SWN PRODUCTION COMPANY, LLC

FORK RIDGE PAD

GENERAL PERMIT G-70A CLASS II UPDATE

SUBMITTED TO WVDEP DIVISION OF AIR QUALITY DECEMBER 2015

TABLE OF CONTENTS

TABLE OF CONTEN	TSi
INTRODUCTION	
Proposed Emissi	ons2
Aggregation Ana	lysis
Regulatory Discu	ission3
APPLICATION FOR	GENERAL PERMIT REGISTRATION
ATTACHMENT A:	BUSINESS REGISTRATION CERTIFICATE13
ATTACHMENT B:	PROCESS DESCRIPTION15
ATTACHMENT C:	DESCRIPTION OF FUGITIVE EMISSIONS16
ATTACHMENT D:	PROCESS FLOW DIAGRAM21
ATTACHMENT E:	PLOT PLAN23
ATTACHMENT F:	AREA MAP26
ATTACHMENT G:	EMISSION UNIT DATA SHEETS AND G70-A SECTION APPLICABILITY FORM27
ATTACHMENT H:	AIR POLLUTION CONTROL DEVICE SHEETS
ATTACHMENT I:	EMISSIONS CALCULATIONS
ATTACHMENT J:	CLASS I LEGAL ADVERTISEMENT
ATTACHMENT L:	APPLICATION FEE
ATTACHMENT N:	MATERIAL SAFETY DATA SHEETS (MSDS)106
ATTACHMENT O:	EMISSION SUMARY SHEET134
ATTACHMENT P:	SUPPORT DOCUMENTS

INTRODUCTION

SWN Production Company, LLC (SWN), submits this G70-A General Permit Class II Update application for the Fork Ridge Pad (Fork Ridge), a natural gas production facility in Marshall County currently authorized under Permit No. G70-A091. SWN requests authorization with this submittal to construct additional emission sources. Included with this application are changes in the emission estimates for the emission sources at the facility. The changes are summarized below.

Emission Unit ID	Description of Emission Source	Description of Revision
Unit ID		
EU-ENG1	1,380-hp Caterpillar G3516B Engine w/ Oxidation Catalyst	The reciprocating internal combustion engine is replacing a 145-hp Caterpillar G3306 NA engine.
	1,380-hp Caterpillar G3516B	The reciprocating internal combustion engine is replacing a
EU-ENG2	Engine w/ Oxidation Catalyst	215-hp Caterpillar G3406 NA engine.
	215-hp Caterpillar G3406 NA	213-hp Caterpinal 03400 NA engine.
EU-ENG3	Engine w/ Catalytic Converter	No revision to emission source.
	1,380-hp Caterpillar G3516B	The reciprocating internal combustion engine will be installed
EU-ENG4	Engine w/ Oxidation Catalyst	as a new engine.
EU-DEHY1	35.0-MMSCFD TEG Dehydration Unit	Flash tank off-gases were represented as being routed to the produced water tanks, which were captured with 98% efficiency to be routed to the combustor. Per WVDEP guidance, the capture efficiency has been revised to 100%. No other changes have been made to the emission estimates for this emission source.
EU-RB1	0.75-mmBtu/hr TEG Reboiler	No revision to emission source.
EU-GPU1 - EU-GPU8	Eight (8) 1.0-mmBtu/hr GPU Burners	No revision to emission source.
EU-HT1 - EU-HT2	Two (2) 0.5-mmBtu/hr Heater Treaters	No revision to emission source.
EU-TANKS- COND	Five (5) 400-bbl Condensate Tanks Routed to Vapor Combustor	Storage tank emissions have been revised based on a new process simulation.
EU-TANKS- PW	Five (5) 400-bbl Produced Water Tanks Routed to Vapor Combustor	Storage tank emissions have been revised based on a new process simulation.
EU-LOAD- COND	Condensate Truck Loading w/ Vapor Return Routed to Combustor	Loading emissions have been revised based on a new process simulation.
EU-LOAD- PW	Produced Water Truck Loading w/ Vapor Return Routed to Combustor	Loading emissions have been revised based on a new process simulation.
APC-COMB- TKLD	One (1) 30.0-mmBtu/hr Vapor Combustor - Tank/Loading Stream	The capture efficiency for gases routed to the combustor from the glycol dehydrator and storage tanks has been increased to 100%.

Emission Unit ID	Description of Emission Source	Description of Revision		
EU-PILOT	Vapor Combustor Pilots	No revision to emission source.		
EU-FUG	Fugitive Emissions	Fugitive component counts have been updated based on the change in the number of engines.		
EU-HR	Fugitive Haul Road Emissions	No revision to emission source.		

Note that other small storage tanks may be present on site (i.e., methanol) but are considered de minimis sources per Table 45-13B and are not addressed further in this application.

Proposed Emissions

Emissions calculations for the facility are presented in Attachment S. A fuel heating value of 905 Btu/scf was used to calculate emissions from natural gas-fired equipment. Actual heating value may vary (generally 905 - 1,300) but using a lower heating value in the emissions calculations provides a more conservative (higher) estimate of fuel use. Emissions from the Caterpillar engines were calculated with manufacturer data when available and AP-42/EPA emissions factors for the remaining pollutants. Emissions from the heaters were estimated using AP-42/EPA emission factors.

Triethylene glycol (TEG) dehydration unit emissions have been estimated using an extended analysis generated by process simulation and GRI-GLYCalc 4.0 software. Still vent emissions are reduced by condenser and non-condensable gases are routed to the reboiler as fuel with an estimated 50% destruction efficiency. Flash tank off-gases are routed to the produced water storage tanks to then be routed to the combustor for 98% destruction efficiency. Control of the produced water storage tanks is discussed below.

Condensate tank emissions were calculated by creating a profile in the EPA TANKS 4.0.9d model using properties obtained in a representative liquids analysis as the tank contents. Although produced water storage tanks contain primarily water, a profile was created in EPA TANKS 4.0.9d assuming 1% of the total throughput as condensate and 99% as water to provide a conservative emissions estimate of the trace hydrocarbons that may be entrained in the water. Flashing emissions were calculated using ProMax process simulation software. Condensate loading has been calculated using the properties from EPA TANKS 4.0.9d and process simulation.

Fugitive emissions were calculated with a component count by equipment type from a similar facility, and representative extended gas and liquids analyses. Fugitive haul road emissions were calculated using EPA/AP-42 methodologies.

Greenhouse gas emissions were calculated with the latest EPA factors and manufacture data when available. Documents used as references for the emissions calculations, including engine specification sheets, AP-42 and EPA emission factor references, gas and liquids analyses, and process simulation results are included.

Aggregation Analysis

The aggregation of facilities is appropriate only if separate emissions sources meet the following three-prong test:

- The sources belong to a single major industrial grouping (same two-digit major SIC code);
- 2. The sources are under common control of the same person (or persons under common control); and
- 3. The sources are located on one or more "contiguous or adjacent" properties.

Under the third prong, SWN determined that there were no other facilities contiguous with or adjacent to the proposed Fork Ridge Pad to be permitted. Neither the WV DEP nor EPA have established a distance under which source aggregations are required, but the terms "contiguous" or "adjacent" require analyzing distances between operations. To be considered contiguous, two operations must share a common fence line. As for adjacent, operations located more than a quarter of a mile apart are clearly not adjacent, but operations within a quarter of a mile require an analysis to determine if they meet the common sense notion of a plant. No other SWN locations are located within a quarter mile of the proposed Fork Ridge Pad to be permitted; therefore, no additional facilities are contiguous or adjacent.

Regulatory Discussion

<u>STATE</u>

45 CSR 13 - PERMITS FOR CONSTRUCTION, MODIFICATION, RELOCATION AND OPERATION OF STATIONARY SOURCES OF AIR POLLUTANTS, NOTIFICATION REQUIREMENTS, ADMINISTRATIVE UPDATES, TEMPORARY PERMITS, GENERAL PERMITS, AND PROCEDURES FOR EVALUATION:

Potential emissions associated with the proposed project are greater than the minor source construction permit thresholds of 6 pounds per hour (pph) AND 10 tons per year (tpy) of any regulated air pollutant OR 144 pounds per day (ppd) of any regulated air pollutant OR 2 pph OR 5 tpy of aggregated hazardous air pollutants (HAP) OR 45 CSR 27 toxic air pollutant (TAP) (10%

increase if above BAT triggers or increase to Best Available Technology (BAT) triggers) OR subject to applicable Standard or Rule. The facility is not within 300 feet of any occupied dwelling, business, public building, school, church, community, institutional building or public park, and meets all other requirements for registration under a G70-A General Permit.

45 CSR 22 - AIR QUALITY MANAGEMENT FEE PROGRAM:

The facility will be required to maintain a valid Certificate to Operate on the premises.

45 CSR 30 - REQUIREMENTS FOR OPERATING PERMITS:

Emissions from the facility do not exceed major source thresholds; therefore, this rule does not apply.

FEDERAL

40 CFR PART 60 SUBPART KB—STANDARDS OF PERFORMANCE FOR VOLATILE ORGANIC LIQUID STORAGE VESSELS (INCLUDING PETROLEUM LIQUID STORAGE VESSELS) FOR WHICH CONSTRUCTION, RECONSTRUCTION, OR MODIFICATION COMMENCED AFTER JULY 23, 1984

The affected facility to which this subpart applies is each storage vessel with a capacity greater than or equal to 75 cubic meters (m^3) that is used to store volatile organic liquids (VOL) for which construction, reconstruction, or modification is commenced after July 23, 1984. The tanks at this facility were constructed after the effective date of this subpart but are less than 75 m³ (which equals approximately 471 bbl); therefore, this subpart does not apply.

40 CFR PART 60 SUBPART KKK - STANDARDS OF PERFORMANCE FOR STATIONARY FOR EQUIPMENT LEAKS OF VOC FROM ONSHORE NATURAL GAS PROCESSING PLANTS:

The facility is not considered an affected source (natural gas processing plant) and is therefore not subject to this Subpart.

40 CFR PART 60 SUBPART IIII - STANDARDS OF PERFORMANCE FOR STATIONARY COMPRESSION IGNITION INTERNAL COMBUSTION ENGINES:

The facility does not contain the affected source (diesel-fired engine) and is therefore not subject to this Subpart.

40 CFR PART 60 SUBPART JJJJ - STANDARDS OF PERFORMANCE FOR STATIONARY SPARK IGNITION INTERNAL COMBUSTION ENGINES:

The engines were manufactured after June 12, 2006 and are subject to the requirements of this subpart. The manufacture dates of the three Caterpillar G3516B engines are not yet known but they are presumed to be subject to NSPS Subpart JJJJ as new engines. EU-ENG3 was manufactured in 2014 and is subject to the requirements of this subpart.

40 CFR PART 60 SUBPART OOOO - STANDARDS OF PERFORMANCE FOR CRUDE OIL AND NATURAL GAS PRODUCTION, TRANSMISSION, AND DISTRIBUTION:

The emission sources affected by this Subpart include well completions, pneumatic controllers, equipment leaks from natural gas processing plants, sweetening units at natural gas processing plants, reciprocating compressors, centrifugal compressors and storage vessels which are constructed, modified or reconstructed after August 23, 2011.

SWN will ensure compliance of all subject wells and equipment located at this facility with all applicable requirements in accordance with the respective compliance dates. Wells located at this production facility are not drilled principally to produce natural gas, therefore they are not affected sources subject to gas well completion requirements.

Pneumatic controllers affected by this Subpart include continuous bleed, natural gas-driven pneumatic controllers with a natural gas bleed rate greater than 6 SCFH. No pneumatic devices with a continuous bleed greater than 6 SCFH will be installed at this facility.

Storage vessels affected by this Subpart include those with VOC emissions greater than 6 TPY. Emissions from the storage vessels at this facility are greater than 6 TPY each and they are subject to this subpart.

40 CFR PART 63 SUBPART HH - NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES FROM OIL AND NATURAL GAS PRODUCTION FACILITIES:

The site is a minor (area) source of hazardous air pollutants. This subpart applies to affected emission points that are located at facilities that are major and area sources of HAP, and either process, upgrade, or store hydrocarbon liquids prior to custody transfer or that process, upgrade, or store natural gas prior to entering the natural gas transmission and storage source category. For purposes of this subpart natural gas enters the natural gas transmission and storage source category after the natural gas processing plant, if present. Even though the TEG dehydration unit at this facility is considered an affected area source, it is exempt from the requirements of § 63.764(d)(2) since the actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere are less than 0.90 Mg (1.0 TPY), as determined by the procedures specified in § 63.772(b)(2). However, the facility must maintain records of the de minimis determination as required in § 63.774(d)(1).

40 CFR PART 63 SUBPART HHH - NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES FROM NATURAL TRANSMISSION AND STORAGE FACILITIES:

The facility is not a natural gas transmission and storage facility and is therefore not subject to this Subpart.

40 CFR PART 63 SUBPART ZZZZ - NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES FROM STATIONARY RECIPROCATING INTERNAL COMBUSTION ENGINES - AREA SOURCE:

The original rule, published on February 26, 2004, initially affected new (constructed or reconstructed after December 19, 2002) reciprocating internal combustion engines (RICE) with a site-rating greater than 500 brake horsepower located at a major source of HAP emissions. On January 18, 2008, EPA published an amendment that promulgated standards for RICE constructed or reconstructed after June 12, 2006 with a site rating less than or equal to 500-hp located at major sources, and for engines constructed and reconstructed after June 12, 2006 located at area sources. On August 10, 2010, EPA published another amendment that promulgated standards for existing (constructed or reconstructed before June 12, 2006) RICE at area sources and existing RICE (constructed or reconstructed before June 12, 2006) with a site rating of less than or equal to 500-hp at major sources.

Owners and operators of new or reconstructed engines at area sources must meet the requirements of Subpart ZZZZ by complying with either 40 CFR Part 60 Subpart IIII (for CI engines) or 40 CFR Part 60 Subpart JJJJ (for SI engines). Based on emission calculations, this facility is a minor source of HAP. The engines are new engines as defined by this subpart and comply with MACT Subpart ZZZZ by complying with the requirements of NSPS Subpart JJJJ.

APPLICATION FOR GENERAL PERMIT REGISTRATION

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 Phone: (304) 926-0475 • www.dep.wv.gov/daq			A ST.	PERN CONSTRU ADM ATIONAR	AIT R JCT, M INISTF RY SOL	N FOR GENERAL REGISTRATION MODIFY, RELOCATE OR RATIVELY UPDATE JRCE OF AIR POLLUTANTS DMINISTRATIVE UPDATE
	CHECK WHICH TYPE OF GENERAL PE	RMIT REC	GISTRAT		ARE A	PPLYING FOR:
□ G20-B - Hot N □ G30-D - Natu □ G33-A - Spar	G10-D – Coal Preparation and Handling G50-B – Concrete Batch					Batch nergency Generator lergency Generator
	SECTION I. GENERAL INFORMATION					
	ant (as registered with the WV Secretary of State's n Company, LLC	Office):			deral Em 88727	ployer ID No. (FEIN):
3. Applicant's mai	ing address:	4. <i>A</i>	Applicant's	physical ad	dress:	
10000 Energy D Spring, TX 7738			00 Ener			
	subsidiary corporation, please provide the name of Energy Corporation	parent cor	poration:			
 6. WV BUSINESS REGISTRATION. Is the applicant a resident of the State of West Virginia? YES □ NO IF YES, provide a copy of the Certificate of Incorporation/ Organization / Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. IF NO, provide a copy of the Certificate of Authority / Authority of LLC / Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 						
SECTION II. FACILITY INFORMATION						
modified, relocated or administratively updated (e.g., coal Classi			dard Indu ation	strial A	ND 8	3b. North American Industry
	primary crusher, etc.): gas production well pad	Classifica	ation (SIC)	code: 13	11	System (NAICS) code: 211111

051-00205

9. DAQ Plant ID No. (for existing facilities only):

10. List all current 45CSR13 and other General Permit numbers associated with this process (for existing facilities only):

G70-A091

A:	PRIMARY	OPERATING	SITE INF	ORMATION
----	---------	-----------	----------	----------

11A. Facility name of primary operating site:	12A. Address of primary operating site:	-				
Fork Ridge Pad	Not applicable. Facility is located at	39.87151, -80.638514				
 13A. Does the applicant own, lease, have an optic IF YES, please explain: SWN owns the n IF NO, YOU ARE NOT ELIGIBLE FOR A PE 	nineral rights and has control of the si					
 14A For Modifications or Administrative U nearest state road; - For Construction or Relocation permits, MAP as Attachment F. 	pdates at an existing facility, please provide d	lirections to the present location of the facility from the site location from the nearest state road. Include a R 250 14.17 miles to intersection of SR 250				
and CR 17(Fork Ridge Road). Turn right of 15A. Nearest city or town: Moundsville, WV						
18A. Briefly describe the proposed new operation This application proposes installation of t compressor engines, revision of storage t combustor emissions.	hree (3) 1,380-hp Caterpillar G3516B	19A. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude: 39.87151 Longitude: -80.638514				
B: 1 ST ALTERNATE OPERATING SITE IN	FORMATION (only available for G20, G40,	& G50 General Permits) – NOT APPLICABLE				
11B. Name of 1 st alternate operating site:	12B. Address of 1 st alternate operating site:					
	Mailing:	Physical:				
13B. Does the applicant own, lease, have an option to buy, or otherwise have control of the proposed site?						
– IF NO , YOU ARE NOT ELIGIBLE FOR A PE	RMIT FOR THIS SOURCE.					
nearest state road;		lirections to the present location of the facility from the site location from the nearest state road. Include a				

15B. Nearest city or town:	16B. County:	17B. UTM Coordinates:
		Northing (KM): Easting (KM):
		Zone:
18B. Briefly describe the proposed new operation	or change (s) to the facility:	19B. Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits):
		Latitude: Longitude:

C: 2ND ALTERNATE OPERATING SITE INFORMATION (only available for G20, G40, & G50 General Permits): - NOT APPLICABLE

11C. Name of 2 nd alternate operating site:	12C. Address of	2 nd alternate operating site:			
	Mailing:		Physical:		
13C. Does the applicant own, lease, have an option - IF YES, please explain:				☐ YES	□ NO
– IF NO , YOU ARE NOT ELIGIBLE FOR A PE	RMIT FOR THIS S	SOURCE.			
14C. – For Modifications or Administrative U nearest state road;	pdates at an existi	ng facility, please provide direc	tions to the present	location of th	ne facility from the
 For Construction or Relocation permits, MAP as Attachment F. 	please provide dire	ections to the proposed new site	e location from the r	earest state	road. Include a
15C. Nearest city or town:	16C. County:			UTM Coordi	
			Northing (KM): _ Easting (KM): _		
			Zone: _		
18C. Briefly describe the proposed new operation	or change (s) to th	e facility:	19C. Latitude & I (NAD83, Decimal	Longitude Co Degrees to	ordinates 5 digits):
			Latitude: Longitude:		
20. Provide the date of anticipated installation or cl	hange:	21. Date of anticipated Start-	up if registration is	granted:	
On or about January 4, 2016 but continge approval.	nt upon	On or about January 4, 2	2016 but conting	jent upon a	approval.
☐ If this is an After-The-Fact permit application, p upon which the proposed change did happen: :	provide the date				
//					
22. Provide maximum projected Operating Schee other than 24/7/52 may result in a restriction to the			if other than 8760	hours/year.	(Note: anything
HOURS PER DAY <u>24</u> DAYS PER WE	ek 7 we	EEKS PER YEAR <u>52</u>	PERCENTAGE	OF OPERAT	ION 100%

SECTION III. ATTACHMENTS AND SUPPORTING DOCUMENTS

23. Include a check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR22 and 45CSR13).

24. Include a Table of Contents as the first page of your application package.

All of the required forms and additional information can be found under the Permitting Section (General Permits) of DAQ's website, or requested by phone.

25. Please check all attachments included with this permit application. Please refer to the appropriate reference document for an explanation of the attachments listed below.

- ATTACHMENT A : CURRENT BUSINESS CERTIFICATE
- ATTACHMENT B: PROCESS DESCRIPTION
- ATTACHMENT C: DESCRIPTION OF FUGITIVE EMISSIONS
- ATTACHMENT D: PROCESS FLOW DIAGRAM
- ATTACHMENT E: PLOT PLAN
- ATTACHMENT F: AREA MAP
- ATTACHMENT G: EQUIPMENT DATA SHEETS AND REGISTRATION SECTION APPLICABILITY FORM
- ATTACHMENT H: AIR POLLUTION CONTROL DEVICE SHEETS
- ATTACHMENT I: EMISSIONS CALCULATIONS
- ATTACHMENT J: CLASS I LEGAL ADVERTISEMENT
- ATTACHMENT K: ELECTRONIC SUBMITTAL
- ☑ ATTACHMENT L: GENERAL PERMIT REGISTRATION APPLICATION FEE
- ATTACHMENT M: SITING CRITERIA WAIVER
- ATTACHMENT N: MATERIAL SAFETY DATA SHEETS (MSDS)
- ATTACHMENT O: EMISSIONS SUMMARY SHEETS
- In OTHER SUPPORTING DOCUMENTATION NOT DESCRIBED ABOVE (Equipment Drawings, Aggregation Discussion, etc.)

Please mail an original and two copies of the complete General Permit Registration Application with the signature(s) to the DAQ Permitting Section, at the address shown on the front page of this application. Please DO NOT fax permit applications. For questions regarding applications or West Virginia Air Pollution Rules and Regulations, please refer to the website shown on the front page of the application or call the phone number also provided on the front page of the application.

SECTION IV. CERTIFICATION OF INFORMATION
This General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of a Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, Emission Inventory, Certified Emission Statement, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or unsigned Registration Application will be returned to the applicant.
FOR A CORPORATION (domestic or foreign) I certify that I am a President, Vice President, Secretary, Treasurer or in charge of a principal business function of the corporation
FOR A PARTNERSHIP I certify that I am a General Partner
FOR A LIMITED LIABILITY COMPANY I certify that I am a General Partner or General Manager
FOR AN ASSOCIATION I certify that I am the President or a member of the Board of Directors
FOR A JOINT VENTURE I certify that I am the President, General Partner or General Manager
FOR A SOLE PROPRIETORSHIP I certify that I am the Owner and Proprietor
☐ I hereby certify that (please print or type)
I hereby certify that all information contained in this General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible
Signature Jan ug 12/4/15
(please use blue ink) Responsible Official Date
Name & Title Paul Geiger, Sr. Vice President Ops Management (please print or type)
Signature (please use blue ink) Authorized Representative (if applicable) Date
Applicant's Name SWN Production Company, LLC
Phone & Fax 304-884-1652 Phone Fax
Email <u>Kristi.Evans@swn.com</u>

1.1

ATTACHMENT A: BUSINESS REGISTRATION CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION SSUED TO SWN[®]PRODUCTION COMPANY, LLC 5400D BIG TYLER RD CHARLESTON, WV 25313-1103 RÉGISTRATION ACCOUNT NUMBE 2307-3731 is certificate is issued on: 12/8/2014 UNE This certificate, is issued by accordance With Chapter 11, Article 12, of the West Virginia Code in ø 41 -)|| 7451 The person of organization identified on this certificate is registered to conduct business in the State of West-Virginia at the location above. This certificate is not transferrable and must be displayed at the location for which issued This certificate shall be permanent until cessation of the business for, which the certificate of registratio was granted or until it is suspended, revoked or carrcelled by the Tax Commissioner. Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required. TRAVELING/STREET-VENDORS: Must carry a copy of this certificate in every Vehicle, operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia? atL006 v.4 L1180094016

ATTACHMENT B: PROCESS DESCRIPTION

The facility is an oil and natural gas exploration and production facility, responsible for the production of condensate and natural gas. Storage of condensate and produced water also occurs on-site. A description of the facility process is as follows: Condensate, gas and water come from the wellhead(s) to the production unit(s), where the first stage of separation occurs. Fluids (condensate and produced water) will be sent to the heater treater(s). Flash gases from the heater treater are captured via natural gas-fired engine-driven flash gas compressor(s). Produced water from the heater treater(s) flows into the produced water storage tanks. Condensate flows into the low-pressure tower(s). Flash gases from the low-pressure tower(s) to the inlet of the flash gas compressor(s) to be compressed.

Working, breathing and flashing vapors from the condensate and produced water storage tanks will be routed to the vapor combustor with a 100% capture efficiency to be burned with at least 98% combustion efficiency. The vapor combustor has three (3) natural gas-fired pilots to ensure a constant flame for combustion.

The natural gas stream from the gas production units is sent to the compressors and then will be routed to the dehydration unit before exiting the facility. In the dehydration process, gas passes through a contactor vessel where water is absorbed by the glycol. The "rich" glycol containing water goes to the glycol dehydrator reboiler where heat is used to boil off the water. Still vent vapors from the dehydration unit will be controlled by an air-cooled condenser. Non-condensables from the still column overheads are routed to the reboiler for combustion. It was conservatively assumed that the reboiler provides 50% destruction efficiency, as the burner on the reboiler is necessary to maintain the temperature and is inherent in the process; therefore, it is appropriate to use 50% efficiency with no monitoring required. The manufacturer guarantees a higher control efficiency. Flash tank off gas will be routed to the vapor combustor with a 100% capture efficiency to be burned with a 98% combustion efficiency.

A process flow diagram reflecting facility operations is shown in Attachment D.

ATTACHMENT C: DESCRIPTION OF FUGITIVE EMISSIONS

Fugitive emissions at this site will consist of haul road emissions, condensate and produced water loading operations, and equipment leaks.

G70-A FUGITIVE EMISSIONS SUMMARY SHEET

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹	Maximum Potential Uncontrolled Emissions ²		Maximum Potential Controlled Emissions ³		Est. Method
	Chemical Name/CAS	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads						
Unpaved Haul Roads	PM Total PM ₁₀ PM _{2.5}	0.59 0.14 0.01	1.95 0.48 0.05	N/A	N/A	O – AP-42 13.2.2
Loading/Unloading Operations - Condensate	VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane	Does not apply	37.65 2.07 0.04 0.25 0.25 0.66 <0.01 0.24	Does not apply	11.30 0.62 0.01 0.07 0.08 0.20 <0.01 0.07	O – AP-42 5.2-4 / API 5- 12
Loading/Unloading Operations – Produced Water	VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane	Does not apply	0.61 0.03 <0.01 <0.01 <0.01 0.01 0.22 6.38	Does not apply	0.18 0.01 <0.01 <0.01 <0.01 <0.01 0.07 1.91	O – AP- 42 5.2-4 / API 5- 12

Equipment Leaks	VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane	Does not apply	6.38 0.26 <0.01 0.03 0.02 0.06 0.05 9.36	Does not apply	N/A	0 – EPA- 453/R-95- 017
Blowdown Emissions						
Other						

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; M = modeling; O = other (specify).

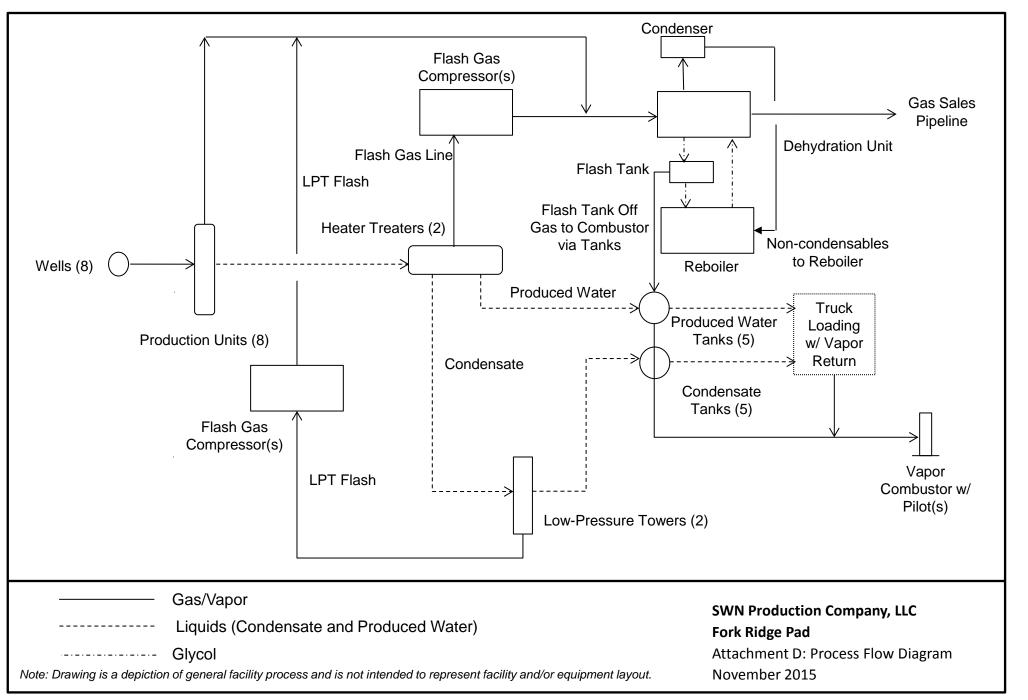
Note: Greenhouse Gas (GHG) emissions were calculated using EPA Mandatory Reporting Rule and 2009 API Compendium guidance. With the exception of fugitive emissions (which are calculated by mass balance), emissions calculation methodologies are intended to calculate metric tons (tonnes) for the purposes of emissions reporting to EPA. These values were converted to tons for consistency with other pollutants.

LEAK SOURCE DATA SHEET

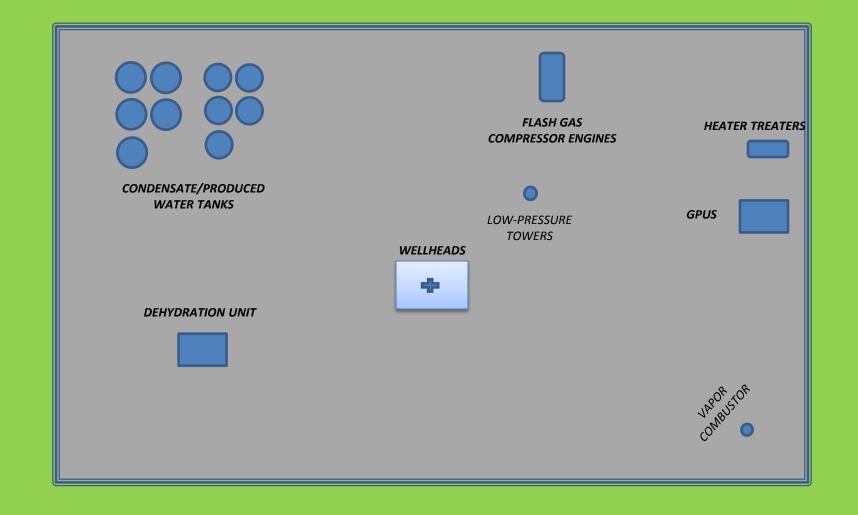
Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (days) ³	Estimated Annual Emission Rate (Ib/yr) ⁴
light liquid VOC ^{6,7}	0	N/A	N/A	0
heavy liquid VOC ⁸				
Non-VOC ⁹				
Gas VOC	178	N/A	N/A	2,940
Light Liquid VOC	127	N/A	N/A	5,840
Heavy Liquid VOC				
Non-VOC				
Gas VOC	48	N/A	N/A	1,540
Non VOC				
VOC	2	N/A	N/A	20
Non-VOC				
VOC				
Non-VOC				
VOC	12	N/A	N/A	380
Non-VOC				
VOC	721 (Gas), 502 (LL)	N/A	N/A	1,020 (Gas), 1,020 (LL)
Non-VOC				
VOC	0	N/A	N/A	0
Non-VOC				
	light liquid VOC ^{6,7} heavy liquid VOC ⁸ Non-VOC ⁹ Gas VOC Light Liquid VOC Heavy Liquid VOC Heavy Liquid VOC Non-VOC Gas VOC Non-VOC VOC Non-VOC VOC Non-VOC VOC Non-VOC VOC Non-VOC	PollutantComponents1light liquid VOC6,70heavy liquid VOC81Non-VOC9178Gas VOC178Light Liquid VOC127Heavy Liquid VOC127Mon-VOC48Non VOC2VOC2Non-VOC12VOC12Non-VOC12Non-VOC12Non-VOC12Non-VOC0	Pollutant Components ¹ Monitored by Frequency ² light liquid VOC ⁸ 0 N/A heavy liquid VOC ⁸ Non-VOC ⁹ 178 N/A Gas VOC 178 N/A Light Liquid VOC 127 N/A Heavy Liquid VOC 127 N/A Non-VOC 48 N/A Sas VOC 48 N/A Non VOC 2 N/A VoC 2 N/A Non-VOC 12 N/A VOC 12 N/A Non-VOC 12 N/A VOC 12 N/A Non-VOC 12 N/A VOC 721 (Gas), 502 (LL) N/A Non-VOC 0 N/A	Pollutant Components ¹ Monitored by Frequency ² Repair (days) ³ light liquid VOC ^{8,7} 0 N/A N/A heavy liquid VOC ⁸ Non-VOC ⁹ Gas VOC 178 N/A N/A Light Liquid VOC 127 N/A N/A Heavy Liquid VOC 127 N/A N/A Non-VOC Gas VOC 48 N/A N/A Non-VOC 2 N/A N/A VOC 2 N/A N/A Non-VOC VOC 12 N/A N/A Non-VOC

¹⁻¹³ See notes on the following page. Note: Component counts taken by equipment type at representative facility and made site-specific according to the number of each equipment type at this site.

Notes for Leak Source Data Sheet

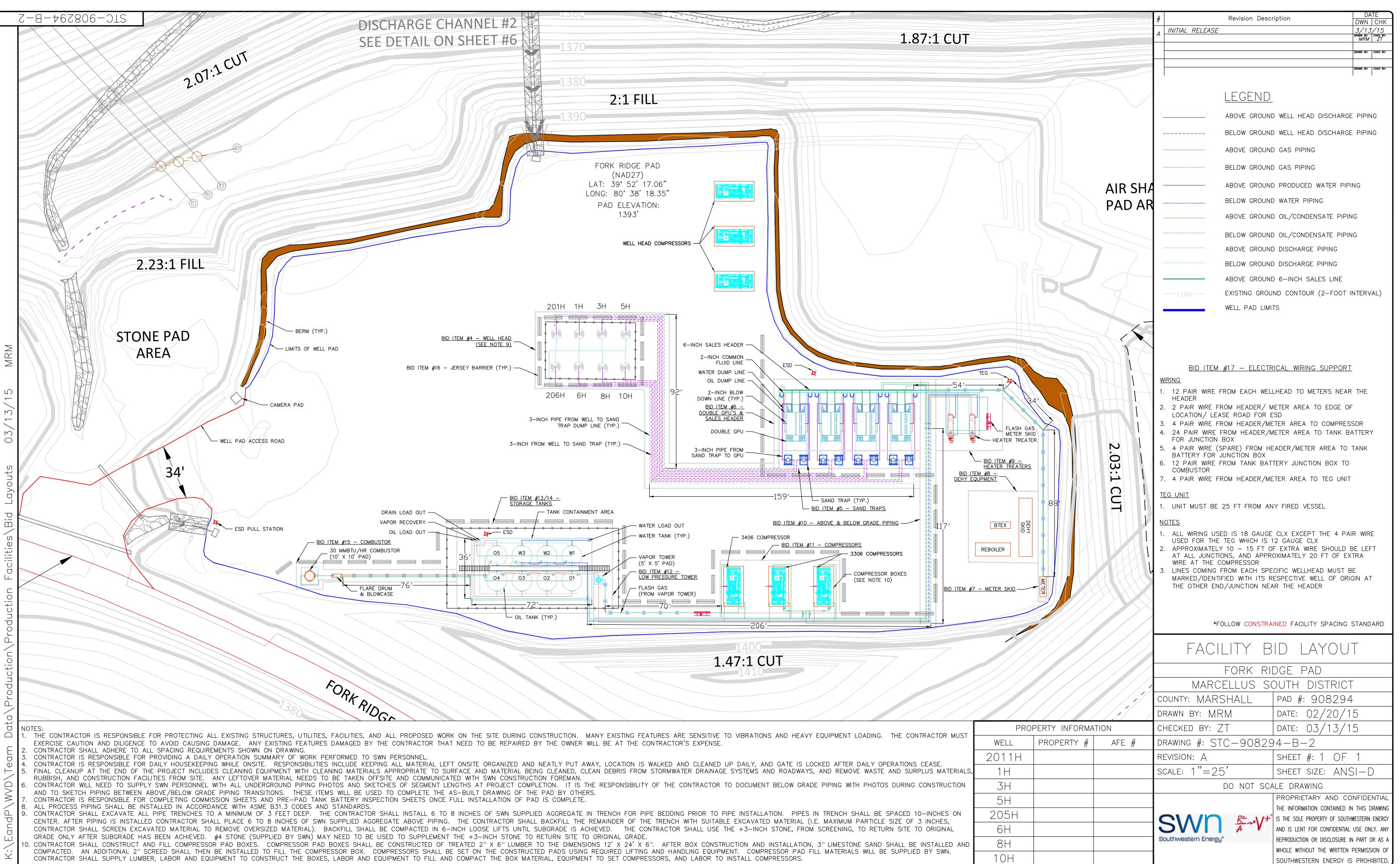

- 1. For VOC sources include components on streams and equipment that contain greater than 10% w/w VOC, including feed streams, reaction/separation facilities, and product/by-product delivery lines. Do not include certain leakless equipment as defined below by category.
- 2. By monitoring frequency, give the number of sources routinely monitored for leaks, using a portable detection device that measures concentration in ppm. Do not include monitoring by visual or soap-bubble leak detection methods. "M/Q(M)/Q/SA/A/O" means the time period between inspections as follows:

Monthly/Quarterly, with Monthly follow-up of repaired leakers/Quarterly/Semi-annual/Annually/Other (specify time period)


If source category is not monitored, a single zero in the space will suffice. For example, if 50 gas-service valves are monitored quarterly, with monthly follow-up of those repaired, 75 are monitored semi-annually, and 50 are checked bimonthly (alternate months), with non checked at any other frequency, you would put in the category "valves, gas service:" 0/50/0/75/0/50 (bimonthly).

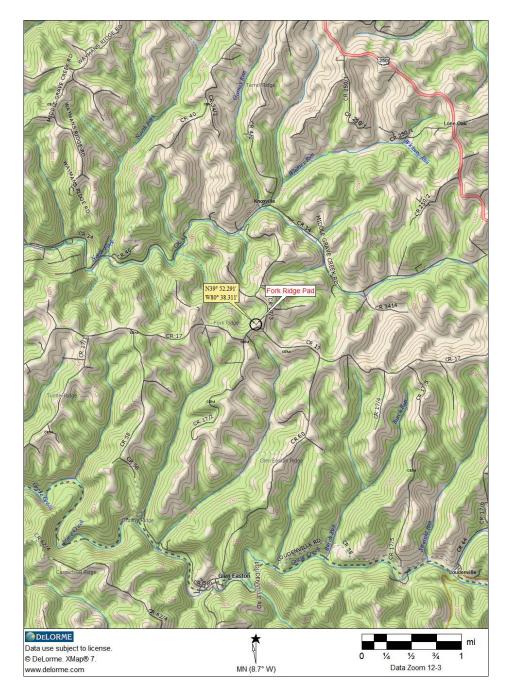
- 3. Give the average number of days, after a leak is discovered, that an attempt will be made to repair the leak.
- 4. Note the method used: MB material balance; EE engineering estimate; EPA emission factors established by EPA (cite document used); O other method, such as in-house emission factor (specify).
- 5. Do not include in the equipment count sealless pumps (canned motor or diaphragm) or those with enclosed venting to a control device. (Emissions from vented equipment should be included in the estimates given in the Emission Points Data Sheet.)
- 6. Volatile organic compounds (VOC) means the term as defined in 40 CFR \Box 51.100 (s).
- 7. A light liquid is defined as a fluid with vapor pressure equal to or greater than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if 20% w/w or more of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a light liquid.
- 8. A heavy liquid is defined as a fluid with a vapor pressure less than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if less than 20% w/w of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a heavy liquid.
- 9. LIST CO, H₂S, mineral acids, NO, NO₂, SO₃, etc. DO NOT LIST CO₂, H₂, H₂O, N₂, O₂, and Noble Gases.
- 10. Include all process valves whether in-line or on an open-ended line such as sample, drain and purge valves. Do not include safety-relief valves, or leakless valves such as check, diaphragm, and bellows seal valves.
- 11. Do not include a safety-relief valve if there is a rupture disk in place upstream of the valve, or if the valve vents to a control device.
- 12 Open-ended lines include purge, drain and vent lines. Do not include sampling connections, or lines sealed by plugs, caps, blinds or second valves.
- 13. Do not include closed-purge sampling connections.

ATTACHMENT D: PROCESS FLOW DIAGRAM


ATTACHMENT E: PLOT PLAN

<u>NOTE</u>: Image is only a representation of production/emissions equipment. Actual location specifications and equipment placement are not to scale.

SWN Production Company, LLC Fork Ridge Pad


Simple Plot Plan November 2015

σ \square С О \Box σ σ \square $\overline{\mathbf{n}}$

	4
	2011H
ED AND NEATLY PUT AWAY, LOCATION IS WALKED AND CLEANED UP DAILY, AND GATE IS LOCKED AFTER DAILY OPERATIONS CEASE. RIAL BEING CLEANED, CLEAN DEBRIS FROM STORMWATER DRAINAGE SYSTEMS AND ROADWAYS, AND REMOVE WASTE AND SURPLUS MATERIALS, NSTRUCTION FOREMAN.	1H
T COMPLETION. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO DOCUMENT BELOW GRADE PIPING WITH PHOTOS DURING CONSTRUCTION OF THE PAD BY OTHERS.	3H
I OF PAD IS COMPLETE.	5H
SUPPLIED AGGREGATE IN TRENCH FOR PIPE BEDDING PRIOR TO PIPE INSTALLATION. PIPES IN TRENCH SHALL BE SPACED 10-INCHES ON R SHALL BACKFILL THE REMAINDER OF THE TRENCH WITH SUITABLE EXCAVATED MATERIAL (I.E. MAXIMUM PARTICLE SIZE OF 3 INCHES,	205H
UNTIL SUBGRADE IS ACHIEVED. THE CONTRACTOR SHALL USE THE +3-INCH STONE, FROM SCREENING, TO RETURN SITE TO ORIGINAL	6H
ONE TO RETURN SITE TO ORIGINAL GRADE. LUMBER TO THE DIMENSIONS 12' X 24' X 6". AFTER BOX CONSTRUCTION AND INSTALLATION, 3" LIMESTONE SAND SHALL BE INSTALLED AND	8H
NSTRUCTED PADS USING REQUIRED LIFTING AND HANDLING EQUIPMENT. COMPRESSOR PAD FILL MATERIALS WILL BE SUPPLIED BY SWN. OX MATERIAL FOLIPMENT TO SET COMPRESSORS AND LABOR TO INSTALL COMPRESSORS	10日

ATTACHMENT F: AREA MAP

Fork Ridge Pad Figure 1: Area Map Marshall County, West Virginia December 2015

ATTACHMENT G: EMISSION UNIT DATA SHEETS AND G70-A SECTION APPLICABILITY FORM

Emission Units Table

Storage Vessel Emission Unit Data Sheet

Natural Gas Fired Compressor Engine (RICE) Emission Data Sheet

Glycol Dehydration Emission Unit Data Sheet

Tank Truck Loading Emission Unit Data Sheet

G70-A Section Applicability Form

Emission Units Table (includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
EU-MC1706	EP-MC1706	Caterpillar G3306 NA Engine	2014	145-hp	Removal	NSCR
EU-MC4907	EP-MC4907	Caterpillar G3406 NA Engine	2014	215-hp	Removal	NSCR
EU-MC4908	EP-MC4908	Caterpillar G3406 NA Engine	2014	215-hp	Removal	NSCR
EU-ENG1	EP-ENG1	Caterpillar G3516B Engine	TBD	1,380-hp	New	Oxidation Catalyst
EU-ENG2	EP-ENG2	Caterpillar G3516B Engine	TBD	1,380-hp	New	Oxidation Catalyst
EU-ENG3	EP-ENG3	Caterpillar G3406 NA Engine	TBD	215-hp	New	NSCR
EU-ENG4	EP-ENG4	Caterpillar G3516B Engine	TBD	1,380-hp	New	Oxidation Catalyst
EU-GPU1	EP-GPU1	GPU Burner	2014	1.0-mmBtu/hr	N/A	N/A
EU-GPU2	EP-GPU2	GPU Burner	2014	1.0-mmBtu/hr	N/A	N/A
EU-GPU3	EP-GPU3	GPU Burner	2014	1.0-mmBtu/hr	N/A	N/A
EU-GPU4	EP-GPU4	GPU Burner	2014	1.0-mmBtu/hr	N/A	N/A
EU-GPU5	EP-GPU5	GPU Burner	2014	1.0-mmBtu/hr	N/A	N/A
EU-GPU6	EP-GPU6	GPU Burner	2014	1.0-mmBtu/hr	N/A	N/A
EU-GPU7	EP-GPU7	GPU Burner	2014	1.0-mmBtu/hr	N/A	N/A
EU-GPU8	EP-GPU8	GPU Burner	2014	1.0-mmBtu/hr	N/A	N/A
EU-HT1	EP-HT1	Heater Treater	2014	0.5-mmBtu/hr	N/A	N/A
EU-HT2	EP-HT2	Heater Treater	2014	0.5-mmBtu/hr	N/A	N/A

Emission Units Table (Continued) (includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

EU-DEHY1	EP-DEHY1	TEG Dehydration Unit	2014	35.0- MMSCFD	N/A	APC-COND and APC-COMB-TKLD
EU-RB1	EP-RB1	TEG Reboiler	2014	0.75- mmBtu/hr	N/A	N/A
EU-TANKS- COND	APC-COMB- TKLD	Five (5) Condensate Tanks	2014	400-bbl each	Modification	APC-COMB-TKLD
EU-TANKS- PW	APC-COMB- TKLD	Five (5) Produced Water Tanks	2014	400-bbl each	N/A	APC-COMB-TKLD
EU-LOAD- COND	APC-COMB- TKLD	Condensate Truck Loading	2014	12,264,000 gallons	Modification	APC-COMB-TKLD
EU-LOAD- PW	APC-COMB- TKLD	Produced Water Truck Loading	2014	15,330,000 gallons	N/A	APC-COMB-TKLD
APC-COMB- TKLD	APC-COMB- TKLD	Vapor Combustor	2014	30.0- mmBtu/hr	Modification	N/A
EU-Pilot	APC-COMB- TKLD	Vapor Combustor Pilots	2014	150 scfh	N/A	N/A
EU-FUG	EP-FUG	Fugitive Emissions	2014	N/A	Modification	N/A
EU-HR	EP-HR	Fugitive Haul Road Emissions	2014	N/A	N/A	N/A

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.
 ² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.
 ³ New, modification, removal
 ⁴ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name				
Condensate Storage	Five (5) 400-bbl Condensate Storage Tanks				
3. Emission Unit ID number	4. Emission Point ID number				
EU-TANKS-COND	APC-COMB-TKLD				
5. Date Installed or Modified (for existing tanks)	6. Type of change:				
2014	\Box New construction \Box New stored material \boxtimes Other				
7A. Description of Tank Modification (if applicable) Revision t	o process simulation based on proposed operations.				
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.				
🗌 Yes 🖾 No					
7C. Provide any limitations on source operation affecting emissions. (production variation, etc.)					
Not applicable					

II. TANK INFORMATION (required)

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.					
400 barrels (per tank)					
9A. Tank Internal Diameter (ft.) 12	9B. Tank Internal Height (ft.) 20				
10A. Maximum Liquid Height (ft.) 19	10B. Average Liquid Height (ft.) 10				
11A. Maximum Vapor Space Height (ft.) 20	11B. Average Vapor Space Height (ft.) 10				
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume.				
16,074.56 gallons (per EPA TANKS 4.0.9d)					
13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)				
12,264,000 (Total for all tanks)	33,600 (Total for all tanks)				
14. Number of tank turnovers per year	15. Maximum tank fill rate (gal/min)				
762.94 (Total for all tanks, per EPA TANKS 4.0.9d)	Unknown				
16. Tank fill method 🗌 Submerged 🛛 Splash	Bottom Loading				
17. Is the tank system a variable vapor space system? \Box Yes					
If yes, (A) What is the volume expansion capacity of the system					
(B) What are the number of transfers into the system per y	year?				
18. Type of tank (check all that apply):					
\boxtimes Fixed Roof \underline{X} verticalhorizontalflat	roof \underline{X} cone roof $$ dome roof $$ other (describe)				
External Floating Roof pontoon roof doub	ble deck root				
Domed External (or Covered) Floating Roof					
Internal Floating Roof vertical column support self-supporting					
Variable Vapor Space lifter roof diaphragm					
Pressurized spherical cylindrical					
Other (describe)					

III. TANK CONSTRUCTION AND OPERATION INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

□ Refer to the responses to items 19 – 26 in section VII

IV. SITE INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

 \Box Refer to the responses to items 27 – 33 in section VII

V. LIQUID INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

 \Box Refer to the responses to items 34 – 39 in section VII

VI. EMISSIONS AND CONTROL DEVICE DATA (required)

40. Emission Control Devices (check as many as apply):									
Does Not Apply	ly 🗌 Rupture Disc (psig)								
Carbon Adsorption ¹	Inert Gas Blanket of								
Vent to Vapor Combus	tion Dev	vice ¹ (vapo	r combust	ors, flares	, thermal	oxidizers)			
Condenser ¹				Conse	ervation V	Vent (psig			
\Box Other ¹ (describe)				Vacuur	n Setting	Pre	ssure Set	tting	
				Emer	gency Re	lief Valve	(psig)		
¹ Complete appropriate Air	Pollution	n Control	Device Sh	eet					
41. Expected Emission Ra	te (submi	it Test Dat	ta or Calcu	lations he	re or else	where in the	ne applic	ation).	
Material Name and	Flashi	ng Loss	Breathi	ng Loss	Worki	ng Loss	Total		Estimation Method ¹
CAS No.							Emissions Loss		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Refer to Attachment I En	nissions (Calculatio	ons and er	closed TA	ANKS S	ummary S	heet.		

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

SECTION VII (required if did not provide TANKS Summary Sheets)

TANK CONSTRUCTION AND OPERATIO	N INFORMATION Refer to enclosed TANK	S Summary Sheet.				
19. Tank Shell Construction:						
Riveted Gunite lined Epo:	xy-coated rivets D Other (describe)					
20A. Shell Color:	20B. Roof Color:	20C. Year Last Painted:				
21. Shell Condition (if metal and unlined):						
□ No Rust □ Light Rust □ Dens	e Rust 🔲 Not applicable					
22A. Is the tank heated? Yes No	22B. If yes, operating temperature:	22C. If yes, how is heat provided to tank?				
23. Operating Pressure Range (psig):						
24. Is the tank a Vertical Fixed Roof Tank?	24A. If yes, for dome roof provide radius (ft):	24B. If yes, for cone roof, provide slop (ft/ft):				
Yes No						
25. Complete item 25 for Floating Roof Tanks	Does not apply					
25A. Year Internal Floaters Installed:						
25B. Primary Seal Type (check one): Met	allic (mechanical) shoe seal 🛛 Liquid me	ounted resilient seal				
🗌 Vap	oor mounted resilient seal 🛛 🗌 Other (de	escribe):				
25C. Is the Floating Roof equipped with a seco	ndary seal? Yes No					
25D. If yes, how is the secondary seal mounted? (check one) Shoe Rim Other (describe):						
25E. Is the floating roof equipped with a weather	er shield? Yes No					
25F. Describe deck fittings:						
-						

26. Complete the following section for Internal Floating Roof Tanks Does not apply							
26A. Deck Type: Dolted		Velded	26B. For bolted decks, provide deck construction:				
26C. Deck seam. Continuous sheet	constructio	n:					
\Box 5 ft. wide \Box 6 ft. wide \Box] 7 ft. wie	de 🔲 5 x 7.5 ft. wid	e 🗌 5	x 12 ft. wide	ther (a	describe)	
26D. Deck seam length (ft.):	26E. Area	of deck (ft ²):	26F. 1	For column supp	orted	26G. For column supported	
			tanks,	# of columns:		tanks, diameter of column:	
SITE INFORMATION:							
27. Provide the city and state on wh		in this section are based:					
28. Daily Avg. Ambient Temperatu			29. A	nnual Avg. Maxi	mum Temper	rature (°F):	
30. Annual Avg. Minimum Temper			31. A	vg. Wind Speed	(mph):		
32. Annual Avg. Solar Insulation Fa	actor (BTU/	ft ² -day):	33. A	tmospheric Press	sure (psia):		
LIQUID INFORMATION:							
34. Avg. daily temperature range of	bulk	34A. Minimum (°F):	34B. Max			imum (°F):	
liquid (°F):							
35. Avg. operating pressure range o	of tank	35A. Minimum (psig):	35B. Max			imum (psig):	
(psig):							
			-				
36A. Minimum liquid surface temp			36B. Corresponding vapor pressure (psia):				
37A. Avg. liquid surface temperature			37B. Corresponding vapor pressure (psia):				
38A. Maximum liquid surface temp				Corresponding v	1	(psia):	
39. Provide the following for each l		to be stored in the tank.	Add add	litional pages if	necessary.		
39A. Material name and composition	on:						
39B. CAS number:							
39C. Liquid density (lb/gal):							
39D. Liquid molecular weight (lb/lb	o-mole):						
39E. Vapor molecular weight (lb/lb	-mole):						
39F. Maximum true vapor pressure	(psia):						
39G. Maxim Reid vapor pressure (psia):						
39H. Months Storage per year. From	m:						
To:							

STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name			
Produced Water Storage	Five (5) 400-bbl Produced Water Storage Tanks			
3. Emission Unit ID number	4. Emission Point ID number			
EU-TANKS-PW	APC-COMB-TKLD			
5. Date Installed or Modified (for existing tanks)	6. Type of change:			
2014	\Box New construction \Box New stored material \boxtimes Other			
7A. Description of Tank Modification (if applicable) Revision to	o tank emissions based on 100% capture rate to combustor.			
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.			
🗌 Yes 🛛 No				
7C. Provide any limitations on source operation affecting emissions. (production variation, etc.)				
Not applicable				

II. TANK INFORMATION (required)

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.						
400 barrels (per tank)						
9A. Tank Internal Diameter (ft.) 12	9B. Tank Internal Height (ft.) 20					
10A. Maximum Liquid Height (ft.) 19	10B. Average Liquid Height (ft.) 10					
11A. Maximum Vapor Space Height (ft.) 20	11B. Average Vapor Space Height (ft.) 10					
12. Nominal Capacity (specify barrels or gallons). This is also I	known as "working volume.					
16,074.56 gallons (per EPA TANKS 4.0.9d)						
13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)					
15,330,000 (Total for all tanks)	42,000 (Total for all tanks)					
14. Number of tank turnovers per year	15. Maximum tank fill rate (gal/min)					
953.68 (Total for all tanks, per EPA TANKS 4.0.9d)	Unknown					
16. Tank fill method 🗌 Submerged 🛛 Splash	Bottom Loading					
17. Is the tank system a variable vapor space system? Yes	🛛 No					
If yes, (A) What is the volume expansion capacity of the system	(gal)?					
(B) What are the number of transfers into the system per y	ear?					
18. Type of tank (check all that apply):						
\square Fixed Roof \underline{X} vertical $$ horizontal $$ flat	roof \underline{X} cone roof $$ dome roof $$ other (describe)					
External Floating Roof pontoon roof doub	le deck roof					
Domed External (or Covered) Floating Roof						
-	Internal Floating Roof vertical column support self-supporting					
Variable Vapor Space lifter roof diaphragm						
Pressurized spherical cylindric	al					
Other (describe)						

III. TANK CONSTRUCTION AND OPERATION INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

□ Refer to the responses to items 19 – 26 in section VII

IV. SITE INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

 \Box Refer to the responses to items 27 – 33 in section VII

V. LIQUID INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

 \Box Refer to the responses to items 34 – 39 in section VII

VI. EMISSIONS AND CONTROL DEVICE DATA (required)

40. Emission Control Devices (check as many as apply):									
Does Not Apply	ly 🗌 Rupture Disc (psig)								
Carbon Adsorption ¹	Inert Gas Blanket of								
Vent to Vapor Combus	tion Dev	vice ¹ (vapo	r combust	ors, flares	, thermal	oxidizers)			
Condenser ¹				Conse	ervation V	Vent (psig			
\Box Other ¹ (describe)				Vacuur	n Setting	Pre	ssure Se	tting	
				Emer	gency Re	lief Valve	(psig)		
¹ Complete appropriate Air	Pollutio	n Control	Device Sh	eet					
41. Expected Emission Ra	te (submi	it Test Dat	ta or Calcu	lations he	re or else	where in the	ne applic	ation).	
Material Name and	Flashi	ng Loss	Breathi	ng Loss	Worki	ng Loss	Total		Estimation Method ¹
CAS No.							Emissions Loss		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Refer to Attachment I En	nissions (Calculatio	ons and er	closed TA	ANKS S	ummary S	heet.		

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

SECTION VII (required if did not provide TANKS Summary Sheets)

TANK CONSTRUCTION AND OPERATIO	N INFORMATION Refer to enclosed TANK	S Summary Sheet.				
19. Tank Shell Construction:						
Riveted Gunite lined Epo:	xy-coated rivets D Other (describe)					
20A. Shell Color:	20B. Roof Color:	20C. Year Last Painted:				
21. Shell Condition (if metal and unlined):						
□ No Rust □ Light Rust □ Dens	e Rust 🔲 Not applicable					
22A. Is the tank heated? Yes No	22B. If yes, operating temperature:	22C. If yes, how is heat provided to tank?				
23. Operating Pressure Range (psig):						
24. Is the tank a Vertical Fixed Roof Tank?	24A. If yes, for dome roof provide radius (ft):	24B. If yes, for cone roof, provide slop (ft/ft):				
Yes No						
25. Complete item 25 for Floating Roof Tanks	Does not apply					
25A. Year Internal Floaters Installed:						
25B. Primary Seal Type (check one): Met	allic (mechanical) shoe seal 🛛 Liquid me	ounted resilient seal				
🗌 Vap	oor mounted resilient seal 🛛 🗌 Other (de	escribe):				
25C. Is the Floating Roof equipped with a seco	ndary seal? Yes No					
25D. If yes, how is the secondary seal mounted? (check one) Shoe Rim Other (describe):						
25E. Is the floating roof equipped with a weather	er shield? Yes No					
25F. Describe deck fittings:						
-						

26. Complete the following section for Internal Floating Roof Tanks Does not apply							
		ě		Does not appl			
26A. Deck Type: Dolted		Welded	26B. 1	For bolted decks	, provide decl	k construction:	
26C. Deck seam. Continuous sheet	t constructio	n:					
\Box 5 ft. wide \Box 6 ft. wide [7 ft. wi	de 🔲 5 x 7.5 ft. wid	e 🗌 5	x 12 ft. wide	other (describe)	
26D. Deck seam length (ft.):	26E. Area	of deck (ft ²):	26F. 1	For column supp	orted	26G. For column supported	
			tanks,	# of columns:		tanks, diameter of column:	
SITE INFORMATION:							
27. Provide the city and state on wh	nich the data	in this section are based:					
28. Daily Avg. Ambient Temperatu	ure (°F):		29. A	nnual Avg. Maxi	mum Temper	rature (°F):	
30. Annual Avg. Minimum Temper	rature (°F):		31. A	vg. Wind Speed	(mph):		
32. Annual Avg. Solar Insulation F	actor (BTU/	'ft ² -day):	33. A	mospheric Press	sure (psia):		
LIQUID INFORMATION:							
34. Avg. daily temperature range of	f bulk	34A. Minimum (°F):	A. Minimum (°F):		34B. Maximum (°F):		
liquid (°F):							
35. Avg. operating pressure range of	of tank	35A. Minimum (psig):): 35B. Ma		35B. Maxi	ximum (psig):	
(psig):							
36A. Minimum liquid surface temp	erature (°F)	:	36B. Corresponding vapor pressure (psia):				
37A. Avg. liquid surface temperatu			37B. Corresponding vapor pressure (psia):				
38A. Maximum liquid surface temp	perature (°F)	:	38B. Corresponding vapor pressure (psia):				
39. Provide the following for each	liquid or gas	to be stored in the tank.	Add add	litional pages if 1	necessary.		
39A. Material name and composition	on:						
39B. CAS number:							
39C. Liquid density (lb/gal):							
39D. Liquid molecular weight (lb/l	b-mole):						
39E. Vapor molecular weight (lb/lb	o-mole):						
39F. Maximum true vapor pressure	e (psia):						
39G. Maxim Reid vapor pressure ((psia):						
39H. Months Storage per year. Fro	om:						
To:							

NATURAL GAS-FIRED COMPRESSOR ENGINE (RICE) EMISSION UNIT DATA SHEET

	<i>Complete this section for an</i> Init (Source) ID No. ¹	EU-E	· ·	EU-E		EU-ENG3	
	on Point ID No. ²	EP-ENG1				EP-ENG3	
	ufacturer and Model	Caterpillar G3516B		EP-ENG2 Caterpillar G3516B		Caterpillar G3406 NA	
-	rer's Rated bhp/rpm	-	1,400-rpm		1,400-rpm	_	,800 rpm
	urce Status ³		-				
	d/Modified/Removed ⁴	N	IS BD	N TH			IS BD
	ured/Reconstruction Date ⁵ oject to 40CFR60, Subpart	Tł	3D	TH	BD	Tł	3D
JJJJ?		Y	es	Y	es	Y	es
Engine according (Yes or No) ⁶	Stationary Spark Ignition to 40CFR60, Subpart JJJJ?	N	lo	N	0	N	lo
Is this engine sub ZZZZ? (yes or no)	oject to 40CFR63, Subpart	Y	es	Y	es	Y	es
· · · ·	Engine Type ⁷		34S	LB			84S
	APCD Type ⁸	CA	АT	CA	АT	NS	CR
	Fuel Type ⁹	R	G	R	G	R	G
Engine, Fuel and	H ₂ S (gr/100 scf)	Negli	igible	Negligible		Negli	igible
Combustion Data	Operating bhp/rpm	1,380-hp/	1,400-rpm	1,380-hp/1,400-rpm		215-hp/1,800 rpm	
Data	BSFC (Btu/bhp-hr)	7,4	133	7,433		8,756	
	Fuel throughput (ft ³ /hr)	11,	334	11,334		2,080	
	Fuel throughput (MMft ³ /yr)	99	.29	99	.29	18	.22
	Operation (hrs/yr)	8,7	760	8,760		8,7	760
Reference ¹⁰	Potential Emissions ¹¹	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
MD	NO _X	3.04	13.32	3.04	13.32	0.47	2.06
MD	СО	2.68	11.74	2.68	11.74	0.95	4.16
MD	VOC	2.08	9.11	2.08	9.11	0.36	1.58
AP	SO ₂	0.01	0.03	0.01	0.03	< 0.01	< 0.01
AP	PM ₁₀	0.10	0.44	0.10	0.44	0.02	0.08
MD	Formaldehyde	0.37	1.60	0.37	1.60	0.03	0.13
MRR ¹²	Proposed Monitoring:	In accordanc Subpa	e with NSPS art JJJJ	In accordanc Subpa	e with NSPS rt JJJJ		e with NSPS art JJJJ
Proposed Recordkeeping: Proposed Reporting:		In accordance		In accordance		In accordance	e with NSPS art JJJJ
			e with NSPS rt JJJJ	In accordanc Subpa	e with NSPS rt JJJJ		e with NSPS art JJJJ

Complete this section for any natural gas-fired reciprocating internal combustion engine.

Instructions for completing the Engine Emission Unit Data Sheet:

- ¹ Enter the appropriate Emission Unit (Source) identification number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the production pad. Multiple compressor engines should be designated CE-1<u>S</u>, CE-2<u>S</u>, etc. or other appropriate designation. Generator engines should be designated GE-1<u>S</u>, GE-2<u>S</u>, etc. or other appropriate designation. If more than three (3) engines exist, please use additional sheets.
- ² For Emission Points, use the following numbering system: 1E, 2E, etc. or other appropriate designation.
- ³ Enter the Source Status using the following codes: NS = Construction of New Source (installation); ES = Existing Source; MS = Modification of Existing Source; and RS = Removal of Source
- ⁴ Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.
- ⁵ Enter the date that the engine was manufactured, modified or reconstructed.
- ⁶ Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate. *Provide a manufacturer's data sheet for all engines being registered and a manufacturer's EPA certification of conformity sheet.*
- ⁷ Enter the Engine Type designation(s) using the following codes: LB2S = Lean Burn Two Stroke, RB4S = Rich Burn Four Stroke, and LB4S =Lean Burn Four Stroke.
- ⁸ Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes: NSCR = Rich Burn & Non-Selective Catalytic Reduction, PSC = Rich Burn & Prestratified Charge, SCR = Lean Burn & Selective Catalytic Reduction, or CAT = Lean Burn & Catalytic Oxidation
- ⁹ Enter the Fuel Type using the following codes: $\overrightarrow{PQ} = \overrightarrow{PQ}$ Pipeline Quality Natural Gas, or $\overrightarrow{RG} = \overrightarrow{Raw}$ Natural Gas
- ¹⁰ Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this *Compressor/Generator Data* Sheet(s). Codes: MD = Manufacturer's Data, AP = AP-42 Factors, $GR = GRI-HAPCalc^{TM}$, or OT = Other (please list)
- ¹¹ Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet as Attachment O*.
- ¹² Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the operation of this engine operation and associated air pollution control device. Include operating ranges and maintenance procedures required by the manufacturer to maintain the warranty.

NATURAL GAS-FIRED COMPRESSOR ENGINE (RICE) EMISSION UNIT DATA SHEET

r	Complete this section for an		v 1	nui combusi	ion engine.	
Emission Unit (Source) ID No. ¹ Emission Point ID No. ²		EU-ENG4				
		EP-ENG4				
Engine Man	ufacturer and Model	Caterpilla	ar G3516B			
	rer's Rated bhp/rpm	1,380-hp/	1,400-rpm			
Sou	urce Status ³	Ν	IS			
Date Installed	d/Modified/Removed ⁴	TI	BD			
Engine Manufactu	ured/Reconstruction Date ⁵	TI	BD			
JJJJ?	ject to 40CFR60, Subpart	Y	es			
Engine according t (Yes or No) ⁶	Stationary Spark Ignition to 40CFR60, Subpart JJJJ?	Ν	ło			
Is this engine sub ZZZZ? (yes or no)	ject to 40CFR63, Subpart	Y	es			
	Engine Type ⁷	LE	34S			
	APCD Type ⁸	C	AT			
	Fuel Type ⁹	R	G			
Engine, Fuel and	H ₂ S (gr/100 scf)	Negl	igible			
Combustion Data	Operating bhp/rpm	1,380-hp/	1,400-rpm			
Data	BSFC (Btu/bhp-hr)	7,4	433			
	Fuel throughput (ft ³ /hr)	11,	.334			
	Fuel throughput (MMft ³ /yr)	99.29				
	Operation (hrs/yr)	8,7	760			
Reference ¹⁰	Potential Emissions ¹¹	lbs/hr	tons/yr			
MD	NO _X	3.04	13.32			
MD	СО	2.68	11.74			
MD	VOC	2.08	9.11			
AP	SO ₂	0.01	0.03			
AP	PM ₁₀	0.10	0.44			
MD	Formaldehyde	0.37	1.60			
MRR ¹²	Proposed Monitoring:					
			ce with NSPS art JJJJ			
	Proposed Recordkeeping:		ce with NSPS art JJJJ			
	Proposed Reporting:		ce with NSPS art JJJJ			

Complete this section for any natural gas-fired reciprocating internal combustion engine.

Instructions for completing the Engine Emission Unit Data Sheet:

- ¹ Enter the appropriate Emission Unit (Source) identification number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the production pad. Multiple compressor engines should be designated CE-1<u>S</u>, CE-2<u>S</u>, etc. or other appropriate designation. Generator engines should be designated GE-1<u>S</u>, GE-2<u>S</u>, etc. or other appropriate designation. If more than three (3) engines exist, please use additional sheets.
- ² For Emission Points, use the following numbering system: 1E, 2E, etc. or other appropriate designation.
- ³ Enter the Source Status using the following codes: NS = Construction of New Source (installation); ES = Existing Source; MS = Modification of Existing Source; and RS = Removal of Source
- ⁴ Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.
- ⁵ Enter the date that the engine was manufactured, modified or reconstructed.
- ⁶ Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate. *Provide a manufacturer's data sheet for all engines being registered and a manufacturer's EPA certification of conformity sheet.*
- ⁷ Enter the Engine Type designation(s) using the following codes: LB2S = Lean Burn Two Stroke, RB4S = Rich Burn Four Stroke, and LB4S =Lean Burn Four Stroke.
- ⁸ Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes: NSCR = Rich Burn & Non-Selective Catalytic Reduction, PSC = Rich Burn & Prestratified Charge, SCR = Lean Burn & Selective Catalytic Reduction, or CAT = Lean Burn & Catalytic Oxidation
- ⁹ Enter the Fuel Type using the following codes: $\overrightarrow{PQ} = \overrightarrow{PQ}$ Pipeline Quality Natural Gas, or $\overrightarrow{RG} = \overrightarrow{Raw}$ Natural Gas
- ¹⁰ Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this *Compressor/Generator Data* Sheet(s). Codes: MD = Manufacturer's Data, AP = AP-42 Factors, $GR = GRI-HAPCalc^{TM}$, or OT = Other (please list)
- ¹¹ Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet as Attachment O*.
- ¹² Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the operation of this engine operation and associated air pollution control device. Include operating ranges and maintenance procedures required by the manufacturer to maintain the warranty.

		Manufact	urer and Model	To be determined		
		Max Dry Gas F	low Rate (mmscf/day)	35.0		
		Design Heat	Input (mmBtu/hr)	0.1	75	
		Design Typ	be (DEG or TEG)	TH	EG	
General	Glycol	Sour	rce Status ²	М	S	
Dehydra	tion Unit	Date Installed/	Modified/Removed ³	20	14	
Da	ata	Regenerator	Still Vent APCD ⁴	С	С	
		Contro	l Device ID ⁴	APC-0	COND	
		Fuel H	IV (Btu/scf)	90)5	
		H ₂ S Cont	tent (gr/100 scf)	Negli	gible	
		Opera	tion (hrs/yr)	8,760		
Emission Unit ID/ Emission	Vent					
Point ID ¹		Reference ⁵	Potential Emissions ⁶	lbs/hr	tons/yr	
		AP	NO _X	0.08	0.36	
	D 1 1	AP	СО	0.07	0.30	
	Reboiler Vent	AP	VOC	< 0.01	0.02	
		AP	SO ₂	< 0.01	< 0.01	
		AP	PM ₁₀	< 0.01	0.02	
		GRI-GLYCalc [™]	VOC	2.09	9.15	
		GRI- $GLYCalc$ TM	Benzene	0.10	0.45	
	Glycol Regenerator	GRI-GLYCalc TM	Ethylbenzene	0.03	0.11	
	Still Vent	GRI-GLYCalc TM	Toluene	0.12	0.51	
		GRI-GLYCalc TM	Xylenes	0.06	0.28	
		GRI-GLYCalc TM	n-Hexane	0.05	0.24	

GLYCOL DEHYDRATION EMISSION UNIT DATA SHEET

 Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a *Glycol Dehydration Emission Unit Data Sheet* shall be completed for each, using Source Identification #s RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

2. Enter the Source Status using the following codes:

NS	Construction of New Source	ES	Existing Source
MS	Modification of Existing Source	RS	Removal of Source

- 3. Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.
- 4. Enter the Air Pollution Control Device (APCD) type designation using the following codes and the control device ID number:

FL Flare

TO Thermal Oxidizer

CD Condenser

CC Condenser/Combustion Combination

5. Enter the Potential Emissions Data Reference designation using the following codes:

	Manufacturer's Data	AP	AP-42	
GR	GRI-GLYCalc TM	OT	Other	(please list)

6. Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalc Aggregate Calculations Report to this Glycol Dehydration Emission Unit Data Sheet(s). This PTE data shall be incorporated in the Emissions Summary Sheet.

Include a copy of the GRI-GLYCalcTM analysis. This includes a printout of the aggregate calculations report, which shall include emissions reports, equipment reports, and stream reports.

*Note: Controlled emissions for DEHY1 include still vent emissions only. Flash tank emissions are routed to the combustor via the produced water tanks. Uncombusted emissions are reported at the combustor.

TANK TRUCK LOADING EMISSION UNIT DATA SHEET

Furnish the following information for each new or modified bulk liquid transfer area or loading rack at the natural gas production pad. This form is to be used for bulk liquid transfer operations to tank trucks.

1. Emission Unit ID:		Emission Point ID:		led/ Modified:	
EU-LOAD-COND 4. Emission Unit Descri		PC-COMB-TKLD	2014		
Condensate Truck Load					
5. Loading Area Data:	ing				
5A. Number of pumps:	5F	. Number of liquids loaded:	5C. Maximun	n number of	
One (1)		ne(1)		loading at one time:	
One (1)					
6. Describe cleaning loo	cation, compounds an	d procedure for tank trucks:			
Point is kept clear. So	cotches are provided.	Lines kept in good working or	rder and tested periodical	ly.	
7 Are tank trucks press	ure tested for leaks at	this or any other location?			
\boxtimes Yes \square No	ure tested for leaks at	this of any other location:			
If YES, describe:					
···, ····					
Vessel pressure tested	l in accordance with I	OOT requirements, if applicabl	e.		
0 D ' / IM '	0 (* 01.11.)		1 1 \		
8. Projected Maximum	Operating Schedule (for rack or transfer point as a v	vhole):		
Maximum	Jan Mar.	Apr June	July - Sept.	Oct Dec.	
WidXillidili	Juli Iviul.	Typi June			
hours/day	24	24	24	24	
days/week	5	5	5	5	
9. Bulk Liquid Data (ad	ld pages as pecessam).			
Liquid Name	u puges us necessury	Condensate			
Max. daily throughput ((veb/len 0001	~33.6			
Max. daily unoughput (1000 gai/day)	~33.0			
Max. annual throughput	(1000 gal/yr)	12,264.00			
intani annaar anoagripat	(1000 gui j1)	12,20			
Loading Method ¹		SUB			
C					
Max. Fill Rate (gal/min)	1	125			
Average Fill Time (min/	(loading)	~60			
Max. Bulk Liquid Temp	erature (°F)	50.33			
True Vapor Pressure ²		12.3835			
Cargo Vessel Condition	3	U			
Control Equipment or M	Iethod ⁴	Vapor Return w/			
		Combustion			
		Controls			
Minimum collection eff	iciency (%)	70%			
Minimum control efficie		98%			
	• ` '	* Continued on next page	<u>,</u>	1	

Maximum	Loading (lb/hr)	13.82				
Emission Rate						
	Annual (ton/yr)	11.30				
Estimation Metho	d ⁵ EPA					
Notes:		·				
1 BF = Bottom Fill	SP = Splash Fill SUB =	= Submerged Fill				
² At maximum bulk	liquid temperature					
${}^{3}B = Ballasted Vess$	el, C = Cleaned, U = Uncleane	d (dedicated service), $O = c$	other (describe)			
⁴ List as many as app	oly (complete and submit appro	opriate Air Pollution Contro	ol Device Sheets as Attachment	<i>"H"</i>):		
CA = Carbon Adsor	ption					
VB = Dedicated Var	por Balance (closed system)					
ECD = Enclosed Co	ombustion Device					
F = Flare	F = Flare					
TO = Thermal Oxidation or Incineration						
⁵ EPA = EPA Emission Factor as stated in AP-42						
MB = Material Balance						
TM = Test Measurement based upon test data submittal						
O = other (describe	e)					

10. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.					
MONITORING	RECORDKEEPING				
Captured loading emissions shall be routed to the vapor combustor(s).	None proposed				
REPORTING	TESTING				
None proposed	None proposed				
11. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty:					
Not applicable					

TANK TRUCK LOADING EMISSION UNIT DATA SHEET

Furnish the following information for each new or modified bulk liquid transfer area or loading rack at the natural gas production pad. This form is to be used for bulk liquid transfer operations to tank trucks.

1. Emission Unit ID: EU-LOAD-PW		Emission Point ID:3. Year Installed/ Modified:C-COMB-TKLD2014				
4. Emission Unit Descri		-COMD-TKLD		2014		
Produced Water Truck I						
5. Loading Area Data:	0					
5A. Number of pumps:	5B.	Number of liquids loaded:		5C. Maximum	number of	
One (1)	One				bading at one time:	
		, ,		One (1)	C	
6. Describe cleaning loo	cation, compounds and	procedure for tank trucks:				
Point is kept clear. So	cotches are provided. I	ines kept in good working o	order and te	ested periodicall	у.	
					_	
7. Are tank trucks pressure tested for leaks at this or any other location?						
Yes No						
If YES, describe:						
Vessel pressure tested	l in accordance with D(OT requirements, if applicat	ماد			
vesser pressure testet		or requirements, ir applicat	Jic.			
8. Projected Maximum	Operating Schedule (fo	r rack or transfer point as a	whole):			
Maximum	Jan Mar.	Apr June	July - Se	ept.	Oct Dec.	
				24	24	
hours/day	24	24		24	24	
1 / 1	~	-		~	-	
days/week	5	5		5	5	
9. Bulk Liquid Data (ad	ld pages as pecessary).					
Liquid Name	iu puges us necessury).	Produced Water				
Max. daily throughput (1000 gal/day)	~42.0				
Max. daily unoughput (1000 gal/day)					
Max. annual throughput	(1000 gal/vr)	15,330.00				
Max. annuar unoughput	(1000 gal/y1)	15,550.00				
Loading Method ¹		SUB				
Louding Method		Seb				
Max. Fill Rate (gal/min)		125				
(gui/illin)	·	120				
Average Fill Time (min/	(loading)	~60	~60			
i i eruge i in Time (iiiii)	iouuiig)	00				
	(0 F)	50.22				
Max. Bulk Liquid Temp	50.33					
True Vapor Pressure ²	0.2507					
Cargo Vessel Condition	3	U				
		-	/			
Control Equipment or M	1	w/				
		Combustion				
		Controls				
Minimum collection eff		70%				
Minimum control efficie	ency (%)	98%				
	* Continued on next page					

Maximum	Loading (lb/hr)	0.18				
Emission Rate						
	Annual (ton/yr)	0.18				
Estimation Metho	d ⁵ EPA					
Notes:		·	·			
1 BF = Bottom Fill	SP = Splash Fill SUB =	= Submerged Fill				
² At maximum bulk	liquid temperature					
${}^{3}B = Ballasted Vess$	el, $C = Cleaned, U = Uncleaned$	d (dedicated service), O =	other (describe)			
⁴ List as many as ap	ply (complete and submit appro	priate Air Pollution Contr	ol Device Sheets as Attachme	ent "H"):		
CA = Carbon Adsor	ption					
VB = Dedicated Va	por Balance (closed system)					
ECD = Enclosed Co	ombustion Device					
F = Flare	F = Flare					
TO = Thermal Oxidation or Incineration						
⁵ EPA = EPA Emission Factor as stated in AP-42						
MB = Material Balance						
TM = Test Measurement based upon test data submittal						
O = other (describ	e)					

10. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.						
MONITORING	RECORDKEEPING					
Captured loading emissions shall be routed to the vapor combustor(s).	None proposed					
REPORTING	TESTING					
None proposed	None proposed					
11. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty:						
Not applicable						

General Permit G70-A Registration Section Applicability Form

General Permit G70-A was developed to allow qualified applicants to seek registration for a variety of sources. These sources include natural gas well affected facilities, storage tanks, natural gas-fired compressor engines (RICE), natural gas producing units, natural gas-fired inline heaters, pneumatic controllers, heater treaters, tank truck loading, glycol dehydration units, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-A allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

Section 5	Natural Gas Well Affected Facility	\boxtimes
Section 6	Storage Vessels*	\boxtimes
Section 7	Gas Producing Units, In-Line Heaters, Heater Treaters, and Glycol	
	Dehydration Reboilers	\boxtimes
Section 8	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)	
Section 9	Reserved	
Section 10	Natural gas-fired Compressor Engine(s) (RICE) **	\boxtimes
Section 11	Tank Truck Loading Facility ***	\boxtimes
Section 12	Standards of Performance for Storage Vessel Affected Facilities	
	(NSPS, Subpart OOOO)	\boxtimes
Section 13	Standards of Performance for Stationary Spark Ignition Internal	
	Combustion Engines (NSPS, Subpart JJJJ)	\boxtimes
Section 14	Control Devices not subject to NSPS, Subpart OOOO	\boxtimes
Section 15	National Emissions Standards for Hazardous Air Pollutants for Stationary	
	Reciprocating Internal Combustion Engines (40CFR63, Subpart ZZZZ)	\boxtimes
Section 16	Glycol Dehydration Units	\boxtimes
Section 17	Dehydration Units With Exemption from NESHAP Standard,	
	Subpart HH § 63.764(d) (40CFR63, Subpart HH)	\boxtimes
Section 18	Dehydration Units Subject to NESHAP Standard, Subpart HH	
	and Not Located Within an UA/UC (40CFR63, Subpart HH)	
Section 19	Dehydration Units Subject to NESHAP Standard, Subpart HH	
	and Located Within an UA/UC (40CFR63, Subpart HH)	
* Applicants	that are subject to Section 6 may also be subject to Section 12 if the applicant is subject to the	NSPS,

Subpart OOOO control requirements or the applicable control device requirements of Section 14.

** Applicants that are subject to Section 10 may also be subject to the applicable RICE requirements of Section 13 and/or Section 15.

*** Applicants that are subject to Section 11 may also be subject to control device requirements of Section 14.

ATTACHMENT H: AIR POLLUTION CONTROL DEVICE SHEETS

APCDS – Condenser

GRI-GLYCalc [™] Condenser Control Efficiency Curves Report

GRI-GLYCalc [™] Annual Air-Cooled Condenser Performance Report

BTEX Unit Data Sheet

APCDS – Combustor

Vapor Combustor Specification Sheet

Air Pollution Control Device Sheet (CONDENSER SYSTEM)

Control Device ID No. : APC-COND

Installation Date: 2014 or New

Equipment Information	and Filter Characteristics
1. Manufacturer: Jatco Model No. TBD	2. Method: Pressure condensation Temperature condensation Surface
3. Control Device Name: Still Column Condenser (BTEX Unit)	Contact
4. Provide diagram of condenser:	
5. Provide diagram(s) of unit describing capture system capacity, horsepower of movers. If applicable, state how	n with duct arrangement and size of duct, air volume, of face velocity and hood collection efficiency.
6. Heat exchanger area: ft ³	7. Reported removal efficiency: See attached GLYCalc condenser control curve efficiency report
8. Coolant Used:	9. Refrigeration capacity: Ref. tons
10. Composition of coolant:	11. Internal operating temperature: °F
12. Specific heat of coolant: BTU/lb.°F, at 77°F	13. Temperature of condensation: 100 °F
Average Operation:	Maximum Operation:
14. Coolant Temperature: Inlet: Varies °F Outlet: <100 °F	15. Coolant Temperature: Inlet: Varies °F Outlet: <100 °F
16. Gas Temperature:	
Inlet: 212 °F Outlet: <100 °F	17. Gas Temperature: Inlet: 212°F Outlet: <100 °F
Inlet: 212°F	Inlet: 212 °F
Inlet: 212°F Outlet: <100 °F	Inlet: 212°F Outlet: <100 °F
Inlet: 212 °F Outlet: <100 °F 18. Gas flow rate: 13.97 ft ³ /min 20. Coolant flow rate per condenser: Type: Water: gal/min Air: N/A ft ³ /min	Inlet: 212°F Outlet: <100 °F 19. Gas flow rate: 13.97 ft ³ /min 21. Coolant flow rate per condenser: Type: Water: gal/min Air: N/A ft ³ /min

26.	Pollutant	Guaranteed Minimum Control Efficiency %	Concentration ppmv	Specific Heat BTU/lb-mol °F	Heat of Vaporation BTU/Ib-mol
А	VOC	N/A*	-	N/A	N/A
В	Benzene	N/A*	-	0.24295	N/A
С	Toluene	N/A*	-	0.26005	N/A
D	Ethylbenzene	N/A*	-	0.27768	N/A
Е	Xylenes	N/A*	-	0.27954	N/A
F	n-Hexane	N/A*	-	0.38628	N/A
G					
Total (Concentration in ppm		1		1

	Er	nission Gas (Vap	or) Stream			
27. Before Condenser			28.	After Con	denser		
Inlet vapor flow rate: Influent vapor temperature: Effluent vapor temperature:	ft ³ /min °F °F	Inlet vapor flow rate:ft³/minInfluent vapor temperature:°FEffluent vapor temperature:°F				min	
29.		INLET				OUTLE	Г
Pollutant	Vapor Pressure	Condensation Temperatur	-	Rate Ib/hr	Rate Ib/hr	Vapor Pressure	Condensation Temperature
A VOC	N/A	N/A		15.27	3.48	N/A	N/A
B Benzene	N/A	N/A		0.73	0.17	N/A	N/A
C Toluene	N/A	N/A		2.33	0.20	N/A	N/A
D Ethylbenzene	N/A	N/A		1.31	0.04	N/A	N/A
E Xylenes	N/A	N/A		4.02	0.11	N/A	N/A
F n-Hexane	N/A	N/A		0.26	0.09	N/A	N/A
G							
Total of the POLLUTANT lb/h	•						•
30. Moisture content:	%						

31. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):

N/A

32. Describe the collection material disposal system: N/A

33. Have you included Condenser Control Device in the Emissions Summary Sheet? Yes

34. Manufacturer's Guaranteed Capture Efficiency for each air pollutant. $N\!/\!A$

35. Manufacturer's Guaranteed Control Efficiency for each air pollutant.

*Manufacturer does not guarantee control efficiency of condenser alone; refer to condenser control curve efficiency report for control efficiency at various operating temperatures. Manufacturer guarantees 95% control efficiency of the combined condenser/reboiler burner controls.

36. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. N/A

GRI-GLYCalc VERSION 4.0 - CONDENSER CONTROL CURVE EFFICIENCY REPORT

Case Name: Fork Ridge 35 MMscfd TEG Dehydrator File Name: P:\Flatrock Tulsa Projects\Chesapeake Operating, Inc\COI WV\CHK APP Fork Ridge\2014Aug G70 General Permit\Fork Ridge_GLYCalc.ddf Date: August 25, 2014

Page: 1

CONDENSER CONTROL EFFICIENCY CURVES

Note: Condenser curves computed for the range $40.0 \text{ F} \le T \le 170.0 \text{ F}$. DO NOT EXTRAPOLATE BEYOND THIS RANGE!

Temp(F)	BTEX	Total HAP	VOC
40.0	99.21	99.03	87.58
45.0	99.04	98.83	86.92
50.0	98.85	98.60	86.23
55.0	98.62	98.33	85.50
60.0	98.35	98.02	84.76
65.0	98.04	97.66	83.99
70.0	97.68	97.24	83.19
75.0	97.26	96.76	82.34
80.0	96.77	96.20	81.45
85.0	96.20	95.57	80.50
90.0	95.55	94.84	79.49
95.0	94.79	94.00	78.41
100.0	93.91	93.05	77.24
105.0	92.89	91.95	75.98
110.0	91.71	90.68	74.60
115.0	90.34	89.23	73.10
120.0	88.74	87.56	71.44
125.0	86.87	85.61	69.60
130.0	84.70	83.37	67.58
135.0	81.91	80.52	65.10
140.0	78.78	77.36	62.47
145.0	75.05	73.61	59.47
150.0	70.55	69.12	56.02
155.0	65.10	63.70	52.01
160.0	58.43	57.11	47.28
165.0	50.24	49.06	41.64
170.0	40.55	39.56	35.04

GRI-GLYCalc VERSION 4.0 - ANNUAL AIR-COOLED CONDENSER PERFORMANCE

Case Name: Fork Ridge 35 MMscfd TEG Dehydrator File Name: P:\Flatrock Tulsa Projects\Chesapeake Operating, Inc\COI WV\CHK APP Fork Ridge\2014Aug G70 General Permit\Fork Ridge_GLYCalc.ddf Date: August 25, 2014

ANNUAL AIR-COOLED CONDENSER PERFORMANCE

Nearest Site for Air Temperature Data: Charleston, WV

Ambient Air Dry Bulb

Temperature		Condenser Outlet
(deg. F)	Frequency	(%) Temperature (deg. F)
<=50	39.66	<=70
51-55	8.12	71-75
56-60	8.65	76-80
61-65	9.55	81-85
66-70	11.00	86-90
71-75	9.30	91-95
76-80	6.39	96-100
81-85	4.50	101-105
86-90	2.27	106-110
91-95	0.49	111-115
96-100	0.06	116-120
>100	0.01	>120

Condenser outlet temperature approach to ambient: 20.00 deg. F

Annual air-cooled condenser emissions and control efficiency:

		Controlled emissions	% Control
	tons/year	tons/year	
Benzene	3.210	0.490	84.72
BTEX	36.770	1.366	96.29
Total HAP	37.903	1.636	95.68
VOC	66.887	12.774	80.90

Page: 1

JATCO Vertical Panel Air Cooled Heat Exchangers

Full stainless steel condenser with stainless steel skid base, using stainless steel aluminum wound 1" 1.0 fin tubes. A multi-pass tube construction with each pass draining to the lower liquid line, that is connected to a JATCO automatic blowcase. Units can be configured in series to increase cooling capacity.

Specifications:

Test pressure:	20 psi
Operating pressure:	1 psi
Max operating temp:	225°F
Max Condenser Vapor Outlet Temp:	10° F Approach to Ambient Temp.
Headers:	304 Stainless Steel
Fin Tube Description:	1" x 16 ga x SA249 TP316 Aluminum L-Foot
Fin Tube Length:	6' 0"
Fin Dimension:	.015" x 2.5"

	No. of	Max H ₂ 0		Maximum Regen
Model #	Passes	Removed	# of Tubes	Compatibility
System I	3	834 <i>lbs</i> ./D	8	125,000 BTU/HR
System II	5	2,500 <i>lbs.</i> /D	16	375,000 BTU/HR
System III	7	3,334 <i>lbs.</i> /D	24	500,000 BTU/HR

JATCO BTEX Eliminator Guarantee

The system operation of the JATCO BTEX "Eliminator" is able to achieve stack test results in excess of 95% destruction efficiency by routing the pre-condensed still column vapors to the main burner and inducing the low pressure V.O.C.s into the primary air inlet of the original burner using our patented JATCO compound injector burner assembly. When re-boiler temperature is reached, a valve stops the V.O.C. flow to the main burner and opens to route the V.O.C.s to the exhaust stack, through the igniter (to be installed with unit). The igniter consists of a stainless steel nipple with a nickel alloy wire coil. As the main burner is on its firing cycle, the exhaust gases keep this coil red hot by cumulating heat in the fire tube. After the main burner shuts off, and V.O.C.s are routed to the exhaust stack, the coil will ignite or flash the vapor for a period until there is free air oxygen dilution. The actual stack testing will show burner/on burner/off cycles and concentrations. It is also a note that general operation of standard glycol re-boiler dehydration, when the burner is on is when you achieve the flash/flux around the fire tube and when it shuts off the V.O.C output from the still column diminishes rapidly.

JATCO Environmental Inc. stands behind all of the testing performed on our BTEX Systems Units and will purchase any unit back that does not perform to these standards.

BTEX Eliminator Shell & Tube System

The Shell and Tube Eliminator System is a counter flow stainless steel tube and bundle heat exchanger condensing system used to capture and recycle BTEX and VOC vapors from the dehydrator still column. (more)

Recent blog entries

Dec 10, 2010, posted by Admin

Guess who got in on the blogging game???

Nov 30, 1999, posted by

WE WILL BE AT THE DUG SHOW

Copyright © 2010 Jatco Incorporated

AIR POLLUTION CONTROL DEVICE Vapor Combustion Control Device Sheet

Complete this vapor combustion control device sheet for each enclosed combustion device, flare, thermal oxidizer, or completion combustion device that is located at the natural gas production pad for the purpose of thermally destructing waste gas to control emissions of regulated pollutants to the atmosphere.

IMPORTANT: READ THE INSTRUCTIONS ACCOMPANYING THIS FORM BEFORE COMPLETING.								
	General Information							
1. Control Device ID#: APC-C	COMB-TKLI)	2. Installation Date	e:		🛛 New		
3. Maximum Rated Total Flow 11,188 scfh 268,500 s		4. Maximum Do 30.0 MMBtu	esign Heat Input: 1/hr	5. Design 2,682	Heat Cor BTU/scf			
		Control Devi	ice Information					
 6. Select the type Elevated Flare 			evice being used: 🛛	Enclosed Co				
7. Manufacturer: MRW Technologies Model No.: TBF-6.5-34-26850			8. Hours of opera 8,760	-				
9. List the emiss			ontrolled by this vap APC-COMB-TKL		n contro	l device:		
10. Emission Unit ID#	Emission So	ource Description:	Emission Ur	nit ID#		on Source Description:		
EU-TANKS-COND	Condensate	Tanks	EU-LOAD-PW			ed Water Truck Loading		
EU-TANKS-PW	Produced W	Vater Tanks	EU-DEHY1		TEG Flash 7	Dehydration Unit Tank Only		
EU-LOAD-COND	Condensate	Truck Loading						
If this vapor combusto	or controls emi	issions from more	than six emission ur	vits, please at	tach add	litional pages.		
11. Ass	sist Type		12. Flare Height	13. Tip Dia	13. Tip Diameter14. Was the de per §60.185			
Steam - Air - H	Pressure - 🛛	Non -	34 ft	N/A ft		□Yes ⊠No		
		Waste Gas	Information					
15. Maximum waste gas flow rate (scfm):		lue of waste gas (BTU/ft3)	17. Temperatur emissions strea			Exit Velocity of the ssions stream (ft/s)		
186.46	2	2,682	1,000					
19. Provide an attachment with	h the character	istics of the waste	gas stream to be bu	rned.				

Pilot Information							
20. Type/Grade of pilot fuel:	21. Number of pilot lights:	22. Fuel flow rate to pilot flame per pilot (scf/hr):	23. Heat input per pilot (BTU/hr):	24. Will automatic re- ignition be used?			
Natural Gas	3	150	135,750	Yes 🗌 No			
25. If automatic re-ig	gnition will be used, descri	be the method:		·			
-	If the pilot flame is lost, the control system will automatically attempt to relight the pilot. If the re-ignition attempt fails, the pilot solenoid valve will automatically close and a local and remote alarm signal will be generated to indicate loss of pilot flame.						
26. Describe the met	thod of controlling flame:						
Pilot monitored via flame rod.							
1	quipped with a monitor sence of the flame?	28. If yes, what type? □ □ Camera with monitori	Thermocouple 🗌 Infra	a-Red 🔲 Ultra Violet er, describe: Flame rod			

29. Pollutant(s) Controlled	30. % Capture Efficiency	 Manufacturer's Guaranteed Control Efficiency (%)
VOC	100	<u>></u> 98
НАР	100	<u>></u> 98
32. Has the control device been tested by the manufa	cturer and certified?	
33. Describe all operating ranges and maintenance pr	ocedures required by the manufact	urer to maintain warranty.
cor 2 eserve un operaning ranges une maniferance pr		
34. Additional Information Attached? YES		
Please attach a copy of manufacturer's data sheet.		
Please attach a copy of manufacturer's drawing.		
Please attach a copy of the manufacturer's performan	nce testing.	

If any of the requested information is not available, please contact the manufacturer.

Tank Battery Combustor Specification Sheet MRW Technologies, Inc. Combustor Model Number: TBF-6.5-34-268500

Expected Destruction Removal Efficiency (DRE):

98% or Greater of Non-Methane Hydrocarbons

6.5-foot Diameter 34-Foot Overall Height

30 MMBTU/HR

268,500 SCFD

2682 BTU/SCF

Enardo

Design Heat Input:

Design Flow Rates:

Design Heat Content:

Waste Gas Flame Arrestor:

Pilot Type:

Unit Size:

Pilot Operation (Continuous/Intermittent):

Pilot Fuel Consumption:

Pilot Monitoring Device:

Automatic Re-Ignition:

Remote Alarm Indication:

150 SCFH or Less Total (50 SCFH per Pilot)

MRW Electric Ignition

Three (3) Continuous

Flame Rod

Included

Included

Description of Control Scheme:

The Combustor pilots are monitored via flame rod. If one of the pilot flames are lost, the control system will automatically attempt to relight the pilot. If the re-ignition attempt fails, the pilot solenoid valve will automatically close and a local & remote alarm signal will be generated to indicate loss of pilot flame.

COMBUSTION SYSTEMS

ATTACHMENT I: EMISSIONS CALCULATIONS

SWN Production Company, LLC Fork Ridge Pad Summary of Criteria Air Pollutant Emissions

Equipment	Unit ID	Emission Point	N	Ox	C	:0	Total	VOC ¹	S	0 ₂	PM Total	
Equipment	UNITID	ID	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1,380-hp Caterpillar G3516B Engine w/ Oxidation Catalyst	EU-ENG1	EP-ENG1	3.04	13.32	2.68	11.74	2.08	9.11	0.01	0.03	0.10	0.44
1,380-hp Caterpillar G3516B Engine w/ Oxidation Catalyst	EU-ENG2	EP-ENG2	3.04	13.32	2.68	11.74	2.08	9.11	0.01	0.03	0.10	0.44
215-hp Caterpillar G3406 NA Engine w/ Catalytic Converter	EU-ENG3	EP-ENG3	0.47	2.06	0.95	4.16	0.36	1.58	<0.01	<0.01	0.04	0.16
1,380-hp Caterpillar G3516B Engine w/ Oxidation Catalyst	EU-ENG4	EP-ENG4	3.04	13.32	2.68	11.74	2.08	9.11	0.01	0.03	0.10	0.45
35.0-MMSCFD TEG Dehydration Unit	EU-DEHY1	EP-RB1	-	-	-	-	2.09	9.15	-	-	-	-
0.75-mmBtu/hr TEG Reboiler	EU-RB1	EP-RB1	0.08	0.36	0.07	0.30	<0.01	0.02	<0.01	<0.01	0.01	0.03
Eight (8) 1.0-mmBtu/hr GPU Burners	EU-GPU1 - EU- GPU8	EP-GPU1 - EP- GPU8	0.88	3.84	0.72	3.12	0.05	0.24	0.01	0.02	0.07	0.29
Two (2) 0.5-mmBtu/hr Heater Treaters	EU-HT1 - EU- HT2	EP-HT1 - EP- HT2	0.12	0.52	0.10	0.44	0.01	0.02	<0.01	<0.01	0.01	0.04
Five (5) 400-bbl Condensate Tanks Routed to Vapor Combustor	EU-TANKS- COND	APC-COMB- TKLD	-	-	-	-	-	-	-	-	-	-
Five (5) 400-bbl Produced Water Tanks Routed to Vapor Combustor	EU-TANKS-PW	APC-COMB- TKLD	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD- COND	APC-COMB- TKLD	-	-	-	-	2.58	11.30	-	-	-	-
Produced Water Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD-PW	APC-COMB- TKLD	-	-	-	-	0.04	0.18	-	-	-	-
One (1) 30.0-mmBtu/hr Vapor Combustor - Tank/Loading Stream	APC-COMB- TKLD	APC-COMB- TKLD	4.14	18.13	8.27	36.22	6.78	29.70	-	-	0.09	0.39
Vapor Combustor Pilots	EU-PILOT	APC-COMB- TKLD	0.02	0.09	0.01	0.06	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fugitive Emissions	EU-FUG	EP-FUG	-	-	-	-	1.46	6.38	-	-	-	-
Fugitive Haul Road Emissions	EU-HR	EP-HR	-	-	-	-	-	-	-	-	0.59	1.95
		Total =	14.83	64.95	18.16	79.52	19.61	85.90	0.03	0.11	1.10	4.19

Notes:

¹ Total VOC includes all constituents heavier than Propane (C3+), including hazardous air pollutants (HAP). Speciated HAP presented in following table. Also note that Caterpillar engine manufacturer data for VOC does not include formaldehyde; therefore, total VOC emissions presented here are different than VOC emissions as defined and calculated in the engine calculations.

SWN Production Company, LLC Fork Ridge Pad Summary of Hazardous Air Pollutants

						Estimated Em	issions (lb/hr)				
Equipment	Unit ID	Acetalde- hyde	Acrolein	Benzene	Ethyl- benzene	Formalde- hyde	Methanol	n-Hexane	Toluene	Xylenes	Total HAP
1,380-hp Caterpillar G3516B Engine w/ Oxidation Catalyst	EU-ENG1	0.09	0.05	<0.01	<0.01	0.37	0.03	-	<0.01	<0.01	0.54
1,380-hp Caterpillar G3516B Engine w/ Oxidation Catalyst	EU-ENG2	0.09	0.05	<0.01	<0.01	0.37	0.03	-	<0.01	<0.01	0.54
215-hp Caterpillar G3406 NA Engine w/ Catalytic Converter	EU-ENG3	0.01	<0.01	<0.01	<0.01	0.03	0.01	-	<0.01	<0.01	0.05
1,380-hp Caterpillar G3516B Engine w/ Oxidation Catalyst	EU-ENG4	0.09	0.05	<0.01	<0.01	0.37	0.03	-	<0.01	<0.01	0.54
35.0-MMSCFD TEG Dehydration Unit	EU-DEHY1	-	-	0.10	0.03	-	-	0.05	0.12	0.06	0.36
0.75-mmBtu/hr TEG Reboiler	EU-RB1	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	-
Eight (8) 1.0-mmBtu/hr GPU Burners	EU-GPU1 - EU- GPU8	-	-	<0.01	-	<0.01	-	0.02	<0.01	-	0.02
Two (2) 0.5-mmBtu/hr Heater Treaters	EU-HT1 - EU- HT2	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
Five (5) 400-bbl Condensate Tanks Routed to Vapor Combustor	EU-TANKS- COND	-	-	-	-	-	-	-	-	-	-
Five (5) 400-bbl Produced Water Tanks Routed to Vapor Combustor	EU-TANKS-PW	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD- COND	-	-	<0.01	0.02	-	-	0.14	0.02	0.05	0.22
Produced Water Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD-PW	-	-	<0.01	<0.01	-	-	<0.01	<0.01	<0.01	<0.01
One (1) 30.0-mmBtu/hr Vapor Combustor - Tank/Loading Stream	APC-COMB- TKLD	-	-	0.01	0.04	-	-	0.33	0.04	0.10	0.52
Vapor Combustor Pilots	EU-PILOT	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
Fugitive Emissions	EU-FUG	-	-	<0.01	0.01	-	-	0.06	0.01	0.01	0.08
Fugitive Haul Road Emissions	EU-HR	-	-	-	-	-	-	-	-	-	-
	Total =	0.26	0.16	0.13	0.09	1.13	0.08	0.60	0.20	0.23	2.88

Continued on Next Page

SWN Production Company, LLC Fork Ridge Pad Summary of Hazardous Air Pollutants (Continued)

						Estimated Em	nissions (TPY)				
Equipment	Unit ID	Acetalde- hyde	Acrolein	Benzene	Ethyl- benzene	Formalde- hyde	Methanol	n-Hexane	Toluene	Xylenes	Total HAP
1,380-hp Caterpillar G3516B Engine w/ Oxidation Catalyst	EU-ENG1	0.38	0.23	0.02	<0.01	1.60	0.11	-	0.02	0.01	2.37
1,380-hp Caterpillar G3516B Engine w/ Oxidation Catalyst	EU-ENG2	0.38	0.23	0.02	<0.01	1.60	0.11	-	0.02	0.01	2.37
215-hp Caterpillar G3406 NA Engine w/ Catalytic Converter	EU-ENG3	0.02	0.02	0.01	<0.01	0.13	0.03	-	<0.01	<0.01	0.22
1,380-hp Caterpillar G3516B Engine w/ Oxidation Catalyst	EU-ENG4	0.38	0.23	0.02	<0.01	1.60	0.11	-	0.02	0.01	2.37
35.0-MMSCFD TEG Dehydration Unit	EU-DEHY1	-	-	0.45	0.11	-	-	0.24	0.51	0.28	1.59
0.75-mmBtu/hr TEG Reboiler	EU-RB1	-	-	<0.01	-	<0.01	-	0.01	<0.01	-	0.01
Eight (8) 1.0-mmBtu/hr GPU Burners	EU-GPU1 - EU- GPU8	-	-	<0.01	-	<0.01	-	0.07	<0.01	-	0.07
Two (2) 0.5-mmBtu/hr Heater Treaters	EU-HT1 - EU- HT2	-	-	<0.01	-	<0.01	-	0.01	<0.01	-	0.01
Five (5) 400-bbl Condensate Tanks Routed to Vapor Combustor	EU-TANKS- COND	-	-	-	-	-	-	-	-	-	-
Five (5) 400-bbl Produced Water Tanks Routed to Vapor Combustor	EU-TANKS-PW	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD- COND	-	-	0.01	0.08	-	-	0.62	0.07	0.20	0.98
Produced Water Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD-PW	-	-	<0.01	<0.01	-	-	0.01	<0.01	<0.01	0.02
One (1) 30.0-mmBtu/hr Vapor Combustor - Tank/Loading Stream	APC-COMB- TKLD	-	-	0.04	0.17	-	-	1.45	0.19	0.44	2.29
Vapor Combustor Pilots	EU-PILOT	-	-	<0.01	-	<0.01	-	<0.01	<0.01	-	<0.01
Fugitive Emissions	EU-FUG	-	-	<0.01	0.02	-	-	0.26	0.03	0.06	0.37
Fugitive Haul Road Emissions	EU-HR	-	-	-	-	-	-	-	-	-	-
	Total =	1.15	0.71	0.58	0.39	4.94	0.36	2.66	0.86	1.01	12.66

SWN Production Company, LLC Fork Ridge Pad Summary of Greenhouse Gas Emissions - Metric Tons per Year (Tonnes)

Equipment	Unit ID	Carbon Di	oxide (CO ₂)	Methar	ne (CH ₄)	Methane (C	H ₄) as CO _{2 Eq.}	Nitrous C	Dxide (N ₂ O)	Nitrous Oxide (N ₂ O) as CO _{2 Eq.}		Total CO ₂ + CO _{2 Eq.} ¹	
Equipment	Onit ib	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr
1,380-hp Caterpillar G3516B Engine w/ Oxidation Catalyst	EU-ENG1	1,493.78	5,935.50	0.02	0.09	0.57	2.25	<0.01	0.01	0.67	2.68	1,495.02	5,940.42
1,380-hp Caterpillar G3516B Engine w/ Oxidation Catalyst	EU-ENG2	1,493.78	5,935.50	0.02	0.09	0.57	2.25	<0.01	0.01	0.67	2.68	1,495.02	5,940.42
215-hp Caterpillar G3406 NA Engine w/ Catalytic Converter	EU-ENG3	283.44	1,126.25	<0.01	0.02	0.10	0.41	<0.01	<0.01	0.12	0.49	283.67	1,127.16
1,380-hp Caterpillar G3516B Engine w/ Oxidation Catalyst	EU-ENG4	1,493.78	5,935.50	0.02	0.09	0.57	2.25	<0.01	0.01	0.67	2.68	1,495.02	5,940.42
35.0-MMSCFD TEG Dehydration Unit	EU-DEHY1	<0.01	0.01	0.44	1.74	10.97	43.60	-	-	-	-	10.98	43.61
0.75-mmBtu/hr TEG Reboiler	EU-RB1	87.73	348.60	<0.01	0.01	0.04	0.16	<0.01	<0.01	0.05	0.20	87.82	348.96
Eight (8) 1.0-mmBtu/hr GPU Burners	EU-GPU1 - EU- GPU8	935.82	3,718.44	0.02	0.07	0.44	1.75	<0.01	0.01	0.53	2.09	936.78	3,722.28
Two (2) 0.5-mmBtu/hr Heater Treaters	EU-HT1 - EU- HT2	116.98	464.80	<0.01	0.01	0.06	0.22	<0.01	<0.01	0.07	0.26	117.10	465.28
Five (5) 400-bbl Condensate Tanks Routed to Vapor Combustor	EU-TANKS- COND	-	-	-	-	-	-	-	-	-	-	-	-
Five (5) 400-bbl Produced Water Tanks Routed to Vapor Combustor	EU-TANKS-PW	-	-	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD- COND	<0.01	<0.01	0.02	0.07	0.41	1.65	-	-	-	-	0.41	1.65
Produced Water Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD-PW	0.02	0.06	0.44	1.74	10.93	43.42	-	-	-	-	10.94	43.48
One (1) 30.0-mmBtu/hr Vapor Combustor - Tank/Loading Stream	APC-COMB- TKLD	3,509.31	13,944.14	0.07	0.26	1.65	6.57	0.01	0.03	1.97	7.83	3,512.94	13,958.54
Vapor Combustor Pilots	EU-PILOT	15.88	63.10	<0.01	<0.01	0.01	0.03	<0.01	<0.01	0.01	0.04	15.90	63.17
Fugitive Emissions	EU-FUG	0.01	0.05	2.14	8.49	53.50	212.28	-	-	-	-	53.51	212.33
Fugitive Haul Road Emissions	EU-HR	-	-	-	-	-	-	-	-	-	-	-	-
	Total =	9,430.54	37,471.94	3.19	12.67	79.81	316.84	0.02	0.06	4.77	18.94	9,515.11	37,807.72

Notes:

¹ CO₂ Equivalent = Pollutant times GWP multiplier. 40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier (100-Year Time Horizon): CO₂ = 1, CH₄ = 25, N₂O = 298

² Per API Compendium (2009) Chapter 5: Because most of the CH₄ and CO₂ emissions from storage tanks occur as a result of flashing (which is controlled by the vapor combustor in this case), working and breathing loss emissions of these gases are very small in production and virtually non-existent in the downstream segments. Vapors from the tanks are routed to the vapor combustor at this site. Therefore, GHG emissions from the condensate and produced water tanks are assumed to be negligible.

SWN Production Company, LLC Fork Ridge Pad Summary of Greenhouse Gas Emissions - Short Tons per Year (Tons)

Equipment	Unit ID	Carbon Di	oxide (CO ₂)	Methar	ne (CH ₄)	Methane (C	H ₄) as CO _{2 Eq.}	Nitrous C	xide (N ₂ O)	Nitrous Oxide	(N ₂ O) as CO _{2 Eq.}	Total CO ₂ + CO _{2 Eq.} ¹	
Equipment	UNITID	lb/hr	tons/yr ²	lb/hr	tons/yr ²	lb/hr	tons/yr	lb/hr	tons/yr ²	lb/hr	tons/yr	lb/hr	tons/yr
1,380-hp Caterpillar G3516B Engine w/ Oxidation Catalyst	EU-ENG1	1,493.78	6,542.76	0.02	0.10	0.57	2.48	<0.01	0.01	0.67	2.95	1,495.02	6,548.19
1,380-hp Caterpillar G3516B Engine w/ Oxidation Catalyst	EU-ENG2	1,493.78	6,542.76	0.02	0.10	0.57	2.48	<0.01	0.01	0.67	2.95	1,495.02	6,548.19
215-hp Caterpillar G3406 NA Engine w/ Catalytic Converter	EU-ENG3	283.44	1,241.48	<0.01	0.02	0.10	0.45	<0.01	<0.01	0.12	0.54	283.67	1,242.48
1,380-hp Caterpillar G3516B Engine w/ Oxidation Catalyst	EU-ENG4	1,493.78	6,542.76	0.02	0.10	0.57	2.48	<0.01	0.01	0.67	2.95	1,495.02	6,548.19
35.0-MMSCFD TEG Dehydration Unit	EU-DEHY1	<0.01	0.01	0.44	1.92	10.97	48.07	-	-	-	-	10.98	48.08
0.75-mmBtu/hr TEG Reboiler	EU-RB1	87.73	384.27	<0.01	0.01	0.04	0.18	<0.01	<0.01	0.05	0.22	87.82	384.67
Eight (8) 1.0-mmBtu/hr GPU Burners	EU-GPU1 - EU- GPU8	935.82	4,098.88	0.02	0.08	0.44	1.93	<0.01	0.01	0.53	2.30	936.78	4,103.11
Two (2) 0.5-mmBtu/hr Heater Treaters	EU-HT1 - EU- HT2	116.98	512.36	<0.01	0.01	0.06	0.24	<0.01	<0.01	0.07	0.29	117.10	512.89
Five (5) 400-bbl Condensate Tanks Routed to Vapor Combustor	EU-TANKS- COND	-	-	-	-	-	-	-	-	-	-	-	-
Five (5) 400-bbl Produced Water Tanks Routed to Vapor Combustor	EU-TANKS-PW	-	-	-	-	-	-	-	-	-	-	-	-
Condensate Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD- COND	<0.01	<0.01	0.02	0.07	0.41	1.82	-	-	-	-	0.41	1.82
Produced Water Truck Loading w/ Vapor Return Routed to Combustor	EU-LOAD-PW	0.02	0.07	0.44	1.91	10.93	47.86	-	-	-	-	10.94	47.93
One (1) 30.0-mmBtu/hr Vapor Combustor - Tank/Loading Stream	APC-COMB- TKLD	3,509.31	15,370.78	0.07	0.29	1.65	7.24	0.01	0.03	1.97	8.63	3,512.94	15,386.66
Vapor Combustor Pilots	EU-PILOT	15.88	69.56	<0.01	<0.01	0.01	0.03	<0.01	<0.01	0.01	0.04	15.90	69.63
Fugitive Emissions	EU-FUG	0.01	0.05	2.14	9.36	53.50	234.00	-	-	-	-	53.51	234.05
Fugitive Haul Road Emissions	EU-HR	-	-	-		-		-	-	-	-	-	-
	Total =	9,430.54	41,305.74	3.19	13.97	79.81	349.26	0.02	0.07	4.77	20.88	9,515.11	41,675.88

Notes:

¹ CO₂ Equivalent = Pollutant times GWP multiplier. 40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier (100-Year Time Horizon): CO₂ = 1, CH₄ = 25, N₂O = 298

² EPA and API GHG calculation methodologies calculate emissions in metric tons (tonnes). These values have been converted to short tons for consistency with permitting threshold units.

² Pr API compendium (2009) Chapter 5: Because most of the CH₄ and CO₂ emissions from the control and which is controlled by the vapor combustor in this case), working and breathing loss emissions of these gases are very small in production and virtually nonexistent in the downstream segments. Vapors from the tanks are routed to the vapor combustor at this site. Therefore, GHG emissions from the condensate and produced water tanks are assumed to be negligible.

SWN Production Company, LLC Fork Ridge Pad Engine Emissions Calculations - Criteria Air Pollutants

Equipment Information

Unit ID:	EU-ENG1	EU-ENG2	EU-ENG3	EU-ENG4
Emission Point ID:	EP-ENG1	EP-ENG2	EP-ENG3	EP-ENG4
Make:	Caterpillar	Caterpillar	Caterpillar	Caterpillar
Model:	G3516B	G3516B	G3406 NA	G3516B
Design Class:	4S-LB	4S-LB	4S-RB	4S-LB
Controls:	Oxid. Cat.	Oxid. Cat.	NSCR	Oxid. Cat.
Horsepower (hp):	1,380	1,380	215	1,380
Fuel Use (Btu/hp-hr):	7,433	7,433	8,756	7,433
Fuel Use (scfh):	11,334	11,334	2,080	11,334
Annual Fuel Use (mmscf):	99.29	99.29	18.22	99.29
Fuel Use (mmBtu/hr):	10.26	10.26	1.88	10.26
Exhaust Flow (acfm):	9,181	9,181	1,040	9,181
Exhaust Temp (°F):	999	999	1,168	999
Operating Hours:	8,760	8,760	8,760	8,760
Fuel Heating Value (Btu/scf):	905	905	905	905
Tuer rieating value (Diu/ser).	000	000	000	000
Uncontrolled Manufacturer Emission Factor	s ¹			
NOx (g/hp-hr):	1.00	1.00	15.91	1.00
CO (g/hp-hr):	2.94	2.94	15.91	2.94
NMNEHC/VOC (g/hp-hr):	0.94	0.94	0.41	0.94
Total VOC = NMNEHC + HCHO (g/hp - hr):	1.34	1.34	0.68	1.34
· · · · · · · · · · · · · · · · · · ·				
Post-Catalyst Emission Factors				
NOx Control Eff. %	0.00%	0.00%	93.71%	0.00%
CO Control Eff. %	70.00%	70.00%	87.43%	70.00%
VOC Control Eff. %	40.00%	40.00%	0.00%	40.00%
	1.00	4.00	4.00	4.00
NOx (g/hp-hr):	1.00	1.00	1.00	1.00
CO (g/hp-hr):	0.88	0.88	2.00	0.88
NMNEHC/VOC (g/hp-hr):	0.56	0.56	0.70	0.56
Total VOC = NMNEHC + HCHO (g/hp-hr):	0.68	0.68	0.76	0.68
Uncontrolled Criteria Air Pollutant Emission	<u>s</u>			
Unit ID:	EU-ENG1	EU-ENG2	EU-ENG3	EU-ENG4
Unit ID.			<u>L0-LN05</u>	<u>L0-L1104</u>

Pollutant	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
NOx	3.04	13.32	3.04	13.32	7.54	33.03	3.04	13.33
CO	8.94	39.16	8.94	39.16	7.54	33.03	8.94	39.18
NMNEHC/VOC (does not include HCHO)	2.86	12.53	2.86	12.53	0.19	0.83	2.86	12.53
Total VOC (includes HCHO)	4.08	17.87	4.08	17.87	0.19	0.83	4.08	17.86

SWN Production Company, LLC Fork Ridge Pad Engine Emissions Calculations - Criteria Air Pollutants (Continued)

Proposed Criteria Air Pollutant Emissions²

Unit ID:	<u>EU-E</u>	NG1 EU-ENG2		NG2	EU-ENG3		<u>EU-</u>	NG4
Pollutant	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
NOx	3.04	13.32	3.04	13.32	0.47	2.06	3.04	13.32
CO	2.68	11.74	2.68	11.74	0.95	4.16	2.68	11.74
NMNEHC/VOC (does not include HCHO)	1.72	7.53	1.72	7.53	0.33	1.45	1.72	7.53
Total VOC (includes HCHO)	2.08	9.11	2.08	9.11	0.36	1.58	2.08	9.11
SO ₂	0.01	0.03	0.01	0.03	<0.01	<0.01	<0.01	0.03
PM _{10/2.5}	<0.01	<0.01	<0.01	<0.01	0.02	0.08	<0.01	<0.01
PM _{COND}	0.10	0.44	0.10	0.44	0.02	0.08	0.10	0.45
PM _{TOT}	0.10	0.44	0.10	0.44	0.04	0.16	0.10	0.45

AP-42 Emission Factors (lb/mmBtu)³

	<u>4S-LB</u>	<u>4S-RB</u>
Pollutant	3.2-2 (7/00)	3.2-3 (7/00)
SO ₂	5.88E-04	5.88E-04
PM _{10/2.5}	7.71E-05	9.50E-03
PM _{COND}	9.91E-03	9.91E-03
PM _{TOT}	9.99E-03	1.94E-02

Notes:

¹ Uncontrolled emission factors based on engine manufacturer data. Per Caterpillar, NMNEHC emission factor does not include formaldehyde (HCHO); therefore, NMNEHC and HCHO factors have been added to demonstrate total uncontrolled VOC.

² Post-catalyst emission factors based on catalyst manufacturer data and/or NSPS Subpart JJJJ limits, if applicable. Per NSPS Subpart JJJJ, VOC limit does not include HCHO; therefore, HCHO emissions have been added to the NSPS JJJJ VOC emission rates for demonstration purposes only.

³ Per AP-42, all particulate matter (PM) from combustion of natural gas (total, condensable and filterable PM) is presumed <1 micrometer in diameter.

SWN Production Company, LLC Fork Ridge Pad Engine Emissions Calculations - Hazardous Air Pollutants

Equipment Information

Unit ID: Emission Point ID:	EU-ENG1 EP-ENG1	EU-ENG2 EP-ENG2	EU-ENG3 EP-ENG3	<u>EU-ENG4</u> EP-ENG4
Make:	Caterpillar	Caterpillar	Caterpillar	Caterpillar
Model:	G3516B	G3516B	G3406 NA	G3516B
Design Class:	4S-LB	4S-LB	4S-RB	4S-LB
Controls:	Oxid. Cat.	Oxid. Cat.	NSCR	Oxid. Cat.
Horsepower (hp):	1,380	1,380	215	1,380
Fuel Use (Btu/hp-hr):	7,433	7,433	8,756	7,433
Fuel Use (scfh):	11,334	11,334	2,080	11,334
Annual Fuel Use (mmscf):	99.29	99.29	18.22	99.29
Fuel Use (mmBtu/hr):	10.26	10.26	1.88	10.26
Exhaust Flow (acfm):	9,181	9,181	1,040	9,181
Exhaust Temp (°F):	999	999	1,168	999
Operating Hours:	8,760	8,760	8,760	8,760
Manufacturer Formaldehyde Factor				
Pre-Control (g/hp-hr):	0.40	0.40	0.27	0.40
Control Efficiency ¹ :	70.00%	70.00%	76.00%	70.00%
Permit Factor (g/hp-hr):	0.12	0.12	0.06	0.12

Uncontrolled HAP Emissions

Unit ID:	EU-I	ENG1	<u>EU-</u>	ENG2	<u>EU-I</u>	ENG3	<u>EU-</u>	ENG4
Pollutant	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
Acetaldehyde	0.09	0.38	0.09	0.38	0.01	0.02	0.09	0.38
Acrolein	0.05	0.23	0.05	0.23	<0.01	0.02	0.05	0.23
Benzene	<0.01	0.02	<0.01	0.02	<0.01	0.01	<0.01	0.02
Ethylbenzene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Formaldehyde	1.22	5.33	1.22	5.33	0.13	0.56	1.22	5.33
Methanol	0.03	0.11	0.03	0.11	0.01	0.03	0.03	0.11
Toluene	<0.01	0.02	<0.01	0.02	<0.01	<0.01	<0.01	0.02
Xylenes	<0.01	0.01	<0.01	0.01	<0.01	<0.01	<0.01	0.01
Total HAPs =	1.39	6.10	1.39	6.10	0.15	0.66	1.39	6.10

SWN Production Company, LLC Fork Ridge Pad Engine Emissions Calculations - Hazardous Air Pollutants

Proposed HAP Emissions

Unit ID:	<u>EU-</u>	ENG1	<u>EU-</u>	ENG2	<u>EU-I</u>	ENG3	<u>EU-</u>	ENG4
Pollutant	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
Acetaldehyde	0.09	0.38	0.09	0.38	0.01	0.02	0.09	0.38
Acrolein	0.05	0.23	0.05	0.23	<0.01	0.02	0.05	0.23
Benzene	<0.01	0.02	<0.01	0.02	<0.01	0.01	<0.01	0.02
Ethylbenzene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Formaldehyde	0.37	1.60	0.37	1.60	0.03	0.13	0.37	1.60
Methanol	0.03	0.11	0.03	0.11	0.01	0.03	0.03	0.11
Toluene	<0.01	0.02	<0.01	0.02	<0.01	<0.01	<0.01	0.02
Xylenes	<0.01	0.01	<0.01	0.01	<0.01	<0.01	<0.01	0.01
Total HAPs =	0.54	2.37	0.54	2.37	0.05	0.22	0.54	2.37

AP-42 Emission Factors (lb/mmBtu)

	<u>4S-RB</u>	<u>4S-RB</u>
Pollutant	3.2-3 (7/00)	3.2-3 (7/00)
Acetaldehyde	2.79E-03	2.79E-03
Acrolein	2.63E-03	2.63E-03
Benzene	1.58E-03	1.58E-03
Ethylbenzene	2.18E-05	2.18E-05
Methanol	3.06E-03	3.06E-03
Toluene	5.58E-04	5.58E-04
Xylenes	1.95E-04	1.95E-04

Notes:

¹ For conservative estimate, no reduction taken for any HAP other than formaldehyde.

SWN Production Company, LLC Fork Ridge Pad Engine Emissions Calculations - Greenhouse Gases

Equipment Information

Unit ID:	EU-ENG1	EU-ENG2	EU-ENG3	EU-ENG4
Emission Point ID:	EP-ENG1	EP-ENG2	EP-ENG3	EP-ENG4
Make:	Caterpillar	Caterpillar	Caterpillar	Caterpillar
Model:	G3516B	G3516B	G3406 NA	G3516B
Design Class:	4S-LB	4S-LB	4S-RB	4S-LB
Controls:	Oxid. Cat.	Oxid. Cat.	NSCR	Oxid. Cat.
Horsepower (hp):	1,380	1,380	215	1,380
Fuel Use (Btu/hp-hr):	7,433	7,433	8,756	7,433
Fuel Use (scfh):	11,334	11,334	2,080	11,334
Fuel Use (mmBtu/hr):	10.26	10.26	1.88	10.26
Exhaust Flow (acfm):	9,181	9,181	1,040	9,181
Exhaust Temp (°F):	999	999	1,168	999
Operating Hours:	8,760	8,760	8,760	8,760
Manufacturer data used to calculate CO ₂ emis	sions (g/hp-hr):			
_	491	491	598	491

Greenhouse Gas (GHG) Emissions¹

Unit ID:	<u>EU-</u>	ENG1	<u>EU-</u>	ENG2	<u>EU-I</u>	ENG3	<u>EU-E</u>	ENG4
Pollutant	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr	lb/hr	tonnes/yr
CO ₂	1,493.78	5,935.50	1,493.78	5,935.50	283.44	1,126.25	1,493.78	5,935.50
CH ₄	0.02	0.09	0.02	0.09	<0.01	0.02	0.02	0.09
N ₂ O	<0.01	0.01	<0.01	0.01	<0.01	<0.01	<0.01	0.01
CH ₄ as CO ₂ e	0.57	2.25	0.57	2.25	0.10	0.41	0.57	2.25
N ₂ O as CO ₂ e	0.67	2.68	0.67	2.68	0.12	0.49	0.67	2.68
Total CO ₂ + CO ₂ e =	1,495.02	5,940.42	1,495.02	5,940.42	283.67	1,127.16	1,495.02	5,940.42

40 CFR 98 Tables C-1 and C-2 Emission Factors (kg/mmBtu)²

Methane (CH ₄)	1.00E-03	1.00E-03
Nitrous Oxide (N ₂ O)	1.00E-04	1.00E-04

Notes:

¹ Conversion to short tons (tons) found in site-wide Summary of Greenhouse Gases - Short Tons per Year (tons) table.

 2 CO₂e = CO₂ equivalent (Pollutant times GWP multiplier):

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: CO₂ = 1, CH₄ = 25, N₂O = 298

SWN Production Company, LLC Fork Ridge Pad Gas Production Unit Burner Emissions Calculations - Criteria Air Pollutants

Equipment Information

Unit ID:	<u>EU-GPU1 - EU-GPU8 (EACH)</u>
Emission Point ID:	EP-GPU1 - EP-GPU8
Description:	Gas Production Unit Burner
Number of Units:	8
Burner Design (mmBtu/hr):	1.0
Fuel HHV (Btu/scf):	905
Annual Fuel Use (mmscf):	9.68
Annual Operating Hours:	8,760

Criteria Air Pollutant Emissions

Unit ID:

<u>EU-GPU1 - EU-GPU8 (EACH)</u>

EU-GPU1 - EU-GPU8 (TOTAL)

Pollutant	lb/hr	ТРҮ	lb/hr	TPY
NOx	0.11	0.48	0.88	3.84
CO	0.09	0.39	0.72	3.12
VOC	0.01	0.03	0.05	0.24
SO ₂	<0.01	<0.01	<0.01	<0.02
PM _{10/2.5}	0.01	0.03	0.05	0.22
PM _{COND}	<0.01	0.01	<0.02	<0.07
PM _{TOT}	0.01	0.04	0.07	0.29

AP-42 Emission Factors for Units <100 mmBtu/hr (lb/mmscf)¹

Pollutant	1.4-1, -2 (7/98)
NOx	100.0
CO	84.0
VOC	5.5
SO ₂	0.6
PM _{10/2.5}	5.7
PM _{COND}	1.9
PM _{TOT}	7.6

Notes:

¹ All PM (total, condensable and filterable) is assumed to be <1 micrometer in diameter. Total PM is the sum of filterable PM and condensable PM.

SWN Production Company, LLC Fork Ridge Pad Gas Production Unit Burner Emissions Calculations - Hazardous Air Pollutants

Equipment Information

Unit ID:	<u>EU-GPU1 - EU-GPU8 (EACH)</u>
Emission Point ID:	EP-GPU1 - EP-GPU8
Description:	Gas Production Unit Burner
Number of Units:	8
Burner Design (mmBtu/hr):	1.0
Fuel HHV (Btu/scf):	905
Annual Fuel Use (mmscf):	9.68
Annual Operating Hours:	8,760

Hazardous Air Pollutant Emissions

Unit ID: EU-GPU1 - EU-GPU8 (EACH)

EU-GPU1 - EU-GPU8 (TOTAL)

Pollutant	lb/hr	TPY	lb/hr	TPY
n-Hexane	<0.01	0.01	<0.02	<0.07
Formaldehyde	<0.01	<0.01	<0.01	<0.01
Benzene	<0.01	<0.01	<0.01	<0.01
Toluene	<0.01	<0.01	<0.01	<0.01
Total HAPs =	<0.01	0.01	0.02	0.07

AP-42 Emission Factors (lb/mmscf)

Pollutant	1.4-3 (7/98)
n-Hexane	1.80E+00
Formaldehyde	7.50E-02
Benzene	2.10E-03
Toluene	3.40E-03

SWN Production Company, LLC Fork Ridge Pad Gas Production Unit Burner Emissions Calculations - Greenhouse Gases

Equipment Information

Unit ID:	<u>EU-GPU1 - EU-GPU8 (EACH)</u>
Emission Point ID:	EP-GPU1 - EP-GPU8
Description:	Gas Production Unit Burner
Number of Units:	8
Burner Design (mmBtu/hr):	1.0
Fuel HHV (Btu/scf):	905
Annual Fuel Use (mmscf):	9.68
Annual Operating Hours:	8,760

Greenhouse Gas (GHG) Emissions¹

Unit ID:	<u>EU-GPU1 - EU-GPU8 (EACH)</u>		<u>EU-GPU1 - EU-</u>	<u>GPU8 (TOTAL)</u>
Pollutant	lb/hr	tonnes/yr	lb/hr	tonnes/yr
CO ₂	116.98	464.80	935.82	3,718.44
CH ₄	<0.01	0.01	<0.02	<0.07
N ₂ O	<0.01	<0.01	<0.01	<0.01
CH ₄ as CO ₂ e	0.06	0.22	0.44	1.75
N ₂ O as CO ₂ e	0.07	0.26	0.53	2.09
Total CO ₂ + CO ₂ e =	117.10	465.28	936.78	3,722.28

40 CFR 98 Tables C-1 and C-2 Emission Factors (kg/mmBtu)²

Carbon Dioxide (CO ₂)	53.06
Methane (CH ₄)	1.00E-03
Nitrous Oxide (N ₂ O)	1.00E-04

Notes:

¹ Conversion to short tons (tons) found in site-wide Summary of Greenhouse Gases - Short Tons per Year (tons) table.

 2 CO₂e = CO₂ equivalent (Pollutant times GWP multiplier):

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: CO₂ = 1, CH₄ = 25, N₂O = 298

SWN Production Company, LLC Fork Ridge Pad Heater Treater Emissions Calculations - Criteria Air Pollutants

Equipment Information

Unit ID:	<u>EU-HT1 - EU-HT2 (EACH)</u>
Emission Point ID:	EP-HT1 - EP-HT2
Description:	Heater Treater
Number of Units:	2
Burner Design (mmBtu/hr):	0.5
Fuel HHV (Btu/scf):	905
Annual Fuel Use (mmscf):	4.84
Annual Operating Hours:	8,760

Criteria Air Pollutant Emissions

Unit ID:	<u>EU-HT1 - EU-HT2 (EACH)</u>		EU-HT1 and EU-HT2 (TOTAL)	
Pollutant	lb/hr	ТРҮ	lb/hr	TPY
NOx	0.06	0.26	0.12	0.52
CO	0.05	0.22	0.10	0.44
VOC	<0.01	0.01	0.01	0.02
SO ₂	<0.01	<0.01	<0.01	<0.01
PM _{10/2.5}	<0.01	0.01	0.01	0.03
PM _{COND}	<0.01	<0.01	<0.01	0.01
PM _{TOT}	<0.01	0.02	0.01	0.04

AP-42 Emission Factors for Units <100 mmBtu/hr (lb/mmscf)¹

Pollutant	1.4-1, -2 (7/98)
NOx	100.0
CO	84.0
VOC	5.5
SO ₂	0.6
PM _{10/2.5}	5.7
PM _{COND}	1.9
PM _{TOT}	7.6

Notes:

¹ All PM (total, condensable and filterable) is assumed to be <1 micrometer in diameter. Total PM is the sum of filterable PM and condensable PM.

SWN Production Company, LLC Fork Ridge Pad Heater Treater Emissions Calculations - Hazardous Air Pollutants

Equipment Information

Unit ID:	<u>EU-HT1 - EU-HT2 (EACH)</u>
Emission Point ID:	EP-HT1 - EP-HT2
Description:	Heater Treater
Number of Units:	2
Burner Design (mmBtu/hr):	0.5
Fuel HHV (Btu/scf):	905
Annual Fuel Use (mmscf):	4.84
Annual Operating Hours:	8,760

Hazardous Air Pollutant Emissions

Unit ID: EU-HT1 - EU-HT2 (EACH)

EU-HT1 and EU-HT2 (TOTAL)

Pollutant	lb/hr	TPY	lb/hr	TPY
n-Hexane	<0.01	<0.01	<0.01	0.01
Formaldehyde	<0.01	<0.01	<0.01	<0.01
Benzene	<0.01	<0.01	<0.01	<0.01
Toluene	<0.01	<0.01	<0.01	<0.01
Total HAPs =	<0.01	<0.01	<0.01	0.01

AP-42 Emission Factors (lb/mmscf)

Pollutant	1.4-3 (7/98)
n-Hexane	1.80E+00
Formaldehyde	7.50E-02
Benzene	2.10E-03
Toluene	3.40E-03

SWN Production Company, LLC Fork Ridge Pad Heater Treater Emissions Calculations - Greenhouse Gases

Equipment Information

Unit ID:	<u>EU-HT1 - EU-HT2 (EACH)</u>
Emission Point ID:	EP-HT1 - EP-HT2
Description:	Heater Treater
Number of Units:	2
Burner Design (mmBtu/hr):	0.5
Fuel HHV (Btu/scf):	905
Annual Fuel Use (mmscf):	4.84
Annual Operating Hours:	8,760

Greenhouse Gas (GHG) Emissions¹

Unit ID: EU-HT1 - EU-HT2 (EACH)

EU-HT1 and EU-HT2 (TOTAL)

Pollutant	lb/hr	tonnes/yr	lb/hr	tonnes/yr
CO ₂	58.49	232.40	116.98	464.80
CH ₄	<0.01	<0.01	<0.01	<0.01
N ₂ O	<0.01	<0.01	<0.01	<0.01
CH ₄ as CO ₂ e	0.03	0.11	0.06	0.22
N ₂ O as CO ₂ e	0.03	0.13	0.07	0.26
Total CO ₂ + CO ₂ e =	58.55	232.64	117.10	465.28

40 CFR 98 Tables C-1 and C-2 Emission Factors (kg/mmBtu)²

Carbon Dioxide (CO ₂)	53.06
Methane (CH ₄)	1.00E-03
Nitrous Oxide (N ₂ O)	1.00E-04

Notes:

¹ Conversion to short tons (tons) found in site-wide Summary of Greenhouse Gases - Short Tons per Year (tons) table. ² CO₂e = CO₂ equivalent (Pollutant times GWP multiplier):

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: $CO_2 = 1$, $CH_4 = 25$, $N_2O = 298$

SWN Production Company, LLC Fork Ridge Pad Glycol Dehydration Unit Emissions - Criteria and Hazardous Air Pollutants

Equipment Information

Parameter	Units	Value
Unit ID	-	EU-DEHY1
Emisison Point ID	-	EP-RB1
Maximum Throughput	MMSCFD	35.00
Operating Hours	Hours/Year	8,760
Wet Gas Temperature	°F	70
Wet Gas Pressure	psig	900
Pump Make	-	Kimray
Pump Model	-	45015 PV
Pump Type	Electric/Gas	Gas
Lean Glycol Flow Rate	gpm	7.50
Flash Tank Temperature	°F	150
Flash Tank Pressure	psig	50
Flash Tank Controls	Yes/No	Reboiler
FIASIT TALK CONTINIS	res/ino	Combustion
Stripping Gas Flow Rate	scfm	N/A
Regenerator Still Vent Controls	Yes/No	Condenser/
Regenerator Still Vent Controls	165/110	Combustion
Flash Tank Control Efficiency	%	98%
Condenser Temperature	°F	100
Condenser Pressure	psia	14.00

Proposed Emissions

Unit ID:

EU-DEHY1

Pollutant	lb/hr	TPY
n-Hexane	0.05	0.24
Benzene	0.10	0.45
Toluene	0.12	0.51
Ethylbenzene	0.03	0.11
Xylenes	0.06	0.28
Total HAPs =	0.36	1.59
Total VOCs =	2.09	9.15

GRI-GLYCalc Results - Uncontrolled (For Reference Only)

	STILL	<u>VENT</u>	FLAS	<u>H TANK</u>	<u>TOTAL (E</u>	U-DEHY1)
Pollutant	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
n-Hexane	0.2586	1.1327	1.2206	5.3463	1.4792	6.4790
Benzene	0.7329	3.2103	0.1378	0.6034	0.8707	3.8137
Toluene	2.3298	10.2046	0.2925	1.2811	2.6223	11.4857
Ethylbenzene	1.3142	5.7562	0.0988	0.4327	1.4130	6.1889
Xylenes	4.0180	17.5988	0.2154	0.9432	4.2334	18.5420
Total HAPs =	8.6535	37.9026	1.9651	8.6067	10.6186	46.5093
Total VOCs =	15.2710	66.8870	50.6085	221.6654	65.8795	288.5524

SWN Production Company, LLC Fork Ridge Pad

GRI-GLYCalc Results - Controlled (For Reference Only)

	<u>STILL</u>	<u>. VENT</u>	FLASH	<u>I TANK</u>	<u>TOTAL (E</u>	U-DEHY1)
Pollutant	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
n-Hexane	0.0453	0.1986	0.0244	0.1069	0.0697	0.3055
Benzene	0.0855	0.3747	0.0028	0.0121	0.0883	0.3868
Toluene	0.0974	0.4266	0.0058	0.0250	0.1032	0.4516
Ethylbenzene	0.0211	0.0923	0.0020	0.0087	0.0231	0.1010
Xylenes	0.0529	0.2316	0.0043	0.0189	0.0572	0.2505
Total HAPs =	0.3022	1.3238	0.0393	0.1721	0.3415	1.4959
Total VOCs =	1.7409	7.6250	1.0122	4.4333	2.7531	12.0583

Notes:

¹Dehydration unit is equipped with two (2) 7.5 gpm Kimray 45015 gas injection pumps. One is a backup; only one pump will be in use at one time. ²Flash tank off gas is routed to the combustor via the tanks. 100% capture efficiency and 98% control efficiency assumed; therefore, 98% control efficiency was taken in GRI-GLYCalcTM. ³Regenerator still vent emissions are controlled by condenser, with non-condensables routed to the reboiler for destruction. 50% combustion control efficiency

taken in GRI-GLYCalc[™].

⁴20% safety factor added to controlled GRI-GLYCalc[™] results to account for potential fluctuations in gas composition. Note that proposed emissions include still vent emissions only. Flash tank emissions are routed to the combustor via the produced water tanks. Uncombusted emissions are reported at the combustor.

⁵GRI-GLYCalc[™] report attached.

SWN Production Company, LLC Fork Ridge Pad Glycol Dehydration Unit Emissions - Greenhouse Gas Emissions

Proposed Emissions¹

Unit ID: EU-DEHY1

Pollutant	lb/hr	tons/yr
CO ₂ =	<0.01	0.01
CH ₄ =	0.44	1.92
$CH_4 as CO_2 e =$	10.97	48.07
Total CO ₂ + CO ₂ e =	10.98	48.08

GRI-GLYCalc Results - Uncontrolled (For Reference Only)²

STILL VENT TOTAL (EU-DEHY1) Unit ID: FLASH TANK Pollutant lb/hr tons/yr lb/hr tons/yr lb/hr tons/yr $CO_2 =$ 0.5784 0.0042 0.0182 0.5742 2.5152 2.5334 CH₄ = 0.7335 3.2129 101.3636 443.9726 102.0971 447.1855 CH₄ as CO₂e = 2,534.0900 11,099.3150 18.3375 80.3225 2,552.4275 11,179.6375 Total CO₂ + CO₂e = 2,534.6642 2,553.0059 18.3417 80.3407 11,101.8302 11,182.1709

GRI-GLYCalc Results - Controlled (For Reference Only)²

Unit ID:	STILL VENT

FLASH TANK

TOTAL (EU-DEHY1)

Pollutant	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
CO ₂ =	0.0021	0.0091	0.0115	0.0503	0.0136	0.0594
Input CH_4 from GLYCalc =	0.3658	1.6022	2.0273	8.8795	2.3931	10.4817
$CH_4 as CO_2e =$	9.1450	40.0550	50.6825	221.9875	59.8275	262.0425
Total CO ₂ + CO ₂ e =	9.1471	40.0641	50.6940	222.0378	59.8411	262.1019

Glycol Dehydration Unit Emissions - Greenhouse Gas Emissions (Continued)

Notes:

¹ Proposed CH₄ emissions based on GRI-GLYCalcTM results with 20% safety factor added for potential fluctuations in gas composition. Proposed CO₂ emissions calculated using mass balance based on CH₄ and CO₂ mol% in the gas sample. Note that proposed emissions include still vent emissions only. Flash tank emissions are controlled by the combustor and are represented there.

² Example CO₂ Calculation (Exhibit 5.1: API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Gas Industry, August 2009): CO₂ = tonnes CH₄ * tonne mole CH₄/16 tonne CH₄ * tonne mole gas/tonne mole CH₄ * tonne mole CO₂/tonne mole CO₂/tonne mole CO₂

Input CH ₄ mol% from gas analysis =	77.183
Input CO ₂ mol% from gas analysis =	0.159

SWN Production Company, LLC Fork Ridge Pad Glycol Reboiler Emissions Calculations - Criteria Air Pollutants

Equipment Information

Unit ID:	<u>EU-RB1</u>
Emission Point ID:	EP-RB1
Description:	TEG Reboiler
Combustor Type:	Uncontrolled
Burner Design (mmBtu/hr):	0.75
Fuel HHV (Btu/scf):	905
Annual Fuel Use (mmscf):	7.26
Annual Operating Hours:	8,760

Proposed Emissions

Unit ID:

<u>EU-RB1</u>

Pollutant	lb/hr	TPY
NOx	0.08	0.36
CO	0.07	0.30
VOC	<0.01	0.02
SO ₂	<0.01	<0.01
PM _{10/2.5}	<0.01	0.02
PM _{COND}	<0.01	0.01
PM _{TOT}	0.01	0.03

AP-42 Emission Factors for Units <100 mmBtu/hr (lb/mmscf)

Pollutant	1.4-1, -2 (7/98)
NOx	100.0
CO	84.0
VOC	5.5
SO ₂	0.6
PM _{10/2.5}	5.7
PM _{COND}	
PM _{TOT}	7.6

SWN Production Company, LLC Fork Ridge Pad Glycol Reboiler Emissions Calculations - Hazardous Air Pollutants

Equipment Information

Unit ID:	EU-RB1
Description:	TEG Reboiler
Burner Design (mmBtu/hr):	0.75
Fuel HHV (Btu/scf):	905
Annual Fuel Use (mmscf):	7.26
Annual Operating Hours:	8,760

Proposed Emissions

Unit ID:

<u>EU-RB1</u>

Pollutant	lb/hr	TPY
n-Hexane	<0.01	0.01
Formaldehyde	<0.01	<0.01
Benzene	<0.01	<0.01
Toluene	<0.01	<0.01
Total HAPs =	<0.01	0.01

AP-42 Emission Factors (lb/mmscf)

Pollutant	1.4-3 (7/98)
n-Hexane	1.80E+00
Formaldehyde	7.50E-02
Benzene	2.10E-03
Toluene	3.40E-03

SWN Production Company, LLC Fork Ridge Pad Glycol Reboiler Emissions Calculations - Greenhouse Gases

Equipment Information

EU-RB1
TEG Reboiler
0.75
905
7.26
8,760

Greenhouse Gas (GHG) Emissions¹

Unit ID:

<u>EU-RB1</u>

Pollutant	lb/hr	tonnes/yr
CO ₂	87.73	348.60
CH₄	<0.01	<0.01
N ₂ O	<0.01	<0.01
CH₄ as CO₂e	0.04	0.16
N ₂ O as CO ₂ e	0.05	0.20
Total CO ₂ + CO ₂ e	87.82	348.96

CO₂e = CO₂ equivalent (Pollutant times GWP multiplier)

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier (100-Year Time Horizon): CO₂ = 1, CH₄ = 25, N₂O = 298

40 CFR 98 Tables C-1 and C-2 Emission Factors (kg/mmBtu)

Carbon Dioxide (CO ₂)	53.06
Methane (CH ₄)	1.00E-03
Nitrous Oxide (N ₂ O)	1.00E-04

Notes:

¹ Conversion to short tons (tons) found in site-wide Summary of Greenhouse Gases - Short Tons per Year (tons) table.

SWN Production Company, LLC Fork Ridge Pad Storage Tank Emissions - Criteria Air Pollutants

Tank Information

Unit ID:	EU-TANKS-COND	EU-TANKS-PW
Emission Point ID:	APC-COMB-TKLD	APC-COMB-TKLD
Contents: ¹	Condensate	Produced Water
Number of Tanks: ²	5	5
Capacity (bbl) - Per Tank:	400	400
Capacity (gal) - Per Tank:	16,800	16,800
Total Throughput (bbl/yr):	292,000	365,000
Total Throughput (gal/yr):	12,264,000	15,330,000
Total Throughput (bbl/d):	800	1,000
Tank Flashing Emission Factor (lb/bbl):	7.00	0.87
Total Working Losses (lb/yr): ³	17,456.38	222.91
Breathing Losses per Tank (lb/yr): ³	1,271.49	10.98
Tank Vapor Capture Efficiency:	100%	100%
Captured Vapors Routed to:	Vapor Combustor	Vapor Combustor

Uncontrolled Storage Tank Emissions

Unit ID:	EU-TANKS-COND		EU-TANKS-PW	
Emissions	lb/hr	ТРҮ	lb/hr	ТРҮ
Working Losses	1.99	8.73	0.03	0.11
Breathing Losses	0.73	3.20	0.01	0.05
Flashing Losses	233.33	1,022.00	36.08	158.05
Total VOC =	236.06	1,033.93	36.12	158.21

Notes:

¹ Produced water tanks assumed to contain 99% produced water and 1% condensate.

² SWN requests to combine working, breathing and flashing emissions from each tank type to be combined into one emissions point with a total throughput limit rather than an individual tank limit.

³ Tank working and breathing emissions were calculated using maximum throughput in EPA TANKS 4.0.9d for working losses and multiplying results for breathing losses by the number of tanks for total potential evaporative losses from all tanks. Flashing calculated using Promax process simulation. Reports located in Attachment L. Uncontrolled tank working/breathing/flashing emissions are routed to a vapor combustor with 100% capture efficiency per WVDEP guidance.

Total Annual Emissions (TPY) = Tank Working + Breathing + Flashing Emissions (TPY) * (1 - Capture Efficiency (%))

SWN Production Company, LLC Fork Ridge Pad Storage Tank Emissions - Hazardous Air Pollutants

Unit ID:

Uncontrolled Storage Tank Emissions

Unit 15.				
Pollutant	lb/hr	TPY	lb/hr	TPY
Total VOC = ¹	236.06	1,033.93	36.12	158.21
n-Hexane	12.96	56.77	1.98	8.69
Benzene	0.24	1.04	0.04	0.16
Toluene	1.55	6.77	0.24	1.04
Ethylbenzene	1.59	6.98	0.24	1.07
Xylenes	4.16	18.22	0.64	2.79
Total HAP =	20.50	89.78	3.14	13.74

FU-TANKS-COND

FU-TANKS-PW

Estimated HAP Composition (% by Weight)³

Pollutant	Wt%
n-Hexane	5.491%
Benzene	0.101%
Toluene	0.655%
Ethylbenzene	0.675%
Xylenes	1.762%
Total HAP =	8.684%

Notes:

¹ VOC emissions calculated in Criteria Air Pollutant calculations.

² Uncontrolled tank working/breathing/flashing emissions are routed to a vapor combustor with 100% capture efficiency.

³ Speciated liquids analysis located in Fugitive Emissions Calculations. HAP weight % calculated as % of total hydrocarbons in the sample. All HAP assumed to volatilize from liquids for most conservative emissions estimate.

SWN Production Company, LLC Fork Ridge Pad Condensate Truck Loading Emissions - Criteria and Hazardous Air Pollutants

Loading Information

Unit ID:	EU-LOAD-COND
Emission Point ID:	APC-COMB-TKLD
Fill Method:	Submerged
Type of Service:	Dedicated
Mode of Operation:	Normal
Saturation Factor:	0.6
Em. Factor (lb/1000 gal): 1	6.14
Throughput (1000 gal):	12,264
Control Type:	Vapor Return/Combustion
Vapor Capture Efficiency: ²	70%
Average Fill Rate (gal/hr):	7,500
Captured Vapors Routed to:	Vapor Combustor

8.3102 = P, True vapor pressure of liquid loaded (max. psia) ³		
50.43 =	= M, Molecular weight of vapor (lb/lb-mol)	
50.33 =	= T, Temperature of bulk liquid loaded (average °F)	
510.33 =	= T, Temperature of bulk liquid loaded (°F + 460 = °R)	

Uncontrolled Loading Emissions⁴

Pollutant	Max. Ib/hr	Avg. lb/hr	TPY
VOC =	46.05	8.60	37.65
n-Hexane	2.53	0.47	2.07
Benzene	0.05	0.01	0.04
Toluene	0.30	0.06	0.25
Ethylbenzene	0.31	0.06	0.25
Xylenes	0.81	0.15	0.66
Total HAP ⁵ =	4.00	0.75	3.27

SWN Production Company, LLC Fork Ridge Pad Condensate Truck Loading Emissions - Criteria and Hazardous Air Pollutants (Continued)

Uncaptured Loading Emissions⁴

Pollutant	Max. Ib/hr	Avg. lb/hr	TPY
VOC =	13.82	2.58	11.30
n-Hexane	0.76	0.14	0.62
Benzene	0.01	<0.01	0.01
Toluene	0.09	0.02	0.07
Ethylbenzene	0.09	0.02	0.08
Xylenes	0.24	0.05	0.20
Total HAP ⁵ =	1.20	0.22	0.98

Notes:

¹ AP-42 5.2-4 Eq.1: Loading Loss (lb/1000 gal) = 12.46 *S*P*M/T.

² Uncontrolled emissions that are captured by the collection system are routed to a vapor combustor. Per AP-42 5.2-6, 70% capture efficiency can be assumed for trucks not subject to NSPS. Uncaptured emissions shown represent those not captured by the collection system or controlled by the vapor combustor.

³ AP-42 Section 7.1 - Properties of Selected Petroleum Liquids correlation with RVP estimated from process simulation.

⁴ Maximum lb/hr based on average hourly truck loading rate. Average lb/hr based on TPY conversion assuming continuous operation.

⁵ Speciated liquids analysis located in Fugitive Emissions Calculations. HAP weight % calculated as % of total hydrocarbons in the sample. All HAP assumed to volatilize from liquids for most conservative emissions estimate.

Pollutant	Wt%
n-Hexane	5.491%
Benzene	0.101%
Toluene	0.655%
Ethylbenzene	0.675%
Xylenes	1.762%
Total HAPs =	8.684%

SWN Production Company, LLC Fork Ridge Pad Condensate Truck Loading Emissions - Greenhouse Gases

Input CO₂ from Promax =

Loading Information

Unit ID:	EU-LOAD-COND
Fill Method:	APC-COMB-TKLD
Fill Method:	Submerged
Type of Service:	Dedicated
Mode of Operation:	Normal
TOC Em. Factor (tonne/10 ⁶ gal): ¹	0.91
Throughput (10 ⁶ gal):	12.264
Control Type:	Vapor Return/Combustion
Vapor Capture Efficiency: ²	70.00%
Average Fill Rate (gal/hr):	7,500
Captured Vapors Routed to:	Vapor Combustor
Input CH ₄ from Promax =	1.9684%

Pollutant	Max. lb/hr	Avg. Ib/hr	tonnes/yr	tons/yr
CH4	0.30	0.06	0.22	0.24
CH ₄ as CO ₂ e	7.40	1.38	5.49	6.05
CO ₂	<0.01	<0.01	<0.01	<0.01
Total CO ₂ + CO ₂ e =	7.41	1.38	5.49	6.06

0.0255%

SWN Production Company, LLC Fork Ridge Pad Condensate Truck Loading Emissions - Greenhouse Gases (Continued)

Uncaptured Loading Emissions^{3, 4}

Pollutant	Max. Ib/hr	Avg. Ib/hr	tonnes/yr	tons/yr
CH ₄	0.09	0.02	0.07	0.07
CH ₄ as CO ₂ e	2.22	0.41	1.65	1.82
CO ₂	<0.01	<0.01	<0.01	<0.01
Total CO ₂ + CO ₂ e =	2.22	0.41	1.65	1.82

API Compendium Table 5-12

Loading Type	Emission Factor (tonne TOC/10 ⁶ gal)
Rail/Truck - Submerged Loading - Dedicated Normal Service	0.91
Rail/Truck - Submerged Loading - Vapor Balance Service	151
Rail/Truck - Splash Loading - Dedicated Normal Service	//0
Rail/Truck - Splash Loading - Vapor Balance Service	1.51
Marine Loading - Ships/Ocean Barges	0.28
Marine Loading - Barges	0.45

Notes:

¹ API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Gas Industry, Table 5-12.

² Uncontrolled emissions that are captured by the collection system are routed to a vapor combustor. Per AP-42 5.2-6, 70% capture efficiency can be assumed for trucks not subject to NSPS. Uncaptured emissions shown represent those not captured by the collection system or controlled by the vapor combustor.

³ Maximum lb/hr based on average hourly truck loading rate. Average lb/hr based on TPY conversion assuming continuous operation.

 4 CO₂e = CO₂ equivalent (Pollutant times GWP multiplier):

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: $CO_2 = 1$, $CH_4 = 25$

SWN Production Company, LLC Fork Ridge Pad Produced Water Truck Loading Emissions - Criteria and Hazardous Air Pollutants

Loading Information

Unit ID:	EU-LOAD-PW
Emission Point ID:	APC-COMB-TKLD
Fill Method:	Submerged
Type of Service:	Dedicated
Mode of Operation:	Normal
Saturation Factor:	0.6
Em. Factor (lb/1000 gal): ¹	0.08
Throughput (1000 gal):	15,330
Control Type:	Vapor Return/Combustion
Vapor Capture Efficiency: ²	70%
Average Fill Rate (gal/hr):	7,500
Captured Vapors Routed to:	Vapor Combustor

0.2425 = P, True vapor pressure of liquid loaded (max. psia)
23.417 = M, Molecular weight of vapor (lb/lb-mol)
50.33 = T, Temperature of bulk liquid loaded (average °F)
510.33 = T, Temperature of bulk liquid loaded (°F + 460 = °R)

Uncontrolled Loading Emissions³

Pollutant	Max. Ib/hr	Avg. lb/hr	TPY
VOC =	0.60	0.14	0.61
n-Hexane	0.03	0.01	0.03
Benzene	<0.01	<0.01	<0.01
Toluene	<0.01	<0.01	<0.01
Ethylbenzene	<0.01	<0.01	<0.01
Xylenes	0.01	<0.01	0.01
Total HAP ⁴ =	0.05	0.01	0.05

SWN Production Company, LLC Fork Ridge Pad Produced Water Truck Loading Emissions - Criteria and Hazardous Air Pollutants (Continued)

Uncaptured Loading Emissions³

Pollutant	Max. Ib/hr	Avg. lb/hr	TPY
VOC =	0.18	0.04	0.18
n-Hexane	0.01	<0.01	0.01
Benzene	<0.01	<0.01	<0.01
Toluene	<0.01	<0.01	<0.01
Ethylbenzene	<0.01	<0.01	<0.01
Xylenes	<0.01	<0.01	<0.01
Total HAP ⁴ =	0.02	<0.01	0.02

Notes:

¹ AP-42 5.2-4 Eq.1: Loading Loss (lb/1000 gal) = 12.46 *S*P*M/T. Properties based on mixture of 99% water and 1% condensate.

² Uncontrolled emissions that are captured by the collection system are routed to a vapor combustor. Per AP-42 5.2-6, 70% capture efficiency can be assumed for trucks not subject to NSPS. Uncaptured emissions shown represent those not captured by the collection system or controlled by the vapor combustor.

³ Maximum lb/hr based on average hourly truck loading rate. Average lb/hr based on TPY conversion assuming continuous operation.

⁴ Speciated liquids analysis located in Fugitive Emissions Calculations. HAP weight % calculated as % of total hydrocarbons in the sample. All HAP assumed to volatilize from liquids for most conservative emissions estimate.

Pollutant	Wt%
n-Hexane	5.491%
Benzene	0.101%
Toluene	0.655%
Ethylbenzene	0.675%
Xylenes	1.762%
Total HAPs =	8.684%

SWN Production Company, LLC Fork Ridge Pad Produced Water Truck Loading Emissions - Greenhouse Gases

Loading Information

Unit ID:	EU-LOAD-PW
Fill Method:	APC-COMB-TKLD
Fill Method:	Submerged
Type of Service:	Dedicated
Mode of Operation:	Normal
TOC Em. Factor (tonne/10 ⁶ gal): ¹	0.91
Throughput (10 ⁶ gal):	15.330
Control Type:	Vapor Return/Combustion
Vapor Capture Efficiency: ²	70.00%
Average Fill Rate (gal/hr):	7,500
Captured Vapors Routed to:	Vapor Combustor
Input CH_4 from Promax =	41.5010%
Input CO_2 from Promax =	1.4348%

Uncontrolled Loading Emissions^{3, 4}

Pollutant	Max. Ib/hr	Avg. lb/hr	tonnes/yr	tons/yr
CH4	6.24	1.46	5.79	6.38
CH ₄ as CO ₂ e	156.11	36.43	144.74	159.55
CO ₂	0.22	0.05	0.20	0.22
Total CO ₂ + CO ₂ e =	156.33	36.48	144.94	159.77

SWN Production Company, LLC Fork Ridge Pad Produced Water Truck Loading Emissions - Greenhouse Gases (Continued)

Uncaptured Loading Emissions^{3, 4}

Pollutant	Max. Ib/hr	Avg. lb/hr	tonnes/yr	tons/yr
CH ₄	1.87	0.44	1.74	1.91
CH ₄ as CO ₂ e	46.83	10.93	43.42	47.86
CO ₂	0.06	0.02	0.06	0.07
Total CO ₂ + CO ₂ e =	46.90	10.94	43.48	47.93

API Compendium Table 5-12

Loading Type	Emission Factor (tonne TOC/10 ⁶ gal)
Rail/Truck - Submerged Loading - Dedicated Normal Service	0.91
Rail/Truck - Submerged Loading - Vapor Balance Service	1.51
Rail/Truck - Splash Loading - Dedicated Normal Service	2.20
Rail/Truck - Splash Loading - Vapor Balance Service	1.51
Marine Loading - Ships/Ocean Barges	0.28
Marine Loading - Barges	0.45

Notes:

¹ API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Gas Industry, Table 5-12.

² Uncontrolled emissions that are captured by the collection system are routed to a vapor combustor. Per AP-42 5.2-6, 70% capture efficiency can be assumed for trucks not subject to NSPS. Uncaptured emissions shown represent those not captured by the collection system or controlled by the vapor combustor.

³ Maximum lb/hr based on average hourly truck loading rate. Average lb/hr based on TPY conversion assuming continuous operation.

 4 CO₂e = CO₂ equivalent (Pollutant times GWP multiplier):

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: $CO_2 = 1$, $CH_4 = 25$

SWN Production Company, LLC Fork Ridge Pad Tanks/Loading Vapor Combustor Emissions Calculations - Criteria and Hazardous Air Pollutants

Criteria and Hazardous Air Pollutant Emissions

		Emission	Total Capture	ed Emissions ²	Combustor Destruction Efficiency		Emissions (Post- Combustion)
Unit ID	Pollutant	Factors ¹	lb/hr	TPY	%	lb/hr	TPY
	NOx	0.138	-	-	-	4.14	18.13
APC-COMB-TKLD	со	0.2755	-		-	8.27	36.22
	PM	7.6	-		-	0.09	0.39
	VOC	Mass Balance	339.03	1,484.93	98.00%	6.78	29.70
	n-Hexane	Mass Balance	16.74	73.35	98.00%	0.33	1.45
	Benzene	Mass Balance	0.45	1.95	98.00%	0.01	0.04
	Toluene	Mass Balance	2.18	9.52	98.00%	0.04	0.19
	Ethylbenzene	Mass Balance	1.99	8.75	98.00%	0.04	0.17
	Xylenes	Mass Balance	5.16	22.61	98.00%	0.10	0.44

Notes:

¹ Although a vapor combustor is not considered a flare by design, the function is consistent in that it combusts a waste stream for the purpose of reducing emissions; therefore, flare emission factors for NOx and CO were used to provide the most accurate emissions estimates. Although the combustor is designed to be smokeless, PM emissions have been estimated using AP-42 Table 1.4-1 factor (lb/mmscf) for a conservative estimate.

Hours per Year: Number of Combustors: 8,760 1

NOx and CO emission factors (lb/mmBtu): *TCEQ Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers:* High Btu waste streams (>1,000 Btu/scf) based on heat input to the combustor =

30.00 mmBtu/hr Total Heat Input

² Total captured emissions are based on 100% capture efficiency from storage tanks and 70% capture efficiency from truck loading with 98% destruction efficiency from the vapor combustor based on 8,760 hours of operation per year. Uncaptured vapors reported at loading emission units. Captured emissions from sources controlled by VOC combustor shown in following tables.

SWN Production Company, LLC

Fork Ridge Pad Tanks/Loading Vapor Combustor Emissions Calculations - Criteria and Hazardous Air Pollutants (Continued)

	Captured VOC Emissions		
Source	lb/hr	TPY	
Dehydration Unit Flash Tank Vapors	60.73	266.00	
Condensate Storage Tanks	236.06	1,033.93	
Produced Water Storage Tanks	36.12	158.21	
Condensate Truck Loading	6.02	26.36	
Produced Water Truck Loading	0.10	0.43	
Total VOC =	339.03	1,484.93	

	Captured HAP Emissions (lb/hr)				
Source	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes
Dehydration Unit Flash Tank Vapors	1.46	0.17	0.35	0.12	0.26
Condensate Storage Tanks	12.96	0.24	1.55	1.59	4.16
Produced Water Storage Tanks	1.98	0.04	0.24	0.24	0.64
Condensate Truck Loading	0.33	0.01	0.04	0.04	0.11
Produced Water Truck Loading	0.01	<0.01	<0.01	<0.01	<0.01
Total HAP =	16.74	0.45	2.18	1.99	5.16

	Captured HAP Emissions (TPY)				
Source	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes
Dehydration Unit Flash Tank Vapors	6.42	0.72	1.54	0.52	1.13
Condensate Storage Tanks	56.77	1.04	6.77	6.98	18.22
Produced Water Storage Tanks	8.69	0.16	1.04	1.07	2.79
Condensate Truck Loading	1.45	0.03	0.17	0.18	0.46
Produced Water Truck Loading	0.02	<0.01	<0.01	<0.01	0.01
Total HAP =	73.35	1.95	9.52	8.75	22.61

SWN Production Company, LLC Fork Ridge Pad Tanks/Loading Vapor Combustor Emissions Calculations - Greenhouse Gases

Equipment Information

Unit ID:	APC-COMB-TKLD
Description:	Vapor Combustor
Number of Combustors:	1
Burner Design Capacity (mmBtu/hr):	30.00
Stream HHV (Btu/scf):	2,682
Annual Throughput (mmscf):	97.99
Annual Operating Hours:	8,760

Greenhouse Gas (GHG) Emissions

Pollutant	lb/hr	tonnes/yr	tons/yr
CO ₂	3,509.31	13,944.14	15,370.78
CH ₄	0.07	0.26	0.29
N ₂ O	0.01	0.03	0.03
CH ₄ as CO ₂ e	1.65	6.57	7.24
N ₂ O as CO ₂ e	1.97	7.83	8.63
Total CO ₂ + CO ₂ e =	3,512.94	13,958.54	15,386.66

40 CFR 98 Tables C-1 and C-2 Emission Factors (kg/mmBtu)¹

Carbon Dioxide (CO ₂)	53.06
Methane (CH ₄)	1.00E-03
Nitrous Oxide (N ₂ O)	1.00E-04

Notes:

¹ $CO_2e = CO_2$ equivalent (Pollutant times GWP multiplier):

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: $CO_2 = 1$, $CH_4 = 25$, $N_2O = 298$

SWN Production Company, LLC Fork Ridge Pad Vapor Combustor Pilot Emissions Calculations - Criteria Air Pollutants

Criteria Air Pollutant Emissions

		Emission Factors ¹	Emissio	ns
Unit ID	Pollutant	(lb/mmscf)	lb/hr	ТРҮ
EU-PILOT	NOx	100	0.02	0.09
APC-COMB-TKLD	СО	84	0.01	0.06
	VOC	5.5	<0.01	<0.01
	SO ₂	0.6	<0.01	<0.01
	PM	7.6	<0.01	<0.01

905	Pilot Stream Heat Content (Btu/SCF)
8,760	Pilot Hours/Yr
150	Pilot Gas Flow Rate (SCFH) ²
135,750	Total Pilot Gas Fuel Use (Btu/hr)
1.31	Total Annual Fuel Use (MMSCF)

Notes:

¹ AP-42 Table 1.4-1, -2 (7/98)

² Combustor is equipped with three (3) pilots with a pilot fuel consumption of 50 SCFH per pilot.

SWN Production Company, LLC Fork Ridge Pad Vapor Combustor Pilot Emissions Calculations - Hazardous Air Pollutants

Hazardous Air Pollutant Emissions

		Emission Factors ¹	Emis	sions
Unit ID	Pollutant	(lb/mmscf)	lb/hr	TPY
EU-PILOT	n-Hexane	1.8	<0.01	<0.01
APC-COMB-TKLD	Formaldehyde	0.075	<0.01	<0.01
	Benzene	0.0021	<0.01	<0.01
	Toluene	0.0034	<0.01	<0.01
		Total HAPs =	<0.01	<0.01

905	Pilot Stream Heat Content (Btu/SCF)
8,760	Pilot Hours/Yr
150	Pilot Gas Flow Rate (SCFH)2
135,750	Total Pilot Gas Fuel Use (Btu/hr)
1.31	Total Annual Fuel Use (MMSCF)

Notes:

¹ AP-42 Table 1.4-3 (7/98)

SWN Production Company, LLC Fork Ridge Pad Vapor Combustor Pilot Emissions Calculations - Greenhouse Gases

Greenhouse Gas (GHG) Emissions

		Emissions				
Unit ID	Pollutant	lb/hr	tonnes/yr	tons/yr		
EU-PILOT	CO ₂	15.88	63.10	69.56		
APC-COMB-TKLD	CH ₄	<0.01	<0.01	<0.01		
	N ₂ O	<0.01	<0.01	<0.01		
	CH ₄ as CO ₂ e	0.01	0.03	0.03		
	N ₂ O as CO ₂ e	0.01	0.04	0.04		
	Total $CO_2 + CO_2e =$	15.90	63.17	69.63		

905	Pilot Stream Heat Content (Btu/SCF)
8,760	Pilot Hours/Yr
150	Pilot Gas Flow Rate (SCFH)2
135,750	Total Pilot Gas Fuel Use (Btu/hr)
1.31	Total Annual Fuel Use (MMSCF)

40 CFR 98 Tables C-1 and C-2 Emission Factors (kg/mmBtu)¹

Carbon Dioxide (CO ₂)	53.06
Methane (CH ₄)	1.00E-03
Nitrous Oxide (N ₂ O)	1.00E-04

Notes:

 1 CO₂e = CO₂ equivalent (Pollutant times GWP multiplier):

40 CFR 98 Table A-1, Global Warming Potential (GWP) multiplier: CO₂ = 1, CH₄ = 25, N₂O = 298

SWN Production Company, LLC Fork Ridge Pad Fugitive Emissions Calculations - Criteria and Hazardous Air Pollutants and Greenhouse Gases

Equipment Information

Source Type/Service	Number of Sources ¹	Em. Factor (lb/hr/source) ²	Control Efficiency	TOC lb/hr	ТОС ТРҮ	VOC Wt %			
Valves - Gas	178	9.92E-03	0.00%	1.77	7.75	18.96%			
Flanges - Gas	721	8.60E-04	0.00%	0.62	2.72	18.96%			
Compressor Seals - Gas	12	1.94E-02	0.00%	0.23	1.01	18.96%			
Relief Valves - Gas	48	1.94E-02	0.00%	0.93	4.07	18.96%			
Open-Ended Lines - Gas	2	4.41E-03	0.00%	0.01	0.04	18.96%			
		Total TOC (Gas	Components) =	3.56	15.59	-			
Valves - Light Oil	127	5.51E-03	0.00%	0.70	3.07	95.21%			
Flanges - Light Oil	502	2.43E-04	0.00%	0.12	0.53	95.21%			
Pump Seals - Light Oil	0	2.87E-02	0.00%	0.00	0.00	95.21%			
Other - Light Oil	0	1.65E-02	0.00%	0.00	0.00	95.21%			
Total TOC (Liquid Components) = 0.82 3.60									

VOC and Greenhouse Gas Emissions

Source Type/Service		VOC		C	H ₄	CO ₂	
	lb/hr	TPY	lb/yr	lb/hr	TPY	lb/hr	TPY
Valves - Gas	0.33	1.47	2,932.29	1.06	4.63	0.01	0.03
Flanges - Gas	0.12	0.51	1,029.38	0.37	1.62	<0.01	0.01
Compressor Seals - Gas	0.04	0.19	386.58	0.14	0.60	<0.01	<0.01
Relief Valves - Gas	0.18	0.77	1,546.32	0.56	2.43	<0.01	0.01
Open-Ended Lines - Gas	<0.01	0.01	14.64	0.01	0.02	<0.01	<0.01
Components in Gas Service =	0.67	2.95	5,909.20	2.13	9.31	0.01	0.05
Valves - Light Oil	0.67	2.92	5,838.00	0.01	0.05	<0.01	<0.01
Flanges - Light Oil	0.12	0.51	1,015.35	<0.01	0.01	<0.01	<0.01
Pump Seals - Light Oil	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other - Light Oil	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Components in Liquid Service =	0.78	3.43	6,832.80	0.01	0.05	<0.01	<0.01
Total (Gas + Liquid Components) =	1.46	6.38	12,742.00	2.14	9.36	0.01	0.05

Hazardous Air Pollutant (HAP) Emissions (lb/hr)

Source Type/Service	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes	2,2,4-Tri.	Total
Valves - Gas	0.01	<0.01	<0.01	0.00	<0.01	0.00	0.01
Flanges - Gas	<0.01	<0.01	<0.01	0.00	<0.01	0.00	<0.01
Compressor Seals - Gas	<0.01	<0.01	<0.01	0.00	<0.01	0.00	<0.01
Relief Valves - Gas	<0.01	<0.01	<0.01	0.00	<0.01	0.00	<0.01
Open-Ended Lines - Gas	<0.01	<0.01	<0.01	0.00	<0.01	0.00	<0.01
Components in Gas Service =	0.01	<0.01	<0.01	0.00	<0.01	0.00	0.01
Valves - Light Oil	0.04	<0.01	<0.01	<0.01	0.01	0.00	0.06
Flanges - Light Oil	0.01	<0.01	<0.01	<0.01	<0.01	0.00	0.01
Pump Seals - Light Oil	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other - Light Oil	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Components in Liquid Service =	0.05	<0.01	0.01	0.01	0.01	0.00	0.07
Total (Gas + Liquid Components) =	0.06	<0.01	0.01	0.01	0.01	0.00	0.08

Hazardous Air Pollutant (HAP) Emissions (TPY)

Source Type/Service	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes	2,2,4-Tri.	Total
Valves - Gas	0.03	<0.01	<0.01	0.00	<0.01	0.00	0.03
Flanges - Gas	0.01	<0.01	<0.01	0.00	<0.01	0.00	0.01
Compressor Seals - Gas	<0.01	<0.01	<0.01	0.00	<0.01	0.00	<0.01
Relief Valves - Gas	0.01	<0.01	<0.01	0.00	<0.01	0.00	0.01
Open-Ended Lines - Gas	<0.01	<0.01	<0.01	0.00	<0.01	0.00	<0.01
Components in Gas Service =	0.06	<0.01	<0.01	0.00	<0.01	0.00	0.06
Valves - Light Oil	0.17	<0.01	0.02	0.02	0.05	0.00	0.27
Flanges - Light Oil	0.03	<0.01	<0.01	<0.01	0.01	0.00	0.05
Pump Seals - Light Oil	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other - Light Oil	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Components in Liquid Service =	0.20	<0.01	0.02	0.02	0.06	0.00	0.31
Total (Gas + Liquid Components) =	0.26	<0.01	0.03	0.02	0.06	0.00	0.37

Source Type/Service	WH	GPU	HT	LPT	FGC	ОТ	TT-O	DEHY
Valves - Gas	12	3	2	5	5	0	0	24
Flanges - Gas	37	15	9	24	33	3	2	90
Compressor Seals - Gas	0	0	0	0	3	0	0	0
Relief Valves - Gas	1	3	1	1	1	1	1	2
Open-Ended Lines - Gas	0	0	0	0	0	0	0	2
Valves - Light Oil	0	5	6	12	3	6	9	0
Connectors - Light Oil	0	20	24	48	12	24	30	0
Pump Seals - Light Oil	0	0	0	0	0	0	0	0
Other - Light Oil	0	0	0	0	0	0	0	0
Equipment Type	WH	GPU	HT	LPT	FGC	ОТ	TT-O	DEHY
Number of Each Type On Pad =	8	8	2	2	4	5	1	1

Typical Component Count per Equipment Type based on Representative Facility³

Speciated Gas Analysis⁴

Component	Molecular Weight	Mole %	Equiv. Wt. Basis	Weight %	HC Weight %	lb/hr	ТРҮ
Hydrogen Sulfide	34.082	0.000%	0.000	0.000%	-	0.00	0.00
Carbon Dioxide	44.010	0.159%	0.070	0.335%	-	0.01	0.05
Nitrogen	28.013	0.364%	0.102	0.488%	-	0.02	0.08
Methane	16.042	77.183%	12.382	59.215%	59.706%	2.13	9.31
Ethane	30.069	14.716%	4.425	21.162%	21.338%	0.76	3.33
Propane	44.096	4.782%	2.109	10.085%	10.168%	0.36	1.59
i-Butane	58.122	0.647%	0.376	1.798%	1.813%	0.06	0.28
n-Butane	58.122	1.210%	0.703	3.363%	3.391%	0.12	0.53
i-Pentane	72.149	0.327%	0.236	1.128%	1.138%	0.04	0.18
n-Pentane	72.149	0.271%	0.196	0.935%	0.943%	0.03	0.15
n-Hexane	86.175	0.079%	0.068	0.326%	0.328%	0.01	0.05
Other Hexanes	86.175	0.142%	0.122	0.585%	0.590%	0.02	0.09
Heptanes (as n-Heptane)	100.202	0.084%	0.084	0.403%	0.406%	0.01	0.06
Benzene	78.114	0.002%	0.002	0.007%	0.008%	<0.01	<0.01
Toluene	92.141	0.003%	0.003	0.013%	0.013%	<0.01	<0.01
Ethylbenzene	106.167	0.000%	0.000	0.000%	0.000%	0.00	0.00
Xylenes	106.167	0.001%	0.001	0.005%	0.005%	<0.01	<0.01
2,2,4-Trimethylpentane	114.230	0.000%	0.000	0.000%	0.000%	0.00	0.00
Octanes (as n-Octane)	114.229	0.022%	0.025	0.120%	0.121%	<0.01	0.02
Nonanes (as n-Nonane)	128.255	0.005%	0.006	0.031%	0.031%	<0.01	<0.01
Decanes (as n-Decane)	142.282	0.000%	0.000	0.000%	0.000%	0.00	0.00
	TOTAL =	100.00%	20.91	100.00%	100.00%	3.59	15.72
		TOTAL HC =	20.74	TOTAL VOC =	18.96%	0.67	2.96
				TOTAL HAP =	0.35%	0.01	0.06

Speciated Liquids Analysis⁴

Component	Molecular Weight	Mole %	Equiv. Wt. Basis	Weight %	HC Weight %	lb/hr	ТРҮ
Hydrogen Sulfide	34.082	0.000%	0.000	0.000%	-	0.00	0.00
Carbon Dioxide	44.010	0.018%	0.008	0.010%	-	<0.01	<0.01
Nitrogen	28.013	0.026%	0.007	0.009%	-	<0.01	<0.01
Methane		7.419%	1.190	1.489%	1.490%	0.01	0.05
Ethane	30.069	8.764%	2.635	3.298%	3.299%	0.03	0.12
Propane	44.096	9.825%	4.332	5.422%	5.423%	0.04	0.20
i-Butane		3.048%	1.772	2.217%	2.218%	0.02	0.08
n-Butane	58.122	8.045%	4.676	5.852%	5.853%	0.05	0.21
i-Pentane	72.149	5.183%	3.739	4.680%	4.681%	0.04	0.17
n-Pentane	72.149	5.869%	4.234	5.299%	5.300%	0.04	0.19
n-Hexane	86.175	5.090%	4.386	5.490%	5.491%	0.05	0.20
Other Hexanes	86.175	7.647%	6.589	8.247%	8.248%	0.07	0.30
Heptanes (as n-Heptane)	100.202	12.459%	12.484	15.624%	15.627%	0.13	0.56
Benzene	78.114	0.103%	0.080	0.101%	0.101%	<0.01	<0.01
Toluene	92.141	0.568%	0.523	0.655%	0.655%	0.01	0.02
Ethylbenzene	106.167	0.508%	0.539	0.675%	0.675%	0.01	0.02
Xylenes	106.167	1.326%	1.408	1.762%	1.762%	0.01	0.06
2,2,4-Trimethylpentane	114.230	0.000%	0.000	0.000%	0.000%	0.00	0.00
Octanes (as n-Octane)	114.229	8.562%	9.780	12.240%	12.242%	0.10	0.44
Nonanes (as n-Nonane)	128.255	4.206%	5.394	6.751%	6.752%	0.06	0.24
Decanes (as n-Decane)	142.282	11.332%	16.123	20.179%	20.182%	0.17	0.73
	TOTAL =	100.00%	79.90	100.00%	100.00%	0.82	3.60
		TOTAL HC =	79.89	TOTAL VOC =	95.21%	0.78	3.43
				TOTAL HAP =	8.68%	0.07	0.31

Notes:

¹ Component counts taken by equipment type at representative facility and made site-specific according to the number of each equipment type at this site.

² Emission Factor Source: EPA-453/R-95-017. TOC multiplied by pollutant content of streams (weight %) to obtain pollutant emissions.

³ Equipment Type Key: WH = Well Head, GPU = Gas Production Unit, HT = Heater Treater, LPT = Low-Pressure Tower, FGC = Flash Gas Compressor, OT = Oil Tank, TT-O = Tank Truck - Oil, DEHY = Dehydration Unit

⁴ Analyses located in Attachment L.

SWN Production Company, LLC Fork Ridge Pad Fugitive Unpaved Haul Road Emissions Calculations

Facility Data¹

Vehicle Type	Light Vehicles (Pick-ups and Cars)	Medium Trucks (Service Trucks)	Heavy Trucks (Tanker Trucks) ²
Average vehicle weight ((empty + full)/2) (tons)	2	15	23.5
Number of wheels per vehicle type (w)	4	10	18
Average number of round trips/day/vehicle type	5	3	9
Distance per round trip (miles/trip)	0.22	0.22	0.22
Vehicle miles travelled (miles/day)	1.10	0.66	2.08
Number of days operational (days/yr)	365	365	365
Vehicle miles travelled VMT (miles/yr)	400.95	240.57	759.69
Average vehicle speed S (mph)	10	10	10
Average number of round trips/hour/vehicle type	0.28	0.17	0.53
Average number of round trips/year/vehicle type	1,825	1,095	3,458
Estimated maximum number of round trips/hour/vehicle type	3	3	2
Estimated maximum number of round trips/day/vehicle type	7	4	12
Estimated maximum number of round trips/year/vehicle type	2,683	1,533	4,599

- 190 Average Tanker Volume (bbl)
 7,980 Gallons Tanker Volume
 1,000 bwpd
 800 bopd
 9.47 Tanker Trucks per Day
 140 Length Leased Access Road (ft)
 440 Longest Pad Side (ft)
- 1,160 Total Round Trip Feet

Formula & Calculation Inputs

E=k(s/12) ^a * (W/3) ^b * ((365-P) / 365)	Reference : AP-42, Se	ction 13.2.2 (11/06), Equation 1a and 2	
where:	Rate Units	Comment	
Days per year	365		
Annual average hours per day of road operations	18		
k = PM Particle Size Multiplier	4.90 lb/VMT	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM)	
k = PM10 Particle Size Multiplier	1.50 lb/VMT	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM ₁₀)	
k = PM2.5 Particle Size Multiplier	0.15 lb/VMT	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM _{2.5})	
s = Surface Material Silt Content	3.9 %	State Default Data from AP-42 Data (1999 NEI Data)	
P = Number of days > 0.01 inch of rain	150 days/ye	ar AP-42 Section 13.2.2 (11/06), Figure 13.2.2-1	
a = PM Constant	0.70 unitless	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM)	
a = PM10 & PM2.5 Constant	0.90 unitless	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2 (PM ₁₀ & PM _{2.5})	
b = PM, PM10, & PM2.5 Constant	0.45 unitless	AP-42 Section 13.2.2 (11/06), Table 13.2.2-2	
Total hourly fleet vehicle miles travelled (miles/hr)	0.21 VMT/hr		
Total annual fleet vehicle miles travelled (miles/yr) ³	1,401.20 VMT/yr		
Average wheels ⁴	13		
Average vehicle weight of the fleet (W) ⁵	15.9 tons		
Moisture Ratio	1.00	Estimated based on 0.2% uncontrolled surface water content assuming no watering	EPA - BID Document 13.2.2 - 1998
Control Efficiency (CF)	0.00 %	Based on Moisture Ratio and Figure 13.2.2-2 Control	

Continued on Next Page

Emission Calculations

	Emission Factors		Control Total Vehicle Miles		Uncontrolled Emission Rates			Uncontrolled Emission Rates				
	PM	PM ₁₀	PM _{2.5}	Efficiency	Trav	elled	Total PM	Total PM ₁₀	PM _{2.5}	Total PM	Total PM ₁₀	PM _{2.5}
Vehicle Type	(lbs/VMT)	(lbs/VMT)	(lbs/VMT)	(%)	(VMT/hr)	(VMT/yr)	(lb/hr)	(lb/hr)	(lb/hr)	(tons/yr)	(tons/yr)	(tons/yr)
Light Vehicles	2.78	0.68	0.07	0.00	0.06	400.95	0.17	0.04	0.00	0.56	0.14	0.01
Medium Trucks	2.78	0.68	0.07	0.00	0.04	240.57	0.10	0.02	0.00	0.33	0.08	0.01
Heavy Trucks	2.78	0.68	0.07	0.00	0.12	759.69	0.32	0.08	0.01	1.06	0.26	0.03
			Total =	0.00	0.22	1,401.21	0.59	0.14	0.01	1.95	0.48	0.05

Notes:

1) Facility vehicle data based on estimates, GP5.1 and AP-42 13.2.2-2 defaults for industrial unpaved roads

2) Tank trucker average vehicle weight as $(W_{(empty)}+W_{(full)})/2 = (7 + 40)/2 = 23.7$ tons

3) Average vehicle miles travelled (VMT/yr) as (No. of round trip/vehicle * No. of vehicles/type * Roundtrip miles/trip)* 365 days/yr * No. of vehicle type)

4) Average wheels calculated as average of (No. of wheels per vehicle type * No. of vehicle/type)

5) Average vehicle fleet calculated as (Average weight of vehicle type * Percentage of each vehicle type on unpaved surface). Percentage of each vehicle type=VMT_{vehicle type}/VMT

6) Minimum one-per-day average pick-up trucks and service trucks even if tanker not required every day.

7) Per EPA BID calculations, all emissions based on average trips. Estimated maximum hourly, daily and yearly trips provided for information only.

Calculation of Emission Factors (AP-42, 13.2.2)

Equation 1a: $EF = k(s/12)^{a} (W/3)^{b}$ where k, a, and b are empirical constants and

EF = size-specific emission factor (lb/VMT)

s = surface material silt content %

W = mean vehicle weight (tons)

Equation 2: $EF_{ext} = EF^*((365-P)/365)$ where:

EF ext = annual size-specific emission factor extrapolated for natural mitigation, Ib/VMT

EF = emission factor from Equation 1a

P = number of days in a year with at least 0.01 inches of precipitation

Calculation of Emissions

 $E = EF_{ext} * VMT/yr * ((1-CF)/100) * 1 ton/2000 lbs where:$

E = annual emissions (tons/yr)

EF ext = annual size-specific emission factor extrapolated for natural mitigation, Ib/VMT

CF = control efficiency (%)

ATTACHMENT J: CLASS I LEGAL ADVERTISEMENT

Note: Affidavit of Publication will be submitted upon receipt by SWN from the publisher.

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that SWN Production Company, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-A General Permit Registration for a natural gas production facility (Fork Ridge Pad) located near Moundsville in Marshall County, West Virginia. From the intersection of SR 250 and CR 2 in Moundsville, travel south on SR 250 14.17 miles to the intersection of SR 250 and CR 17 (Fork Ridge Road). Turn right onto CR 17 and travel 3.64 miles to the well pad entrance on the right. Latitude and longitude coordinates are: 39.87151, -80.638514.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC) Sulfur Dioxide (SO ₂)	64.95 tons/yr 79.52 tons/yr 85.90 tons/yr 0.11 tons/yr
Particulate Matter (PM)	4.19 tons/yr
Acetaldehyde Acrolein	1.15 tons/yr 0.71 tons/yr
Benzene	0.58 tons/yr
Ethylbenzene	0.39 tons/yr
Formaldehyde	4.94 tons/yr
Methanol	0.36 tons/yr
n-Hexane	2.66 tons/yr
Toluene	0.86 tons/yr
Xylenes	1.01 tons/yr
Carbon Dioxide	41,305.74 tons/yr
Methane	13.97 tons/yr
Nitrous Oxide	0.07 tons/yr
CO ₂ Equivalent	41,675.88 tons/yr

The change in equipment and operations is planned to begin on or about January 4, 2016. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this 3rd of December, 2015

By: SWN Production Company, LLC Paul Geiger Senior Vice President – Ops Management 10000 Energy Drive Spring, TX 77389

ATTACHMENT L: APPLICATION FEE

ATTACHMENT N: MATERIAL SAFETY DATA SHEETS (MSDS)

Material Name: Natural Gas

Health	1
Flammability	4
Reactivity	0
PPE	

* * * Section 1 - Chemical Product and Company Identification * * *			
Product name:	Natural Gas		
Synonyms:	Wellhead Gas; Petroleum Gas; Fuel Gas; Methane; Marsh Gas		
Chemical Family:	Petroleum Hydrocarbon		
Formula:	Gas mixture, primarily methane		
Supplier:	Chesapeake Energy Corporation and its subsidiaries 6100 N. Western Avenue Oklahoma City, OK 73118		
Other Information:	Phone: 405-848-8000 Fax: 405-753-5468		
Emergency Phone Nu	umber: Chemtrec 800-424-9300		
	* * * Section 2 - Hazards Identification * * *		
Emergency Overview	, s, simple asphyxiant, freeze burns can occur from liquid natural gas. Keep away from heat, sparks,		
i laminabic ga	s, simple asphysiant, neeze builts can been normique natural gas. Reep away normited, oparite,		

flames, static electricity, or other sources of ignition.

Potential Health Effects: Eyes

Natural gas is generally non-irritating to the eyes. Liquid or expanding gas can cause severe freeze burns to the eve and surrounding tissue. Pressurized gas can cause mechanical injury to the eye.

Potential Health Effects: Skin

None for gas; liquid or expanding gas can cause severe freeze burns on the skin.

Potential Health Effects: Ingestion

This material is a gas under normal atmospheric conditions and ingestion is unlikely.

Potential Health Effects: Inhalation

Drowsiness, excitation, or mild narcosis is produced at elevated concentrations and is an asphyxiant when the oxygen concentration falls below 18% at sea level.

HMIS Ratings: Health: 1 Fire: 4 HMIS Reactivity 0

Hazard Scale: 0 = Minimal 1 = Slight 2 = Moderate 3 = Serious 4 = Severe * = Chronic hazard

*** Section 3 - Composition / Information on Ingredients ***

CAS #	Component	Percent Ranges
8006-14-2	Natural Gas	100
74-82-8	Methane	>90
74-84-0	Ethane	<5
74-98-6	Propane	<1
Mixture	C4-C6 Aliphatic Hydrocarbons	Trace amounts

This product may contain small amounts of heavier hydrocarbons. Components of this product are normally within the ranges listed above; however, depending on the geographical source, gas composition may vary.

Section 4 - First Aid Measures ***

First Aid: Eyes

Move away from exposure to vapors and into fresh air. If liquefied gas contacts the eye, flush with large amounts of tepid water for at least 15 minutes. Seek medical attention.

First Aid: Skin

Treat burned or frostbitten skin by immersing the affected area in tepid water. When sensation has returned to the frostbitten skin, keep the skin warm, dry, and clean. For burns, lay bulky, dry sterile bandages over affected area and seek prompt medical attention.

First Aid: Ingestion

Not considered likely since the product is a gas under normal conditions.

Material Name: Natural Gas

First Aid: Inhalation

If conditions are safe to do so, remove affected person to fresh air. If breathing is difficult, administer oxygen. If breathing has stopped, give artificial respiration or cardiopulmonary resuscitation (CPR). Seek immediate medical attention.

*** Section 5 - Fire Fighting Measures ***

General Fire Hazards

See Section 9 for Flammability Properties.

This gas is extremely flammable and forms flammable mixtures with air. It will burn in the open or be explosive in confined spaces. Its vapors are lighter than air and will disperse. A hazard of re-ignition or explosion exists if flame is extinguished without stopping the flow of gas.

Hazardous Combustion Products

Combustion may yield carbon monoxide and/or carbon dioxide.

Extinguishing Media

Stop the gas flow if it can be done without risk. Dry chemical, carbon dioxide, or halon. Water can be used to cool the fire but may not extinguish the fire.

Fire Fighting Equipment/Instructions

Evacuate the area upwind of the source. If a leak or spill has not ignited, water spray can be used to disperse gas and to protect persons attempting to stop the leak. In the case of a fire, control the fire until the gas supply can be shut off. If the gas source cannot be shut off immediately, equipment and surfaces exposed to the fire should be cooled with water to prevent overheating and explosions. Firefighters should wear self-contained breathing apparatus and full protective clothing.

NFPA Ratings: Health: 1 Fire: 4 Reactivity: 0

Hazard Scale: 0 = Minimal 1 = Slight 2 = Moderate 3 = Serious 4 = Severe

*** Section 6 - Accidental Release Measures ***

Containment Procedures

Flammable Gas – Eliminate All Sources of Ignition. Stop release/spill if it can be done with minimal risk. Keep all sources of ignition and hot metal surfaces away from release/spill. The use of explosion-proof equipment is recommended.

Evacuation Procedures

Notify persons down wind of the release/spill, isolate the immediate hazard area and keep unauthorized personnel out. Contact fire authorities and appropriate state/local agencies.

Special Procedures

Eliminate sources of heat or ignition including internal combustion engines and power tools. Stay up wind and away from the release/spill. Wear appropriate protective equipment including respiratory protection as conditions warrant.

*** Section 7 - Handling and Storage ***

Store and use natural gas cylinders and tanks in well ventilated areas, away from direct sunlight and sources of ignition. Keep away from heat, sparks, open flames, and other sources of ignition. Rapid escape of gas may generate static charge. Electrically ground and bond all lines and equipment used with natural gas. Use only explosion-proof or intrinsically safe electrical equipment where product is stored or handled. Keep away from incompatible agents and from cylinders of oxygen.

*** Section 8 - Exposure Controls / Personal Protection ***

A: Component Exposure Limits

Natural Gas (8006-14-2)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases alkane C1-C4)

Methane (74-82-8)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases alkane C1-C4)

Material Name: Natural Gas

Ethane (74-84-0)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases alkane C1-C4)

Propane (74-98-6)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases alkane C1-C4)

OSHA: 1000 ppm TWA; 1800 mg/m³ TWA

NIOSH: 1000 ppm TWA; 1800 mg/m³ TWA

Engineering Controls

Local or general exhaust is required if used in an enclosed area in order to keep concentrations below the lower explosive limit.

PERSONAL PROTECTIVE EQUIPMENT

Personal Protective Equipment: Eyes/Face

Eye protection should be worn to safeguard against potential eye contact, irritation, or injury.

Personal Protective Equipment: Skin

Protect skin from contact. Impervious clothing should be worn as needed.

Personal Protective Equipment: Respiratory

Use approved respiratory protective equipment in the event of oxygen deficiency, when the product produces vapors that exceed permissible limits or when excessive vapors are generated. Self-contained breathing apparatus should be used for fire fighting.

Personal Protective Equipment: General

Do not smoke in areas where this product is stored or handled. A source of clean water should be available in the work area for flushing eyes and skin. Use explosion-proof equipment suitable for hazardous locations.

*** Section 9 - Physical & Chemical Properties ***

Appearance:	Colorless
Physical State:	Gas
Vapor Pressure:	>760 @ 25°C
Boiling Point:	-258 to -43°F
Solubility (H2O):	Slight
Evaporation Rate:	Gas under normal conditions
Octanol/H2O Coeff.:	NA
Flash Point Method:	NA

Odor: pH:	Odorless to slight hydrocarbon Neutral
Vapor Density:	0.6 (estimate)
Melting Point:	NA
Specific Gravity:	0.55 (estimate)
VOC:	100%
Flash Point:	Flammable gas
Upper Flammability Limit (UFL):	15.0
Lower Flammability Limit (LFL):	4.0
Burning Rate:	Flammable gas
Auto Ignition:	900 – 1170 °F

Properties of this material will vary with actual composition.

*** Section 10 - Chemical Stability & Reactivity Information ***

Chemical Stability

This material is stable under normal conditions of use. Chemical Stability: Conditions to Avoid Sources of heat or ignition. Incompatibility Strong oxidizers such as nitrates, chlorates, peroxides. Hazardous Decomposition Combustion produces carbon monoxide and carbon dioxide. Possibility of Hazardous Reactions

Will not occur.

Material Name: Natural Gas

*** Section 11 - Toxicological Information ***

Acute Dose Effects

Component Analysis - LD50/LC50

Natural gas (8006-14-2) Inhalation LC50 Rat: 658 mg/L/4H

Methane (74-82-8)

Inhalation LC50 Mouse: 326 g/m3/2H

Ethane (74-84-0)

Inhalation LC50 Rat: 658 mg/L/4H

Propane (74-98-6)

Inhalation LC50 Rat: 658 mg/L/4H

The major components of natural gas act as simple asphyxiant gases without significant potential for systemic toxicity. At high concentrations this material acts as an asphyxiant by diluting and displacing oxygen. Extremely high concentrations of this material can produce unconsciousness followed by death. Symptoms of persons exposed to oxygen deficient atmospheres include headache, dizziness, incoordination, cyanosis and narcosis.

*** Section 12 - Ecological Information ***

There is no information available on the ecotoxicological effects of petroleum gases. Because of their high volatility, these gases are unlikely to cause ground or water pollution. Petroleum gases released into the environment will rapidly disperse into the atmosphere and undergo photochemical degradation.

*** Section 13 - Disposal Considerations ***

This product as produced is not specifically listed as an EPA RCRA hazardous waste according to federal regulations (40 CFR 261). However, when discarded or disposed of in containers, it may meet the criteria of an "ignitable" waste. It is the responsibility of the user to determine if disposal material is hazardous according to federal, state and local regulations.

*** Section 14 - Transportation Information ***

US DOT Information

Shipping Name: Natural Gas, Compressed

UN/NA #: 1271 Hazard Class: 2.1 Packing Group: Not applicable

Depending on the product's properties the shipper may elect to classify the material differently. Refer to 49 CFR 172 for further information and descriptions.

*** Section 15 - Regulatory Information ***

US Federal Regulations

Component Analysis

None of this products components are listed under SARA Section 302 (40 CFR 355 Appendix A), SARA Section 313 (40 CFR 372.65), or CERCLA (40 CFR 302.4).

State Regulations

Component Analysis - State

The following components appear on one or more of the following state hazardous substances lists:

Component	CAS	CA	MA	MN	NJ	PA	RI
Natural gas	8006-14-2	No	Yes	No	No	Yes	No
Methane	74-82-8	No	Yes	Yes	Yes	Yes	Yes
Ethane	74-84-0	No	Yes	Yes	Yes	Yes	Yes
Propane	74-98-6	No	Yes	Yes	Yes	Yes	Yes

Material Name: Natural Gas

Component Analysis - WHMIS IDL

No components are listed in the WHMIS IDL. Additional Regulatory Information

Component Analysis - Inventory

Component	CAS #	TSCA	CAN	EEC
Natural gas	8006-14-2	Yes	DSL	EINECS
Methane	74-82-8	Yes	DSL	EINECS
Ethane	74-84-0	Yes	DSL	EINECS
Propane	74-98-6	Yes	DSL	EINECS

* * * Section 16 - Other Information * * *

Other Information

The information presented herein has been compiled from sources considered to be dependable and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgement.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Key/Legend

NA - Not Applicable ND - Not Determined ACGIH - American Conference of Governmental Industrial Hygienists OSHA - Occupational Safety and Health Administration TLV - Threshold Limit Value PEL - Permissible Exposure Limit RQ - Reportable Quantity TWA - Time Weighted Average STEL - Short Term Exposure Limit NTP - National Toxicology Program IARC - International Agency for Research on Cancer

Material Name: Natural Gas Condensate

Health 4 0 Reactivity PPE * * *

		PPE	
***	Section 1 - Chemical Product and Company Identification	* * *	
Product name:	Natural Gas Condensate		
Synonyms:	Drips; Condensate; Field Condensate; Gas Well Condensate; High Pressur Condensate; Natural Gas Liquids (NGL or NGLs); Pipeline Liquids	e Inlet Liquids; L	.ease
Chemical Family:	Petroleum Hydrocarbon		
Formula:	Complex mixture		

Supplier: Chesapeake Energy Corporation and its subsidiaries 6100 N. Western Avenue Oklahoma City, OK 73118

Phone: 405-848-8000 Fax: 405-753-5468 Other Information: Emergency Phone Number: Chemtrec - 800-424-9300

*** Section 2 - Hazards Identification ***

Emergency Overview

High fire hazard. Keep away from heat, spark, open flame, and other ignition sources. Contact may cause eye, skin and mucous membrane irritation. Inhalation may cause irritation, anesthetic effects (dizziness, nausea, headaches, intoxication), and respiratory system effects. If ingested, do NOT induce vomiting as this may cause chemical pneumonia (fluid in the lungs). May contain benzene which can cause blood disease including anemia and leukemia.

Potential Health Effects: Eyes

May cause moderate irritation.

Potential Health Effects: Skin

Practically non-toxic if absorbed following acute (single) exposure. May cause skin irritation with prolonged or repeated contact. Liquid may be absorbed through the skin in toxic amounts if large areas of skin are exposed repeatedly.

Potential Health Effects: Ingestion

The major health threat of ingestion occurs from the danger of aspiration (breathing) of liquid drops into the lungs, particularly from vomiting. Aspiration may result in chemical pneumonia (fluid in the lungs), severe lung damage, respiratory failure and even death. Ingestion may cause gastrointestinal disturbances, including irritation, nausea, vomiting and diarrhea, and central nervous system (brain) effects similar to alcohol intoxication. In severe cases, tremors, convulsions, loss of consciousness, coma, respiratory arrest, and death may occur.

Potential Health Effects: Inhalation

Excessive exposure may cause irritation to the nose, throat, lungs and respiratory tract. Central nervous system (brain) effects may include headache, dizziness, loss of balance and coordination, unconsciousness, coma, respiratory failure, and death. Contains carbon dioxide, which can produce rapid breathing, fatigue, muscular incoordination, nausea, and asphyxiation depending on the concentration and duration of exposure.

Medical Conditions Aggravated by Exposure

Irritation from skin exposure may aggravate existing open wounds, skin disorders, and dermatitis (rash). Chronic respiratory disease, liver or kidney dysfunction, or pre-existing central nervous system disorders may be aggravated by exposure.

HMIS Ratings: Health: 1 Fire: 4 HMIS Reactivity 0

Hazard Scale: 0 = Minimal 1 = Slight 2 = Moderate 3 = Serious 4 = Severe * = Chronic hazard

* * * Section 3 - Composition / Information on Ingredients ***

CAS #	Component	Percent Ranges
68919-39-1	Natural gas condensate	100
71-43-2	Benzene	0.1-2

Material Name: Natural Gas Condensate

*** Section 4 - First Aid Measures ***

First Aid: Eyes

In case of contact with eyes, immediately flush with clean, low-pressure water for at least 15 min. Hold eyelids open to ensure adequate flushing. Seek medical attention.

First Aid: Skin

Remove contaminated clothing. Wash contaminated areas thoroughly with soap and water or waterless hand cleanser. Obtain medical attention if irritation or redness develops.

First Aid: Ingestion

DO NOT INDUCE VOMITING. Do not give liquids. Obtain immediate medical attention. If spontaneous vomiting occurs, lean victim forward to reduce the risk of aspiration. Small amounts of material which enter the mouth should be rinsed out until the taste is dissipated. If spontaneous vomiting occurs, lean victim forward to reduce the risk of aspiration. Seek medical attention. Monitor for breathing difficulty.

First Aid: Inhalation

Remove person to fresh air. If person is not breathing, ensure an open airway and provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

* Section 5 - Fire Fighting Measures ***

General Fire Hazards

See Section 9 for Flammability Properties.

Vapors may be ignited rapidly when exposed to heat, spark, open flame or other source of ignition. Flowing product may be ignited by self-generated static electricity. When mixed with air and exposed to an ignition source, flammable vapors can burn in the open or explode in confined spaces. Being heavier than air, vapors may travel long distances to an ignition source and flash back. Runoff to sewer may cause fire or explosion hazard.

Hazardous Combustion Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

Extinguishing Media

SMALL FIRES: Any extinguisher suitable for Class B fires, dry chemical, CO2, water spray, fire fighting foam, or Halon.

LARGE FIRES: Water spray, fog or fire fighting foam. Water may be ineffective for fighting the fire, but may be used to cool fire-exposed containers.

Fire Fighting Equipment/Instructions

Small fires in the incipient (beginning) stage may typically be extinguished using handheld portable fire extinguishers and other fire fighting equipment.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH/MSHA- approved pressure-demand self-contained breathing apparatus with full facepiece and full protective clothing.

Isolate area around container involved in fire. Cool tanks, shells, and containers exposed to fire and excessive heat with water. For massive fires the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Major fires may require withdrawal, allowing the tank to burn. Large storage tank fires typically require specially trained personnel and equipment to extinguish the fire, often including the need for properly applied fire fighting foam.

NFPA Ratings: Health: 1 Fire: 4 Reactivity: 0

Hazard Scale: 0 = Minimal 1 = Slight 2 = Moderate 3 = Serious 4 = Severe

*** Section 6 - Accidental Release Measures ***

Containment Procedures

Evaluate the direction of product travel, diking, sewers, etc. to confirm spill areas. Product may release substantial amounts of flammable vapors and gases (e.g., methane, ethane, and propane), at or below ambient temperature depending on source and process conditions and pressure.

Material Name: Natural Gas Condensate

Carefully contain and stop the source of the spill, if safe to do so. Protect bodies of water by diking, absorbents, or absorbent boom, if possible. Do not flush down sewer or drainage systems, unless system is designed and permitted to handle such material. The use of fire fighting foam may be useful in certain situations to reduce vapors. The proper use of water spray may effectively disperse product vapors or the liquid itself, preventing contact with ignition sources or areas/equipment that require protection - do not discharge solid water stream patterns into the liquid resulting in splashing.

Clean-Up Procedures

Take up with sand or other oil absorbing materials. Carefully shovel, scoop or sweep up into a waste container for reclamation or disposal. Response and clean-up crews must be properly trained and must utilize proper protective equipment.

Evacuation Procedures

Evacuate nonessential personnel and remove or secure all ignition sources. Consider wind direction; stay upwind and uphill, if possible.

Special Procedures

Avoid excessive skin contact with the spilled material.

*** Section 7 - Handling and Storage ***

Handling Procedures

Handle as a flammable liquid. Keep away from heat, sparks, and open flame! Electrical equipment should be approved for classified area. Bond and ground containers during product transfer to reduce the possibility of static-initiated fire or explosion.

Storage Procedures

Keep away from flame, sparks, excessive temperatures and open flame. Use approved vented containers. Keep containers closed and clearly labeled. Empty product containers or vessels may contain explosive vapors. Do not pressurize, cut, heat, weld or expose such containers to sources of ignition.

Store in a well-ventilated area. This storage area should comply with NFPA 30 "Flammable and Combustible Liquid Code". Avoid storage near incompatible materials. The cleaning of tanks previously containing this product should follow API Recommended Practice (RP) 2013 "Cleaning Mobile Tanks In Flammable and Combustible Liquid Service" and API RP 2015 "Cleaning Petroleum Storage Tanks".

*** Section 8 - Exposure Controls / Personal Protection ***

A: Component Exposure Limits

Benzene (71-43-2)

ACGIH: 0.5 ppm TWA
2.5 ppm STEL
Skin - potential significant contribution to overall exposure by the cutaneous route
OSHA: 10 ppm TWA; 25 ppm ceiling; 50 ppm (10 min.)
NIOSH: 0.1 ppm TWA
1 ppm STEL

Engineering Controls

Use adequate ventilation to keep vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces.

PERSONAL PROTECTIVE EQUIPMENT

Personal Protective Equipment: Eyes/Face

Safety glasses or goggles are recommended where there is a possibility of splashing or spraying.

Personal Protective Equipment: Skin

Gloves constructed of nitrile or neoprene are recommended. Chemical protective clothing such as of E.I. DuPont Tyvek-Saranex 23 ®, Tychem®, Barricade® or equivalent recommended based on degree of exposure. Note: The resistance of specific material may vary from product to product as well as with degree of exposure. Consult manufacturer specifications for further information.

Material Name: Natural Gas Condensate

Personal Protective Equipment: Respiratory

A NIOSH -approved air-purifying respirator with organic vapor cartridges or canister may be permissible under certain circumstances where airborne concentrations are or may be expected to exceed exposure limits or for odor or irritation. Protection provided by air-purifying respirators is limited. Refer to OSHA 29 CFR 1910.134, ANSI Z88.2-1992, NIOSH Respirator Decision Logic, and the manufacturer for additional guidance on respiratory protection selection. Use a positive pressure, air-supplied respirator if there is a potential for uncontrolled release, exposure levels are not known, in oxygen-deficient atmospheres, or any other circumstance where an air-purifying respirator may not provide adequate protection.

Personal Protective Equipment: General

Eye wash and quick-drench shower facilities should be available in the work area. Thoroughly clean shoes and wash contaminated clothing before reuse.

* * * Section 9 - Physical & Chemical Properties * * *			
Appearance:	A colorless to straw-yellow, water-like	Odor:	Petroleum
Physical State:	Liquid	pH:	ND
Vapor Pressure:	~110 psia @ 100°F	Vapor Density:	>1
Boiling Point:	85 to 437°F (39 to 200°C)	Melting Point:	ND
Solubility (H2O):	Negligible	Specific Gravity:	AP 0.62 - 0.76
Evaporation Rate:	High	VOC:	ND
Percent Volatile:	100	Octanol/H2O Coeff.:	ND
Flash Point:	AP -40°F / <-40°C	Flash Point Method:	TCC
		Lower Flammability Limit	ND
		(LFL):	
		Upper Flammability Limit	ND
		(UFL):	
		Burning Rate:	ND
		Auto Ignition:	480°F / 250°C

*** Section 10 - Chemical Stability & Reactivity Information ***

Chemical Stability

Stable under normal ambient and anticipated conditions of storage and handling. Extremely flammable liquid and vapor. Vapor can cause flash fire.

Chemical Stability: Conditions to Avoid

Avoid high temperatures and all sources of ignition. Prevent vapor accumulation.

Incompatibility

Keep away from strong oxidizers

Hazardous Decomposition

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

Possibility of Hazardous Reactions

Will not occur.

*** Section 11 - Toxicological Information ***

Acute Dose Effects

Component Analysis - LD50/LC50

Natural gas condensate (68919-39-1) Inhalation LC50 Rat: >5.2 mg/L/4H; Oral LD50 Rat: 14000 mg/kg; Dermal LD50 Rabbit: >2000 mg/kg

Benzene (71-43-2)

Inhalation LC50 Rat: 13050-14380 ppm/4H; Oral LD50 Rat:1800 mg/kg

Carcinogenicity

Material Name: Natural Gas Condensate

Component Carcinogenicity

Benz	ene (71-4	43-2)
	ACGIH:	A1 - Confirmed Human Carcinogen
	OSHA:	10 ppm TWA; 25 ppm ceiling; 50 ppm (10 min.)
	NIOSH:	potential occupational carcinogen
	NTP:	Known Human Carcinogen (Select Carcinogen)
	IARC:	Supplement 7 [1987], Monograph 29 [1982] (Group 1 (carcinogenic to humans))

*** Section 12 - Ecological Information ***

Ecotoxicity

Component Analysis - Ecotoxicity - Aquatic Toxicity

Natural gas condensate (68919-39 Test & Species	-1)	Conditions
96 Hr LC50 Alburnus alburnus	119 mg/L [static]	
96 Hr LC50 Cyprinodon variegatus	82 mg/L [static]	
72 Hr EC50 Selenastrum	56 mg/L	
capricornutum		
24 Hr EC50 Daphnia magna	170 mg/L	
Benzene (71-43-2)		
Test & Species		Conditions
96 Hr LC50 Pimephales promelas	12.6 mg/L [flow-	
	through]	
96 Hr LC50 Oncorhynchus mykiss	5.3 mg/L [flow-	
	through]	
96 Hr LC50 Lepomis macrochirus	22 mg/L [static]	
96 Hr LC50 Poecilia reticulata	28.6 mg/L [static]	
72 Hr EC50 Selenastrum	29 mg/L	
capricornutum		
48 Hr EC50 water flea	356 mg/L [Static]	
48 Hr EC50 Daphnia magna	10 mg/L	

*** Section 13 - Disposal Considerations ***

US EPA Waste Number & Descriptions

A: General Product Information

Wastes must be tested using methods described in 40 CFR Part 261 to determine if it meets applicable definitions of hazardous wastes.

B: Component Waste Numbers

Benzene (71-43-2)

RCRA: waste number U019 (Ignitable waste, Toxic waste) 0.5 mg/L regulatory level

Disposal Instructions

All wastes must be handled in accordance with local, state and federal regulations.

See Section 7 for Handling Procedures. See Section 8 for Personal Protective Equipment recommendations.

*** Section 14 - Transportation Information ***

US DOT Information

Shipping Name: Petroleum distillates, n.o.s or Petroleum products, n.o.s. (condensate) UN/NA #: 1268 Hazard Class: 3 Packing Group: II

*** Section 15 - Regulatory Information ***

US Federal Regulations

Page 5 of 7

Material Name: Natural Gas Condensate

Component Analysis

This material may contain one of the following chemicals required to be identified under SARA Section 302 (40 CFR 355 Appendix A), SARA Section 313 (40 CFR 372.65) and/or CERCLA (40 CFR 302.4). Benzene (71-43-2)

SARA 313: 0.1 % de minimis concentration

10 lb final RQ (received an adjusted RQ of 10 lbs based on potential carcinogenicity in an CERCLA: August 14, 1989 final rule); 4.54 kg final RQ (received an adjusted RQ of 10 lbs based on potential carcinogenicity in an August 14, 1989 final rule)

State Regulations

Component Analysis - State

The following components appear on one or more of the following state hazardous substances lists:

Component	CAS	CA	MA	MN	NJ	PA	RI
Benzene	71-43-2	Yes	Yes	Yes	Yes	Yes	Yes

The following statement(s) are provided under the California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65):

WARNING! This product contains a chemical known to the state of California to cause cancer. WARNING! This product contains a chemical known to the state of California to cause reproductive/developmental effects.

Component Analysis - WHMIS IDL

The following components are identified under the Canadian Hazardous Products Act Ingredient Disclosure List:

Component	CAS # Minimum Concentration		
Benzene	71-43-2	0.1 %	

Material Name: Natural Gas Condensate

Additional Regulatory Information

Component Analysis - Inventory

Component	CAS #	TSCA	CAN	EEC
Natural gas condensate	68919-39-1	Yes	DSL	EINECS
Benzene	71-43-2	Yes	DSL	EINECS

*** Section 16 - Other Information ***

Other Information

The information presented herein has been compiled from sources considered to be dependable and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgement.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Key/Legend

NA - Not Applicable ND - Not Determined ACGIH - American Conference of Governmental Industrial Hygienists OSHA - Occupational Safety and Health Administration TLV - Threshold Limit Value PEL - Permissible Exposure Limit RQ - Reportable Quantity TWA - Time Weighted Average STEL - Short Term Exposure Limit NTP - National Toxicology Program IARC - International Agency for Research on Cancer

Health	1
Flammability	4
Reactivity	0
PPE	

Material Name: Produced Wate	er
------------------------------	----

	PP	PE	
* * *	Section 1 - Chemical Product and Company Identification ***		
Product name: Synonyms: Chemical Family: Formula:	Produced Water - Sweet Salt Water, H ₂ O, Oily Water, Formation Water Water Complex mixture		
Supplier:	Chesapeake Energy Corporation and its subsidiaries 6100 N. Western Avenue Oklahoma City, OK 73118		
Other Information: Emergency Phone Nu	Phone: 405-848-8000 Fax: 405-753-5468 Imber: Chemtrec – 800-424-9300		
	* ** Section 2 - Hazards Identification * **		
Potential Health Effec May cause eye Potential Health Effec Contact may ca Potential Health Effec Ingestion may of Potential Health Effec Breathing the n HMIS Ratings: Health Hazard Scale: 0 = Mini	e, skin, respiratory and gastrointestinal tract irritation. :ts: Eyes a irritation. :ts: Skin ause skin irritation. :ts: Ingestion cause irritation of the digestive tract that may result in nausea, vomiting and diarrhea :ts: Inhalation nist and vapors may be irritating to the respiratory tract. : 1 Fire: 4 HMIS Reactivity 0 imal 1 = Slight 2 = Moderate 3 = Serious 4 = Severe * = Chronic hazard	ea.	
Produced water is a mi processes. Produced v	** Section 3 - Composition / Information on Ingredients *** xture of varying amounts of water and oil produced from various exploration and pro water may contain an upper layer of flammable liquid and vapor hydrocarbons. Prod unts of natural gas condensate, and benzene may be present.		

CAS #	Component	Percent
7732-18-5	Water	>68
Not Available	Dissolved Minerals	<32
71-43-2	Benzene	<1
8002-05-9	Petroleum distillates (naphtha)	<1

Normal composition ranges are shown. Exceptions may occur depending on the source of the produced water.

*** Section 4 - First Aid Measures ***

First Aid: Eyes

Flush eyes with clean, low-pressure water for at least 15 minutes, occasionally lifting the eyelids. If pain or redness persists after flushing, obtain medical attention. If eye is exposed to hot liquid, cover eyes with cloth and seek medical attention immediately.

First Aid: Skin

In case of hot liquid exposure, do not remove clothing or treat-wash only unburned area and seek medical attention immediately.

First Aid: Ingestion

Do not induce vomiting. Seek medical attention.

First Aid: Inhalation

Immediately remove person to area of fresh air. For respiratory distress, give oxygen, rescue breathing, or administer CPR if necessary. Obtain prompt medical attention.

Material Name: Produced Water

*** Section 5 - Fire Fighting Measures ***

General Fire Hazards

See Section 9 for Flammability Properties.

May react with strong oxidizing materials and a wide variety of chemicals. Forms explosive mixtures with air.

Hazardous Combustion Products Not Determined.

Extinguishing Media

Extinguishing Media

Dry chemical, foam, carbon dioxide, or water spray.

Fire Fighting Equipment/Instructions

Any fire would be associated with any natural gas condensate floating on the surface of the produced water. Water may be ineffective on flames but should be used to keep fire exposed containers cool. Keep the surrounding areas cool by using water mists. Firefighters should wear self-contained breathing apparatus and full protective clothing.

NFPA Ratings: Health: 1 Fire: 4 Reactivity: 0

Hazard Scale: 0 = Minimal 1 = Slight 2 = Moderate 3 = Serious 4 = Severe

*** Section 6 - Accidental Release Measures ***

Containment Procedures

Stop the source of the leak or release. Clean up releases as soon as possible, observing precautions in Personal Protection Equipment section. Contain liquid to prevent further contamination of soil and surface water.

Clean-Up Procedures

Take up with sand or other oil absorbing materials. Carefully shovel, scoop or sweep up into a waste container for reclamation or disposal. Response and clean-up crews must be properly trained and must utilize proper protective equipment. Where feasible and appropriate, remove contaminated soil or flush with fresh water. Follow prescribed procedures for reporting and responding to larger releases. Advise authorities and the National Response Center (800-424-8802) if the release is to a watercourse.

Evacuation Procedures

Evacuate nonessential personnel and remove or secure all ignition sources. Consider wind direction; stay upwind and uphill, if possible.

Special Procedures

Avoid excessive skin contact with the spilled material.

* * * Section 7 - Handling and Storage * * *

Handling Procedures

Handle as a flammable liquid. Keep away from heat, sparks, and open flame! Electrical equipment should be approved for classified area. Bond and ground containers during product transfer to reduce the possibility of static-initiated fire or explosion.

Storage Procedures

Keep away from flame, sparks, excessive temperatures and open flame. Use approved vented containers. Keep containers closed and clearly labeled. Empty product containers or vessels may contain explosive vapors. Do not pressurize, cut, heat, weld or expose such containers to sources of ignition. Do not enter storage areas and confined spaces without adequate ventilation. Use appropriate respiratory protection if there is a potential to exceed component exposure limit(s).

Section 8 - Exposure Controls / Personal Protection ***

A: Component Exposure Limits

Petroleum distillates (naphtha) (8002-05-9)

* * *

OSHA: 500 ppm TWA; 2000 mg/m³ TWA NIOSH: 350 mg/m³ TWA 1800 mg/m³ Ceiling (15 min)

Page 2 of 6

Material Name: Produced Water

Benzene (71-43-2)

ACGIH: 0.5 ppm TWA

2.5 ppm STEL

Skin - potential significant contribution to overall exposure by the cutaneous route OSHA: 10 ppm TWA; 25 ppm ceiling; 50 ppm (10 min.) NIOSH: 0.1 ppm TWA

1 ppm STEL

Engineering Controls

Use adequate ventilation to keep vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces.

PERSONAL PROTECTIVE EQUIPMENT

Personal Protective Equipment: Eyes/Face

Chemical goggles or face shield should be worn when handling product if the possibility of spray exists. Personal Protective Equipment: Skin

Normal working clothes should be worn. Wash contaminated clothing prior to reuse.

Personal Protective Equipment: Respiratory

Respiratory protection is not required for normal use. At excessive concentrations, wear a NIOSH approved air purifying respirator with organic vapor cartridges.

Personal Protective Equipment: General

A source of clean water should be in the work area for flushing eyes and skin.

* * * Section 9 - Physical & Chemical Properties * * *

Appearance:	Clear or opaque	Odor:	Salty with a slight hydrocarbon odor.
Physical State:	Liquid	:Ha	4.9-8.5
Vapor Pressure:	NA	Vapor Density:	1.2
Boiling Point:	212°F	Melting Point:	ND
Solubility (H2O):	Soluble	Specific Gravity:	>1 @ 0°C
Freezing Point:	<32°F	Evaporation Rate:	ND
VOC:	ND	Octanol/H2O Coeff.:	ND
Flash Point:	ND	Flash Point Method:	ND
		Lower Flammability Limit	4.0
		(LFL):	
		Upper Flammability Limit	46.0
		(UFL):	
		Burning Rate:	ND
		Auto Ignition:	NA
		1. Semicirla Scher For Asso — Pract Proceeding and the second a	

*** Section 10 - Chemical Stability & Reactivity Information ***

Chemical Stability

Stable under normal ambient and anticipated conditions of storage and handling. Chemical Stability: Conditions to Avoid

Keep material away from heat, sparks, and open flames.

Incompatibility

Keep away from strong oxidizers.

Hazardous Decomposition

Not Determined.

Possibility of Hazardous Reactions

Will not occur.

Material Name: Produced Water

*** Section 11 - Toxicological Information ***

Acute Dose Effects

Component Analysis - LD50/LC50

Water (7732-18-5)

Oral LD50 Rat: >90 mL/kg

Petroleum distillates (naphtha) (8002-05-9) Oral LD50 Rat: >4300 mg/kg; Dermal LD50 Rabbit: >2000 mg/kg

Benzene (71-43-2)

Inhalation LC50 Rat: 13050-14380 ppm/4H; Oral LD50 Rat: 1800 mg/kg

Carcinogenicity

Component Carcinogenicity

Petroleum distillates (naphtha) (8002-05-9)

IARC: Monograph 45 [1989] (Group 3 (not classifiable))

Benzene (71-43-2)

ACGIH: A1 - Confirmed Human Carcinogen

OSHA: 10 ppm TWA; 25 ppm ceiling; 50 ppm (10 min.)

NIOSH: potential occupational carcinogen

NTP: Known Human Carcinogen (Select Carcinogen)

IARC: Supplement 7 [1987], Monograph 29 [1982] (Group 1 (carcinogenic to humans))

*** Section 12 - Ecological Information ***

Conditiono

Ecotoxicity

Component Analysis - Ecotoxicity - Aquatic Toxicity Petroleum distillates (naphtha) (8002-05-9)

Toot & Species

rest & species		Conditions
96 Hr LC50 Salmo gairdneri	258 mg/L [static]	
24 Hr EC50 Daphnia magna	36 mg/L	
Benzene (71-43-2)		
Test & Species		Conditions
96 Hr LC50 Pimephales promelas	12.6 mg/L [flow-	
	through]	
96 Hr LC50 Oncorhynchus mykiss	5.3 mg/L [flow-	
	through]	
96 Hr LC50 Lepomis macrochirus	22 mg/L [static]	

96 Hr LC50 Lepomis macrochirus
96 Hr LC50 Poecilia reticulata
72 Hr EC50 Selenastrum
capricornutum
48 Hr EC50 water flea
48 Hr EC50 Daphnia magna

29 mg/L 356 mg/L [Static] 10 mg/L

28.6 mg/L [static]

Page 4 of 6

Material Name: Produced Water

*** Section 13 - Disposal Considerations ***

This product as produced is not specifically listed as an EPA RCRA hazardous waste according to federal regulations (40 CFR 261). However, when discarded or disposed of, it may meet the criteria of a "characteristic" hazardous waste. This product could also contain benzene at low concentrations and may exhibit the characteristic of "toxicity" (D018) as determined by the toxicity characteristic leaching procedure (TCLP). This material could become a hazardous waste if mixed with or contaminated with a hazardous waste or other substance(s). It is the responsibility of the user to determine if disposal material is hazardous according to federal, state and local regulations.

*** Section 14 - Transportation Information ***

US DOT Information

Shipping Name: Not Regulated

Additional Info.: This may not apply to all shipping situations. Consult 49CFR 172 for additional information.

* * * Section 15 - Regulatory Information * *

US Federal Regulations

Component Analysis

This material may contain one or more of the following chemicals identified under SARA Section 302 (40 CFR 355 Appendix A), SARA Section 313 (40 CFR 372.65) and/or CERCLA (40 CFR 302.4).

Benzene (71-43-2)

SARA 313: 0.1 % de minimis concentration

CERCLA: 10 lb final RQ (received an adjusted RQ of 10 lbs based on potential carcinogenicity in an August 14, 1989 final rule); 4.54 kg final RQ (received an adjusted RQ of 10 lbs based on potential carcinogenicity in an August 14, 1989 final rule)

State Regulations

Component Analysis - State

The following components appear on one or more of the following state hazardous substances lists:

Component	CAS	CA	MA	MN	NJ	PA	RI
Petroleum distillates (naphtha)	8002-05-9	No	Yes	Yes	Yes	Yes	Yes
Benzene	71-43-2	Yes	Yes	Yes	Yes	Yes	Yes

The following statement(s) are provided under the California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65):

WARNING! This product contains a chemical known to the state of California to cause cancer. WARNING! This product contains a chemical known to the state of California to cause reproductive/developmental effects.

Component Analysis - WHMIS IDL

The following components are ident	tified under the Canadian Hazardou	us Products Act Ingredient Disclosure List
Component	CAS #	Minimum Concentration
Benzene	71-43-2	0.1 %

Additional Regulatory Information

Material Name: Produced Water

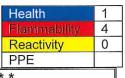
Component Analysis - Inventory

Component	CAS #	TSCA	CAN	EEC
Water	7732-18-5	Yes	DSL	EINECS
Petroleum distillates (naphtha)	8002-05-9	Yes	DSL	EINECS
Benzene	71-43-2	Yes	DSL	EINECS

*** Section 16 - Other Information ***

Other Information

The information presented herein has been compiled from sources considered to be dependable and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgement.


Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Key/Legend

NA - Not Applicable ND - Not Determined ACGIH - American Conference of Governmental Industrial Hygienists OSHA - Occupational Safety and Health Administration TLV - Threshold Limit Value PEL - Permissible Exposure Limit RQ - Reportable Quantity TWA - Time Weighted Average STEL - Short Term Exposure Limit NTP - National Toxicology Program IARC - International Agency for Research on Cancer

Material Name: Petroleum Crude Oil

		PPE								
* * * Section 1 - Chemical Product and Company Identification * * *										
Product name:	Petroleum Crude Oil									
Synonyms:	Crude Oil, Non-hydrogen sulfide crude oil, sweet crude oil, petroleum distillates (naphtha)									
Chemical Family:	Petroleum Hydrocarbon									
Formula:	Complex mixture									
Supplier:	upplier:Chesapeake Energy Corporation and its subsidiaries6100 N. Western AvenueOklahoma City, OK 73118									
Other Information:	Phone: 405-848-8000 Fax: 405-753-5468									
Emergency Phone N	umber: Chemtrec – 800-424-9300									
	* * * Section 2 - Hazards Identification * * *									
Emergency Overview										
	LIQUID - HIGH FIRE HAZARD - Keep away from heat and ignition sources. H									
	nediate unconsciousness - death may result unless promptly and successfully									
Petroleum Cru	de Oil is a liquid that ranges in color from amber to black depending on the source	urce.								
Potential Health Effe	cts: Eyes									

Contact with eyes may cause moderate to severe irritation.

Potential Health Effects: Skin

Practically non-toxic if absorbed following a single exposure. May cause skin irritation with prolonged or repeated contact. Liquid may be absorbed through the skin in toxic amounts if large areas of skin are exposed repeatedly. Rare, pre-cancerous warts on the forearms, hands and scrotum have been reported from prolonged or repeated skin contact.

Potential Health Effects: Ingestion

The health threat of ingestion occurs from the danger of aspiration of the liquids into the lungs. Aspiration may result in chemical pneumonia, severe lung damage, respiratory failure or even death. Ingestion may cause gastrointestinal problems, or central nervous system effects similar to alcohol intoxication. In severe cases, tremors, convulsions, loss of consciousness, coma, respiratory arrest, and death may occur.

Potential Health Effects: Inhalation

Excessive exposure may cause irritations to the nose, throat, lungs, and respiratory tract. Central nervous system (brain) effects may include headache, dizziness, loss of balance and coordination, unconsciousness, coma respiratory failure, and death may occur.

HMIS Ratings: Health: 1 Fire: 4 HMIS Reactivity 0

Hazard Scale: 0 = Minimal 1 = Slight 2 = Moderate 3 = Serious 4 = Severe * = Chronic hazard

*** Section 3 - Composition / Information on Ingredients ***

Petroleum Crude Oil is a complex mixture of paraffinic, cycloparaffinic and aromatic hydrocarbons with a range of carbon numbers between C1 to C60+. Petroleum Crude Oil can contain minor amounts of sulfur, nitrogen and oxygen compounds as well as trace amounts of heavy metals such as nickel, vanadium and lead. Composition varies depending on source of crude.

CAS #	Component	Percent Ranges
8002-05-9	Petroleum distillates (naphtha)	98-100
1330-20-7	Xylenes (o-, m-, p- isomers)	0-5
108-88-3	Toluene	0-5
100-41-4	Ethyl benzene	0-5
71-43-2	Benzene	0-5

Material Name: Petroleum Crude Oil

*** Section 4 - First Aid Measures ***

First Aid: Eyes

Flush immediately with fresh water for at least 15 minutes while holding eyelids open. Remove contact lenses if worn. Seek medical attention if irritation persists.

First Aid: Skin

Remove contaminated clothing. Wash skin thoroughly with soap and water. Wash contaminated clothing. Discard contaminated non-waterproof shoes or boots. See a doctor if any signs or symptoms described in this document occur. DO NOT use solvents for washing.

First Aid: Ingestion

DO NOT INDUCE VOMITING. Do not give liquids. Obtain immediate medical treatment. If spontaneous vomiting occurs, lean the victim forward to reduce the risk of aspiration and monitor for breathing difficulties.

First Aid: Inhalation

If signs and symptoms described in this document occur, move person to fresh air. If these effects continue, seek medical attention. If breathing is difficult, give oxygen. If breathing has stopped, begin artificial respiration (CPR) and activate 911.

*** Section 5 - Fire Fighting Measures ***

General Fire Hazards

See Section 9 for Flammability Properties.

Flash point and explosive limits are highly dependent on the crude oil source. Treat as an OSHA/NFPA flammable liquid unless otherwise indicated. Vapors may be ignited rapidly when exposed to heat, spark, open flame or other source of ignition. When mixed with air and exposed to an ignition source, flammable vapors can burn in the open or explode in confined spaces. Being heavier than air, vapors may travel long distances to an ignition source and flash back. Runoff to sewer may cause fire or explosion hazard.

Hazardous Combustion Products

Carbon Monoxide, Carbon Dioxide and Reactive Hydrocarbon Compounds.

Extinguishing Media

Dry Chemical, Carbon Dioxide (CO2), Foam (Foam and water fog can cause frothing.)

Fire Fighting Equipment/Instructions

Small fires in the incipient (beginning) stage may typically be extinguished using handheld portable fire extinguishers and other fire fighting equipment. Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH/MSHA- approved pressure-demand self-contained breathing apparatus with full facepiece and full protective clothing. Isolate area around container involved in fire. Cool tanks, shells, and containers exposed to fire and excessive heat with water. For massive fires the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Major fires may require withdrawal, allowing the tank to burn. Large storage tank fires typically require specially trained personnel and equipment to extinguish the fire, often including the need for properly applied fire fighting foam.

NFPA Ratings: Health: 1 Fire: 4 Reactivity: 0

Hazard Scale: 0 = Minimal 1 = Slight 2 = Moderate 3 = Serious 4 = Severe

*** Section 6 - Accidental Release Measures ***

Containment Procedures

Carefully contain and stop the source of the spill, if safe to do so. Protect bodies of water by diking, absorbents, or absorbent boom, if possible. Do not flush down sewer or drainage systems, unless system is designed and permitted to handle such material. The use of fire fighting foam may be useful in certain situations to reduce vapors. The proper use of water spray may effectively disperse product vapors or the liquid itself, preventing contact with ignition sources or areas/equipment that require protection - do not discharge solid water stream patterns into the liquid resulting in splashing.

Material Name: Petroleum Crude Oil

Clean-Up Procedures

Take up with sand or other oil absorbing materials. Carefully shovel, scoop or sweep up into a waste container for reclamation or disposal. Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8).

Evacuation Procedures

Evacuate nonessential personnel and remove or secure all ignition sources. Consider wind direction; stay upwind and uphill, if possible. Evaluate the direction of product travel, diking, sewers, etc. to confirm spill areas. Product may release substantial amounts of flammable vapors and gases (e.g., methane, ethane, and propane), at or below ambient temperature depending on source and process conditions and pressure.

Special Procedures

Avoid excessive skin contact with the spilled material.

*** Section 7 - Handling and Storage ***

Handling Procedures

Handle as a flammable liquid. Keep away from heat, sparks, and open flame! Electrical equipment should be approved for classified area. Bond and ground containers during product transfer to reduce the possibility of static-initiated fire or explosion.

Storage Procedures

Keep away from flame, sparks, excessive temperatures and open flame. Use approved vented containers. Keep containers closed and clearly labeled. Empty product containers or vessels may contain explosive vapors. Do not pressurize, cut, heat, weld or expose such containers to sources of ignition. Store in a well-ventilated area. This storage area should comply with NFPA 30 "Flammable and Combustible Liquids Code". Avoid storage near incompatible materials. The cleaning of tanks previously containing this product should follow API STD 2015 "Safe Entry and Cleaning of Petroleum Storage Tanks". Avoid vapors when opening hatches and dome covers. Confined spaces should be ventilated prior to entry.

*** Section 8 - Exposure Controls / Personal Protection ***

A: Component Exposure Limits

Petroleum distillates (naphtha) (8002-05-9)

OSHA: 500 ppm TWA; 2000 mg/m³ TWA

NIOSH: 350 mg/m³ TWA

1800 mg/m³ Ceiling (15 min)

Toluene (108-88-3)

ACGIH: 20 ppm TWA

OSHA: 200 ppm TWA; 300 ppm Ceiling; 500 ppm (10 min.)

- NIOSH: 100 ppm TWA; 375 mg/m³ TWA
 - 150 ppm STEL; 560 mg/m³ STEL

Xylenes (o-, m-, p- isomers) (1330-20-7)

ACGIH: 100 ppm TWA

- 150 ppm STEL
- OSHA: 100 ppm TWA; 435 mg/m³ TWA
 - 150 ppm STEL; 655 mg/m³ STEL

Benzene (71-43-2)

ACGIH: 0.5 ppm TWA

2.5 ppm STEL

Skin - potential significant contribution to overall exposure by the cutaneous route

- OSHA: 10 ppm TWA; 25 ppm ceiling; 50 ppm (10 min.)
- NIOSH: 0.1 ppm TWA
 - 1 ppm STEL

Material Name: Petroleum Crude Oil

Ethyl benzene (100-41-4)

100 ppm TWA
125 ppm STEL
100 ppm TWA; 435 mg/m ³ TWA
125 ppm STEL; 545 mg/m ³ STEL
100 ppm TWA; 435 mg/m ³ TWA
125 ppm STEL; 545 mg/m ³ STEL

Engineering Controls

Use adequate ventilation to keep vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces.

PERSONAL PROTECTIVE EQUIPMENT

Personal Protective Equipment: Eyes/Face

Chemical splash goggles or safety glasses are recommended.

Personal Protective Equipment: Skin

Neoprene, impervious gloves should be worn to avoid prolonged or frequently repeated skin contact with this material. Normal work clothes should be laundered to decontaminate before reuse. Leather goods contaminated with this product should be discarded. Impervious clothing and boots may be required for prolonged contact.

Personal Protective Equipment: Respiratory

Respiratory protection is not required during normal use in well-ventilated areas. Use a positive-pressure air supplied respirator if there is a (1) potential for uncontrolled release, (2) where exposure levels are not known, (3) oxygen deficient atmospheres, or (4) any condition where ventilation or an air-purifying type of respirator may not be adequate.

Personal Protective Equipment: General

Avoid repeated and prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Do not gasoline or solvents for washing. Discard leather shoes and gloves contaminated with this product. Launder contaminated clothing before reuse.

*** Section 9 - Physical & Chemical Properties ***

Appearance:	Depending on its source, the typical color ranges from amber to brown to greenish black.	Odor:	Petroleum/asphalt type
Physical State:	Liquid	pH:	ND
Vapor Pressure:	Variable	Vapor Density:	3 - 5 typical
Boiling Point:	AP 100° - 1000+°F	Melting Point:	ND
Solubility (H2O):	Negligible	Specific Gravity:	AP 0.7 - 1.04 - (Varies)
Evaporation Rate:	ND	VOC:	ND
Octanol/H2O Coeff.:			
Flash Point:	< 40 to 200°F	Upper Flammability Limit	15
		(UFL):	
Flash Point Method:	ND	Lower Flammability Limit	0.4
		(LFL):	
		Burning Rate:	ND
		Auto Ignition:	500°F

*** Section 10 - Chemical Stability & Reactivity Information ***

Chemical Stability

This is a stable material.

Chemical Stability: Conditions to Avoid

Heat, sparks, open flame, static electricity or ignition sources should be avoided.

Material Name: Petroleum Crude Oil

Incompatibility

Keep away from strong oxidizing agents (such as Peroxide, Dichromate, Permanganate, Chlorine), strong acids, caustics and halogens.

Hazardous Decomposition

Carbon Monoxide, Carbon Dioxide and Reactive Hydrocarbon Compounds.

Possibility of Hazardous Reactions

Will not occur.

*** Section 11 - Toxicological Information ***

Acute Dose Effects

Component Analysis - LD50/LC50

Petroleum distillates (naphtha) (8002-05-9)

Oral LD50 Rat: >4300 mg/kg; Dermal LD50 Rabbit: >2000 mg/kg

Toluene (108-88-3)

Inhalation LC50 Rat: 12.5 mg/L/4H; Inhalation LC50 Rat:>26700 ppm/1H; Oral LD50 Rat:636 mg/kg; Dermal LD50 Rabbit:8390 mg/kg; Dermal LD50 Rat:12124 mg/kg

Xylenes (o-, m-, p- isomers) (1330-20-7)

Inhalation LC50 Rat: 5000 ppm/4H; Oral LD50 Rat: 4300 mg/kg; Dermal LD50 Rabbit: >1700 mg/kg

Benzene (71-43-2)

Inhalation LC50 Rat: 13050-14380 ppm/4H; Oral LD50 Rat:1800 mg/kg

Ethyl benzene (100-41-4)

Inhalation LC50 Rat: 17.2 mg/L/4H; Oral LD50 Rat:3500 mg/kg; Dermal LD50 Rabbit:15354 mg/kg

Carcinogenicity

Component Carcinogenicity

Petroleum distillates (naphtha) (8002-05-9)

IARC: Monograph 45 [1989] (Group 3 (not classifiable))

Toluene (108-88-3)

ACGIH: A4 - Not Classifiable as a Human Carcinogen IARC: Monograph 71 [1999], Monograph 47 [1989] (Group 3 (not classifiable))

Xylenes (o-, m-, p- isomers) (1330-20-7)

ACGIH: A4 - Not Classifiable as a Human Carcinogen

IARC: Monograph 71 [1999], Monograph 47 [1989] (Group 3 (not classifiable))

Benzene (71-43-2)

- ACGIH: A1 Confirmed Human Carcinogen
- OSHA: 10 ppm TWA; 25 ppm ceiling; 50 ppm (10 min.)
- NIOSH: potential occupational carcinogen
 - NTP: Known Carcinogen (Select Carcinogen)
 - IARC: Supplement 7 [1987], Monograph 29 [1982] (Group 1 (carcinogenic to humans))

Ethyl benzene (100-41-4)

- ACGIH: A3 Confirmed animal carcinogen with unknown relevance to humans
- IARC: Monograph 77 [2000] (Group 2B (possibly carcinogenic to humans))

Material Name: Petroleum Crude Oil

* * * Sec	tion 12 - Ecologi	cal Information * * *
cotoxicity		
omponent Analysis - Ecotoxicity - Aqu	atic Toxicity	
Petroleum distillates (naphtha)		
Test & Species		Conditions
96 Hr LC50 Salmo gairdneri	258 mg/L [static]	
24 Hr EC50 Daphnia magna	36 mg/L	
Toluene (108-88-3)		
Test & Species		Conditions
96 Hr LC50 Pimephales promelas	25 mg/L [flow- through]	1 day old
96 Hr LC50 Oncorhynchus mykiss	24.0 mg/L [flow- through]	
96 Hr LC50 Lepomis macrochirus	24.0 mg/L [static]	
96 Hr LC50 Lepomis macrochirus	13 mg/L [static]	<i>y</i> .
96 Hr EC50 Selenastrum	>433 mg/L	
capricornutum		
30 min EC50 Photobacterium	19.7 mg/L	
phosphoreum	44.0 "	
48 Hr EC50 water flea	11.3 mg/L	
48 Hr EC50 water flea	310 mg/L	
48 Hr EC50 Daphnia magna	11.3 mg/L	
Vulance (a. m. n. icomore) (12)	20 20 7)	
Xylenes (o-, m-, p- isomers) (133 Test & Species	50-20-7)	Conditions
96 Hr LC50 Pimephales promelas	12.4 mg/L [flow	Conditions
90 HI LOOU FILIEPITAIES PIOITIEIAS	13.4 mg/L [flow- through]	
96 Hr LC50 Oncorhynchus mykiss	8.05 mg/L [flow-	
	through]	
96 Hr LC50 Lepomis macrochirus	16.1 mg/L [flow-	
	through]	
96 Hr LC50 Pimephales promelas	26.7 mg/L [static	
24 hr EC50 Photobacterium	0.0084 mg/L	
phosphoreum		
48 Hr EC50 water flea	3.82 mg/L	
48 Hr LC50 Gammarus lacustris	0.6 mg/L	
Benzene (71-43-2)		
Test & Species	22	Conditions
96 Hr LC50 Pimephales promelas	12.6 mg/L [flow- through]	
96 Hr LC50 Oncorhynchus mykiss	5.3 mg/L [flow- through]	
96 Hr LC50 Lepomis macrochirus	22 mg/L [static]	
96 Hr LC50 Poecilia reticulata	28.6 mg/L [static]	
72 Hr EC50 Selenastrum	29 mg/L	
capricornutum	OFC mall IOL-1-1	
48 Hr EC50 water flea	356 mg/L [Static]	
48 Hr EC50 Daphnia magna	10 mg/L	

Material Name: Petroleum Crude Oil

Ethyl benzene (100-41-4) Test & Species		Conditions
96 Hr LC50 Oncorhynchus mykiss	14.0 mg/L [static]	
96 Hr LC50 Pimephales promelas	9.09 mg/L [flow- through]	
96 Hr LC50 Lepomis macrochirus	150.0 mg/L [static]	
96 Hr LC50 Oncorhynchus mykiss	4.2 mg/L [static]	
96 Hr LC50 Lepomis macrochirus	32 mg/L [static]	
96 Hr LC50 Pimephales promelas	48.5 mg/L [static]	
96 Hr LC50 Poecilia reticulata	9.6 mg/L [static]	
72 Hr EC50 Selenastrum	4.6 mg/L	
capricornutum		
96 Hr EC50 Selenastrum	>438 mg/L	
capricornutum		
30 min EC50 Photobacterium phosphoreum	9.68 mg/L	
24 Hr EC50 Nitrosomonas	96 mg/L	
48 Hr EC50 Daphnia magna	1.8-2.4 mg/L	

*** Section 13 - Disposal Considerations ***

This product as produced is not specifically listed as an EPA RCRA hazardous waste according to federal regulations (40 CFR 261). However, when discarded or disposed of, it may meet the criteria of a "characteristic" hazardous waste. This product could also contain benzene at low concentrations and may exhibit the characteristic of "toxicity" (D018) as determined by the toxicity characteristic leaching procedure (TCLP). This material could become a hazardous waste if mixed with or contaminated with a hazardous waste or other substance(s).

It is the responsibility of the user to determine if disposal material is hazardous according to federal, state and local regulations.

*** Section 14 - Transportation Information ***

This material when transported via U.S. commerce would be regulated by DOT Regulations.

US DOT Information

Shipping Name: Petroleum Crude Oil

UN/NA #: 1267 Hazard Class: 3 Packing Group: II

DOT reportable quantity (lbs): Not Applicable

Additional Info.: This description shown may not apply to all shipping situations. Consult 49CFR 172.101 for mode or quantity-specific requirements.

*** Section 15 - Regulatory Information ***

US Federal Regulations

Component Analysis

This material contains one or more of the following chemicals identified under SARA Section 302 (40 CFR 355 Appendix A), SARA Section 313 (40 CFR 372.65) and/or CERCLA (40 CFR 302.4).

Toluene (108-88-3)

SARA 313: 1.0 % de minimis concentration

CERCLA: 1000 lb final RQ; 454 kg final RQ

Xylenes (o-, m-, p- isomers) (1330-20-7)

SARA 313: 1.0 % de minimis concentration CERCLA: 100 lb final RQ; 45.4 kg final RQ

Page 7 of 9

Material Name: Petroleum Crude Oil

Benzene (71-43-2)

SARA 313: 0.1 % de minimis concentration

CERCLA: 10 lb final RQ (received an adjusted RQ of 10 lbs based on potential carcinogenicity in an August 14, 1989 final rule); 4.54 kg final RQ (received an adjusted RQ of 10 lbs based on potential carcinogenicity in an August 14, 1989 final rule)

Ethyl benzene (100-41-4)

SARA 313: 0.1 % de minimis concentration CERCLA: 1000 lb final RQ; 454 kg final RQ

State Regulations

Component Analysis - State

The following components appear on one or more of the following state hazardous substances lists:

Component	CAS	CA	MA	MN	NJ	PA	RI
Petroleum distillates (naphtha)	8002-05-9	No	Yes	Yes	Yes	Yes	Yes
Toluene	108-88-3	Yes	Yes	Yes	Yes	Yes	Yes
Xylenes (o-, m-, p- isomers)	1330-20-7	Yes	Yes	Yes	Yes	Yes	Yes
Benzene	71-43-2	Yes	Yes	Yes	Yes	Yes	Yes
Ethyl benzene	100-41-4	Yes	Yes	Yes	Yes	Yes	Yes

The following statement(s) are provided under the California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65):

WARNING! This product contains a chemical known to the state of California to cause cancer. WARNING! This product contains a chemical known to the state of California to cause reproductive/developmental effects.

Component Analysis - WHMIS IDL

The following components are identified under the Canadian Hazardous Products Act Ingredient Disclosure List:

Component	CAS #	Minimum Concentration
Toluene	108-88-3	1 %
Benzene	71-43-2	0.1 %
Ethyl benzene	100-41-4	0.1 %

Additional Regulatory Information

Component Analysis - Inventory

Component	CAS #	TSCA	CAN	EEC
Petroleum distillates (naphtha)	8002-05-9	Yes	DSL	EINECS
Toluene	108-88-3	Yes	DSL	EINECS
Xylenes (o-, m-, p- isomers)	1330-20-7	Yes	DSL	EINECS
Benzene	71-43-2	Yes	DSL	EINECS
Ethyl benzene	100-41-4	Yes	DSL	EINECS

* * * Section 16 - Other Information * * *

Other Information

The information presented herein has been compiled from sources considered to be dependable and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgement.

Material Name: Petroleum Crude Oil

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Key/Legend

NA - Not Applicable ND - Not Determined ACGIH - American Conference of Governmental Industrial Hygienists OSHA - Occupational Safety and Health Administration TLV - Threshold Limit Value PEL - Permissible Exposure Limit RQ – Reportable Quantity TWA - Time Weighted Average STEL - Short Term Exposure Limit NTP - National Toxicology Program IARC - International Agency for Research on Cancer

ATTACHMENT O: EMISSION SUMARY SHEET

G70-A EMISSIONS SUMMARY SHEET

Emission Point ID No.	Emission Point Type ¹	Emission Unit Vented Through This Point		d Device This		Device Pollutants - Uncontrolled Chemical Emissions ³ Name/CAS ²		Pote Cont	mum ential rolled sions ⁴	Emission Form or Phase (At exit conditions,	Est. Method Used ⁵	
		ID No.	Source	ID No.	Device Type	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Solid, Liquid or Gas/Vapor)	
EP-ENG1	Upward vertical stack	EU- ENG1	Flash Gas Compressor Engine	N/A	Oxidation Catalyst	NOx CO VOC SO ₂ PM ₁₀ PM Total Acetaldehyde Acrolein Benzene Ethylbenzene Formaldehyde Methanol Toluene Xylenes Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 3.04\\ 8.94\\ 4.08\\ 0.01\\ <0.01\\ 0.09\\ 0.05\\ <0.01\\ 1.22\\ 0.03\\ <0.01\\ <0.01\\ 1.493.78\\ 0.02\\ <0.01\\ \end{array}$	$\begin{array}{c} 13.32\\ 39.16\\ 17.87\\ 0.03\\ <0.01\\ 0.44\\ 0.38\\ 0.23\\ 0.02\\ <0.01\\ 5.33\\ 0.11\\ 0.02\\ 0.01\\ 6.542.76\\ 0.10\\ 2.48\end{array}$	$\begin{array}{c} 3.04\\ 2.68\\ 2.08\\ 0.01\\ <0.01\\ 0.09\\ 0.05\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 1.493.78\\ 0.02\\ <0.01\\ \end{array}$	$\begin{array}{c} 13.32\\ 11.74\\ 7.53\\ 0.03\\ <0.01\\ 0.44\\ 0.38\\ 0.23\\ 0.02\\ <0.01\\ 1.60\\ 0.11\\ 0.02\\ 0.01\\ 6.542.76\\ 0.10\\ 2.48\end{array}$	Gas/Vapor	O = Manufacturer Data, AP-42
EP-ENG2	Upward vertical stack	EU- ENG2	Flash Gas Compressor Engine	N/A	Oxidation Catalyst	NOx CO VOC SO ₂ PM ₁₀ PM Total Acetaldehyde Acrolein Benzene Ethylbenzene Formaldehyde Methanol Toluene Xylenes Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 3.04\\ 8.94\\ 4.08\\ 0.01\\ <0.01\\ 0.09\\ 0.05\\ <0.01\\ <0.01\\ 1.22\\ 0.03\\ <0.01\\ <0.01\\ 1.493.78\\ 0.02\\ <0.01\\ \end{array}$	$\begin{array}{c} 13.32\\ 39.16\\ 17.87\\ 0.03\\ <0.01\\ 0.44\\ 0.38\\ 0.23\\ 0.02\\ <0.01\\ 5.33\\ 0.11\\ 0.02\\ 0.01\\ 6,542.76\\ 0.10\\ 2.48\end{array}$	$\begin{array}{c} 3.04\\ 2.68\\ 2.08\\ 0.01\\ <0.01\\ 0.09\\ 0.05\\ <0.01\\ <0.01\\ 0.37\\ 0.03\\ <0.01\\ <0.01\\ 1,493.78\\ 0.02\\ <0.01\\ \end{array}$	$\begin{array}{c} 13.32\\ 11.74\\ 7.53\\ 0.03\\ <0.01\\ 0.44\\ 0.38\\ 0.23\\ 0.02\\ <0.01\\ 1.60\\ 0.11\\ 0.02\\ 0.01\\ 6,542.76\\ 0.10\\ 2.48\end{array}$	Gas/Vapor	O = Manufacturer Data, AP-42

EP-ENG3	Upward vertical stack	EU- ENG3	Flash Gas Compressor Engine	N/A	NSCR	NOx CO VOC SO ₂ PM ₁₀ PM Total Accrolein Benzene Ethylbenzene Formaldehyde Methanol Toluene Xylenes Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 7.54 \\ 7.54 \\ 0.32 \\ < 0.01 \\ 0.02 \\ 0.04 \\ 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ 2 8 3.44 \\ < 0.01 \\ < 0.01 \end{array}$	$\begin{array}{c} 33.03\\ 33.03\\ 1.40\\ <0.01\\ 0.09\\ 0.18\\ 0.02\\ 0.02\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 1.241.47\\ 0.02\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.47\\ 0.95\\ 0.36\\ <0.01\\ 0.02\\ 0.04\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 283.44\\ <0.01\\ <0.01\\ \end{array}$	$\begin{array}{c} 2.06\\ 4.16\\ 1.58\\ <0.01\\ 0.09\\ 0.18\\ 0.02\\ 0.02\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 1.241.47\\ 0.02\\ <0.01\\ \end{array}$	Gas/Vapor	O = Manufacturer Data, AP-42
EP-ENG4	Upward vertical stack	EU- ENG4	Flash Gas Compressor Engine	N/A	Oxidation Catalyst	NOx CO VOC SO ₂ PM ₁₀ PM Total Acetaldehyde Acrolein Benzene Ethylbenzene Formaldehyde Methanol Toluene Xylenes Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 3.04\\ 8.94\\ 4.08\\ 0.01\\ <0.01\\ 0.10\\ 0.09\\ 0.05\\ <0.01\\ <0.01\\ 1.22\\ 0.03\\ <0.01\\ <0.01\\ 1.493.78\\ 0.02\\ <0.01\\ \end{array}$	$\begin{array}{c} 13.32\\ 39.16\\ 17.87\\ 0.03\\ <0.01\\ 0.44\\ 0.38\\ 0.23\\ 0.02\\ <0.01\\ 5.33\\ 0.11\\ 0.02\\ 0.01\\ 6,542.76\\ 0.10\\ 2.48\end{array}$	$\begin{array}{c} 3.04\\ 2.68\\ 2.08\\ 0.01\\ <0.01\\ 0.09\\ 0.05\\ <0.01\\ <0.01\\ <0.01\\ 0.37\\ 0.03\\ <0.01\\ <0.01\\ 1,493.78\\ 0.02\\ <0.01\\ \end{array}$	$\begin{array}{c} 13.32\\ 11.74\\ 7.53\\ 0.03\\ <0.01\\ 0.44\\ 0.38\\ 0.23\\ 0.02\\ <0.01\\ 1.60\\ 0.11\\ 0.02\\ 0.01\\ 6,542.76\\ 0.10\\ 2.48 \end{array}$	Gas/V apor	O = Manufacturer Data, AP-42

EP-GPU1	Upward vertical stack	EU- GPU1	GPU Burner	N/A	None	NOx CO VOC SO ₂ PM ₁₀ PM Total n-Hexane Formaldehyde Benzene Toluene Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 0.11\\ 0.09\\ 0.01\\ <0.01\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 116.98\\ <0.01\\ <0.01\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.48\\ 0.39\\ 0.03\\ <0.01\\ 0.03\\ 0.04\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ 512.36\\ 0.01\\ <0.01\\ \end{array}$	N/A	N/A	Gas/Vapor	O = AP-42
EP-GPU2	Upward vertical stack	EU- GPU2	GPU Bumer	N/A	None	NOx CO VOC SO ₂ PM ₁₀ PM Total n-Hexane Formaldehyde Benzene Toluene Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 0.11\\ 0.09\\ 0.01\\ <0.01\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 116.98\\ <0.01\\ <0.01\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.48\\ 0.39\\ 0.03\\ <0.01\\ 0.03\\ 0.04\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ 512.36\\ 0.01\\ <0.01\\ \end{array}$	N/A	N/A	Gas/Vapor	O = AP-42
EP-GPU3	Upward vertical stack	EU- GPU3	GPU Burner	N/A	None	NOx CO VOC SO ₂ PM ₁₀ PM Total n-Hexane Formaldehyde Benzene Toluene Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 0.11\\ 0.09\\ 0.01\\ <0.01\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 116.98\\ <0.01\\ <0.01\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.48\\ 0.39\\ 0.03\\ <0.01\\ 0.03\\ 0.04\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ 512.36\\ 0.01\\ <0.01\\ \end{array}$	N/A	N/A	Gas/Vapor	O = AP-42

EP-GPU4	Upward vertical stack	EU- GPU4	GPU Burner	N/A	None	NOx CO VOC SO ₂ PM ₁₀ PM Total n-Hexane Formaldehyde Benzene Toluene Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 0.11\\ 0.09\\ 0.01\\ <0.01\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 116.98\\ <0.01\\ <0.01\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.48\\ 0.39\\ 0.03\\ <0.01\\ 0.03\\ 0.04\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ 512.36\\ 0.01\\ <0.01\\ \end{array}$	N/A	N/A	Gas/Vapor	O = AP-42
EP-GPU5	Upward vertical stack	EU- GPU5	GPU Bumer	N/A	None	NOx CO VOC SO ₂ PM ₁₀ PM Total n-Hexane Formaldehyde Benzene Toluene Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 0.11\\ 0.09\\ 0.01\\ <0.01\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 116.98\\ <0.01\\ <0.01\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.48\\ 0.39\\ 0.03\\ <0.01\\ 0.03\\ 0.04\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ 512.36\\ 0.01\\ <0.01\\ \end{array}$	N/A	N/A	Gas/V apor	O = AP-42
EP-GPU6	Upward vertical stack	EU- GPU6	GPU Burner	N/A	None	NOx CO VOC SO ₂ PM ₁₀ PM Total n-Hexane Formaldehyde Benzene Toluene Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 0.11\\ 0.09\\ 0.01\\ <0.01\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 116.98\\ <0.01\\ <0.01\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.48\\ 0.39\\ 0.03\\ <0.01\\ 0.03\\ 0.04\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ 512.36\\ 0.01\\ <0.01\\ \end{array}$	N/A	N/A	Gas/Vapor	O = AP-42

EP-GPU7	Upward vertical stack	EU- GPU7	GPU Burner	N/A	None	NOx CO VOC SO ₂ PM ₁₀ PM Total n-Hexane Formaldehyde Benzene Toluene Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 0.11\\ 0.09\\ 0.01\\ <0.01\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 116.98\\ <0.01\\ <0.01\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.48\\ 0.39\\ 0.03\\ <0.01\\ 0.03\\ 0.04\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ 512.36\\ 0.01\\ <0.01\\ \end{array}$	N/A	N/A	Gas/Vapor	O = AP-42
EP-GPU8	Upward vertical stack	EU- GPU8	GPU Bumer	N/A	None	NOx CO VOC SO ₂ PM ₁₀ PM Total n-Hexane Formaldehyde Benzene Toluene Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 0.11\\ 0.09\\ 0.01\\ <0.01\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 116.98\\ <0.01\\ <0.01\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.48\\ 0.39\\ 0.03\\ <0.01\\ 0.03\\ 0.04\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ 512.36\\ 0.01\\ <0.01\\ \end{array}$	N/A	N/A	Gas/V apor	O = AP-42
EP-HT1	Upward vertical stack	EU-HT1	Heater Treater	N/A	None	NOx CO VOC SO ₂ PM ₁₀ PM Total n-Hexane Formaldehyde Benzene Toluene Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 0.06\\ 0.05\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 58.49\\ <0.01\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.26\\ 0.22\\ 0.01\\ <0.01\\ 0.02\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 256.18\\ <0.01\\ <0.01\\ <0.01\\ \end{array}$	N/A	N/A	Gas/Vapor	0 = AP-42

EP-HT2	Upward vertical stack	EU-HT2	Heater Treater	N/A	None	NOx CO VOC SO ₂ PM ₁₀ PM Total n-Hexane Formaldehyde Benzene Toluene Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 0.06\\ 0.05\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 58.49\\ <0.01\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.26\\ 0.22\\ 0.01\\ <0.01\\ 0.02\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 256.18\\ <0.01\\ <0.01\\ \end{array}$	N/A	N/A	Gas/Vapor	O = AP-42
EP-DEHY1*	Upward vertical stack	EU- DEHY1	TEG Dehydration Unit	Condenser/ Combustion	APC-COND/APC- COMB-TKLD	VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane	65.88 1.48 0.87 2.62 1.41 4.23 0.58 102.10	288.55 6.48 3.81 11.49 6.19 18.54 2.53 447.19	2.09 0.05 0.10 0.12 0.03 0.06 <0.01 0.44	9.15 0.24 0.45 0.51 0.11 0.28 0.01 1.92	Gas/Vapor	O = GLYCalc
EP-RB1	Upward vertical stack	EU-RB1	TEG REboiler	N/A	None	NOx CO VOC SO ₂ PM ₁₀ PM Total n-Hexane Formaldehyde Benzene Toluene Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 0.08\\ 0.07\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ 87.73\\ <0.01\\ <0.01\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.36\\ 0.30\\ 0.02\\ <0.01\\ 0.02\\ 0.03\\ 0.01\\ <0.01\\ <0.01\\ <0.01\\ 384.27\\ 0.01\\ <0.01\\ <0.01\\ \end{array}$	N/A	N/A	Gas/Vapor	0 = AP-42

APC-COMB- TKLD	Upward vertical stack	EU- TANKS- COND, EU- TANKS- PW, EU- LOAD- COND, EU- LOAD- PW, EU- PILOT, APC- COMB- TKLD	Vapor Combustor	-	None	NOx CO PM VOC n-Hexane Formaldehyde Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane Nitrous Oxide	$\begin{array}{c} 4.16\\ 8.28\\ 0.09\\ 575.37\\ 29.76\\ <0.01\\ 0.69\\ 3.72\\ 3.59\\ 9.35\\ 3525.19\\ 0.07\\ 0.01\\ \end{array}$	$\begin{array}{c} 18.22\\ 36.28\\ 0.39\\ 2574.96\\ 133.26\\ <0.01\\ 3.03\\ 16.67\\ 16.13\\ 41.9\\ 15440.56\\ 6.91\\ 0.03\\ \end{array}$	$\begin{array}{c} 4.16\\ 8.28\\ 0.09\\ 6.78\\ 0.33\\ <0.01\\ 0.01\\ 0.04\\ 0.10\\ 3525.19\\ 0.07\\ 0.01\\ \end{array}$	$\begin{array}{c} 18.22\\ 36.28\\ 0.39\\ 18.13\\ 1.45\\ <0.01\\ 0.04\\ 0.19\\ 0.17\\ 0.44\\ 15440.56\\ 6.91\\ 0.03\\ \end{array}$	Gas/V apor	O (AP-42, Mass Balance)
EP-FUG	Fugitive	EU-FUG	Fugitive Components	-	None	VOC n-Hexane Benzene Toluene Ethylbenzene Xylenes Carbon Dioxide Methane	N/A	$\begin{array}{c} 6.38\\ 0.26\\ <0.01\\ 0.03\\ 0.02\\ 0.06\\ 0.05\\ 9.36\end{array}$	N/A	N/A	Gas/Vapor	O = EPA-453/ R-95- 017
EP-HR	Fugitive	EU-HR	Fugitive Haul Road Emissions	-	None	PM Total PM ₁₀ PM _{2.5}	0.59 0.14 0.01	1.95 0.48 0.05	N/A	N/A	Gas/Vapor	0 = AP-42

The EMISSION SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSIONS SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂O, N₂, O₂, and Noble Gases

³ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; M = modeling; O = other (specify).

*Note: Controlled emissions for DEHY1 include still vent emissions only. Flash tank emissions are routed to the combustor via the produced water tanks. Uncombusted emissions are reported at the combustor.

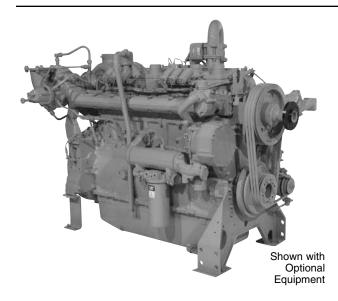
ATTACHMENT P: SUPPORT DOCUMENTS

ENGINE SPECIFICATION SHEETS

AP-42 AND EPA EMISSION FACTORS

GRI-GLYCALC INPUT SUMMARY AND AGGREGATE CALCULATIONS REPORTS

REPRESENTATIVE GAS AND LIQUIDS ANALYSES


PROMAX PROCESS SIMULATION RESULTS

EPA TANKS 4.0.9d EMISSIONS REPORT(S)

G3406 Gas Petroleum Engine

CAT® ENGINE SPECIFICATIONS

160-272 bkW (215-365 bhp) 1800 rpm

0.5% O_2 and 2.0% O_2 Ratings

In-line 6. 4-Stroke-Cvcle Emissions Settings..... 0.5% O₂ and 2.0% O₂ Aspiration Naturally Aspirated or Turbocharged-Aftercooled Combustion Rich Burn Engine Weight, net dry (approx).... 1360.8 kg (3000 lb) Power Density 6.7 kg/kW (11 lb/bhp) Jacket Water 30.3 L (8 gal) Lube Oil System (refill) 75.7 L (20 gal) Rotation (from flywheel end) Counterclockwise Flywheel and Flywheel Housing SAE No. 1 Flywheel Teeth 113

FEATURES

Engine Design

- Proven reliability and durability
- Ability to burn a wide spectrum of gaseous fuels
- Robust diesel strength design prolongs life and lowers owning and operating costs
- Broad operating speed range

Emissions

- Rich burn engine design easily meets emission requirements
- 0.5% $\rm O_2$ rating meets U.S. EPA Spark Ignited Stationary NSPS Emissions for 2007/8 and 2010/11 with the use of aftermarket AFRC and TWC

Full Range of Attachments

Large variety of factory-installed engine attachments reduces packaging time

Testing

Every engine is full-load tested to ensure proper engine performance.

Gas Engine Rating Pro

GERP is a PC-based program designed to provide site performance capabilities for Cat[®] natural gas engines for the gas compression industry. GERP provides engine data for your site's altitude, ambient temperature, fuel, engine coolant heat rejection, performance data, installation drawings, spec sheets, and pump curves.

Product Support Offered Through Global Cat Dealer Network

More than 2,200 dealer outlets

Cat factory-trained dealer technicians service every aspect of your petroleum engine

Cat parts and labor warranty

Preventive maintenance agreements available for repairbefore-failure options

S•O•S^s program matches your oil and coolant samples against Caterpillar set standards to determine:

- Internal engine component condition
- Presence of unwanted fluids
- Presence of combustion by-products
- Site-specific oil change interval

Over 80 Years of Engine Manufacturing Experience

Over 60 years of natural gas engine production

Ownership of these manufacturing processes enables Caterpillar to produce high quality, dependable products.

- Cast engine blocks, heads, cylinder liners, and flywheel housings
- Machine critical components
- Assemble complete engine

Web Site

For all your petroleum power requirements, visit www.catoilandgas.cat.com.

G3406 GAS PETROLEUM ENGINE

160-272 bkW (215-365 bhp)

STANDARD EQUIPMENT

Air Inlet System Air cleaner — heavy-duty Air cleaner rain cap

Service indicator

Control System Governor — Woodward PSG mechanical Governor locking — positive control

Cooling System Thermostats and housing Jacket water pump Aftercooler water pump Aftercooler core

Exhaust System Watercooled exhaust manifolds Dry exhaust elbow

Flywheel & Flywheel Housing SAE No. 1 flywheel SAE No. 1 flywheel housing SAE standard rotation

Fuel System Gas pressure regulator Natural gas carburetor

OPTIONAL EQUIPMENT

Air Inlet System Precleaner

Charging System Battery chargers

Charging alternators Charging alternators f/u/w c customer supplied shutoffs Ammeter gauge Ammeter gauge and wiring Control mounting

Control System PSG Woodward governor

Cooling System

Radiators Non-sparking blower fan Blower fans for customer supplied radiators Fan drives for customer supplied radiators ATAAC conversion Aftercooler Expansion tank Heat exchangers

Exhaust System

Flexible fittings Elbow Flange Pipe Rain cap Muffler

Fuel System Fuel filter Natural gas valve and jet kits Ignition System Altronic III ignition system

Instrumentation Service meter

Lube System

Crankcase breather — top mounted Oil cooler Oil filter — RH Auxiliary oil reservoir Oil pan — full sump Oil filler in valve cover, dipstick — RH

Mounting System Engine supports

Protection System Shutoffs

General Paint — Cat yellow Crankshaft vibration damper and drive pulleys Lifting eyes

Ignition System CSA shielded ignition Wiring harness

Instrumentation Gauges and instrument panels

Lube System Auxiliary oil reservoir removal Lubricating oil

Mounting System Vibration isolators

Power Take-Offs Auxiliary drive pulleys Enclosed clutch and clutch support Front stub shaft and flywheel stub shaft

Protection System Gas valves

Starting System Air starting motor Electric air start control Air pressure regulator Air silencer Electric starting motor — single 12- and 24-volt Starting aids Battery sets, cables, and rack

General Damper guard

LEHW0029-01

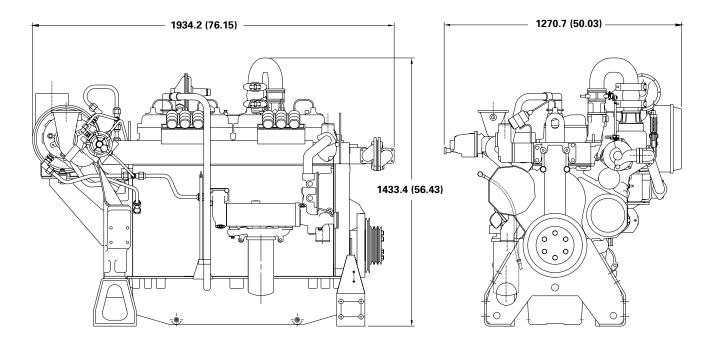
160-272 bkW (215-365 bhp)

TECHNICAL DATA

G3406 Gas Petroleum Engine — 1800 rpm

		DM5302-01	TM8513-05	DM5084-03	
Engine Power @ 100% Load @ 75% Load	bkW (bhp) bkW (bhp)	242 (325) 192 (244)	160 (215) 120 (161)	205 (276) 154 (207)	
Engine Speed Max Altitude @ Rated Torque	rpm	1800	1800	1800	
and 38°C (100°F) Speed Turndown @ Max Altitude,	m (ft)	1219.2 (4000)	0	914.4 (3000)	
Rated Torque, and 38°C (100°F)	%	55	45	0	
SCAC Temperature	°C (°F)	54 (130)	_	_	
Emissions*					
NOx	g/bkW-hr (g/bhp-hr)	35.29 (26.31)	37.47 (27.94)	20.69 (15.43)	
CO	g/bkW-hr (g/bhp-hr)	2.15 (1.6)	1.9 (1.4)	20.69 (15.42)	
CO ₂	g/bkW-hr (g/bhp-hr)	620 (463)	685 (511)	699 (521)	
VOC**	g/bkW-hr (g/bhp-hr)	0.21 (.16)	0.24 (0.18)	—	
Fuel Consumption***					
@ 100% Load	MJ/bkW-hr (Btu/bhp-hr)	9.96 (7037)	10.99 (7767)	10.49 (7418)	
@ 75% Load	MJ/bkW-hr (Btu/bhp-hr)	10.53 (7443)	11.75 (8304)	11.44 (8082)	
Heat Balance					
Heat Rejection to Jacket Water					
@ 100% Load	bkW (Btu/min)	200 (11,401)	160 (9081)	223 (12,709)	
@ 75% Load	bkW (Btu/min)	173 (9822)	138 (7868)	178 (10,156)	
Heat Rejection to Aftercooler					
@ 100% Load	bkW (Btu/min)	12.6 (716)	_	6.53 (372)	
@ 75% Load	bkW (Btu/min)	7.9 (450)	—	3.86 (220)	
Heat Rejection to Exhaust					
@ 100% Load	bkW (Btu/min)	161 (9180)	128 (7292)	140 (7991)	
@ 75% Load	bkW (Btu/min)	125 (7091)	99 (5636)	105 (6022)	
Exhaust System					
Exhaust Gas Flow Rate					
@ 100% Load	m ³ /min (cfm)	38.74 (1368)	30.04 (1061)	33.1 (1168)	
@ 75% Load	m ³ /min (cfm)	30.33 (1071)	23.84 (842)	25.4 (900)	
Exhaust Stack Temperature					
@ 100% Load	°C (°F)	526 (978)	560 (1040)	540 (1004)	
@ 75% Load	°C (°F)	512 (953)	535 (995)	505 (942)	
Intake System					
Air Inlet Flow Rate					
@ 100% Load	m³/min (scfm)	13 (459)	9.68 (342)	10.84 (383)	
@ 75% Load	m³/min (scfm)	10.36 (366)	7.93 (280)	8.72 (308)	

*at 100% load and speed, all values are listed as not to exceed


**Volatile organic compounds as defined in U.S. EPA 40 CFR 60, subpart JJJJ

***ISO 3046/1

160-272 bkW (215-365 bhp)

GAS PETROLEUM ENGINE

PACKAGE DIMENSIONS							
Length	mm (in.)	1934.2 (76.15)					
Width	mm (in.)	1270.7 (50.03)					
Height	mm (in.)	1433.4 (56.43)					
Shipping Weight	kg (lb)	1360.8 (3000)					

Note: General configuration not to be used for installation. See general dimension drawings for detail.

Dimensions are in mm (inches).

RATING DEFINITIONS AND CONDITIONS

Engine performance is obtained in accordance with SAE J1995, ISO3046/1, BS5514/1, and DIN6271/1 standards.

Transient response data is acquired from an engine/ generator combination at normal operating temperature and in accordance with ISO3046/1 standard ambient conditions. Also in accordance with SAE J1995, BS5514/1, and DIN6271/1 standard reference conditions. **Conditions:** Power for gas engines is based on fuel having an LHV of 33.74 kJ/L (905 Btu/cu ft) at 101 kPa (29.91 in. Hg) and 15° C (59° F). Fuel rate is based on a cubic meter at 100 kPa (29.61 in. Hg) and 15.6° C (60.1° F). Air flow is based on a cubic foot at 100 kPa (29.61 in. Hg) and 25° C (77° F). Exhaust flow is based on a cubic foot at 100 kPa (29.61 in. Hg) and stack temperature.

Materials and specifications are subject to change without notice. The International System of Units (SI) is used in this publication. CAT, CATERPILLAR, their respective logos, S•O•S, "Caterpillar Yellow" and the "Power Edge" trade dress, as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.

6655 Corporation Pkwy., Ste 160 Fort Worth, TX 76126 Office: | Direct: +1 (307) 675.5083 dcokenour@emittechnologies.com

> QUOTE: QUO-13721-T4F3

Prepared For: Derek Pearce MIDCON COMPRESSION, LP

Manufactured on or after 1/1/2011

INFORMATION PROVIDED BY CATERPILLAR

Engine: Horsepower: RPM: Compression Ratio: Exhaust Flow Rate: Exhaust Temperature: Reference:	G3406 NA 215 1800 10.3 1018 CFM 1135 °F N/A Natural Cas
Reference:	N/A
Fuel:	Natural Gas
Annual Operating Hours:	8760

Uncontrolled Emissions

	<u>g/bhp-hr</u>
NOx:	16.52
CO:	16.52
THC:	2.08
NMHC	0.31
NMNEHC:	0.21
HCHO:	0.27
O2:	0.40 %

POST CATALYST EMISSIONS

	% Reduction	<u>g/bhp-hr</u>
NOx:	>94 %	<1.00
CO:	>88 %	<2.00
VOC:		<0.70
HCHO:	>76 %	<0.06

CONTROL EQUIPMENT

Catalyst Element

Model:	RE-1450-T
Catalyst Type:	NSCR, Star
Substrate Type:	BRAZED
Manufacturer:	EMIT Techr
Element Quantity:	1
Element Size:	Round 14.5

ndard Precious Group Metals ologies, Inc " x 3.5"

The information in this quotation, and any files transmitted with it, is confidential and may be legally privileged. It is intended only for the use of individual(s) within the company named above. If you are the intended recipient, be aware that your use of any confidential or personal information may be restricted by state and federal privacy laws 147 www.emittechnologies.com

WARRANTY

EMIT Technologies, Inc. warrants that the goods supplied will be free from defects in workmanship by EMIT Technologies, Inc. for a period of two (2) years from date of shipment. EMIT Technologies, Inc. will not be responsible for any defects which result from imprope use, neglect, failure to properly maintain or which are attributable to defects, errors or omissions in any drawings, specifications, plans or descriptions, whether written or oral, supplied to EMIT Technologies, Inc. by Buyer.

Catalyst performance using an EMIT Air/Fuel ratio controller is dependent upon properly defined set-points, variable with engine and fuel gas composition. Air/fuel ratio controller performance is guaranteed, but not limited, to fuel gas with a HHV content of 1400 BTU/SCF.

Catalyst performance will be guaranteed for a period of 1 year from installation, or 8760 operating hours, whichever comes first. The catalyst shall be operated with an automatic air/fuel ratio controller. The performance guarantee shall not cover the effects of excessive ash masking due to operation at low load, improper engine maintenance, or inappropriate lubrication oil. The performance guarantee shall not cover the effects of continuous engine misfires (cylinder or ignition) exposing the catalyst to excessive exothermic reaction temperatures. In most cases, excluding thermal deactivation, catalyst performance is redeemable by means of proper washing (refer to EMIT Catalyst/Silencer Housing Manual for element wash information, or contact a local EMIT Sales representative).

The exhaust temperature operating range at the converter inlet is a minimum of 600°F for oxidation catalyst and 750 °F for NSCR catalyst, and a maximum of 1250°F.

If a properly functioning, high temperature shut down switch is not installed, thermal deactivation of catalyst at sustained temperatures above 1250°F is not covered. If excessive exposure to over oxygenation of NSCR catalyst occurs due to improperly functioning or non-existent Air/Fuel ratio control, then deactivation of catalyst is not warranted.

The catalyst conversion efficiencies (% reduction) will be guaranteed for engine loads of 50 to 100 percent. Standard Oxidation Catalyst conversion efficiencies (% reduction) will be guaranteed for fuel gas containing less than 1.5% mole fraction of non-methane, nonethane hydrocarbons. Applications where fuel gas exceeds this level will require a Premium Oxidation Catalyst to maintain guaranteed VOC conversion efficiencies.

Engine lubrication oil shall contain less than 0.5 wt% Sulfated Ash with a maximum allowable specific oil consumption of 0.7 g/bhp-hr. The catalyst shall be limited to a maximum ash loading of 0.022 lb/ft3. Phosphorous and zinc additives are limited to 0.03 wt%. New or Reconstructed engines must operate for a minimum of 100 hours prior to catalyst installation, otherwise the warranty is void.

The catalyst must not be exposed to the following know poisoning agents, including: antimony, arsenic, chromium, copper, iron, lead, lithium, magnesium, mercury, nickel, phosphorous, potassium, silicon, sodium, sulfur, tin, and zinc. Total poison concentrations in the fuel gas must be limited to 0.25 ppm or less for catalyst to function properly.

Shipment - Promised shipping dates are approximate lead times from the point of manufacture and are not guaranteed. EMIT Technologies, Inc. will not be liable for any loss, damage or delay in manufacture or delivery resulting from any cause beyond its control including, but not limited to a period equal to the time lost by reason of that delay. All products will be crated as per best practice to prevent any damage during shipment. Unless otherwise specified, Buyer will pay for any special packing and shipping requirements. Acceptance of goods by common carrier constitutes delivery to Buyer. EMIT Technologies, Inc. shill not be responsible for goods damaged or lost in transit.

Terms: Credit is extended to purchaser for net 30 time period. If payment is not received in the net 30 timeframe, interest on the unpaid balance will accrue at a rate of 1.5% per month from the invoice date.

Order Cancellation Terms: Upon cancellation of an order once submittal of a Purchase Order has occurred, the customer will pay a 25% restocking fee for Catalyst Housings, Catalyst Elements, and Air/Fuel Ratio Controllers; 50% restocking fee for Cooler Top Solutions Exhaust System Accessories, and other Custom Built Products; 100% of all associated shipping costs incurred by EMIT; 100% of all project expenses incurred by EMIT for Field Services.

G3516B

ENGINE SPEED (rpm):

COMPRESSION RATIO:

AFTERCOOLER TYPE:

ASPIRATION:

COMBUSTION:

COOLING SYSTEM:

CONTROL SYSTEM:

EXHAUST MANIFOLD:

GAS COMPRESSION APPLICATION

AFTERCOOLER - STAGE 2 INLET (°F):

AFTERCOOLER - STAGE 1 INLET (°F):

NOX EMISSION LEVEL (g/bhp-hr NOx): SET POINT TIMING:

JACKET WATER OUTLET (°F):

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

FUEL:

1400 8:1 SCAC 130 201 210 TA JW+OC+1AC, 2AC

LOW EMISSION

ADEM3

DRY

0.5 29 RATING STRATEGY: RATING LEVEL: FUEL SYSTEM:

SITE CONDITIONS:

FUEL LHV (Btu/scf):

FUEL PRESSURE RANGE(psig):

ALTITUDE(ft): MAXIMUM INLET AIR TEMPERATURE(°F):

FUEL METHANE NUMBER:

STANDARD RATED POWER:

STANDARD CONTINUOUS CAT WIDE RANGE WITH AIR FUEL RATIO CONTROL

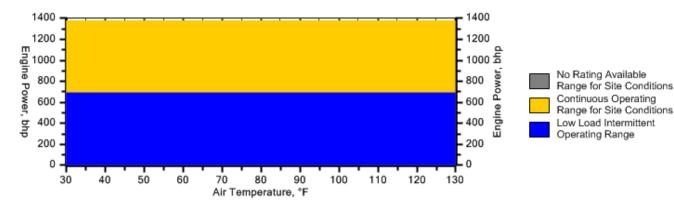
> SWN Van Aston1 7.0-40.0 63.2 1102 1500 100 1380 bhp@1400rpm

			MAXIMUM RATING	-	TING AT N IR TEMPE	-
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN) (1)	bhp	1380	1380	1035	690
INLET AIR TEMPERATURE		°F	100	100	100	100
ENGINE DATA	1					
FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	7433	7433	7961	8551
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	8206	8206	8789	9440
AIR FLOW (@inlet air temp, 14.7 psia) (WET	(-/(-)	ft3/min	3285	3285	2577	1802
AIR FLOW (WET	(3)(4)	lb/hr	13968	13968	10957	7660
FUEL FLOW (60°F, 14.7 psia)		scfm	155	155	125	89
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	93.7	93.7	76.1	53.5
EXHAUST TEMPERATURE - ENGINE OUTLET	(6)	°F	999	999	992	1012
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET	(7)(4)	ft3/min	9181	9181	7180	5094
EXHAUST GAS MASS FLOW (WET	(7)(4)	lb/hr	14456	14456	11349	7941
EMISSIONS DATA - ENGINE OUT	1					
NOx (as NO2)	(8)(9)	g/bhp-hr	0.50	0.50	0.50	0.50
со	(8)(9)	g/bhp-hr	2.83	2.83	3.04	2.98
THC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	4.74	4.74	5.08	5.16
NMHC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	1.79	1.79	1.92	1.95
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)(10)	g/bhp-hr	0.66	0.66	0.70	0.71
HCHO (Formaldehyde)	(8)(9)	g/bhp-hr	0.42	0.42	0.41	0.41
CO2	(8)(9)	g/bhp-hr	491	491	525	570
EXHAUST OXYGEN	(8)(11)	% DRY	9.1	9.1	8.8	8.4
HEAT REJECTION	1					
HEAT REJ. TO JACKET WATER (JW)	(12)	Btu/min	22700	22700	21027	19567
HEAT REJ. TO ATMOSPHERE	(12)	Btu/min	6110	6110	5092	4074
HEAT REJ. TO LUBE OIL (OC)	(12)	Btu/min	4475	4475	3978	3363
HEAT REJ. TO A/C - STAGE 1 (1AC)	(12)(13)	Btu/min	12486	12486	10391	3717
HEAT REJ. TO A/C - STAGE 2 (2AC)	(12)(13)	Btu/min	5653	5653	5312	3448
COOLING SYSTEM SIZING CRITERIA	1					
TOTAL JACKET WATER CIRCUIT (JW+OC+1AC)	(13)(14)	Btu/min	43450			
TOTAL AFTERCOOLER CIRCUIT (2AC)	(13)(14)	Btu/min	5935			

A cooling system safety factor of 0% has been added to the cooling system sizing criteria.

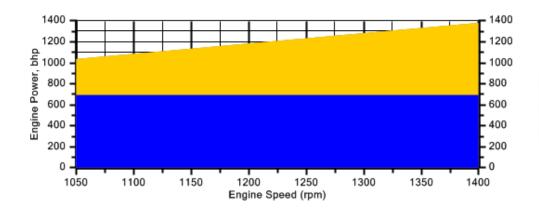
CONDITIONS AND DEFINITIONS

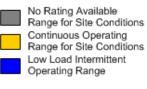
Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.


For notes information consult page three.

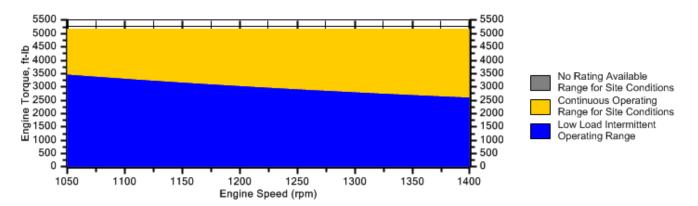
GAS ENGINE SITE SPECIFIC TECHNICAL DATA

CATERPILLAR®


Engine Power vs. Inlet Air Temperature


Data represents temperature sweep at 1500 ft and 1400 rpm

Engine Power vs. Engine Speed


Data represents speed sweep at 1500 ft and 100 °F

Engine Torque vs. Engine Speed

Data represents speed sweep at 1500 ft and 100 °F

Note: At site conditions of 1500 ft and 100°F inlet air temp., constant torque can be maintained down to 1050 rpm. The minimum speed for loading at these conditions is 1050 rpm.

G3516B

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

CATERPILLAR®

NOTES

1. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

2. Fuel consumption tolerance is \pm 3.0% of full load data.

3. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of \pm 5 %.

4. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

5. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.

6. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

7. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of \pm 6 %.

8. Emissions data is at engine exhaust flange prior to any after treatment.

9. Emission values are based on engine operating at steady state conditions. Fuel methane number cannot vary more than ± 3. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

10. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

11. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5 .

12. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

13. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

14. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0019	0.0019		
Methane	CH4	78.9440	78.9713	Fuel Makeup:	SWN Van Aston1
Ethane	C2H6	15.1730	15.1783	Unit of Measure:	English
Propane	C3H8	4.1258	4.1272		C C
Isobutane	iso-C4H1O	0.4192	0.4193	Calculated Fuel Properties	
Norbutane	nor-C4H1O	0.6678	0.6680	•	63.2
Isopentane	iso-C5H12	0.0840	0.0840	Caterpillar Methane Number:	03.2
Norpentane	nor-C5H12	0.0574	0.0574		
Hexane	C6H14	0.0201	0.0201	Lower Heating Value (Btu/scf):	1102
Heptane	C7H16	0.0000	0.0000	Higher Heating Value (Btu/scf):	1216
Nitrogen	N2	0.3400	0.3401	WOBBE Index (Btu/scf):	1327
Carbon Dioxide	CO2	0.1322	0.1322		
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	210.73
Carbon Monoxide	CO	0.0000	0.0000		0.47%
Hydrogen	H2	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	
Oxygen	O2	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.997
Octane	C8H18	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	11.44
Nonane	C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	16.60
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.689
Propylene	C3H6	0.0000	0.0000	Specific Heat Constant (K):	1.284
TOTAL (Volume %)		99.9654	99.9998	opeonic meat constant (rt).	1.204

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

Emission Control Application Data Sheet

 IAC Acoustics

 10635 Brighton Lane

 Stafford, Texas 77477

 Phone:
 832 554-0980

 Fax:
 832 554-0990

Date: 10/12/2015

Customer:	CDM
Customer Contact	

Engine Data:

/ Engine Model:	CAT 3516B	Speed:	1400	RPM
Fuel & Operating Type:	Natural Gas Lean Burn	Engine Power:	1380 0	Hp KW
Exhaust Flow Rate:	9226 acfm 15675 m³/hr 14933 lbs/hr	Exhaust Temperature:	1008 542	°F ℃

Catalyst Data:

(Number of Core layers:	1							
	Model:	201VO-4-2-811	16-1			Inlet Size:	16	in	
	Grade:	Extreme				Outlet Size:	16	in	
	Body Diameter:	42	in			Body Length:	234	in	
	Estimated weight:	2575 1168	lbs Kg			Estimated Back Pressure:	9.10 22.7	in of WC mbar	
(Core Part Number:	3ECI-RE10-15	4248-300-35-CH1000	Qty	2	Speed through inlet:	6862	ft/min	

Emission:

Min. Temp. at Core Face: Max. Temp. at Core Face:		500 517	℃ ℃				Catalyst Type:	Oxidation
				Pollutant]	
	NOx	C	0	NMNEHC/VOC	H ₂ CO	ORGANIC PM10		
Engine Out / Pre Emission:	0.5	2.	94	0.94	0.4	0	g/bhp-hr	
-	127.53	749	9.89	239.76	102.03	0.00	mg/Nm3	
Post Emission:	0.498	0.0)88	0.282	0.060	0.000	g/bhp-hr	
	126.89	22	.50	71.93	15.30	0.00	mg/Nm3	
	0.5	97	7.0	70.0	85.0	50.0	% Reduction	
	1.47	0.	26	0.83	0.18		lb/hr	
	6.44	1.	14	3.65	0.78		tons/year operation	8760 hr/year
	60.9	10).8	34.5	7.3		ppmv	
	36.6	6	.5	20.8	4.4	0.0	ppmvd @ 15% O2	

Acoustics:

Frequency Band (Hz):	31.5	63	125	250	500	1000	2000	4000	8000	
Raw Noise SPL (dB) at 3.28 ft.:	97	102	108	108	109	117	124	125	123	129.7 dBA
Estimated Attenuation (dB):	21	47	53	57	57	54	50	49	47	No Element
Plus:	21	48	55	59	61	59	56	55	52	One Element Layer
Silenced SPL (dB) at 10 ft.:	54.3	50.3	48.3	47.3	42.3	51.3	61.3	64.3	64.3	68.7 dBA

Warranty & Notes:

	 If Pre-Emission levels are not as noted above, contact IAC Acoustics for a re-quote. 	
/	 To achieve Post Emissions levels detailed above, exhaust temperature and Pre-Emission data must be as specified. 	
1	 Maximum allowable exhaust temperature at core face is 1350°F. 	
	 If applicable, the engine will require an air/fuel ratio controller to meet above emission levels. For Rich Burn engines λ must be 0.96 - 0.99. 	
	 Catalyst cleaning/regeneration required, if initial backpressure increases by 2" of WC. 	
	Engine operation to be stable and reproducible.	
	 QAC is not designed to withstand a backfire, therefore measures should be taken prior to QAC unit to alleviate backfire pressure. 	
	 Maximum lubrication oil consumption rate to be less than 0.0015 lb/bbp/hr. 	
	Lube oil sulfate ash contents should not exceed 0.5%.	
	 Phosphorus and/or Zinc should not exceed 5 ppmv in the exhaust stream. 	
	 A high temperature alarm/shutdown to be maintained at downstream of catalyst at 1300°F. 	
	 Fuel not to contain heavy or transition metals such as Pb, Ar, Zn, Cu, Sn, Fe, Ba, Ni, Cr etc. 	
	 Chlorinated or Silicone containing compounds in the exhaust not to exceed 1 ppmv. 	
	 Sulfur compounds in the exhaust gas stream not to exceed 25 ppmv. 	
	 Performance guarantee is voided should the catalyst become masked or de-activated by any contaminant in the exhaust stream. 	
	 Engine to be maintained and operated in accordance within manufacturer's recommended practice. 	
	Under no condition will IAC Acoustics assume any contingent liabilities.	
	 Operating manual is available online at www.maximsilencers.com or contact a Maxim sales representative. 	
	 Nomenclature: QAC4-292-8, 4 is grade (Super Critical), 29 is catalyst block size, 2 is no. of catalyst(s) and 8 is flange diameter. 	
1	 Organic PM10 are estimate only and not a guarantee because of the variability in fuels and additives which change PM10. 	
\backslash	IAC's standard one year warranty applies.	
		Rev level: 83

Table 3.2-3. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE RICH-BURN ENGINES^a (SCC 2-02-002-53)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Criteria Pollutants and Greenhous	se Gases	
NO _x ^c 90 - 105% Load	2.21 E+00	А
NO _x ^c <90% Load	2.27 E+00	С
CO ^c 90 - 105% Load	3.72 E+00	А
CO ^c <90% Load	3.51 E+00	С
CO ₂ ^d	1.10 E+02	А
SO ₂ ^e	5.88 E-04	А
TOC ^f	3.58 E-01	С
Methane ^g	2.30 E-01	С
VOC ^h	2.96 E-02	С
PM10 (filterable) ^{i,j}	9.50 E-03	Е
PM2.5 (filterable) ^j	9.50 E-03	Е
PM Condensable ^k	9.91 E-03	Е
Trace Organic Compounds		
1,1,2,2-Tetrachloroethane ¹	2.53 E-05	С
1,1,2-Trichloroethane ¹	<1.53 E-05	Е
1,1-Dichloroethane	<1.13 E-05	Е
1,2-Dichloroethane	<1.13 E-05	Е
1,2-Dichloropropane	<1.30 E-05	Е
1,3-Butadiene ¹	6.63 E-04	D
1,3-Dichloropropene ¹	<1.27 E-05	Е
Acetaldehyde ^{l,m}	2.79 E-03	С
Acrolein ^{l,m}	2.63 E-03	С
Benzene ^l	1.58 E-03	В
Butyr/isobutyraldehyde	4.86 E-05	D
Carbon Tetrachloride ¹	<1.77 E-05	Е

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Chlorobenzene ^l	<1.29 E-05	Е
Chloroform ¹	<1.37 E-05	Е
Ethane ⁿ	7.04 E-02	С
Ethylbenzene ¹	<2.48 E-05	Е
Ethylene Dibromide ¹	<2.13 E-05	Е
Formaldehyde ^{l,m}	2.05 E-02	А
Methanol ¹	3.06 E-03	D
Methylene Chloride ¹	4.12 E-05	С
Naphthalene ^l	<9.71 E-05	Е
PAH ¹	1.41 E-04	D
Styrene ¹	<1.19 E-05	Е
Toluene ^l	5.58 E-04	А
Vinyl Chloride ¹	<7.18 E-06	Е
Xylene ^l	1.95 E-04	А

Table 3.2-3. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE RICH-BURN ENGINES (Concluded)

^a Reference 7. Factors represent uncontrolled levels. For NO_x, CO, and PM-10, "uncontrolled" means no combustion or add-on controls; however, the factor may include turbocharged units. For all other pollutants, "uncontrolled" means no oxidation control; the data set may include units with control techniques used for NOx control, such as PCC and SCR for lean burn engines, and PSC for rich burn engines. Factors are based on large population of engines. Factors are for engines at all loads, except as indicated. SCC = Source Classification Code. TOC = Total Organic Compounds. PM10 = Particulate Matter \leq 10 microns (μ m) aerodynamic diameter. A "<" sign in front of a factor means that the corresponding emission factor is based on one-half of the method detection limit.

^b Emission factors were calculated in units of (lb/MMBtu) based on procedures in EPA Method 19. To convert from (lb/MMBtu) to (lb/ 10^6 scf), multiply by the heat content of the fuel. If the heat content is not available, use 1020 Btu/scf. To convert from (lb/MMBtu) to (lb/hp-hr) use the following equation:

lb/hp-hr = db/MMBtu, heat input, MMBtu/hr, d/operating HP, 1/hp

^c Emission tests with unreported load conditions were not included in the data set. ^d Based on 99.5% conversion of the fuel carbon to CO_2 . CO_2 [lb/MMBtu] =

(3.67)(% CON)(C)(D)(1/h), where $\% \text{CON} = \text{percent conversion of fuel carbon to CO}_2$,

C = carbon content of fuel by weight (0.75), D = density of fuel, 4.1 E+04 $lb/10^6$ scf, and h = heating value of natural gas (assume 1020 Btu/scf at 60°F).

- ^e Based on 100% conversion of fuel sulfur to SO₂. Assumes sulfur content in natural gas of 2,000 gr/10^6 scf.
- ^f Emission factor for TOC is based on measured emission levels from 6 source tests.
- ^g Emission factor for methane is determined by subtracting the VOC and ethane emission factors from the TOC emission factor.
- ^h VOC emission factor is based on the sum of the emission factors for all speciated organic compounds. Methane and ethane emissions were not measured for this engine category.
- ⁱ No data were available for uncontrolled engines. PM10 emissions are for engines equipped with a PCC.
- ^j Considered $\leq 1 \ \mu$ m in aerodynamic diameter. Therefore, for filterable PM emissions, PM10(filterable) = PM2.5(filterable).
- ^k No data were available for condensable emissions. The presented emission factor reflects emissions from 4SLB engines.
- ¹ Hazardous Air Pollutant as defined by Section 112(b) of the Clean Air Act.
- ^m For rich-burn engines, no interference is suspected in quantifying aldehyde emissions. The presented emission factors are based on FTIR and CARB 430 emissions data measurements.
- $^{\rm n}\,$ Ethane emission factor is determined by subtracting the VOC emission factor from the NMHC emission factor.

	N	O _x ^b	C	0
Combustor Type (MMBtu/hr Heat Input) [SCC]	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
Large Wall-Fired Boilers (>100) [1-01-006-01, 1-02-006-01, 1-03-006-01]				
Uncontrolled (Pre-NSPS) ^c	280	А	84	В
Uncontrolled (Post-NSPS) ^c	190	А	84	В
Controlled - Low NO _x burners	140	А	84	В
Controlled - Flue gas recirculation	100	D	84	В
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]				
Uncontrolled	100	В	84	В
Controlled - Low NO _x burners	50	D	84	В
Controlled - Low NO _x burners/Flue gas recirculation	32	С	84	В
Tangential-Fired Boilers (All Sizes) [1-01-006-04]				
Uncontrolled	170	А	24	С
Controlled - Flue gas recirculation	76	D	98	D
Residential Furnaces (<0.3) [No SCC]				
Uncontrolled	94	В	40	В

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NOx) AND CARBON MONOXIDE (CO)FROM NATURAL GAS COMBUSTIONa

Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from $lb/10^{6}$ scf to $kg/10^{6}$ m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from $lb/10^{6}$ scf to lb/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable.

^b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO x emission factor.
 ^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of

^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction modification, or reconstruction after June 19, 1984.

1.4-5

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
91-57-6	2-Methylnaphthalene ^{b, c}	2.4E-05	D
56-49-5	3-Methylchloranthrene ^{b, c}	<1.8E-06	Е
	7,12-Dimethylbenz(a)anthracene ^{b,c}	<1.6E-05	Е
83-32-9	Acenaphthene ^{b,c}	<1.8E-06	Е
203-96-8	Acenaphthylene ^{b,c}	<1.8E-06	Е
120-12-7	Anthracene ^{b,c}	<2.4E-06	Е
56-55-3	Benz(a)anthracene ^{b,c}	<1.8E-06	Е
71-43-2	Benzene ^b	2.1E-03	В
50-32-8	Benzo(a)pyrene ^{b,c}	<1.2E-06	Е
205-99-2	Benzo(b)fluoranthene ^{b,c}	<1.8E-06	Е
191-24-2	Benzo(g,h,i)perylene ^{b,c}	<1.2E-06	Е
205-82-3	Benzo(k)fluoranthene ^{b,c}	<1.8E-06	Е
106-97-8	Butane	2.1E+00	Е
218-01-9	Chrysene ^{b,c}	<1.8E-06	Е
53-70-3	Dibenzo(a,h)anthracene ^{b,c}	<1.2E-06	Е
25321-22-6	Dichlorobenzene ^b	1.2E-03	Е
74-84-0	Ethane	3.1E+00	Е
206-44-0	Fluoranthene ^{b,c}	3.0E-06	Е
86-73-7	Fluorene ^{b,c}	2.8E-06	Е
50-00-0	Formaldehyde ^b	7.5E-02	В
110-54-3	Hexane ^b	1.8E+00	Е
193-39-5	Indeno(1,2,3-cd)pyrene ^{b,c}	<1.8E-06	Е
91-20-3	Naphthalene ^b	6.1E-04	Е
109-66-0	Pentane	2.6E+00	Е
85-01-8	Phenanathrene ^{b,c}	1.7E-05	D

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION^a

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION (Continued)

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
74-98-6	Propane	1.6E+00	Е
129-00-0	Pyrene ^{b, c}	5.0E-06	Е
108-88-3	Toluene ^b	3.4E-03	С

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from 1b/10⁶ scf to lb/MMBtu, divide by 1,020. Emission Factors preceeded with a less-than symbol are based on method detection limits.

^b Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.

^c HAP because it is Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act.

^d The sum of individual organic compounds may exceed the VOC and TOC emission factors due to differences in test methods and the availability of test data for each pollutant.

loading operation, resulting in high levels of vapor generation and loss. If the turbulence is great enough, liquid droplets will be entrained in the vented vapors.

A second method of loading is submerged loading. Two types are the submerged fill pipe method and the bottom loading method. In the submerged fill pipe method, the fill pipe extends almost to the bottom of the cargo tank. In the bottom loading method, a permanent fill pipe is attached to the cargo tank bottom. During most of submerged loading by both methods, the fill pipe opening is below the liquid surface level. Liquid turbulence is controlled significantly during submerged loading, resulting in much lower vapor generation than encountered during splash loading.

The recent loading history of a cargo carrier is just as important a factor in loading losses as the method of loading. If the carrier has carried a nonvolatile liquid such as fuel oil, or has just been cleaned, it will contain vapor-free air. If it has just carried gasoline and has not been vented, the air in the carrier tank will contain volatile organic vapors, which will be expelled during the loading operation along with newly generated vapors.

Cargo carriers are sometimes designated to transport only one product, and in such cases are practicing "dedicated service". Dedicated gasoline cargo tanks return to a loading terminal containing air fully or partially saturated with vapor from the previous load. Cargo tanks may also be "switch loaded" with various products, so that a nonvolatile product being loaded may expel the vapors remaining from a previous load of a volatile product such as gasoline. These circumstances vary with the type of cargo tank and with the ownership of the carrier, the petroleum liquids being transported, geographic location, and season of the year.

One control measure for vapors displaced during liquid loading is called "vapor balance service", in which the cargo tank retrieves the vapors displaced during product unloading at bulk plants or service stations and transports the vapors back to the loading terminal. Figure 5.2-5 shows a tank truck in vapor balance service filling a service station underground tank and taking on displaced gasoline vapors for return to the terminal. A cargo tank returning to a bulk terminal in vapor balance service normally is saturated with organic vapors, and the presence of these vapors at the start of submerged loading of the tanker truck results in greater loading losses than encountered during nonvapor balance, or "normal", service. Vapor balance service is usually not practiced with marine vessels, although some vessels practice emission control by means of vapor transfer within their own cargo tanks during ballasting operations, discussed below.

Emissions from loading petroleum liquid can be estimated (with a probable error of ± 30 percent)⁴ using the following expression:

$$L_{L} = 12.46 \frac{SPM}{T}$$
(1)

where:

5.2-4

 $L_{\rm L}$ = loading loss, pounds per 1000 gallons (lb/10³ gal) of liquid loaded

- S = a saturation factor (see Table 5.2-1)
- P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Figure 7.1-5, Figure 7.1-6, and Table 7.1-2)
- M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Table 7.1-2)
- T = temperature of bulk liquid loaded, ${}^{\circ}\bar{R}$ (${}^{\circ}\bar{F}$ + 460)

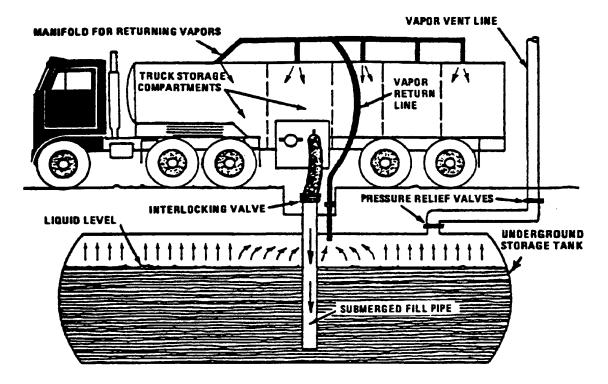


Figure 5.2-5. Tank truck unloading into a service station underground storage tank and practicing "vapor balance" form of emission control.

Table 5.2-1.	SATURATION (S) FACTORS FOR CALCULATING PETROLEUM LIQUID
	LOADING LOSSES

Cargo Carrier	Mode Of Operation	S Factor
Tank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.50
	Submerged loading: dedicated normal service	0.60
	Submerged loading: dedicated vapor balance service	1.00
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.00
Marine vessels ^a	Submerged loading: ships	0.2
	Submerged loading: barges	0.5

^a For products other than gasoline and crude oil. For marine loading of gasoline, use factors from Table 5.2-

2. For marine loading of crude oil, use Equations 2 and 3 and Table 5.2-3.

Since flares do not lend themselves to conventional emission testing techniques, only a few attempts have been made to characterize flare emissions. Recent EPA tests using propylene as flare gas indicated that efficiencies of 98 percent can be achieved when burning an offgas with at least $11,200 \text{ kJ/m}^3$ (300 Btu/ft³). The tests conducted on steam-assisted flares at velocities as low as 39.6 meters per minute (m/min) (130 ft/min) to 1140 m/min (3750 ft/min), and on air-assisted flares at velocities of 180 m/min (617 ft/min) to 3960 m/min (13,087 ft/min) indicated that variations in incoming gas flow rates have no effect on the combustion efficiency. Flare gases with less than 16,770 kJ/m³ (450 Btu/ft³) do not smoke.

Table 13.5-1 presents flare emission factors, and Table 13.5-2 presents emission composition data obtained from the EPA tests.¹ Crude propylene was used as flare gas during the tests. Methane was a major fraction of hydrocarbons in the flare emissions, and acetylene was the dominant intermediate hydrocarbon species. Many other reports on flares indicate that acetylene is always formed as a stable intermediate product. The acetylene formed in the combustion reactions may react further with hydrocarbon radicals to form polyacetylenes followed by polycyclic hydrocarbons.²

In flaring waste gases containing no nitrogen compounds, NO is formed either by the fixation of atmospheric nitrogen (N) with oxygen (O) or by the reaction between the hydrocarbon radicals present in the combustion products and atmospheric nitrogen, by way of the intermediate stages, HCN, CN, and OCN.² Sulfur compounds contained in a flare gas stream are converted to SO₂ when burned. The amount of SO₂ emitted depends directly on the quantity of sulfur in the flared gases.

Table 13.5-1 (English Units). EMISSION FACTORS FOR FLARE OPERATIONS^a

Component	Emission Factor (lb/10 ⁶ Btu)
Total hydrocarbons ^b	0.14
Carbon monoxide	0.37
Nitrogen oxides	0.068
Soot ^c	0 - 274

EMISSION FACTOR RATING: B

^a Reference 1. Based on tests using crude propylene containing 80% propylene and 20% propane.

^b Measured as methane equivalent.

^c Soot in concentration values: nonsmoking flares, 0 micrograms per liter (μ g/L); lightly smoking flares, 40 μ g/L; average smoking flares, 177 μ g/L; and heavily smoking flares, 274 μ g/L.

Equipment Type	Service ^a	Emission Factor (kg/hr/source) ^b
Valves	Gas Heavy Oil Light Oil Water/Oil	4.5E-03 8.4E-06 2.5E-03 9.8E-05
Pump seals	Gas Heavy Oil Light Oil Water/Oil	2.4E-03 NA 1.3E-02 2.4E-05
Others ^C	Gas Heavy Oil Light Oil Water/Oil	8.8E-03 3.2E-05 7.5E-03 1.4E-02
Connectors	Gas Heavy Oil Light Oil Water/Oil	2.0E-04 7.5E-06 2.1E-04 1.1E-04
Flanges	Gas Heavy Oil Light Oil Water/Oil	3.9E-04 3.9E-07 1.1E-04 2.9E-06
Open-ended lines	Gas Heavy Oil Light Oil Water/Oil	2.0E-03 1.4E-04 1.4E-03 2.5E-04

TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source)

^aWater/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

^bThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.

^CThe "other" equipment type was derived from compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: Fork Ridge 35 MMscfd TEG Dehydrator File Name: Fork Ridge_GLYCalc.ddf Date: November 18, 2015 DESCRIPTION: _____ Description: Ext Gas Analysis calculated by ProMax. Inlet gas temp = 70F, pressure = 900 psig. Kimray 45015 PV (7.5 gpm) glycol pump. Flash tank off gas to combustor via tanks. Still vent emissions to BTEX Skid w/ overheads to reboiler. Annual Hours of Operation: 8760.0 hours/yr WET GAS: _____ 70.00 deg. F 900.00 psig Wet Gas Water Content: Saturated Temperature: Pressure: Component Conc. (vol %) ----- -----Carbon Di oxi de 0. 1572 Ni trogen 0. 3611 Methane 76. 8093 Ethane 14. 8525 Propane 4. 9170 Propane 4.9170 lsobutane 0.6554 1.2092 n-Butane lsopentane 0. 3167 sopentane n-Pentane 0.2663 Cycl opentane 0.0034 n-Hexane 0.0791 0.0087 Cycl ohexane Other Hexanes 0.1366 Heptanes 0.0784 Methyl cycl ohexane 0.0145 Benzene 0.0017 Tol uene 0.0032 Ethyl benzene 0.0012 Xyl enes 0.0028 C8+ Heavies 0.0370 DRY GAS:

Flow Rate: 35.0 MMSCF/day Water Content: 7.0 lbs. H20/I

7.0 lbs. H20/MMSCF

LEAN GLYCOL:

Page 1

Glycol Type: TEG Water Content: 1.5 wt% H2O Flow Rate: 7.5 gpm
PUMP:
Glycol Pump Type: Gas Injection Gas Injection Pump Volume Ratio: 0.080 acfm gas/gpm glycol
FLASH TANK:
Flash Control: Combustion device Flash Control Efficiency: 98.00 % Temperature: 150.0 deg. F Pressure: 50.0 psig
REGENERATOR OVERHEADS CONTROL DEVICE:
Control Device: Condenser Temperature: 100.0 deg. F Pressure: 14.0 psia
Control Device: Combustion Device Destruction Efficiency: 50.0 % Excess Oxygen: 5.0 % Ambient Air Temperature: 50.0 deg. F

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Fork Ridge 35 MMscfd TEG Dehydrator File Name: Fork Ridge_GLYCalc.ddf Date: November 18, 2015

DESCRI PTI ON:

Description: Ext Gas Analysis calculated by ProMax. Inlet gas temp = 70F, pressure = 900 psig. Kimray 45015 PV (7.5 gpm) glycol pump. Flash tank off gas to combustor via tanks. Still vent emissions to BTEX Skid w/ overheads to reboiler.

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	l bs/hr	l bs/day	tons/yr
Methane	0. 3658	8. 779	1. 6022
Ethane	0. 5282	12. 677	2. 3136
Propane	0. 5340	12. 816	2. 3389
I sobutane	0. 1401	3. 363	0. 6137
n-Butane	0. 3531	8. 474	1. 5466
l sopentane	0. 0961	2. 305	0. 4207
n-Pentane	0. 1003	2. 407	0. 4393
Cycl opentane	0. 0094	0. 225	0. 0411
n-Hexane	0. 0453	1. 088	0. 1986
Cycl ohexane	0. 0354	0. 849	0. 1549
Other Hexanes	0.0657	1.576	0. 2876
Heptanes	0.0604	1.449	0. 2645
Methyl cycl ohexane	0.0438	1.052	0. 1919
Benzene	0.0855	2.053	0. 3747
Tol uene	0.0974	2.338	0. 4266
Ethyl benzene	0. 0211	0. 506	0. 0923
Xyl enes	0. 0529	1. 269	0. 2316
C8+ Heavi es	0. 0005	0. 011	0. 0021
Total Emissions	2. 6349	63.238	11. 5409
Total Hydrocarbon Emissions	2.6349	63. 238	11. 5409
Total VOC Emissions	1.7409	41. 781	7. 6250
Total HAP Emissions	0.3022	7. 254	1. 3238
Total BTEX Emissions	0.2569	6. 166	1. 1252

UNCONTROLLED REGENERATOR EMISSIONS

Component	l bs/hr	l bs/day	tons/yr
	Page 1		

Methane	0. 7335	17.605	3. 2129
Ethane	1. 0702	25.685	4. 6875
Propane	1. 1438	27.452	5. 0099
I sobutane	0. 3218	7.722	1. 4093
n-Butane	0. 8513	20.432	3. 7289
l sopentane	0. 2954	7.090	1. 2940
n-Pentane	0. 3444	8.266	1. 5086
Cycl opentane	0. 0380	0.913	0. 1666
n-Hexane	0. 2586	6.206	1. 1327
Cycl ohexane	0. 2546	6.111	1. 1153
Other Hexanes	0. 2989	7. 174	1. 3093
Heptanes	0. 7657	18. 378	3. 3539
Methyl cycl ohexane	0. 5734	13. 761	2. 5114
Benzene	0. 7329	17. 591	3. 2103
Tol uene	2. 3298	55. 916	10. 2047
Ethyl benzene	1. 3142	31. 541	5. 7562
Xyl enes	4. 0180	96. 432	17. 5988
C8+ Heavi es	1. 7300	41. 519	7. 5773
Total Emissions	17. 0748	409. 794	74. 7875
Total Hydrocarbon Emissions	17. 0748	409.794	74. 7875
Total VOC Emissions	15. 2710	366.504	66. 8871
Total HAP Emissions	8. 6536	207.686	37. 9026
Total BTEX Emissions	8. 3950	201.479	36. 7700

FLASH GAS EMISSIONS

Component	lbs/hr	l bs/day	tons/yr
Methane	2. 0273	48.655	8. 8795
Ethane	0. 8779	21.069	3. 8450
Propane	0. 4723	11.336	2. 0689
I sobutane	0. 0914	2.194	0. 4004
n-Butane	0. 1890	4.536	0. 8277
l sopentane	0. 0598	1. 434	0. 2618
n-Pentane	0. 0567	1. 360	0. 2483
Cycl opentane	0. 0015	0. 037	0. 0067
n-Hexane	0. 0244	0. 586	0. 1069
Cycl ohexane	0. 0060	0. 144	0. 0262
Other Hexanes	0. 0371	0. 890	0. 1625
Heptanes	0. 0365	0. 875	0. 1597
Methyl cycl ohexane	0. 0109	0. 260	0. 0475
Benzene	0. 0028	0. 066	0. 0121
Tol uene	0. 0058	0. 140	0. 0256
Ethyl benzene	0. 0020	0. 047	0. 0087
Xyl enes	0. 0043	0. 103	0. 0189
C8+ Heavi es	0. 0118	0. 282	0. 0515
Total Emissions	3. 9173	94.015	17. 1578
Total Hydrocarbon Emissions	3. 9173	94.015	17. 1578
Total VOC Emissions	1. 0122	24.292	4. 4333
Total HAP Emissions	0. 0393	0.943	0. 1721
Total BTEX Emissions	0. 0149	0.357	0. 0652

Page 2

FLASH TANK OFF GAS

Component	l bs/hr	l bs/day	tons/yr
Methane	101. 3636	2432. 727	443. 9726
Ethane	43. 8932	1053. 436	192. 2521
Propane	23. 6172	566. 812	103. 4432
I sobutane	4. 5709	109. 701	20. 0205
n-Butane	9. 4490	226. 776	41. 3867
l sopentane	2. 9883	71.719	13. 0887
n-Pentane	2. 8339	68.014	12. 4126
Cycl opentane	0. 0763	1.831	0. 3342
n-Hexane	1. 2206	29.295	5. 3463
Cycl ohexane	0. 2991	7.178	1. 3099
Other Hexanes	1.8546	44.509	8. 1229
Heptanes	1.8234	43.761	7. 9864
Methyl cycl ohexane	0.5427	13.024	2. 3768
Benzene	0.1378	3.306	0. 6034
Tol uene	0.2925	7.020	1. 2811
Ethyl benzene	0. 0988	2. 371	0. 4327
Xyl enes	0. 2154	5. 168	0. 9432
C8+ Heavi es	0. 5884	14. 121	2. 5770
Total Emissions	195. 8654	4700. 769	857.8904
Total Hydrocarbon Emissions	195. 8654	4700. 769	857. 8904
Total VOC Emissions	50. 6086	1214. 606	221. 6656
Total HAP Emissions	1. 9650	47. 160	8. 6067
Total BTEX Emissions	0. 7444	17. 865	3. 2604

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

Component	lbs/hr	l bs/day	tons/yr
Methane	2. 3931	57. 434	10. 4816
Ethane	1. 4061	33. 746	6. 1587
Propane	1. 0063	24. 152	4. 4078
I sobutane	0. 2315	5. 557	1. 0141
n-Butane	0. 5421	13. 010	2. 3743
I sopentane	0. 1558	3.740	0. 6825
n-Pentane	0. 1570	3.767	0. 6875
Cycl opentane	0. 0109	0.262	0. 0477
n-Hexane	0. 0697	1.674	0. 3055
Cycl ohexane	0. 0414	0.992	0. 1811
Other Hexanes	0. 1028	2.466	0. 4501
Heptanes	0. 0968	2.324	0. 4242
Methyl cycl ohexane	0. 0547	1.312	0. 2395
Benzene	0. 0883	2.119	0. 3868
Tol uene	0. 1033	2.478	0. 4522
Ethyl benzene	0. 0230	0. 553	0. 1010
Xyl enes	0. 0572	1. 372	0. 2505
C8+ Heavi es	0. 0122	0. 294	0. 0536
Total Emissions	6.5522 Page 3	157.253	28. 6987

Total	Hydrocarbon Emissions	6. 5522	157.253	28. 6987
	Total VOC Emissions	2. 7530	66.073	12. 0584
	Total HAP Emissions	0. 3415	8.197	1. 4960
	Total BTEX Emissions	0. 2718	6.523	1. 1905

COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT:

Component	Uncontrolled tons/yr	Controlled tons/yr	% Reduction
Methane	447. 1855	10. 4816	97.66
Ethane	196. 9396	6. 1587	96.87
Propane	108. 4532	4. 4078	95.94
I sobutane	21. 4298	1. 0141	95.27
n-Butane	45. 1156	2. 3743	94.74
I sopentane	14. 3826	0. 6825	95.25
n-Pentane	13. 9211	0. 6875	95.06
Cycl opentane	0. 5007	0. 0477	90.47
n-Hexane	6. 4789	0. 3055	95.28
Cycl ohexane	2. 4253	0. 1811	92.53
Other Hexanes	9. 4323	0. 4501	95.23
Heptanes	11. 3403	0. 4242	96.26
Methyl cycl ohexane	4. 8882	0. 2395	95.10
Benzene	3. 8137	0. 3868	89.86
Tol uene	11. 4858	0. 4522	96.06
Ethyl benzene	6. 1889	0. 1010	98.37
Xyl enes	18. 5420	0. 2505	98.65
C8+ Heavi es	10. 1543	0. 0536	99.47
Total Emissions	932.6779	28. 6987	96. 92
Total Hydrocarbon Emissions	932. 6779	28. 6987	96.92
Total VOC Emissions	288. 5527	12. 0584	95.82
Total HAP Emissions	46. 5093	1. 4960	96.78
Total BTEX Emissions	40. 0304	1. 1905	97.03

EQUIPMENT REPORTS:

CONDENSER AND COMBUSTION DEVICE

Condenser Outlet Temperature: 100.00 deg. F Condenser Pressure: 14.00 psia Condenser Duty: 1.34e-002 MM BTU/hr Hydrocarbon Recovery: 0.95 bbls/day Produced Water: 2.40 bbls/day Ambient Temperature: 50.00 deg. F Excess Oxygen: 5.00 % Combustion Efficiency: 50.00 % Supplemental Fuel Requirement: 1.34e-002 MM BTU/hr Page 4

Component	Emitted	Destroyed
Methane	49.87%	50. 13%
Ethane	49.36%	50. 64%
Propane	46.69%	53. 31%
I sobutane	43.54%	56. 46%
n-Butane	41.48%	58. 52%
l sopentane	32.52%	67.48%
n-Pentane	29.12%	70.88%
Cycl opentane	24.65%	75.35%
n-Hexane	17.53%	82.47%
Cycl ohexane	13.89%	86.11%
Other Hexanes	21. 97%	78.03%
Heptanes	7. 89%	92.11%
Methyl cycl ohexane	7. 64%	92.36%
Benzene	11. 67%	88.33%
Tol uene	4. 18%	95.82%
Ethyl benzene	1.60%	98.40%
Xyl enes	1.32%	98.68%
C8+ Heavi es	0.03%	99.97%

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: Calculated Dry Gas Dew Point:	1.25	lbs. H20/MMSCF
carculated by gas bew fornt.	0. 73	
Temperature:		deg. F
Pressure: Dry Gas Flow Rate:	900.0	psig
Dry Gas Flow Rate:	35.0000	MMSČF/day
Glycol Losses with Dry Gas:	0. 2254	lb/hr
Wet Gas Water Content:		
Calculated Wet Gas Water Content:	25.32	Ibs. H20/MMSCF
Calculated Lean Glycol Recirc. Ratio:	12.65	gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	3. 67%	96.33%
Carbon Dioxide	99. 65%	0.35%
Nitrogen	99. 97%	0.03%
Methane	99. 98%	0.02%
Ethane	99. 93%	0.07%
Propane	99. 90%	0.10%
I sobutane	99.86%	0. 14%
n-Butane	99.81%	0. 19%
I sopentane	99.82%	0. 18%
n-Pentane	99.76%	0. 24%
Cycl opentane n-Hexane Cycl ohexane	98. 93% 99. 63% 98. 22% Page 5	1.07% 0.37% 1.78%

	Other Hexanes Heptanes	99.72% 99.34%	0. 28% 0. 66%	
	Methyl cycl ohexane Benzene Tol uene Ethyl benzene Xyl enes	98. 15% 82. 83% 76. 97% 72. 19% 63. 47%	1.85% 17.17% 23.03% 27.81% 36.53%	
	C8+ Heavies	99.24%	0.76%	
FLASH TANK				
	Flash Contr Flash Control Efficien Flash Temperatu Flash Pressu	rol: Combust ncy: 98.00 ure: 150 ure: 50	%	
	Component	Left in Glycol	Removed in Flash Gas	
	Water Carbon Dioxide Nitrogen Methane Ethane	99.48% 6.76% 0.71% 0.72% 2.38%	0.52% 93.24% 99.29% 99.28% 97.62%	
	n-Pentane	4.62% 6.58% 8.27% 9.22% 11.08%	88.92%	
	Cycl opentane n-Hexane Cycl ohexane Other Hexanes Heptanes	33.55% 17.75% 47.55% 14.40% 29.85%	66. 45% 82. 25% 52. 45% 85. 60% 70. 15%	
	Methyl cycl ohexane Benzene Tol uene Ethyl benzene Xyl enes	53. 14% 84. 96% 89. 72% 93. 73% 95. 57%	46.86% 15.04% 10.28% 6.27% 4.43%	
	C8+ Heavies	77.12%	22.88%	

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water Carbon Dioxide Nitrogen Methane	64.30% 0.00% 0.00% 0.00% Page 6	35.70% 100.00% 100.00% 100.00%

Ethane	0.00%	100.00%
Propane	0.00%	100.00%
I sobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
I sopentane	2.63%	97.37%
n-Pentane	2.49%	97.51%
Cycl opentane	1.26%	98.74%
n-Hexane	1.86%	98.14%
Cycl ohexane	6.09%	93.91%
Other Hexanes	4.14%	95.86%
Heptanes	1.30%	98.70%
Methyl cycl ohexane	6.84%	93. 16%
Benzene	5.82%	94. 18%
Tol uene	8.74%	91. 26%
Ethyl benzene	11.03%	88. 97%
Xyl enes	13.45%	86. 55%
C8+ Heavies	12.75%	87.25%

STREAM REPORTS:

WET GAS STREAM

WET	GAS STREAM			
	Temperature: Pressure: Flow Rate:	70.00 deg. F 914.70 psia 1.46e+006 scfh		
		Component	Conc. Loading (vol%) (Ib/hr)	
		Carbon Dioxide Nitrogen Methane	5. 33e-002 3. 70e+001 1. 57e-001 2. 66e+002 3. 61e-001 3. 89e+002 7. 68e+001 4. 74e+004 1. 49e+001 1. 72e+004	
		I sobutane n-Butane I sopentane	4.92e+000 8.34e+003 6.56e-001 1.47e+003 1.21e+000 2.70e+003 3.17e-001 8.79e+002 2.66e-001 7.40e+002	
		Cycl ohexane Other Hexanes	3.36e-003 9.07e+000 7.91e-002 2.62e+002 8.67e-003 2.81e+001 1.37e-001 4.53e+002 7.84e-002 3.02e+002	
		Benzene Tol uene Ethyl benzene	1. 45e-002 5. 46e+001 1. 67e-003 5. 01e+000 3. 19e-003 1. 13e+001 1. 24e-003 5. 05e+000 2. 82e-003 1. 15e+001	
		C8+ Heavies	3.70e-002 2.42e+002 Page 7	

DRY GAS STREAM

Temperature: 70.00 deg. F Pressure: 914.70 psia Flow Rate: 1.46e+006 scfh	
Component Conc. Loading (vol%) (lb/hr)	
Water 1.96e-003 1.36e+000 Carbon Dioxide 1.57e-001 2.65e+002 Nitrogen 3.61e-001 3.89e+002 Methane 7.69e+001 4.74e+004 Ethane 1.49e+001 1.72e+004	
Propane 4.92e+000 8.34e+003 I sobutane 6.55e-001 1.46e+003 n-Butane 1.21e+000 2.70e+003 I sopentane 3.16e-001 8.78e+002 n-Pentane 2.66e-001 7.38e+002	
Cycl opentane 3.33e-003 8.98e+000 n-Hexane 7.89e-002 2.61e+002 Cycl ohexane 8.53e-003 2.76e+001 Other Hexanes 1.36e-001 4.52e+002 Heptanes 7.80e-002 3.00e+002	
Methyl cycl ohexane 1. 42e-002 5. 36e+001 Benzene 1. 38e-003 4. 15e+000 Tol uene 2. 45e-003 8. 69e+000 Ethyl benzene 8. 93e-004 3. 64e+000 Xyl enes 1. 79e-003 7. 32e+000	
C8+ Heavies 3.67e-002 2.40e+002	
Total Components 100.00 8.07e+004	

Temperature: Flow Rate:	70.00 deg. F 7.50e+000 gpm		
	Component	Conc. (wt%)	Loadi ng (I b/hr)
	Water Carbon Dioxide Nitrogen	9. 85e+001 1. 50e+000 2. 21e-012 2. 49e-013 8. 51e-018	6. 33e+001 9. 33e-011 1. 05e-011
	Propane I sobutane	1.32e-007 8.36e-009 1.47e-009 2.99e-009 1.89e-004	3.53e-007 6.20e-008 1.26e-007

Page 8

n-Pentane 2.09e-004 8.81e-003 Cycl opentane 1.15e-005 4.86e-004 n-Hexane 1.16e-004 4.89e-003 Cycl ohexane 3.91e-004 1.65e-002 Other Hexanes 3.06e-004 1.29e-002 Heptanes 2.39e-004 1.01e-002 Methyl cycl ohexane 9.98e-004 4.21e-002 Benzene 1.07e-003 4.53e-002 Tol uene 5.29e-003 2.23e-001 Ethyl benzene 3.86e-003 1.63e-001 Xyl enes 1.48e-002 6.24e-001 C8+ Heavi es 5.99e-003 2.53e-001

RICH GLYCOL AND PUMP GAS STREAM

Temperature: 70.00 deg. F Pressure: 914.70 psia Flow Rate: 8.04e+000 gpm NOTE: Stream has more than one phase. Component Conc. Loading

(wt%) (lb/hr) _____ TEG 9.29e+001 4.16e+003 Water 2. 21e+000 9. 90e+001 Carbon Di oxi de 3. 23e-002 1. 45e+000 Ni trogen 1. 91e-002 8. 56e-001 Methane 2. 28e+000 1. 02e+002 Ethane 1.01e+000 4.50e+001 Propane 5.54e-001 2.48e+001 Isobutane 1.09e-001 4.89e+000 n-Butane 2.30e-001 1.03e+001 I sopentane 7.36e-002 3.29e+000 n-Pentane 7.13e-002 3.19e+000 Cycl opentane 2.57e-003 1.15e-001 n-Hexane 3.32e-002 1.48e+000 Cycl ohexane 1. 28e-002 5. 70e-001 Other Hexanes 4. 84e-002 2. 17e+000 Heptanes 5.81e-002 2.60e+000 Methyl cycl ohexane 2. 59e-002 1. 16e+000 Benzene 2. 05e-002 9. 16e-001 Tol uene 6. 36e-002 2. 85e+000 Ethyl benzene 3.52e-002 1.58e+000 Xyl enes 1.09e-001 4.86e+000 C8+ Heavies 5.75e-002 2.57e+000 ----- ----- -----Total Components 100.00 4.47e+003

FLASH TANK OFF GAS STREAM

				 			 	 	 	 	_
Temperature: Pressure:	150.00 64.70		F								
		•		Pa	qe	9					

Flow Rate: 3.34e+003 scfh

Component	Conc. (vol%)	
Carbon Dioxide Nitrogen Methane	3. 26e-001 3. 48e-001 3. 45e-001 7. 18e+001 1. 66e+001	1.35e+000 8.50e-001 1.01e+002
I sobutane n-Butane I sopentane	6.08e+000 8.94e-001 1.85e+000 4.71e-001 4.46e-001	4.57e+000 9.45e+000 2.99e+000
Cycl ohexane Other Hexanes	1.61e-001 4.04e-002	1.22e+000 2.99e-001 1.85e+000
Tol uene Ethyl benzene	2.00e-002 3.61e-002	1.38e-001 2.92e-001 9.88e-002
C8+ Heavies Total Components		5.88e-001 1.99e+002

FLASH TANK GLYCOL STREAM

00 deg. F 00 gpm		
ent	Conc. (wt%)	Loadi ng (I b/hr)
Water bon Dioxide Nitrogen	2.30e+000 2.29e-003 1.41e-004	9.85e+001 9.78e-002 6.04e-003
Propane Isobutane n-Butane	2.68e-002 7.53e-003 1.99e-002	1. 14e+000 3. 22e-001 8. 51e-001
ycl opentane n-Hexane Cycl ohexane	9.01e-004 6.17e-003 6.35e-003	3.85e-002 2.63e-001 2.71e-001
cycl ohexane	1.44e-002	6.15e-001
	Water bon Di oxi de Ni trogen Methane Ethane Propane I sobutane n-Butane I sopentane n-Pentane ycl opentane n-Hexane Cycl ohexane her Hexanes	00 gpm ent Conc. (wt%) TEG 9.73e+001 Water 2.30e+000 bon Di oxi de 2.29e-003 Ni trogen 1.41e-004 Methane 1.72e-002 Ethane 2.50e-002 Propane 2.68e-002 I sobutane 7.53e-003 n-Butane 1.99e-002 I sopentane 7.10e-003 n-Pentane 8.27e-003 ycl opentane 9.01e-004 n-Hexane 6.17e-003 Cycl ohexane 6.35e-003 her Hexanes 7.30e-003 Heptanes 1.82e-002 Cycl ohexane 1.44e-002 Benzene 1.82e-002

Tol uene 5. 97e-002 2. 55e+000 Ethyl benzene 3. 46e-002 1. 48e+000 Xyl enes 1. 09e-001 4. 64e+000 C8+ Heavi es 4. 64e-002 1. 98e+000 Total Components 100. 00 4. 27e+003

FLASH GAS EMISSIONS

Flow Rate: 1.28e+004 scfh Control Method: Combustion Device Control Efficiency: 98.00

Component	Conc. (vol %)	Loadi ng (Ib/hr)
Carbon Dioxide Nitrogen Methane	6. 23e+001 3. 71e+001 9. 00e-002 3. 75e-001 8. 67e-002	5.50e+002 8.50e-001 2.03e+000
I sobutane n-Butane I sopentane	3. 18e-002 4. 67e-003 9. 65e-003 2. 46e-003 2. 33e-003	9. 14e-002 1. 89e-001 5. 98e-002
Cycl ohexane Other Hexanes	8. 41e-004 2. 11e-004	2.44e-002 5.98e-003 3.71e-002
Tol uene Ethyl benzene	1.05e-004 1.88e-004	2.76e-003 5.85e-003 1.98e-003
C8+ Heavi es	2.05e-004	1. 18e-002
Total Components	100.00	9.33e+002

REGENERATOR OVERHEADS STREAM

Temperature:	212.00 deg. F			
	14.70 psi a			
Flow Rate:	8.38e+002 scfh			
	Component	Conc. (vol %)	Loadi ng (I b/hr)	
	Water	8.84e+001	3 52e+001	
	Carbon Di oxi de			
	Ni trogen	9.76e-003	6.04e-003	
		2.07e+000		
	Ethane	1.61e+000	1.07e+000	

Page 11

I sobutane n-Butane I sopentane	1. 17e+000 2. 51e-001 6. 63e-001 1. 85e-001 2. 16e-001	3.22e-001 8.51e-001 2.95e-001
Cycl ohexane Other Hexanes	1.36e-001 1.37e-001	2.59e-001 2.55e-001 2.99e-001
Tol uene Ethyl benzene	4.25e-001 1.14e+000	7.33e-001 2.33e+000 1.31e+000
C8+ Heavies Total Components		

CONDENSER PRODUCED WATER STREAM

Temperature: 100.00 deg. F Flow Rate: 6.99e-002 gpm			
Component	Conc. (wt%)	Loadi ng (Ib/hr)	(ppm)
Carbon Dioxide Nitrogen Methane	1.00e+002 1.51e-003 2.13e-006 5.25e-004 9.13e-004	5.27e-004 7.47e-007 1.84e-004	999608. 15. 0. 5. 9.
I sobutane n-Butane I sopentane	8.02e-004 1.17e-004 4.02e-004 7.94e-005 9.04e-005	4. 11e-005 1. 41e-004 2. 78e-005	8. 1. 4. 1. 1.
Cyclohexane Other Hexanes	3.53e-005 1.66e-004	1.23e-005 5.82e-005 1.42e-005	1. 0. 2. 0. 0.
Tol uene Ethyl benzene	1.26e-002 1.23e-002	4. 42e-003 4. 29e-003 7. 22e-004	1. 126. 123. 21. 74.
C8+ Heavies	1.16e-007	4.05e-008	0.
Total Components	100.00	3.50e+001	1000000.

CONDENSER RECOVERED OIL STREAM

Page 12

Temperature: Flow Rate:	100.00 deg. F 2.77e-002 gpm		
	Component	Conc. (wt%)	Loadi ng (I b/hr)
	Carbon Dioxide Nitrogen Methane	3. 71e-002 5. 60e-003 1. 78e-004 1. 49e-002 1. 14e-001	6.61e-004 2.10e-005 1.76e-003
	I sobutane n-Butane I sopentane	6. 40e-001 3. 52e-001 1. 23e+000 8. 75e-001 1. 22e+000	4.15e-002 1.45e-001 1.03e-001
	Cycl ohexane Other Hexanes	1. 42e+000 1. 56e+000	1.68e-001 1.84e-001 1.68e-001
	Tol uene Ethyl benzene	4.73e+000 1.81e+001	2.13e+000 1.27e+000
	C8+ Heavies	1.47e+001	1.73e+000
	Total Components	100.00	1.18e+001

CONDENSER VENT STREAM

				_
Pressure:	100.00 deg. F 14.00 psia 5.75e+001 scfh			-
	Component		Loadi ng (I b/hr)	
	Carbon Dioxide Nitrogen	6.85e+000 1.45e+000 1.42e-001 3.01e+001	9.66e-002 6.02e-003	

Ethane	2.32e+001	1.06e+000
I sobutane n-Butane I sopentane	1.60e+001 3.18e+000 8.01e+000 1.76e+000 1.83e+000	2.80e-001 7.06e-001 1.92e-001
Cycl ohexane Other Hexanes	6.94e-001 5.54e-001	9.07e-002 7.07e-002 1.31e-001

Methyl cycl ohexane 5.88e-001 8.76e-002 Page 13

Benzene 1.44e+000 1.71e-001 Tol uene 1. 39e+000 1. 95e-001 Ethyl benzene 2. 62e-001 4. 21e-002 Xyl enes 6.57e-001 1.06e-001 C8+ Heavies 3.63e-003 9.37e-004 ----- -----Total Components 100.00 5.56e+000 COMBUSTION DEVICE OFF GAS STREAM _____ Temperature:1000.00 deg.FPressure:14.70 psi aFlow Rate:2.63e+001 scfh Component Conc. Loading (vol%) (lb/hr) Methane 3.28e+001 3.66e-001 Ethane 2.53e+001 5.28e-001 Propane 1.74e+001 5.34e-001 I sobutane 3.47e+000 1.40e-001 n-Butane 8.75e+000 3.53e-001 I sopentane 1.92e+000 9.61e-002 n-Pentane 2.00e+000 1.00e-001 Cycl opentane 1.93e-001 9.37e-003 n-Hexane 7.58e-001 4.53e-002 Cycl ohexane 6.05e-001 3.54e-002 Other Hexanes 1. 10e+000 6. 57e-002 Heptanes 8. 68e-001 6. 04e-002 Methyl cycl ohexane 6. 43e-001 4. 38e-002 Benzene 1.58e+000 8.55e-002 Tol uene 1. 52e+000 9. 74e-002 Ethyl benzene 2.86e-001 2.11e-002 Xyl enes 7.17e-001 5.29e-002 C8+ Heavi es 3.96e-003 4.68e-004 100.00 2.63e+000 Total Components

ANNUAL AIR-COOLED CONDENSER PERFORMANCE:

ANNUAL AIR-COOLED CONDENSER PERFORMANCE

Nearest Site for Air Temperature Data: Charleston, WV Ambient Air Dry Bulb Condenser Outlet Temperature Frequency (%) Temperature (deg. F) (deg. F) 39.66 8.12 <=70 71-75 <=50 51-55 56-60 8.65 76-80 61-65 9.55 81-85 66-70 11.00 86-90 71-75 91-95 9.30 6.39 96-100 76-80 Page 14

80 97 96-	I - 85 5 - 90 I - 95 - 100 >100	4.50 2.27 0.49 0.06 0.01	101-105 106-110 111-115 116-120 >120
Condenser ou	utlet temperatur	e approach to ambie	ent: 20.00 deg. F
Annual air-o	cool ed condenser	emissions and cont	trol efficiency:
e	Uncontrolled emissions tons/year 3.210 36.770 37.903 66.887	Controlled emissions tons/year 0.490 1.366 1.636 12.774	% Control 84.72 96.29 95.68 80.90

TABLE 1-B

COMPOSITIONAL ANALYSIS OF THE SEPARATOR GAS, OIL AND MATHEMATICALLY RECOMBINED WELLSTREAM THROUGH $C_{\rm 11+}$

SEPARATOR GOR:	55817 Scf/Sep Bbl
SEPARATOR PRESSURE:	267 psig
SEPARATOR TEMPERATURE:	73 °F

	SEPARA	TOR GAS	SEPARA	TOR OIL	WELLS	TREAM
		*		Liquid		*
Component	Mole%	GPM	Mole %	Volume %	Mole %	GPM
Hydrogen Sulfide	0.000	0.000	0.000	0.000	0.000	0.000
Nitrogen	0.364	0.000	0.026	0.007	0.358	0.000
Carbon Dioxide	0.159	0.000	0.018	0.008	0.156	0.000
Methane	77.183	0.000	7.419	3.193	75.866	0.000
Ethane	14.716	3.968	8.764	5.953	14.604	3.938
Propane	4.782	1.327	9.825	6.866	4.877	1.353
Iso-butane	0.647	0.213	3.048	2.531	0.692	0.228
N-butane	1.210	0.384	8.045	6.438	1.339	0.425
2-2 Dimethylpropane	0.014	0.005	0.162	0.158	0.017	0.006
Iso-pentane	0.306	0.113	5.021	4.666	0.395	0.146
N-pentane	0.271	0.099	5.869	5.399	0.377	0.138
2-2 Dimethylbutane	0.011	0.005	0.363	0.385	0.018	0.007
Cyclopentane	0.007	0.002	0.000	0.000	0.007	0.002
2-3 Dimethylbutane	0.009	0.004	0.555	0.577	0.019	0.008
2 Methylpentane	0.069	0.029	3.334	3.514	0.131	0.055
3 Methylpentane	0.042	0.017	2.220	2.301	0.083	0.034
Other Hexanes	0.000	0.000	0.000	0.000	0.000	0.000
n-Hexane	0.079	0.033	5.090	5.315	0.174	0.072
Methylcyclopentane	0.006	0.002	0.458	0.411	0.015	0.005
Benzene	0.002	0.001	0.103	0.073	0.004	0.001
Cyclohexane	0.008	0.003	0.716	0.619	0.021	0.007
2-Methylhexane	0.017	0.008	2.801	3.307	0.070	0.033
3-Methylhexane	0.016	0.007	2.320	2.705	0.059	0.028
2,2,4 Trimethylpentane	0.000	0.000	0.000	0.000	0.000	0.000
Other Heptanes	0.019	0.008	1.444	1.597	0.046	0.020
n-Heptane	0.020	0.009	3.645	4.271	0.088	0.041
Methylcyclohexane	0.012	0.005	2.249	2.296	0.054	0.022
Toluene	0.003	0.001	0.568	0.483	0.014	0.005
Other C-8's	0.017	0.008	6.298	7.496	0.136	0.064
n-Octane	0.005	0.003	2.264	2.944	0.048	0.025
Ethylbenzene	0.000	0.000	0.508	0.498	0.010	0.004
M&P-Xylene	0.001	0.000	0.541	0.533	0.011	0.004
O-Xylene	0.000	0.000	0.785	0.758	0.015	0.006
Other C-9's	0.004	0.002	2.891	3.844	0.058	0.031
n-Nonane	0.001	0.001	1.315	1.880	0.026	0.015
Other C10's	0.000	0.000	2.858	4.175	0.054	0.031
n-Decane	0.000	0.000	0.814	1.270	0.015	0.010
Undecanes Plus	0.000	0.000	7.660	13.529	0.145	0.101
TOTAL	100.000	6.257	100.000	100.000	100.000	6.864

TABLE 1-B

COMPOSITIONAL ANALYSIS OF THE SEPARATOR GAS, OIL AND MATHEMATICALLY RECOMBINED WELLSTREAM THROUGH $C_{\rm 11+}$

UNDECANES PLUS (C ₁₁₊) FRACTION CHARACTERISTICS						
	Specific	Gravity	Molecular Weight	Vapor Volume	Gross Heating Value	
COMPONENT	°API	**	lb/lb-mole	Scf/Gal	***	
Gas	N/A	0.8250	156.000	16.558	8,400	
Oil	53.492	0.7649	167.900	14.264	128,476	
Wellstream	N/A	0.7649	167.900	14.264	N/A	

TOTAL SAMPLE CHARACTERISTICS								
		Molecular Vapor Gross Heat						
	Specific	Specific Gravity		Volume	Dry	Saturated		
COMPONENT	°API	**	lb/lb-mole	Scf/Gal	***	***		
Gas	N/A	0.7247	20.912	159.829	1,280	1,259		
Oil	84.429	0.6553	81.446	25.191	N/A	112,760		
Wellstream	N/A	0.7615	22.054	50.270	N/A	N/A		

* GPM (gallons per Mscf) determined at 14.85 psia and 60 °F

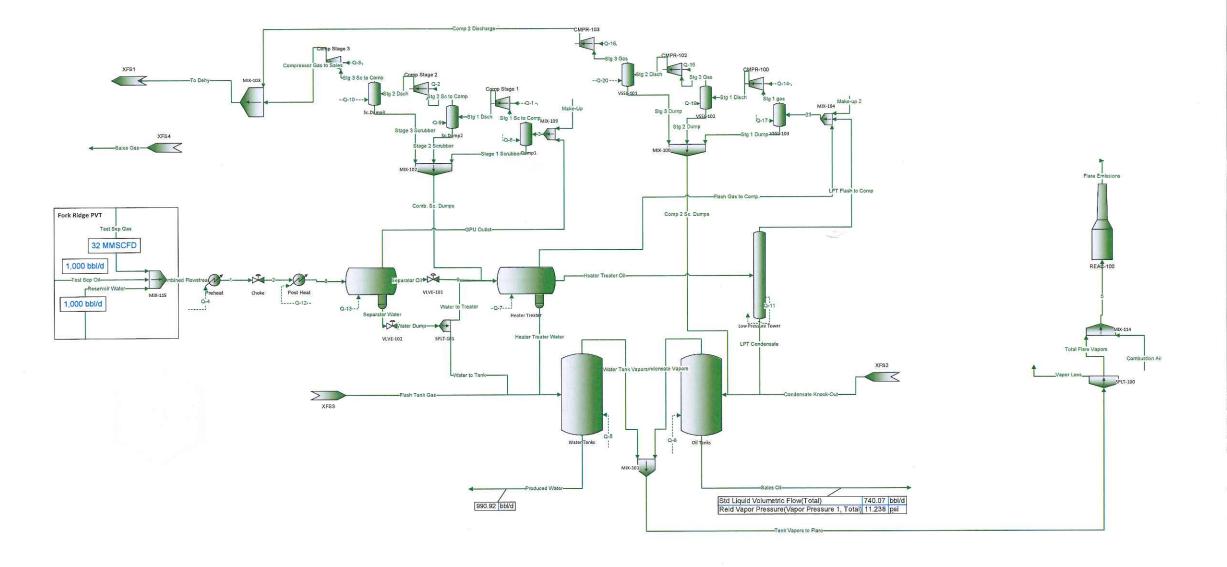
** Gas specific gravity and wellstream specific gravity determined relative to air (SG=1.000). Oil specific gravity determined relative to water (SG=1.000).

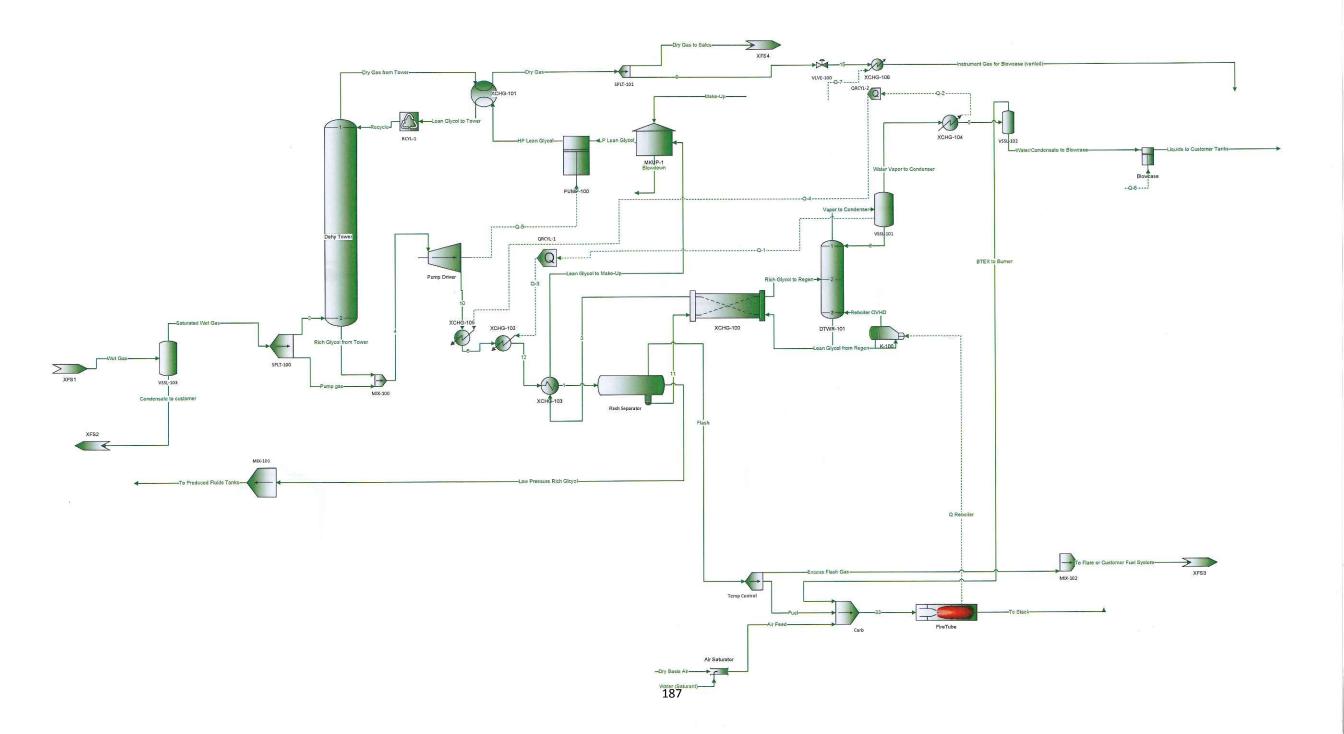
*** Gross Heating Value units for gas (real basis) and oil are BTU/Scf and BTU/Gal, respectively.

FORK RIDGE EXTENDED ANALYSIS FROM PROMAX

Nitrogon	0.201005
Nitrogen	0.361065
CO2	0.157191
<u>C1</u>	76.80929
C2	14.85247
C3	4.917038
Isobutane	0.655389
n-Butane	1.20923
2,2-Dimethylpropane	0.014878
Isopentane	0.301776
n-Pentane	0.266333
2-2-Dimethylbutane	0.010549
Cyclopentane	0.003362
2-3-Dimethylbutane	0.010825
2-Methylpentane	0.067728
3-Methylpentane	0.041088
C6	0.079068
Methylcyclopentane	0.006446
Benzene	0.001668
Cyclohexane	0.008671
Hexane, 2-Methyl-	0.022827
3-Methylhexane	0.018618
2,2,4-Trimethylpentane	0
C7	0.036942
Methylcyclohexane	0.014454
Toluene	0.003185
C8	0.027175
Ethylbenzene	0.001235
m-Xylene	0.00062
p-Xylene	0.000642
o-Xylene	0.00156
C9	0.005943
C10	0.002572
Undecane	0.000815
Dodecane	0.000314
Tridecane	0.000107
Tetradecane	2.26E-05
Pentadecane	6.15E-06
Hexadecane	1.52E-06
Heptadecane	4.37E-07
Octadecane	1.22E-07
Nonadecane	3.09E-08
Eicosane	4.29E-09
Heneicosane	1.49E-09

FORK RIDGE EXTENDED ANALYSIS FROM PROMAX


Docosane	4.23E-10
Tricosane	5.87E-11
Tetracosane	2.78E-11
Pentacosane	0
Hexacosane	0
Heptacosane	0
Octacosane	0
Nonacosane	0
Triacontane	0
Water	0.088889


Process Simulation Results

Names	Units	Reservoir Water	Test Sep Gas	Test Sep Oil	Condensate Vapors	Water Tank Vapors	Sales Gas	SalesOil	Produced Water
Temperature	°F	73*	73*	73*	95#	105	191.45	95	105#
Pressure	psia	281.7*	281.7*	281.7*	15.196	15.196	909.7	15.196*	15.196*
Mole Fraction Vapor	%	0	100	0.3406	100	100	100	0	0
Mole Fraction Light Liquid	%	100	0	99.659	0	0	0	99.377	100
Mole Fraction Heavy Liquid	%	0	0	0	0	0	0	0.6231	0
Molecular Weight	lb/lbmol	18.015	20.912	82.433	50.43	23.417	21.152	104.54	18.015
Molar Flow	lbmol/h	809.87	3513.5	115	4.5394	3.3084	3563.3	72.555	802.48
Enthalpy	Btu/h	-9.9574e+007	-1.2104e+008	-9.2235e+006	-2.4225e+005	-1.3453e+005	-1.2016e+008	-6.9184e+006	-9.822e+007
Nitrogen(Mole Fraction)	%	0*	0.364*	0.026002*	0.0009202	0.21909	0.35953	1.4393e-006	2.2759e-006
CO2(Mole Fraction)	%	0*	0.159*	0.018001*	0.040097	0.48836	0.15671	0.00057863	0.00018288
C1(Mole Fraction)	%	0*	77.183*	7.4195*	4.1514	62.513	76.488	0.020096	0.0013247
C2(Mole Fraction)	%	0*	14.716*	8.7646*	16.069	17.227	14.806	0.44974	0.00039869
C3(Mole Fraction)	%	0*	4.782*	9.8257*	28.175	7.0231	4.9648	2.6534	0.00015007
Isobutane(Mole Fraction)	%	0*	0.647*	3.0482*	7.6523	0.94844	0.6894	1.7687	7.5353e-006
n-Butane(Mole Fraction)	%	0*	1.21*	8.0456*	17.5	2.1281	1.3117	5.693	3.9234e-005
Isopentane(Mole Fraction)	%	0*	0.306*	5.0214*	6.133	0.63764	0.3551	4.9047	7.2765e-006
n-Pentane(Mole Fraction)	%	0*	0.271*	5.8694*	5.889	0.62083	0.32221	6.1823	7.6442e-006
Water(Mole Fraction)	%	100*	0*	0*	5.3437	7.2787	0.10622	0.69839	99.998

• Oil Flash : 7.0 lb/bbl

• Water Flash : 0.866 lb/bbl

TANKS 4.0.9d Emissions Report - Summary Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: State:	Fork Ridge Pad - Condensate Marshall County West Virginia						
Company: Type of Tank:	Southwestern Energy Vertical Fixed Roof Tank						
Description:	Five (5) 400-bbl condensate tanks modeled with Fork Ridge PVT oil stream						
Description.	Five (5) 400-bbi condensate tanks modeled with Fork Ridge FVT on stream						
Tank Dimensions							
Shell Height (ft):	20.00						
Diameter (ft):	12.00						
Liquid Height (ft) :	19.00						
Avg. Liquid Height (ft):	10.00						
Volume (gallons): Turnovers:	16,074.56 762.94						
Net Throughput(gal/yr):	12,264,000.00						
Is Tank Heated (y/n):	N						
Paint Characteristics							
Shell Color/Shade:	White/White						
Shell Condition	Good						
Roof Color/Shade:	White						
Roof Condition:	Good						
Roof Characteristics							
Type:	Cone						
Height (ft)	0.00						
Slope (ft/ft) (Cone Roof)	0.06						
Breather Vent Settings							
Vacuum Settings (psig):	-0.03						
Pressure Settings (psig)	0.03						

Meterological Data used in Emissions Calculations: Pittsburgh, Pennsylvania (Avg Atmospheric Pressure = 14.11 psia)

TANKS 4.0.9d Emissions Report - Summary Format Liquid Contents of Storage Tank

Fork Ridge Pad - Condensate - Vertical Fixed Roof Tank Marshall County, West Virginia

			ily Liquid Su perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Fork Ridge PVT Analysis	All	51.94	47.06	56.81	50.33	7.6732	7.0742	8.3102	50.4300			104.54	Option 4: RVP=11.238

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: Annual

Fork Ridge Pad - Condensate - Vertical Fixed Roof Tank Marshall County, West Virginia

	Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Fork Ridge PVT Analysis	17,456.38	1,271.49	18,727.87				

TANKS 4.0.9d Emissions Report - Summary Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	Fork Ridge Pad - Produced Water Marshall COunty West Virginia Southwestern Energy Vertical Fixed Roof Tank Five (5) 400-bbl produced water tanks modeled with 1% Fork Ridge PVT oil stream and 99% water
Tank Dimensions	
Shell Height (ft):	20.00
Diameter (ft):	12.00
Liquid Height (ft) :	19.00
Avg. Liquid Height (ft):	10.00
Volume (gallons): Turnovers:	16,074.56 953.68
Net Throughput(gal/yr):	15,330,000.00
Is Tank Heated (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	White/White
Shell Condition	Good
Roof Color/Shade:	White/White
Roof Condition:	Good
Roof Characteristics	
Type:	Cone
Height (ft) Slope (ft/ft) (Cone Roof)	0.00 0.06
	0.08
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations: Pittsburgh, Pennsylvania (Avg Atmospheric Pressure = 14.11 psia)

TANKS 4.0.9d Emissions Report - Summary Format Liquid Contents of Storage Tank

Fork Ridge Pad - Produced Water - Vertical Fixed Roof Tank Marshall COunty, West Virginia

		Daily Liquid Surf. Temperature (deg F)			Liquid Bulk Temp	Vapor Pressure (psia)			Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Produced Water	All	51.94	47.06	56.81	50.33	0.2041	0.1712	0.2425	20.1380			18.17	
Fork Ridge PVT Analysis						7.6732	7.0742	8.3102	50.4300	0.0100	0.1637	104.54	Option 4: RVP=11.238
Water						0.1911	0.1592	0.2284	18.0200	0.9900	0.8363	18.02	Option 2: A=8.10765, B=1750.286, C=235

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: Annual

Fork Ridge Pad - Produced Water - Vertical Fixed Roof Tank Marshall COunty, West Virginia

	Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Produced Water	222.91	10.98	233.89				
Water	186.43	9.19	195.61				
Fork Ridge PVT Analysis	36.48	1.80	38.28				