45CSR13 NEW SOURCE REVIEW AIR PERMIT APPLICATION Sunoco Pipeline Follansbee Station Brooke County, West Virginia

Prepared for:

Sunoco Pipeline, L.P. 535 Fritztown Road Sinking Spring, PA 19608

Prepared by:

Tetra Tech, Inc. 400 Penn Center Boulevard, Suite 200 Pittsburgh, PA 15235

www.tetratech.com

December 2015

TABLE OF CONTENTS

1	INTRO	DUCTION	1
2	EMISS	SION ESTIMATES	3
	2.1	New Emission Sources	3
		2.1.1 Continuous Emission Sources	4
		2.1.2 Maintenance Activity Emission Sources	4
		2.1.3 Enclosed Flare	4
		2.1.4 Fugitive Emissions	5
		2.1.5 Dust Emissions	5
	2.2	Calculation Methodology	5
	2.3	Potential Emission	6
3	REGU	LATORY REVIEW AND APPLICABILITY	9
	3.1	New Source Review	9
	3.2	New Source Performance Standards	.10
	3.3	National Emission Standards for Hazardous Air Pollutants	.10
	3.4	Source Aggregation	.11
	3.5	Title V Major Source Operating Permit Program	.11
	3.6	Accidental Release Prevention and Risk Management	.11
	3.7	West Virginia State Requirements	.12
		3.7.1 Permit Applicability	.12
4	REFE	RENCES	13
5	PERM	IT APPLICATION	13

TABLES

Table 1-1. Equipment List.	2
Table 2-1. Uncontrolled Maximum Short Term Emission Summary	7
Table 2-2. Uncontrolled Annual Emission Summary.	8
Table 2-3. Controlled Maximum Short Term Emission Summary.	8
Table 2-4. Controlled Annual Emission Summary	9
Table 3-1 West Virginia DEP Applicable Regulations	12

ATTACHMENTS

- Application for NSR Permit (Minor Source)
- Attachment A Business Certificate
- Attachment B Site Map
- Attachment C Installation and Startup Schedule
- Attachment D Regulatory Discussion N/A (See Section 3)
- Attachment E Plot Plan
- Attachment F Process Flow Diagram(s)
- Attachment G Process Description N/A (See Section 2)
- Attachment H Material Safety Data Sheets (MSDS)
- Attachment I Emission Units Table
- Attachment J Emission Points Data Summary Sheet
- Attachment K Fugitive Emissions Data Summary Sheet
- Attachment L Emissions Unit Data Sheets
- Attachment M Air Pollution Control Device Sheets
- Attachment N Supporting Emissions Calculations
- Attachment O Monitoring/Recordkeeping/Reporting/Testing Plans
- Attachment P Public Notice
- Attachment Q Business Confidential Claim N/A
- Attachment R Authority Forms
- Attachment S Title V Revision Information N/A (See Section 3)
- Application Fee

ABBREVIATIONS AND ACRONYMS

%	percent
BAT	Best Available Technology
bpd	barrels per day
ĊAA	Clean Air Act
CAAA	1990 Clean Air Act Amendments
CFR	Code of Federal Regulations
CO	carbon monoxide
COse	carbon dioxide equivalent
CSR	Code of State Rules
DRE	destruction and removal efficiency
the Facility	Sunoco Pineline Follanshee Station
ft ³	
GC	das chromatograph
CHC	Groonbouse Gas
	bezerdeue eir pollutent
LIAL pr	hazardous an polititarit
	highest high besting value
	nignest nigh heating value
ID/0ay	pounds per day
in/ar	pounds per nour
L.P.	
MACT	Maximum Achievable Control Technology
ME1	Mariner East 1
ME2	Mariner East 2
MHIC	Marcus Hook Industrial Complex
MMBtu/hr	Million British thermal units per hour
N/A	not applicable
NAAQS	National Ambient Air Quality Standards
NESHAP	National Emissions Standards for Hazardous Air Pollutants
NGL	natural gas liquid
NNSR	Nonattainment New Source Review
NO _x	oxides of nitrogen
NSPS	New Source Performance Standards
NSR	New Source Review
OPP	Ohio Pipeline Project
P&ID	Piping and Instrumentation Diagram
PM	particulate matter
PM ₁₀	particles with an aerodynamic diameter less than or equal to 10 micrometers
the Project	Ohio Pipeline Project
PSD	Prevention of Significant Deterioration
PTE	potential-to-emit
QA/QC	quality assurance/quality control
SCADA	supervisory control and data acquisition
scf/hr	standard cubic feet per hour
SIC	Standard Industrial Classification
SO ₂	sulfur dioxide
SPLP	Sunoco Pipeline, L.P.
tpy	tons per year
ÚŠEPA	United States Environmental Protection Agency
VOC	volatile organic compound

wt%percent by weightWVDEPWest Virginia Department of Environmental Protection

1 INTRODUCTION

In 2012, Sunoco Pipeline, L.P. (SPLP) announced the "Mariner East" project with the stated intent of transporting petroleum products, such as propane, ethane, and butane, from the Marcellus and Utica Shales from Ohio, West Virginia, and Pennsylvania to the Marcus Hook Industrial Complex ("MHIC"), and various points in between.

The overall goal of the Mariner East project is to ensure that the natural gas liquids (NGLs) production refined from the Marcellus and Utica Shales in Ohio, West Virginia and Pennsylvania will be able to be transported by pipeline within the region as opposed to the Gulf Coast and stored and/or throughput at the MHIC as opposed to terminals on the Gulf Coast—thereby developing the MHIC as a Northeast hub for the distribution of propane, ethane and other NGLs to local, regional, national or international markets.

The initial construction of the Mariner East project, sometimes referred to as "Mariner East 1" (ME1), consisted of an approximately 300-mile pipeline that makes use of SPLP's existing pipeline infrastructure, supplemented by an additional 51-mile extension from Houston, Pennsylvania to Delmont, Pennsylvania, to ship valuable natural energy resources from the Marcellus Shale in Pennsylvania to the MHIC on the Delaware River and SPLP's Twin Oaks facilities operated in conjunction with MHIC.

During and following the 2013-2014 winter season, SPLP experienced a significant increase in shipper demand for intrastate shipments of propane due to an increase in local consumer demand for propane. These changes in market conditions were due to shortages of propane brought about by harsh winter conditions and a deficit of pipeline infrastructure. In reaction to increased shipper interest, SPLP will expand its existing ME 1 service by enlarging the transportation capacity.

This expansion of existing Mariner East service, sometimes referred to as "Mariner East 2" (ME2) will increase the take-away capacity of NGLs from the Marcellus Shale up to 350,000 barrels per day (bpd) and enable SPLP to provide additional on-loading and off-loading points for both intrastate and interstate propane shipments, and increase the amount of propane that would be available for delivery. For the purposes of air permitting, the portion of ME2 within Ohio and West Virginia will be referred to as the Ohio Pipeline Project (OPP, the Project).

The Project involves the phased installation of an up to 20-inch diameter pipeline from Scio, Harrison County, Ohio to Houston, Washington County, Pennsylvania (54 miles). A second, up to 20-inch diameter pipeline, may be installed parallel to the initial line, in the same right-of-way, extending from Follansbee, Brooke County, West Virginia to Houston, Washington County, Pennsylvania (16 miles), within five years.

For the purposes of this permit application, SPLP is proposing to construct and operate and support a maintenance station in Brooke County, West Virginia identified as the Sunoco Pipeline

Follansbee Station (the Facility). The Facility will consist of product meters, control valves, filtration equipment, an enclosed flare, and associated piping and accessory structures. Products (e.g., propane and butane) will flow through the Facility utilizing a single pipeline and interconnected with SPLP's ME2 Pipeline.

The proposed Facility will result in added equipment and components to enhance the transportation of the NGLs through the pipeline, which will generally consist of the following:

- One (1) gas chromatograph (GC);
- One (1) filter;
- One (1) prover;
- One (1) enclosed flare; and
- Miscellaneous fugitive equipment components.

The specific emission sources identified for the proposed Facility will consist of continuous emission sources, maintenance activity emissions, control equipment, fugitive dust emissions, and fugitive sources (e.g., leaks from valves, flanges, and other miscellaneous component types). The vapors associated with the GC, relief valves, and maintenance activities will be captured and diverted to the enclosed flare for control of volatile organic compounds (VOCs). The following table provides a list of these sources:

Equipment List	Rating/Size	Quantity
Continuous Emission Sources		
Gas Chromatograph	0.11 scf/hr	1
Relief Valves to Flare Header	0.002 scf/hr	9
Pilot Fuel	22 scf/hr	1
Maintenance Emission Sources		
Filter	49.48 ft ³	1
Prover	5.35 ft ³	1
Control Equipment		
Enclosed Flare	10 MMBtu/hr	1
Propane Tank for Pilot Fuel	1,000 gallons	1
Fugitive Emission Sources		
Various component types and quant	ities based on engin	eering design
Notes:		
$ft^3 - cubic feet$		
MMBtu = Million British thermal units	3	
scf = standard cubic feet		

Table 1-1.Equipment List.

The GC, a laboratory piece of equipment used to sample NGLs in the pipeline, will be considered an exempt source in accordance with West Virginia Department of Environmental Protection (WVDEP) §45 Code of State Rule (CSR) 13-2.6, Table 45-13B(26), which specifically exempts equipment used for quality control/assurance or inspection purposes, including sampling equipment used to withdraw materials for analysis. The GC will be operated on a continuous basis sampling the NGLs in the pipeline for quality assurance control/quality control (QA/QC) purposes. Vapors associated with the analysis of the NGL's will be captured and directed to an enclosed flare for the control of VOCs.

The proposed enclosed flare will be a John Zink Company LLC 4 foot by 30 foot enclosed ZTOF Production Flare with a maximum heat input rating of 10 million British thermal units per hour (MMBtu/hr). The enclosed flare will be used to control VOC emissions associated with the GC and maintenance operations. The design destruction efficiency of the flare is 98 percent (%) based upon the vendor's performance guarantee, which has been applied to estimate potential controlled emissions from the Facility. Intermittent emissions will result from maintenance activities as described in detail in Section 2.1.1. Vapors from these activities will be captured and sent to the proposed enclosed flare. Additional equipment associated with the enclosed flare will consist of an approximate 1,000 gallon propane storage tank, providing fuel for the pilot flame. The propane storage tank is pressurized and would be considered an exempt source in accordance with WVDEP §45CSR13-2.6, Table 45-13B(50), which exempts storage tanks, vessels and containers holding or storing liquid substances that will not emit any regulated air pollutant.

During normal operation of the Facility, emissions will be comprised of the very minor emissions from the GC, pilot fuel, and relief valve valve-seat emissions. However, during the intermittent maintenance activities, uncontrolled potential emissions may exceed the station source permitting threshold of 6 pounds per hour (lb/hr) and 10 tons per year (tpy), of any regulated air pollutant in accordance with WVDEP §45CSR13-2.24b. Accordingly, this application has been submitted to obtain a permit to construct and operate the Facility.

A site location map of the Facility is provided in Attachment B and a process flow diagram is provided in Attachment F. The emission estimates and calculation methodology for the Facility are presented in Attachment N. An analysis of federal and state regulations applicable to the project and a discussion of Best Available Technology (BAT) are presented in Section 3.

2 EMISSION ESTIMATES

2.1 New Emission Sources

The emission sources at the proposed Facility will consist of the continuous vapors captured from the operation of the GC, pilot fuel, and relief valves; vapors captured from maintenance activities that are associated with the filter, prover, and other maintenance activities that may occur; enclosed flare for controlling VOC emissions; fugitive dust emissions from an unpaved access road; and fugitive emissions resulting from leaks from valves, flanges, seals, relief valves, and other miscellaneous component types. The vapors associated with the continuous emissions and maintenance activities will be captured and diverted to the enclosed flare for control of VOC emissions.

2.1.1 Continuous Emission Sources

The potential continuous emission sources for the proposed Facility are the GC, pilot fuel, and relief valve valve-seat emissions. These emissions are being captured and sent to the enclosed flare for the control of VOC emissions into the atmosphere.

A GC is proposed to be installed at the Facility and will operate on a continuous basis performing QA/QC activities on the NGLs transported through the pipeline. The GC will collect samples of the NGLs for analysis and will be vented directly to the flare for control of VOCs. The GCs are considered an exempt source in accordance with WVDEP §45CSR13-2.6, Table 45-13B(26) which specifically exempts equipment used for quality control/assurance or inspection purposes, including sampling equipment used to withdraw materials for analysis. However, the emissions associated with this exempt source were estimated to determine major source applicability.

The pilot fuel will be consumed at a constant rate of 22 standard cubic feet per hour (scf/hr), which will fuel the one pilot light that accompanies the 10 MMBtu/hr enclosed flare.

For the relief valve valve-seat emissions, the calculations were estimated using the leak emission factors for light liquid service presented in the Table 2-3 of United States Environmental Protection Agency (USEPA) report "Protocol for Equipment Leak Emission Estimates". These emissions are being directed into the flare as opposed to being released into the atmosphere to control VOC emissions.

2.1.2 Maintenance Activity Emission Sources

Emissions associated with maintenance activities for the proposed Facility will generally result from filter maintenance, prover maintenance, and other maintenance activities that may occur, which are directly associated with the operation of the system. The filters are inline devices that prevent foreign objects from entering the pumps. Maintenance of the filters may be performed, which could consist of cleaning or replacing filter screens. Filters are depressurized prior to maintenance and the resulting vapors will be captured and directed to the enclosed flare to control VOC emissions. The prover is a quality QA/QC device used to assure the accuracy of the meters. Maintenance of the provers may be performed, which could consist of a water draw, seal replacement, or other activities. During maintenance of the prover, entrained vapors within the unit will be captured and directed to the enclosed flare to control VOC emissions. The detailed emission calculations are presented in Attachment N.

2.1.3 Enclosed Flare

The proposed Facility will be using a 10 MMBtu/hr enclosed flare to control the VOC emissions captured from the maintenance activities and continuous sources. Propane, supplied by a propane tank that accompanies the 10 MMBtu/hr flare, will be used as pilot gas fuel at a maximum heat input rate of 0.05 MMBtu/hr for the one pilot light. The design-based destruction and removal efficiency (DRE) of the flare is 98%) and in compliance with the applicable requirements specified in 40 Code of Federal Regulations (CFR) 60.18.

The enclosed flare is being designed to comply with the USEPA 40 CFR Part 60.18 and utilizes the performance test specifications in 40 CFR Part 60 Subpart OOOO, paragraph §60.5413(d)(11). The flare will be monitored 24 hours per day, seven days per week via a supervisory control and data acquisition (SCADA) system and a physical inspection will occur at a minimum of once per week. SPLP will install, operate and maintain the enclosed flare in accordance with the manufacturer's guidelines and specifications.

2.1.4 Fugitive Emissions

The proposed Facility will involve the addition of equipment, piping, and components (e.g., valves, flanges, and other miscellaneous component types), which will be potential sources of fugitive VOC emissions as a result of leaks from the sealed surfaces. The quantity of each type of component used to estimate emissions was based on the engineering Piping and Instrumentation Diagrams (P&IDs) for the Facility with a 10% contingency to allow as built changes during construction.

2.1.5 Dust Emissions

Operations at the proposed Facility will produce fugitive dust (i.e., particulate) emissions through vehicle traffic on the unpaved areas as well as from the exempt vaporizer for the butane sphere. In accordance with OAC rule 3745-17-07(B), no visible particulate emissions are allowed to be visible from any unpaved roadway or parking area.

2.2 Calculation Methodology

The emissions associated with the proposed Facility were calculated in accordance with regulatory guidance and are based on the most representative data available. The calculation methodology is presented below for each source; a summary and detailed emission calculations are presented in Attachment N.

Calculations were estimated based on the proposed Facility operating 8,760 hours per year. The NGLs being sent through the system will consist of butane and propane with anticipated flow through rates of 17,000 BPD and 35,500 BPD respectively. Based on a representative analysis of each NGL; the butane product consists of 100% by weight (wt%) VOCs and the propane product has an estimated VOC content of 98.6 wt%. In order to conservatively estimate the potential-to-emit (PTE) for the proposed Facility, the worst case emission rate per pollutant per product was utilized. These emission rates were applied to each pollutant based on the various physical properties of the products (i.e., heating value, gas density, etc.).

The continuous emissions are based on the emissions from the GC, pilot fuel, and the relief valves that are being captured and directed to the enclosed flare. Emissions from the GC were given by the manufacturer at 0.11 scf/hr and the pilot fuel is being consumed at 22 scf/hr. The emissions associated with the relief valve valve-seats estimated using the leak emission factors for light liquid service presented in the Table 2-3 of USEPA report "Protocol for Equipment Leak Emission

Estimates" and a representative NGL analysis. Relief valve emissions are continuously captured and sent to the enclosed flare through the flare header piping.

The emissions associated with maintenance activities are based on the estimated annual vented emissions being sent to the enclosed flare as a result of anticipated maintenance activities (filter maintenance, prover maintenance, etc.). The anticipated maintenance operations include: annual prover maintenance that may consist of performing a water draw, seal replacement, or other maintenance activities and filter maintenance which may include cleaning or replacement of filter screens which is estimated to occur four (4) times during the first year and once per year beyond the first year. Based on the proposed maintenance operations and to account for other miscellaneous routine maintenance activities, annual emissions were conservatively estimated assuming two (2) prover maintenance events and six (6) filter maintenance activities per year.

The 10 MMBtu/hr enclosed flare is proposed to control the VOC emissions from the vented NGLs associated with the relief valves and maintenance activities. Propane will be used as pilot gas fuel at a maximum heat input rate of 0.05 MMBtu/hr. The combustion emissions estimated from the operation of the flare combusting the NGL vapors and the pilot gas consist of oxides of nitrogen (NO_x), carbon monoxide (CO), VOCs, hazardous air pollutants (HAPs), sulfur dioxide (SO₂), and Greenhouse Gases (GHGs). The NO_x and CO emissions were estimated based on emission factors presented in USEPA's AP-42 Section 13.5. VOC emissions resulting from the control of the NGL vapors were estimated based on a 98% DRE. For estimating the impact to the PTE for the flare, the continuous emissions and the maintenance activities were used.

The proposed Facility will involve the installation of equipment, piping, and components (e.g., valves and flanges), which will be potential sources of fugitive VOC emissions as a result of leaks from the sealed surfaces. Potential emissions were quantified based on the proposed new equipment and piping components estimated counts from the engineering design, a 10% item count contingency, and the best available emission factors for fugitive emissions from NGL operations. The fugitive emission calculations were estimated using the leak emission factors for light liquid service presented in the Table 2-3 of USEPA report "Protocol for Equipment Leak Emission Estimates" and a representative NGL analysis.

Based on the calculation methodology presented above, the potential short-term hourly and annual emission rates for the Facility are presented in Attachment N.

2.3 Potential Emission

Based on the calculation methodology presented in this section, the uncontrolled/controlled short term hourly emission rates and the uncontrolled/controlled potential annual emission for the proposed Facility are presented in Tables 2-1 through 2-4 and detailed in the emission calculations in Attachment N. The short term maximum hourly emission rates are based on the maximum rate of the captured vapors able to be processed through the enclosed flare consisting of the continuous flow from the continuous emissions (GC, pilot fuel, and relief valves) and the

release of NGLs during a maintenance event. The potential annual emissions are based on the continuous emission sources operating 8,760 hours per year, six filter cleanings per year and two maintenance activities on the prover. The emissions were also estimated assuming propane due to its lower density which would provide a conservative estimate by producing a greater volume than butane at atmospheric conditions. Butane was used for calculating combustion since it is 100% VOCs and has the highest high heating value (HHV).

	Uncontrolled Potential Emissions (lb/hr)								
Emission Source	PM	PM ₁₀	NOx	CO	VOC	SO ₂	HAP	GHG (CO ₂ e)	
Flare ¹									
Continuous Gas Stream	N/A	N/A	N/A	N/A	1.96E-02	N/A	N/A	N/A	
Maintenance Gas Stream	N/A	N/A	N/A	N/A	4.73E+02	N/A	N/A	N/A	
Pilot Flame	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Subtotal Flare	N/A	N/A	N/A	N/A	472.71	N/A	N/A	N/A	
Fugitives									
Equipment	N/A	N/A	N/A	N/A	0.04	N/A	N/A	N/A	
Haul Road (Controlled)	0.34	0.15	N/A	N/A	N/A	N/A	N/A	N/A	
TOTAL	0.34	0.15	N/A	N/A	472.75	N/A	N/A	N/A	
¹ Smokeless flares have no measurable	e particulate er	nissions pursua	nt to AP-42, Sec	tion 13.5, Tabl	e 13.5-1				
CO = carbon monoxide									
CO ₂ e = carbon dioxide eo	quivalent								
GHG = greenhouse gas									
HAP = hazardous air poll	utant								
lb/hr = pounds per hour	lb/hr = pounds per hour								
N/A = not applicable	N/A = not applicable								
NO _X = oxides of nitrogen	NO _X = oxides of nitrogen								
PM = particulate matter	PM = particulate matter								
PM ₁₀ = particles with an a	PM ₁₀ = particles with an aerodynamic diameter less than or equal to 10 micrometers								
PM _{2.5} = particles with an a	aerodynamic d	iameter less tha	in or equal to 2.5	5 micrometers S	SO ₂ = sulfur dioxide				
VOC = volatile organic co	VOC = volatile organic compound								

Table 2-1. Uncontrolled Maximum Short Term Emission Summary.

	Uncontrolled Potential Emissions (tpy)								
Emission Source	РМ	PM 10	NOx	CO	VOC	SO ₂	HAP	GHG (CO ₂ e)	
Flare ¹									
Continuous Gas Stream	N/A	N/A	N/A	N/A	8.58E-02	N/A	N/A	N/A	
Maintenance Gas Stream	N/A	N/A	N/A	N/A	6.72E+00	N/A	N/A	N/A	
Pilot Flame	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Subtotal Flare	N/A	N/A	N/A	N/A	6.81	N/A	N/A	N/A	
Fugitives									
Equipment	N/A	N/A	N/A	N/A	0.19	N/A	N/A	N/A	
Haul Road (Controlled)	1.51	0.68	N/A	N/A	N/A	N/A	N/A	N/A	
TOTAL	1.51	0.68	N/A	N/A	7.00	N/A	N/A	N/A	
¹ Smokeless flares have no measurabl	e particulate e	emissions pursu	ant to AP-42, S	ection 13.5, Ta	ble 13.5-1				
CO = carbon monoxide									
CO ₂ e = carbon dioxide e	quivalent								
GHG = greenhouse gas									
HAP = hazardous air pol	lutant								
lb/hr = pounds per hour									
N/A = not applicable									
NO _x = oxides of nitrogen									
PM = particulate matter	PM = particulate matter								
PM ₁₀ = particles with an	PM ₁₀ = particles with an aerodynamic diameter less than or equal to 10 micrometers								
PM _{2.5} = particles with an	aerodynamic	diameter less th	nan or equal to 2	2.5 micrometer	s SO ₂ = sulfur diox	kide			
VOC = volatile organic c	VOC = volatile organic compound								

Table 2-2. Uncontrolled Annual Emission Summary.

Table 2-3. Controlled Maximum Short Term Emission Summary.

	Controlled Potential Emissions (lb/hr)								
Emission Source	PM	PM 10	NOx	CO	VOC	SO ₂	HAP	GHG (CO ₂ e)	
Flare ¹									
Continuous Gas Stream	N/A	N/A	2.82E-05	1.28E-04	3.92E-04	1.18E-06	0.00E+00	5.95E-02	
Maintenance Gas Stream	N/A	N/A	6.80E-01	3.10E+00	9.45E+00	2.84E-02	0.00E+00	1.44E+03	
Pilot Flame	N/A	N/A	3.40E-03	1.55E-02	2.85E-02	4.69E-04	3.75E-05	6.82E+00	
Subtotal Flare	N/A	N/A	0.68	3.12	9.48	0.03	0.00004	1,442.9	
Fugitives									
Equipment	N/A	N/A	N/A	N/A	0.04	N/A	N/A	N/A	
Haul Road (Controlled)	0.14	0.06	N/A	N/A	N/A	N/A	N/A	N/A	
TOTAL	0.14	0.06	0.68	3.12	9.53	0.03	0.00004	1,442.9	
¹ Smokeless flares have no measurable	e particulate er	nissions pursua	ant to AP-42, See	ction 13.5, Table	13.5-1				
CO = carbon monoxide									
CO ₂ e = carbon dioxide e	quivalent								
GHG = greenhouse gas									
HAP = hazardous air pol	HAP = hazardous air pollutant								
lb/hr = pounds per hour									
N/A = not applicable									
NO _X = oxides of nitrogen									
PM = particulate matter									
PM ₁₀ = particles with an a	aerodynamic di	ameter less tha	an or equal to 10	micrometers					
DM — nertieles with en	DM and the with an event dependent of the second to 0.5 with wester 0.0 and for the distribution								

 $PM_{2.5}$ = particles with an aerodynamic diameter less than or equal to 2.5 micrometers SO_2 = sulfur dioxide

VOC = volatile organic compound

	Controlled Potential Emissions (tpy)							
Emission Source	РМ	PM 10	NOx	со	VOC	SO ₂	HAP	GHG (CO₂e)
Flare ¹								
Continuous Gas Stream	N/A	N/A	1.23E-04	5.63E-04	1.72E-03	5.15E-06	0.00E+00	2.61E-01
Maintenance Gas Stream	N/A	N/A	9.67E-03	4.41E-02	1.34E-01	4.03E-04	0.00E+00	2.04E+01
Pilot Flame	N/A	N/A	1.49E-02	6.79E-02	1.25E-01	2.06E-03	1.64E-04	2.99E+01
Subtotal Flare	N/A	N/A	0.02	0.11	0.26	0.002	0.0002	50.5
Fugitives								
Equipment	N/A	N/A	N/A	N/A	0.19	N/A	N/A	N/A
Haul Road (Controlled)	0.60	0.27	N/A	N/A	N/A	N/A	N/A	N/A
TOTAL	0.60	0.27	0.02	0.11	0.45	0.002	0.0002	50.5
¹ Smokeless flares have no measurabl	e particulate e	missions pursu	ant to AP-42, Se	ection 13.5, Table 13	3.5-1			
CO = carbon monoxide								
$CO_2e = carbon dioxide e$	quivalent							
GHG = greenhouse gas								
HAP = hazardous air pol	lutant							
lb/hr = pounds per hour	lb/hr = pounds per hour							
N/A = not applicable	N/A = not applicable							
NO _x = oxides of nitrogen	NO _X = oxides of nitrogen							
PM = particulate matter	PM = particulate matter							
PM ₁₀ = particles with an aerodynamic diameter less than or equal to 10 micrometers								
PM _{2.5} = particles with an	PM _{2.5} = particles with an aerodynamic diameter less than or equal to 2.5 micrometers SO ₂ = sulfur dioxide							
VOC = volatile organic co	VOC = volatile organic compound							

Table 2-4. Controlled Annual Emission Summary.

3 REGULATORY REVIEW AND APPLICABILITY

3.1 New Source Review

Separate preconstruction review procedures have been established for projects proposed in designated attainment areas (areas in which air quality is better than the National Ambient Air Quality Standards [NAAQS]) and nonattainment areas (areas in which air quality is worse than NAAQS) under the Clean Air Act (CAA) New Source Review (NSR) program. The preconstruction review process for new or modified major sources located in areas designated as attainment or unclassifiable is performed under the Prevention of Significant Deterioration (PSD) program. The PSD permitting process is intended to keep new air emission sources from causing existing air quality in attainment areas to deteriorate beyond acceptable levels. The preconstruction review process for new or modified major sources located in nonattainment areas is performed under the Nonattainment New Source Review (NNSR) program. NNSR only applies to pollutants that are classified as nonattainment. Therefore, a new facility can undergo both types of review, depending on the total emissions of each pollutant and the regional air quality attainment status. Brooke County, WV, is classified as in attainment or unclassified for all criteria pollutants with the exception of SO₂ where the Cross Creek Tax District portion of the county is designated as nonattainment for SO₂. However, the Facility is not located in the Cross Creek Tax District portion of Brooke County and therefore, NNSR does not apply to this Facility.

The major source threshold under PSD depends upon the type of facility. A facility is considered major under PSD if it emits or has the potential to emit any criteria pollutant greater than 100 tpy if it belongs to one of the 28 categories of stationary sources listed under 40 CFR 52.21 (b)(1)(i). The PSD major source threshold for all other source categories is 250 tpy. The Facility is not one of the named 28 source categories and therefore, the applicable major source PSD threshold is 250 tpy. As documented in Table 2-2 and Table 2-4, the Facility's potential emissions are well below the applicable PSD threshold.

3.2 New Source Performance Standards

USEPA has established New Source Performance Standards (NSPS) at 40 CFR 60 that regulate air pollutant emissions from certain categories of stationary sources. For combustion sources, emission standards typically are expressed in terms of mass emissions per unit of fuel combusted, fuel quality, or exhaust gas concentration. Sources subject to a specific NSPS category are also subject to the general rules in 40 CFR 60, Subpart A. Applicability of the source categories under 40 CFR 60 is discussed below for emission units included in the Facility.

- 40 CFR 60, Subpart Kb applies to storage vessels with a capacity greater than or equal to 75 cubic meters that is used to store volatile organic liquids for which construction, reconstruction, or modification is commenced after July 23, 1984. A propane storage tank will be located at the injection station to supply fuel for the pilot flame of the enclosed flare. However, the tank is sized to be approximately 1,000 gallons, which is less than 75 cubic meters (19,813 gallons), and is therefore exempt in accordance with 40 CFR 60.110b(a) of this subpart.
- 40 CFR 60, Subpart OOOO applies to certain types of natural gas and crude oil processing equipment, generally associated with processing of natural gas prior to transfer of custody to a gas transmission system. The Facility is part of the natural gas liquids transmission system and is not considered an affected facility under Subpart OOOO; therefore, Subpart OOOO does not apply to the proposed Facility.

3.3 National Emission Standards for Hazardous Air Pollutants

The National Emissions Standards for Hazardous Air Pollutants (NESHAP), codified in 40 CFR Parts 61 and 63, regulate HAP emissions. Part 61 was promulgated prior to the 1990 Clean Air Act Amendments (CAAA) and regulates only eight types of hazardous substances (asbestos, benzene, beryllium, coke oven emissions, inorganic arsenic, mercury, radionuclides, and vinyl chloride). The Facility is not in one of the source categories regulated by Part 61; therefore, the requirements of Part 61 are not applicable.

The 1990 CAAA established an initial list of 189 HAPs, resulting in the promulgation of Part 63. Part 63, also known as the Maximum Achievable Control Technology (MACT) standards, regulates HAP emissions from both major sources of HAP emissions and non-major (area) sources of HAP emissions within specific source categories. The Facility is not a subject source under any MACT standards and therefore, 40 CFR 63 is not applicable to the proposed Facility.

3.4 Source Aggregation

Single source determinations arise when a company operates an air contamination source onsite or adjacent to another air contamination source. Emissions from these sources should be aggregated as a single source to evaluate source status with regard to permitting requirements under the PSD, NSR, and Title V programs. If the emissions from the aggregated sources meet or exceed a major source emission threshold under one of these permitting programs, then the aggregated source must obtain a major source permit under that program.

The proposed Facility will be independently situated along the Sunoco Pipeline and does not share any of the following with another facility: (1) have the same two-digit, i.e., major industry grouping, Standard Industrial Classification (SIC) code; (2) are co-located, i.e., they are located on adjacent or contiguous properties; and (3) are under common control. Each element must exist to be deemed a single source and none of the above apply to the Facility; therefore, source aggregation is not applicable to the Facility. Furthermore, Sunoco does not own or operate any other facilities in West Virginia.

3.5 Title V Major Source Operating Permit Program

The Title V permit program under §45CSR30 of the WVDEP regulations requires major sources to obtain Title V operating permits. The major source thresholds under the Title V program in West Virginia are 100 tpy of any criteria air pollutant; 10 tpy of any single HAP; and 25 tpy of total HAPs. The authority to issue Title V operating permits has been delegated by USEPA to WVDEP.

As summarized in Tables 2-1 through 2-4, the Facility will not be a major Title V source and the Title V permit program under §45CSR30 will not apply.

3.6 Accidental Release Prevention and Risk Management

USEPA has established accidental release prevention and risk management plan requirements as part of 40 CFR Part 68 (Chemical Accident Prevention Provisions). Part 68 lists regulated substances along with thresholds for determining the applicability of the associated requirements. If a regulated substance is handled, stored, or processed in greater than threshold quantities at a stationary source, then a risk management plan must be prepared.

Even if a facility is not required to prepare a risk management plan, requirements of the General Duty Clause in Section 112(r) of the CAA still apply if the facility produces, processes, handles, or stores regulated substances or other extremely hazardous substances on site. Compliance with the General Duty Clause requires that owners of facilities be continuously vigilant about potential hazards and methods of minimizing the consequences of accidental releases.

The proposed Facility is not expected to produce, process, handle, or store any substance regulated under Part 68 in quantities exceeding applicability thresholds. The propane from the liquefied petroleum gas tank will be used as fuel for the flare and is therefore exempt from the requirements of Part 68.

3.7 West Virginia State Requirements

As documented in Tables 2-1 through 2-4 above, the Facility will be a minor source of emissions under the NSR Program as well as the Title V Operating Permit program under §45CSR30. However, the potential uncontrolled emissions for the Facility will exceed the permitting threshold of 6 lb/hr and/or 144 pounds per day (lb/day) in accordance with WVDEP §45CSR13-2.24. Accordingly, Sunoco is submitting this application for a minor source permit to install and operate.

In addition to regulations already discussed in preceding sections, state regulations that pertain to this Facility are listed in Table 3-2. Titles shown in capital letters in the table are permits, notifications, and/or reports that will be needed for construction and operation of the Facility.

Federal authority is delegated to the State of West Virginia, and all permit applications will be submitted to WVDEP. As explained in preceding sections, the following list of air permits is applicable to the proposed facility:

Rule	Description
45CSR02	Control of visible and particulate emissions from stationary sources
45CSR08	Ambient Air Quality Standards
45CSR10	General emission limit provisions for sulfur dioxide
45CSR11	Prevention Of Air Pollution Emergency Episodes
45CSR13	Permits-to-Install New Sources and Permit-to-Install and Operate Program
45CSR17	Restrictions of emissions of fugitive dust
45CSR21	Control of emissions of VOCs from stationary sources

Table 3-1 West Virginia DEP Applicable Regulations

3.7.1 Permit Applicability

Air pollution control regulations have been established by the WVDEP for air emissions associated with stationary sources. The stationary sources of emissions at the proposed Facility will be a GC; maintenance activities; and fugitive emissions resulting from leaks from valves, flanges, seals, relief valves, and other miscellaneous component types. The vapors associated with the GC and maintenance activities will be captured and diverted to an enclosed flare for control of VOC emissions. As previously discussed the GC will be considered an exempt source in accordance with §45CSR13-2.6, Table 45-13B(26); however, the emissions from the GC were estimated as part of the PTE for the proposed Facility to determine major source applicability.

To determine permit applicability for the Facility's emission sources, the PTE emissions have been estimated as detailed in Section 2 and presented in Attachment B. Based on the PTE emission estimates presented in Table 2-1, Table 2-2, and as detailed in Attachment B, the

proposed Facility will be considered a minor source with potential uncontrolled VOC emissions in excess of 6 lb/hr but less than major source thresholds. Therefore, the Facility will need to obtain a permit to construct and operate.

4 REFERENCES

United States Environmental Protection Agency (USEPA), 1995. Protocol for Equipment Leak Emission Estimates. EPA-453/R-95-017, Table 2-3, November, 1995.

USEPA, 2006. AP-42. Compilation of Air Pollution Emission Factors, Volume I: Stationary Point and Area Sources, Section 13.2.2, Unpaved Roads, Fifth Edition, revised November 9, 2006.

USEPA, 2009. Title 40 Code of Federal Regulations Parts 51 and 52, Prevention of Significant Deterioration (PSD) and Nonattainment New Source Review (NNSR): Aggregation and Project Netting. Federal Register Volume 74, No. 10, January 15, 2009, pages 2376-2383.

USEPA, 2015a. AP-42. Compilation of Air Pollution Emission Factors, Volume I: Stationary Point and Area Sources, Section 13.5, Industrial Flares, Tables 13.5-1 and 13.5-2, Fifth Edition, April, 2015.

USEPA, 2015b. Title 40 Code of Federal Regulations, Part 98, Subpart C. - Mandatory Greenhouse Gas Reporting, Appendix, Tables C-1 and C-2. November, 2015.

5 PERMIT APPLICATION

Included with this permit application package are the forms required in accordance with §45CSR13 and WVDEP guidance. The supporting information associated with this permit application package includes the following:

- Application for NSR Permit (Minor Source)
- Attachment A Business Certificate
- Attachment B Site Map
- Attachment C Installation and Startup Schedule
- Attachment D Regulatory Discussion N/A (See Section 3)
- Attachment E Plot Plan
- Attachment F Process Flow Diagram(s)
- Attachment G Process Description N/A (See Section 2)
- Attachment H Material Safety Data Sheets (MSDS)
- Attachment I Emission Units Table
- Attachment J Emission Points Data Summary Sheet
- Attachment K Fugitive Emissions Data Summary Sheet
- Attachment L Emissions Unit Data Sheets
- Attachment M Air Pollution Control Device Sheets
- Attachment N Supporting Emissions Calculations

- Attachment O Monitoring/Recordkeeping/Reporting/Testing Plans
- Attachment P Public Notice
- Attachment Q Business Confidential Claim N/A
- Attachment R Authority Forms
- Attachment S Title V Revision N/A (See Section 3)
- Application Fee

NSR (45CSR13) APPLICATION FORM

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.dep.wv.gov/daq	APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)			
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOWN)	I): PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY)			
☑ CONSTRUCTION ☐ MODIFICATION ☐ RELOCATION				
CLASS I ADMINISTRATIVE UPDATE TEMPORARY				
CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FACT	IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION			
FOR TITLE V FACILITIES ONLY: Please refer to "Title V Revis (Appendix A, "Title V Permit Revision Flowchart") and ability	sion Guidance" in order to determine your Title V Revision options y to operate with the changes requested in this Permit Application.			
Section	n I. General			
 Name of applicant (as registered with the WV Secretary of S Sunoco Pipeline, L.P. 	State's Office):2. Federal Employer ID No. (FEIN):2 3 3 1 0 2 6 5 6			
3. Name of facility (if different from above):	4. The applicant is the:			
Sunoco Pipeline Follansbee Station	OWNER OPERATOR BOTH			
5A. Applicant's mailing address: 535 Fritztown Road Sinking Spring, PA 19608	5B. Facility's present physical address: 376 White Tail Ridge Rd. Wellsburg, WV 26070 Latitude 40° 14' 8.3364"N, Longitude 80° 32' 36.5922"W Brooke County, WV			
 6. West Virginia Business Registration. Is the applicant a res If YES, provide a copy of the Certificate of Incorporation/ change amendments or other Business Registration Certific If NO, provide a copy of the Certificate of Authority/Author amendments or other Business Certificate as Attachment 	sident of the State of West Virginia? YES NO /Organization/Limited Partnership (one page) including any name icate as Attachment A. Pority of L.L.C./Registration (one page) including any name change A.			
7. If applicant is a subsidiary corporation, please provide the na	ame of parent corporation: Sunoco Logistics, L.P.			
8. Does the applicant own, lease, have an option to buy or othe	erwise have control of the proposed site? X YES DO			
- If YES, please explain: The applicant owns and cont	trols the facility.			
 If NO, you are not eligible for a permit for this source. 				
 9. Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary crusher, etc.): NGL Pipeline Support and Maintenance Station 10. North American Industry Classification System (NAICS) code for the facility 493190, 23 				
11A. DAQ Plant ID No. (for existing facilities only):				
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.				

12A.

 For Modifications, Administrative Updates present location of the facility from the neares 	or Temporary permits at an existing facility, t state road;	please provide directions to the			
 For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment B. 					
Directions from WV-88: Turn off of WV-88 onto Mo Continue onto Whitetail Ridge (240 ft). Take the Follansbee Station.	c Adoo Ridge Road (1.6 miles). Turn left towa a slight right (0.4 miles) and continue staying	ard Whitetail Ridge (243 ft). I right until you reach			
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:			
	Wellsburg, WV	Brooke			
12.E. UTM Northing (KM): 4454012	12F. UTM Easting (KM): 538832	12G. UTM Zone: 17T			
13. Briefly describe the proposed change(s) at the N/A	facility:				
14A. Provide the date of anticipated installation or change: 11/2015 14B. Date of anticipated Start-U - If this is an After-The-Fact permit application, provide the date upon which the proposed change did happen: 14B. Date of anticipated Start-U					
14C. Provide a Schedule of the planned Installati application as Attachment C (if more than or	on of/Change to and Start-Up of each of the ne unit is involved).	units proposed in this permit			
15. Provide maximum projected Operating Scheo Hours Per Day: 24 Days Per Wee	Iule of activity/activities outlined in this applic ek: 7 Weeks Per Year: 52	ation:			
16. Is demolition or physical renovation at an exist	ing facility involved? YES NO				
17. Risk Management Plans. If this facility is sub	ject to 112(r) of the 1990 CAAA, or will becon	ne subject due to proposed			
changes (for applicability help see www.epa.go	v/ceppo), submit your Risk Management Pla	an (RMP) to U.S. EPA Region III.			
18. Regulatory Discussion. List all Federal and S	State air pollution control regulations that you	believe are applicable to the			
proposed process (if known). A list of possible a	pplicable requirements is also included in At	tachment S of this application			
(Title V Permit Revision Information). Discuss a	pplicability and proposed demonstration(s) of	compliance (if known). Provide this			
information as Attachment D.					
Section II. Additiona	l attachments and supporting d	locuments.			
19. Include a check payable to WVDEP – Division 45CSR13).	of Air Quality with the appropriate applicatio	n fee (per 45CSR22 and			
20. Include a Table of Contents as the first page	of your application package.				
21. Provide a Plot Plan , e.g. scaled map(s) and/o source(s) is or is to be located as Attachment	r sketch(es) showing the location of the prope E E (Refer to <i>Plot Plan Guidance</i>) .	erty on which the stationary			
- Indicate the location of the nearest occupied structure (e.g. church, school, business, residence). House located at 977'NE. 0.2m					
22. Provide a Detailed Process Flow Diagram(s device as Attachment F.) showing each proposed or modified emissic	ons unit, emission point and control			

23. Provide a Process Description as Attachment G.

- Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable).

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

24. Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.				
- For chemical processes, provide a MS	SDS for each compound emitte	d to the air.		
25. Fill out the Emission Units Table an	nd provide it as Attachment I.			
26. Fill out the Emission Points Data S	ummary Sheet (Table 1 and 1	Fable 2) and provide it as Attachment J.		
27. Fill out the Fugitive Emissions Data	a Summary Sheet and provide	it as Attachment K.		
28. Check all applicable Emissions Uni	t Data Sheets listed below:			
Bulk Liquid Transfer Operations	🛛 Haul Road Emissions	Quarry		
Chemical Processes	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage		
Concrete Batch Plant	Incinerator			
Grey Iron and Steel Foundry	Indirect Heat Exchanger	🖄 Storage Tanks		
General Emission Unit, specify				
Fill out and provide the Emissions Unit	Data Sheet(s) as Attachment	L		
29. Check all applicable Air Pollution C	control Device Sheets listed be	elow:		
Absorption Systems	Baghouse	⊠ Flare		
Adsorption Systems		Mechanical Collector		
	Electrostatic Precip	itator Wet Collecting System		
Other Collectors, specify				
Fill out and provide the Air Pollution Co	ntrol Device Sheet(s) as Atta	chment M.		
30. Provide all Supporting Emissions (Items 28 through 31.	Calculations as Attachment N	I, or attach the calculations directly to the forms listed in		
31. Monitoring, Recordkeeping, Repo testing plans in order to demonstrate application. Provide this information	rting and Testing Plans. Atta compliance with the proposed as Attachment O.	ch proposed monitoring, recordkeeping, reporting and emissions limits and operating parameters in this permit		
Please be aware that all permits mus measures. Additionally, the DAQ ma are proposed by the applicant, DAQ	st be practically enforceable wh ay not be able to accept all mea will develop such plans and inc	ether or not the applicant chooses to propose such asures proposed by the applicant. If none of these plans clude them in the permit.		
32. Public Notice. At the time that the	application is submitted, place	a Class I Legal Advertisement in a newspaper of general		
circulation in the area where the sou	rce is or will be located (See 45	SCSR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>		
Advertisement for details). Please	submit the Affidavit of Publica	ation as Attachment P immediately upon receipt.		
33. Business Confidentiality Claims.	Does this application include co	onfidential information (per 45CSR31)?		
□ YES	⊠ NO			
If YES, identify each segment of information on each page that is submitted as confidential and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's " <i>Precautionary Notice – Claims of Confidentiality</i> " guidance found in the <i>General Instructions</i> as Attachment Q.				
Section III. Certification of Information				
34. Authority/Delegation of Authority. Only required when someone other than the responsible official signs the application. Check applicable Authority Form below:				
Authority of Corporation or Other Business Entity				
Authority of Governmental Agency				
Submit completed and signed Authority Form as Attachment R.				
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.				

35A. Certification of Information. To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned I Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE		DATE: <u>11/25/2015</u> (Please use blue ink) 35C. Title: Principle Engineer
35D. E-mail: mlgordon@sunocologistics.com	36E. Phone: 610-670-3284	36F. FAX:
36A. Printed name of contact person (if different from above): Christopher Embry		36B. Title: Sr. Environmental Engineer
36C. E-mail: CPEMBRY@sunocologistics.com	36D. Phone: 610-670-3237	36E. FAX: 866-599-4936

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDED WITH THIS PERMIT APPLICATION:			
Attachment A: Business Certificate	Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s)		
Attachment C: Installation and Start Up Schedule	Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations		
Attachment E: Plot Plan	Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans		
Attachment G: Process Description	Attachment Q: Business Confidential Claims		
Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table	Attachment R: Authority Forms Attachment S: Title V Permit Revision Information		
Attachment J: Emission Points Data Summary Sheet	Application Fee		

Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Per	mitting Section, at the
address listed on the first page of this application. Please DO NOT fax permit applications.	

FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:
Forward 1 copy of the application to the Title V Permitting Group and:
For Title V Administrative Amendments:
NSR permit writer should notify Title V permit writer of draft permit,
For Title V Minor Modifications:
Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,
NSR permit writer should notify Title V permit writer of draft permit.
For Title V Significant Modifications processed in parallel with NSR Permit revision:
NSR permit writer should notify a Title V permit writer of draft permit,
Public notice should reference both 45CSR13 and Title V permits,
EPA has 45 day review period of a draft permit.
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

Attachment A: Business Certificate

Earl Ray Tomblin, Governor

SUNOCO PIPELINE L.P. 1735 MARKET ST FL 13 PHILADELPHIA PA 19103-7505 Mark W. Matkovich, Acting Tax Commissioner

Letter Id: L1576691776 Issued: Account #:

11/14/2013 2290-4360

RE: Business Registration Certificate

The West Virginia State Tax Department would like to thank you for registering your business. Enclosed is your Business Registration Certificate. This certificate shall be permanent until cessation of business or until suspended, revoked or cancelled. Changes in name, ownership or location are considered a cessation of business; a new Business Registration Certificate and applicable fees are required. Please review the certificate for accuracy.

This certificate must be prominently displayed at the location for which issued. Engaging in business without conspicuously posting a West Virginia Business Registration Certificate in the place of business is a crime and may subject you to fines per W.Va. Code § 11-9.

When contacting the State Tax Department, refer to the appropriate account number listed on the back of this page. The taxes listed may not be all the taxes for which you are responsible. Account numbers for taxes are printed on the tax returns mailed by the State Tax Department. Failure to timely file tax returns may result in penalties for late filing.

Should the nature of your business activity or business ownership change, your liability for these and other taxes will change accordingly.

To learn more about these taxes and the services offered by the West Virginia State Tax Department, visit our web site at www.wvtax.gov.

Enclosure atL006 v.4

Save a stamp and your time. You can now view, file and pay taxes at https://mytaxes.wvtax.gov More taxes will be available for online access in the future.

TAX	FILING FREQUENCY	ACCOUNT NUMBER
Business Registration Tax		2290-4360
Pass Through Entity Tax	Partnership Annual	2289-6850

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: SUNOCO PIPELINE L.P. 1735 MARKET ST 13 PHILADELPHIA, PA 19103-7505

BUSINESS REGISTRATION ACCOUNT NUMBER:

2290-4360

This certificate is issued on: 11/14/2013

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.4 L1576691776 Attachment B: Site Map

R: _Marcellus Shale Projects\Sunoco\5958 - Air Permits\Figures\Follansbee - Figure 1.dwg PIT NICHOLE.NAJESKI 10/5/2015 9:56:17 AM

Attachment C: Installation and Startup Schedule

Unit	Approximate Start of Installation	Approximate Start of Operations
FE-01 (Fugitive Emissions)	11/2015	9/29/2016
TK-9702 (Flare Knockout Tank)	11/2015	9/29/2016
TK-9707 (Propane Tank)	11/2015	9/29/2016

ATTACHMENT C: INSTALLATION AND START UP SCHEDULE

Attachment D: Regulatory Discussion – N/A (See Section 3)

Attachment E: Plot Plan

Attachment F: Process Flow Diagram

MAINLINE CHIO RIVER LAST BLOCK VALVE	
RUE ROOP 24.500 PPO C3 10.000 PPO C4 10.000 PPO	FOLLANSBEE
	STATION (MP 33.0) (FOLL)
B1 09/09/15 384432207 FE B 07/15/15 384432207 FE A1 04/00/06 Vessation Vessation	EDVSID FOR APPROVAL SAS AWA SSUED FOR APPROVAL MNB MAK ZEED FOR APPROVAL MNB MAK ESSUED FOR REPROVAL MNB MAK
A 0.03/1/1 SHAL123/07 IS B 0.03/1/1/1 SHAL123/07 IS EV N.F. APPL APPL	SSUED FOR REVEW LLC AMIC DESCRIPTION APPRIVAL
NOTES: 1. DESIGN BASIS FOR ALL PIPE AND EQUIPMENT IS 5200 BPH.	ATTACHMENT F PROCESS FLOW DIAGRAM OHIO PIPELINE PROJECT s SUNOCO PIPELINE, L.P. FOLLANSBEE STATION BROOKE COUNTY, WV
2. FOR TEMPORARY FILTER CONNECTIONS. OLD DRAWING NO. E_SYS	ST_M032001 B1

Attachment G: Process Description – N/A (See Section 2)

Attachment H: Material Safety Data Sheets (MSDS)

Butane

MATERIAL SAFETY DATA SHEET (MSDS) NORMAL BUTANE

Т

IDENTITY (As Used on Label and List) Normal Butane (DOT ID No: 1011 n-butane or UN 1075)			(Hazard Rating: Health-1/Fire-4/Reactivity-0) DOT Hazard Classification: 2.1 (Flammable Gas)				
Section I – Chemical Product and Com	pany Iden	ntific	cation				
Manufacturer's Name MARKWEST	Em Ma	ergency Phor rkwest (80	ne Number 0) 730-8388 / CH	EMTREC (800	0) 424-9300		
Address (Number, Street, City, State and ZIP code) 1515 Arapahoe Street		Tele (80	ephone Numl 0) 730-8388	ber for Information 8			
Tower 1, Suite 1600		Dat Jur	e Prepared ne 21, 2014				
Denver, Colorado 80202-2126		Sigi N/A	nature of Prej	parer (optional)			
Section II – Hazardous Ingredients/Ide	ntity Info	rma	tion				
Hazardous Components (Specific Chemical Identity; Common	n Name (s))	C	OSHA PEL	ACGIH TLV	Other Limits Recommend ed	% (optional)	
Normal Butane (106-97-8)		800) ppm	Not establishe	1	95	
Isobutane (75-28-5)		800)* ppm	Not established	1	<4	
Propane (74-98-6)		100	0 ppm	Not established	1	<1	
		1					
Section III – Physical/Chemical Charac	teristics						
Poiling Point			Specific Gr	$avity (H_{a}O = 1)$			
31° F (-1° C) Based on N-Butane		~.58					
Vapor Pressure (Reid): 36 to 38 psi at 100°F		Melting Point: N/A					
Vapor Density (AIR = 1): ~ 2		Evaporation Rate (Butyl Acetate = 1): Very Rapid					
Solubility in Water:							
Appearance and Odor: Colorless liquid under pressure. Faint hydroca	arbon odor 1	unles	s odorant is	s added.			
Section IV – Fire and Explosion Hazard	d Data						
Flash Point (Method Used):			mmable Lir	nits	LEL	UEL	
-76° F (-60° C) Based on N-Butane			sed on N-B	utane	1.5%	9.0%	
Extinguishing Media: Dry chemical, foam, carbon dioxide		<u>ı</u>					

Special Fire Fighting Procedures:

Shut off source of product as soon as possible. Use water to cool product storage vessels and personnel while shutting off source. Avoid extinguishing unless necessary to accomplish source shut off. Firemen must use proper protective equipment, including respiratory apparatus, to protect against hazardous combustion products/oxygen deficiencies.

Unusual Fire and Explosion Hazards:

Flames impinging on product storage vessels above the liquid level will cause sudden vessel failure in approximately 8 or more minutes, resulting in a BLEVE (Boiling Liquid Expansion Violent Explosion), unless vessel surfaces are kept cooled with water. If this cannot be done, evacuate the area. Liquid product will change to vapor rapidly at well below ambient temperatures and readily forms flammable mixtures with air. If exposed to an ignition source, it will burn in the open or be explosive in confined spaces. Its vapors are heavier than air and may travel long distances to a point of ignition and then flash back. Vapors will seek low lying areas.

Section V – Reactivity Data

Dection v	Reactivity Du	u			
Stability:	Unstable		Conditions to Avoid:		
Stability.			High heat sparks open flame		
	Stable	v			
	Stable	Λ			
Incompatibility (Strong oxidize	Materials to Avoid) rs may ignite thi	: s mat	erial.		
Hazardous Deco	mposition or Bypro	Juoter			
Carbon monor	vide volatile hvd	rocar	han vanars		
	May Occur	locar			
Hazardous	Whay Occur		Conditions to Avoid:		
Polymerization			None		
	Will Not Occur				
		Х			
Section VI -	- Health Haza	rd D	ata		
Route(s) of Entry:Inhalation?Skin?Ingestion?Inhalation: Vapors are virtually nontoxic below lower flammability limits. Above LEL, low moderate incidental effects such as CNS depression and irritation occur but are completely reversible upon cessation of exposure. At high concentrations, acts as a simple asphyxiant.Skin: Contact with liquid may cause burns and frostbite. Skin may be flushed; as frostbite develops, skin may change to white or grayish-yellow: Blisters may appear.Swallowing: Aspiration Hazard					
Eyes: Direct c	ontact with liqui	d or f	frost particles may produce severe and possibly permanent eye damage.		
Health Hazards (Mildly toxic by	Acute or Chronic): y inhalation, can	cause	e drowsiness or asphyxia following exposures to high concentrations.		
Carcinogenicity:	N/A N	TP?	N/A IARC Monographs? N/A OSHA Registered N/A		
Signs and Symptoms of Exposure: Drowsiness, narcosis and asphyxia.					
Medical Conditions Generally Aggravated by Exposure: Personnel with pre-existing chronic respiratory diseases should avoid exposure to this material.					

Emergency and First Aid Procedures:

Eyes: Rinse immediately with water. Remove contact lenses. Flush with water for 10-15 minutes. Consult a physician.

Skin: Warm frostbite areas gradually and get medical help if there is evidence of tissue damage.

Swallowed: Rinse mouth with water. Drink 1-2 glasses of milk or water. Do not induce vomiting unless directed by a physician.

Inhaled: Remove patients to fresh air. If breathing has stopped, restore breathing at once. Administer oxygen and get medical help.

Section VII - Precautions for Safe Handling and Use

Steps to be taken in Case Material is Released or Spilled:

Isolate spill or leak area immediately for at least 160 to 300ft in all directions. Keep unauthorized personnel away.

Waste Disposal Method:

Land disposal or burial (sanitary landfill)

Precautions to Be Taken in Handling and Storing:

Butane can be stored in liquid form under its vapor pressure at ambient temperatures, or refrigerated liquid can be stored at atmosphere pressure.

Other Precautions:

N/A

Section VIII – Control Measures

Respiratory Protection (Specify Type):

Wear positive	Vear positive pressure self-contained breathing apparatus.						
Ventilation:	Local Exhaust		Special				
N/A	Mechanical (General)		Other				
Protective Gloves Rubber gloves	S	Eye Saf	Protection				

Other Protective Clothing or Equipment:

Wear thermal protective clothing when handling refrigerated liquids. Clothing that becomes wet should immediately removed due to its flammability hazard.

Work/Hygienic Practices

Quick trench facilities and/or eye washing fountains should be provided within the immediate work area for emergency use.

N/A – Not Applicable

N/D – Not Determined

~ -- Approximately

* -- Based on LP (Gas)

Propane

MATERIAL SAFETY DATA SHEET (MSDS) PROPANE HD-5

IDENTITY (As Used on Label and List)(Hazard Rating: Health-1/Fire-4/Reactivity-0)Propane or Liquefied Petroleum GasDOT Hazard Classification: Flammable Gas(DOT ID No: UN 1075)DOT Hazard Classification: Flammable Gas

Section I – Chemical Product and Company Identification

1 0	
Manufacturer's Name MARKWEST	Emergency Phone Number Markwest (800) 730-8388 / CHEMTREC (800) 424-9300
Address (Number, Street, City, State and ZIP code) 1515 Arapahoe Street	Telephone Number for Information: (800) 730-8388
Tower 1, Suite 1600	Date Prepared June 21, 2014
Denver, Colorado 80202-2126	Signature of Preparer (optional) N/A

Section II – Hazardous Ingredients/Identity Information

			Other Limits	
Hazardous Components (Specific Chemical Identity; Common Name (s))	OSHA PEL	ACGIH TLV	Recommended	% (optional)
Propane (74-98-6)	1000 ppm	N/A		90-95
Propylene (115-07-01)	N/A	NA		0-5
Isobutane/subutane (75-28-5)	800 ppm	N/A		0-2.5

Section III – Physical/Chemical Characteristics **Boiling Point** Specific Gravity ($H_2O = 1@ 39.2^{\circ}F$): -45° F 0.52 Vapor Pressure (mm Hg): Melting Point: 190 to 205 (psia at 100°F) N/A Evaporation Rate (Butyl Acetate = 1): Vapor Density (AIR = 1at 60-90 $^{\circ}$ F): N/A 1.5 Solubility in Water: Moderate Appearance and Odor: Colorless gas (liquid under pressure): propane sold for use as fuel contains mercaptan odorant. Section IV - Fire and Explosion Hazard Data Flash Point (Method Used): UEL Flammable Limits LEL ~2.1% ~9.5% GT - 160° F (est.) Normal Atmospheric

Extinguishing Media: Dry chemical, carbon dioxide, halogenated extinguishing agent

Special Fire Fighting Procedures:

Gas fires should not be extinguished unless the gas flow can be stopped immediately. Shut off gas source and allow the fire to burn itself out. If the source cannot be shut off immediately, all equipment and surfaces exposed to the fire should be cooled with water to prevent overheating, flashbacks, or explosions. Control fire until gas supply can be shut off. Firemen must use proper protective equipment including respiratory apparatus to protect against hazardous combustion products/oxygen deficiencies.

Unusual Fire and Explosion Hazards:

This gas releases flammable vapors at well below ambient temperatures and readily forms flammable mixtures with air. Exposed to an ignition source, it will burn in the open or be explosive in confined spaces. Its vapors are heavier than air and may travel long distances to a point of ignition, and then flash back. Alkane/Chlorine gas mixtures have produced explosions.

Section V – Reactivity Data

	Ŭ		
Stability:	Unstable		Conditions to Avoid: Heat, sparks, and open flame
	Stable	X	

Incompatibility (Materials to Avoid):

Strong acids, alkalies, and oxidizers such as chlorine (gas or liquid) and oxygen.

Hazardous Decomposition or Byproducts:

Combustion may produce carbon monoxide and other harmful substances.

Hazardous Polymerization	May Occur		Conditions to Avoid: None
	Will Not Occur	x	

Section VI – Health Hazard Data

Route(s) of Entry:	Inhalation?	Skin?	Ingestion?		
Inhalation: Exposure may produce r	apid breathing, headache, d	izziness, visual disturbance	, muscular weakness,		
tremors, narcosis, unconsciousness, and death, depending on concentration and time of exposure.					

Skin: This material is not expected to be absorbed through the skin. Non-irritating; but solid and liquid forms of this material and pressurized gas can cause freeze burns.

Swallowing: Solid and liquid forms of this material and the pressurized gas can cause freeze burns.

Eyes: This gas is non-irritating; but direct contact with liquefied/pressurized gas or frost particles may produce severe and possibly permanent eye damage from freeze burns.

Health Hazards (Acute or Chronic):					
Asphyxiation and freeze burns					
Carcinogenicity: N/A	A NTP?	N/A	IARC Monographs?	N/A	OSHA Registered N/A
Signs and Symptoms of Exposure: Inhalation may produce mild intoxication, drowsiness, or loss of coordination.					
Inhalation may produce mild intoxication, drowsiness, or loss of coordination. Medical Conditions Generally Aggravated by Exposure: High concentrations produce intoxication followed by loss of consciousness, asphyxiation, and death. Caution is recommended for personnel with pre-existing central nervous system disorders. Personnel with pre-existing chronic					

respiratory diseases should refrain from breathing this material

Emergency and First Aid Procedures:

Eyes: Vapors are not expected to present an eye irritation hazard. If contacted by liquid/solid, immediately flush the eye(s) gently with warm water for at least 15 minutes. Seek medical attention if pain or redness persists.

Skin: Frozen tissues should be flooded or soaked with warm water (105°-115°F.). Do not use hot water! Cryogenic burns, which result in blistering or deeper tissue freezing, should be promptly seen by a physician.

Swallowed: Induce vomiting with warm water (quart) only if patient is conscious. Immediately obtain medical attention.

Inhaled: Immediately move personnel to area of fresh air. For respiratory distress, give air oxygen, or administer CPR (cardiopulmonary resuscitation). If necessary, obtain medical attention if breathing difficulties continue.

Section VII – Precautions for Safe Handling and Use

Steps to be taken in Case Material is Released or Spilled:

Eliminate and prevent source of ignition. Evacuate all non-essential personnel to an area upwind. (At least ½ mile in all directions if tanks or tank cars are involved in fire.) Stop source of release with non-sparking tools before putting out any fire. Ventilate enclosed areas to prevent formation of flammable or oxygen-deficient atmospheres. Water spray may be used to reduce vapors. Closed systems form white frost at the point of leak. Liquid spills will vaporize forming cold dense vapor cloud even with proper respiratory equipment.

Waste Disposal Method:

Releases are expected to cause only localized, non-persistent environmental damage. Waste mixtures containing these gases should not be allowed to enter drains or sewers where there is danger of their vapors becoming ignited. When it becomes necessary to dispose of these gases, it is preferable to do so as a vapor. Unused product may be used as an auxiliary fuel or disposed by burning in a properly designed flare or incinerator. Venting of gas to the atmosphere should be avoided. Defective, empty, or partially used portable containers should be returned to the supplier with appropriate tags.

Precautions to Be Taken in Handling and Storing:

Do not attempt to clean since residue is difficult to remove. All containers should be disposed of in an environmentally safe manner and in accordance with governmental regulations. For work on tanks refer to Occupational Safety and Health Administration regulations, ANSI Z49.1, and other governmental and industrial references pertaining to cleaning, repairing, welding, or other contemplated operations.

Other Precautions:

"Empty" containers retain residue (liquid and/or vapor) and can be dangerous. DO NOT PRESSURIZE, CUT, WELD, BRAZE, SOLDER, DRILL, GRIND OR EXPOSE SUCH CONTAINERS TO HEAT, FLAME, SPARKS, STATIC ELECTRICITY, OR OTHER SOURCES OF IGNITION; THEY MAY EXPLODE AND CAUSE INJURY OR DEATH.

Section VIII – Control Measures

Respiratory Protection (Specify Type):

For excessive gas concentrations, use only NIOSH/MSHA approved, self-contained breathing apparatus. Respirator use should comply with OSHA 29 OFR 19910, 134 or equivalent.

	- r - <i>j</i>				
Local Exhaust			Special		
ventilation:	Essential in work areas to prevent				
	accumulation of explosive mixtures.				
	Mechanical (General)		Other		
	Essential in work areas to prevent		If mechanical ventilation is used, electrical equipment		
	accumulation of explosive mixtures.		must meet N.E.C. requirements.		
Protective Gloves Eve Protection		Protection			
Insulated impe	Insulated impervious plastic or neoprene-coated canvas Chemical-type goggles and face shield when handlir		emical-type goggles and face shield when handling		
gloves.	liquefied gases. Safety glasses and/or face shields are		uefied gases. Safety glasses and/or face shields are		
re		rec	recommended when handling high-pressure cylinders and		
		pip	bing systems and whenever vapors are discharged		
Other Protective	Clothing or Equipment:				

Other Protective Clothing or Equipment:

Protective gear (apron) to protect skin areas.

N/A – Not Applicable N/D – Not Determined ~ -- Approximately * -- Based on LP (Gas) Attachment I: Emission Units Table

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴				
F-9708	F-9708	John Zink Enclosed Flare	2016	10MMBtu/hr	New	1C				
FE-01	FE-01	Fugitives	2016	N/A	New	None				
				ļ						
				<u> </u>						
				<u> </u>						
				<u> </u>						
			!	<u> </u>						
				<u> </u>						
				<u> </u>	ſ					
¹ For Emissic	on Units (or Sc	urces) use the following numbering system:	15 25 35 or other	appropriate design	nation					
² For <u>E</u> missic ³ New, modifi ⁴ For <u>C</u> ontrol	 ¹ For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S, or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, or other appropriate designation. ³ New, modification, removal ⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C, or other appropriate designation. 									

Attachment J: Emission Points Data Summary Sheet

Attachment J EMISSION POINTS DATA SUMMARY SHEET

	Table 1: Emissions Data														
Emission Point ID No. (Must match Emission Units Table &	ion Emission Dit ID Point Type ¹ Through This Point <i>(Must match Emission Units Table & Plot Plan)</i>		Emission Unit Vented Through This Point <i>(Must match Emission Units Table</i> & Plot Plan)		Emission Unit VentedAir Pollution Control Device (Must match Emission Units Table & Plot Plan)Vent Tin for Emission Wints Table & Plot Plan)Image: State of the state Control Device (Must match Emission Units Table & Plot Plan)Vent Tin for Emission Units Table (chemic process only)		Time or ssion nit mical esses nly)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maximum Maximum Po Potential Controlle Uncontrolled Emissions		Maximum Potential Controlled Emissions ⁵ (At exit conditions, Solid, Liquid or		Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)	
Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
F-9708	Upward vertical stack	F- 9708	John Zink Enclosed Flare	1C	Flare	N/A	N/A	VOCs NOx SOx CO HAPs CO ₂ e	472.71 0 0 0 0 0	6.81 0 0 0 0 0	9.48 0.68 0.03 3.12 0.00004 1,442.9	0.26 0.02 0.002 0.11 0.0002 50.5	Gas	ST ^A , O ^B O ^B O ^C O ^B O ^D O ^E	
FE-01	Fugitives	FE-01	Fugitives	None	Equipment, valves, fittings, seal leaks	N/A	N/A	n-Butane/106- 97-8 i-butane/75-28- 5 Propane/74-98- 6	0.04	0.19	0.04	0.19	Gas	OF	

A. Please see Attached. Air Hygiene, Inc., "Stack Emissions Study EPA 40 CFR Part 60 Subpart OOOO for The ZTOF025X15PF Unit", Prepared for John Zink, Co LLC, at The Tulsa R&D Facility Tulsa, Oklahoma October 23-25, 2013.

B. Factors taken from AP-42 Chapter 13.5 for Industrial Flares, Table 13.5-1 and 13.5-2, April 2015.

C. Assumes all Sulfur in the product is converted to SO2.

D. The Total HAP emission factor for the Propane Pilot Flame was estimated using AP-42, Section 1.4, Table 1.4-3. Emission Factors for Speciated Organic Compounds from Natural Gas Combustion.

E. GHG emission factors taken from Table C-1 and C-2 of 40 CFR Part 98, Subpart C .

F. Leak emission factors are from the USEPA Protocol for Equipment Leak Emission Estimates, EPA-453/R-95-017, November, 1995, Table 2-3. Leak emission factors are for total organic compound emissions from light liquid service for the natural gas liquids (butane). Assume the total organic compound emissions is equivalent to total VOCs.

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S,

Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁶ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment J EMISSION POINTS DATA SUMMARY SHEET

Table 2: Release Parameter Data								
Emission Point ID No. (Must match Emission Units Table)	Inner Diameter (ft.)	Exit Gas			Emission Point El	evation (ft)	UTM Coordinates (km)	
		Temp. (°F)	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting
F-9708	4	1,552	5,705	7.57	1,150 ft	34 ft	4454004	538797
FE-01	N/A	60	0.01	minimal	1,150 ft	0 ft	4454012	538832

¹ Give at operating conditions. Include inerts.

² Release height of emissions above ground level.

Attachment K: Fugitive Emissions Data Summary Sheet

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	🛛 Yes 🗌 No
	☐ If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	☐ Yes
	If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	☐ If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	🛛 Yes 🗌 No
	☐ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	🛛 Yes 🗌 No
	\boxtimes If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form. (Leak Source Data Sheet)
lf yo Sui	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions mmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants	Maximum Potential Uncontrolled Emissions ²		Maximum Potential Controlled Emissions ³		Est. Method
	Chemical Name/CAS	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads						
Unpaved Haul Roads	Dust/Dirt: PM PM ₁₀	0.34 0.15	1.51 0.68	0.14 0.06	0.60 0.27	EE, O ^A
Storage Pile Emissions						
Loading/Unloading Operations						
Wastewater Treatment Evaporation & Operations						
Equipment Leaks	n-Butane/106-97-8 i-butane/75-28-5 Propane/74-98-6	0.04	0.19	0.04	0.19	EE
General Clean-up VOC Emissions						
Other						

A. Particulate emission calculations form vehicular travel on unpaved roads are based on Attachment L Unpaved Haul Roads of the WVDEP NSR Form and AP-42 Fifth Edition Chapter 13.2.2 Unpaved Roads.

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Attachment L: Emissions Unit Data Sheets

FE-01

Attachment L EMISSIONS UNIT DATA SHEET CHEMICAL PROCESS

For sup	chemical processes please fill out plementary forms that have been o	this sheet and all supplementary forms completed.	(see below) that apply. Please check all				
	 Emergency Vent Summary Sheet Leak Sources Data Sheet Toxicology Data Sheet Reactor Data Sheet Distillation Column Data Sheet 						
1.	Fugitive Emissions FE-01	equipment ID number (as shown in Ed	quipment List Form)				
2.	Standard Industrial Classification 4619	Codes (SICs) for process(es)					
3.	 List raw materials and attach MSDSs Butane Propane 						
4.	List Products and Maximum Prod	uction and 🗌 attach MSDSs					
Des	scription and CAS Number	Maximum Hourly (lb/hr)	Maximum Annual (ton/year)				
N/A	L.						
5.	Complete the Emergency Vent Su	ummary Sheet for all emergency relief	devices.				
6.	3. Complete the Leak Source Data Sheet and describe below or attach to application the leak detection or maintenance program to minimize fugitive emissions. Include detection instruments, calibration gases or methods, planned inspection frequency, and record-keeping, and similar pertinent information. If subject to a rule requirement (e.g. 40CFR60, Subpart VV), please list those here. SPLP will implement a leak detection and repair program using audible, visual, and olfactory detection ("AVO") methods on a monthly basis to satisfy BAT for fugitive emissions. At the time of detection, repairs (tightening packing, tightening flange volts, etc.) will be attempted and logged. If the repair is not successful, the component will be adde to the facility shutdown repair list, that is, repairs will be attempted during the next unit/equipment outage.						
7.	Clearly describe below or attach to spill or release.	o application Accident Procedures to be	e followed in the event of an accidental				
	There are emergency procedures tank, dispatch first responders an made with oil spill response organ equipment and/or personnel to en are also public awareness and co enlist their assistance in reducing	in place that will, as necessary, promp ad take measures to protect human he nizations (OSROs) and response contri- sure a rapid, organized and safe respo- mmunity outreach programs to inform the potential for an emergency situatio	otly shut down and isolate a pipeline or alth and the environment. Contract is ractors to supply emergency response nse to any emergency situation. There the public about our operations and to n.				

8A. Comp	ete the Toxicology Data Sheet or attach to application a toxicology report (an up-to	o-date material safety data
sheet	(MSDS) may be used) outlining the currently known acute and chronic health eff	ects of each compound or
chem	cal entity emitted to the air. If these compounds have already been listed in Item	3, then a duplicate MSDS
sheet	is not required. Include data such as the OSHA time weighted average	(TWA) or mutagenicity,
terato	penicity, irritation, and other known or suspected effects should be addressed.	Indicate where these are
unkno	wn, and provide references.	

- 8B. Describe any health effects testing or epidemiological studies on these compounds that are being or may be conducted by the company or required under TSCA, RCRA or other federal regulations. Discuss the persistence in the environment of any emission (e.g. pesticides, etc.).
- 9. Waste Products Waste products status: (If source is subject to RCRA or 45CSR25, please contact the Hazardous Waste Section of WVDEP, OAQ at (304) 926-3647.)

9A. Types and amounts of wastes to be disposed:

9B. Method of disposal and location of waste disposal facilities: during normal operation, only trash will be generated/garbash

Phone:

9C. Check here if approved USEPA/State Hazardous Waste Landfill will be used $\hfill \square$

10. Maximum and Projected	Typical Operating Schedule f	or process or project as a whole	(circle appropriate units).

ciro	cle units:	(hrs/day) (hr/batch)	(days), (batches/day), (batches/week)	(days/yr), (weeks/year)		
10A.	Maximum					
10B.	Typical					
11. Complete a <i>Reactor Data Sheet</i> for each reactor in this chemical process.						

12. Complete a Distillation Column Data Sheet for each distillation column in this chemical process.

13. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING:	RECORDKEEPING
The Facility will implement a LDAR program using AVO detection	Records of each inspection will be maintained on site for a period of five (5) years and
(AVO) methods on a monthly basis for fugitive emissions. The Facility	available upon request. The inspection records will identify each leak and the time until
personnel will conduct monthly inspections for visible stack emissions,	it is repaired.
fugitive emissions, and malodors. This stack emission observation will	
not be require to be performed by a person certified as a qualified	
observer under EPA Method 9 for Visual Determination of the Opacity of	
Emissions from Stationary Sources.	
REPORTING	TESTING
REPORTING None	TESTING None

MONITORING. Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment operation or air pollution control device. **RECORDKEEPING.** Please describe the proposed recordkeeping that will accompany the monitoring.

REPORTING. Please describe the proposed frequency of reporting of the recordkeeping.

TESTING. Please describe any proposed emissions testing for this process equipment or air pollution control device.

14. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty None

INFORMATION REQUIRED FOR CHEMICAL PROCESSES

The notes listed below for chemical processes are intended to help the applicant submit a complete application to the OAQ; these notes are not intended to be all inclusive. The requirements for a complete application for a permit issued under 45CSR13 are designed to provided enough information for a permit reviewer to begin a technical review. Additional information beyond that identified may be required to complete the technical review of any individual application.

Process Description

Please keep these points in mind when completing your process description as part of this permit application.

- 1. Provide a general process overview. This brief, but complete, process description should include chemical or registered trademark names of chemical products, intermediates, and/or raw materials to be produced or consumed, and the ultimate use(s) of the product(s). A list of the various chemical compounds is helpful.
- 2. Describe <u>each process step</u>. Include the process chemistry and stoichiometrically balanced reaction equation or material mass balance on all components.
- 3. Describe the methods and equipment used to receive, store, handle, and charge raw materials.
- 4. Describe the methods and equipment used to handle, store, or package final products and intermediates.
- 5. Provide process flow diagrams or equipment layout drawings which clearly show the process flow relationships among all pieces of process and control equipment. Identify all air emission discharge points. Discuss instrumentation and controls for the process.
- 6. Discuss the possibilities of process upsets, the duration and frequency of upsets, and consequences (including air emissions) of these upsets. Include a description of rupture discs, pressure relief valves, and secondary containment systems.
- 7. Discuss any fugitive emissions and the methods used to minimize them.
- 8. Include the following plans for the process if available:
 - a. preventative maintenance and malfunction abatement plan (recommended for all control equipment).
 - b. continuous emissions (in-stack) monitoring plan
 - c. ambient monitoring plan
 - d. emergency response plan

Regulatory Discussion

The following state and federal air pollution control regulations may be applicable to your chemical process. You should review these regulations carefully to determine if they apply to your process. Please summarize the results of your review in your permit application along with any other regulations you believe are applicable.

- Title 45 Legislative Rule Division of Environmental Protection, Office of Air Quality contains West Virginia's air pollution control regulations, including the following promulgated rules which may require emissions reductions or control technologies for your chemical process:
 - a. 45CSR27 Best Available Technology (BAT) for Toxic Air Pollutants (TAPs)
 - b. 45CSR21 VOC emissions controls for ozone maintenance in Kanawha, Cabell, Putnam, Wayne, and Wood counties.
 - c. 45CSR13 (Table 45-13A) plantwide emission thresholds for permitting for certain pollutants.
- Federal Guidelines for case-by-case MACT determinations under section 112(g) of the 1990 CAAA for individual and total HAPs greater than 10 and 25 tons per year, respectively.
- There are also subparts of the federal Standards of Performance for New Stationary Sources (NSPS), 40CFR60 60, and the National Emission Standards for Hazardous Air Pollutants (NESHAP) at 40CFR61 and 40CFR63, which apply to various chemical and nonchemical processes. These subparts are too numerous to list here, but these areas of the federal regulations should be consulted carefully to determine applicability to your process.

Emissions Summary and Calculations

Please keep these points in mind when submitting your emissions calculations as part of this permit application.

- 1. For each pollutant, provide the basis for the emissions estimate and for all emission reduction(s) or control efficiency(ies) claimed.
- 2. For all batch processes provide the following
 - a. Emissions of each pollutant in pound(s) per batch, from each process step
 - b. Annual emissions based on number of batches requested per year
 - c. The total time for each process step and the duration of the emissions during the process step
 - d. Total batch time, total emissions per batch (or per day), and annual emissions based on the number of batches requested per year.

EMERGENCY VENT SUMMARY SHEET

List below all emergency relief devices, rupture disks, safety relief valves, and similar openings that will vent only under abnormal conditions.

Emission Point ID ¹	Equipment to Relief Vent (type, ID if available) ²	Relief Vents (type) & Set Pressure (psig)	Name of Chemical(s) or Pollutants Controlled	Worst Case Emission per Release Event (lbs)
None	See Emission Calcs	See Emission Calcs	See Emission calcs	See Emission Calcs

All routine vents (non-emergency) should be listed on the Emission Points Data Summary Sheet.

¹ Indicate the emission point, if any, to which source equipment normally vents. Do <u>not</u> assign emission point ID numbers to each emergency relief vent or device.

² List all emergency relief devices next to the piece of equipment from which they control releases.

LEAK SOURCE DATA SHEET

Source Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (days) ³	Estimated Annual Emission Rate (Ib/yr) ⁴
Pumps⁵	light liquid VOC ^{6,7}				
	heavy liquid VOC ⁸				
	Non-VOC ⁹				
Valves ¹⁰	Gas VOC				
	Light Liquid VOC	234	NA	14	194.3, EE, EPA
	Heavy Liquid VOC				
	Non-VOC				
Safety Relief Valves ¹¹	Gas VOC	1	NA	14	2.5, EE, EPA
	Non VOC				
Open-ended Lines ¹²	VOC				
	Non-VOC				
Sampling Connections ¹³	VOC				
	Non-VOC				
Compressors	VOC				
	Non-VOC				
Flanges	VOC	411	NA	14	63.5, EE, EPA
	Non-VOC				
Other	VOC	35	NA	14	87.9, EE, EPA
	Non-VOC				

¹⁻¹³ See notes on the following page.

Notes for Leak Source Data Sheet

- 1. For VOC sources include components on streams and equipment that contain greater than 10% w/w VOC, including feed streams, reaction/separation facilities, and product/by-product delivery lines. Do not include certain leakless equipment as defined below by category.
- 2. By monitoring frequency, give the number of sources routinely monitored for leaks, using a portable detection device that measures concentration in ppm. Do not include monitoring by visual or soap-bubble leak detection methods. "M/Q(M)/Q/SA/A/O" means the time period between inspections as follows:

Monthly/Quarterly, with Monthly follow-up of repaired leakers/Quarterly/Semi-annual/Annually/Other (specify time period)

If source category is not monitored, a single zero in the space will suffice. For example, if 50 gas-service valves are monitored quarterly, with monthly follow-up of those repaired, 75 are monitored semi-annually, and 50 are checked bimonthly (alternate months), with non checked at any other frequency, you would put in the category "valves, gas service:" 0/50/0/75/0/50 (bimonthly).

- 3. Give the average number of days, after a leak is discovered, that an attempt will be made to repair the leak.
- 4. Note the method used: MB material balance; EE engineering estimate; EPA emission factors established by EPA (cite document used); O other method, such as in-house emission factor (specify).
- 5. Do not include in the equipment count sealless pumps (canned motor or diaphragm) or those with enclosed venting to a control device. (Emissions from vented equipment should be included in the estimates given in the Emission Points Data Sheet.)
- 6. Volatile organic compounds (VOC) means the term as defined in 40 CFR \Box 51.100 (s).
- 7. A light liquid is defined as a fluid with vapor pressure equal to or greater than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if 20% w/w or more of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a light liquid.
- 8. A heavy liquid is defined as a fluid with a vapor pressure less than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if less than 20% w/w of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a heavy liquid.
- 9. LIST CO, H₂S, mineral acids, NO, NO₂, SO₃, etc. DO NOT LIST CO₂, H₂, H₂O, N₂, O₂, and Noble Gases.
- 10. Include all process valves whether in-line or on an open-ended line such as sample, drain and purge valves. Do not include safety-relief valves, or leakless valves such as check, diaphragm, and bellows seal valves.
- 11. Do not include a safety-relief valve if there is a rupture disk in place upstream of the valve, or if the valve vents to a control device.
- 12 Open-ended lines include purge, drain and vent lines. Do not include sampling connections, or lines sealed by plugs, caps, blinds or second valves.
- 13. Do not include closed-purge sampling connections.

TOXICOLOGY DATA SHEET¹

Descriptor Name/CAS	OSHA Limits ²		Acute ³ TC _{LO} - Animal	Chronic⁴	Irritation ⁵	References
Number	TWA	CL	LC∟o - Animal LC₅₀ - Animal			
None						

¹ Indicate by "ND" where no data exists, in company's knowledge.

² Time Weighted Average, Ceiling Limit, or other, with units.
³ If inhalation data is not available, provide other data as available.

⁴ Relying on animal or human studies, indicate if any data suggests: C = carcinogenicity, M = mutagenicity, T = teratogenecity, O = oncogenicity. ⁵ Indicate if there are dermal or eye irritation effects and whether they are considered to be low, moderate, or severe.

REACTOR DATA SHEET

Provide the following information for <u>each</u> piece of equipment that is a potential or actual source of emissions as shown on the *Equipment List Form* and other parts of application.

lde	Identification Number (as shown on Equipment List Form): None							
1.	1. Name and type of equipment (e.g. CSTR, plug flow, batch, etc.)							
2.	Type of operatio	n 🗌 Ba	atch	Continuous	S	□ s	Semi-batch	١
3.	Projected Actual	Equipment C	perating Schedule (complete app	propriate li	nes):		
	hrs/day		days/w	veek			weeks/	year
	hrs/batch		batche (Circl	es/day, weeks le one)	6		day,we (Circle	eks/yr e one)
4.	Feed Data	Flow In =	g	al/hr, or gal/b	batch			
Ν	laterial Name & CAS No.	Phase ^a	Specific Gravity	Vapor Pressure ^ь	C Normal	harge Ra Max	te Units	Fill Time (min/batch, run) ^c
a.	Material Name & CAS No. Phase ^a Specific Gravity Vapor Pressure ^b Charge Rate Normal Max Units Fill Time (min/batch, run) ^c Image: No. Image							
b. c.	 At feed conditions Total time that equipment is filling per batch or run (start-up) for tank or vessel-type equipment 							
5.	 For tank or vessel-type equipment is ming per batch or run (start-up), for tank or vessel-type equipment. Provide all chemical reactions that will be involved (if applicable), including the residence time and any side reactions that may occur as well as gases that may be generated during these reactions. Indicate if the reaction(s) are exothermic or endothermic. 							

6. Maximum Temperature			7A. Maximum Pressure 7B. Max. Set Pressure for venting					
°C				mmHg			mmHa	
°F					psig			psig
8. Output Data Flow	Out =		I	<u>I</u>	gal/hr or gal/batch			
Material Name and CAS	Phase	Specifi	ic	Vapor	Ηοι	Irly or Bat	ch Outpu	t Rate
No.		Gravity	y P	ressure	Normal	Maxi	mum	Units
9. Complete the followin	ng emiss	ion data	for ed	quipment	connected to a he	ader exha	aust syste	m, giving emissions
levels <u>before</u> entering	j header	system ((I.e. De	efore cor	ntroi equipment).			
Emission Point ID (exhau	ist point	of header	r syste	em):				
Material Name and CAS	No.		Maxir	mum Pot	ential Emission Ra	te (lb/hr)		Method **
						· · ·		
** MB - material balance: EE - Engineering Estimate: TM - Test Measurement (submit test data): O - other (Explain)								

10.	0. Provide the following information pertaining to each condenser that may be attached to this reactor. Attach additional pages as necessary if more than one condenser is used for this reactor. Complete the Condenser Air Pollution Control Device Sheet if pecessary				
	🖂 Che	eck here if not applicable			
	10A.	Cooling material			
	10B.	Minimum and Maximum flowrate of cooling material (gal/hr)			
	10C.	Inlet temperature of cooling material (°F)			
	10D.	Outlet temperature of cooling material (°F)			
	10E.	Pressure drop of gas to be condensed from inlet to outlet (psig)			
	10F.	Inlet temperature of gas stream (°F)			
	10G.	Outlet temperature of gas stream (°F)			
	10H.	Number of passes			
	10I.	Cooling surface area			
11.	Provide	e the following pertaining to auxiliary equipment that burns fuel (heaters, dryers, etc.):			
	🛛 Che	eck here if not applicable			
	11 Δ	Type of fuel and maximum fuel burn rate, per hour.			
	1173.				
	11B.	Provide maximum percent sulfur (S), ash content of fuel, and the energy content using appropriate units:			
		%S % Ash BTU/lb, std. ft ³ /day, gal			
		(circle one)			
	11C.	Theoretical combustion air requirement in SCFD per unit of fuel (circle appropriate unit) @ 70°F and 14.7 PSIA:			
		SCFD/lb, SCFD, gal (circle one)			
	11D.	Percent excess air: %			
	11E.	Type amount and BTU rating of burners and all other firing equipment that are planned to be used:			
	11F.	Total maximum design heat input: x10 ⁶ BTU/hr.			

12. Proposed Monitoring, Recordkeeping, Rep	porting, and Testing	
Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed		
operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions		
limits.		
MONITORING	RECORDKEEPING	

MONITORING	RECORDKEEPING
REPORTING	TESTING

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION OR AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT OR AIR POLLUTION CONTROL DEVICE.

13. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

NOTE: An AIR POLLUTION CONTROL DEVICE SHEET must be completed for any air pollution device(s) (except emergency relief devices) used to control emissions from this reactor.

DISTILLATION COLUMN DATA SHEET

Ide	ntification Number (as assigned on	Equipment List Form): NONE			
1.	1. Name and type of equipment None				
#.	Projected actual equipment operati	ing schedule (complete appropriate lines):			
	hrs/day	days/week	weeks/year		
	hrs/batch	batches/day, batches/week (circle one)	days/yr, weeks/yr (circle one)		
2.	Number of stages (plates), excluding	ng condenser			
3.	Number of feed plates and stage lo	ocation			
4.	Specify details of any reheating, rea	cycling, or stage conditioning along with the stage	locations		
5.	Specify reflux ratio, R (where R is d $R=L/D$, where L = liquid down colur	efined as the ratio of the reflux to the overhead proo mn, D = distillation product)	duct, given symbolically as		
6.	Specify the fraction of feed which is continuously as vapor).	vaporized, f (where f is the molal fraction of the fee	d that leaves the feed plate		
7A. 7B.	Type of condenser used: I tota For each condenser provide proces compositions.	al	other peratures, pressures, and		
8.	 Feed Characteristics A. Molar composition B. Individual vapor pressure of ea C. Total feed stage pressure D. Total feed stage temperature E. Total mass flow rate of each st 	ich component tream into the system			
9.	Overhead Product A. Molar composition of compone B. Vapor pressure of components C. Total mass flow rate of all stream	ents s ams leaving the system as overhead products			
10.	Bottom Product A. Molar composition of all compo B. Total mass flow rate of all stea	onents ms leaving the system as bottom products			

11. On a set la factoria d			
11. General Information			
B Distillation column height			
C. Type of plates			
D. Plate spacing			
E. Murphree plate efficiency			
F. Any other information necessary of describe the o	operation of this distillation column.		
12. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions			
MONITORING	RECORDKEEPING		
REPORTING	TESTING		
MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION OR AIR POLLUTION CONTROL DEVICE.			
RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED REC	ORDKEEPING THAT WILL ACCOMPANY THE MONITORING.		
REPORTING. PLEASE DESCRIBE THE PROPOSED EREQUENCE	Y OF REPORTING OF THE RECORDICEPING.		
TESTING PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS FOUNDMENT OF AND POLITICAL CONTROL			
DEVICE.			
13. Describe all operating ranges and maintenance proce	edures required by Manufacturer to maintain warranty		

NOTE: An AIR POLLUTION CONTROL DEVICE SHEET must be completed for any air pollution device(s) (except emergency relief devices) used to control emissions from this distillation column.
TK-9702

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name
Follansbee Station	Flare Knock Out Tank
 Tank Equipment Identification No. (as assigned on Equipment List Form) TK-9702 	 Emission Point Identification No. (as assigned on Equipment List Form) TK-9702
5. Date of Commencement of Construction (for existing	tanks) 11/2015
6. Type of change 🛛 New Construction 🗌	New Stored Material Other Tank Modification
 Description of Tank Modification (if applicable) NA 	
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tar	n? □ Yes ⊠ No ık?)
7B. If YES, explain and identify which mode is covere completed for each mode).	ed by this application (Note: A separate form must be
7C. Provide any limitations on source operation affecting variation, etc.):	gemissions, any work practice standards (e.g. production
Only equipment fugitives are associated with these s	phere.
II. TANK INFORM	IATION (required)
 Design Capacity (specify barrels or gallons). Use height. 400 	the internal cross-sectional area multiplied by internal cubic feet
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)
60"	18'-9"
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)
NA	NA
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)
NA	NA
12. Nominal Capacity (specify barrels or gallons). This liquid levels and overflow valve heights.	is also known as "working volume" and considers design

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)		
NA	NA		
14. Number of Turnovers per year (annual net throughpu	it/maximum tank liquid volume)		
	NA		
15. Maximum tank fill rate (gal/min) NA			
16. Tank fill method Submerged	Splash Bottom Loading		
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems 🛛 Does Not Apply		
17A. Volume Expansion Capacity of System (gal) NA	17B. Number of transfers into system per year NA		
 18. Type of tank (check all that apply): Fixed Roof vertical horizontal other (describe) External Floating Roof pontoon roof Domed External (or Covered) Floating Roof 	flat roof cone roof dome roof		
Internal Floating Roofvertical column su Variable Vapor Spacelifter roof PressurizedsphericalX cylindrical	pport self-supporting diaphragm		
Underground Other (describe)			
III. TANK CONSTRUCTION & OPERATION INFORM	ATION (optional if providing TANKS Summary Sheets)		
19. Tank Shell Construction:	d rivets 🛛 Other (describe) welded		
20A. Shell Color 20B. Roof Colo	r 20C. Year Last Painted		
21. Shell Condition (if metal and unlined):			
🗌 No Rust 🔄 Light Rust 🔄 Dense R	ust 🛛 Not applicable		
22A. Is the tank heated? YES NO			
22B. If YES, provide the operating temperature (°F)	NA		
22C. If YES, please describe how heat is provided to t	ank. NA		
23. Operating Pressure Range (psig): 0 to 1,480			
24. Complete the following section for Vertical Fixed Ro	of Tanks 🛛 Does Not Apply		
24A. For dome roof, provide roof radius (ft)			
24B. For cone roof, provide slope (ft/ft)			
25. Complete the following section for Floating Roof Ta	nks 🛛 Does Not Apply		
25A. Year Internal Floaters Installed:			
25B.Primary Seal Type:Image: Metallic (Mechanical)(check one)Image: Vapor Mounted Residence	Shoe SealImage: Liquid Mounted Resilient Sealient SealOther (describe):		
25C. Is the Floating Roof equipped with a Secondary	Seal? YES NO		
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):		
25E. Is the Floating Roof equipped with a weather shi	əld? 🗌 YES 🗌 NO		

25F. Describe deck fittings; indicate the number of each type of fitting:						
ACCESS HATCH						
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:			
One (1) - 32" Manway						
· · · · ·						
	AUTOMATIC GAUGE FLOAT WELL					
BOLT COVER, GASKETED:	UNBOLTED COVE	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:			
Two (2) 2"						
			1			
RUNT-UP COLUMN - SUDING		IN WELL				
COVER, GASKETED:	COVER, UNGASK	KETED:	FABRIC SLEEVE SEAL:			
None	,					
	LADDE	RWELL				
PIP COLUMN – SLIDING COVER, G	ASKETED:	PIPE COLUMN -	SLIDING COVER, UNGASKETED:			
NA						
	GAUGE-MAICH					
SLIDING COVER, GASKETED.		SLIDING COVER,	, UNGASKETED:			
NA						
	ROOF LEG OR					
WEIGHTED MECHANICAL	WEIGHTED	MECHANICAL	SAMPLE WELL-SLIT FABRIC SEAL			
ACTUATION, GASKETED:	ACTUATION, UNC	GASKETED:	(10% OPEN AREA)			
NA						
	<u> </u>					
	ION, GASKETED.		ANICAL ACTUATION, UNGASKETED.			
NA						
	RIM	VENT				
WEIGHTED MECHANICAL ACTUAT	ION GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:			
NA						
	DECK DRAIN (3-I	INCH DIAMETER)				
OPEN:		90% CLOSED:				
NA		NA				
	SIDR	DRAIN				
NA						
			IF NECESSARY)			
Flare Knockout pressure vessel used to co	ollect any free liquid r	prior to flowing to fla	re. The system is for butane and propane.			
	//////////////////////////////////////					

26. Complete the following section for Internal Floating F	Roof Tanks 🛛 Does Not Apply
26A. Deck Type: Bolted Welded	
26B. For Bolted decks, provide deck construction:	
26C Deck seam:	
Continuous sheet construction 5 feet wide	
Continuous sheet construction 7 feet wide	
\Box Continuous sheet construction 5 × 7.5 feet wide	
Other (describe)	
26D. Deck seam length (ft)	26E. Area of deck (ft ²)
For column supported tanks:	26G. Diameter of each column:
26F. Number of columns:	if providing TANKS Summary Shoots)
27 Provide the city and state on which the data in this se	ection are based
Wellsburg, WV	
28. Daily Average Ambient Temperature (°F)	52.95
29. Annual Average Maximum Temperature (°F)	63.2
30. Annual Average Minimum Temperature (°F)	42.7
31. Average Wind Speed (miles/hr)	17.06
32. Annual Average Solar Insulation Factor (BTU/(ft2.day	/)) 1,202
33. Atmospheric Pressure (psia)	14.11
V. LIQUID INFORMATION (optional	if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid:	
34A. Minimum (°F)	34B. Maximum (°F)
35. Average operating pressure range of tank:	
35A. Minimum (psig)	35B. Maximum (psig)
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)
39. Provide the following for each liquid or gas to be stor	ed in tank. Add additional pages if necessary.
39A. Material Name or Composition	
39B. CAS Number	
39C. Liquid Density (lb/gal)	
39D. Liquid Molecular Weight (lb/lb-mole)	
39E. Vapor Molecular Weight (lb/lb-mole)	

39F. True (psia) 39G. Reid (psia) Months Storage per Year 39H. From 39I. To VI. 40. Emission Control Devices □ Carbon Adsorption ¹	EMISSIONS AND							
39G. Reid (psia) Months Storage per Year 39H. From 39I. To VI. 40. Emission Control Devices □ Carbon Adsorption ¹	EMISSIONS AND							
Months Storage per Year 39H. From 39I. To VI. 40. Emission Control Devices Carbon Adsorption ¹	EMISSIONS AND							
39H. From <u>39I. To</u> VI. 40. Emission Control Devices □ Carbon Adsorption ¹	EMISSIONS AND							
39I. To VI. 40. Emission Control Devices □ Carbon Adsorption ¹	EMISSIONS AND							
40. Emission Control Devices	EMISSIONS AND							
40. Emission Control Devices	VI. EMISSIONS AND CONTROL DEVICE DATA (required)							
Carbon Adsorption ¹	(check as many a	as apply): 🔝 Does	Not Apply					
Conservation Vent (ps	ig)							
Vacuum Setting		Pressure	e Setting					
Emergency Relief Valv	re (psig)							
Inert Gas Blanket of								
Insulation of Tank with								
Liquid Absorption (scru	ubber)1							
Refrigeration of Tank								
Rupture Disc (psig)								
Vent to Incinerator ¹								
\boxtimes Other ¹ (describe): fl	are							
¹ Complete appropriate A	r Pollution Control	Device Sheet.						
41 Expected Emission Rate	submit Test Data	or Calculations be	re or elsewhere in the ar	volication)				
		Working Loss						
Material Name & Brea	athing Loss		Annual Loss	Estimation Method ¹				
		Amount Units	(10/91)					
NA								
NA								
NA								
NA								
NA								
NA								
NA								
NA								
NA								
NA								
Material Name & Brea CAS No.	athing Loss (lb/hr)	Working Loss	Annual Loss (Ib/yr)	Estimation Method				

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

TK-9708

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name
Follansbee Station	Propane Tank
 Tank Equipment Identification No. (as assigned on Equipment List Form) TK-9708 	 Emission Point Identification No. (as assigned on Equipment List Form) TK-9708
5. Date of Commencement of Construction (for existing	tanks) 11/2015
6. Type of change 🛛 New Construction 🗌 N	New Stored Material
 Description of Tank Modification (if applicable) NA 	
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	n? □Yes ⊠No k?)
7B. If YES, explain and identify which mode is covere completed for each mode).	ed by this application (Note: A separate form must be
7C. Provide any limitations on source operation affecting variation, etc.):	emissions, any work practice standards (e.g. production
Pressure vessel to provide fuel to pilot for enclosed fl	are.
II. TANK INFORM	ATION (required)
 Design Capacity (specify barrels or gallons). Use height. 1.00 	the internal cross-sectional area multiplied by internal 0 gallons
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)
41"	16'
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)
NA	NA
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)
NA	NA
 Nominal Capacity (specify barrels or gallons). This liquid levels and overflow valve heights. 	s also known as "working volume" and considers design

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
NA	NA			
14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume)				
	NA			
15. Maximum tank fill rate (gal/min) NA				
16. Tank fill method Submerged	Splash Bottom Loading			
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems 🛛 Does Not Apply			
17A. Volume Expansion Capacity of System (gal) NA	17B. Number of transfers into system per year NA			
 18. Type of tank (check all that apply): Fixed Roof vertical horizontal other (describe) External Floating Roof pontoon roof Domed External (or Covered) Floating Roof 	flat roof cone roof dome roof			
 Internal Floating Roof vertical column su Variable Vapor Space lifter roof Pressurized spherical X cylindrical Underground Other (describe) 	ipport self-supporting diaphragm			
	ATION (optional if providing TANKS Summary Sheets)			
19. Tank Shell Construction:				
Riveted Gunite lined Epoxy-coate	d rivets 🛛 Other (describe) welded			
20A. Shell Color 20B. Roof Colo	r 20C. Year Last Painted			
21. Shell Condition (if metal and unlined):	ust Motoppliashla			
$22A$ Is the tank beated? \Box YES \boxtimes NO				
22B If YES provide the operating temperature (°E)	-50 to 100°F			
22C If YES please describe how heat is provided to t	ank NA			
23 Operating Pressure Range (psig): 0 to 1 480				
24. Complete the following section for Vertical Fixed Ro	of Tanks			
24A. For dome roof, provide roof radius (ft)				
24B. For cone roof, provide slope (ft/ft)				
25. Complete the following section for Floating Roof Ta	nks 🛛 Does Not Apply			
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type: Metallic (Mechanical) (check one) Vapor Mounted Resil	Shoe SealLiquid Mounted Resilient Seallient SealOther (describe):			
25C. Is the Floating Roof equipped with a Secondary	Seal? YES NO			
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):			
25E. Is the Floating Roof equipped with a weather ship				

25F. Describe deck fittings; indicate the number of each type of fitting:					
BOLT COVER, GASKETED:	ACCESS UNBOLTED COVI	S HATCH ER, GASKETED:	UNBOLTED COVER, UNGASKETED:		
	NA		NA		
BOLT COVER, GASKETED: NA	AUTOMATIC GAL UNBOLTED COVI NA	JGE FLOAT WELL ER, GASKETED:	UNBOLTED COVER, UNGASKETED: NA		
	COLUM	N WELL			
BUILT-UP COLUMN – SLIDING COVER, GASKETED: NA	BUILT-UP COLUMN – SLIDING COVER, UNGASKETED: NA		PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL: NA		
PIP COLUMN – SLIDING COVER, G NA	ASKETED:	PIPE COLUMN –	SLIDING COVER, UNGASKETED:		
GAUGE-HATCH/SAMPLE P SLIDING COVER, GASKETED: NA NA			, UNGASKETED:		
ROOF LEG OR HANGER WELLWEIGHTEDMECHANICALWEIGHTEDMECHANICALSAMPLE WELL-SLIT FABRIC SEACTUATION, GASKETED:ACTUATION, UNGASKETED:(10% OPEN AREA)NANANA					
WEIGHTED MECHANICAL ACTUAT NA	VACUUM ION, GASKETED:	BREAKER WEIGHTED MECHA NA	ANICAL ACTUATION, UNGASKETED:		
WEIGHTED MECHANICAL ACTUAT NA	RIM ' ION GASKETED:	VENT WEIGHTED MECHA NA	ANICAL ACTUATION, UNGASKETED:		
DECK DRAIN (3-INCH DIAMETER) OPEN: 90% CLOSED: NA NA					
1-INCH DIAMETER: NA	STUB	DRAIN			
OTHER (DESCF	RIBE, ATTACH ADI	DITIONAL PAGES I	F NECESSARY)		

26. Complete the following section for Internal Floating F	Roof Tanks 🛛 Does Not Apply
26A. Deck Type: Bolted Welded	
26B. For Bolted decks, provide deck construction:	
26C Deck seam:	
Continuous sheet construction 5 feet wide	
Continuous sheet construction 7 feet wide	
\Box Continuous sheet construction 5 × 7.5 feet wide	
Other (describe)	
26D. Deck seam length (ft)	26E. Area of deck (ft ²)
For column supported tanks:	26G. Diameter of each column:
	if providing TANKS Summary Shoots)
27 Provide the city and state on which the data in this se	ection are based
Wellsburg, WV	
28. Daily Average Ambient Temperature (°F)	52.95
29. Annual Average Maximum Temperature (°F)	63.2
30. Annual Average Minimum Temperature (°F)	42.7
31. Average Wind Speed (miles/hr)	17.06
32. Annual Average Solar Insulation Factor (BTU/(ft²-day	/)) 1,202
33. Atmospheric Pressure (psia)	14.11
V. LIQUID INFORMATION (optional	if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid:	
34A. Minimum (°F)	34B. Maximum (°F)
35. Average operating pressure range of tank:	
35A. Minimum (psig)	35B. Maximum (psig)
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)
39. Provide the following for each liquid or gas to be stor	ed in tank. Add additional pages if necessary.
39A. Material Name or Composition	
39B. CAS Number	
39C. Liquid Density (lb/gal)	
39D. Liquid Molecular Weight (lb/lb-mole)	
39E. Vapor Molecular Weight (lb/lb-mole)	

Maximum Vapor Press	sure									
39F. True (psia)										
<u>39G. Reid (psia)</u>	oor									
39H From	eai									
391 To										
VI. EMISSIONS AND CONTROL DEVICE DATA (required)										
40. Emission Control Devices (check as many as apply): Does Not Apply										
Carbon Adsorp	otion ¹	11.27								
Condenser ¹										
Conservation V	/ent (psia)									
Vacuum S	Setting		Pressure Se	ettina						
Emergency Re	lief Valve (psig)									
Inert Gas Blank	ket of									
	ank with									
	on (scrubber) ¹									
	f Tank									
Runture Disc (r	nsia)									
	ator ¹									
\Box Other ¹ (describ	αιοι αιοι									
	ve). Driate Air Pollution Cont	rol Device S	Shoot							
			brieet.	¹ Complete appropriate Air Pollution Control Device Sheet.						
41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).										
41. Expected Emission	n Rate (submit Test Dat	a or Calcula	ations here	or elsewhere in the app	blication).					
41. Expected Emission Material Name &	n Rate (submit Test Dat Breathing Loss	a or Calcula Workin	ations here o	or elsewhere in the app Annual Loss	Dication). Estimation Method ¹					
41. Expected Emission Material Name & CAS No.	n Rate (submit Test Dat Breathing Loss (lb/hr)	a or Calcula Workin Amount	ations here o g Loss Units	or elsewhere in the app Annual Loss (lb/yr)	lication). Estimation Method ¹					
41. Expected Emission Material Name & CAS No. Propane	n Rate (submit Test Dat Breathing Loss (lb/hr) 0.0003	a or Calcula Workin Amount NA	ations here o i g Loss Units NA	or elsewhere in the app Annual Loss (lb/yr) 0.0003	blication). Estimation Method ¹ Pressurized Tank, EPA					
41. Expected Emission Material Name & CAS No. Propane	n Rate (submit Test Dat Breathing Loss (lb/hr) 0.0003	a or Calcula Workin Amount NA	ations here o g Loss Units NA	or elsewhere in the app Annual Loss (lb/yr) 0.0003	blication). Estimation Method ¹ Pressurized Tank, EPA					
41. Expected Emission Material Name & CAS No. Propane	n Rate (submit Test Dat Breathing Loss (lb/hr) 0.0003	a or Calcula Workin Amount NA	ations here o g Loss Units NA	or elsewhere in the app Annual Loss (lb/yr) 0.0003	blication). Estimation Method ¹ Pressurized Tank, EPA					
41. Expected Emission Material Name & CAS No. Propane	n Rate (submit Test Dat Breathing Loss (lb/hr) 0.0003	a or Calcula Workin Amount NA	ations here o g Loss Units NA	or elsewhere in the app Annual Loss (lb/yr) 0.0003	Estimation Method ¹ Pressurized Tank, EPA					
41. Expected Emission Material Name & CAS No. Propane	n Rate (submit Test Dat Breathing Loss (lb/hr) 0.0003	a or Calcula Workin Amount NA	ations here of g Loss Units NA	or elsewhere in the app Annual Loss (lb/yr) 0.0003	Estimation Method ¹ Pressurized Tank, EPA					
41. Expected Emission Material Name & CAS No. Propane	n Rate (submit Test Dat Breathing Loss (lb/hr) 0.0003	a or Calcula Workin Amount NA	ations here of g Loss Units NA	or elsewhere in the app Annual Loss (lb/yr) 0.0003	Estimation Method ¹ Pressurized Tank, EPA					
41. Expected Emission Material Name & CAS No. Propane	n Rate (submit Test Dat Breathing Loss (lb/hr) 0.0003	a or Calcula Workin Amount NA	ations here of g Loss Units NA	or elsewhere in the app Annual Loss (Ib/yr) 0.0003	Estimation Method ¹ Pressurized Tank, EPA					
41. Expected Emission Material Name & CAS No. Propane	n Rate (submit Test Dat Breathing Loss (lb/hr) 0.0003	a or Calcula Workin Amount NA	ations here of g Loss Units NA	or elsewhere in the app Annual Loss (lb/yr) 0.0003	Estimation Method ¹ Pressurized Tank, EPA					
41. Expected Emission Material Name & CAS No. Propane	n Rate (submit Test Dat Breathing Loss (lb/hr) 0.0003	a or Calcula Workin Amount NA	ations here of g Loss Units NA	or elsewhere in the app Annual Loss (lb/yr) 0.0003	Estimation Method ¹ Pressurized Tank, EPA					
41. Expected Emission Material Name & CAS No. Propane	n Rate (submit Test Dat Breathing Loss (lb/hr) 0.0003	a or Calcula Workin Amount NA	ations here of g Loss Units NA	or elsewhere in the app Annual Loss (lb/yr) 0.0003	Estimation Method ¹ Pressurized Tank, EPA					
41. Expected Emission Material Name & CAS No. Propane	n Rate (submit Test Dat Breathing Loss (lb/hr) 0.0003	a or Calcula Workin Amount NA	ations here of g Loss Units NA	or elsewhere in the app Annual Loss (lb/yr) 0.0003	Estimation Method ¹ Pressurized Tank, EPA					
41. Expected Emission Material Name & CAS No. Propane	n Rate (submit Test Dat Breathing Loss (lb/hr) 0.0003	a or Calcula Workin Amount NA	ations here of g Loss Units NA	or elsewhere in the app Annual Loss (lb/yr) 0.0003	Estimation Method ¹ Pressurized Tank, EPA					

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets if applicable. TANKS is NA. Only losses are fugitive associated with relief valve to atmosphere. See Attachment N for fugitive calculations.

Haul Road Fugitives

Attachment L FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

						PM			PM-10	C
k =	Particle size multiplier					0.80		0.36		
s =	Silt content of road surface material (%)				10			10		
p =	p = Number of days per year with precipitation >0.01 in.			140		140				
Item Numbe	. Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maxir Trips Ye	num s per ar	Control Device ID Number	Control Efficiency (%)
1	Example Vehicle-Ford F250 Super CAB LWB	4	3.73	30	1.46	0.17	1,4	60	TR-01	60
2										
3										
4										
5										
6										
7										
8										

Source: AP-42 Fifth Edition – 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$ Ib/Vehicle Mile Traveled (VMT) Where:

_	-	PM	PM-10
k =	Particle size multiplier	0.80	0.36
s =	Silt content of road surface material (%)	10	10
S =	Mean vehicle speed (mph)	30	30
W =	Mean vehicle weight (tons)	3.73	3.73
w =	Mean number of wheels per vehicle	4	4
p =	Number of days per year with precipitation >0.01 in.	140	140

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: [Ib ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

SUMMARY OF UNPAVED HAULROAD EMISSIONS

		Р	М			PN	I-10	
Item No.	Uncor	trolled	Cont	rolled	Uncor	trolled	Cont	rolled
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	0.34	1.51	0.14	0.60	0.15	0.68	0.06	0.27
2								
3								
4								
5								
6								
7								
8								
TOTALS								

FUGITIVE EMISSIONS FROM PAVED HAULROADS

Industrial augmentation factor	(dimensionle	ss)				
Number of traffic lanes						
Surface material silt content (%)					
Surface dust loading (lb/mile)						
r Description	Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
	Industrial augmentation factor Number of traffic lanes Surface material silt content (Surface dust loading (lb/mile) Text Description	Industrial augmentation factor (dimensionle Number of traffic lanes Surface material silt content (%) Surface dust loading (lb/mile) Pr Description Mean Vehicle Weight (tons)	Industrial augmentation factor (dimensionless) Number of traffic lanes Surface material silt content (%) Surface dust loading (lb/mile) Pr Description Mean Vehicle Weight (tons) Miles per Trip Image: Pr Image: Pr I	Industrial augmentation factor (dimensionless) Industrial augmentation factor (dimensionless) Number of traffic lanes Image: Surface material silt content (%) Surface dust loading (lb/mile) Image: Surface dust loading (lb/mile) Pr Description Mean Vehicle Weight (tons) Miles per Trip Pr Description Image: Mean Vehicle Weight (tons) Miles per Trip Image: Pr Image: Pr Image: Pr Image: Pr Image: Pr Image: Pr Im	Industrial augmentation factor (dimensionless) Number of traffic lanes Surface material silt content (%) Surface dust loading (lb/mile) Pr Description Mean Vehicle Weight (tons) Miles per Trip Maximum Trips per Hour Year Image: Surface dust loading (lb/mile)	Industrial augmentation factor (dimensionless) Number of traffic lanes Surface material silt content (%) Surface dust loading (lb/mile) Pr Description Mean Vehicle Weight (tons) Miles per Trip Maximum Trips per Hour Trips per Year Verifie Image: Control Device ID Number Image: Control Device ID Number Number Image: Control Device ID Number Image: Control Device ID Number

INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

Source: AP-42 Fifth Edition – 11.2.6 Industrial Paved Roads

 $\mathsf{E} = 0.077 \times \mathsf{I} \times (4 \div \mathsf{n}) \times (\mathsf{s} \div 10) \times (\mathsf{L} \div 1000) \times (\mathsf{W} \div 3)^{0.7} =$

lb/Vehicle Mile Traveled (VMT)

Where:

l =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface meterial silt content (%)	
L =	Surface dust loading (lb/mile)	
W =	Average vehicle weight (tons)	

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: [Ib ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

SUMMARY OF PAVED HAULROAD EMISSIONS

Itom No	Uncon	trolled	Conti	rolled
item no.	lb/hr	TPY	lb/hr	TPY
1				
2				
3				
4				
5				
6				
7				
8				
TOTALS				

Attachment M: Air Pollution Control Device Sheets

Attachment M Air Pollution Control Device Sheet (FLARE SYSTEM)

Control Device ID No. (must match Emission Units Table): F-9708

	Equipment	Information
1.	Manufacturer: John Zink Model No. ZTOF040X30PF	2. Method: ☐ Elevated flare ☐ Ground flare ☑ Other Describe Enclosed Flare
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state	with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.
4.	Method of system used: Steam-assisted Air-assisted	Pressure-assisted Non-assisted
5.	Maximum capacity of flare:	6. Dimensions of stack:
	68.7 scf/min	Diameter 4 ft.
	4,120 scf/hr	Height 30 ft.
7.	Estimated combustion efficiency: (Waste gas destruction efficiency)	 Fuel used in burners: Natural Gas
	Estimated: 98 %	Fuel Oil, Number
	Minimum guaranteed: 98 %	Other, Specify: Propane
9.	Number of burners: 1 Rating: 10,000,000 BTU/hr	 Describe method of controlling flame: Propane pilot gas will be controlled by the NEMA 4 Elare Control Papel
10.	Will preheat be used? Yes No	
12.	Flare height: 34 ft	14. Natural gas flow rate to flare pilot flame per pilot light: 0.37 scf/min
13.	Flare tip inside diameter: 3.96 ft	22 scf/hr
15.	Number of pilot lights:	16. Will automatic re-ignition be used?
	Total 1 @ 50,000 BTU/hr	🖂 Yes 🛛 No
17.	If automatic re-ignition will be used, describe the met The pilot flame monitoring the thermocouple signals out. Then the KE-1B Electronic Ignition Flare electrode, and ignition wire reignite the pilot.	hod: the NEMA 7 Ignition Control Panel if the pilot flame goes Pilot Assembly, NEMA 7 Ignition transformer, pilot spark
18.	Is pilot flame equipped with a monitor? If yes, what type? ☐ Ultra Violet ☐ Other, Describe: 24 hours a cacquisition (SCADA) system	☐ No -Red lera with monitoring control room day seven days a week via a supervisory control and data
19.	Hours of unit operation per year: 8,760 hr/yr	

			Steam I	njection	
20.	Will steam injection be used	d? 🗌 Yes	🛛 No	21. Steam pressure Minimum Expected: Design Maximum:	PSIG
22.	Total Steam flow rate:		LB/hr	23. Temperature:	°F
24.	Velocity		ft/sec	25. Number of jet streams	
26.	Diameter of steam jets:		in	27. Design basis for steam in	njected: B steam/LB hydrocarbon
28.	How will steam flow be con	trolled if steam	injection is	sused?	
	Ch	aracteristics o	of the Wast	e Gas Stream to be Burned	
29.	Name	Quar Grains of H	ntity ⊣₂S/100 ft³	Quantity (LB/hr, ft ³ /hr, etc)	Source of Material
	Butane/Propane	2.0	00	0.00009 LB/hr	Maint/Pilot Gas/GC

	Butalle/110palle	2.00	0.00009 LD/III	Wallit/T Hot Gas/GC
30.	Estimate total combustible t	o flare: 0.54 AC	CF/hr LB/hr	or ACF/hr
	(Maximum mass flow rate o	f waste gas) 3,082	scfm	
31.	Estimated total flow rate to f	flare including materials to	be burned, carrier gases, au	xiliary fuel, etc.:
	32.12 acfm	LB/hr or ACF/hr		
32.	Give composition of carrier	gases:		
	Not Applicable			
			24 Identify and departite all	ouviliary fuels to be burned
33.	Temperature of emission st	ream:	34. Identity and describe all a	auxiliary fuels to be burned.
	1,552	°F	Not Applicable	DTU/SCI
		tream:		DTU/SCI
	Mean molecular weight of e	mission stream:		BTU/SCF
	MW = 28.79 lb/lb-m	ble		BTU/SCF
05		1.550 05	00 Elana ana flavo antas 20.1	BIU/SCT
35.	Temperature of flare gas:	1,552 °F	36. Flare gas flow rate: 32.1	.2 sct/min
37.	Flare gas heat content: 3,2	44 BTU/tt ³	38. Flare gas exit velocity:	19,510 scf/min
39.	Maximum rate during emerg	gency for one major piece	of equipment or process unit:	: 3,082 scf/min
40.	Maximum rate during emerge	gency for one major piece	of equipment or process unit:	: 0.17 BTU/min
41.	Describe any air pollution of	control device inlet and o	utlet gas conditioning proces	ses (e.g., gas cooling, gas
	reneating, gas numidificatio	n):		
42	Describe the collection mate	erial disposal system.		
-τ ∠ .				

43. Have you included *Flare Control Device* in the Emissions Points Data Summary Sheet? No

 44. Proposed Monitor Please propose m proposed operating proposed emissions MONITORING: The flare will be monito week via a superviso (SCADA) system and periodically. 	ing, Recordkeeping, Reporting, nonitoring, recordkeeping, and re g parameters. Please propose s limits. a red 24 hours a day seven days a ry control and data acquisition a physical inspection will occur	and Testing porting in order to demonstrate compliance with the testing in order to demonstrate compliance with the RECORDKEEPING: The flare will have continuous monitoring with Human Machine Interface (HMI).
MONITORING: RECORDKEEPING: REPORTING: TESTING:	Please list and describe the pro- monitored in order to demons equipment or air control device. Please describe the proposed red Please describe any proposed pollution control device. Please describe any proposed pollution control device.	cess parameters and ranges that are proposed to be trate compliance with the operation of this process cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air emissions testing for this process equipment on air
45. Manufacturer's Gua 98%	aranteed Capture Efficiency for eac	አh air pollutant.
46. Manufacturer's Gua 98%	aranteed Control Efficiency for eac	n air pollutant.
47. Describe all operati	ng ranges and maintenance proce	dures required by Manufacturer to maintain warranty.

Enclosed ZTOF Flare Process and Instrument Diagram

Enclosed ZTOF Flare Specification Sheets

Project Spec Sheet List

Pro	oject #	914	44980		Project Site	SUNOCO LOGISTICS	
Descr	iption	4' 〉	X 30' ENCL	OSED ZTOF FLARE			
Cus	tomer	SU	INOCO LOC	BISTICS			
Lo	cation	PE	NNSYLVAN	NIA			
Cust	. PO #	D1	109261-V2				
Spec	Page	Of	Revision	Description			Spec Name
1	1	4	0	PNL-101			FLARE CONTROL PANEL
1	2	4	0	PNL-101			FLARE CONTROL PANEL
1	3	4	0	PNL-101			FLARE CONTROL PANEL
1	4	4	0	PNL-101			RECEIVER INSTRUMENTS
2	1	1	0	PNL-103			IGNITION TRANSFORMER
3	1	4	0	PCV-302			PRESSURE CONTROL VALVES & REGULATORS
3	2	4	0	SV-303			SOLENOID VALVES
3	3	4	0	HV-304			MANUAL BALL VALVE
3	4	4	0	PI-305			PRESSURE GAGES
4	1	1	0	FA-107			FLASH - BACK ARRESTOR
5	1	1	0				MISCELLANEOUS

	JOHN	ZINK		JZ SPECIFI	CATION SHEET		Spec Rev	1	0
	JOHN ZINK CO	MPANY LLC		FLARE CO			Page No.		1 of 4
FOR JZ	2 PARTS: (91	8)234-2751		Ρ	NL-101		Project	9	144980
Project	Name: 4'X	30' ENCL	<u>OSED ZTOF F</u>	LARE	Customer Name: SUNOC	O LOGISTIC	S		
Project	Site: SUNO	CO LOGI	STICS		Customer P.O.: D110926	1-V2			
	Item No.	Qty	Tag Number(s)		Description				JZ Part No.
1		1 EACH	CE-101	KILLARK #EXB-8106 N	134SU2 ENCLOSURE, NEMA	7 HINGED			1083990
2				(10" H X 8" W X 6" D)					
3									
4		1 EACH		KILLARK #7996-2 SUE	PANEL				0303521
5									
6									
7									
8									
9									
10									
11									
12									
13									
14									
15									
16									
17									
18									
19									
20									
21									
22									
23									
24									
25	Notes:			1					
		- אפ פבר		361					
				J_L					
	PANEL	MOUNT	, THEN FLAR	E MOUNT					
			Doutoing De	contintion			Dete		Nome
	evision Dat		revision De	scripuon		Propered		DO	
$\frac{\Delta}{\Lambda}$						Checked	01/03/2014	ROL	FJ
$\overline{\Lambda}$						Approved	01/03/2014	ROL	_FJ
$\overline{\Delta}$						Quote	Yes Literat	s of V	endor
JZ96.09 ad	dopted from ISA-2	20-1975				Printed on: 01	1-03-2014 at 16:0	19:41 b	y GWARTNEN

	JOHN 2	ZINK		JZ SPECIFICATION SHEET		Spec Rev	1	0
	JOHN ZINK CON			PLAHE CONTHOL PANEL		Page No.		201 4
FOR J.	Z PARIS: (91)	8)234-2751				TTOJECT	9	144300
Project Project	Name: 4'X	<u>30' ENCL</u>	<u>OSED ZTOF F</u> STICS	LARE Customer Name: SUNOC	<u>O LOGISTIC</u>	5		
Тојес	Item No	Otv	Tag Number(s)	Customer F.O Direction	1-12			17
	item No.	Qty	rag Number(3)	Description				Part No.
1		1 EACH	L-1	KILLARK #GOB3-F23C N34 PILOT LIGHT, NEMA 7	, 120 V			0550358
2				INCANDESCENT, WHITE LENS				
з		1 EACH	L-5	KILLARK #GOB3-G23C N34 PILOT LIGHT, NEMA 7	′, 120 V			0400672
4				INCANDESCENT, GREEN LENS				
5	;	1 EACH	L-6	KILLARK #GOB3-R23C N34 PILOT LIGHT, NEMA 7	, 120 V			0023898
6	;			INCANDESCENT, RED LENS				
7	,							
8								
g								
10								
11								
12		1 EACH	S-1	KILLARK #GO5-2A3F N34 SELECTOR SWITCH, M	AINTAINED			0026360
13				POSITION . NEMA 7. 1-N/O AND 1-N/C CONTACTS	6			
14					-			
15	;	1 EACH	PB-2	KILLARK #GO1-KX3C N34 PUSHBUTTON, MOMEN	ITARY,			1037139
16	;			NEMA 7, 1-N/O AND 1-N/C CONTACTS				
17	,							
18								
19)							
20								
21								
22	2							
23								
24								
25	Notes:			1				
	ALLITE	INS REG		3EL				
	PANEL	MOUNT	, THEN FLAR	E MOUNT				
			_					
F	Revision Date	e Initials	Revision De	scription		Date		Name
Δ					Prepared	12/16/2013	ROL	_FJ
Δ					Approved	01/03/2014	ROL	-FJ
$\overline{\Lambda}$					Quote	Copies	s of V	'endor
					Attached:	Yes Literat	ure R	leq'd: 1

|--|

Printed on: 01-03-2014 at 16:09:41 by GWARTNEM

	JOHN	ZINK		JZ SPECIFICATION SHEET		Spec Rev	1	0
	JOHN ZINK COM	MPANY LLC		FLARE CONTROL PANEL		Page No.	3	of 4
FOR JZ	2 PARTS: (91	8)234-2751		PNL-101		Project	91	44980
Project	Name: 4' X	30' ENCL	OSED ZTOF F	ARE Customer Name: SUN	DCO LOGISTIC	S		
Project	Site: SUNO	CO LOGI	STICS	Customer P.O.: D1109	261-V2			
	Item No.	Qty	l ag Number(s)	Description				JZ Part No.
1		20 EACH		ENTRELEC #M4/6 TERMINAL (P/N 115 116.07)			1	0020514
2		2 EACH		ENTRELEC #FEM6 END SECTION (P/N 118 368	.16)		1	0020515
3		2 EACH		ENTRELEC #BAM END STOP (P/N 103 002.26)			,	0036813
4		1 EACH		ENTRELEC #PR4 RAIL, DIN-3 MOUNT (P/N 101	598.26)			1012629
5		1 EACH		ENTRELEC BLANK MARKING TAG (P/N 233 000).01)			1006764
6		1 EACH		ENTRELEC #BJM6 JUMPER, 10 POINT (P/N 168	3 973.07)			1019660
7								
8		2 EACH		ENTRELEC #MTC6 TERMINAL (P/N 115 206.22)				1070213
9								
10								
11								
12		1 EACH	CB-2	SQUARE D #60106 CIRCUIT BREAKER, 5 A, ON	IE POLE			1140428
13								
14		3 EACH	TR-10,14,15	IDEC #GT3A-2AF20 TIMER, 120 V, INSTANT SP	DT,			0020413
15				DELAYED SPDT, 0.1 S TO 180 HR ADJUSTABL	E RANGE			
16		3 EACH		IDEC #SR2P-06 SOCKET				0030704
17								
18								
19								
20		1 EACH	CR-7	IDEC #RR3B-ULCAC120V RELAY, 3 PDT WITH	INDICATING			0401314
21				LIGHT AND PUSH-TO-TEST BUTTON				
22		1 EACH		IDEC #SR3B-05 SOCKET				0030703
23								
24								
25	Notes:							
	ALL ITE	EMS REC	UIRE UL LAE	EL				
	PANFI	MOUNT	THEN FI AR					
			,					

	Revision Date	Initials	Revision Description		Da	ate	Name	
Δ				Prepared	12/16	6/2013	ROLFJ	
Δ				Checked	01/03	3/2014	ROLFJ	
Δ				Approved	01/03	3/2014	ROLFJ	
Δ				Quote Attached:	Yes	Copies Literati	of Vendor ure Req'd:	1
1706 00	adapted from ISA 20	1075		Printed o	n· 01 02 20-	14 at 16:0	0.42 by CWART	

96.09 adopted from ISA-20-1975

Printed on: 01-03-2014 at 16:09:42 by GWARTNEM

		JOHN Z	INK	JZ SPECIF			SHEET		Spec Rev	1 0
		JOHN ZINK COMP	PANY LLC	neveiver	7 //NG	31 MU 404	JMENIS		Project	4 of 4
FO	r Jz	PARTS: (918))234-2751		'NL-	101			Project	9144980
Pro	ject	Name: 4' X 3	O' ENCLO	SED ZTOF FLARE	С	ustor	ner Name: SUNO	co logist	TICS	
Pro	ject	Site: SUNOC	O LOGIS	TICS	С	ustor	ner P.O.: D11092	61-V2		
	1	Service		TEMPERATURE		25	Input Signals		TYPE K THE	RMOCOUPLE
	2				_	26	No. of Inputs			1
G	3	Function		SWITCH	I N	27	Power for XMTRS		Ext	ernal
E N	4	Case	Color		P U	28	Transmitter Spec.	No.		0415
E R	5	Mounting		INTERNAL	T S	29	Burnout		UPS	CALE
A L	6	England O			_	30				
	/	Enclosure Cl	ass		_	31 22				
	8	Power Suppl	у	117 V 60 HZ	-	32	Alorm Switchoo: Otv	Form	4	
	10	Chart			-	33	Pating	Form	1	
	11	Chart Drive			-	34	Function		Moa	Nar
	12	Scales			0	36	Contact on Me	asurement	Open	Increase
	13	Ocales			T	37	oonaat on we	asurement	Open	mercase
	14	P=Prop(Gain),	I=Integral(Auto	Reset), D=Derivative(Rate), Sub: s=Slow, f=Fast	- o	38				
	15	Control Mode	es		S	39				
с	16	Action				40				
O N	17	Auto-Man Sw	vitch			41				
T R	18	Set Point Adj				42				
O L	19	Manual Reg.				43	Manufacturer		OM	RON
L E	20	Output				44	Model No.		E5C2	2-R20K
R	21				R	45	Tag No.		TSI	307
	22				E	46	Quantity		1 E	ACH
	23				n	47	Mount		PA	NEL
	24					48	JZ Part No.		001	6484
		ALSO SI JOHN ZI QUANTI ALL ITEI	UPPLY O INK PAR TY: ONE MS REQL	OMRON #P2CF-08 BASE T NUMBER: 0034301 E (1) EACH REQUIRED JIRE UL LABEL						
	R	evision Date	Initials	Revision Description				Prepared	Date 12/16/2013	Name ROLFJ
	\mathbf{V}							Checked	01/03/2014	ROLFJ
	\mathbf{V}							Approved	01/03/2014	ROLFJ
Ζ	7							Quote Attached:	Yes Copie	es of Vendor ture Req'd: 1

Printed on: 01-03-2014 at 16:09:42 by GWARTNEM

		JOHN Z				JZ SPECIFI	CAT	ION	SHEET		Spec Rev	2	0
											Page No.	1	of 1
FOF	JZ	PARTS: (918)	234-2751			P	NL-1	03			Project	914	4980
Proie	ect l	Name: 4' X 3	O' ENCLO	SFD 7	TOF FLARE		Cu	stom	er Name: SUNOCO) I OGISTI	ICS		
Proje	ect S	Site: SUNOC	O LOGIS	TICS			Cu	stom	ner P.O.: D1109261	-V2			
	1	Manufacturer			DONG	GAN		13	Manufacturer		KILL/	ARK	
	2	Model			A06-5	SA6		14	Model		EXB-8106	N34S	U2
	3	Tag No.			IT-	1		15	Enclosure		NEM	A 7	
т	4	Primary			120 V, 6	60 HZ	-	16	Dimensions		10" H X 8"	W X 6	" D
A	5	Secondary			6000	V	N	17	JZ Part No.		1083	990	
N S	6	JZ Part No.			00025	558	L	18					
0	7						S U	19	Sub-Panel Manufactu	irer	KILL	ARK	
M	8						R	20	Sub-Panel Model No		799	5-2	
R	9							21	JZ Part No.		0303	521	
	10						-	22					
	11 12							23	Mount		BEL	אר	
-	25	Notoo						24	Mount		DEL	<i></i>	
		QUANTI	TY: ONE	E (1) E	ACH ASSEMI	BLY REQUI	RED)					
	ALL ITEMS REQUIRE UL LABEL												
		PANEL N	/IOUNT, ⁻	THEN	FLARE MOU	INT							
I													
	Re	evision Date	Initials	Revis	sion Description	n					Date	N	ame
Λ										Prepared	12/16/2013	ROLF	J
$\overline{\Delta}$										Checked	01/03/2014	ROLF	J
Δ				1						Approved	01/03/2014	ROLF	J
Δ									(Quote	Copies	of Ve	ndor
176.5			1075							Attached:	Literatu	Ire Re	ן'd: 1
JZ96.1	8 ad	opted from ISA-20-	19/5							Printed on:	01-03-2014 at 16:09	9:43 by G	WARTNEM

		JOHN 7			JZ SPECIF		rion	SHEET		Spec Rev	3	0
				PRESS)L V	ALVE	S & REGULA	TORS	Page No.	1 of	f 4
FO	a JZ	PARTS: (918)234-2751		I	PCV-	302			Project	9144	980
Pro	iect I	Name: 4' X 3	O' ENCLOSED	ZTOF FLARE		С	uston	ner Name: SL	INOCO LOGIS	TICS		
Pro	ject S	Site: SUNOC	CO LOGISTICS			С	uston	ner P.O.: D11	09261-V2			
	1	Service	·	PILOT	ī GAS	T	28	Filt. Reg.	Supply Gage	NO	N	10
L I	2	Line No./Ves	ssel No.			A C	29	Line Strainer			L	
N E	3	Line Size/Sc	hed. No.	1/:	2"	C E	30	Housing Vent				
	4	Function		REGU	JLATE	S S	31	Internal Relief	f	NC	5	
	5	Type of Bod	У	BOL	.TED	O R	32					
	6	Body Size	Port Size		1/2"		33					
	7	Guiding	No. of Ports		2	s	34					
	8	End Conn. 8	Rating	1/2"	NPT		35	Flow Units		SCF	ΞH	
	9	Body Materia	al	ALUM	IINUM		36	Fluid		PROPANE / NA	ATURAL	GAS
в	10	Packing Mat	erial			1	37	Quant. Max	1	25 / 50		
D	11	Lubricator	Isolating Valve			1	38	Quant. Oper.	1	22 / 45		
Y	12	Seal Type	-		l		39	Valve Cv	Valve 1	1.33	35	.02
	13	Trim Form				E	40	Norm. Inlet Pr	ress. <u>A</u> P	20 PSIG		
	14	Trim Materia	۱			V V	41	Max. Inlet Pre	SS.	400 P	SIG	-
	15	Seat Materia	al	NITF	RILE	ċ	42	Max. Shut Off	ΔP			
	16	Required Se	at Tightness			Ē	43	Temp. Max.	Operating	180	6	6 0
	17	Max. Allow. Sc	ound Level dBA				44	Oper. sp. gr.	Mol. Wt.	1.52 / 0.65	44	/ 19
	18	Type of Actu	lator	SPRING DI	APHRAGM	1	45	Oper. Visc.	% Flash			
	19	Pilot					46	% Superheat	% Solids			
A	20	Supply to Pil	ot				47	Vapor Press.	Crit. Press.			
т	21	Self Cont.	Ext. Conn.	Х			48	Predicted Sou	und Level dBA		·	
A	22	Diaphragm N	N aterial	NITF	RILE		49					
т 0	23	Diaphragm F	Rating			o	50	Manufacturer		FISH	ER	
R	24	Spring Rang	,e	0 TO 35	5 PSIG	R	51	Model No.		67D-	-27	
	25	Set Point		15 P	'SIG	E	52	Mount		PIP	'E	
	26						53	Tag No.		PCV-	302	
	27						54	JZ Part No.		1260	113	
	55	Notes: QUANTI	TY: ONE (1) E	EACH REQUII	RED							

	Revision Date	Initials	Revision Description		D	ate	Name	
Δ				Prepared	12/1	6/2013	ROLFJ	
Δ				Checked	01/03	3/2014	ROLFJ	
Δ				Approved	01/03	3/2014	ROLFJ	
Δ				Quote Attached:	Yes	Copies Literat	s of Vendor ure Req'd:	1
JZ96.28	adopted from ISA-20-	1975		Printed or	n: 01-03-201	4 at 16:0	9:43 by GWART	NEM

		JOHN Z	INK			JZ SPECIFI SOLEN	CATI IOID	ON VAL	SHEET .VES		Spec Rev Page No.	3 0 2 of 4
FOR		DUHN ZINK CUM	PANY LLC			5	SV-30	3			Project	9144980
	102	. 1 AITIO. (510)204 2731								,	••••••
Proj	ect	Name: 4' X 3	<u>0' ENCLO</u>	<u>ISED ZT</u>	OF FLA	RE	Cus	ston	ier Name: SUNOC	<u>O LOGISTIC</u>	CS	
Proj	ect	Site: SUNOL	:0 LOGIS	TICS		1	Cus	ston	ner P.O.: D110926	1-V2		
G	1	Tag No.		SV-	303		s	28	Enclosure	NE	MA 4,7	
N	2	Service		PILO	GAS		O L	29	Voltage / HZ	120 V	60	
R	3	Lino No. / Voc					E N	30	Sigle of Coll	21		
L	4	Cuentity	Sel NO.	1 E	АСН		0	31		01	NGLE	
	5	Quantity		1 L/	4011		D	32 22				
	7	Size: Body	Port	1/2"	3/4"			34	Fluid	PB	OPANE	NATURAL GAS
	י א	Bating	Type Conn	1/2	NPT		s	04	Oty Maximum	25	SCEH	50 SCEH
v	a	Material Boo	hype oonn. dv	ALLIN			E R	30	Oper Diff Min / Max	0	20 PSI	30 00111
A L	10	Material Sea	ay at	NIT			V I	30	Allow Diff Min / Max	0	50 PSI	
V E	11	Material Dia	lohragm	NIT	RILE		C E	30 30	Temp. Norm / Max.	F 60	125	
в	12	Operation Dire	ct/ Pilot	DIRECT			с	30 30	Oper. sp. gr.		1.52	0.65
O D	13	Packless or Ty	pe Packed	PACK	LESS		O N	40	Oper. Viscosity			
Y	14	Manual Re-Set	t	N	0		D	41	Required Cv			
	15	Manual Operat	tor	N	0		-	42	Valve Cv		4.4	
	16							43				
	17							44				
w	18	2-Way Valve C	Dpens/Close		CLOSES			45				
H E	19	3-Way						46				
N	20	Vent Port Oper	ns/Close					47				
D E	21	Press Port Ope	ens/Clos					48				
· E	22	4-Way			1		_	49				
N E	23	Press to Cyl.1	/ Cyl.2					50				
R G	24	Exh. from Cyl.1	1 / Cyl.2				_	51	Manufacturer	A	ISCO	
ı z	25						_	52	Model No.	EF8	215G20	
E D	26						-	53	Mount	H		
	27							54	JZ Part No.	00	12004	
	R	evision Date	Initials	Revisio	on Desci	ription				Prepared	Date	Name BOLEJ
										Checked	01/03/2014	ROLFJ
				1						Approved	01/03/2014	ROLFJ
Δ	1									Quote	Copies Yes Literat	s of Vendor

JZ96.36 adopted from ISA-20-1975

Printed on: 01-03-2014 at 16:09:44 by GWARTNEM

	JOH	IN ZI	NK				JZ SPECIFI		Spec Rev 3 0				0	
	JOHN ZI	NK COMPA	NY LLC				MANUAL	. BALL VALVE			Page	No.	3	of 4
FOR JZ	PARTS	S: (918)2	34-2751				ŀ	IV-304			Proje	ct	91	44980
Project	Name:	4' X 30'	'ENCL	OSEI	D ZTOF F	LARE		Customer Name	SUNOC	o logist	TICS			
Project	Site: S	UNOCC) LOGI	STIC	S			Customer P.O.:	_D110926	1-V2				
1	Manufa	acturer			KF CO	NTROMAT		34 Notes:						
2	Model	No.			1/2" 5	8000-SS-N	//3							
3	Proces	ss Conne	ctions											
45	Ball Ma	aterial			316 STAIN	INI ESS STE								
6	Stem N	Material			316 STA	INLESS ST	TEEL							
7	Seal/S	eat Mate	rial		PI	FE/PTFE								
8	Packin	ig Materia	al			PTFE								
9	Handle	е Туре				LEVER								
10														
11														
12					Oper	Oper								
				Size	Press.	Temp.								JZ
13	Qty	Tag I	No.		PSIG	° F	Service					Μοι	unt	Part No.
14	1 EA	HV-3	04	1/2"	15	60	PILOT GAS	6				PIF	ΡE	1138982
15														
16														
10														
17														
18														
19														
20														
21														
22														
23														
24														
25														
20														
26														
27			T											
28														
29														
30														
21														
31														
32														
33														
R	evision	n Date	Initials	s Re	evision De	escription					Da	te		Vame
Δ										Prepared	12/16/	2013	ROL	FJ
Δ										Checked	01/03/	2014	ROL	FJ
Δ										Approved	01/03/	2014	ROL	FJ
Δ										Attached:	Yes [_opies	ure Re	endor eq'd: 1
JZ96.21 ad	3.21 adopted from ISA-20-1975									Printed o	n: 01-03-2014	l at 16:0	9:44 by	GWARTNEM

	JOHN	ZINK			JZ S	SPECIFICATION SHEET Spec Re					3 0
						PRESS	URE GA	GES		Page Ňo.	4 of 4
FOR JZ	PARTS: (9	18)234-2751				F	PI-305			Project	9144980
Project	Name 4' X	30' ENCLO	SED ZT	TOF FLARE			Custom	ner Name SUNOC	O LOGIST		
Project	Site SUN	DCO LOGIS	TICS				Custon	ner P.O.: D110926	51-V2		
1	Туре			Dir	rect		13	Process Connection	ı	1/2" BC	MOTTOM
2	Mount Typ	be		Lo	cal		14	Operating Tempera	ture	60	°F
3	Dial Diam	ete Colo	or	4 1/2"	W	HITE	15	OPTIONS			
4	Case Mate	erial		Phe	enol		16				
5	Ring Type	!		Scre	ewed		17				
6	Blow-Out	Protection		Ba	ack		18				
7	7 Lens Material Plastic 8 Accuracy Beguired +/- 0.5%										
8	8 Accuracy Required +/- 0.5%										
9	9 Element Type Bourdon										
10	10 Element Materia SS										
11	Socket Ma	aterial		St	eel		23	KA			
12	12 Movement Material SS							Model No.		222.34 4.5	30PSI 1/2L
25	QuantityTag NoRangeOper. Press.25PSIGPSIG							Service)		JZ Part No
26	1 EACH	PI-305	0 TO 3	30 1	5	PILOT (GAS				1209636
27	27										
28	28										
29	29										
30											
31											
32											
33											
34											
35											
36											
37											
30											
40											
41											
42											
43											
44											
45	Notes:										
	PIPE MOUNT										
R	evision Da	te Initials	Revisi	ion Descripti	on					Date	Name
Δ									Prepare	12/16/2013	ROLFJ
Δ									Checked	01/03/2014	ROLFJ
Δ									Approved	01/03/2014	ROLFJ
Δ	$\overline{\Delta}$							Quote Attached:	Yes Literat	of Vendor ure Regid: 1	
JZ96 29 ad	296.29 adopted from ISA-20-1975								Printed on	: 01-03-2014 at 16:0	

Contract Content of the cont		JOH	IN ZINK				JZ SPECIFI	Spec Rev 4			0	
POR.12 PARTS: 0118/054-275) PATO Project Projec		JOHN ZI	NK COMPANY LLC				FLASH - B	ACK ARRESTOR		Page No.		1 of 1
Project Name: 4' X 90' ENCLOSED ZTOF FLARE Custamer Name: SUNCOC LOGISTICS Custamer P.Q.: D1108/261-V2 1 Mindathuer ENARDO 3' Notes: 3 Process Connections 15 E FF 3' Notes: 3' Notes: 4 Body Material ALUMINUM ELEMENT. 3' Notes: 1''''''''''''''''''''''''''''''''''''	FOR JZ	PARTS	S: (918)234-27	51			ŀ	FA-107		Project	9	144980
Project Site: SUNCC COCHTICS Custome P.O:: D109261-V2 Modal No. E708020-AAF-13 3 700025 Connection 125 IB FF Modal No. 125 IB FF ALUMINUM 125 IB FF AUUNINUM Ised Material ALUMINUM ELEMENT. Second Material ALUMINUM Ised Material ALUMINUM ELEMENT. Second Material ALUMINUM Ised Material ALUMINUM ELEMENT. Vice Configuration Z Image Schwarz Size Press. Temp. Second Material ALUMINUM Ised Material ALUMINUM ELEMENT. Jz Jz Jz Image Schwarz Size Oper. Coper. Jz Jz Image Schwarz Size Oper. Service Mount Part No. Image Schwarz Size Oper. Service Notes Jz Jz Image Schwarz Size Oper. Service Notes Jz Jz Jz Jz Image Schwarz Size	Project	Name:	4' X 30' ENC	LOSE	D ZTOF F	LARE		Customer Name: SUNOC	O LOGISTIC	s		
Imanufacturer ENARDO 34 Notes: Imade No. E700207AAF-13 TWO (2) 1/2" FNPT TAPS WITH PLUG Body Material ALUMNUM Image No. 125 LB FF TWO (2) 1/2" FNPT TAPS WITH PLUG ELEMENT. Stressessessessessessessessessessessessess	Project	Site: S	UNOCO LOG	ISTIC	S			Customer P.O.: D110926	1-V2			
Model No. E-058020-AAF-13 3 Process Connection 125 BF F 4 Eody Material ALUMINUM 6 Data ALUMINUM 6 Data ALUMINUM 6 Data Connection 12* NFT WITH PLUG 7 Body Configuration ECCENTRIC Required Nateria 1	1	Manufa	acturer		E	NARDO		34 Notes:				
Process Connections 125 LB FF 4 Body Material ALUMINUM 5 Element Materia ALUMINUM 6 Drain Connection 1/2' VPL F LVGS VIT F EUG 7 Body Configuration ECCENTRIC 8 dy Configuration ECCENTRIC 9 dy Configuration ECCENTRIC 11 Oty Tag No. 12 Data Freess 13 Oty Tag No. 14 1 EA FA-107 15 dy Intel V 16 dy Intel V 17 Dial Intel V 18 dy Configuration Intel V 19 dy Tag No. 14 1 EA FA-107 15 1 Intel V 16 1 Intel V 17 1 Intel V 18 1 Intel V 19 1 Intel V 10 1 Intel V 11 1 Intel V 12 1 Intel V 13 10 10 Intel V 14 10 10 Intel V 15 10 10 Intel V 16 10 10 Intel V 17 10 10 Intel V <td>2</td> <td>Model</td> <td>No.</td> <td></td> <td>E7080</td> <td>02/D-AAF-1</td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td>	2	Model	No.		E7080	02/D-AAF-1	3					
a Body Material ALUMINUM 6 Drain Connection 1/2" NPT WITH PLUG 8 ody Configuration ECCENTRIC 10	3	Proces	s Connections		12	25 LB FF					OF	
International bookstand ALLUNINUM 6 Deal Connection 12° NPT IF LUG 8	4	Body N	Aaterial		AL			ELEMENT.			01	
Image: constraint of the second s	5	Eleme	nt Materia		AL							
Boot Construction Local matrix 8	7	Body (I/2 INF		.00					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $, 8	Douy C	Johnguration		20							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11											
Image: No. Size Oper. Press. Oper. Temp. Service Mount Part No. 14 1EA FA-107 2° 15° 100 PRODUCTION VAPOR FIELD 1164213 15 1 1 1 1 1 1 1 1 1 1164213 16 1	12					-	-					-
Image: Normal base in the service Mount JZ 14 1EA FA-107 2° 15° 100 PRODUCTION VAPOR FIELD 1164213 15 1 1 1 1 1 1 164213 1 1 16 1 1 1 1 1 1 1 1 1 16 1 1 1 1 1 1 1 1 17 1 1 1 1 1 1 1 1 18 1 1 1 1 1 1 1 1 19 1 1 1 1 1 1 1 1 20 1 1 1 1 1 1 1 1 21 1 1 1 1 1 1 1 1 22 1 1 1 1 1 1 1 1 22 1 1 1 1 1 1 1 1 23 1 1 1 1 1 1 1 1 24 1 1 1					Oper.	Oper.						
Instruction Price Production	10	0	TexNe	Size	Press.	Temp.	Ormina					JZ
I EA PA-107 2 15 100 PHOLOCTION VAPOH PHELD Infector 16 I<	13	Qty	Tag No.	0"	H2U	• F	Service			IV		Part No.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14	1 EA	FA-107	2"	15"	100	PRODUCT	ION VAPOR		F	IELD	1164213
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15											
17 1	16											
18	17											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	18											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	19											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26											
$\begin{array}{c c c c c c c } 28 & & & & & & & & & & & & & & & & & & $	27											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	29											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	31											
Revision Date Initials Revision Description Date Name Δ Δ Prepared 12/16/2013 ROLFJ Δ Δ Checked 01/03/2014 ROLFJ Δ Δ Δ Approved 01/03/2014 ROLFJ Δ Δ Δ Checked 01/03/2014 ROLFJ Δ Δ Δ Δ Copies of Vendor Literature Reg'd: 1	32											
Revision Date Initials Revision Description Date Name Δ Δ Prepared 12/16/2013 ROLFJ Δ Δ Checked 01/03/2014 ROLFJ Δ Δ Δ Older Approved 01/03/2014 ROLFJ Δ Δ Δ Checked 01/03/2014 ROLFJ Δ Δ Δ Copies of Vendor Literature Reg'd: 1 1		•										
Δ Prepared 12/16/2013 ROLFJ Δ Checked 01/03/2014 ROLFJ Δ Approved 01/03/2014 ROLFJ Δ Quote Ves Copies of Vendor Δ Ves Ves Copies of Vendor	R	evision	n Date Initia	ls Re	evision De	scription				Date		Name
Δ Checked 01/03/2014 ROLFJ Δ Approved 01/03/2014 ROLFJ Δ Quote Attached: Yes Copies of Vendor Literature Reg'd: 1	Δ								Prepared	12/16/201	3 ROL	.FJ
△ Approved 01/03/2014 ROLFJ △ Quote Copies of Vendor Attached: Yes Copies of Vendor	Δ								Checked	01/03/201	4 ROL	FJ
A Quote Copies of Vendor Literature Reg'd: 1	Δ								Approved	01/03/201	4 ROL	_FJ
	Δ								Attached:	Yes Liter	es of V ature F	endor leq'd: 1

	JOHN	ZINK		JZ SPECIFI	CIFICATION SHEET Spec Rev				0
	JOHN ZINK CO	MPANY LLC		MISCE	LLANEOUS		Page No.	1	of 1
FOR JZ	PARTS: (91	8)234-2751					Project	91	44980
Project	Name: 4' X	<u>30' ENCL</u>	OSED ZTOF F	LARE	Customer Name: SUNOC	O LOGISTIC	S		
Project	Site: SUNC	CO LOGI	STICS		Customer P.O.: D110926	1-V2			_
	Item No.	Qty	Tag Number(s)		Description				JZ
1									Part No.
2									
3									
4									
5									
6									
7									
8									
9									
10									
11	1	10' EACH		DELCO #440 IGNITION	N WIRE, HIGH VOLTAGE				0002167
12	2	10' FACH		THERMO SENSORS #	PPZS16KX THERMOCOUPL	E WIRE,			0403529
13				16 GAGE SHIELDED,	MOISTURE RESISTANT				
14									
15									
16									
17									
18									
19									
20									
21									
22									
23									
24									
25	Notes:								
	ALL ITE	EMS REC	QUIRE UL LAE	BEL					
	FLARE	MOUNT							
R	evision Dat	te Initials	Revision De	scription			Date	/	lame
Δ						Prepared	01/03/2014	ROL	FJ
Δ						Checked	01/03/2014	ROL	FJ
Δ						Approved	01/03/2014	ROL	FJ
Δ						Quote Attached:	Yes Literate	of Ve ure Re	əndor əq'd: 1
JZ96.09 ac	lopted from ISA-2	20-1975				Printed on: 01	-03-2014 at 16:0	9:45 by	GWARTNEM

Enclosed ZTOF Production Flare Detail

Manufacturer Recommended Maintenance

RECOMMENDED MAINTENANCE FORM PRODUCTION FLARE

12/13

SYSTEM COMPONENT	INTERVAL	DATE	INITIALS	COMMENTS
General				
Confirm all covers are secure.	monthly			
Inspect enclosures for moisture.	monthly			
Confirm no gas or liquid leaks exist.	monthly			
Confirm all threaded connections are tight.	annually			
Replace all thermocouples.	annually			
Calibrate instruments and flow meter.	annually			
Flare				
Record flame arrester differential pressure.	monthly			
Inspect exterior paint.	monthly			
Conduct recommended System Testing.	quarterly			
Inspect internal insulation.	quarterly			
Inspect foundation and anchor bolts.	annually			
Clean sight port, flare tip, and flame arrester.	annually			
Conduct emissions performance test.	annually			
Pilot				
Record pilot gas pressure.	monthly			
Inspect mixer for debris or moisture.	monthly			
Clean mixer and orifice.	quarterly			
Clean solenoid.	annually			
Replace electrode.	annually			

Technical Questions Clarifications

<u>Vendor Proposal Technical and Commercial Questions, Clarifications, and Requests for</u> <u>Information 2</u>

Sunoco Logistics Request for Proposal #:	02896-9001
Vendor:	John Zink
Vendor Proposal #:	BF-201307-37263
Vendor Proposal Date:	August 20, 2013

Technical Question/Clarifications	Vendor Response
1. Can we receive wiring diagrams for the flares? Then we will be able to design our PLC connections.	Drawing submittal is scheduled for January 3, 2014 which will include wiring diagrams of the Flare Control Panel and Ignition Panel.
2. Can we receive piping drawings to show the piping connections with the flares?	Drawing submittal is scheduled for January 3, 2014 which will include a Process and Instrument Diagram, along with general arrangement drawing.
3. We need clarification on the detailed drawing EF1-300-001. Based on the detail drawing it appears that the flare shell enclosure is supported by three support legs that lift the enclosed section 4' above the foundation. Please clarify if the bottom of the shell is closed off or open. If it is closed, we will need to account for uplift.	The bottom of the shell is partially closed, not entirely closed, so "uplift" is insignificant.
4. Can we please receive the manufacturer's recommending maintenance schedule, including tests?	Refer to the separate Recommended Maintenance Form.
5. Can we receive manufacturer's recommended operating specifications, (i.e., flame temperature)?	Pilot Gas Pressure:10 psig for propane15 psig for natural gasPilot Gas Volume:50,000 BTU/hrPilot Flame Proved:200 °F minimumElectricity:120 V, single phase, 60 Hz

Wiring Diagram for Enclosed ZTOF Flare

TERMINAL IN FLARE CONTROL PANEL PNL-1

TERMINAL IN IGNITION PANEL PNL-103

- WIRING BY JOHN ZINK CO.

----- WIRING BY OTHERS (NOT BY JOHN ZINK CO.)

5. ALL WIRING COLORS TO BE AS FOLLOWS UNLESS INDICATED OTHERWISE: BL 120 V POWER BL 20 V NEUTRAL WH GROUND GR 24 V DC POWER BL 24 V DC POWER BL SHELDED ANALOS COMMON WH BLACK WHITE GREEN BLUE YELLOW BLACK WHITE

			-	-		This dro shall no written 2013, J	wing and th t be copied permission o ohn Zink Co	e Information containe traced, photographed, f John Zink Company npany, LLC. All rights	d herein is of a confidential n or reproduced in any manner This drawing shall be returne reserved.	ature and the pri nor used for an id to John Zink (operty of John Zink Company y purpose whatsoever, exception company upon request. Coption	y and at by gright
						FOR: S	SUNOCO LOO	ASTICS				7
						USER: SUNOCO LOGISTICS						•
										OHN ZINK	COMPANY LLC	_
						JOBSITE: SINKING SPRINGS, PA			PARTS AND SERVICE, CALL 1-800-755-4252 FAX (918) 234-1968			68
										WIRING DIAG	RAM	
						S.O. NC). BF-9144	380	FOR AN ENCLOSED ZTOF PRODUCTION FLARE			
						P.O. NO). D1109261	-¥2		(QUANTITY	17)	
						DR.	RPJ	DATE: 12-17-13	CERTIFIED	P	RAWING NUMBER	REV
						CK.	JPR	DATE: 1-3-14	1	U-F	-9144960-401	10
NO.	REVISION DESCRIPTION	BY	ск.	APP.	DATE	APP.	JPR	DATE: 1-3-14	DATE:	NONE	1 of 1	

- vapor \9144

r: \active\p-> Name: Ē

Attachment N: Supporting Emissions Calculations

Sunoco Pipeline, L.P. Follansbee Station Brooke County, WV Emission Summary

				Uncontroll	ed - Maximu	m Short Ter	m Emission	Rate (Ib/hr)*			
Emission Source Category	NO _X	CO	VOC	РМ	PM ₁₀	SOx	HAP	CO ₂	CH₄	N ₂ O	CO ₂ e
Flared Emissions**	0.00	0.00	472.71	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fugitive Dust Emissions	-	_	-	0.34	0.15	_	-	-		-	
Fugitives - Equipment	-	-	0.04	-	-	-	-	-		-	
TOTAL	0.00	0.00	472.75	0.34	0.15	0.00	0.00	0.00	0.00	0.00	0.00
				Un	controlled -	Annual Emis	ssion Rate (t	ру)*			
Emission Source Category	NO _x	со	VOC	РМ	PM ₁₀	SOx	HAP	CO ₂	CH₄	N₂O	CO ₂ e
Flared Emissions**	0.00	0.00	6.81	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fugitive Dust Emissions	-	_	-	1.51	0.68	_	-	-		-	
Fugitives - Equipment	-	-	0.19	-	-	-	-	-		-	
	1										

* '--' = Not Applicable

** Note the uncontrolled emission rate assumes that gas discharged from the sources is directly vented to the atmosphere and not controlled by the enclosed flare.

				Controlle	d - Maximun	n Short Term	n Emission R	ate (lb/hr)*			
Emission Source Category	NO _X	CO	VOC	РМ	PM ₁₀	SOx	HAP	CO ₂	CH₄	N ₂ O	CO ₂ e
Flared Emissions	0.68	3.12	9.48	0.00	0.00	0.03	0.00004	1,434.7	0.07	0.02	1,442.9
Fugitive Dust Emissions	-	_	-	0.14	0.06	-	-	_		_	
Fugitives	-	—	0.04	—	-	-	-	-		_	
TOTAL	0.68	3.12	9.53	0.14	0.06	0.03	0.00004	1,434.7	0.07	0.02	1,442.9
				С	ontrolled - A	Annual Emis	sion Rate (tp	y)*			
Emission Source Category	NO _X	CO	VOC	PM	PM ₁₀	SOx	HAP	CO ₂	CH₄	N ₂ O	CO ₂ e
Flared Emissions	0.02	0.11	0.26	0.00	0.00	0.002	0.0002	50.2	0.002	0.001	50.5
Fugitive Dust Emissions	-	_	_	0.60	0.27	-	- 1	-		-	
Fugitives	-	—	0.19	—	-	-	-	-		_	
TOTAL	0.02	0.11	0.45	0.60	0.27	0.002	0.0002	50.2	0.002	0.001	50.5

* '—' = Not Applicable

Sunoco Pipeline, L.P. Follansbee Station Enclosed Flare Emission Calculations

Flare Data and Opertating Assumptions: 1-6, 19, 22

Flare Manufacturer	John Zink Company LLC
Flare Model	4'Φ x 30' Enclosed ZTOF
Flare Rating	10 MMBtu/hr
Pilot Gas Flow Rate	50,000 Btu/hr
Pilot Gas Flow Operating Hrs	8,760 hrs/yr
Flare Destruction Efficiency	98.0 %
Gas Chromatograph (GC)	
Flow Rate From Gas Chromatograph (GCs)	0.11 scf/hr-GC
Number of Gas Chromatographs	1 GC(s)
Total Hourly Flow Rate	0.11 scf/hr
GC Operating Hours per Year	8,760 hrs/yr
Relief Valves	
Leak Emission Factor for Relief Valves	0.0001 kg/hr/relief valve
Leak Emission Factor for Relief Valves	0.0003 lb/hr/relief valve
Density of Propane at Atmospheric	0.12 lb/scf
Leak Rate per Relief Valve	0.002 scf/hr-relief valve
Number of Relief Valves	9 relief valves
Total Hourly Flow Rate	0.02 scf/hr
Filters	
Gas Flow Rate per Filter Change	14,106 scf/event-filter
Number of Filters	1 filter(s)
Number of Annual Filter Changes	6 events/yr
Total Annual Volume from Filters	84,638 scf/yr
Provers	
Flow Rate from Prover Event	1,524 scf/event-prover
Number of Provers	1 prover(s)
Number of Prover Maintenance Events	2 events/yr
Total Annual Volume from Provers	3,049 scf/yr
Total Maintenance Emissions	
Maintenance (Short Term)	3,082 scf/hr
Maintenance (Annual)	87,687 scf/yr

Fuel Data: 7

Fuel Type - Captured Gas to Flare	Butane
Fuel Type - Pilot Gas	Propane
Butane Heat Content (LHV)	3,113 Btu/scf
Butane Heat Content (HHV)	0.103 MMBtu/gal
Butane Heat Content (HHV)	3,244 Btu/scf
Butane Volume of Vapor/gallon at 60 °F	31.75 scf/gal
Butane Molecular Weight	58.12 lb/lb-mol
Propane Heat Content (HHV)	2,516 Btu/scf
VOC Content by Weight	100 wt%
Sulfur Content	30 ppm
HAP Content by Weight	0 wt%

Emission Factors: 8-11

NO _x	0.068 lb/MMBtu	
CO	0.310 lb/MMBtu	
VOC	0.570 lb/MMBtu	
PM/PM ₁₀ /PM _{2.5}	Ib/MMBtu	
SO _x	9.20E-06 lb/scf	
CO ₂ (butane)	64.77 kg/MMBtu	142.79 lb/MMBtu
CO ₂ (propane)	61.46 kg/MMBtu	135.49 lb/MMBtu
CH ₄	0.003 kg/MMBtu	0.01 lb/MMBtu
N ₂ O	0.001 kg/MMBtu	0.002 lb/MMBtu

Sunoco Pipeline, L.P. **Follansbee Station Enclosed Flare Emission Calculations**

		Maximum Short Term Emission Rate (Ib/hr) ^{12-13, 17, 21}								
Source Description ¹⁸⁻²⁰	NOx	со	VOC	PM/PM ₁₀ /PM _{2.5}	SOx	HAP	CO ₂	CH₄	N ₂ O	CO ₂ e
Flare Continuous Gas Stream Maintenance Stream Pilot Flame	2.82E-05 6.80E-01 3.40E-03	1.28E-04 3.10E+00 1.55E-02	3.92E-04 9.45E+00 2.85E-02	 	1.18E-06 2.84E-02 4.69E-04	0.00E+00 0.00E+00 3.75E-05	5.92E-02 1.43E+03 6.77E+00	2.74E-06 6.61E-02 3.31E-04	9.14E-07 2.20E-02 1.10E-04	5.95E-02 1.44E+03 6.82E+00
TOTAL ¹⁹	0.68	3.12	9.48		0.03	0.00004	1,434.68	0.07	0.02	1,442.95

		Annual Emission Rate (tpy) ^{14-17, 21}								
Source Description 18-20	NOx	СО	VOC	PM/PM ₁₀ /PM _{2.5}	SOx	HAP	CO ₂	CH₄	N ₂ O	CO ₂ e
Flare										
Continuous Gas Stream	1.23E-04	5.63E-04	1.72E-03		5.15E-06	0.00E+00	2.59E-01	1.20E-05	4.00E-06	2.61E-01
Maintenance Stream	9.67E-03	4.41E-02	1.34E-01		4.03E-04	0.00E+00	2.03E+01	9.41E-04	3.14E-04	2.04E+01
Pilot Flame	1.49E-02	6.79E-02	1.25E-01		2.06E-03	1.64E-04	2.97E+01	1.45E-03	4.83E-04	2.99E+01
TOTAL ¹⁹	0.02	0.11	0.26		0.002	0.0002	50.24	0.002	0.001	50.54

Notes:

1. The enclosed flare controls the emission streams from the captured gas associated with the gas chromatograph (GC), relief valves, and maintenance operations from the release of gas resulting from the filter cleaning and prover maintenance.

Volume of gas directed to flare captured from the gas chromatograph was estimated based on information provided by manufacturer.

3. Volume of gas directed to flare during filter changes was estimated calculated assuming a filter volume of 49.5 cubic feet at 1,460 psig. The volume of gas directed to flare during the prover maintenance was calculated using 5.35 cubic feet at 1,460 psig

4. Pilot gas volume rate is based on vendor specifications.

5. A destruction efficiency of 98% is used to estimate the emissions based on the manufacturer's design basis

6. Operational data assumes that gas directed to the flare from the GC(s) and relief valves occurs on a continuous basis. For a conservative annual emission associated with maintenance operation, it is assumed that the filter will be changed 6 times during the first year of operation; prover maintenance will take place twice per year. (Note: the volume of the gas released to the flare during maintenance will be controlled at a rate that will not exceed the maximum capacity of the flare.)

Gas heat content (Btu/scf) for butane and propane is based on the higher heating values (HHV) presented in 40 CFR Part 98 Subpart C, Table C-1.

8. Emission factors for NOx, CO, and VOC are from AP-42 Chapter 13.5 for Industrial Flares, Table 13.5-1 and 13.5-2, April 2015. (Note VOC emision factor is only used to estimate

VOC emission from the pilot flame. VOC emissions from the captured gas sent to the flare are based on the flare's destruction efficiency.) 9. PM emissions are assumed to be negligible since the enclosed flare is considered to be 100% smokeless. Additionally it is assumed that all PM would be less that 2.5 microns in diameter; therefore, PM₁₀, and PM_{2.5} would be equivalent to PM.

10. SO_X emission factor is based on the maximum sulfur content and assumes all of the sulfur is converted to SO₂.

11. Emission factors for CO₂, CH₄, and N₂O are from Table C-1 and C-2 of 40 CFR Part 98, Subpart C.

12. Emissions Rate (Ib/hr) = \Sigma Gas Volume from all sources (scf/hr) x Gas Heat Content (HHV) (Btu/scf) x Emission Factor (Ib/MMBtu) / 1,000,000 (MMBtu/Btu).

13. VOC/HAP Emission rate for flare gas [VOC/HAP (lb/hr)] =

[Gas Volume (scf/hr)] x [1 (lb-mole) / 379 (scf/lb-mole)] x [Gas MW (lb/lb-mole)] x [VOC/HAP wt%] x [(1 - control efficiency %/100%)].

14. Emissions Rate (tpy) = Emissions Estimate (lb/hr) x Annual Operating Hours (hr/yr) / 2,000 (lbs/ton).

15. Emission Rate for Maintenance Stream (tpy) =

Gas Volume (scf/event) x number of events per year x Gas Heat Content (HHV) (Btu/scf) x Emission Factor (Ib/MMBtu) / 1,000,000 (MMBtu/Btu) / 2,000 (Ib/ton).

16. VOC Emission Rate for Maintenance Stream (tpy) =

Gas Volume (scf/event) x number of events per year x 1 (lb-mole) / 379 (scf) x Gas MW (lb/lb-mole) x VOC wt% x (1 - Destruction Efficiency % / 100%)

17. CO₂e emission rates use the following carbon equivalence factors: 25 for CH₄, and 298 for N₂O from 40 CFR Part 98, Subpart A, Table A-1.

18. The emissions (scf/hr) from the GC(s) and relief valves are included under "Continuous Gas Stream."

19. The emissions (scf/yr) from the the filter(s) and prover(s) are included under "Maintenance Stream.

20. The calculations include emissions sent to flare from the Gas Chromatograph. Emissions as a result of the gas chromatograph are exempt in accordance with 45CSR13-2.6 specified in Table 45-13B(26) which specifically exempts equipment used for quality control/assurance or inspection purposes, including sampling equipment used to withdraw materials for analysis.

21. The Total HAP emission factor for the Propane Pilot Flame was estimated using AP-42, Section 1.4, Table 1.4-3. Emission Factors for Speciated Organic Compounds from Natural Gas Combustion

22. Leak emission factors for the relief valve emissions routed to the flare are from the USEPA Protocol for Equipment Leak Emission Estimates, EPA-453/R-95-017, November, 1995, Table 2-3. Assume the total organic compound emissions are equivalent to total VOCs.

Sunoco Pipeline, L.P. Follansbee Station Enclosed Flare Emission Calculations

Filter Calculations: 1-3,5-7

Prover Volume Calculations: 1,2,4-7

Volume of Gas at Atmosphere	1,524.44 ft ³
Density at Atmosphere ¹	0.12 lb/ft ³
Density at Pipe Pressure ¹	33.73 lb/ft ³
Volume of Prover	5.35 ft ³
Prover Flange Size	10.00 inches
Temperature	40 °F
Pressure of Atmosphere at Elevation	1.00 atm
Pressure in Pipe	100.35 atm
Actual pressure	1,474.70 psia
Gauge Pressure in Pipe	1,460 psig
Atmospheric Pressure at Sea Level	14.70 psia
Atmospheric Pressure at Elevation	14.70 psia
Elevation	0.00 ft

Notes:

1. Calculations based on the assumption that the facility is at sea level providing conservative estimate.

2. Pressure and temperature of NGL in the pipe are based on the engineering design of the system.

3. Volume for the filter is based on the engineering design of the system.

 Details for prover based on the information for the FMD-060 Model found on the following internet site: http://www.flowmd.com/small-volume-prover-060/

5. The use of propane is to show the highest volume at atmospheric conditions.

6. Density of propane at different pressures was estimated using National Institute of Standards and Technology calculation model to estimate the isothermal properties for propane and various pressures.

This model can be accessed at the following internet page:

http://webbook.nist.gov/cgi/fluid.cgi?ID=C74986&TUnit=F&PUnit=atm&DUnit=lbm%2Fft3&HUnit=Btu%2Flbm&WUnit=ft %2Fs&VisUnit=cP&STUnit=lb%2Fft&Type=IsoTherm&RefState=DEF&Action=Page

7. Volume of Gas at Atmospheric Pressure/Temperature (ft^3) =

<u>[Volume of item (ft³)] * [Density @ pipeline pressure/temperature (lb/ft³)] * [Pressure at sea level elevation (atm)]</u> [Pressure at elevation (atm)] * [Density @ atmospheric pressure/temperature (lb/ft3)]

Sunoco Pipeline, L.P. **Follansbee Station Fugitive Emissions**

Equipment Type	Equipment Count ¹	Leak Emission Factor ² (kg/hr/component)	Leak Emission Factor ³ (Ib/hr/component)	Emission Rate ⁴ Total VOC (Ib/hr)	Emission Rate ⁵ Total VOC (Ib/yr)	Emission Rate ⁶ Total VOC (tpy)
Fittings (Connectors and Flanges)	411	8.00E-06	1.76E-05	7.25E-03	63.50	3.17E-02
Valves	234	4.30E-05	9.48E-05	2.22E-02	194.32	9.72E-02
Relief Valves	1	1.30E-04	2.87E-04	2.87E-04	2.51	1.26E-03
Others Components:						
Coriolis Meter	2					
Prover	1					
Composite Sampler	2					
Instruments	30					
Total Other Components:	35	1.30E-04	2.87E-04	1.00E-02	87.87	4.39E-02
TOTAL				0.04	348.20	0.17
	10%	10%	10%			
		TOTAL ^{7,8}	0.04	383.02	0.19	

Notes:

 Equipment counts were based on engineering estimates for the project.
 Leak emission factors are from the USEPA Protocol for Equipment Leak Emission Estimates, EPA-453/R-95-017, November, 1995, Table 2-3. Leak emission factors are for total organic compound emissions from light liquid service for the natural gas liquids (butane).

Assume the total organic compound emissions is equivalent to total VOCs.

3. Leak emission factor (lb/hr/component) = Leak emission factors (kg/hr/component) x 1,000 (g/kg) / 453.6 (g/lb). 4. Emission rate (lb/hr) = Emission factor (lb/hr/component) x Equipment Count

5. Emission rate (lb/yr) = Emission factor (lb/hr) x 8,760 (hr/yr)

6. Emission rate (tpy) = Emission rate (lb/hr) x Annual Operating Hours (hr/yr) / 2,000 (lb/ton)

7. A 10% contengency has been included to account for any modifications during the construction phase, for as-built conditions.

Fugitives for the propane pilot gas tank are included in the item counts.

Sunoco Pipeline, L.P. Follansbee Station Product Analysis Specifications

Butane ANALYSIS					
Vapor Component Mo		Mole %	Molecular Weight (Ib/Ib mole)	Molar Mass	Weight %
Nitrogen	N2	0.0	28.02	0.00	0.00
Methane	CH4	0.0	16.04	0.00	0.00
Ethane Propane	C02 C2H6 C3H8	0.0	30.07 44.10	0.00	0.00 0.00 1.51
i-Butane	iC4H10	44.0	58.10	25.56	43.67
n-Butane	nC4H10	54.0	58.10	31.37	53.59
i-Pentane	iC5H12	1.0	72.20	0.72	1.23
n-Pentane	nC5H12	0.0	72.20	0.00	0.00
n-Hexane Methylcyclopentane Hentane (C7)	nC6H14 C6H12 C7H16	0.0 0.0	86.10 84.16 100.20	0.00 0.00	0.00 0.00
Octane (C8)	C8H18	0.0	114.23	0.00	0.00
Nonane (C9)	C9H20	0.0	128.20		0.00
Decane (C10)	C10H22	0.0	142.29	0.00	0.00
Tridecane (C13)	C13H28	0.0	184.36	0.00	0.00
Pentadecanes(15)	C15H32	0.0	212.42	0.00	0.00
Nonadecanes(19)	C19H40	0.0	268.52	0.00	0.00
			Total	58.54	100.00
			VOC Wt % HAP Wt %		100.00 0.00

Propane ANALYSIS					
Vapor Component Mole %		Molecular Weight (Ib/Ib mole)	Molar Mass	Weight %	
Nitrogon	N2	0.0	28.02	0.00	0.00
Methane	CHA	0.0	16.04	0.00	0.00
Carbon Dioxide	CO2	0.0	44 01	0.00	0.00
Ethane	C2H6	2.0	30.07	0.00	1 35
Propane	C3H8	95.0	44 10	41.90	94.08
i-Butane	iC4H10	3.5	58 10	2 03	4 57
n-Butane	nC4H10	0.0	58.10	0.00	0.00
i-Pentane	iC5H12	0.0	72.20	0.00	0.00
n-Pentane	nC5H12	0.0	72.20	0.00	0.00
n-Hexane	nC6H14	0.0	86.10	0.00	0.00
Methylcyclopentane	C6H12	0.0	84.16	0.00	0.00
Heptane (C7)	C7H16	0.0	100.20	0.00	0.00
Octane (C8)	C8H18	0.0	114.23	0.00	0.00
Nonane (C9)	C9H20	0.0	128.20	0.00	0.00
Decane (C10)	C10H22	0.0	142.29	0.00	0.00
Tridecane (C13)	C13H28	0.0	184.36	0.00	0.00
Pentadecanes(15)	C15H32	0.0	212.42	0.00	0.00
Nonadecanes(19)	C19H40	0.0	268.52	0.00	0.00
	<u> </u>		Total	44.53	100.00
			VOC	Wt %	98.65
	HAP Wt %			0.00	

Sunoco Pipeline, L.P. Follansbee Station HAP Emission Factors

AP-42, Section 1.4, Tables 1.4-3 and 1.4-4 Emission Factors for Speciated Organic Compounds from Natural Gas Combustion			
Individual HAP	Emission Factor (Ib/MMscf)		
0 Mathada an bila alama	0.405.05		
2-Methylaphtnalene	2.40E-05		
3-Methylchloranthrene	1.80E-06		
7,12-Dimethylbenz(a)anthracene	1.60E-05		
Acenaphthene	1.80E-06		
Acenaphthylene	1.80E-06		
Anthracene	2.40E-06		
Benz(a)anthracene	1.80E-06		
Benzene	2.10E-03		
Benzo(a)pyrene	1.20E-06		
Benzo(b)fluoranthene	1.80E-06		
Benzo(g,h,i)perylene	1.20E-06		
Benzo(k)fluoranthene	1.80E-06		
Chrysene	1.80E-06		
Dibenzo(a,h)anthracene	1.20E-06		
Dichlorobenzene	1.20E-03		
Fluoranthene	3.00E-06		
Fluorene	2.80E-06		
Formaldehyde	7.50E-02		
Hexane	1.80E+00		
Indeno(1,2,3-cd)pyrene	1.80E-06		
Naphthalene	6.10E-04		
Phenanathrene	1.70E-05		
Pyrene	5.00E-06		
Toluene	3.40E-03		
Arsenic	2.00E-04		
Beryllium	1.20E-05		
Cadmium	1.10E-03		
Chromium	1.40E-03		
Cobalt	8.40E-05		
Manganese	3.80E-04		
Mercury	2.60E-04		
Nickel	2.10E-03		
Selenium	2.40E-05		
TOTAL	1.89E+00		
TOTAL (Less HCHO)	1.81E+00		

Notes:

1. Based on parts per billion by weight (ppbw) in fuel detection limit in Rising et al. 2004.

2. Based on average ppbw in fuel in Rising et al. 2004.

3. 18% of value for chromium.

CALCULATION WORKSHEET

CALCULATION WORKSH							
CLIENT Sunoco Pipeline, L.P.			JOB I	NUMBER 1121	C05958/20		
		<u> </u>					
SUBJECT Estimate the amour	nt of particle emissions to	r the ha	ul road	for Follansbee	e Station WV		
BASED ON SPLP data/WV DAG	Q Attachment L of NSR		DRAV	WING NUMBER	Not Applic	able	
Permitting Form							
BY	CHECKED BY		APPF	OVED BY		DATE	
AMO'Bradovich	VJPlachy						10/1/2015
Objective: Estimate the a	amount of particle emission	ons asso	ociated	with the haul r	oad being use	ed for the	
Follansbee Station as requir	ed for Attachment L of the	e NSR/1	Fitle V	permit applicati	ion in WV.		
Inputs and Assumptions:							
inputs and Assumptions.							
1. Estimated length of road	from McAdoo Road into t	he cente	er of th	e Facility =	0.73 m	niles	
2. Amount of Truck Travel (VMT/trip)	=	2	round trips/da	ıy		
3. Total Vehicle Round Trip	s per Hour (trips/hr)	= ().17	trips/hr	-		
4. Total Vehicle Trips per ye	ear (VMT/yr)	= 1	,460	trips/yr			
5. Total Vehicle Miles Trave	led per Day (VMT/trip)	= ´	1.46	miles/day			
6. Total Vehicle Miles Trave	eled per Year (VMTvr)	= /	533	miles/vear			
7. Operating Vechicle Trave	l hours per vear (t)	= 8	,760	hr/vear			
8. E (Ib/Vehicle Mile Travele	ed [VMT]) = k × 5.9 × (s ÷	12) × (S	3 ÷ 30)	× (W ÷ 3)^0.7	× (w ÷ 4)^0.5	× ((365 – p) ÷	365)
Source: WV DEP Docum	nent 2235 Haul Road EUI	DS: h	http://w	ww.dep.wv.gov	/dag/permittin	a/Pages/nsr-f	forms.aspx
k = Particle size mul	tiplier						
for $PM = 0.80$	upiloi						
for $PM_{10} = 0.36$							
s = Silt content of row	ad surface material (%)	_	10	%			
S = Mean vehicle sp	and sufface matchai (70)	_	30	mnh			
W = Moon volicie we	vight (tops)	- 3	2722	tops/vobielo			
		= 3	1.1.52		•		
	wheels per vehicle	= Tan Fa	4 5				
Ba	asis: Conservatice assum	ption-Fo)ra-F25	Super Cab L	WB-www.torc	1.com	
p = Number of days	per year with precipitation) =	140	days/year			
Ba	asis: AP-42 Figure 13.2.2	2-1					
9. Control Efficiency =	60 %						

Calculations:

1. Estimate the Emission Factor for PM emissions in pounds per Vehicle Mile Traveled (E-PM_{VMT})

$$\begin{array}{rcl} \text{E-PM (Ib/VMT)} &=& k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) \\ &=& \left| 0.80 \right| 5.9 \begin{array}{|c|c|c|c|c|c|} 10 & 30 & 3.7 \\ \hline 12 & 30 & 3 \end{array} \right|^{\wedge} 0.7 \begin{array}{|c|c|c|} 4 \\ \hline 4 \end{array} \right|^{\wedge} 0.5 \begin{array}{|c|c|} 365 & - & 140 \\ \hline 365 \end{array} \right| \\ &=& \left| 0.80 \right| 5.9 \begin{array}{|c|c|} 0.8 \\ \hline 5.9 \end{array} \right| 0.8 \begin{array}{|c|c|} 1 \\ \hline 1.2 \\ \hline 1 \end{array} \right| 0.6 \end{array} \right| \\ &=& 2.83 \quad \text{Ib/VMT} \end{array}$$

2. Determine the amount of Uncontrolled PM Emissions in pounds per hour (pph) and tons per year (tpy).

$$PM \text{ Uncontrolled} = E-PM (lb/VMT) * (VMT/trip) * (trips/hr)$$

$$PM \text{ Uncontrolled} (lb/hr) = \begin{vmatrix} 2.83 & lb & 0.7 & VMT & 0.17 & trips \\ VMT & trip & hr \end{vmatrix} = \begin{vmatrix} 0.34 & lb & 8,760 & hr & 1 & ton \\ hr & year & 2,000 & lb \end{vmatrix} = \begin{vmatrix} 1.51 & tpy \end{vmatrix}$$

CALCULATION WORKSHEET

CLIENT Sunoco Pipeline, L.P.	JOB NUMBER 112IC05958/20	
SUBJECT Estimate the amount of particle emissions for the hau	I road for Follansbee Station WV	
BASED ON SPLP data/WV DAQ Attachment L of NSR Permitting Form	DRAWING NUMBER Not Applic	cable
BY CHECKED BY	APPROVED BY	DATE
AMO'Bradovich VJPlachy		10/1/2015
Calculations (continued):		
3. Determine the amount of Controlled PM Emissions in pph a	and tpy.	
PM Controlled = PM Uncontrolled * (1- Control Efficie	ency)	
PM Controlled (lb/hr) = 0.34 tpy $1 - \frac{60}{100} = 0.14$	lb/hr	
PM Controlled (tpy) = 1.51 tpy $1 - \frac{60}{100} = 0.60$	tpy	
4. Estimate the Emission Factor for PM_{10} emissions in pounds	s per Vehicle Mile Traveled (E-PM	10_VMT)
$E-PM_{10}$ (lb/VMT) = k × 5.9 × (s ÷ 12) × (S ÷ 30) × (W ÷ 3)^0.7	″ × (w ÷ 4)^0.5 × ((365 − p) ÷ 365)	
= 0.36 5.9 10 30 3.7 ^ 0.7 4 12 30 3 4	^ 0.5 365 - 140 365	
= 0.36 5.9 0.8 1 1.2 1 0.6		
= 1.27 lb/VMT		
5. Determine the amount of Uncontrolled PM_{10} Emissions in p	ph and tpy.	
PM ₁₀ Uncontrolled = E-PM (Ib/VMT) * (VMT/trip) * (trips/h	r)	
$PM_{10} \text{ Uncontrolled (lb/hr)} = \begin{array}{ccc} 1.27 & \text{lb} & 0.7 & \text{VMT} & 0.17 & \text{trips} \\ \hline \text{VMT} & \text{trip} & \text{hr} \end{array}$	= 0.15 lb/hr	
$PM_{10} \text{ Uncontrolled (tpy)} = \begin{array}{c c} 0.15 & \text{Ib} & 8,760 & \text{hr} & 1 & \text{tot} \\ \hline \text{hr} & \text{year} & 2,000 & \text{Ib} \end{array}$	n = 0.68 tpy	
6. Determine the amount of Controlled PM_{10} Emissions in pph	and tpy.	
PM Controlled = PM Uncontrolled * (1- Control Efficie	ency)	
PM_{10} Controlled (lb/hr) = 0.15 tpy 1 - $\frac{60}{100}$ = 0.06	lb/hr	
$PM_{10} Controlled (tpy) = 0.68 tpy 1 - \frac{60}{100} = 0.27$	tpy	

US EPA AP42 Chapter 13.2 Unpaved Roads: Figure 13.2.2-1. Mean number of days with 0.01 inch or more of precipitation in United States.

CALCULATION WORKSHEET		
CLIENT SPLP	JOB NUMBER 11	2IC05958/20
SUBJECT Estimate the potential Grains of H_2S /	100 cubic feet and lb/hr,cf/hr, etc.	for Follansbee WV Flare
BASED ON SPLP data	DRAWING NUMBER	R Not Applicable
BY CHECKED BY	APPROVED BY	DATE
VJPlachy AMO'Bradovich		11/2/2015
Objective: Estimate the Quantity of H ₂ S per flare F-9708 and other parameter required for	r 100 cubic feet and pounds per h Attachment M of the NSR/Title V	our from the waste gas to be burned in permit application in WV.
Inputs and Assumptions:		
1. Sulfur content of the butane, propane, and/o 2. From AP-42 Table 5.3.1: http://www3.epa.g 10,000 ppm H ₂ S = 627 grains (gr) H ₂ S/100 scf = 3. Maintenance flow to the flare = Maximum pilot gas to the flare = Continuous sources to the flare = Maximum flow to the flare = 4. molecular weight (MW) S = 32.065 lb/lbmole H ₂ S = 34.081 lb/lbmole 5. Maximum hourly short term emission rate 6. Higher Heating Value for stack gas (butane) 7. 1 lb = 7,000 gr 8. John Zink Average Stack Gas Velocity	or ethane is 30 parts per milling jov/ttn/chief/ap42/ch05/final/c05s(1 mole percent (mole%) 1 mole percent (mole%) 10.01 scf/hr 22.00 scf/hr 13 scf/hr 13 scf/hr 13 scf/hr 210 scf/hr 13 scf/hr 13 scf/hr 13 scf/hr 210 scf/hr 13 scf/hr 14 scf/hr 15 scf/hr 25.388 feet per second (fps	on (ppm))3.pdf H_2S H_2S i87 scf/yr 20 scf/yr 19 scf/yr 26 scf/yr 4 scf/min 14 MMBtu/scf s) = 1,523 feet per minute (ft/m)
<u>Calculations:</u> 1. Estimate the grains of H_2S per 100 cubic features	et of waste gas sent to the flare.	
= 30.00 ppm S 34.081 lb/lbmole 32.065 lb/lbmole 10,	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S/100scf % H₂S
= 2.00 gr $H_2S/100$ scf		
2. Estimate annual H_2S in the waste gas to the	e flare in pounds per hour (pph).	
= 2.00 gr H ₂ S 281,526 sef 1 100 sef year 365	year1day1lbdays24hr7,000gr	
= 0.00009 lb/hr		

3. Estimate the maximum rate during emergency for one major piece of equipment or process unit (Btu/min).

=	3,082 scf	3,244 MMBtu	1	hr	1	Btu	=	0.17	Btu/min
	hr	scf	60	min	1E+06	MMBtu			

Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans

ATTACHMENT O - MONITORING, RECORDING, REPORTING, AND TESTING PLANS

Plan Type	Emission Unit	Pollutant	Requirements	Frequency	Method of Measurement	Regulatory Reference
Recordkeeping	Enclosed Flare	PM/PM _{2.5} /PM ₁₀	Control of visible particulate emissions	Daily	Visual	NA
	(F-9708)	VOC and criteria pollutants	Flame presence	Continuous	Supervisory Control and Data Acquisition (SCADA) system	NA
Recordkeeping	Fugitive Emissions (FE-01)	VOC	Audible, visual, and olfactory detection ("AVO") methods	Monthly	AVO methods	NA

Attachment P: Public Notice

CERTIFICATE

OF

PUBLICATION

The Brooke County Review

Brooke County Wellsburg, West Virginia

I, Jonathan M. McGoldrick, general manager of the Brooke County Review, a newspaper of general circulation in Brooke County, West Virginia, published in Wellsburg, hereby Certify that the attached advertisement was duly published in said Newspaper for successive week(s) in issues of

day

2015

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Sunoco Pipeline, L.P. has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Construction Permit for a Pipeline Station located on 376 White Tail Ridge Rd., Wellsburg, in Brooke County, West Virginia. The latitude and longitude coordinates are: Latitude 40° 14' 8.3354"N, Longitude -80° 32' 38,5922"W.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be: 0.45 tons per year (tpy) of Volatile Organic Compounds (VOCs), 0.0002 tpy, Hazardous Air Pollutants (HAPs), 0.02 tpy of Oxides of Nitrogen (NOX), 0.11 tpy of Carbon Monoxide (CO), 50.5 tpy of Carbon Dioxide Equivalent (CO2-e), 0.002 tpy of Oxides of Suffur, and 0.60 tpy Particulate Matter (PM), and 0.27 tpy PM less than 10 microns (PM10).

Startup of operation is planned to begin on or about the 29 day of September, 2016. V ten comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499. extension 1250, during normal business hours.

Dated this the 11th day of December, 2015.

Sunoco Pipeline, L.P. By: Matthew L. Gordon **Principle Engineer** 535 Fritztown Road Sinking Spring, PA 19608

BCR 12/11/15

Decomber

General Manager of the Brooke County Review

Printer's Fee \$ 7.2.8/)

Given under my hand this

Invoice #

of

Subscribed and sworn to this // day of

Follansbee, WV 26037 My Commission Expires Mar. 16, 2020

My commission expires Much 16, 2020

OFFICIAL SEAL STATE OF WEST VIRGINIA otary public **Dorothy Craig** 396 Rose Stre

2015

Notary Public

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Sunoco Pipeline, L.P. has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Construction Permit for a Pipeline Station located on 376 White Tail Ridge Rd., Wellsburg, in Brooke County, West Virginia. The latitude and longitude coordinates are: Latitude 40° 14' 8.3364"N, Longitude -80° 32' 36.5922"W.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be: 0.45 tons per year (tpy) of Volatile Organic Compounds (VOCs), 0.0002 tpy, Hazardous Air Pollutants (HAPs), 0.02 tpy of Oxides of Nitrogen (NO_x), 0.11 tpy of Carbon Monoxide (CO), 50.5 tpy of Carbon Dioxide Equivalent (CO₂-e), 0.002 tpy of Oxides of Sulfur, and 0.60 tpy Particulate Matter (PM), and 0.27 tpy PM less than 10 microns (PM₁₀).

Startup of operation is planned to begin on or about the 29 day of September, 2016. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the (Day) day of (Month), 2015.

By: Sunoco Pipeline, L.P. Matthew L. Gordon Principle Engineer 535 Fritztown Road Sinking Spring, PA 19608 Attachment Q: Business Confidential Claim – N/A

Attachment R: Authority Forms

Attachment R

AUTHORITY OF LIMITED PARTNERSHIP

TO: West Virginia Department of Environmental Protection, Division of Air Quality

DATE: , _____,

ATTN: Director

Partnership's Federal Employer I.D. Number 23-3102656

The undersigned hereby files with the West Virginia Department of Environmental Protection, Division of Air Quality, a permit application and hereby certifies that the said name is a trade name which we are using in the conduct of an unincorporated business.

Further, we have agreed or certified as follows:

(1) The undersigned is a general partner and in that capacity may represent the interests of the partnership and may obligate and legally bind all current or future partners and the partnership.

(2) The partnership is authorized to do business in the State of West Virginia.

(3) The name and business address of each general partner:

General Partner:	Sunoco Logistics Partners Operations GP LLC				
Address:	3807 W	/est Chester Pike			
	Newtown	Square, PA 19073			
	Telephone No.:	610-859-5754			
General Partner: Address:					
	Telephone No.:				
General Partner: Address:					
	Telephone No.:				

(4) If any other persons become general partners of the undersigned or our relations as such be altered in any way or if the business should become incorporated, the undersigned will notify you promptly.

Address:

4041 Market Street Aston, PA 19014-3197 Telephone No.: 610-859-5754

David R. Chalson

GENERAL PARTNER (Typed)

GENERAL PARTNER (Signature)

Sunoco Pipeline, L.P.

LIMITED PARTNERSHIP NAME

Revision 03/2007

Attachment S: Title V Permit Revision Information (Not Applicable; See Section 3)

APPLICATION FEE