.7 0.45 157 6.72 11.64 Hauled (tpy) = Weight (tons) = cles Per Year = Hauled (tph) = Weight (tons) = cles Per Hour = Weight (tons) =	4.9 1.5 10 10 28 28 95 95 0.7 0.9 0.45 0.45 157 157 6.72 1.98 11.64 3.43 Trucking Hauled (tpy) = 2,581,875 Weight (tons) = 25 Hauled (tph) = 1,350 Weight (tons) = 25 Eles Per Hour = 54 Weight (tons) = 15	PM PM10 PM2.5 4.9 1.5 0.15 10 10 10 10 28 28 28 28 95 95 95 0.7 0.9 0.9 0.45 0.45 0.45 157 157 157 6.72 1.98 0.20 11.64 3.43 0.34 Trucking Endloaders Veight (tons) = 25 10 258,1875 10 258,188 Hauled (tph) = 1,350 1,350 Weight (tons) = 25 10 Eles Per Year = 103,275 258,188 Hauled (tph) = 1,350 1,350 Weight (tons) = 25 10 Eles Per Hour = 54 135 Weight (tons) = 15 90

Notes:

- 1. Emission Equation AP-42 Section 13.2.2, Unpaved Roads (12/03), where:

 - e = k [(s/12)^a (W/3)^b] [(365-p)/365] e = Emission factor, pounds per vehicle-mile-traveled, (lb/VMT) k, a & b = Constants for equation given in AP-42 Table 13.2.2-2 (dimensionless) s = Silt content of road surface material (%) W = Mean vehicle weight, ton

 - $p = \mbox{Number of days}$ with at least 0.01 in. of precipitation per year
- 2. PM conversion to PM10 and PM2.5:

PM	PM10	PM2.5
0.74	0.35	0.053
Conversion Factor	2.1	14.0

Greer Limestone Plant ID: 061-00003
R13 Revision

Civil & Environmental Consultants
Checked By: DDR
11/5/2015
Date: 8/14/15

Tanks

ID	Material Stored	Capacity	Throughput	VOC E	nissions
ID	Material Stored	gallons	gallons ¹	lb/hr	ton/yr
T1	Gasoline	1,000	2,000	Negligible	Negligible
T2	Diesel	4,000	60,000	Negligible	Negligible
T3	Propane	500	2,000	Negligible	Negligible
			Total VOC:	Negligible	Negligible

Greer Limestone Plant ID: 061-00003
R13 Revision

Civil & Environmental Consultants
Checked By: DDR
42313
Date: 8/14/15

Emergency Gen Set (ENG) Cummins Model GGMB

Specifications

		-		
	Propane Fuel Usage	137	cu. ft./hour	Manufacutrer
	HHV:	2,500	Btu/scf	Constant
1	Maximum Horsepower:	NA	hp	
	Maximum Fuel Input:	0.34	MMBtu/hour	Calculated
		0.75	kW/hp	Constant
	Engine Power	NA	kW	
		453.59	gram/lb	Constant

Hours Per Year = 500

1100131011001 = 500						
Regulated	Emission	Hourly	Annual			
Pollutant	Factor	Emissions	Emissions			
	(lb/MMBtu)	(lbs/hour)	(tons/year)			
NO_X	4.08	1.39	0.35			
СО	3.72	1.27	0.32			
SO2	0.0006	0.0002	0.0001			
PM/PM ₁₀ /PM _{2.5}	0.00991	0.0034	0.0009			
VOC	0.12	0.0403	0.0101			

TY I AT D II 4 4 (TTADG)						
Hazardous Air Pollutants						
1,1,2,2-tetrachloroethane	4.00E-05	0.00001	0.00001			
1,1,2-trichloroethane	3.18E-05	0.00001	0.00001			
1,3-Butadiene	6.63E-04	0.0003	0.0001			
1,3-dichloropropene	2.65E-05	0.00001	0.00001			
2-methylnaphthalene	3.32E-05	0.00001	0.00001			
2,2,4-trimethylpentane	2.50E-04	0.00009	0.00003			
Acenaphthene	1.25E-06	0.000001	0.000001			
Acetaldehyde	2.79E-03	0.001	0.0003			
Acrolein	2.63E-03	0.0009	0.0002			
Benzene	1.58E-03	0.0005	0.0001			
Carbon Tetrachloride	1.77E-05	0.00001	0.00001			
Chlorobenzene	1.29E-05	0.00001	0.00001			
Chloroform	1.37E-05	0.00001	0.00001			
Ethylbenzene	2.48E-05	0.00001	0.00001			
Ethylene dibromide	2.13E-05	0.00001	0.00001			
Formaldehyde	2.50E-02	0.0085	0.0021			
Naphthalene	9.71E-05	0.00003	0.00001			
PAH	1.41E-04	0.00005	0.00001			
Styrene	2.36E-05	0.00001	0.00001			
Tetrachloroethane	2.48E-06	0.00001	0.00001			
Toluene	5.58E-04	0.00019	0.00005			
Vinyl chloride	1.49E-05	0.00001	0.00001			
Xylenes	1.95E-04	0.00007	0.00002			
	Total HAPS	0.0118	0.0030			

Notes:

Emission factors from AP-42 Table 3.2-2 or 3.2-3. Air/fuel ratio is unknown-highest EF for each pollutant used.

ATTACHMENT P

PUBLIC NOTICE

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Greer Industries, Inc., d.b.a. Greer Limestone Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Modification Permit for a Limestone Crushing/Screening Operation located on Route 7, in Masontown, in Monongalia County, West Virginia. The latitude and longitude coordinates are: 39.572486°N, 79.846977°W.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Particulate matter (PM): 343.27 tons per year

Particulate matter less than 10 microns (PM_{10}): 142.16 tons per year Particulate matter less than 2.5 microns ($PM_{2.5}$): 19.68 tons per year

The estimated emissions include all point sources, haul roads, and stockpiles.

This application is intended to identify several pieces of equipment which have been replaced or added and does not involve any expansion of existing operations. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the Fifth day of November, 2015.

By: Greer Industries

J. Robert Gwynne

Vice President/General Counsel

P.O. Box 176

Masontown, WV 26542