

1700 Pittsburgh PA 15222 www.eqt.com

625 Liberty Ave, Suite

TEL: (412) 395-3699

R. Alex Bosiljevac Environmental Coordinator

July 15, 2016

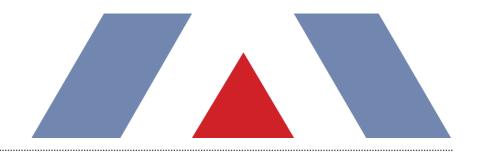
Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: G70-C General Permit Registration Application

EQT Production Company

PEN-54 Natural Gas Production Site

Dear Director Durham:


Enclosed are one (1) original hard copy and two (2) complete PDFs included on CD-ROM of a G70-C General Permit Registration Application for the PEN-54 natural gas production site. A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely,

R. Alex Bosiljevac EQT Corporation

Enclosures

PROJECT REPORT

EQT Production PEN-54 Pad

G70-C Permit Application

TRINITY CONSULTANTS 4500 Brooktree Drive Suite 103 Wexford, PA 15090 (724) 935-2611

July 2016

Environmental solutions delivered uncommonly well

TABLE OF CONTENTS

1. INTRODUCTION	4
1.1. FACILITY AND PROJECT DESCRIPTION	4
1.2. SOURCE STATUS	4
1.3. G70-C APPLICATION ORGANIZATION	5
2. SAMPLE EMISSION SOURCE CALCULATIONS	6
3. REGULATORY DISCUSSION	8
3.1. Prevention of Significant Deterioration Source Classification	8
3.2. Title V Operating Permit Program	8
3.3. New Source Performance Standards	8
3.3.1. NSPS Subparts D, Da, Db, and Dc – Steam Generating Units	9
3.3.2. NSPS Subparts K, Ka, and Kb – Storage Vessels for Petroleum Liquids/Volatile Organic Liquids	9
3.3.3. NSPS Subpart JJJJ – Stationary Spark Ignition Internal Combustion Engines	9
3.3.4. NSPS Subpart 0000 - Crude Oil and Natural Gas Production, Transmission, and Distribution	9
3.3.5. NSPS Subpart 0000a—Crude Oil and Natural Gas Facilities	10
3.3.6. Non-Applicability of All Other NSPS	10
3.4. National Emission Standards for Hazardous Air Pollutants	11
3.4.1. 40 CFR 63 Subpart HH – Oil and Natural Gas Production Facilities	11
3.4.2. 40 CFR 63 Subpart ZZZZ – Stationary Reciprocating Internal Engines	11
3.4.3. 40 CFR 63 Subpart JJJJJJ – Industrial, Commercial, and Institutional Boilers	11
3.5. West Virginia SIP Regulations	11
3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers	11
3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contrib	
to an Objectionable Odor	12
3.5.3. 45 CSR 6: Control of Air Pollution from the Combustion of Refuse	12
3.5.4. 45 CSR 16: Standards of Performance for New Stationary Sources	12
3.5.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparated Storage and Other Sources of Fugitive Particulate Matter	tion, 12
3.5.6. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks	12
3.5.7. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants	12
3.5.8. Non-Applicability of Other SIP Rules	13
4. G70-C APPLICATION FORMS	14
ATTACHMENT A: SINGLE SOURCE DETERMINATION	
ATTACHMENT B: SITING CRITERIA WAIVER (NOT APPLICABLE)	
ATTACHMENT C: BUSINESS CERTIFICATE	
ATTACHMENT D: PROCESS FLOW DIAGRAM	

ATTACHMENT E: PROCESS DESCRIPTION

ATTACHMENT F: PLOT PLAN
ATTACHMENT G: AREA MAP

ATTACHMENT H: APPLICABILITY FORM ATTACHMENT I: EMISSION UNITS TABLE

ATTACHMENT J: FUGITIVE EMISSIONS SUMMARY SHEET

ATTACHMENT K: GAS WELL DATA SHEET

ATTACHMENT L: STORAGE VESSEL DATA SHEET

ATTACHMENT M: HEATERS DATA SHEET ATTACHMENT N: ENGINES DATA SHEET

ATTACHMENT O: TRUCK LOADING DATA SHEET

ATTACHMENT P: GLYCOL DEHYDRATOR DATA SHEET (NOT APPLICABLE)
ATTACHMENT Q: PNEUMATIC CONTROLLER DATA SHEET (NOT APPLICABLE)

ATTACHMENT R: AIR POLLUTION CONTROL DEVICE DATA SHEET

ATTACHMENT S: EMISSION CALCULATIONS
ATTACHMENT T: EMISSION SUMMARY SHEET

ATTACHMENT U: CLASS I LEGAL ADVERTISEMENT

ATTACHMENT V: GENERAL PERMIT REGISTRATION APPLICATION FEE

EQT Production Company (EQT) is submitting this Class II General Permit (G70-C) application to the West Virginia Department of Environmental Protection (WVDEP) for the construction and operation of new equipment at a new natural gas production well pad, PEN-54, located in Ritchie County, West Virginia.

1.1. FACILITY AND PROJECT DESCRIPTION

The PEN-54 pad is a natural gas production facility that will consists of eleven (11) natural gas wells. Natural gas and liquids (including water and condensate) are extracted from deposits underneath the surface. Natural gas is transported from the well to a gas line for additional processing and compression, as necessary. The liquids produced are stored in storage vessels.

This application seeks to the permit the following equipment:

- > Twelve (12) 400 barrel (bbl) storage tanks for condensate/water (produced fluids) controlled by two (2) combustors, one rated at 19.22 MMBtu/hr and one rated at 11.66 MMbtu/hr;
- > Two (2) 140 bbl storage tanks for sand and produced fluids from the sand separator (vapors from this tank may be controlled by combustors but are not represented as controlled in this application);
- > Eleven (11) line heaters rated at 1.54 MMBtu/hr each (heat input);
- > Two (2) thermoelectric generators (TEGs), each rated at 0.013 MMBtu/hr (heat input);
- > Two (2) low pressure separators and associated 1.15 MMbtu/hr line heaters;
- > Two (2) vapor recovery units (VRUs) each powered by a natural gas fired 400 horsepower (hp) engine;
- > Produced fluid truck loading; and
- > Associated piping and components.

A process flow diagram is included as Attachment D. A comparison of the potential emissions of the wellpad with G70-C emission limits is provided in Table 1. Facility emissions are well below the permit limits. Note that in accordance with condition 1.1.1. of the G70-C permit, fugitive emissions are not considered in determining eligibility of the permit.

Table 1 - Comparison of Wellpad Potential Emissions to G70-C Permit Emission Limits

Pollutant	Wellpad Potential Annual Emissions (tpy)	G70-C Maximum Annual Emission Limits (tpy)
Nitrogen Oxides	29.07	50
Carbon Monoxide	33.38	80
Volatile Organic Compounds	11.49	80
Particulate Matter – 10/2.5	2.13	20
Sulfur Dioxide	0.14	20
Individual HAP (n-hexane)1	1.20	8
Total HAP ¹	3.83	20

^{1.} Includes fugitive emissions.

1.2. SOURCE STATUS

WVDEP must make stationary source determinations on a case-by-case basis using the guidance under the Clean Air Act (CAA) and EPA's and WVDEP's implementing regulations. The definition of stationary source in 40 CFR 51.166(b) includes the following:

"(6) Building, structure, facility, or installation means all of the pollutant emitting activities which belong to the same industrial grouping, are located on or more contiguous or adjacent properties, and are under control of the same person (or persons under common control)."

Other additional pollutant emitting facilities should be aggregated with the PEN-54 Pad for air permitting purposes if, and only if, all three elements of the "stationary source" definition above are fulfilled.

There are no Marcellus facilities within a quarter-mile radius of the PEN-54 Pad. The nearest wellpad, PEN-16, is located approximately 0.75 miles southwest of PEN-54. Therefore, the PEN-54 pad should be considered a separate stationary source with respect to permitting programs, including Title V and Prevention of Significant Deterioration (PSD). As discussed in this application, the facility is a minor source of air emissions with respect to New Source Review (NSR) and Title V permitting.

1.3. G70-C APPLICATION ORGANIZATION

This West Virginia Code of State Regulations, Title 45 (CSR) Series 13 (45 CSR 13) G70-C permit application is organized as follows:

- > Section 2: Sample Emission Source Calculations;
- Section 3: Regulatory Discussion;
- Section 4: G70-C Application Form;
- > Attachment A: Single Source Determination;
- > Attachment B: Siting Criteria Waiver (Not Applicable);
- > Attachment C: Business Certificate:
- > Attachment D: Process Flow Diagram;
- > Attachment E: Process Description;
- > Attachment F: Plot Plan;
- > Attachment G: Area Map;
- > Attachment H: Applicability Form;
- > Attachment I: Emission Units Table;
- > Attachment J: Fugitive Emissions Summary Sheet;
- > Attachment K: Gas Well Data Sheet;
- > Attachment L: Storage Vessel Data Sheet;
- > Attachment M: Heaters Data Sheet;
- > Attachment N: Engines Data Sheet;
- > Attachment O: Truck Loading Data Sheet;
- > Attachment P: Glycol Dehydrator Data Sheet (Not Applicable);
- > Attachment Q: Pneumatic Controller Data Sheet (Not Applicable);
- > Attachment R: Air Pollution Control Device Data Sheet;
- > Attachment S: Emission Calculations:
- > Attachment T: Emission Summary Sheet:
- > Attachment U: Class I Legal Advertisement; and
- > Attachment V: General Permit Registration Application Fee.

The characteristics of air emissions from the natural gas production operations, along with the methodology for calculating emissions, are briefly described in this section of the application. Detailed emission calculations are presented in Attachment S of this application.

Emissions from this project will result from natural gas combustion in the engines, line heaters, enclosed combustors and TEGs, as well as storage of organic liquids in storage tanks and loading of organic liquids into tank trucks. In addition, fugitive emissions will result from component leaks from the operation of the station. The methods by which emissions from each of these source types are calculated are summarized below.

- > Line Heaters, Enclosed Combustors and TEGs: Potential emissions of criteria pollutants and hazardous air pollutants (HAPs) are calculated using U.S. EPA's AP-42 factors for natural gas external combustion. These calculations assume a site-specific heat content of natural gas. Greenhouse gas emissions are calculated according to 40 CFR 98 Subpart C.2
- > VRU Engines: Potential emissions of oxides of nitrogen (NO_x), carbon monoxide (CO), and volatile organic compounds (VOC) are calculated using 40 CFR 60 Subpart JJJJ emissions factor standards. Remaining criteria pollutants and HAPs are calculated using U.S. EPA's AP-42 factors for natural gas fired engines.³ These calculations assume a specific heat content of natural gas from the closest wellpad. Greenhouse gas emissions are calculated according to 40 CFR 98 Subpart C.
- > **Fugitive Equipment Leaks:** Emissions of VOC and HAPs from leaking equipment components have been estimated using facility estimated component counts and types along with emission factors from the *Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017, November 1995.* Emission factors used are based on average measured TOC from component types indicated. Greenhouse gas emissions from component leaks are calculated according to the procedures in 40 CFR 98 Subpart W.⁴ Pneumatic devices at the wellpad are intermittent bleed and are assumed to be in operation 1/3 of the year.
- > Storage Tanks: Working, breathing and flashing emissions of VOC and HAPs from the storage tanks at the facility are calculated using Bryan Research & Engineering ProMax® Software. Controlled calculations assume an overall control efficiency (capture and destruction) of 98%. The throughput for the produced fluids tanks are based on the maximum annualized monthly condensate and produced water at the PEN-16 well pad (i.e., the maximum monthly throughput for the pad times 12) scaled up to eleven wells, and includes a safety factor of 1.60. The composition for the analysis was from a sample taken at PEN-54. Emissions of VOC and HAPs from the sand separator tanks are calculated using E&P TANK v2.0. The produced fluids throughput is calculated as follows:

$$Throughput \left(\frac{bbl}{day}\right) = \left(Condensate \ Throughput \ \left(\frac{bbl}{month}\right) + \left(Produced \ Water \ Throughput \ \left(\frac{bbl}{month}\right)\right)\right) * \\ \frac{12\left(\frac{months}{year}\right)}{365\left(\frac{days}{year}\right)} \times 1.6 \times \left(\frac{11}{7}\right) + \left(\frac{bbl}{month}\right) \times \frac{12\left(\frac{months}{year}\right)}{365\left(\frac{days}{year}\right)} \times 1.6 \times \left(\frac{11}{7}\right)$$

> Tank Truck Loading: Uncontrolled emissions of VOC and HAPs from the loading of organic liquids from storage tanks to tank truck are calculated using Bryan Research Engineering ProMax® Software. Truck

¹U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 1.4, Natural Gas Combustion, Supplement D, July 1998.

² 40 CFR 98 Subpart C, General Stationary Fuel combustion Sources, Tables C-1 and C-2.

³ U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 3.2, Natural Gas-fired Reciprocating Engines, Supplement D, August 2000.

⁴⁴⁰ CFR 98 Subpart W, Petroleum and Natural Gas Systems, Section 98.233(r), Population Count and Emission Factors.

loading is controlled by the enclosed combustors. U.S. EPA's AP-42 Chapter 5 Section 2 factors were used for capture efficiency. ⁵
Haul Roads: Fugitive dust emitted from facility roadways has been estimated using projected vehicle miles traveled along with U.S. EPA's AP-42 factors for unpaved haul roads. ⁶

⁵ U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 5.2, Transportation And Marketing Of Petroleum Liquids, June 2008. ⁶ U.S. EPA, AP 42, Fifth Edition, Volume I, Section 13.2.2, Unpaved Roads, November 2006.

This section documents the applicability determinations made for Federal and State air quality regulations. In this section, applicability or non-applicability of the following regulatory programs is addressed:

- > Prevention of Significant Deterioration permitting;
- > Title V of the 1990 Clean Air Act Amendments;
- New Source Performance Standards (NSPS);
- > National Emission Standards for Hazardous Air Pollutants (NESHAP); and
- > West Virginia State Implementation Plan (SIP) regulations.

This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-C permit application forms.

In addition to providing a summary of applicable requirements, this section of the application also provides non-applicability determinations for certain regulations, allowing the WVDEP to confirm that identified regulations are not applicable to the wellpad. Note that explanations of non-applicability are limited to those regulations for which there may be some question of applicability specific to the operations at the wellpad. Regulations that are categorically non-applicable are not discussed (e.g., NSPS Subpart J, Standards of Performance for Petroleum Refineries).

3.1. PREVENTION OF SIGNIFICANT DETERIORATION SOURCE CLASSIFICATION

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration. PSD regulations apply when a major source makes a change, such as installing new equipment or modifying existing equipment, and a significant increase in emissions results from the change. The wellpad is not a major source with respect to the PSD program since its potential emissions are below all the PSD thresholds. As such, PSD permitting is not triggered by this construction activity. EQT will monitor future construction activities at the site closely and will compare any future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

3.2. TITLE V OPERATING PERMIT PROGRAM

Title 40 of the Code of Federal Regulations Part 70 (40 CFR 70) establishes the federal Title V operating permit program. West Virginia has incorporated the provisions of this federal program in its Title V operating permit program in West Virginia CSR 45-30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP and 100 tpy of all other regulated pollutants. The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpad is not a major source for Title V purposes.

3.3. NEW SOURCE PERFORMANCE STANDARDS

New Source Performance Standards, located in 40 CFR 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best demonstrated technology as specified in the applicable provisions.

⁷ On June 23, 2014, the U.S Supreme Court decision in the case of *Utility Air Regulatory Group v. EPA* effectively changed the permitting procedures for GHGs under the PSD and Title V programs.

Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, except where expressly noted. The following is a summary of applicability and non-applicability determinations for NSPS regulations of relevance to the wellpad. The following NSPS could potentially apply to the wellpad:

- > 40 CFR Part 60 Subparts D/Da/Db/Dc Steam Generating Units
- > 40 CFR Part 60 Subpart K/Ka/Kb Storage Vessels for Petroleum Liquids/Volatile Organic Liquids
- > 40 CFR Part 60 Subpart [J]] Stationary Spark Ignition Internal Combustion Engines
- > 40 CFR Part 60 Subpart 0000 Crude Oil and Natural Gas Production, Transmission, and Distribution
- > 40 CFR Part 60 Subpart 0000a Crude Oil and Natural Gas Facilities

3.3.1. NSPS Subparts D, Da, Db, and Dc - Steam Generating Units

These subparts apply to steam generating units of various sizes, all greater than 10 MMBtu/hr. The proposed project does not include any steam generating units with a heat input greater than 10 MMbtu/hr, therefore the requirements of these subparts do not apply.

3.3.2. NSPS Subparts K, Ka, and Kb - Storage Vessels for Petroleum Liquids/Volatile Organic Liquids

These subparts apply to storage tanks of certain sizes constructed, reconstructed, or modified during various time periods. Subpart K applies to storage tanks constructed, reconstructed, or modified prior to 1978, and Subpart Ka applies to those constructed, reconstructed, or modified prior to 1984. Both Subparts K and Ka apply to storage tanks with a capacity greater than 40,000 gallons. Subpart Kb applies to volatile organic liquid (VOL) storage tanks constructed, reconstructed, or modified after July 23, 1984 with a capacity equal to or greater than 75 m 3 (\sim 19,813 gallons). All of the tanks at the wellpad have a capacity of 19,813 gallons or less. As such, Subparts K, Ka, and Kb do not apply to the storage tanks at the wellpad.

3.3.3. NSPS Subpart JJJJ - Stationary Spark Ignition Internal Combustion Engines

New Source Performance Standards 40 CFR Part 60 Subpart JJJJ (NSPS JJJJ) affects owners and operators of stationary spark ignition internal combustion engines (SI ICE) that commence construction, reconstruction or modification after June 12, 2006. Applicability dates are based on the date the engine was ordered by the operator. The proposed engines (VRU engines) at the well pad are a 4-stroke rich burn, spark ignition engine manufactured after January 1, 2011, and are subject to this subpart. EQT will operate the engine according to the manufacturer's recommended practices and demonstrate compliance with the requirements specified in 40 CFR §60.4244 (testing methods) and 40 CFR§60.4243 (maintenance plan/records and performance testing frequency) for noncertified affected SI ICE at the facility, which includes an initial performance test within 1 year of engine startup to demonstrate compliance with the regulation.

3.3.4. NSPS Subpart 0000 - Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart 0000, Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution, applies to affected facilities that commenced construction, reconstruction, or modification after August 23, 2011 and or before September 18, 2015. This NSPS was published in the Federal Register on August 16, 2012, and subsequently amended. The proposed project does not included any construction, reconstruction or modification prior determination dates related to NSPS Subpart 0000. Therefore, this subpart is not applicable to the proposed project. Note that EPA recently finalized 40 CFR 60 Subpart 0000a; applicability of Subpart 0000a is discussed in the following section.

3.3.5. NSPS Subpart OOOOa—Crude Oil and Natural Gas Facilities

Subpart OOOOa, Standards of Standards of Performance for Crude Oil and Natural Gas Facilities, applies to affected facilities that commenced construction, reconstruction, or modification after September 18, 2015. The regulation was published final in the Federal Register on June 3, 2016. The rule includes provisions for the following facilities:

- > Hydraulically fractured wells;
- > Centrifugal compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- > Reciprocating compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- > Continuous bleed natural gas-driven pneumatic controllers with a bleed rate of > 6 scfh located in the production, gathering, processing, or transmission and storage segments (excluding natural gas processing plants);
- > Continuous bleed natural gas-driven pneumatic controllers located at natural gas processing plants;
- > Pneumatic pumps located in the production and processing segments;
- > Storage vessels located in the production, gathering, processing, or transmission and storage segments;
- > The collection of fugitive emissions components at a well site;
- > The collection of fugitive emissions components at a compressor station; and
- > Sweetening units located onshore that process natural gas produced from either onshore or offshore wells.

Based on the rule, the following paragraphs describe the applicability of the facilities to be located at the proposed facility.

40 CFR 60.5385 requires owners and operators of affected reciprocating compressors to change the rod packing prior to operating 26,000 hours or prior to 36 months since start up or the last packing replacement. However, according to §60.5365a, compressors located at well sites are not affected facilities under Subpart 0000a.

There are eleven (11) produced fluid storage vessels and two (2) sand separator storage vessels at the wellpad. The storage vessels at the facility will each have potential VOC emissions less than 6 tpy based on the permit application materials and enforceable limits to be included in the G70-C permit. As such, per 60.5365a(e), the tanks will not be storage vessel affected facilities under the rule.

The proposed well pad is an affected facility under 60.5365a(i). Therefore, EQT will be required to monitor all fugitive emission components (ex. connectors, flanges, etc.) with an optical gas imaging (OGI) device, and repair all sources of fugitive emissions in accordance with the rule. EQT must also develop a corporate-wide monitoring plan and a site specific monitoring plan (or one plan that incorporates all required elements), and conduct surveys on a semi-annual basis. EQT is also subject to the applicable recordkeeping and reporting requirements of the rule.

The new pneumatic controllers will potentially be subject to NSPS 0000a. Per 60.5365a(d)(1), a pneumatic controller affected facility is a single continuous bleed natural gas driven pneumatic controller operating at a natural gas bleed rate greater than 6 scfh. No pneumatic controllers installed will meet the definition of a pneumatic controller affected facility. Therefore, these units are not subject to the requirements of Subpart 0000a.

3.3.6. Non-Applicability of All Other NSPS

NSPS are developed for particular industrial source categories. Other than NSPS developed for natural gas processing plants (Subparts 0000) and associated equipment (Subparts D-Dc and K-Kb), the applicability of a particular NSPS to the wellpad can be readily ascertained based on the industrial source category covered. All other NSPS are categorically not applicable to the proposed project.

3.4. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The wellpad is an Area (minor) source of HAP since its potential emissions of HAP are less than the 10/25 major source thresholds. NESHAP apply to sources in specifically regulated industrial source categories (Clean Air Act Section 112(d)) or on a case-by-case basis (Section 112(g)) for facilities not regulated as a specific industrial source type. Besides 40 CFR 63 Subpart A (NESHAP Subpart A), which is similar to 40 CFR 60 Subpart A (NSPS Subpart A), the following NESHAP could potentially apply to the wellpad:

- > 40 CFR Part 63 Subpart HH Oil and Natural Gas Production Facilities
- > 40 CFR Part 63 Subpart ZZZZ Stationary Reciprocating Internal Combustion Engines
- > 40 CFR Part 63 Subpart JJJJJJ Industrial, Commercial, and Institutional Boilers

The applicability of these NESHAP Subparts is discussed in the following sections.

3.4.1. 40 CFR 63 Subpart HH - Oil and Natural Gas Production Facilities

This standard contains requirements for both major and area sources of HAP. At area sources, the only affected source is a triethylene glycol dehydration unit ($\S63.760(b)(2)$). The wellpad does not include a triethylene glycol dehydration unit; therefore the requirements of this subpart do not apply.

3.4.2. 40 CFR 63 Subpart ZZZZ - Stationary Reciprocating Internal Engines

This rule affects reciprocating internal combustion engines (RICE) located at a major and area sources of HAP. 40 CFR §63.6590(c) states that a new or reconstructed stationary RICE located at an area HAP source must meet the requirements of NESHAP Subpart ZZZZ by meeting the requirements of NSPS Subpart JJJJ. No further requirements apply for such engines under NESHAP Subpart ZZZZ. The PEN-54 well pad is a minor (area) source of hazardous air pollutants and the VRU engine is considered a new stationary RICE. Therefore, the requirements contained in §63.6590(c) are applicable. EQT will be in compliance with applicable requirements of 40 CFR 63 Subpart ZZZZ by meeting the applicable requirements of 40 CFR 60 Subpart JJJJ.

3.4.3. 40 CFR 63 Subpart JJJJJJ - Industrial, Commercial, and Institutional Boilers

This MACT standard applies to industrial, commercial, and institutional boilers of various sizes and fuel types at area sources. The proposed line heaters will be natural gas-fired and are specifically exempt from this subpart. Therefore, no sources at the wellpad are subject to any requirements under 40 CFR 63 Subpart JJJJJJ.

3.5. WEST VIRGINIA SIP REGULATIONS

The wellpad is potentially subject to regulations contained in the West Virginia Code of State Regulations, Chapter 45 (Code of State Regulations). The Code of State Regulations fall under two main categories, those regulations that are generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., PM standards for manufacturing equipment).

3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

45 CSR 2 applies to fuel burning units, defined as equipment burning fuel "for the primary purpose of producing heat or power by indirect heat transfer". The TEGs and line heaters are fuel burning units and therefore must comply with this regulation. Per 45 CSR 2-3, opacity of emissions from units shall not exceed 10 percent.

3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

According to 45 CSR 4-3:

No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.

The wellpad is generally subject to this requirement. However, due to the nature of the process at the wellpad, production of objectionable odor from the wellpad during normal operation is unlikely.

3.5.3. 45 CSR 6: Control of Air Pollution from the Combustion of Refuse

45 CSR 6 applies to activities involving incineration of refuse, defined as "the destruction of combustible refuse by burning in a furnace designed for that purpose. For the purposes of this rule, the destruction of any combustible liquid or gaseous material by burning in a flare or flare stack, thermal oxidizer or thermal catalytic oxidizer stack shall be considered incineration." The enclosed combustors are incinerators and therefore must comply with this regulation. Per 45 CSR 6-4.3, opacity of emissions from this unit shall not exceed 20 percent, except as provided by 4.4. PM emissions from this unit will not exceed the levels calculated in accordance with 6-4.1.

3.5.4. 45 CSR 16: Standards of Performance for New Stationary Sources

45 CSR 16-1 incorporates the federal Clean Air Act (CAA) standards of performance for new stationary sources set forth in 40 CPR Part 60 by reference. As such, by complying with all applicable requirements of 40 CFR Part 60 at the wellpad, EQT will be complying with 45 CSR 16.

3.5.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage and Other Sources of Fugitive Particulate Matter

According to 45 CSR 17-3.1:

No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

Due to the nature of the activities at the wellpad, it is unlikely that fugitive particulate matter emissions will be emitted under normal operating conditions. However, EQT will take measures to ensure any fugitive particulate matter emissions will not cross the property boundary should any such emissions occur.

3.5.6. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks

45 CSR 21-28 applies to any fixed roof petroleum liquid storage tank with a capacity greater than 40,000 gallons. The capacity of each storage tank proposed for the wellpad is less than 40,000 gallons; therefore, 45 CSR 21-28 will not apply to the petroleum liquid storage tanks at this wellpad.

3.5.7. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants

45 CSR 34-1 incorporates the federal Clean Air Act (CAA) national emissions standards for hazardous air pollutants (NESHAPs) as set forth in 40 CPR Parts 61 and 63 by reference. As such, by complying with all applicable requirements of 40 CFR Parts 61 and 63 at the wellpad, EQT will be complying with 45 CSR 34. Note that there are no applicable requirements under 40 CFR Parts 61 and 63 for the wellpad.

3.5.8. Non-Applicability of Other SIP Rules

A thorough examination of the West Virginia SIP rules with respect to applicability at the wellpad reveals many SIP regulations that do not apply or impose additional requirements on operations. Such SIP rules include those specific to a particular type of industrial operation that is categorically not applicable to the wellpad.

4. G70-C APPLICATION FORMS

The WVDEP permit application forms contained in this application include all applicable G70-C application forms including the required attachments.

West Virginia Department of Environmental Protection

Division of Air Quality 601 57th Street SE Charleston, WV 25304 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G70-B GENERAL PERMIT REGISTRATION APPLICATION

PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF NATURAL GAS PRODUCTION FACILITIES LOCATED AT THE WELL SITE

⊠CONSTRUCTION □MODIFICATION □RELOCATION		□CLASS I ADMINISTRATIV □CLASS II ADMINISTRATI	
SE	CTION 1. GENER	AL INFORMATION	
Name of Applicant (as registered with the V	WV Secretary of St	ate's Office): EQT Production	Company
Federal Employer ID No. (FEIN): 25-0724	685		A STATE OF THE STA
Applicant's Mailing Address: 625 Liberty	Avenue, Suite 17	00	
City: Pittsburgh	State: PA		ZIP Code: 15222
Facility Name: PEN-54 Wellpad			
Operating Site Physical Address: If none available, list road, city or town and	d zip of facility. Pe	nnsboro, Ritchie County	
City: Pennsboro	Zip Code: 26415		County: Ritchie
Latitude & Longitude Coordinates (NAD83 Latitude: 39.257421 N Longitude: -80.927339 W	, Decimal Degrees	to 5 digits):	
SIC Code: 1311 NAICS Code: 211111	1111	DAQ Facility ID No. (For exis	ting facilities)
C	ERTIFICATION C	F INFORMATION	
This G70-B General Permit Registration Official is a President, Vice President, Sec Directors, or Owner, depending on business authority to bind the Corporation, Pa Proprietorship. Required records of dai compliance certifications and all requirespectative. If a business wishes to cert off and the appropriate names and sign unsigned G70-B Registration Application utilized, the application will be	retary, Treasurer, (s structure. A busin urtnership, Limited ly throughput, houn red notifications m ify an Authorized I atures entered. Any will be returned	General Partner, General Manag less may certify an Authorized I Liability Company, Association rs of operation and maintenance ust be signed by a Responsible Representative, the official agre y administratively incomplete to the applicant. Furthermore	er, a member of the Board of Representative who shall have a, Joint Venture or Sole, general correspondence, Official or an Authorized ement below shall be checked or improperly signed or c, if the G70-B forms are not
I hereby certify that Kenneth Kirk of the business (e.g., Corporation, Partnersl Proprietorship) and may obligate and legall Responsible Official shall notify the Direct I hereby certify that all information contain documents appended hereto is, to the best o have been made to provide the most corporate	hip, Limited Liabili y bind the business or of the Division of the in this G70-B G of my knowledge, tr	the business changes its Au of Air Quality immediately. Thereneral Permit Registration Appine, accurate and complete, and	Venture or Sole thorized Representative, a lication and any supporting
Responsible Official Signature: Name and Title: Kenneth Kirk, Executive V Email: KKirk@eqt.com	ice President Date:	7 412.55 7 5 6	53. <u>570</u> 0 Fax:
If applicable: Authorized Representative Signature: Name and Title: Email:	Date:	Phone:	Fax:
If applicable: Environmental Contact Name and Title: Alex Bosiljevac, Environm Email: ABosiljevac@eqt.com	ental Coordinator Date:	Phone: 412-395-3699	Fax: 412-395-7027

OPERATING SITE INFORMATION Briefly describe the proposed new operation and/or any change(s) to the facility: General permit application for a new natural gas production well pad. Directions to the facility: From Pennsboro, WV take WV-74 S/Pullman Drive. Continue on WV-74S for 1.8 miles. Turn left onto Lynn Camp Rd and continue for 1.4 miles. Turn slight left onto Co Rd 10. And continue for 1.8 miles. Access road will be on the left. ATTACHMENTS AND SUPPORTING DOCUMENTS I have enclosed the following required documents: Check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22). ☐ Check attached to front of application. ☐ I wish to pay by electronic transfer. Contact for payment (incl. name and email address): 🗵 I wish to pay by credit card. Contact for payment (incl. name and email address): R. Alex Bosiljevac, abosiljevac@eqt.com ⊠\$500 (Construction, Modification, and Relocation) □\$300 (Class II Administrative Update) ⊠\$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or OOOO ¹ □\$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH ² ¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ. NSPS and NESHAP fees apply to new construction or if the source is being modified. Responsible Official or Authorized Representative Signature (if applicable) ⊠ Single Source Determination Form (must be completed in its entirety) – Attachment A ☐ Siting Criteria Waiver (if applicable) - Attachment B □ Current Business Certificate – Attachment C □ Process Flow Diagram – Attachment D □ Process Description – Attachment E □ Plot Plan – Attachment F ⊠ Emission Units/ERD Table - Attachment I ⊠ G70-C Section Applicability Form – Attachment H □ Fugitive Emissions Summary Sheet – Attachment J ☐ Gas Well Affected Facility Data Sheet (if applicable) – Attachment K Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) - Attachment L ⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) - Attachment ⊠ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment ☐ Tanker Truck Loading Data Sheet (if applicable) – Attachment O ☐ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc™ input and output reports and information on reboiler if applicable) - Attachment P ☐ Pneumatic Controllers Data Sheet – Attachment Q ⊠ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) - Attachment R ⊠ Emission Calculations (please be specific and include all calculation methodologies used) - Attachment S □ Facility-wide Emission Summary Sheet(s) – Attachment T □ Class I Legal Advertisement – Attachment U ☑ One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments

All attachments must be identified by name, divided into sections, and submitted in order.

ATTACHMENT A

Single Source Determination

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).
Is there a facility owned by or associated with the natural gas industry located within one (1) mile of the proposed facility? Yes \boxtimes No \square
If Yes, please complete the questionnaire on the following page (Attachment A).
Please provide a source aggregation analysis for the proposed facility below:
Please see discussion in the Application Report.

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Answer each question with a detailed explanation to determine contiguous or adjacent properties which are under a common control and any support facilities. This section must be completed in its entirety.

Provide a map of contiguous or adjacent facilities (production facilities, compressor stations, dehydration facilities, etc.) which are under common control and those facilities that are not under common control but are support facilities. Please indicate the SIC code, permit number (if applicable), and the distance between facilities in question on the map.

Are the facilities owned by the same parent company or a subsidiary of the parent company? Provide the owners identity and the percentage of ownership of each facility. PEN16 is owned by EQT Production Company	Yes ⊠	No 🗆
Does an entity such as a corporation have decision making authority over the operation of a second entity through a contractual agreement or voting interest? Please explain.	Yes □ N/A	No 🗆
Is there a contract for service relationship between the two (2) companies or, a support/dependency relationship that exists between the two (2) companies? Please explain.	Yes □ N/A	No □
Do the facilities share common workforces, plant managers, security forces, corporate executive officers or board executives?	Yes ⊠	No □
Will managers or other workers frequently shuttle back and forth to be involved actively at both facilities?	Yes ⊠	No □
Do the facilities share common payroll activities, employee benefits, health plans, retirement funds, insurance coverage, or other administrative functions? Please explain.	Yes ⊠	No □
Does one (1) facility operation support the operation of the other facility?	Yes 🗆	No ⊠
Is one (1) facility dependent on the other? If one (1) facility shuts down, what are the limitations on the other to pursue outside business? Please explain.	Yes 🗆	No ⊠
Are there any financial arrangements between the two (2) entities?	Yes □ N/A	No □
Are there any legal or lease agreements between the two (2) facilities?	Yes □	No ⊠
Do the facilities share products, byproducts, equipment, or other manufacturing or air pollution control device equipment? Please explain.	Yes 🗆	No ⊠
Do all the pollutant-emitting activities at the facilities belong to the same SIC Code? Please provide the SIC Codes.	Yes ⊠	No 🗆
Was the location of the new facility chosen primarily because of its proximity to the existing facility to integrate the operation of the two (2) facilities? Please explain.	Yes 🗆	No ⊠
Will materials be routinely transferred between the two (2) facilities? Please explain the amount of transfer and how often the transfers take place and what percentages go to the various entities.	Yes 🗆	No ⊠
Does the facility influence production levels or compliance with environmental regulations at other facilities? Who accepts the responsibility for compliance with air quality requirements? Please explain.	Yes 🗆	No ⊠

ATTACHMENT A: SINGLE SOURCE DETERMINATION MAP

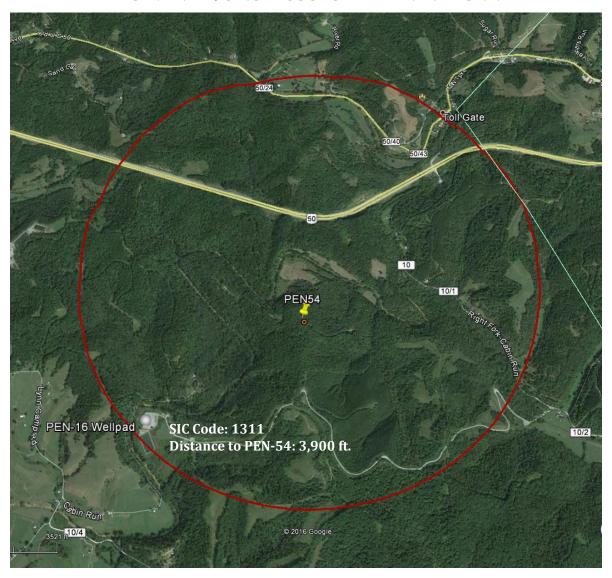


Figure 1 - Map of PEN-54 Location with 1 Mile Radius Circle

ATTACHMENT B

Siting Criteria Waiver (Not Applicable)

ATTACHMENT B - SITING CRITERIA WAIVER - NOT APPLICABLE

If applicable, please complete this form and it must be notarized.

G70-C General Permit Siting Criteria Waiver

WV Division of Air Quality 300' Waiver

	I	Print Name	hereby
		Print Name	•
ac	knowledge a	nd agree thatGeneral Permit Applicant's Name	will
	constr	uct an emission unit(s) at a natural gas production facility fill be located within 300' of my dwelling and/or business	
		of siting criteria to the West Virginia Department of Envir uality as permission to construct, install and operate in su	
		Signed:	
	Signature		Date
	Signature		Date
	Take	en, subscribed and sworn before me this day of	
		, 20	
		My commission expires:	-
	SEAL	Notary Public	
		Notary Public	

ATTACHMENT C

Business Certificate

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: EQT PRODUCTION COMPANY 625 LIBERTY AVE 1700 PITTSBURGH, PA 15222-3114

BUSINESS REGISTRATION ACCOUNT NUMBER:

1022-8081

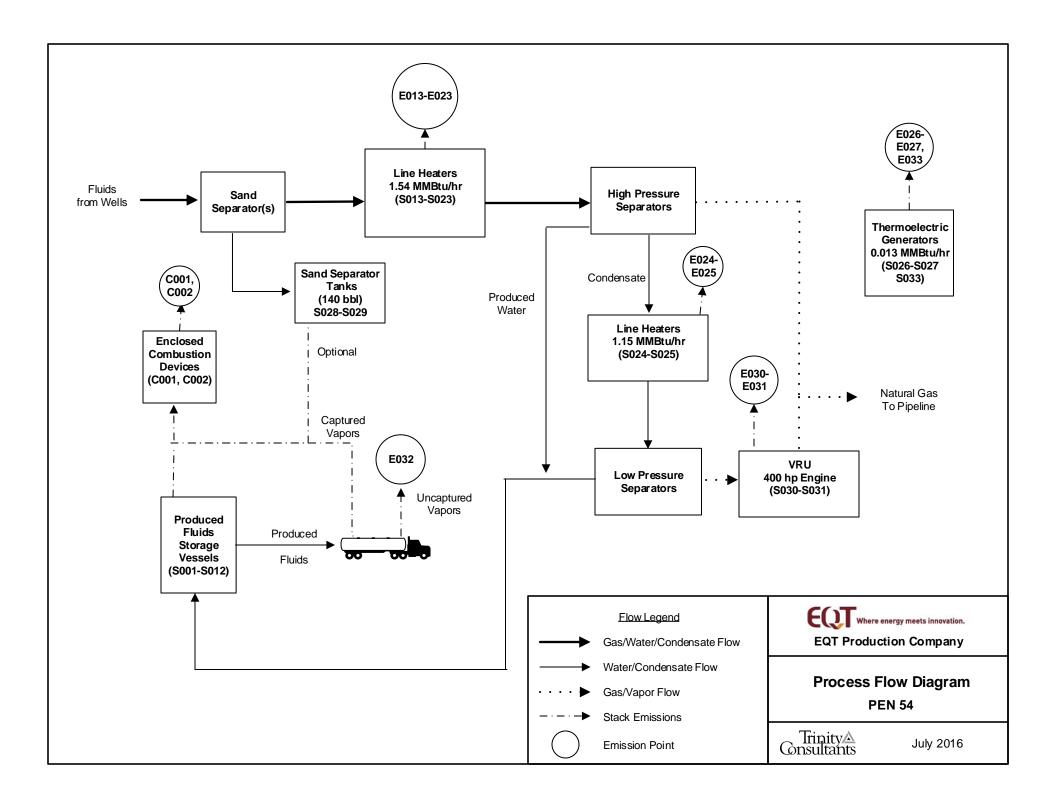
This certificate is issued on:

08/4/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.


Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.3 L0553297664

ATTACHMENT D

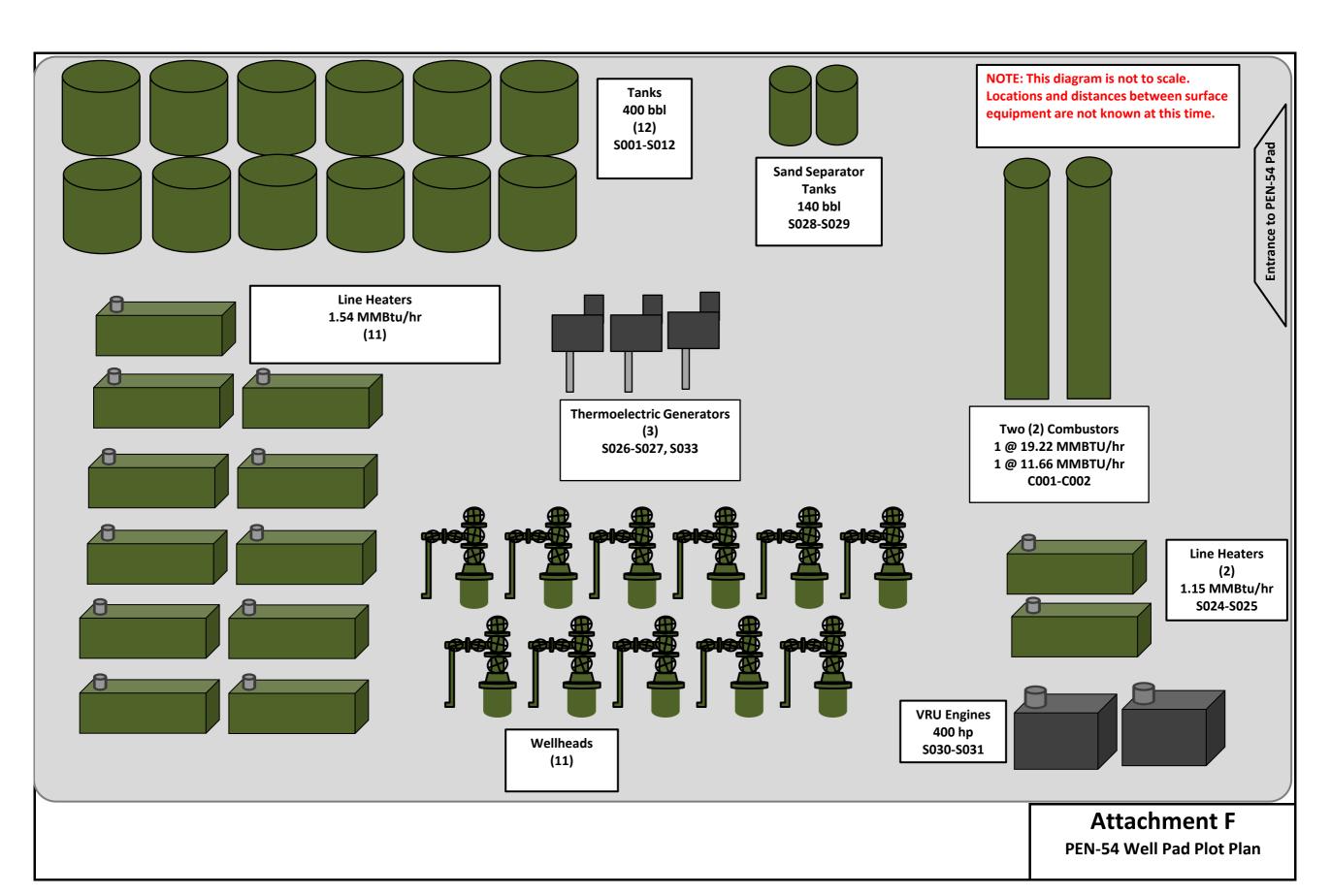
Process Flow Diagram

ATTACHMENT E

Process Description

ATTACHMENT E: PROCESS DESCRIPTION

This G70-C Permit Application involves the construction of a new natural gas production wellpad (PEN-54). The wellpad will consist of eleven (11) wells, each with the same basic operation. The following equipment will be installed at the facility: twelve (12) storage tanks, two (2) low pressure separators with associated heaters and vapor recovery units (VRU), eleven (11) line heaters, three (3) thermoelectric generators (TEGs) and two (2) sand separator tanks.


The incoming gas/liquid stream from the underground wells will pass through a sand separator, where sand, water, and residual solids are displaced and transferred to the sand separator tanks (S028-S029). The gas stream will then pass through the line heaters (S0013-S023) to raise/maintain temperature. The stream will then pass through the high pressure (3 phase) separators, which will separate gas (natural gas from the separator is sent to the sales line) from liquids (condensate and produced water). The produced water will be sent to the produced fluids tanks (S001-S006) and the condensate stream will then pass through the low pressure separators, where it is heated (S024-S025) to volatilize (flash off) lighter hydrocarbons and separate condensate in the liquid stream. The flash gas from the condensate stream is recovered by the Vapor Recovery Units (S030-S031), which utilizes a natural gas-fired engine driven compressor to raise the pressure of the flash gas and route it back into the natural gas pipeline. The condensate is then transferred to the produced fluid storage vessels (S006-S012).

Emissions from the storage vessels are controlled by two enclosed combustors (C001, C002). Once the tanks are filled, the contents are loaded into trucks for transport. EQT utilizes vapor balancing in the truck loading operations, which means the vapors displaced by the filling of tanker trucks (S032) are routed back into the battery of tanks and ultimately to the combustors. Facility electricity is provided by thermoelectric generators (S026-S027, S033).

A process flow diagram is included as Attachment D.

ATTACHMENT F

Plot Plan

ATTACHMENT G

Area Map

ATTACHMENT G: AREA MAP

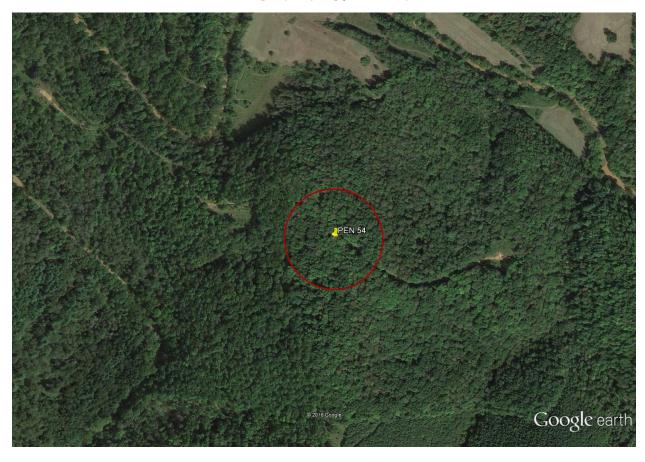


Figure 1 - Map of PEN-54 Location

UTM Northing (KM): 4,345.346 UTM Easting (KM): 506.269 Elevation: ~1,016 ft

ATTACHMENT H

Applicability Form

ATTACHMENT H - G70-C SECTION APPLICABILITY FORM

General Permit G70-C Registration Section Applicability Form

General Permit G70-C was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-C allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PERMIT G70-C APPLICABLE SECTIONS		
⊠ Section 5.0	Gas Well Affected Facility (NSPS, Subpart OOOO)	
⊠ Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹	
☐ Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO)	
⊠ Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO and/or NESHAP Subpart HH	
⊠ Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc	
☐ Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)	
☐ Section 11.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO) ²	
☐ Section 12.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO) ²	
⊠ Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines, Microturbines	
⊠ Section 14.0	Tanker Truck Loading ³	
☐ Section 15.0	Glycol Dehydration Units ⁴	

- 1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 8.
- 2 Applicants that are subject to Section 11 and 12 may also be subject to the applicable RICE requirements of Section 13.
- 3 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.
- 4 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

ATTACHMENT I

Emission Units Table

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
S001	C001-C002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	C001-C002	
S002	C001-C002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	C001-C002	
S003	C001-C002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	C001-C002	
S004	C001-C002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	C001-C002	
S005	C001-C002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	C001-C002	
S006	C001-C002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	C001-C002	
S007	C001-C002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	C001-C002	
S008	C001-C002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	C001-C002	
S009	C001-C002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	C001-C002	
S010	C001-C002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	C001-C002	
S011	C001-C002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	C001-C002	
S012	C001-C002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	C001-C002	
S013	E013	Line Heater	TBD	TBD	1.54 MMBtu/hr	New	None	
S014	E014	Line Heater	TBD	TBD	1.54 MMBtu/hr	New	None	
S015	E015	Line Heater	TBD	TBD	1.54 MMBtu/hr	New	None	
S016	E016	Line Heater	TBD	TBD	1.54 MMBtu/hr	New	None	
S017	E017	Line Heater	TBD	TBD	1.54 MMBtu/hr	New	None	
S018	E018	Line Heater	TBD	TBD	1.54 MMBtu/hr	New	None	
S019	E019	Line Heater	TBD	TBD	1.54 MMBtu/hr	New	None	
S020	E020	Line Heater	TBD	TBD	1.54 MMBtu/hr	New	None	
S021	E021	Line Heater	TBD	TBD	1.54 MMBtu/hr	New	None	
S022	E024	Line Heater	TBD	TBD	1.54 MMBtu/hr	New	None	
S023	E023	Line Heater	TBD	TBD	1.54 MMBtu/hr	New	None	
S024	E024	Line Heater	TBD	TBD	1.15 MMBtu/hr	New	None	
S025	E025	Line Heater	TBD	TBD	1.15 MMBtu/hr	New	None	
S026	E026	Thermoelectric Generator	TBD	TBD	0.013 MMBtu/hr	New	None	
S027	E027	Thermoelectric Generator	TBD	TBD	0.013 MMBtu/hr	New	None	
					 			

S028	E028	Sand Separator Storage Tank	TBD	TBD	140 bbl	New	C001-C002 (Optional)	
S029	E029	Sand Separator Storage Tank	TBD	TBD	140 bbl	New	C001-C002 (Optional)	
S032	E032 (Uncaptured) C001-C002 (Controlled, Captured)	Liquid Loading	TBD	TBD	16,648,380 gal/yr	New	C001-C002	
S030	E030	VRU Engine	TBD	TBD	400 hp	New	None	
S031	E031	VRU Engine	TBD	TBD	400 hp	New	None	
C001	C001	Tank Combustor	TBD	TBD	19.22 MMBtu/hr	New	NA	
C002	C002	Tank Combustor	TBD	TBD	11.66 MMBtu/hr	New	NA	

For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.
 For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.
 When required by rule
 New, modification, removal, existing
 For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.
 For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

ATTACHMENT J

Fugitive Emissions Summary Sheet

ATTACHMENT J – FUGITIVE EMISSIONS SUMMARY SHEET Sources of fugitive emissions may include loading operations, equipment leaks, blowdown emissions, etc. Use extra pages for each associated source or equipment if necessary. Source/Equipment: Fugitive Emissions Leak Detection ☐ Audible, visual, and ☑ Other (please describe) Will satisfy condition ☐ Infrared (FLIR) cameras ☐ None required Method Used olfactory (AVO) inspections 4.1.4. of the G70-C Closed Stream type Estimated Emissions (tpv) Component Source of Leak Factors Vent Count (gas, liquid, Type (EPA, other (specify)) VOC HAP GHG (CO₂e) System etc.) ☐ Gas U.S. EPA. Office of Air Quality Planning and Standards. ☐ Yes Pumps 21 Protocol for Equipment Leak Emission Estimates. Table 2-1. □ Liquid 4.04 0.26 0.78 ⊠ No (EPA-453/R-95-017, 1995). □ Both ⊠ Gas U.S. EPA. Office of Air Quality Planning and Standards. □ Yes Valves 659 Protocol for Equipment Leak Emission Estimates, Table 2-1. ☐ Liquid 0.41 66.42 6.34 ⊠ No □ Both (EPA-453/R-95-017, 1995). ⊠ Gas U.S. EPA. Office of Air Quality Planning and Standards. Safety Relief ☐ Yes Protocol for Equipment Leak Emission Estimates. Table 2-1. 48 ☐ Liquid 7.97 0.51 7.10 ⊠ No Valves (EPA-453/R-95-017, 1995). □ Both ☐ Gas U.S. EPA. Office of Air Quality Planning and Standards. Open Ended ☐ Yes 48 Protocol for Equipment Leak Emission Estimates, Table 2-1. ☐ Liquid 0.01 10.94 0.13 Lines ⊠ No (EPA-453/R-95-017, 1995). ⊠ Both ☐ Gas □ Yes Sampling 0 N/A ☐ Liquid ---Connections □ No □ Both ☐ Gas U.S. EPA. Office of Air Quality Planning and Standards. ☐ Yes Connections 2,925 Protocol for Equipment Leak Emission Estimates. Table 2-1. ☐ Liquid 8.63 0.55 32.78 (Not sampling) ⊠ No (EPA-453/R-95-017, 1995). ⊠ Both ⊠ Gas ☐ Yes Compressors 2 (included in other component counts) ☐ Liquid 0.05 0.74 31.15 ⊠ No □ Both ☐ Gas ☐ Yes ☐ Liquid Flanges (included in connections) ------□ No □ Both ⊠ Gas ☐ Yes Other¹ 55 40 CFR 98 Subpart W ☐ Liquid 9.73 0.62 410.91 ⊠ No □ Both ¹ Other equipment types may include compressor seals, relief valves, diaphragms, drains, meters, etc. Please provide an explanation of the sources of fugitive emissions (e.g. pigging operations, equipment blowdowns, pneumatic controllers, etc.): Pneumatic Controller count is 'Other' category. An estimate of Miscellaneous Gas Venting emissions are included in the Emission Calculations and serve to include such sources as compressor venting, pigging, vessel blowdowns and other sources.

Please indicate if there are any closed vent bypasses (include component): N/A

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.) N/A

ATTACHMENT K

Gas Well Data Sheet

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device
047-085-10222	January 2017	January 2017	Green
047-085-10227	January 2017	January 2017	Green
047-085-10226	January 2017	January 2017	Green
047-085-10225	January 2017	January 2017	Green
047-085-10228	January 2017	January 2017	Green
047-085-10229	January 2017	January 2017	Green
047-085-10230	January 2017	January 2017	Green
047-085-10231	January 2017	January 2017	Green
047-085-10232	January 2017	January 2017	Green
TBD	TBD	TBD	TBD
TBD	TBD	TBD	TBD

Note: If future wells are planned and no API number is available please list as PLANNED.

If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

047 = State code. The state code for WV is 047.

001 = County Code. County codes are odd numbers, beginning with 001

(Barbour) and continuing to 109 (Wyoming).

00001= Well number. Each well will have a unique well number.

ATTACHMENT L

Storage Vessel Data Sheet

ATTACHMENT L - STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.

The following information is REQUIRED:

- ☑ Composition of the representative sample used for the simulation
- ⊠ For each stream that contributes to flashing emissions:
 - \boxtimes Temperature and pressure (inlet and outlet from separator(s))
 - ⊠ Simulation-predicted composition
- ☑ Resulting flash emission factor or flashing emissions from simulation
- ⊠ Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

Bulk Storage Area Name	2. Tank Name			
PEN 54 Wellpad Produced Fluid Tanks (water and condensate)				
3. Emission Unit ID number	4. Emission Point ID number			
S001-S012	C001-C002			
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:			
Was the tank manufactured after August 23, 2011?				
⊠ Yes □ No	☐ Other (Low Pressure Tower) ☐ Relocation			
7A. Description of Tank Modification (if applicable) N/A				
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.			
☐ Yes				
7C. Was USEPA Tanks simulation software utilized?				
□ Yes ⊠ No				
If Yes, please provide the appropriate documentation and items	s 8-42 below are not required.			

TANK INFORMATION

	8. Design Capacity (specify 400 bbls	y barrels or gallon	s). Use the	internal	cross-secti	ional area	multiplied	by intern	al height.						
	9A. Tank Internal Diamete	er (ft.) 12			9B. Tank	Internal I	Height (ft	20							
	10A. Maximum Liquid He				10B. Ave										
	11A. Maximum Vapor Spa				11B. Ave				10						
	12. Nominal Capacity (spe	7 10													
	13A. Maximum annual thr							day) See attached							
	emissions calculations for all throughput values emissions calculations for all throughput values														
	14. Number of tank turnov								ee attached emissions						
	emissions calculations for all throughput values calculations for all throughput values														
	16. Tank fill method □ Submerged ☒ Splash □ Bottom Loading														
	17. Is the tank system a var	riable vapor space	system?	Yes	⊠ No										
	If yes, (A) What is the volu		-		gal)?										
	(B) What are the nur		-	-	-										
	18. Type of tank (check all			1 2											
	* *	ertical	ontal 🗆 fl	lat roof	⊠ cone	roof \square	dome roo	f □ oth	ner (describe)						
									. ,						
	☐ External Floating Roof	☐ pontoon	roof 🗆 o	double d	eck roof										
	☐ Domed External (or Co	-													
	☐ Internal Floating Roof		column sup	nort [☐ self-sup	norting									
	☐ Variable Vapor Space	☐ lifter roo			⊒ sen sup	porting									
	□ Pressurized														
		☐ spherica	ıl □ cylin	idricai											
	☐ Other (describe)														
DT	DESCUDE/VACUUM CA	NITDOL DATA													
FF	RESSURE/VACUUM CO		1												
	19. Check as many as appl	y:] Dt	D: (:->									
					☐ Does Not Apply ☐ Rupture Disc (psig)										
	☐ Inert Gas Blanket of ☐ ☐ Carbon Adsorption¹														
	 □ Hert Gas Branket of □ □ □ Carbon Adsorption □ Vent to Vapor Combustion Device¹ (vapor combustors, flares, thermal oxidizers, enclosed combustors) 														
	⊠ Vent to Vapor Combust	tion Device ¹ (vapor	r combustor	rs, flares,	thermal o		enclosed co	ombustors	s)						
	☑ Vent to Vapor Combus☑ Conservation Vent (psi	tion Device ¹ (vapor	r combustor		thermal o		enclosed co	ombustors	s)						
	✓ Vent to Vapor Combust✓ Conservation Vent (psign 0.5 oz Vacuum Setting	tion Device ¹ (vapor g) 12.5 oz Pressur	r combustor	rs, flares,	thermal o		enclosed co	ombustors	;)						
	 ✓ Vent to Vapor Combust ✓ Conservation Vent (psigns) 0.5 oz Vacuum Setting ✓ Emergency Relief Valve 	tion Device ¹ (vapor g) 12.5 oz Pressur	r combustor	rs, flares,	thermal o		enclosed c	ombustors	s)						
	 ✓ Vent to Vapor Combust ✓ Conservation Vent (psignos) 0.5 oz Vacuum Setting ✓ Emergency Relief Valv Vacuum Setting 	tion Device ¹ (vapor g) 12.5 oz Pressur e (psig) 14.4 oz Pressure	r combustor E Setting Setting	rs, flares, Conde	thermal o		enclosed co	ombustors	s)						
	 ✓ Vent to Vapor Combust ✓ Conservation Vent (psing) 0.5 oz Vacuum Setting ✓ Emergency Relief Valvacuum Setting ✓ Vacuum Setting ☐ Thief Hatch Weighted 	tion Device ¹ (vapor g) 12.5 oz Pressur e (psig) 14.4 oz Pressure □ Yes ⊠ No – Ca	r combustor e Setting e Setting ashco Lockd	s, flares, Conde	thermal o		enclosed co	ombustors	;)						
	 ✓ Vent to Vapor Combust ✓ Conservation Vent (psignos) 0.5 oz Vacuum Setting ✓ Emergency Relief Valv Vacuum Setting 	tion Device ¹ (vapor g) 12.5 oz Pressur e (psig) 14.4 oz Pressure □ Yes ⊠ No – Ca	r combustor e Setting e Setting ashco Lockd	s, flares, Conde	thermal o		enclosed c	ombustors	;)						
	 ✓ Vent to Vapor Combust ✓ Conservation Vent (psignost) 0.5 oz Vacuum Setting ✓ Emergency Relief Valvoucuum Setting ☐ Thief Hatch Weighted ¹ Complete appropriate Air 	tion Device ¹ (vapor g) 12.5 oz Pressur e (psig) 14.4 oz Pressure Yes No – Ca Pollution Control	r combustor e Setting e Setting ashco Lockd Device Shee	rs, flares, Conde Conde down Ha	thermal o	xidizers, ε			s)						
	 ✓ Vent to Vapor Combust ✓ Conservation Vent (psignostic) 0.5 oz Vacuum Setting ✓ Emergency Relief Valvacuum Setting ☐ Thief Hatch Weighted ¹ Complete appropriate Air 20. Expected Emission Rate 	tion Device ¹ (vapor g) 12.5 oz Pressur e (psig) 14.4 oz Pressur Yes No – Ca Pollution Control	e Setting e Setting ashco Lockd Device Shea	rs, flares, Conde lown Ha et ations he	thermal o	xidizers, e	ne applicat								
	 ✓ Vent to Vapor Combust ✓ Conservation Vent (psignost) 0.5 oz Vacuum Setting ✓ Emergency Relief Valvoucuum Setting ☐ Thief Hatch Weighted ¹ Complete appropriate Air 	tion Device ¹ (vapor g) 12.5 oz Pressur e (psig) 14.4 oz Pressure Yes No – Ca Pollution Control	r combustor e Setting e Setting ashco Lockd Device Shee	rs, flares, Conde lown Ha et ations he	thermal o	xidizers, e	ne applicat Total	ion).	Estimation Method ¹						
	 ✓ Vent to Vapor Combust ✓ Conservation Vent (psignostic) 0.5 oz Vacuum Setting ✓ Emergency Relief Valvacuum Setting ☐ Thief Hatch Weighted ¹ Complete appropriate Air 20. Expected Emission Rate 	tion Device¹ (vapor g) 12.5 oz Pressur e (psig) 14.4 oz Pressure Yes ⊠ No – Ca Pollution Control te (submit Test Dat	e Setting e Setting ashco Lockd Device Shed ta or Calcula Breathing	cs, flares, Conde lown Ha et ations he g Loss	thermal o	where in the	ne applicat Total Emissio	ion). ns Loss							
	 ✓ Vent to Vapor Combust ✓ Conservation Vent (psignostic) 0.5 oz Vacuum Setting ✓ Emergency Relief Valvacuum Setting ☐ Thief Hatch Weighted ¹ Complete appropriate Air 20. Expected Emission Rate 	tion Device ¹ (vapor g) 12.5 oz Pressur e (psig) 14.4 oz Pressur Yes No – Ca Pollution Control	e Setting e Setting ashco Lockd Device Shee ta or Calcula Breathing	rs, flares, Conde lown Ha et ations he	thermal o	xidizers, e	ne applicat Total	ion).							
	 ✓ Vent to Vapor Combust ✓ Conservation Vent (psignostic) 0.5 oz Vacuum Setting ✓ Emergency Relief Valvacuum Setting ☐ Thief Hatch Weighted ¹ Complete appropriate Air 20. Expected Emission Rate 	tion Device¹ (vaporage) 12.5 oz Pressure (psig) 14.4 oz Pressure Yes ⊠ No – Ca Pollution Control te (submit Test Dat Flashing Loss	e Setting e Setting ashco Lockd Device Shed ta or Calcula Breathing	cs, flares, conde	thermal o	where in the g Loss	e applicat Total Emissio Ib/hr	ion). ns Loss							
	 ✓ Vent to Vapor Combust ✓ Conservation Vent (psignostic) 0.5 oz Vacuum Setting ✓ Emergency Relief Valvacuum Setting ☐ Thief Hatch Weighted ¹ Complete appropriate Air 20. Expected Emission Rate 	tion Device¹ (vaporage) 12.5 oz Pressure (psig) 14.4 oz Pressure Yes ⊠ No – Ca Pollution Control te (submit Test Dat Flashing Loss	e Setting e Setting ashco Locked Device Sheet ta or Calcula Breathing	cs, flares, conde	thermal o	where in the g Loss	e applicat Total Emissio Ib/hr	ion). ns Loss							
	 ✓ Vent to Vapor Combust ✓ Conservation Vent (psignostic) 0.5 oz Vacuum Setting ✓ Emergency Relief Valvacuum Setting ☐ Thief Hatch Weighted ¹ Complete appropriate Air 20. Expected Emission Rate 	tion Device¹ (vaporage) 12.5 oz Pressure (psig) 14.4 oz Pressure Yes ⊠ No – Ca Pollution Control te (submit Test Dat Flashing Loss	e Setting e Setting ashco Locked Device Sheet ta or Calcula Breathing	cs, flares, conde	thermal o	where in the g Loss	e applicat Total Emissio Ib/hr	ion). ns Loss							
	 ✓ Vent to Vapor Combust ✓ Conservation Vent (psignostic) 0.5 oz Vacuum Setting ✓ Emergency Relief Valvacuum Setting ☐ Thief Hatch Weighted ¹ Complete appropriate Air 20. Expected Emission Rate 	tion Device¹ (vaporage) 12.5 oz Pressure (psig) 14.4 oz Pressure Yes ⊠ No – Ca Pollution Control te (submit Test Dat Flashing Loss	e Setting e Setting ashco Locked Device Sheet ta or Calcula Breathing	cs, flares, conde	thermal o	where in the g Loss	e applicat Total Emissio Ib/hr	ion). ns Loss							
	 ✓ Vent to Vapor Combust ✓ Conservation Vent (psignostic) 0.5 oz Vacuum Setting ✓ Emergency Relief Valvacuum Setting ☐ Thief Hatch Weighted ¹ Complete appropriate Air 20. Expected Emission Rate 	tion Device¹ (vaporage) 12.5 oz Pressure (psig) 14.4 oz Pressure Yes ⊠ No – Ca Pollution Control te (submit Test Dat Flashing Loss	e Setting e Setting ashco Locked Device Sheet ta or Calcula Breathing	cs, flares, conde	thermal o	where in the g Loss	e applicat Total Emissio Ib/hr	ion). ns Loss							
	 ✓ Vent to Vapor Combust ✓ Conservation Vent (psignostic) 0.5 oz Vacuum Setting ✓ Emergency Relief Valvacuum Setting ☐ Thief Hatch Weighted ¹ Complete appropriate Air 20. Expected Emission Rate 	tion Device¹ (vaporage) 12.5 oz Pressure (psig) 14.4 oz Pressure Yes ⊠ No – Ca Pollution Control te (submit Test Dat Flashing Loss	e Setting e Setting ashco Locked Device Sheet ta or Calcula Breathing	cs, flares, conde	thermal o	where in the g Loss	e applicat Total Emissio Ib/hr	ion). ns Loss							
	 ✓ Vent to Vapor Combust ✓ Conservation Vent (psignostic) 0.5 oz Vacuum Setting ✓ Emergency Relief Valvacuum Setting ☐ Thief Hatch Weighted ¹ Complete appropriate Air 20. Expected Emission Rate 	tion Device¹ (vaporage) 12.5 oz Pressure (psig) 14.4 oz Pressure Yes ⊠ No – Ca Pollution Control te (submit Test Dat Flashing Loss	e Setting e Setting ashco Locked Device Sheet ta or Calcula Breathing	cs, flares, conde	thermal o	where in the g Loss	e applicat Total Emissio Ib/hr	ion). ns Loss							

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

TANK CONSTRUCTION AND OPERATION INFORMAT	TION		
21. Tank Shell Construction:			
☐ Riveted ☐ Gunite lined ☐ Epoxy-coated rivets		lded or riveted	
21A. Shell Color: Green 21B. Roof Co	olor: Green	21C. Year	Last Painted: New
22. Shell Condition (if metal and unlined):			
	ot applicable		
22A. Is the tank heated? ☐ Yes ☒ No 22B. If yes, op	perating temperature:	22C. If yes	, how is heat provided to tank?
23. Operating Pressure Range (psig): Must be listed for tanks using VRUs with closed vent	system.		
24. Is the tank a Vertical Fixed Roof Tank ? 24A. If yes, for	or dome roof provide radius (ft): 24B. If yes	, for cone roof, provide slop (ft/ft):
⊠ Yes □ No		0.06	
25. Complete item 25 for Floating Roof Tanks Does no	ot apply 🗵		
25A. Year Internal Floaters Installed:			
25B. Primary Seal Type (check one): Metallic (mechanic	cal) shoe seal	mounted resilie	nt seal
☐ Vapor mounted re	silient seal	(describe):	
25C. Is the Floating Roof equipped with a secondary seal?	Yes \square No		
25D. If yes, how is the secondary seal mounted? (check one)	□ Shoe □ Rim □	Other (describe	e):
	Yes \(\square\) No	`	<u>'</u>
25F. Describe deck fittings:	100		
251. Describe dear mangs.			
26. Complete the following section for Internal Floating Roof	Tanks Does not a	pply	
26A. Deck Type: ☐ Bolted ☐ Welded	26B. For bolted de	ecks, provide deck	construction:
26C. Deck seam. Continuous sheet construction:			
\square 5 ft. wide \square 6 ft. wide \square 7 ft. wide \square 5 x 7.5 f	ft. wide \Box 5 x 12 ft. wide	e 🗆 other (des	scribe)
26D. Deck seam length (ft.): 26E. Area of deck (ft²):	26F. For column s	upported	26G. For column supported
	tanks, # of column		tanks, diameter of column:
27. Closed Vent System with VRU? ☐ Yes ☒ No			
28. Closed Vent System with Enclosed Combustor? ⊠ Yes □	□ No		
SITE INFORMATION - Not Applicable: Tank calculat		oMax software),
29. Provide the city and state on which the data in this section a	re based:		
30. Daily Avg. Ambient Temperature (°F):	31. Annual Avg. N		ature (°F):
32. Annual Avg. Minimum Temperature (°F):	33. Avg. Wind Sp		
34. Annual Avg. Solar Insulation Factor (BTU/ft²-day):	35. Atmospheric F	* .	
LIQUID INFORMATION - Not Applicable: Tank calcu			
36. Avg. daily temperature range of bulk liquid (°F):	m (°F):	36B. Maxii	mum (°F):
37. Avg. operating pressure range of tank 37A. Minimu	m (psig):	37B. Maxii	mum (psig):
(psig):	4 8		4 . 6/
38A. Minimum liquid surface temperature (°F):	38B. Correspondi	ng vapor pressure	(psia):
39A. Avg. liquid surface temperature (°F):	39B. Corresponding		
40A. Maximum liquid surface temperature (°F):	40B. Corresponding		(psia):
41. Provide the following for each liquid or gas to be stored in t	the tank. Add additional page	s if necessary.	
41A. Material name and composition:			
41B. CAS number: 41C. Liquid density (lb/gal):			
41D. Liquid density (tb/gar). 41D. Liquid molecular weight (lb/lb-mole):			
41E. Vapor molecular weight (lb/lb-mole):			
41F. Maximum true vapor pressure (psia):			
41G. Maximum Reid vapor pressure (psia):			
41H. Months Storage per year.			
From: To:			
42. Final maximum gauge pressure and temperature prior to transfer into tank used as			
inputs into flashing emission calculations.			

GENERAL INFORMATION (REQUIRED)							
Bulk Storage Area Name	2. Tank Name						
PEN-54	Sand Separator Tank						
3. Emission Unit ID number	4. Emission Point ID number						
S028-S029	E028-E029						
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:						
Was the tank manufactured after August 23, 2011?							
⊠ Yes □ No	☐ Other (Low Pressure Tower) ☐ Relocation						
7A. Description of Tank Modification (if applicable) N/A							
7B. Will more than one material be stored in this tank? <i>If so, a s</i>	separate form must be completed for each material.						
☐ Yes ⊠ No							
7C. Was USEPA Tanks simulation software utilized?							
☐ Yes							
If Yes, please provide the appropriate documentation and items	8-42 below are not required.						
TANK INFO	ORMATION						
8. Design Capacity (specify barrels or gallons). Use the interna	l cross-sectional area multiplied by internal height.						
140 bbls							
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.) 10						
10A. Maximum Liquid Height (ft.) 10	10B. Average Liquid Height (ft.) 5						
11A. Maximum Vapor Space Height (ft.) 10	11B. Average Vapor Space Height (ft.) 5						
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 140 bbls						
13A. Maximum annual throughput (gal/yr) See attached	13B. Maximum daily throughput (gal/day) See attached						
emissions calculations for all throughput values	emissions calculations for all throughput values						
14. Number of tank turnovers per year See attached	15. Maximum tank fill rate (gal/min) See attached emissions						
emissions calculations for all throughput values	calculations for all throughput values						
16. Tank fill method \square Submerged \boxtimes Splash	☐ Bottom Loading						
17. Is the tank system a variable vapor space system? \square Yes	⊠ No						
If yes, (A) What is the volume expansion capacity of the system							
(B) What are the number of transfers into the system per y	rear?						
18. Type of tank (check all that apply):							
oximes Fixed Roof $oximes$ vertical $oximes$ horizontal $oximes$ flat roof	\square cone roof \square dome roof \square other (describe)						
☐ External Floating Roof ☐ pontoon roof ☐ double	deck roof						
☐ Domed External (or Covered) Floating Roof							
☐ Internal Floating Roof ☐ vertical column support	□ self-supporting						
☐ Variable Vapor Space ☐ lifter roof ☐ diaphragm							
☐ Pressurized ☐ spherical ☐ cylindrical							
	_						
PRESSURE/VACUU	M CONTROL DATA						
19. Check as many as apply:							
	ure Disc (psig)						
	on Adsorption ¹						
☐ Vent to Vapor Combustion Device¹ (vapor combustors, flare	-						
2 0	CHSCI						
Vacuum Setting Pressure Setting							
☐ Emergency Relief Valve (psig)							
-0.03 Vacuum Setting 0.90 Pressure Setting							
☐ Thief Hatch Weighted ☐ Yes ☐ No							

¹ Complete appropriate Air Pollution Control Device Sheet												
20. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).												
Material Name	Flashii	ng Loss	Breathi	ng Loss	Workir	ng Loss	Total		Estimation Method ¹			
							Emissions Loss					
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy				
See attached Emissions Calculation for all values												

TANK CONSTRUCTION AND O	PERATIO	N INFORMATION							
21. Tank Shell Construction:									
☐ Riveted ☐ Gunite lined	☐ Epox	y-coated rivets 🛛 🔾 O	ther (describe) Welded	l					
21A. Shell Color: Gray 21B. Roof Color: Gray 21C. Year Last Painted: New									
22. Shell Condition (if metal and unl	lined):								
22A. Is the tank heated? ☐ Yes ⊠	☑ No	22B. If yes, operating temperature: 22C. If yes, how is heat provided to ta							
23. Operating Pressure Range (psig):	:	1							
Must be listed for tanks using	VRUs wit	th closed vent system	l .						
24. Is the tank a Vertical Fixed Roo	of Tank?	24A. If yes, for dome	roof provide radius (ft):	24B. If ye	s, for cone roof, provide slop (ft/ft):				
☐ Yes ⊠ No									
25. Complete item 25 for Floating R	Roof Tanks	Does not apply							
25A. Year Internal Floaters Installed	l:								
25B. Primary Seal Type (check one).	: Met	allic (mechanical) sho	e seal 🔲 Liquid mo	unted resili	ent seal				
	□ Vap	or mounted resilient s	eal	scribe):					
25C. Is the Floating Roof equipped v	with a seco	ndary seal? Yes	□ No						
25D. If yes, how is the secondary sea	al mounted	? (check one)	e 🗆 Rim 🗆 Otl	her (describ	e):				
25E. Is the floating roof equipped wi	ith a weath	er shield?	□ No						
25F. Describe deck fittings:									
26. Complete the following section f	for Interna	l Floating Roof Tanks	☐ Does not apply						
26A. Deck Type: ☐ Bolted		/elded	26B. For bolted decks.	, provide dec	k construction:				
26C. Deck seam. Continuous sheet	constructio	n:							
\square 5 ft. wide \square 6 ft. wide \square	7 ft. wid	e □ 5 x 7.5 ft. wide	□ 5 x 12 ft. wide □	other (de	scribe)				
26D. Deck seam length (ft.):	26E. Area	of deck (ft ²):	26F. For column supp	orted	26G. For column supported				
			tanks, # of columns:		tanks, diameter of column:				
27. Closed Vent System with VRU?	☐ Yes □	⊠ No							
28. Closed Vent System with Enclos	sed Combus	stor? □ Yes ⊠ No							
SITE INFORMATION - Not App	plicable:	Tank calculations pe	erformed using E&P	Tank softv	vare				
29. Provide the city and state on which	ch the data	in this section are based:							
30. Daily Avg. Ambient Temperature			31. Annual Avg. Maxi		rature (°F):				
32. Annual Avg. Minimum Tempera			33. Avg. Wind Speed						
34. Annual Avg. Solar Insulation Fac			35. Atmospheric Press						
LIQUID INFORMATION - Not A	Applicable	e: Tank calculations	performed using E&	P Tank sof	ftware				

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

36. Avg. daily temperature range of bulk liquid (°F):	36A. Minimum (°F):			36B. Maximur	n (°F):
37. Avg. operating pressure range of tank (psig):	37A. Minimum (psig):		37B. Maximum (psig):		
38A. Minimum liquid surface temperature (°F):		38B. (Corresponding va	apor pressure (psi	(a):
39A. Avg. liquid surface temperature (°F):		39B. (Corresponding va	apor pressure (psi	(a):
40A. Maximum liquid surface temperature (°F)	:	40B. (Corresponding va	apor pressure (psi	(a):
41. Provide the following for each liquid or gas	to be stored in the tank.	Add add	litional pages if r	necessary.	
41A. Material name and composition:					
41B. CAS number:					
41C. Liquid density (lb/gal):					
41D. Liquid molecular weight (lb/lb-mole):					
41E. Vapor molecular weight (lb/lb-mole):					
41F. Maximum true vapor pressure (psia):					
41G. Maximum Reid vapor pressure (psia):					
41H. Months Storage per year.					
From: To:					
42. Final maximum gauge pressure and					
temperature prior to transfer into tank used as					
inputs into flashing emission calculations.					

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID #1	Status ²	Content ³	Volume ⁴
		Not Applicable	
			·

- 1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc.
- 2. Enter storage tank Status using the following:

EXIST

Existing Equipment
Installation of New Equipment NEW

Equipment Removed REM

- Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. 3.
- 4. Enter the maximum design storage tank volume in gallons.

ATTACHMENT M

Heaters Data Sheet

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
S013	E013	Line Heater	TBD	New	1.54	~1,237
S014	E014	Line Heater	TBD	New	1.54	~1,237
S015	E015	Line Heater	TBD	New	1.54	~1,237
S016	E016	Line Heater	TBD	New	1.54	~1,237
S017	E017	Line Heater	TBD	New	1.54	~1,237
S018	E018	Line Heater	TBD	New	1.54	~1,237
S019	E019	Line Heater	TBD	New	1.54	~1,237
S020	E020	Line Heater	TBD	New	1.54	~1,237
S021	E021	Line Heater	TBD	New	1.54	~1,237
S022	E022	Line Heater	TBD	New	1.54	~1,237
S023	E023	Line Heater	TBD	New	1.54	~1,237
S024	E024	Line Heater	TBD	New	1.15	~1,237
S025	E025	Line Heater	TBD	New	1.15	~1,237
S026	E026	Thermoelectric Generator	TBD	New	0.013	~1,237
S027	E027	Thermoelectric Generator	TBD	New	0.013	~1,237
S033	E033	Thermoelectric Generator	TBD	New	0.013	~1,237

- Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

ATTACHMENT N

Engines Data Sheet

ATTACHMENT N - INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

	ise this form	1	20		121	I	
Emission Unit I			30		31		
Engine Manufac			ar/G3408		ar/G3408		
Manufacturers F	Rated bhp/rpm		00		00		
Source Status ²			IS		IS		
Date Installed/ Modified/Remov	ved/Relocated ³	20	16	20)16		
Engine Manufac /Reconstruction		> Janua	ary 2011	> Janua	ary 2011		
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵						□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources	
Engine Type ⁶		45	RB	4S	SRB		
APCD Type ⁷		NS	CR	NS	SCR		
Fuel Type ⁸		PQNG		PQNG			
H ₂ S (gr/100 scf)		0		0			
Operating bhp/r	Operating bhp/rpm		400		00		
BSFC (BTU/bhp	o-hr)	7,539		7,539			
Hourly Fuel The	oughput	2900 ft ³ /hr NA gal/hr		2900 ft ³ /hr NA gal/hr			/hr l/hr
Annual Fuel The (Must use 8,760 emergency gene	hrs/yr unless	25.2 MMft³/yr NA gal/yr		25.5 MMft³/yr NA gal/yr		MMft³/yr gal/yr	
Fuel Usage or H Operation Meter		Yes 🗵	No 🗆	Yes ⊠ No □		Yes 🗆	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) 11	Annual PTE (tons/year)	Hourly PTE (lb/hr) 11	Annual PTE (tons/year)
40 CFR 60 Subpart JJJJJ	NO _x	0.88	3.86	0.88	3.86		
40 CFR 60 Subpart JJJJJ	СО	1.76	7.73	1.76	7.73		
40 CFR 60 Subpart JJJJJ	VOC	0.68	2.97	0.68	2.97		
AP-42	SO_2	<0.01	<0.01	<0.01	<0.01		
AP-42	PM ₁₀	0.06	0.26	0.06	0.26		
AP-42	Formaldehyde	0.06	0.27	0.06	0.27		
AP-42	Total HAPs	0.10	0.43	0.10	0.43		
40 CFR Part 98 Subpart C	GHG (CO ₂ e)	1,716	7,517	1,716	7,517		

Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

² Enter the Source Status using the following codes:

 NS
 Construction of New Source (installation)
 ES
 Existing Source

 MS
 Modification of Existing Source
 RS
 Relocated Source

 REM
 Removal of Source

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

2SLB Two Stroke Lean Burn 4SRB Four Stroke Rich Burn

4SLB Four Stroke Lean Burn

7 Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F Air/Fuel Ratio IR Ignition Retard

 HEIS
 High Energy Ignition System
 SIPC
 Screw-in Precombustion Chambers

 PSC
 Prestratified Charge
 LEC
 Low Emission Combustion

NSCR Rich Burn & Non-Selective Catalytic Reduction OxCat Oxidation Catalyst

SCR Lean Burn & Selective Catalytic Reduction

8 Enter the Fuel Type using the following codes:

PQ Pipeline Quality Natural Gas RG Raw Natural Gas /Production Gas D Diesel

9 Enter the Potential Emissions Data Reference designation using the following codes. Attach all reference data used.

MD Manufacturer's Data AP AP-42

 $\hspace{1cm} GR \hspace{1cm} GRI\text{-}HAPCalc^{TM} \hspace{1cm} OT \hspace{1cm} Other \hspace{1cm} (please \ list)$

- Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.
- 11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# S030-S031, use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included?							
Yes $oxtimes$ No $oxtimes$ See attached certification							
See attached	certification						
\boxtimes NSCR \square SCR	☐ Oxidation Catalyst						
Provide details of process control used for proper mixing/cont fuel injection	rol of reducing agent with gas stream: Sequential multi-part						
Manufacturer: Caterpillar	Model #: G3408						
Design Operating Temperature: 1,600 °F	Design gas volume: scfm						
Service life of catalyst: 5,000 hours	Provide manufacturer data? □Yes ⊠ No						
Volume of gas handled: 444.9 acfm at 1,600 °F	Operating temperature range for NSCR/Ox Cat: From °F to °F						
Reducing agent used, if any:	Ammonia slip (ppm):						
Pressure drop against catalyst bed (delta P): 6 inches of H ₂ O							
Provide description of warning/alarm system that protects uni	t when operation is not meeting design conditions:						
Is temperature and pressure drop of catalyst required to be mo \square Yes \boxtimes No	nitored per 40CFR63 Subpart ZZZZ?						
How often is catalyst recommended or required to be replaced 5,000 hours	(hours of operation)?						
How often is performance test required? ☐ Initial ☐ Annual ☐ Every 8,760 hours of operation ☐ Field Testing Required ☐ No performance test required. If so, why (please list any r NSPS/GACT)	naintenance required and the applicable sections in						

ATTACHMENT O

Truck Loading Data Sheet

ATTACHMENT O - TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#: S03	2	Emission Point ID#: C001-C002, E032			Year Installed/Modified: N/A					
Emission Unit Description: Uncaptured losses from loading of produced fluids into tanker trucks										
			Loading A	Area Data						
Number of Pumps: 1		Numbe	r of Liquids	Loaded: 1		Max number of (1) time: 1	of trucks loading	at one		
Are tanker trucks pressu If Yes, Please describe:	Are tanker trucks pressure tested for leaks at this or any other location? Yes No Not Required If Yes, Please describe:									
Provide description of closed vent system and any bypasses. Trucks utilize vapor recovery lines to route displaced vapors back into battery of tanks.										
Are any of the following truck loadout systems utilized? □ Closed System to tanker truck passing a MACT level annual leak test? □ Closed System to tanker truck passing a NSPS level annual leak test? □ Closed System to tanker truck not passing an annual leak test and has vapor return?										
Pro	Projected Maximum Operating Schedule (for rack or transfer point as a whole)									
Time	Jan – Ma	ır	Apr	- Jun	J	ul – Sept	Oct - De	ec		
Hours/day	Varies		Vai	ries		Varies	Varies	3		
Days/week	7			7		7	7			
	Bul	k Liquid	Data (use e	xtra pages a	s necess:	ary)				
Liquid Name	Pr	oduced F	luids							
Max. Daily Throughput (1000 gal/day)	calo	tached en culations oughput v	for all							
Max. Annual Throughpu (1000 gal/yr)	calc	ttached emissions culations for all oughput values								
Loading Method ¹		SP								
Max. Fill Rate (gal/min))	Varies								
Average Fill Time (min/loading)	,									
Max. Bulk Liquid Temperature (°F)	See	See ProMax results								
True Vapor Pressure ²	results									
Cargo Vessel Condition	3	U								
Control Equipment or Method ⁴	(captui	VB, EC	D ng losses)							

Max. Collection Efficiency (%)		70	
Max. Control Efficiency (%)		98	
Max.VOC Emission	Loading (lb/hr)	See attached emission calculations for breakdown	
Rate	Annual (ton/yr)	See attached emission calculations for breakdown	
Max.HAP Emission	Loading (lb/hr)	See attached emission calculations for breakdown	
Rate	Annual (ton/yr)	See attached emission calculations for breakdown	
Estimation Method ⁵		AP-42 Section 5.2 Methodology (via ProMax)	

1	BF	Bottom Fill	SP	Splash Fi	i11		SUB	Submerged Fill
2	At maxi	mum bulk liquid temperature						
3	В	Ballasted Vessel	C	Cleaned			U	Uncleaned (dedicated service)
	O	Other (describe)						
4	List as	many as apply (complete and	l submit ar	propriate .	Air Pollut	ion Cont	trol Device	Sheets)
	CA	Carbon Adsorption	•	VB	Dedicat	ed Vapor	r Balance (d	closed system)
	ECD	Enclosed Combustion Dev	ice	F	Flare	•	`	•
	TO	Thermal Oxidization or In	cineration					
5	EPA	EPA Emission Factor in A	P-42			MB	Materia	l Balance
	TM	Test Measurement based u	pon test d	ata submitt	al	O	Other (de	escribe)
			•				`	,

ATTACHMENT P

Glycol Dehydrator Data Sheet (Not Applicable)

ATTACHMENT P – GLYCOL DEHYDRATION UNIT DATA SHEET – NOT APPLICABLE

Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI-GLYCalcTM input and aggregate report. Use extra pages if necessary.

Manufacturer:			Model:					
Max. Dry Gas Flow	Dry Gas Flow Rate: Reboiler Design Heat Input							
Design Type: □ TE	EG □ DEG	□ EG	Source Status ¹ :					
Date Installed/Modi	ified/Removed ² :		Regenerator Still V	ent APCD/ERD ³ :				
Control Device/ERI	D ID# ³ :		Fuel HV (BTU/scf)):				
H ₂ S Content (gr/100	0 scf):		Operation (hours/y	ear):				
Pump Rate (gpm):								
Water Content (wt	%) in: Wet Gas: Dry	y Gas:						
Is the glycol dehydi	ration unit exempt fro	om 40CFR63 Section	764(d)? □ Yes	☐ No: If Yes, answ	wer the following:			
meters per day, as d	letermined by the pro emissions of benzeno	atural gas to the glyco ocedures specified in § e from the glycol dehy determined by the prod	\$63.772(b)(1) of this variation unit process	subpart. \square Yes	□ No ere are less than 0.90			
Is the glycol dehydi	ration unit located wi	ithin an Urbanized Arc	ea (UA) or Urban Cl	uster (UC)? Yes	□ No			
Is a lean glycol pun	np optimization plan	being utilized? □ Ye	s 🗆 No					
Recycling the glyco	l dehydration unit ba	ack to the flame zone	of the reboiler.					
Recycling the glyco	ol dehydration unit ba	ack to the flame zone	of the reboiler and m	nixed with fuel.				
Still vent emissi Still vent emissi Still vent emissi	ons to the atmospher ons stopped with val ons to glow plug.			or				
Flash Tank	ne following equipment ent system that cont	ent is present. inuously burns conder	nser or flash tank vap	oors				
		Control Device	Technical Data					
	Pollutants Controlled	i	Manufacturer'	s Guaranteed Contro	l Efficiency (%)			
		Emissio	ns Data					
Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology ⁵	Controlled Maximum Hourly Emissions (lb/hr) Controlled Maximum Annual Emissions (tpy					

1	Enter the	Source Status	using the	following	codes:

NS Construction of New Source ES Existing Source

MS Modification of Existing Source

- 2 Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.
- 3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number:

NA None CD Condenser FL Flare

CC Condenser/Combustion Combination TO Thermal Oxidizer O Other (please list)

- Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc.
- 5 Enter the Potential Emissions Data Reference designation using the following codes:

Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

ATTACHMENT Q

Pneumatic Controller Data Sheet (Not Applicable)

ATTACHMENT Q – PNEUMATIC CONTROLLERS DATA SHEET							
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011?							
☐ Yes ⊠ No							
Please list approximate number.							
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011? Yes No							
Please list approximate number.							

ATTACHMENT R

Air Pollution Control Device Data Sheet

ATTACHMENT R – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.						
Emission Unit ID: Not Applicable	Make/Model:					
Primary Control Device ID:	Make/Model:					
Control Efficiency (%):	APCD/ERD Data Sheet Completed: ☐ Yes ☐ No					
Secondary Control Device ID:	Make/Model:					
Control Efficiency (%):	APCD/ERD Data Sheet Completed: ☐ Yes ☐ No					

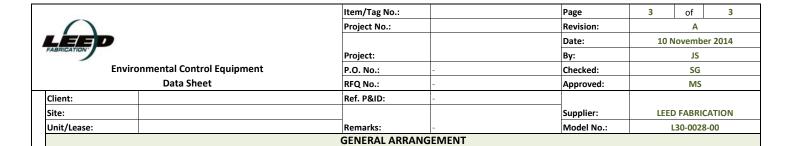
VAPOR COMBUSTION (Including Enclosed Combustors)								
General Information								
Control Device ID#:	C001			Installation Date: New	C001 Iodified	☐ Relocated		
Maximum Rated Tot ~12,812.5 scfh	al Flow Capac 307,500 s			Maximum Design Heat Input (from mfg. spec sheet) 19.22 MMBTU/hr Design Heat Content 1,500 BTU/scf				
			Control Device	e Information				
☑ Enclosed Combu☐ Thermal Oxidizer			Type of Vapor Cor ☐ Elevate			Ground Flare		
Manufacturer: LEED Model: Enclosed Co				Hours of operation 1	per year? 8	,760		
List the emission uni	ts whose emi	ssions	are controlled by this	vapor control device	(Emission	Point ID# S001-S012, S032)		
Emission Unit ID#	Emission So	urce I	Description	Emission Unit ID#	Emissio	on Source Description		
S001-S012	Produced Fluid Tanks							
S032	Liquid Loading							
If this vapor co	mbustor contr	ols en	nissions from more tha	ın six (6) emission un	its, please	attach additional pages.		
Assist Type (Flares	only)		Flare Height	Tip Diameter		Was the design per §60.18?		
Steam Pressure	☐ Air ☑ Non		~25 feet	5 feet		\square Yes \square No \boxtimes N/A Provide determination.		
			Waste Gas I	nformation				
Maximum Waste G (scf		130	Heat Value of W Varies I	1		ocity of the Emissions Stream Varies (ft/s)		
P	rovide an atte	ichme	nt with the characteris	stics of the waste gas	stream to	be burned.		
			Pilot Gas In	nformation				
Number of Pilot Lights 1 Fuel Flow Rate to Pilot Flame per Pilot ~50 scfh			Heat Input per Pilot 0.05 MMBTU/hr		Will automatic re-ignition be used? ☐ Yes ⋈ No			
If automatic re-ignit	ion is used, pl	ease d	escribe the method.					
Is pilot flame equipped with a monitor to detect the presence of the flame? ✓ Yes ✓ No ✓ If Yes, what type? ✓ Thermocouple ✓ Infrared ✓ Ultraviolet ✓ Camera ✓ Other:								
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (If unavailable, please indicate). See attached information on unit								
Additional information attached? ⊠ Yes □ No Please attach copies of manufacturer's data sheets, drawings, flame demonstration per §60.18 or §63.11(b) and performance testing.								

VAPOR COMBUSTION (Including Enclosed Combustors)									
General Information									
Control Device ID#:	C002			Installation Date: New N	C002 Iodified	☐ Relocated			
Maximum Rated Tot ~7,771 scfh	al Flow Capa 186,500 scf			Maximum Design Heat Input (from mfg. spec sheet) 11.66 MMBTU/hr Design Heat Content 1,500 BTU/scf					
			Control Devic	e Information					
☑ Enclosed Combu☐ Thermal Oxidizer			Type of Vapor Con			Ground Flare			
Manufacturer: LEED Model: Enclosed Co				Hours of operation	per year? 8	,760			
List the emission un	its whose emi	ssions	are controlled by this	vapor control device	(Emission	Point ID# S001-S012, S032)			
Emission Unit ID#	Emission So	urce D	escription	Emission Unit ID#	Emissi	on Source Description			
S001-S012	Produced Fluid Tanks								
S032	Liquid Loading								
If this vapor co	mbustor cont	rols em	issions from more the	an six (6) emission un	its, please	attach additional pages.			
Assist Type (Flares	only)		Flare Height	Tip Diameter		Was the design per §60.18?			
Steam Pressure	☐ Air ☑ Non		~25 feet	4 feet		\square Yes \square No \boxtimes N/A Provide determination.			
			Waste Gas 1	Information					
Maximum Waste G		130		Vaste Gas Stream Exit Velocity of the Emission Varies (ft/s)		ocity of the Emissions Stream Varies (ft/s)			
F	Provide an att	achmei	nt with the characteri.	stics of the waste gas	stream to	be burned.			
			Pilot Gas I	nformation					
Number of Pilot Lights 1 Fuel Flow Rate to Pilot Flame per Pilot ~50 scfh			Heat Input per Pilot 0.05 MMBTU/hr		Will automatic re-ignition be used? ☐ Yes ⊠ No				
If automatic re-ignit	ion is used, p	lease d	escribe the method.						
Is pilot flame equipped with a monitor to detect the presence of the flame? ✓ Yes ✓ No ✓ If Yes, what type? ✓ Thermocouple ✓ Infrared ✓ Ultraviolet ✓ Camera ✓ Other:									
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (If unavailable, please indicate). See attached information on unit									
Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings, flame demonstration per §60.18 or §63.11(b) and performance testing.									

CONDENSER – Not Applicable								
General Information								
Control Device ID#: Installation Date: New Modified Reloca								
Manufacturer:	Model:	Control Device Name:						
Control Efficiency (%):								
Manufacturer's required temperature range for control efficiency.								
Describe the warning and/or alarm system that protects against operation when unit is not meeting the design requirements:								
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty.								
Additional information attached? Yes No Please attach copies of manufacturer's data sheets.								
Is condenser routed to a secondary APCD or ERD? ☐ Yes ☐ No								

ADSORPTION SYSTEM - Not Applicable						
General Information						
Control Device ID#:	Installation Date: ☐ New ☐ Modified ☐ Relocated					
Manufacturer:	Model: Control Device Name:					
Design Inlet Volume: scfm	Adsorbent charge per adsorber vessel and number of adsorber vessels:					
Length of Mass Transfer Zone supplied by the manufacturer:	Adsorber diameter: ft Adsorber area: ft²					
Adsorbent type and physical properties:	Overall Control Efficiency (%):					
Working Capacity of Adsorbent (%):						
Operating 2	Parameters					
Inlet volume: scfm @ °F						
Adsorption time per adsorption bed (life expectancy):	Breakthrough Capacity (lbs of VOC/100 lbs of adsorbent):					
Temperature range of carbon bed adsorber. °F - °F						
Control Device	Technical Data					
Pollutants Controlled	Manufacturer's Guaranteed Control Efficiency (%)					
Describe the warning and/or alarm system that protects against operation when unit is not meeting the design requirements:						
Has the control device been tested by the manufacturer and certified?						
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty.						
Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings, and performance testing.						

VAPOR RECOVERY UNIT							
General Information							
Emission U	Jnit ID#: S030-S031	Installation Date: TBD ☑ New ☐ Modified ☐ Relocated					
Device Information							
Manufacturer: Caterpillar Model: G3408							
List the emission units whose emissions are controlled by this vapor recovery unit (Emission Point ID# NA)							
Emission Unit ID#	Emission Source Description	Emission Unit ID#	Emission Source Des	cription			
NA	Low Pressure Separator						
NA	Low Pressure Separator						
If this	vapor recovery unit controls emissions from more t	han six (6) e	mission units, please a	ttach additional pages.			
Additional information attached? ⊠ Yes □ No Please attach copies of manufacturer's data sheets, drawings, and performance testing.							
The registrant may claim a capture and control efficiency of 95 % (which accounts for 5% downtime) for the vapor recovery unit.							
The registrant may claim a capture and control efficiency of 98% if the VRU has a backup flare that meet the requirements of Section 8.1.2 of this general permit.							
The registrant may claim a capture and control efficiency of 98% if the VRU has a backup VRU.							


Battery Pack

Item/Tag No.:		Page	1	of	3	
Project No.:		Revision:		Α		
		Date:	10 November 2014			
Project:		Ву:				
P.O. No.:	-	Checked:		SG		

7	Project:		Project:	Ву:		JS					
Enviromental Control Equipment		P.O. No.:	-			Checked:		SG			
Data Sheet		RFQ No.:			Approved:		MS				
Client:				Ref. P&ID:		- A		Apriove		1413	
				Rei. PaiD:		-					
	Site:				Supplie					LEED FABRICATION	
	Unit/Lease:			Remarks:		-		Model N	lo.:	L30-0028-00	
				GEI	NERAL	-					
1	Design Code:					ND	E:		LE	EED Fabrication Standards	
2	Service:					Cus	stomer Specs:			Yes	
3	Description:	Standard Dual	Stage 60 High E	fficiency Combus	stor					✓ No	
				PROCE	ESS DAT	ΓΑ					
	00				Process	Conditions:					
	Gas Composition:			mol %	Variable Value			ie	Units		
4	Methane					Flow Rate	Up to 3	300	Mscfo	d	
5	Ethane					Pressure	Up to		oz/in		
6	Propane					Temperature	97.0		°F		
7						olecular Weight			-		
	I-Butane				1	ess/Waste Stream	m			Limital	
8	n-Butane								Liquid		
9	I-Pentane						ption / Process N				
0	n-Pentane								operating	g rate indicated above.	
1	n-Hexane						at design conditi : Min. 0.12 oz/in				
2	CO2								0 BTI1/64	CF unless specified by customer	
3	N2				Gas II		varue estimateu	** NE 130	5 510/30	aniess specified by customer	
4	Helium										
5	H ₂ O										
6	C7										
7	C8				l						
8	C9				1						
9	C10										
0	C11+				1						
1	C11.	TOTAL			1						
.1	Other Components:	TOTAL		PPMV	Availab	le Utilities:					
2	H2S			FFIVIV		uel / Pilot Gas		Min	20ncia I	Natural Gas /Propane 40-50 SCFH	
									. Supsig i	vaturai das / Propane 40-50 SCFA	
3	Benzene				Instrument Air NA						
4	Toluene					Power	120 V / 60 Hz or Solar Power			i or Solar Power	
5	E-Benzene					Steam		NA			
6	Xylene					Purge Gas					
				DESIG	ON DAT						
7	Ambient Temperatures				+	erformance Req				Under 85 dBA	
8		Low, ⁰F	-	20	Structur	al Design Code:					
9		High, ⁰F	1	20	Wind Do	esign Code:				ASCE	
0	Design Conditions:	Pressure/Temperature									
1	Max. Relative Humidity	,,%		90		Pre	ssure/Speed			100 mph	
2	Elevation (ASL), ft					Cat	tegory				
3	Area Classification:		Class	I Div 2	Seismic	Design Code:					
4	Electrical Design Code:		N	NEC		Loc	ation				
				EQUIPMENT	T SPECIFICATION						
5	Туре:	☐ Elevated ✓ E	inclosed		Equipm	ent Design:					
6		Above Ground					ponent		Ma	terial / Size / Rating / Other	
7			Multiple Stack		Burner		·				
8		Portable / Trailer				Burner Tin / Δ	ssist Gas Burner			Stainless Steel	
9					1		er Body			Carbon Steel	
	Smokeless By:	Steam	ssist Air		Pilot	Duille	bouy			Carbon Steel	
1					FIIOL	Dil-	t Tin			Stainless Staal	
				Pilot Tip Pilot Line(s)			Stainless Steel				
2	Cto als:	Colf Cumpatina			<u> </u>		Line(s)			Carbon Steel	
	Stack:	Self Supporting			Firebox						
44 Flare Burner:			Shell				Carbon Steel				
Pilot:			Piping				Carbon Steel				
	Pilot Air Inspirator:			Nozzles				Carbon Steel			
	Pilot Flame Control: No Yes (Thermocouple)				Flanges				Carbon Steel		
8			1 .		ļ	Insulation			Blanket		
9	Pilot Ignition:	☐ Flamefront Generator ✓	Inspirating Igi	nitor	ļ	Insulat	tion Pins			Stainless Steel	
0		☐ Electronic ✓	Automatic [Manual		Refra	actory			NA	
1		With Pilot Flame Control			Refractory Anchors					NA	
2	2 With Auto Pilot Re-Ignition				Ladders and Platforms				NA		
3					Stack Sample Connections				Per EPA requirements		
Pilot Ignition Backup: Manual Specify: i.e Piezo-Electric				Sight Glass				2			

Other

				Item/Tag No.:			Page		2 of 3
				Project No.:			Revision:		Α
				.,			Date:		10 November 2014
9	FABRICATION"								
				Project:			Ву:		JS
	Environr	nental	Control Equipment	P.O. No.:		-	Checked:		SG
		Dat	ta Sheet	RFQ No.:		-	Approved	1:	MS
	Client						түргэгэ		
	Client:			Ref. P&ID:		=			
	Site:						Supplier:		LEED FABRICATION
	Unit/Lease:			Remarks:		_	Model No	o.:	L30-0028-00
				EQUIPMENT S	SPECIE				
		7 -					-		
	Flame Detection:	In	ermocouple	a ,	Auxiliar	y Equipment			
57		UV	' Scanner			Valves			NA
58	General Configuration:					Blowers			NA
59				F					
				-		Dampers			NA
60						Inlet KO / Liquid Seal			NA
61						Flame / Detonation Arrestor			Yes
62				Ī	Instrum	entation & Controls			
				Ė				Ole e el	The Color Color of the Land Co
63				-		Solenoids / Shut-Off Valves		Спеск	with Sales for available config.
64						Flow Meters		Check	with Sales for available config.
65						Calorimeter	1	· <u> </u>	NA
66				ļ		Pressure Switches/Transmitters		Check	with Sales for available config.
67				ŀ		·	1		
			F	Ļ		Thermocouples			with Sales for available config.
68				L	Т	emperature Switches/Transmitte	rs	Check	with Sales for available config.
69			X ::			BMS	Ţ	Check	with Sales for available config.
70			G	ļ		CEMS			NA
				}			+		
71				Ļ		Other			NA
72			1						
73									
74									
				-			+		
75									
				FABRICATION A	AND IN	SPECTION			
76	Special requirements		Skid Mounted Concrete Pad			Equ	ipment li	nfo	
77			Other			Component			Weight / Dimensions
			other		_	Component			Weight / Dimensions
78					Burner				
79	Inspection	\checkmark	Vendor Standard			Burner Assembly			
80			Other. Specify:		Stack				
81	Material Certification		Vendor Standard			Stack Assembly		6	60 " OD x 30 ' H. 7,000 Lbs
									00 00 x 30 11: 7,000 LDS
82			MTR			Pilot Tip			
83			Certificate of Compliance			Pilot Line(s)			
84			Other (Specify):			Concrete Pad			12'x12' 12". 21,600 Lbs
85	NDE	<u> </u>	Vendor Standard		Auviliar	y Equipment			,
				ť	Auxiliai				
86		Ш	Radiography. Specify:			Blowers			
87			Ultrasonic. Specify:			Inlet KO / Liquid Seal			
88			Liquid Penetrant.			Flame / Detonation Arrestor			
89		一一	Magnetic Particles.			Skid	1		
		+	-		lma*:-				
90		<u> </u>	PMI. Specify:		ınstrum	entation & Controls			
91			Other. Specify:			BMS			
92	Surface Preparation	✓	Vendor Standard			Control Panel	T		
93		$-\Box$	Other. Specify:						
		- -							
94			Vendor Standard						
95		Ļ	Other. Specify:						
96	Finished Color	✓	Vendor Standard				T		
97			Other. Specify:						
98			. ,						
99									
	Additional Notes:								
Ī	1								
i									

Flare Size (in)	# of Orifices (N)	Pressure (oz/in²)	Flow Rate (m³/s)	Flow Rate (mSCFD)	Heat Release (MMBTU/hr)
60	30	1	0.0304	92.72	5.79
60	30	2	0.0430	131.12	8.19
60	30	3	0.0526	160.59	10.04
60	30	4	0.0608	185.43	11.59
60	30	5	0.0679	207.32	12.96
60	30	6	0.0744	227.11	14.19
60	30	7	0.0804	245.30	15.33
60	30	8	0.0859	262.24	16.39
60	30	9	0.0912	278.15	17.38
60	30	10	0.0961	293.19	18.32
60	30	11	0.1008	307.50	19.22

Enclosed (Passive Swirl) Flare Flow Rates

 $Q = \left[C_d \mathbf{A} \cdot \sqrt{\frac{2\left(\frac{P}{16}\right)R}{\rho}} \right] \mathbf{N}$

Convert to mSCFD $(Q \cdot M \cdot 24) / 1000$

3/8" Orifice: Dia =
Area =

0.00635 m 3.16692E-05 m²

6894.757 Conversion from PSI to Pa (R) $127132.8 \text{ m}^3/\text{s to ft}^3/\text{hr (M)}$

Cd = Density =

0.8 kg/m³

 m^3/s Flare Size Pressure (OZ/in²) # of Orifices (N) mSCFD 99% Combustion Efficiency 18 2 1 0.00207892 6.34316015 6.28 8.97058312 18 2 2 0.00294003 8.88 2 3 18 0.00360079 10.98667566 10.88 18 2 4 0.00415783 12.56 12.68632031 2 5 18 0.00464860 14.18373729 14.04 2 6 18 0.00509228 15.53750573 15.38 2 7 18 0.00550029 16.78242429 16.61 18 2 8 17.94116623 0.00588006 17.76 18 2 9 0.00623675 19.02948046 18.84 18 2 10 0.00657411 20.05883365 19.86 18 2 11 0.00689498 21.03788221 20.83 18 2 12 0.00720157 21.97335133 21.75 0.00749564 22.87058918 18 2 13 22.64 2 18 14 23.73393204 23.50 0.00777859 2 18 15 0.00805160 24.56695363 24.32 2 18 16 0.00831566 25.37264061 25.12 2 18 17 0.00857159 26.15351931 25.89 18 2 18 0.00882009 26.91174935 26.64 24 4 1 0.00415783 12.68632031 12.56 2 24 4 0.00588006 17.94116623 17.76 24 4 3 0.00720157 21.97335133 21.75 4 24 4 0.00831566 25.37264061 25.12 24 4 5 0.00929719 28.36747459 28.08 24 6 31.07501146 30.76 4 0.01018456 24 4 7 0.01100059 33.56484858 33.23 8 24 4 0.01176012 35.88233246 35.52 9 24 4 0.01247349 38.05896092 37.68 24 4 10 0.01314822 40.11766729 39.72 24 4 42.07576442 11 0.01378996 41.66 24 4 12 43.94670266 43.51 0.01440315 24 4 45.74117836 13 45.28 0.01499127 24 4 14 0.01555718 47.46786408 46.99 24 4 15 0.01610321 49.13390727 48.64 16 24 4 0.01663132 50.74528122 50.24 4 24 17 0.01714318 52.30703862 51.78 24 4 18 0.01764018 53.82349870 53.29 10 36 1 0.01039458 31.71580076 31.40 2 36 10 0.01470015 44.85291558 44.40 36 10 3 0.01800394 54.93337832 54.38 10 4 62.80 36 0.02078915 63.43160153 36 10 5 70.91868647 70.21 0.02324298 36 6 10 77.68752865 76.91 0.02546141 36 10 7 0.02750147 83.91212145 83.07

36	10	8	0.02940030	89.70583116	88.81
36	10	9	0.03118373	95.14740229	94.20
36	10	10	0.03287054	100.29416823	99.29
36	10	11	0.03447491	105.18941106	104.14
36	10	12	0.03600787	109.86675665	108.77
36	10	13	0.03747818	114.35294589	113.21
36	10	14	0.03889295	118.66966020	117.48
36	10	15	0.04025802	122.83476817	121.61
36	10	16	0.04157831	126.86320305	125.59
36	10	17	0.04285794	130.76759655	129.46
36	10	18	0.04410046	134.55874674	133.21
48	14	1	0.01455241	44.40212107	43.96
48	14	2	0.02058021	62.79408181	62.17
48	14	3	0.02520551	76.90672965	76.14
48	14	4	0.02910482	88.80424214	87.92
48	14	5	0.03254017	99.28616105	98.29
48	14	6	0.03564597	108.76254012	107.67
48	14	7	0.03850205	117.47697003	116.30
48	14	8	0.04116043	125.58816363	124.33
48	14	9	0.04365722	133.20636321	131.87
48	14	10	0.04601875	140.41183552	139.01
48	14	11	0.04826488	147.26517548	145.79
48	14	12	0.05041102	153.81345931	152.28
48	14	13	0.05246945	160.09412425	158.49
48	14	14	0.05445012	166.13752428	164.48
48	14	15	0.05636123	171.96867543	170.25
48	14	16	0.05820963	177.60848427	175.83
48	14	17	0.06000112	183.07463517	181.24
48	14	18	0.06174064	188.38224544	186.50

ATTACHMENT S

Emission Calculations

Facility-Wide Emission Summary - Controlled

Wells	11	per pad
Storage Tanks	12	per pad
Sand Separator Tank	2	per pad
Line Heaters	13	per pad
TEGs	3	per pad
Dehy Reboiler	0	per pad
Glycol Dehy	0	per pad
Dehy Drip Tank	0	per pad
Dehy Combustor	0	per pad
Compressor	2	per pad
High Pressure Separator	11	per pad
Low Pressure Separator	2	per pad
Vapor Recovery Unit	2	per pad
Tank Combustor	2	per pad
Length of lease road	1,523	feet

Carbon equivalent emissions (CO₂e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:

CO2	1
CH_4	25
N ₂ O	298

Emission	Emission	Emission	N	O _x	C	0	V	OC	S	O_2	PI	И ₁₀	PN	M _{2.5}	C	O ₂ e
Point ID #	Source ID#s	Source Description	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001-C002	S001-S012	Storage Vessels					0.36	1.58							3.22	14.09
C001-C002	S032	Captured Liquid Loading					2.33	0.61								
C001	C001	Tank Combustor	1.89	8.28	1.59	6.95	2.8E-04	1.2E-03	0.01	0.05	0.14	0.63	0.14	0.63	2,256.10	9,881.72
C002	C002	Tank Combustor	1.15	5.03	0.96	4.22	2.8E-04	1.2E-03	0.01	0.03	0.09	0.38	0.09	0.38	1,371.10	6,005.43
C001	S001-S012, S032, C001		1.89	8.28	1.59	6.95	1.34	1.09	0.01	0.05	0.14	0.63	0.14	0.63	2,257.71	9,888.76
C002	S001-S012, S032, C002		1.15	5.03	0.96	4.22	1.34	1.09	0.01	0.03	0.09	0.38	0.09	0.38	1,372.71	6,012.48
E013	S013	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E014	S014	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E015	S015	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E016	S016	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E017	S017	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E018	S018	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E019	S019	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E020	S020	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E021	S021	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E022	S022	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E023	S023	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E024	S024	Line Heater	0.11	0.48	0.09	0.40	0.01	0.03	6.6E-04	2.9E-03	0.01	0.04	0.01	0.04	135.14	591.90
E025	S025	Line Heater	0.11	0.48	0.09	0.40	0.01	0.03	6.6E-04	2.9E-03	0.01	0.04	0.01	0.04	135.14	591.90
E026	S026	TEG	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	1.52	6.64
E027	S027	TEG	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	1.52	6.64
E033	S033	TEG	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	1.52	6.64
E028	S028	Sand Separator Tank					0.33	1.46							4.88	21.35
E029	S029	Sand Separator Tank					0.33	1.46							4.88	21.35
E030	S030	VRU Engine	0.88	3.86	1.76	7.73	0.68	2.97	1.8E-03	0.01	0.06	0.26	0.06	0.26	1,716.24	7,517.13
E031	S031	VRU Engine	0.88	3.86	1.76	7.73	0.68	2.97	1.8E-03	0.01	0.06	0.26	0.06	0.26	1,716.24	7,517.13
E032	S032	Uncaptured Liquid Loading					49.91	12.98								
		Fugitives						37.57								560.07
		Haul Roads										1.33		0.13		
Facility Total	-		6.64	29.07	7.62	33.38	54.72	62.04	0.03	0.14	0.49	3.47	0.49	2.27	9,329.47	41,423.16
Facility Total (excluding f	ugitive emissions)		6.64	29.07	7.62	33.38	4.81	11.49	0.03	0.14	0.49	2.13	0.49	2.13	9,329.47	40,863.09

^{1.} Emissions routed to combustors are divided evenly by the total number of combustors (i.e., Combustor Point Emissions = [storage tanks emissions + captured loading emissions] / [number of combustors] + combustor emissions). However, emissions can be routed to either combustor.

Facility-Wide Emission Summary - Controlled

Emission	Emission	Emission	Forma	ldehyde	Ben	zene	Toli	uene	Ethylb	enzene	Xyle	enes	n-He	xane	Tota	l HAP
Point ID #	Source ID#s	Source Description	lb/hr	tpy												
C001-C002	S001-S012	Storage Vessels			3.3E-04	1.4E-03	5.5E-04	2.4E-03	3.3E-05	1.4E-04	3.2E-04	1.4E-03	0.01	0.03	0.01	0.04
C001-C002	S032	Captured Liquid Loading			1.4E-03	3.7E-04	1.7E-03	4.5E-04	1.0E-04	2.7E-05	9.8E-04	2.6E-04	0.04	0.01	0.06	0.01
C001	C001	Tank Combustor														
C002	C002	Tank Combustor														
C001	S001-S012, S032, C001				8.8E-04	9.0E-04	1.1E-03	1.4E-03	6.8E-05	8.5E-05	6.5E-04	8.3E-04	0.02	0.02	0.03	0.03
C002	S001-S012, S032, C002				8.8E-04	9.0E-04	1.1E-03	1.4E-03	6.8E-05	8.5E-05	6.5E-04	8.3E-04	0.02	0.02	0.03	0.03
E013	S013	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E014	S014	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E015	S015	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E016	S016	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E017	S017	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E018	S018	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E019	S019	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E020	S020	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E021	S021	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E022	S022	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E023	S023	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E024	S024	Line Heater	8.2E-05	3.6E-04	2.3E-06	1.0E-05	3.7E-06	1.6E-05					2.0E-03	0.01	2.1E-03	0.01
E025	S025	Line Heater	8.2E-05	3.6E-04	2.3E-06	1.0E-05	3.7E-06	1.6E-05					2.0E-03	0.01	2.1E-03	0.01
E026	S026	TEG	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-04
E027	S027	TEG	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-04
E033	S033	TEG	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-04
E028	S028	Sand Separator Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	2.0E-03	1.0E-02
E029	S029	Sand Separator Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	2.0E-03	1.0E-02
E030	S030	VRU Engine	0.06	0.27	4.8E-03	2.1E-02	1.7E-03	7.4E-03	7.5E-05	3.3E-04	5.9E-04	2.6E-03			0.10	0.43
E031	S031	VRU Engine	0.06	0.27	4.8E-03	2.1E-02	1.7E-03	7.4E-03	7.5E-05	3.3E-04	5.9E-04	2.6E-03			0.10	0.43
E032	S032	Uncaptured Liquid Loading			0.03	0.01	0.04	0.01	2.2E-03	5.7E-04	2.1E-02	5.5E-03	0.81	0.21	1.24	0.32
		Fugitives				0.03		0.07		< 0.01		0.10		0.81		2.42
•••		Haul Roads														
Facility Total			0.13	0.55	0.04	0.08	0.04	0.10	2.5E-03	1.4E-03	0.02	0.11	0.89	1.20	1.54	3.83
Facility Total (excluding fu	igitive emissions)		0.13	0.55	1.1E-02	0.04	5.7E-03	1.8E-02	2.9E-04	8.3E-04	2.5E-03	6.8E-03	0.08	0.18	0.30	1.09

^{1.} Emissions routed to combustors are divided evenly by the total number of combustors (i.e., Combustor Point Emissions = [storage tanks emissions + captured loading emissions] / [number of combustors] + combustor emissions). However, emissions can be routed to either combustor.

Produced Fluids Storage Vessels

Potential Throughput Operational Hours 8,760 hrs/yr Maximum Condensate Throughput¹ 208 bbl/day Maximum Produced Water Throughput¹ 878 bbl/day

98% Overall Control Efficiency of Combustor

Storage Tanks - Uncontrolled

	Brea	thing	Wor	rking	Flas	hing	Total Emissions		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Methane	< 0.001	< 0.001	< 0.001	< 0.001	6.434	28.182	6.434	28.182	
Ethane	< 0.001	< 0.001	< 0.001	< 0.001	6.240	27.331	6.240	27.331	
Propane	0.148	0.646	1.217	5.332	5.784	25.333	7.149	31.311	
Isobutane	0.043	0.190	0.337	1.475	1.711	7.496	2.092	9.161	
n-Butane	0.081	0.356	0.634	2.775	3.297	14.440	4.012	17.571	
Isopentane	0.035	0.153	0.270	1.183	1.411	6.182	1.716	7.518	
n-Pentane	0.028	0.122	0.216	0.946	1.144	5.012	1.388	6.080	
n-Hexane	0.006	0.027	0.047	0.207	0.254	1.112	0.307	1.346	
Cyclohexane	3.9E-04	0.002	0.003	0.013	0.022	0.095	0.025	0.110	
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
n-Heptane	0.007	0.029	0.051	0.224	0.294	1.287	0.352	1.540	
n-Octane	0.002	0.009	0.016	0.070	0.094	0.410	0.111	0.488	
n-Nonane	0.001	0.003	0.005	0.020	0.028	0.123	0.033	0.146	
n-Decane	3.0E-04	0.001	0.002	0.010	0.015	0.065	0.017	0.077	
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Triethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Isohexane	0.012	0.052	0.092	0.402	0.487	2.131	0.590	2.584	
3-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Neohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Benzene	1.4E-04	0.001	0.002	0.009	0.014	0.062	0.016	0.071	
Toluene	2.4E-04	0.001	0.002	0.010	0.025	0.109	0.027	0.120	
Ethylbenzene	1.6E-05	6.9E-05	1.3E-04	0.001	0.001	0.007	0.002	0.007	
m-Xylene	1.5E-04	0.001	0.001	0.005	0.015	0.064	0.016	0.070	
Isooctane	0.002	0.011	0.019	0.084	0.109	0.476	0.130	0.571	
Total VOC Emissions:	0.37	1.60	2.91	12.76	14.70	64.40	17.98	78.77	
Total HAP Emissions:	9.1E-03	0.04	0.07	0.32	0.42	1.83	0.50	2.18	

¹ Uncontrolled emissions calculation using Promax (sum of produced water and condensate). Non-methane emissions are taken from the tank emissions stencil. Methane emissions are taken from the flash stream composition. 2 Composition of condensate from PEN-16 sample from 12/23/2013

¹ Based on the highest monthly throughput recorded at the PEN 16 (January 2014) that was scaled up to eleven wells and includes a safety factor of 60%.

Produced Fluids Storage Vessels

Storage Tanks - Controlled

	Brea lb/hr	thing tpy	Wor	king	Flasi lb/hr	hing tpy	Total Er lb/hr	nissions tpy
Methane	<0.001	<0.001	<0.001	<0.001	0.129	0.564	0.129	0.564
Ethane	<0.001	< 0.001	< 0.001	< 0.001	0.125	0.547	0.125	0.547
Propane	0.003	0.013	0.024	0.107	0.116	0.507	0.143	0.626
sobutane	0.001	0.004	0.007	0.030	0.034	0.150	0.042	0.183
ı-Butane	0.002	0.007	0.013	0.055	0.066	0.289	0.080	0.351
sopentane	0.001	0.003	0.005	0.024	0.028	0.124	0.034	0.150
n-Pentane	0.001	0.002	0.004	0.019	0.023	0.100	0.028	0.122
n-Hexane	1.2E-04	0.001	0.001	0.004	0.005	0.022	0.006	0.027
Cyclohexane	7.8E-06	3.4E-05	6.1E-05	2.7E-04	4.3E-04	0.002	0.001	0.002
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
ı-Heptane	1.3E-04	0.001	0.001	0.004	0.006	0.026	0.007	0.031
-Octane	4.1E-05	1.8E-04	3.2E-04	0.001	0.002	0.008	0.002	0.010
-Nonane	1.2E-05	5.2E-05	9.1E-05	4.0E-04	0.001	0.002	0.001	0.003
ı-Decane	5.9E-06	2.6E-05	4.6E-05	2.0E-04	3.0E-04	0.001	3.5E-04	0.002
-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Oodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
riethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
sohexane	2.4E-04	0.001	0.002	0.008	0.010	0.043	0.012	0.052
-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
leohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
ecane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
enzene	2.7E-06	1.2E-05	4.0E-05	1.7E-04	2.8E-04	0.001	3.3E-04	0.001
oluene	4.8E-06	2.1E-05	4.5E-05	2.0E-04	5.0E-04	0.002	0.001	0.002
thylbenzene	3.2E-07	1.4E-06	2.6E-06	1.1E-05	3.0E-05	1.3E-04	3.3E-05	1.4E-04
n-Xylene	3.0E-06	1.3E-05	2.5E-05	1.1E-04	2.9E-04	0.001	3.2E-04	0.001
sooctane	4.9E-05	2.2E-04	3.8E-04	0.002	0.002	0.010	0.003	0.011
Total VOC Emissions:	7.3E-03	0.03	0.06	0.26	0.29	1.29	0.36	1.58
otal HAP Emissions:	1.8E-04	8.0E-04	1.4E-03	6.3E-03	8.4E-03	0.04	0.01	0.04

VRU Engine

Engine Information:

Manufacturer:	Caterpilllar
Model No.:	G3408
Engine ID	S030
Stroke Cycle:	4-stroke
Type of Burn:	Rich
Rated Horsepower (bhp):	400

Engine Fuel Information:

Higher Heating Value (HHV) (Btu/scf): 1,050	Fuel Type:	Natural Gas
Maximum Fuel Consumption at 100% Load (scf/hr): 2,872 Heat Input (MMBtu/hr): 3.02 Potential Fuel Consumption (MMBtu/yr): 26,417 Max. Fuel Consumption at 100% (MMscf/hr): 0.0029 Max. Fuel Consumption (MMscf/yr): 25.2	Higher Heating Value (HHV) (Btu/scf):	1,050
Heat Input (MMBtu/hr): 3.02 Potential Fuel Consumption (MMBtu/yr): 26,417 Max. Fuel Consumption at 100%(MMscf/hr): 0.0029 Max. Fuel Consumption (MMscf/yr): 25.2	Specific Fuel Consumption (Btu/bhp-hr):	7,539
Potential Fuel Consumption (MMBtu/yr): 26,417 Max. Fuel Consumption at 100%(MMscf/hr): 0.0029 Max. Fuel Consumption (MMscf/yr): 25.2	Maximum Fuel Consumption at 100% Load (scf/hr):	2,872
Max. Fuel Consumption at 100% (MMscf/hr): 0.0029 Max. Fuel Consumption (MMscf/yr): 25.2	Heat Input (MMBtu/hr):	3.02
Max. Fuel Consumption (MMscf/yr): 25.2	Potential Fuel Consumption (MMBtu/yr):	26,417
	Max. Fuel Consumption at 100%(MMscf/hr):	0.0029
	Max. Fuel Consumption (MMscf/yr):	25.2
Max. Annual Hours of Operation (hr/yr): 8,760	Max. Annual Hours of Operation (hr/yr):	8,760

Engine Emissions Data:

Pollutant	Emission	Units		Potential sions	Estimation Basis / Emission
ronutant	Factor		lbs/hr	tpy	Factor Source
NO _X	1.00	g/bhp-hr	0.88	3.86	40 CFR 60, Subpart JJJJ, Table 1
VOC (excludes HCHO)	0.70	g/bhp-hr	0.62	2.70	40 CFR 60, Subpart JJJJ, Table 1
VOC (includes HCHO)			0.68	2.97	VOC + HCHO
со	2.00	g/bhp-hr	1.76	7.73	40 CFR 60, Subpart JJJJ, Table 1
SO_X	0.001	lb/MMBtu	< 0.01	< 0.01	AP-42, Table 3.2-3 (Aug-2000)
PM_{10}	0.02	lb/MMBtu	0.06	0.26	AP-42, Table 3.2-3 (Aug-2000)
PM _{2.5}	0.02	lb/MMBtu	0.06	0.26	AP-42, Table 3.2-3 (Aug-2000)
Formaldehyde (HCHO)	0.02	lb/MMBtu	0.06	0.27	AP-42, Table 3.2-3 (Aug-2000)
GHG (CO ₂ e)	See Tal	ole Below	1,716	7,517	40 CFR 98, Tables C-1 & C-2
Other (Total HAP)	See Tal	ole Below	0.10	0.43	AP-42, Table 3.2-3 (Aug-2000)

Notes:

- 1. PM_{10} and $PM_{2.5}$ are total values (filterable + condensable).
- 2. GHG (CO₂e) is carbon dioxide equivalent, which is the summation of CO₂ (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).
- 3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

VRU Engine

Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations:

Pollutant	Emission	Units	Maximum Potential Emissions		Estimation Basis / Emission	
	Factor	oc	lbs/hr	tpy	Factor Source	
GHGs:						
CO ₂	569.00	lb/MMBtu	1715.88	7515.54	40 CFR 98, Table C-1	
CH ₄	0.001	kg/MMBtu	6.6E-03	2.9E-02	40 CFR 98, Table C-2	
N_2O	0.0001	kg/MMBtu	6.6E-04	2.9E-03	40 CFR 98, Table C-2	
GHG (CO ₂ e)	I .		1,716	7,517		
Organic HAPs:						
1,1,2,2-Tetrachloroethane	2.53E-05	lb/MMBtu	7.6E-05	3.3E-04	AP-42, Table 3.2-3 (Aug-2000)	
1,1,2-Trichloroethane	1.53E-05	lb/MMBtu	4.6E-05	2.0E-04	AP-42, Table 3.2-3 (Aug-2000)	
1,3-Butadiene	6.63E-04	lb/MMBtu	2.0E-03	8.8E-03	AP-42, Table 3.2-3 (Aug-2000)	
1,3-Dichloropropene	1.27E-05	lb/MMBtu	3.8E-05	1.7E-04	AP-42, Table 3.2-3 (Aug-2000)	
Acetaldehyde	2.79E-03	lb/MMBtu	8.4E-03	3.7E-02	AP-42, Table 3.2-3 (Aug-2000)	
Acrolein	2.63E-03	lb/MMBtu	7.9E-03	3.5E-02	AP-42, Table 3.2-3 (Aug-2000)	
Benzene	1.58E-03	lb/MMBtu	4.8E-03	2.1E-02	AP-42, Table 3.2-3 (Aug-2000)	
Carbon Tetrachloride	1.77E-05	lb/MMBtu	5.3E-05	2.3E-04	AP-42, Table 3.2-3 (Aug-2000)	
Chlorobenzene	1.29E-05	lb/MMBtu	3.9E-05	1.7E-04	AP-42, Table 3.2-3 (Aug-2000)	
Chloroform	1.37E-05	lb/MMBtu	4.1E-05	1.8E-04	AP-42, Table 3.2-3 (Aug-2000)	
Ethylbenzene	2.48E-05	lb/MMBtu	7.5E-05	3.3E-04	AP-42, Table 3.2-3 (Aug-2000)	
Ethylene Dibromide	2.13E-05	lb/MMBtu	6.4E-05	2.8E-04	AP-42, Table 3.2-3 (Aug-2000)	
Methanol	3.06E-03	lb/MMBtu	9.2E-03	4.0E-02	AP-42, Table 3.2-3 (Aug-2000)	
Methylene Chloride	4.12E-05	lb/MMBtu	1.2E-04	5.4E-04	AP-42, Table 3.2-3 (Aug-2000)	
Naphthalene	9.71E-05	lb/MMBtu	2.9E-04	1.3E-03	AP-42, Table 3.2-3 (Aug-2000)	
PAH	1.41E-04	lb/MMBtu	4.3E-04	1.9E-03	AP-42, Table 3.2-3 (Aug-2000)	
Styrene	1.19E-05	lb/MMBtu	3.6E-05	1.6E-04	AP-42, Table 3.2-3 (Aug-2000)	
Toluene	5.58E-04	lb/MMBtu	1.7E-03	7.4E-03	AP-42, Table 3.2-3 (Aug-2000)	
Vinyl Chloride	7.18E-06	lb/MMBtu	2.2E-05	9.5E-05	AP-42, Table 3.2-3 (Aug-2000)	
Xylene	1.95E-04	lb/MMBtu	5.9E-04	2.6E-03	AP-42, Table 3.2-3 (Aug-2000)	
Total HAP			0.10	0.43		

s / Emission
urce
Table C-1 Table C-2
able C-2
-3 (Aug-2000)
3 (Aug-2000) 3 (Aug-2000)
3 (Aug-2000)
3 (Aug-2000)
3 (Aug-2000) 3 (Aug-2000)
3 (Aug-2000)
3 (Aug-2000) 3 (Aug-2000)
3 (Aug-2000)
3 (Aug-2000)
3 (Aug-2000) 3 (Aug-2000)
3 (Aug-2000)
3 (Aug-2000)
3 (Aug-2000) 3 (Aug-2000)
3 (Aug-2000)
3 (Aug-2000)

Company Name: EQT Production, LLC

Facility Name: PEN-54 Pad **Project Description: G70-C Application**

Sand Separator Tank

Throughput Parameter	Value	Units
Tank Capacity	5,880	gallons
Operational Hours	8,760	hrs/yr
Throughput	280	bbl/month
Percent Produced Water	50%	
Total Produced Water Throughput	140	bbl/month

 $^{^{1}}$ Conservatively assumes 2 turnovers/month of sand and produced water.

Description	Potential Throughput (gal/yr)
Produced Water and Sand	141,120

Sand Separator Tank (140 bbl) - Uncontrolled (Per tank) 2,3

Constituent	Total Emissions ¹ lb/hr tpy		
Methane	0.195	0.854	
Ethane	0.065	0.284	
Propane	0.116	0.508	
Isobutane	0.068	0.296	
n-Butane	0.085	0.372	
Isopentane	0.034	0.151	
n-Pentane	0.023	0.102	
Hexanes	0.002	0.008	
Heptanes	0.002	0.008	
Octane	0.001	0.003	
Nonane	< 0.001	0.001	
Decane	< 0.001	< 0.001	
Benzene	< 0.001	< 0.001	
Toluene	< 0.001	< 0.001	
Ethylbenzene	< 0.001	< 0.001	
Xylenes	< 0.001	< 0.001	
n-Hexane	0.001	0.006	
2,2,4-Trimethylpentane	< 0.001	< 0.001	
Total HC Emissions:	0.592	2.594	
Total VOC Emissions:	0.333	1.457	
Total HAP Emissions:	0.002	0.010	

² E&P TANK 2.0 calculates working, breathing and flashing losses and reports the sum as one total. ³ E&P TANK v2.0 emission calculations are based on PEN-16 sample from 12/23/2013.

Company Name: Facility Name: EQT Production, LLC PEN-54 Pad **Project Description:** G70-C Application

Sand Separator Tank

Sand Separator Tank (140 bbl) - Controlled (Per tank)

	Total Er	nissions
Constituent	lb/hr	tpy
Methane	0.195	0.854
Ethane	0.065	0.284
Propane	0.116	0.508
Isobutane	0.068	0.296
n-Butane	0.085	0.372
Isopentane	0.034	0.151
n-Pentane	0.023	0.102
Hexanes	0.002	0.008
Heptanes	0.002	0.008
Octane	0.001	0.003
Nonane	< 0.001	0.001
Decane	< 0.001	< 0.001
Benzene	< 0.001	< 0.001
Toluene	< 0.001	< 0.001
Ethylbenzene	< 0.001	< 0.001
Xylenes	< 0.001	< 0.001
n-Hexane	0.001	0.006
2,2,4-Trimethylpentane	<0.001	< 0.001
Total Emissions:	0.608	2.662
Total VOC Emissions:	0.333	1.457
Total HAP Emissions:	0.002	0.010

Company Name: <u>EQT Production, LLC</u> Facility Name: <u>PEN-54 Pad</u>

Project Description: G70-C Application

Tank Combustor

Source Designation:	C001
Pilot Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Pilot Rating (MMBtu/hr)	0.05
Combustor Rating (MMBtu/hr) ¹	19.22
Combustor Rating (Mscfd) ¹	307.5
Combustor Rating (scf/hr)	12812.50
Pilot Fuel Consumption (scf/hr):	50.00
Potential Annual Hours of Operation (hr/yr):	8,760

¹ Maximum heat input for 60" model from Leed Enclosed Combustor Operations Manual

Enclosed Combustor Emissions

	Emission Factors ²	Comb	oustor	Pil	ot	To	tal
Pollutant	(lb/MMBtu)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
NO_x	0.10	1.88	8.25	5.1E-03	0.02	1.89	8.28
CO	0.08	1.58	6.93	4.3E-03	0.02	1.59	6.95
VOC	5.4E-03			2.8E-04	1.2E-03	0.00	0.00
SO_2	5.9E-04	0.01	0.05	3.1E-05	1.4E-04	0.01	0.05
PM/PM ₁₀	0.01	0.14	0.63	3.9E-04	1.7E-03	0.14	0.63
CO_2	117.00	2248.688	9849.254	6.14	26.90	2254.83	9876.16
CH ₄	2.2E-03			1.2E-04	5.1E-04	0.00	0.00
N ₂ O	2.2E-04	4.2E-03	0.02	1.2E-05	5.1E-05	4.2E-03	0.02

² Emission factors from AP-42 Ch. 1.4 for natural gas combustion were used as they were determined to be most representative of the process. Ch. 5.3 (Natural Gas Processing) was consulted, however, factors contained there are appropriate for amine gas sweetening processes, which is not the case at the wellpad. Also, Ch. 13.5 (Industrial Flares) was consulted, but since the control device in this case is an enclosed combustor vs. an elevated flare, these factors were also determined to be inappropriate.

Combustor Maximum Loading:

12812.5 scf	lb-mol	20.37 lb	_=	687.56 lb/hı
hr	379 5 ccf	lh-mol		

Tank Combustor

Source Designation:	C002
Pilot Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Pilot Rating (MMBtu/hr)	0.05
Combustor Rating (MMBtu/hr) ¹	11.66
Combustor Rating (Mscfd) ¹	186.5
Combustor Rating (scf/hr)	7770.83
Pilot Fuel Consumption (scf/hr):	50.00
Potential Annual Hours of Operation (hr/yr):	8,760

¹ Maximum heat input for 48" model from Leed Enclosed Combustor Operations Manual

Enclosed Combustor Emissions

	Emission	Comb	oustor	Di	lot	То	tal
Pollutant	Factors ² (lb/MMBtu)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
NO_x	0.10	1.14	5.01	5.1E-03	0.02	1.15	5.03
CO	0.08	0.96	4.21	4.3E-03	0.02	0.96	4.22
VOC	5.4E-03			2.8E-04	1.2E-03	0.00	0.00
SO ₂	5.9E-04	0.01	0.03	3.1E-05	1.4E-04	0.01	0.03
PM/PM ₁₀	0.01	0.09	0.38	3.9E-04	1.7E-03	0.09	0.38
CO ₂	117.00	1364.189	5975.146	6.14	26.90	1370.33	6002.05
CH ₄	2.2E-03			1.2E-04	5.1E-04	0.00	0.00
N_2O	2.2E-04	2.6E-03	0.01	1.2E-05	5.1E-05	2.6E-03	0.01

² Emission factors from AP-42 Ch. 1.4 for natural gas combustion were used as they were determined to be most representative of the process. Ch. 5.3 (Natural Gas Processing) was consulted, however, factors contained there are appropriate for amine gas sweetening processes, which is not the case at the wellpad. Also, Ch. 13.5 (Industrial Flares) was consulted, but since the control device in this case is an enclosed combustor vs. an elevated flare, these factors were also determined to be inappropriate.

Combustor Maximum Loading:

7770.83 scf	lb-mol	20.37 lb	_=	417.01 lb/hr
hr	379 5 scf	lh-mol	_	

Line Heaters

Source Designation:	S013-S023
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Heat Input (MMBtu/hr)	1.54
Fuel Consumption (MMscf/hr):	1.47E-03
Potential Annual Hours of Operation (hr/yr):	8,760

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ^{1,4}	(lb/hr) ²	(tons/yr) ³	
NO _x	100	0.15	0.64	
со	84	0.12	0.54	
voc	5.5	0.01	0.04	
SO_2	0.6	8.8E-04	3.9E-03	
PM Total	7.6	0.01	0.05	
PM Condensable	5.7	0.01	0.04	
PM ₁₀ (Filterable)	1.9	2.8E-03	0.01	
PM _{2.5} (Filterable)	1.9	2.8E-03	0.01	
Lead	5.00E-04	7.3E-07	3.2E-06	
CO ₂	117.0	180.00	788.38	
CH ₄	2.21E-03	3.4E-03	1.5E-02	
N ₂ O	2.21E-04	3.4E-04	1.5E-03	

Line Heaters

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³	
HAPs:				
2-Methylnaphthalene	2.4E-05	3.5E-08	1.5E-07	
3-Methylchloranthrene	1.8E-06	2.6E-09	1.2E-08	
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.3E-08	1.0E-07	
Acenaphthene	1.8E-06	2.6E-09	1.2E-08	
Acenaphthylene	1.8E-06	2.6E-09	1.2E-08	
Anthracene	2.4E-06	3.5E-09	1.5E-08	
Benz(a)anthracene	1.8E-06	2.6E-09	1.2E-08	
Benzene	2.1E-03	3.1E-06	1.3E-05	
Benzo(a)pyrene	1.2E-06	1.8E-09	7.7E-09	
Benzo(b)fluoranthene	1.8E-06	2.6E-09	1.2E-08	
Benzo(g,h,i)perylene	1.2E-06	1.8E-09	7.7E-09	
Benzo(k)fluoranthene	1.8E-06	2.6E-09	1.2E-08	
Chrysene	1.8E-06	2.6E-09	1.2E-08	
Dibenzo(a,h) anthracene	1.2E-06	1.8E-09	7.7E-09	
Dichlorobenzene	1.2E-03	1.8E-06	7.7E-06	
Fluoranthene	3.0E-06	4.4E-09	1.9E-08	
Fluorene	2.8E-06	4.1E-09	1.8E-08	
Formaldehyde	7.5E-02	1.1E-04	4.8E-04	
Hexane	1.8E+00	2.6E-03	1.2E-02	
Indo(1,2,3-cd)pyrene	1.8E-06	2.6E-09	1.2E-08	
Naphthalene	6.1E-04	8.9E-07	3.9E-06	
Phenanthrene	1.7E-05	2.5E-08	1.1E-07	
Pyrene	5.0E-06	7.3E-09	3.2E-08	
Toluene	3.4E-03	5.0E-06	2.2E-05	
Arsenic	2.0E-04	2.9E-07	1.3E-06	
Beryllium	1.2E-05	1.8E-08	7.7E-08	
Cadmium	1.1E-03	1.6E-06	7.1E-06	
Chromium	1.4E-03	2.1E-06	9.0E-06	
Cobalt	8.4E-05	1.2E-07	5.4E-07	
Manganese	3.8E-04	5.6E-07	2.4E-06	
Mercury	2.6E-04	3.8E-07	1.7E-06	
Nickel	2.1E-03	3.1E-06	1.3E-05	
Selenium	2.4E-05	3.5E-08	1.5E-07	
Total HAP		2.8E-03	1.2E-02	

 $^{^{\}rm 1}$ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

³ Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb). ⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Line Heater

Source Designation:	S024-S025
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Heat Input (MMBtu/hr)	1.15
Fuel Consumption (MMscf/hr):	1.10E-03
Potential Annual Hours of Operation (hr/yr):	8,760

Criteria and Manufacturer Specific Pollutant Emission Rates:


	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ^{1,4}	(lb/hr) ²	(tons/yr) ³	
NO _x	100	0.11	0.48	
со	84	0.09	0.40	
VOC	5.5	0.01	0.03	
SO_2	0.6	6.6E-04	2.9E-03	
PM Total	7.6	0.01	0.04	
PM Condensable	5.7	0.01	0.03	
PM ₁₀ (Filterable)	1.9	2.1E-03	0.01	
PM _{2.5} (Filterable)	1.9	2.1E-03	0.01	
Lead	5.00E-04	5.5E-07	2.4E-06	
CO ₂	117.0	135.00	591.29	
CH ₄	2.21E-03	2.5E-03	1.1E-02	
N_2O	2.21E-04	2.5E-04	1.1E-03	

Line Heater

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³	
HAPs:				
2-Methylnaphthalene	2.4E-05	2.6E-08	1.2E-07	
3-Methylchloranthrene	1.8E-06	2.0E-09	8.7E-09	
7,12-Dimethylbenz(a)anthracene	1.6E-05	1.8E-08	7.7E-08	
Acenaphthene	1.8E-06	2.0E-09	8.7E-09	
Acenaphthylene	1.8E-06	2.0E-09	8.7E-09	
Anthracene	2.4E-06	2.6E-09	1.2E-08	
Benz(a)anthracene	1.8E-06	2.0E-09	8.7E-09	
Benzene	2.1E-03	2.3E-06	1.0E-05	
Benzo(a)pyrene	1.2E-06	1.3E-09	5.8E-09	
Benzo(b)fluoranthene	1.8E-06	2.0E-09	8.7E-09	
Benzo(g,h,i)perylene	1.2E-06	1.3E-09	5.8E-09	
Benzo(k)fluoranthene	1.8E-06	2.0E-09	8.7E-09	
Chrysene	1.8E-06	2.0E-09	8.7E-09	
Dibenzo(a,h) anthracene	1.2E-06	1.3E-09	5.8E-09	
Dichlorobenzene	1.2E-03	1.3E-06	5.8E-06	
Fluoranthene	3.0E-06	3.3E-09	1.4E-08	
Fluorene	2.8E-06	3.1E-09	1.3E-08	
Formaldehyde	7.5E-02	8.2E-05	3.6E-04	
Hexane	1.8E+00	2.0E-03	8.7E-03	
Indo(1,2,3-cd)pyrene	1.8E-06	2.0E-09	8.7E-09	
Naphthalene	6.1E-04	6.7E-07	2.9E-06	
Phenanthrene	1.7E-05	1.9E-08	8.2E-08	
Pyrene	5.0E-06	5.5E-09	2.4E-08	
Toluene	3.4E-03	3.7E-06	1.6E-05	
Arsenic	2.0E-04	2.2E-07	9.6E-07	
Beryllium	1.2E-05	1.3E-08	5.8E-08	
Cadmium	1.1E-03	1.2E-06	5.3E-06	
Chromium	1.4E-03	1.5E-06	6.7E-06	
Cobalt	8.4E-05	9.2E-08	4.0E-07	
Manganese	3.8E-04	4.2E-07	1.8E-06	
Mercury	2.6E-04	2.9E-07	1.3E-06	
Nickel	2.1E-03	2.3E-06	1.0E-05	
Selenium	2.4E-05	2.6E-08	1.2E-07	
Total HAP		2.1E-03	9.1E-03	

 $^{^{\}rm 1}$ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

³ Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb). ⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Thermoelectric Generators

Source Designation:	S026-S027,S033
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Heat Input (MMBtu/hr) ¹	0.013
Fuel Consumption (MMscf/hr):	1.23E-05
Potential Annual Hours of Operation (hr/yr):	8,760

¹ Global Themorelectric specification sheet states 311 ft³/day at 1000 BTU/ft³.

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ^{2, 5}	(lb/hr) ³	(tons/yr) ⁴	
NO_x	100	1.2E-03	0.01	
CO	84	1.0E-03	4.5E-03	
voc	5.5	6.8E-05	3.0E-04	
SO ₂	0.6	7.4E-06	3.2E-05	
PM Total	7.6	9.4E-05	4.1E-04	
PM Condensable	5.7	7.0E-05	3.1E-04	
PM ₁₀ (Filterable)	1.9	2.3E-05	1.0E-04	
PM _{2.5} (Filterable)	1.9	2.3E-05	1.0E-04	
Lead	5.00E-04	6.2E-09	2.7E-08	
CO ₂	116.9	1.51	6.64	
CH ₄	2.21E-03	2.9E-05	1.3E-04	
N_2O	2.21E-04	2.9E-06	1.3E-05	

EQT Production, LLC Company Name: Facility Name: PEN-54 Pad **Project Description:** G70-C Application

Thermoelectric Generators

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential 1	Emissions	
Pollutant	(lb/MMscf) ²	(lb/hr) ³	(tons/yr) ⁴	
HAPs:				
2-Methylnaphthalene	2.4E-05	3.0E-10	1.3E-09	
3-Methylchloranthrene	1.8E-06	2.2E-11	9.7E-11	
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.0E-10	8.6E-10	
Acenaphthene	1.8E-06	2.2E-11	9.7E-11	
Acenaphthylene	1.8E-06	2.2E-11	9.7E-11	
Anthracene	2.4E-06	3.0E-11	1.3E-10	
Benz(a)anthracene	1.8E-06	2.2E-11	9.7E-11	
Benzene	2.1E-03	2.6E-08	1.1E-07	
Benzo(a)pyrene	1.2E-06	1.5E-11	6.5E-11	
Benzo(b)fluoranthene	1.8E-06	2.2E-11	9.7E-11	
Benzo(g,h,i)perylene	1.2E-06	1.5E-11	6.5E-11	
Benzo(k)fluoranthene	1.8E-06	2.2E-11	9.7E-11	
Chrysene	1.8E-06	2.2E-11	9.7E-11	
Dibenzo(a,h) anthracene	1.2E-06	1.5E-11	6.5E-11	
Dichlorobenzene	1.2E-03	1.5E-08	6.5E-08	
Fluoranthene	3.0E-06	3.7E-11	1.6E-10	
Fluorene	2.8E-06	3.5E-11	1.5E-10	
Formaldehyde	7.5E-02	9.3E-07	4.1E-06	
Hexane	1.8E+00	2.2E-05	9.7E-05	
Indo(1,2,3-cd)pyrene	1.8E-06	2.2E-11	9.7E-11	
Naphthalene	6.1E-04	7.5E-09	3.3E-08	
Phenanthrene	1.7E-05	2.1E-10	9.2E-10	
Pvrene	5.0E-06	6.2E-11	2.7E-10	
Toluene	3.4E-03	4.2E-08	1.8E-07	
Arsenic	2.0E-04	2.5E-09	1.1E-08	
Beryllium	1.2E-05	1.5E-10	6.5E-10	
Cadmium	1.1E-03	1.4E-08	5.9E-08	
Chromium	1.4E-03	1.7E-08	7.6E-08	
Cobalt	8.4E-05	1.0E-09	4.5E-09	
Manganese	3.8E-04	4.7E-09	2.1E-08	
Mercury	2.6E-04	3.2E-09	1.4E-08	
Nickel	2.1E-03	2.6E-08	1.1E-07	
Selenium	2.4E-05	3.0E-10	1.3E-09	
Total HAP		2.3E-05	1.0E-04	

² Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

³ Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

⁴ Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).
⁵ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

EQT Production, LLC PEN-54 Pad **Company Name:** Facility Name: **Project Description:** G70-C Application

Liquid Loading

Throughput Capture Efficiency Control Efficiency 16,648,380 gal/yr 70% non-tested tanker trucks 98% Combustor destruction efficiency

Liquid Loading Emissions

	Uncontrolle	Uncontrolled Emissions		Uncaptured Emissions		Controlled Emissions	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Propane	68.962	17.930	20.688	5.379	0.965	0.251	
Isobutane	19.336	5.027	5.801	1.508	0.271	0.070	
n-Butane	36.340	9.448	10.902	2.835	0.509	0.132	
Isopentane	15.515	4.034	4.654	1.210	0.217	0.056	
n-Pentane	12.406	3.226	3.722	0.968	0.174	0.045	
n-Hexane	2.715	0.706	0.815	0.212	0.038	0.010	
Cyclohexane	0.174	0.045	0.052	0.014	0.002	0.001	
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
n-Heptane	2.933	0.763	0.880	0.229	0.041	0.011	
n-Octane	0.912	0.237	0.274	0.071	0.013	0.003	
n-Nonane	0.262	0.068	0.079	0.020	0.004	0.001	
n-Decane	0.132	0.034	0.040	0.010	0.002	4.8E-04	
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Triethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Isohexane	5.266	1.369	1.580	0.411	0.074	0.019	
3-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Neohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Benzene	0.102	0.026	0.031	0.008	0.001	3.7E-04	
Toluene	0.123	0.032	0.037	0.010	0.002	4.5E-04	
Ethylbenzene	0.007	0.002	0.002	0.001	1.0E-04	2.7E-05	
m-Xylene	0.070	0.018	0.021	0.005	0.001	2.6E-04	
Isooctane	1.100	0.286	0.330	0.086	0.015	0.004	
Total VOC Emissions:	166.355	43.252	49.907	12.976	2.329	0.606	
Total HAP Emissions:	4.118	1.071	1.235	0.321	0.058	0.015	

 $^{^{\}rm 1}$ Uncontrolled emissions calculation using Promax (sum of produced water and condensate). $^{\rm 2}$ Hourly emissions assume two hours of loading per day, five days per week.

Fugitive Emissions

Fugitive Emissions from Component Leaks

Facility Equipment Type ¹	Valves	Connectors	Open-Ended Lines	Pressure Relief Devices
Wellhead	8	38	0.5	0
Separators	1	6	0	0
Meters/Piping	12	45	0	0
Compressors	12	57	0	0
In-line heaters	14	65	2	1
Dehydrators	24	90	2	2
Meters/Piping Compressors In-line heaters	12 14	45 57 65	0 0 2 2	0 0 1 2

¹ Table W-1B to Subpart W of Part 98 —Default Average Component Counts for Major Onshore Natural Gas Production

Fugitive VOC/Total Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Weight Fraction VOC	Weight Fraction HAP	VOC Emissions ³ (tpy)	HAP Emissions ³ (tpy)
Pumps	Light Liquid	0.01990	21	4.04	1.00	0.06	4.04	0.26
Compressor	Gas	0.22800	2	4.40	0.17	0.01	0.74	0.05
Valves	Gas	0.00597	659	37.96	0.17	0.01	6.34	0.41
Pressure Relief Valves	Gas	0.10400	48	47.70	0.17	0.01	7.97	0.51
Open-Ended Lines	All	0.00170	48	0.79	0.17	0.01	0.13	0.01
Connectors	All	0.00183	2,925	51.69	0.17	0.01	8.63	0.56
Intermittent Pneumatic Devices ⁴	Gas	13.5	55				9.73	0.63
			Emission Totals:	146.58			37.57	2.42

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates*. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. The pneumatic controller value is from 40 CFR 98 Subpart W, Table W-1A. Pneumatic assumes operation 1/3 of the year.

² Assumes one pump for each tank and one meter per wellhead. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic devices assume 5 per well. A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions VOC/HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % VOC/HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP ÷ 100 ÷ 379 (scf/lb-mol) + 2,000 (lb/ton)

Fugitive Emissions

Fugitive Specific HAP Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Benzene Emissions ³ (tpy)	Toluene Emissions ³ (tpy)	Ethylbenzene Emissions ³ (tpy)	Xylene Emissions ³ (tpy)	n-Hexane Emissions ⁴ (tpy)
Pumps	Light Liquid	0.01990	21	4.04	6.2E-04	1.5E-03	0.0E+00	1.9E-03	0.02
Compressor	Gas	0.22800	2	4.40	6.8E-04	1.6E-03	0.0E+00	2.1E-03	0.02
Valves	Gas	0.00597	659	37.96	0.01	0.01	0.0E+00	0.02	0.15
Pressure Relief Valves	Gas	0.10400	48	47.70	0.01	0.02	0.0E+00	0.02	0.19
Open-Ended Lines	All	0.00170	48	0.79	1.2E-04	2.9E-04	0.0E+00	3.7E-04	3.1E-03
Connectors	All	0.00183	2,925	51.69	0.01	0.02	0.0E+00	0.02	0.20
Intermittent Pneumatic Devices ⁴	Gas	13.5	55		0.01	0.02	0.0E+00	0.03	0.23
			Emission Totals:	146.58	0.03	0.07	0.0E+00	0.10	0.81

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates*. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. The pneumatic controller value is from 40 CFR 98 Subpart W, Table W-1A. Pneumatic assumes operation 1/3 of the year.

GHG Fugitive Emissions from Component Leaks

		GHG Emission			
		Factor ¹	CH ₄ Emissions ^{2,3}	CO ₂ Emissions ^{2,3}	CO ₂ e Emissions ⁴
Component	Component Count	(scf/hr/component)	(tpy)	(tpy)	(tpy)
Pumps	21	0.01	0.03	2.2E-04	0.78
Compressor	2	4.17	1.25	0.01	31.15
Valves	659	0.027	2.66	0.02	66.42
Pressure Relief Devices	48	0.04	0.28	2.0E-03	7.10
Open-Ended Lines	48	0.061	0.44	3.1E-03	10.94
Connectors	2,925	0.003	1.31	0.01	32.78
Intermittent Pneumatic Devices	55	6	16.43	0.12	410.91
	Fotal		22.40	0.16	560.07

¹ Population emission factors for gas service in the Eastern U.S. from Table W-IA of Subpart W - Default Whole Gas Emission Factors for Onshore Production , 40 CFR 98, Subpart W (Table W-6 for compressor). Pneumatic assumes operation 1/3 of the year.

CH₄: 81% CO₂: 0.21%

Carbon Dioxide (CO_2): 1 Methane (CH_4): 25

² Assumes one pump for each tank and one meter per wellhead. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic devices assume 5 per well. A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % HAPx 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % HAP + 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton)

² Calculated in accordance with Equations W-32a, W-35 and W-36 in Subpart W of 40 CFR 98. See footnote 4 above for sample calculation.

³ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP \div 100 \div 379 (scf/lb-mol) \div 2,000 (lb/ton) Mole fractions of CH₄ and CO₂ based on gas analysis:

⁴ Carbon equivalent emissions (CO₂e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:

Haul Roads

Estimated Potential Road Fugitive Emissions

Unpaved Road Emissions

Unpaved Roads: E (lb/VMT) = $k(s/12)^a(W/3)^b$)*[(365-p)/365]

	PM	PM_{10}	$PM_{2.5}$	
k Factor (lb/VMT)	4.9	1.5	0.15	AP-42 Table 13.2.2-2 (Final, 11/06)
Silt content, s	4.8	%		AP-42 Table 13.2.2-1 (11/06), for Sand and Gravel Processing
Number of Rain Days, p	150			AP-42 Figure 13.2.1-2
a	0.7	0.9	0.9	AP-42 Table 13.2.2-2 (Final, 11/06)
b	0.45	0.45	0.45	AP-42 Table 13.2.2-2 (Final, 11/06)

Description	Weight of Empty Truck (tons)	Weight of Truck w/ Max Load (tons)	Mean Vehicle Weight (tons)	Length of Unpaved Road Traveled (mile)	Trips Per Year	Mileage Per Year	Control (%)	PM	Emissions (tpy)	PM _{2.5}
Liquids Hauling Employee Vehicles	20 3	40 3	30 3	0.29 0.29	4,162 200	2,401 115	0	5.14 0.09	1.31 0.02	0.13 0.00
Total Potential Emissions	-							5.23	1.33	0.13

Gas Analysis

 Sample Location:
 CPT 11 Gas Analysis

 Sample Date:
 11/13/2014

 HHV (Btu/scf):
 1,237

tHV (Btu/scf): 1,237 Note: A conservatively low BTU content of 1,050 was used for calculations.

Constituent	Natural Gas Stream Speciation (Mole %)	Molecular Weight	Molar Weight	Average Weight Fraction	Natural Gas Stream Speciation (Wt. %)
Carbon Dioxide	0.208	44.01	0.09	0.00	0.449
Nitrogen	0.387	28.01	0.11	0.01	0.532
Methane	80.572	16.04	12.92	0.63	63.460
Ethane	12.770	30.07	3.84	0.19	18.856
Propane	3.536	44.10	1.56	0.08	7.657
Isobutane	0.490	58.12	0.28	0.01	1.398
n-Butane	0.936	58.12	0.54	0.03	2.671
Isopentane	0.220	72.15	0.16	0.01	0.779
n-Pentane	0.173	72.15	0.12	0.01	0.613
Cyclopentane	< 0.001	70.1	0.0	0.0	0.000
n-Hexane	0.093	86.18	0.08	0.00	0.394
Cyclohexane	0.013	84.16	0.01	0.00	0.054
Other Hexanes	0.174	86.18	0.15	0.01	0.736
Heptanes	0.152	100.21	0.15	0.01	0.748
Methylcyclohexane	< 0.001	98.19	0.00	0.00	0.000
2,2,4-Trimethylpentane	0.104	114.23	0.12	0.01	0.583
Benzene*	0.004	78.11	0.00	0.00	0.015
Toluene*	0.008	92.14	0.01	0.00	0.036
Ethylbenzene*	< 0.001	106.17	0.00	0.00	0.000
Xylenes*	0.009	106.16	0.01	0.00	0.047
C8 + Heavies	0.151	130.80	0.20	0.01	0.970
Totals	100.000		20.37	1.00	100

TOC (Total)	99.41	99.02
VOC (Total)	6.06	16.70
HAP (Total)	0.22	1.08

* Project Setup Information

Project File : Z:\Client\EQT Corporation\West Virginia\WV Wells\163901.0058 WV Wells 2016\PEN 54\02 Draft\2016-0316 PEN 54 Draft Application\Att S Emission Calcs\01 E&P TANK\20160316_EQT_PEN 16_Sand

Separator Tank.ept

Flowsheet Selection : Oil Tank with Separator

Calculation Method : RVP Distillation

Control Efficiency : 0.0%

Known Separator Stream : Low Pressure Oil

Entering Air Composition: No

Filed Name : PEN 54 Wellpad Well Name : PEN 54 Wellpad

Well ID : PEN 16 Wellpad Condensate Analysis 12/23/2013 :

Date 2016.07.12

* Data Input

Separator Pressure : 342.00[psig]
Separator Temperature : 60.00[F]
Ambient Pressure : 14.70[psia]
Ambient Temperature : 55.00[F]

C10+ SG : 0.7908 C10+ MW : 152.673

-- Low Pressure Oil -----

No.	Component	mol %
1	H2S	0.0000
2	O2	0.0000
3	CO2	1.1420
4	N2	0.0000
5	C1	39.0360
6	C2	6.9320
7	C3	8.4930
8	i-C4	4.4260
9	n-C4	7.0670
10	i-C5	5.7350
11	n-C5	5.4720
12	C6	1.1910
13	C7	3.8930
14	C8	5.2640
15	C9	3.7820
16	C10+	5.4530
17	Benzene	0.0350
18	Toluene	0.2830
19	E-Benzene	0.0480
20	Xylenes	0.6270
21	n-C6	1.1130

-- Sales Oil -----

Production Rate : 0.1[bbl/day]

Days of Annual Operation: 365 [days/year]

API Gravity : 59.11

Reid Vapor Pressure : 10.60[psia]

Calculation Results

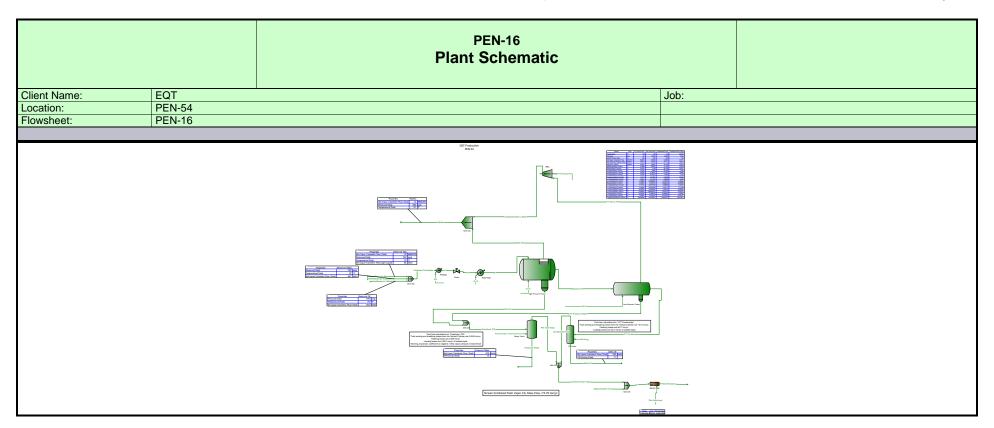
-- Emission Summary -----

Item Uncontrolled Uncontrolled Controlled Controlled [ton/yr] [lb/hr] [ton/yr] [lb/hr]

[ton/yr] [lb/hr] [ton/yr] [lb/hr]
Page 1------ E&P TANK

Total HAPs 0.010 0.002 0.010 0.002 Total HC 2.594 0.592 2.594 0.592 VOCs, C2+ 1.741 0.397 1.741 0.397 VOCs, C3+ 1.457 0.333 1.457 0.333

Uncontrolled Recovery Info.


Vapor 189.0700 x1E-3 [MSCFD] HC Vapor 185.8300 x1E-3 [MSCFD]

GOR 1890.70 [SCF/bbl]

-- Emission Composition -----

No Compor	nent Unco	ontrolled U	Uncontrolled	Controlled	Controlled
	[ton/yr] [lb/hr]	[ton/yr] [l	b/hr]	
1 H2S	0.000	0.000	0.000	0.000	
2 O2	0.000	0.000	0.000	0.000	
3 CO2	0.069	0.016	0.069	0.016	
4 N2	0.000	0.000	0.000	0.000	
5 C1	0.854	0.195	0.854	0.195	
6 C2	0.284	0.065	0.284	0.065	
7 C3	0.508	0.116	0.508	0.116	
8 i-C4	0.296	0.068	0.296	0.068	
9 n-C4	0.372	0.085	0.372	0.085	
10 i-C5	0.151	0.034	0.151	0.034	
11 n-C5	0.102	0.023	0.102	0.023	
12 C6	0.008	0.002	0.008	0.002	
13 C7	0.008	0.002	0.008	0.002	
14 C8	0.003	0.001	0.003	0.001	
15 C9	0.001	0.000	0.001	0.000	
16 C10+	0.000	0.000	0.000	0.000	
17 Benzene	0.000	0.000	0.000	0.000	
18 Toluene	0.000	0.000	0.000	0.000	
19 E-Benze	ne 0.000	0.000	0.000	0.000	
20 Xylenes	0.000	0.000	0.000	0.000	
21 n-C6	0.006	0.001	0.006	0.001	
22 224Trim	ethylp 0.000	0.00	0.000	0.000	
Total	2.662	0.608	2.662	0.608	

```
-- Stream Data -----
                 MW
No. Component
                        LP Oil Flash Oil Sale Oil Flash Gas W&S Gas Total Emissions
                mol %
                       mol %
                              mol %
                                      mol %
                                             mol %
                                                    mol %
1 H2S
              34.80 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
                    0.0000 \quad 0.0000 \quad 0.0000 \quad 0.0000 \quad 0.0000
2 O2
             32.00
3 CO2
                    1.1420 0.0549 0.0000 1.8366 0.3707 1.7099
              44.01
4 N2
             28.01
                    0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 C1
             16.04
                   39.0360 0.5151 0.0000 63.6496 3.4789 58.4483
                   6.9320 0.8172 0.0002 10.8392 5.5174 10.3792
6 C2
             30.07
7 C3
             44.10
                   8.4930 4.2640 0.1035 11.1952 28.1995 12.6651
8 i-C4
                    4.4260 5.0143 2.0717 4.0501 21.9428 5.5968
             58.12
9 n-C4
              58.12
                    7.0670 10.1205 7.1584 5.1159 27.1615 7.0216
10 i-C5
              72.15
                    5.7350 11.8352 12.6384 1.8372 7.2141
                                                        2.3020
11 n-C5
              72.15    5.4720    12.0977    13.3471    1.2384    4.9094    1.5557
             86.16
                    1.1910 2.9262 3.3725 0.0823 0.3586 0.1061
12 C6
13 C7
             100.20 3.8930 9.8786 11.5322 0.0684 0.3655 0.0941
14 C8
             114.23 5.2640 13.4686 15.7845 0.0215 0.1457 0.0322
15 C9
             128.28 3.7820 9.6947 11.3736 0.0040 0.0362 0.0067
              152.67 5.4530 13.9860 16.4156 0.0007 0.0090 0.0014
16 C10+
               78.11
                      0.0350 0.0872 0.1011 0.0016 0.0075 0.0021
17 Benzene
               92.13
                      0.2830 0.7217 0.8444 0.0027 0.0158 0.0038
18 Toluene
                19 E-Benzene
               20 Xylenes
                     1.1130 2.7684 3.2050 0.0553 0.2566 0.0727
21 n-C6
              86.18
22 224Trimethylp
               114.24 0.0080 0.0203 0.0238 0.0001 0.0006 0.0002
 MW
                  52.95
                         93.59
                               100.60 26.98
                                             53.23
                                                    29.25
 Stream Mole Ratio
                      1.0000 0.3899 0.3321 0.6101 0.0577 0.6679
               [BTU/SCF]
                                       1550.91 2989.35 1675.26
 Heating Value
 Gas Gravity
                                     0.93
                                           1.84
               [Gas/Air]
                                                1.01
 Bubble Pt. @ 100F [psia] 1457.94 41.76 11.06
Page 2------ E&P TANK
 RVP @ 100F
             [psia] 364.28 25.40
                                    10.61
 Spec. Gravity @ 100F
                       0.549
                              0.672
                                    0.683
```


Process Streams Report All Streams Tabulated by Total Phase

Client Name: EQT Job: Location: Flowsheet: PEN-54 PEN-16

Connections

	Combined PW	Combined Flash Vapor	Pipeline	Produced Water	Reservoir Gas
From Block	MIX-104	MIX-100	MIX-101	Water Tanks	
To Block	Water Tanks	MIX-105		-	MIX-102

	Stream C	omposition			
Mole Fraction	Combined PW	Combined Flash Vapor	Pipeline	Produced Water	Reservoir Gas
Nitrogen	1.13859E-06	0.000905453	0.00374969	2.63176E-08	0.00387 *
Methane	0.000450537	0.426178	0.799105	2.06618E-05	0.80572 *
CO2	2.51086E-05	0.0108304	0.00254408	1.2534E-05	0.00208 *
Ethane	6.81809E-05	0.220514	0.126704	3.63683E-06	0.1277 *
Propane	1.77676E-05	0.1564	0.0376191	1.07328E-06	0.03536 *
Isobutane	1.01958E-06	0.0366684	0.00646005	2.29864E-08	0.0049 *
n-Butane	4.14752E-06	0.0713504	0.0113544	2.14263E-07	0.00936 *
Isopentane	7.58139E-07	0.0254383	0.00383639	2.55084E-08	0.0022 *
n-Pentane	6.21271E-07	0.02083	0.00315758	2.04207E-08	0.00173 *
n-Hexane	4.88832E-08	0.00402243	0.000671415	6.81891E-10	0.00093 *
Methylcyclopentane	0	0	0	0	0 *
Benzene	8.89761E-07	0.000235857	2.50379E-05	7.8239E-07	4E-05 *
Cyclohexane	5.37305E-08	0.000341886	5.13501E-05	9.16965E-09	0.00013 *
n-Heptane	4.30343E-08	0.00413815	0.000820864	6.96449E-10	0.00152 *
n-Octane	1.09195E-08	0.00119434	0.000283618	1.13607E-10	0.00021 *
n-Nonane	9.23882E-09	0.000328542	9.1378E-05	3.04249E-10	0.00044 *
n-Decane	3.5367E-09	0.000162158	5.58003E-05	8.81811E-11	0.00086 *
n-Undecane	0	0	0	0	0 *
Dodecane	0	0	0	0	0 *
Water	0.999428	0.0109371	0.00190803	0.999959	0 *
Triethylene Glycol	0	0	0	0	0 *
Oxygen	0	0	0	0	0 *
Argon	0	0	0	0	0 *
Carbon Monoxide	0	0	0	0	0 *
Cyclopentane	0	0	0	0	0 *
Isohexane	1.01822E-07	0.0076228	0.00122412	1.5448E-09	0.00174 *
3-Methylpentane	0	0	0	0	0 *
Neohexane	0	0	0	0	0 *
2,3-Dimethylbutane	0	0	0	0	0 *
Methylcyclohexane	0	0	0	0	0 *
Isooctane	2.30208E-09	0.00133221	0.000260698	3.99557E-12	0.00104 *
Decane, 2-Methyl-	0	0	0	0	0 *
Toluene	1.17838E-06	0.000358705	4.50342E-05	1.0151E-06	8E-05 *
m-Xylene	6.35082E-07	0.000191308	2.94166E-05	5.47516E-07	8E-05 *
Ethylbenzene	5.96908E-08	1.94111E-05	2.92859E-06	5.10141E-08	1E-05 *

	Combined	Combined	Pipeline	Produced	Reservoir Gas
	PW	Flash Vapor		Water	
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Nitrogen	0.0227017	0.0238705	119.01	0.000524443	119.034 *
Methane	5.14428	6.43416	14524.3	0.23579	14192.2 *
CO2	0.786489	0.448561	126.853	0.392393	100.509 *
Ethane	1.45917	6.24002	4316.49	0.077791	4216.04 *
Propane	0.55763	6.49028	1879.43	0.0336663	1711.99 *
Isobutane	0.0421781	2.00569	425.402	0.000950385	312.704 *
n-Butane	0.171575	3.90273	747.698	0.00885883	597.328 *
Isopentane	0.0389315	1.72722	313.598	0.00130918	174.28 *
n-Pentane	0.0319031	1.41432	258.11	0.00104806	137.047 *
n-Hexane	0.00299824	0.326214	65.5534	4.18008E-05	87.9956 *
Methylcyclopentane	0	0	0	0	0 *
Benzene	0.0494667	0.0173379	2.21583	0.0434737	3.43061 *
Cyclohexane	0.00321845	0.0270779	4.89627	0.000548962	12.0127 *

Process Streams Report All Streams Tabulated by Total Phase Job: Client Name: EQT Location: Flowsheet: PEN-54 PEN-16

	Combined	Combined	Pipeline	Produced	Reservoir Gas
Mass Flow	PW lb/h	Flash Vapor lb/h	lb/h	Water lb/h	lb/h
n-Heptane	0.00306912	0.390223	93.1899	4.96423E-05	167.23 *
n-Octane	0.000887772	0.128391	36.7053	9.23135E-06	26.3383 *
n-Nonane	0.000843362	0.0396548	13.2782	2.77581E-05	61.9615 *
n-Decane	0.000358154	0.0217129	8.99513	8.92505E-06	134.351 *
n-Undecane	0	0	0	0	0 *
Dodecane	0	0	0	0	0 *
Water	12814.9	0.185427	38.9446	12814.7	0 *
Triethylene Glycol	0	0	0	0	0 *
Oxygen	0	0	0	0	0 *
Argon	0	0	0	0	0 *
Carbon Monoxide	0	0	0	0	0 *
Cyclopentane	0	0	0	0	0 *
Isohexane	0.00624521	0.618199	119.516	9.46981E-05	164.637 *
3-Methylpentane	0	0	0	0	0 *
Neohexane	0	0	0	0	0 *
2,3-Dimethylbutane	0	0	0	0	0 *
Methylcyclohexane	0	0	0	0	0 *
Isooctane	0.000187162	0.143211	33.7391	3.24668E-07	130.438 *
Decane, 2-Methyl-	0	0	0	0	0 *
Toluene	0.0772769	0.0311034	4.70116	0.0665325	8.0933 *
m-Xylene	0.0479882	0.0191137	3.53831	0.041349	9.32537 *
Ethylbenzene	0.00451037	0.00193937	0.352259	0.00385263	1.16567 *

	Combined PW	Combined Flash Vapor	Pipeline	Produced Water	Reservoir Gas
Volumetric Flow	gpm	ft^3/h	ft^3/h	gpm	ft^3/h
Nitrogen	6.16724E-05	0.317578	64.3167	1.4007E-06	36.817
Methane	0.0255209	148.812	12736.5	0.0011524	6599.26
CO2	0.00124698	3.76879	37.9599	0.000613786	14.6482
Ethane	0.00493534	76.3215	1721.36	0.000260038	720.885
Propane	0.00161136	53.736	441.317	9.62906E-05	129.85
Isobutane	0.000111374	12.5237	67.1344	2.4857E-06	11.4019
n-Butane	0.000447269	24.3282	111.152	2.28793E-05	15.9076
Isopentane	9.44437E-05	8.62125	31.8239	3.14799E-06	0.942541
n-Pentane	7.75366E-05	7.05067	25.3548	2.52501E-06	0.453565
n-Hexane	6.92345E-06	1.35055	4.15204	9.57221E-08	-0.365635
Methylcyclopentane	0	0	0	0	0
Benzene	9.29443E-05	0.0796916	0.182403	8.10756E-05	-0.000636337
Cyclohexane	6.55208E-06	0.115162	0.34142	1.10907E-06	-0.0159242
n-Heptane	6.85488E-06	1.3794	3.5402	1.09982E-07	-0.163504
n-Octane	1.92E-06	0.395074	0.768227	1.98072E-08	0.2105
n-Nonane	1.78058E-06	0.107747	0.0817078	5.81498E-08	0.881655
n-Decane	7.44137E-07	0.0527758	-0.0297887	1.84007E-08	2.32855
n-Undecane	0	0	0	0	0
Dodecane	0	0	0	0	0
Water	25.7324	3.81207	29.1529	25.6548	0
Triethylene Glycol	0	0	0	0	0
Oxygen	0	0	0	0	0
Argon	0	0	0	0	0
Carbon Monoxide	0	0	0	0	0
Cyclopentane	0	0	0	0	0
Isohexane	1.44433E-05	2.56351	8.0929	2.17165E-07	-0.583498
3-Methylpentane	0	0	0	0	0
Neohexane	0	0	0	0	0
2,3-Dimethylbutane	0	0	0	0	0
Methylcyclohexane	0	0	0	0	0
Isooctane	4.00686E-07	0.443578	1.12332	6.89455E-10	-0.0314327
Decane, 2-Methyl-	0	0	0	0	0
Toluene	0.000143697	0.120208	0.242116	0.000122827	0.00581235
m-Xylene	8.85007E-05	0.0636193	0.109143	7.5717E-05	0.075142

^{*} User Specified Values
? Extrapolated or Approximate Values

		Process Streams Report All Streams Tabulated by Total Phase		
Client Name:	EQT		Job:	
Location:	PEN-54			
Flowsheet:	PEN-16			

	Combined PW	Combined Flash Vapor	Pipeline	Produced Water	Reservoir Gas
Volumetric Flow	gpm	ft^3/h	ft^3/h	gpm	ft^3/h
Ethylbenzene	8.27366E-06	0.00646199	0.0115597	7.01732E-06	0.00842467

Stream Properties								
Property	Units	Combined PW	Combined Flash Vapor	Pipeline	Produced Water	Reservoir Gas		
Temperature	°F	90	69.7924	90.7854	70	75 *		
Pressure	psig	390	0.625	390	0.625	700 *		
Mole Fraction Vapor		0	1	0.999949	0	0.989805		
Mole Fraction Light Liquid		1	0	5.06831E-05	1	0.0101946		
Mole Fraction Heavy Liquid		0	0	0	0	0		
Molecular Weight	lb/lbmol	18.0168	32.5543	20.421	18.0158	20.3721		
Mass Density	lb/ft^3	62.0469	0.0885526	1.5137	62.2746	2.96954		
Mass Flow	lb/h	12823.4	30.6365	23136.6	12815.6	22368.1		
Vapor Volumetric Flow	ft^3/h	206.672	345.969	15284.7	205.792	7532.52		
Liquid Volumetric Flow	gpm	25.7669	43.1338	1905.63	25.6572	939.119		
Std Vapor Volumetric Flow	MMSCFD	6.48229	0.00857108	10.3187	6.47876	10 *		
Std Liquid Volumetric Flow	sgpm	25.666	0.140665	136.16	25.6211	132.024		
Compressibility		0.0199215	0.991274	0.924227	0.000779757	0.85451		
Specific Gravity		0.994835	1.12401		0.998487			
API Gravity		10.0575			10.0151			
Net Ideal Gas Heating Value	Btu/ft^3	0.594834	1697.9	1115.72	0.0382164	1116		
Net Liquid Heating Value	Btu/lb	-1046.57	19664.3	20675.7	-1058.89	20733.3		

Remarks

	leor.		All St	reams Report treams by Total Phase		
Client Name:	EQT PEN-54				Job:	
Location: Flowsheet:	PEN-54 PEN-16					
riowsheet.	FLIN-10					
			Comm	antions.		
				ections		
Faran Dirak			Reservoir Oil	Sales Oil		
From Block To Block			MIX-102	Oil Tanks		
TO BIOCK			IVIIA-102			
			Ctroom C			
				omposition		
Mole Fraction			Reservoir Oil	Sales Oil		
Nitrogen			0 *	1.6991E-07		
Methane			0.39036 *	0.000934113		
CO2			0.01142 *	3.43045E-05		
Ethane			0.06932 *	0.00997093		
Propane			0.08493 *	0.032131		
Isobutane			0.04426 *	0.0207894		
n-Butane			0.07067 *	0.0575933		
Isopentane			0.05735 *	0.0565232		
n-Pentane			0.05472 *	0.06217		
n-Hexane Methylcyclopentai	no		0.01113 *	0.0422152 0		
Benzene	iie		0.00035 *	0.00165681		-
Cyclohexane			0.00033	0.00413787		
n-Heptane			0.03893 *	0.139668		
n-Octane			0.05264 *	0.135518		
n-Nonane			0.03782 *	0.11924		
n-Decane			0.05453 *	0.188333		
n-Undecane			0 *	0		
Dodecane			0 *	0		
Water Triethylene Glycol	ı		0 *	3.10104E-05 0		
Oxygen	ı		0 *	0		+
Argon			0 *	0		
Carbon Monoxide)		0 *	0		
Cyclopentane			0 *	0		
Isohexane			0.01191 *	0.0570518		
3-Methylpentane			0 *	0		
Neohexane			0 *	0		
2,3-Dimethylbutar			0 *	0		
Methylcyclohexan Isooctane	ie		0 * 8E-05 *	0.0417377		
Decane, 2-Methyl	L		0 *	0.0417377		-
Toluene	'		0.00283 *	0.00928481		
m-Xylene			0.00627 *			
Ethylbenzene			0.00048 *	0.00165059		
			Reservoir Oil	Sales Oil		
Mass Flow			lb/h	lb/h		
Nitrogen			0 *	9.68898E-05		
Methane			339.108 *	0.305045		
CO2 Ethane			27.2154 * 112.87 *	0.030732 6.10307		+
Propane			202.796 *	28.8411		+
Isobutane			139.301 *	24.5967		+
n-Butane			222.423 *	68.1408		
Isopentane			224.06 *	83.0135		
n-Pentane		-	213.785 *	91.3067		
n-Hexane			51.9374 *	74.0533		
Methylcyclopenta	ne		0 *	0		
Benzene			1.48043 *	2.6344		
Cyclohexane n-Heptane			211.234 *	7.08881 284.883		+
n-Octane			325.606 *	315.111		+
n-Nonane			262.663 *	311.306		

		Process Streams Report All Streams Tabulated by Total Phase		
Client Name:	EQT		Job:	
Location:	PEN-54			
Flowsheet:	PEN-16			
	<u> </u>			

Mass Flow	Reservoir Oil lb/h	Sales Oil lb/h		
n-Decane	420.133 *	545.467		
n-Undecane	0 *	0		
Dodecane	0 *	0		
Water	0 *	0.0113721		
Triethylene Glycol	0 *	0		
Oxygen	0 *	0		
Argon	0 *	0		
Carbon Monoxide	0 *	0		
Cyclopentane	0 *	0		
Isohexane	55.5773 *	100.08		
3-Methylpentane	0 *	0		
Neohexane	0 *	0		
2,3-Dimethylbutane	0 *	0		
Methylcyclohexane	0 *	0		
Isooctane	0.494842 *	97.0501		
Decane, 2-Methyl-	0 *	0		
Toluene	14.1198 *	17.4143		
m-Xylene	36.0455 *	41.7721	-	
Ethylbenzene	2.75946 *	3.56709	·	

Valumatria Flanc	Reservoir Oil	Sales Oil		
Volumetric Flow	ft^3/h	gpm		
Nitrogen	0	3.08664E-07		
Methane	105.891	0.00176279		
CO2	1.9122	3.64582E-05		
Ethane	8.50634	0.0247431		
Propane	7.50287	0.105122		
Isobutane	4.06279	0.0850995		
n-Butane	6.14059	0.228778		
Isopentane	5.60236	0.264571		
n-Pentane	5.30635	0.28868		
n-Hexane	1.21715	0.223665		
Methylcyclopentane	0	0		
Benzene	0.0252142	0.00585449		
Cyclohexane	0	0.0181295		
n-Heptane	4.76693	0.834762		
n-Octane	7.08225	0.893872		
n-Nonane	5.55006	0.861322		
n-Decane	8.70476	1.48476		
n-Undecane	0	0		
Dodecane	0	0		
Water	0	-1.61771E-05		
Triethylene Glycol	0	0		
Oxygen	0	0		
Argon	0	0		
Carbon Monoxide	0	0		
Cyclopentane	0	0		
Isohexane	1.31579	0.305576		
3-Methylpentane	0	0		
Neohexane	0	0		
2,3-Dimethylbutane	0	0		
Methylcyclohexane	0	0		
Isooctane	0.0108868	0.279476		
Decane, 2-Methyl-	0	0		
Toluene	0.241383	0.0393901		
m-Xylene	0.616541	0.0950808		
Ethylbenzene	0.0469925	0.00810733		

			Process Stre All Str Tabulated by	eams		
Client Name:	EQT				Job:	
Location:	PEN-54					
Flowsheet:	PEN-16					
			Stream P	roperties		
Property		Units	Reservoir Oil	Sales Oil		
Temperature		°F	75 *	70 *		
Pressure		psig	700 *	0.625		
Mole Fraction Vapor			0.28578	0		
Mole Fraction Light L			0.71422	1		
Mole Fraction Heavy			0	0		
Molecular Weight		lb/lbmol	52.8825	103.3		
Mass Density		lb/ft^3	16.4101	43.3418		
Mass Flow		lb/h	2863.61	2102.78		
Vapor Volumetric Flo		ft^3/h	174.503	48.5162		
Liquid Volumetric Flo		gpm	21.7562	6.04877		
Std Vapor Volumetric	c Flow	MMSCFD	0.493182	0.185395		
Std Liquid Volumetric	c Flow	sgpm	10.2667 *	6.06446		
Compressibility			0.401395	0.00642406		
Specific Gravity				0.694925		
API Gravity				70.7153		
Net Ideal Gas Heatin		Btu/ft^3	2714.31	5237.6		
Net Liquid Heating V	alue	Btu/lb	19339.1	19083.3		
Remarks						

Simulation Initiated on 3/18	3/2016 12:49:54 PM		20160318_EQT_PEN 54_v1.1.pmx		Page 1 of 1
		End	ergy Stream Repor	rt	
Client Name:	EQT			Job:	
Location:	PEN-54				
Flowsheet:	PEN-16				
			Energy Streams		
Energy Stream		Energy Rate	Power	From Bloc	k To Block
Pilot Heat Input		606367 * Btu/h	238.311 * hp		REAC-100
Remarks					

Officiation initiated on 5/10	72010 12.43.341 W	20100310_EQT_1 EN 04_V1:1.pmx		1 age 1 of 4
		20160318_EQT_PEN 54_v1.1.pmx Project Warnings Report		
Client Name:	EQT		Job:	
Location:	PEN-54			
ProMax:ProMax!Pro Warning:		PEN-16!Blocks!VRU ntropy is negative.		

Client Name:	EQT	ı	Jser Val	lue Sets Report	Job:	
Location:	PEN-54					
				k Losses.53		
				lue [ShellLength]		
Parameter Lower Bound		20 0		Upper Bound * Enforce Bounds		ft False
Lower Bouria		<u> </u>	11	Efficice Bourius		r aise
			Hear Va	alue [ShellDiam]		
* Parameter		12		Upper Bound		ft
* Lower Bound		0		* Enforce Bounds		False
			User Va	lue [BreatherVP]		
* Parameter		0.875		Upper Bound		psig
Lower Bound			psig	* Enforce Bounds		False
				ue [BreatherVacP]		
* Parameter		-0.0375		Upper Bound		psig
Lower Bound			psig	* Enforce Bounds		False
			Haan Val	[DamaDadina]		
Parameter			tt	ue [DomeRadius] Upper Bound		ft
Lower Bound			ft	* Enforce Bounds		False
			-			
			User V	alue [OpPress]		
* Parameter		0	psig	Upper Bound		psig
Lower Bound			psig	* Enforce Bounds		False
				e [AvgPercentLiq]		
* Parameter		50		Upper Bound		%
Lower Bound			%	* Enforce Bounds		False
			la a n \ / - !	- May Danes at Lat		
* Daramatar				e [MaxPercentLiq]		0/
* Parameter Lower Bound		90	<u>%</u> %	Upper Bound * Enforce Bounds		% False
20.10. Dodna				Zc.co Bourido		. 3.00
			User Va	alue [AnnNetTP]		
* Parameter		216.414		Upper Bound		bbl/day
* Lower Bound			bbl/day	* Enforce Bounds		False
			User	Value [OREff]		
* Parameter		0	%	Upper Bound		%
Lower Bound			%	* Enforce Bounds		False
* 5				ue [AtmPressure]		
* Parameter			psia	Upper Bound		psia
Lower Bound * User Specified Values			psia Pro	* Enforce Bounds oMax 3.2.15289.0		False Licensed to Trinity Consultants, Inc. and Affiliates
? Extrapolated or Approxi	imate Values			2002-2015 BRE Group, Ltd.		

		User Val	ue Sets Report		
Client Name: Location:	EQT PEN-54			Job:	
Location.	1 LIN-34				
		Haar Wales	FM and improve a Ti		
* Parameter		61.4758 °F	E [MaxLiqSurfaceT] Upper Bound		°F
Lower Bound		°F	* Enforce Bounds		False
			ue [TotalLosses]		
* Parameter Lower Bound		14.0109 ton/yr ton/yr	Upper Bound * Enforce Bounds		ton/yr False
Lower Bound		tonyi	Efficice Bourius		raise
		User Value	e [WorkingLosses]		
* Parameter		2.06825 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		llaan Value	[Ctanding agess]		
* Parameter		0.266902 ton/yr	E [StandingLosses] Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		User Value	e [RimSealLosses]		
* Parameter		0 ton/yr	Upper Bound * Enforce Bounds		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		Hear Value	[WithdrawalLoss]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
* Davenster		42.3144 ton/yr	e [LoadingLosses]		t = 10 to 10
* Parameter Lower Bound		42.3144 ton/yr	Upper Bound * Enforce Bounds		ton/yr False
		User Value	[DeckFittingLosses]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		Hear Value	[DeckSeamLosses]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
			e [FlashingLosses]		
* Parameter Lower Bound		60.7705 ton/yr ton/yr	Upper Bound * Enforce Bounds		ton/yr False
Lower Board		tornyr	Efficied Bodings		1 disc
		User Value	e [GasMoleWeight]		
* Parameter		0.0546688 kg/mol	Upper Bound		kg/mol
Lower Bound		kg/mol	* Enforce Bounds		False
Remarks This User Value Set	was programma	tically generated. GUID={5524A	B8C-40B1-4354-9DD7-EED65	5770BF87}	
		Tank	CLosses.331		
			ue [ShellLength]		
* Parameter * Lower Bound		20 ft 0 ft	Upper Bound * Enforce Bounds		ft False
Lower bound		υπ	Emorce bounds		raise

			loor Va	lua Cata Banart		
		•	Jser va	lue Sets Report		
Client Name:	EQT				Job:	
Location:	PEN-54					
			User V	alue [ShellDiam]		
* Parameter		12		Upper Bound	ft	
* Lower Bound		0	ft	* Enforce Bounds	False	
				lue [BreatherVP]		
* Parameter		0.875		Upper Bound	psi	g
Lower Bound			psig	* Enforce Bounds	False	
			l Iaan Mal	[Draothan)/aaDl		
* Parameter		-0.0375	oser val	ue [BreatherVacP] Upper Bound	psi	~
Lower Bound			psig psig	* Enforce Bounds	False	9
201101 200110			p 0.9	2	. 4.00	
			User Val	ue [DomeRadius]		
Parameter			ft	Upper Bound	ft	
Lower Bound			ft	* Enforce Bounds	False	
				/alue [OpPress]		
* Parameter			psig	Upper Bound	psi	g
Lower Bound			psig	* Enforce Bounds	False	
			laan Mali	o [AvaDana anti in]		
* Doromotor		50		ue [AvgPercentLiq]	<u></u> %	
* Parameter Lower Bound			% %	Upper Bound * Enforce Bounds	False	
			, -			
		l	Jser Valu	ie [MaxPercentLiq]		
* Parameter		90		Upper Bound	%	
Lower Bound			%	* Enforce Bounds	False	
				alue [AnnNetTP]		
* Parameter		883.436	bbl/day	Upper Bound		/day
* Lower Bound		0	bbl/day	* Enforce Bounds	False	
			Hoor	Value IODE#1		
* Parameter		0		Value [OREff] Upper Bound	%	
Lower Bound			<u>//</u> %	* Enforce Bounds	False	
34.14						
			User Val	ue [AtmPressure]		
* Parameter		14.2535		Upper Bound	psi	а
Lower Bound			psia	* Enforce Bounds	False	
				e [MaxLiqSurfaceT]		
* Parameter		61.4758		Upper Bound	°F	
Lower Bound			°F	* Enforce Bounds	False	
			Hear Va	luo [Totall acces]		
* Parameter		0.35526		Iue [TotalLosses] Upper Bound	ton	/vr
Lower Bound			ton/yr	* Enforce Bounds	False	y 1
		U	lser Valu	e [WorkingLosses]		
* Parameter		0.05921		Upper Bound	ton	/yr
Lower Bound			ton/yr	* Enforce Bounds	False	
				e [StandingLosses]		
* Parameter			ton/yr	Upper Bound	ton	/yr
Lower Bound			ton/yr	* Enforce Bounds	False	

		llser Val	ue Sets Report		
		OSCI Val	uc octs report		
Client Name:	EQT			Job:	
Location:	PEN-54				
			e [RimSealLosses]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		User Value	[WithdrawalLoss]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		User Value	e [LoadingLosses]		
* Parameter		0.9413 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		User Value [DeckFittingLosses]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		User Value	[DeckSeamLosses]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		User Value	[FlashingLosses]		
* Parameter		3.63907 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		User Value	[GasMoleWeight]		
* Parameter		0.0452458 kg/mol	Upper Bound		kg/mol
Lower Bound		kg/mol	* Enforce Bounds		False
Remarks					
This User Value Set	was programmat	tically generated. GUID={234170)19-6BCF-4B6A-8C2C-C51E3	F9510A8}	

ATTACHMENT T

Emission Summary Sheet

ATTACHMENT T – FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Use extra pages if necessary.

					1 0									
Emission Point ID# (Emission Source	NO) _x	C	CO	V	ОС	S	O_2	PN	110	PM	12.5	GHG	(CO ₂ e)
ID)	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001 (S001-S012, S032, C001)	1.89	8.28	1.59	6.95	1.34	1.09	0.01	0.05	0.14	0.63	0.14	0.63	2,257.71	9,888.76
C002 (S001-S012, S032, C002)	1.15	5.03	0.96	4.22	1.34	1.09	0.01	0.03	0.09	0.38	0.09	0.38	1,372.71	6,012.48
E013 (S013)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E014 (S014)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E015 (S015)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E016 (S016)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E017 (S017)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E018 (S018)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E019 (S019)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E020 (S020)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E021 (S021)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E022 (S022)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E023 (S023)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E024 (S024)	0.11	0.48	0.09	0.40	0.01	0.03	6.6E-04	2.9E-03	0.01	0.04	0.01	0.04	135.14	591.90
E025 (S025)	0.11	0.48	0.09	0.40	0.01	0.03	6.6E-04	2.9E-03	0.01	0.04	0.01	0.04	135.14	591.90
E026 (S026)	1.2E-03	5.4E- 03	1.0E- 03	4.5E- 03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E- 05	4.1E- 04	9.4E- 05	4.1E- 04	1.52	6.64
E027 (S027)	1.2E-03	5.4E- 03	1.0E- 03	4.5E- 03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E- 05	4.1E- 04	9.4E- 05	4.1E- 04	1.52	6.64
E033 (S033)	1.2E-03	5.4E- 03	1.0E- 03	4.5E- 03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E- 05	4.1E- 04	9.4E- 05	4.1E- 04	1.52	6.64
E028 (S028)					0.33	1.46							4.88	21.35

E029 (S029)					0.33	1.46							4.88	21.35
E030 (S030)	0.88	3.86	1.76	7.73	0.68	2.97	1.8E-03	0.01	0.06	0.26	0.06	0.26	1,716.24	7,517.13
E031 (S031)	0.88	3.86	1.76	7.73	0.68	2.97	1.8E-03	0.01	0.06	0.26	0.06	0.26	1,716.24	7,517.13
E032 (S032)					49.91	12.98								
Fugitives						37.56								560.07
Haul Roads										1.33		0.13		
Facility Total	6.64	29.07	7.62	33.38	54.72	62.04	0.03	0.14	0.49	3.47	0.49	2.27	9,329.47	41,423.16
Facility Total (excl. fugitives)	6.64	29.07	7.62	33.38	4.81	11.48	0.03	0.14	0.49	2.13	0.49	2.13	9,329.47	40,863.09

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT T – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Use extra pages if necessary.

Emission Point	Formal	dehyde	Ben	zene	Tol	uene	Ethylb	enzene	Xyle	enes	Hex	ane	Total H	IAPs
ID#	lb/hr	tpy	lb/hr	tpy										
C001 (S001- S012, S032, C001)			8.8E-04	9.0E-04	1.1E-03	1.4E-03	6.8E-05	8.5E-05	6.5E-04	8.3E-04	0.02	0.02	0.03	0.03
C002 (S001- S012, S032, C002)			8.8E-04	9.0E-04	1.1E-03	1.4E-03	6.8E-05	8.5E-05	6.5E-04	8.3E-04	0.02	0.02	0.03	0.03
E013 (S013)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E014 (S014)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E015 (S015)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E016 (S016)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E017 (S017)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E018 (S018)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E019 (S019)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E020 (S020)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E021 (S021)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E022 (S022)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E023 (S023)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E024 (S024)	8.2E-05	3.6E-04	2.3E-06	1.0E-05	3.7E-06	1.6E-05					2.0E-03	0.01	2.1E-03	0.01
E025 (S025)	8.2E-05	3.6E-04	2.3E-06	1.0E-05	3.7E-06	1.6E-05					2.0E-03	0.01	2.1E-03	0.01
E026 (S026)	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E- 05	2.3E-05	1.0E- 04
E027 (S027)	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E- 05	2.3E-05	1.0E- 04
E033 (S033)	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E- 05	2.3E-05	1.0E- 04

E028 (S028)			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	2.0E-03	1.0E- 02
E029 (S029)			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	2.0E-03	1.0E- 02
E030 (S030)	0.06	0.27	4.8E0-3	2.1E-02	1.7E-03	7.4E-03	7.5E-05	3.3E-04	5.9E-04	2.6E-03			0.10	0.43
E031 (S031)	0.06	0.27	4.8E0-3	2.1E-02	1.7E-03	7.4E-03	7.5E-05	3.3E-04	5.9E-04	2.6E-03			0.10	0.43
E032 (S032)			0.03	0.01	0.04	0.01	2.2E-03	5.7E-04	2.1E-02	5.5E-03	0.81	0.21	1.24	0.32
Fugitives				0.03		0.07		< 0.01		0.09		0.81		2.41
Haul Roads														
Facility Total	0.13	0.55	0.04	0.08	0.04	0.10	2.5E-03	1.4E-03	0.02	0.11	0.89	1.20	1.54	3.83
Facility Total (excl. fugitives)	0.13	0.55	1.1E-02	0.04	5.7E-03	1.8E-02	2.9E-04	8.3E-04	2.5E-03	6.8E-03	0.08	0.18	0.30	1.09

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT U

Class I Legal Advertisement

RECOMMENDED PUBLIC NOTICE TEMPLATE

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-C General Permit Registration for the construction of a new natural gas production facility PEN 54 located off C/R 10 road, near Pennsboro, in Ritchie County, West Virginia. The latitude and longitude coordinates are: 39.25742 N, -80.92734 W.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Pollutant	Emissions in tpy (tons per year)
NOx	29.07
CO	33.38
VOC	11.49
SO ₂	0.14
PM	2.13
Total HAPs	3.83
Carbon Dioxide Equivalents (CO₂e)	40,863.09

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated this the **(Day)** day of **(Month)**, 2016.

By: EQT Production Company
Kenneth Kirk, Executive Vice President
625 Liberty Ave Suite 1700
Pittsburgh, PA 15222

ATTACHMENT V

General Permit Registration Application Fee