

625 Liberty Ave, Suite 1700 Pittsburgh PA 15222 www.eqt.com

TEL: (412) 395-3699

R. Alex Bosiljevac Environmental Coordinator

August 25, 2016

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: G70-B General Permit Registration Resubmittal Application

Resubmittal of Existing G70-B Application to Update Compressor Engine

EQT Production Company

OXF-122 Natural Gas Production Site

Dear Director Durham:

Enclosed are one (1) original hard copy and two (2) complete PDFs included on CD-ROM of a G70-B General Permit Registration Resubmittal Application for the OXF-122 natural gas production site. The OXF-122 natural gas production site is currently permitted under registration G70-A146.

On May 31, 2016 EQT received a completeness letter from William T. Rothwell, P.E. of WVDAQ for a permit application filed to receive the authority to operate additional units at the OXF-122 site. Since this submittal, it has been determined that a larger compressor engine will required to meet the specifications of the Site. In order to receive the authority to construct the larger compressor engine, EQT submits this resubmittal application to amend the information presented in the G70-B application that WVDAQ currently has under review.

A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely.

R. Alex Bosiljevac EQT Corporation

Enclosures

EQT Production Company

G70-B General Permit Registration Resubmittal Application

OXF 122 Natural Gas Production Site

Permit No. G70-A146

Harrisville, West Virginia

Prepared By:

ENVIRONMENTAL RESOURCES MANAGEMENT, Inc. Hurricane, West Virginia

August 2016

INTRODUCTION

EQT Production Company (EQT) submits this G70-B General Permit Registration to the WVDEP's Department of Air Quality to receive the authority to operate new units at the OXF-122 facility, currently permitted under G70-A146. This application addresses the operational activities associated with the production of natural gas and condensates at the OXF-122 pad.

FACILITY DESCRIPTION

The EQT OXF-122 natural gas production site will operate in Ritchie County, WV and consist of eight (8) natural gas wells. Natural gas and liquids (including water and condensates) will be extracted from underground deposits. The natural gas will be transported from the wells to a gas line for compression and additional processing, as necessary. The produced liquids will be stored in storage vessels. At the time of this submittal, there is no equipment installed at the OXF-122 facility.

The applicant is currently authorized to operate the following equipment under permit G70-A146:

- Five (5) natural gas wells;
- Five (5) line heaters each rated at 1.0 MMBtu/hr heat input;
- One (1) 140 bbl sand trap blowdown tank for storage of condensate and water;
- Six (6) 400 barrel (bbl) tanks for storage of condensate and water;
- Two (2) thermoelectric generator (TEG) each rated at 0.013 MMBtu/hr heat input; and
- One (1) enclosed combustion device with a capacity of 11.66 MMBtu/hr heat input.

The applicant seeks to authorize the operation of:

- Three (3) additional natural gas wells;
- One (1) 425 HP stationary natural gas compressor engine;
- Three (3) additional line heaters each rated at 1.54 MMBtu/hr heat input;
- One (1) additional line heater rated at 1.15 MMBtu/hr heat input;
- Five (5) line heaters with an increased heat input rating from 1.0 MMBtu/hr to 1.54 MMBtu/hr;
- One (1) additional enclosed combustion device with a capacity of 20.00 MMBtu/hr heat input; and
- Two (2) additional 400 bbl tanks for storage of condensate and water.

A process flow diagram is included in this application in Attachment D.

STATEMENT OF AGGREGATION

The OXF-122 pad is located in Ritchie County, WV and operated by EQT Production Company. Stationary sources of air pollutants may require aggregation of total emission levels if these sources share the same industrial grouping, are operating under common control, and are classified as contiguous or adjacent properties. EQT will operate the OXF-122 with the same industrial grouping as nearby facilities, and some of these facilities are under common control. EQT, however, is not subject to the aggregation of stationary emission sources because these sites do not meet the definition of contiguous or adjacent facilities.

The OXF-122 pad will operate under SIC code 1311 (Crude Petroleum and Natural Gas Extraction). There are surrounding wells and compressor stations operated by EQT that share the same two-digit major SIC code of 13 for Crude Petroleum and Natural Gas Extraction. Therefore, the OXF-122 pad does share the same SIC codes as the surrounding wells and compressor stations.

EQT Production Company is the sole operator of the OXF-122 pad. EQT is also the sole operator of other production sites and compressor stations in the area. Therefore, EQT does qualify as having nearby operations under common control.

EQT's OXF-122 Natural Gas Production site is within 0.55 miles of the OXF-121 pad and 0.77 miles of the OXF-163 pad. These facilities do not meet the definition of contiguous or adjacent properties since they are not in contact and do not share a common boundary. Operations conducted at the OXF-122 site do not rely on or interact with other sites. Furthermore, operations separated by this distance do not meet the common sense notion of a "plant."

On June 3, 2016 the EPA Administrator published the *Source Determination for Certain Emission Units in the Oil and Natural Gas Sector*. This notice clarifies how properties in the oil and natural gas sector are determined to be adjacent in order to assist permitting authorities and permit applicants in making consistent source determinations. The following regulatory text defines "adjacent" for the oil and gas sector in terms of proximity.

Pollutant emitting activities shall be considered adjacent if they are located on the same surface site, or on surface sites that are located within 1/4 mile of one another.

The OXF-121 and OXF-163 pads are located on surface sites located greater than EPA's ¼ mile proposed ruling. Although the applicant notes that the EPA's Source Determination Rule does not mandate adoption by the State, it is the

only guidance available on a finite distance impacting the adjacency determination, and has been noted due to lack of WVDAQ guidance. Based upon the proximity of nearby facilities, EQT does not believe aggregation based upon adjacency is required.

Based on the above reasoning, EQT is not subject to the aggregation of stationary emission sources since the stationary sources are not considered contiguous or adjacent facilities.

REGULATORY DISCUSSION

This section outlines the State air quality regulations that could be reasonably expected to apply to the OXF-122 pad and makes an applicability determination for each regulation based on activities conducted at the site and the emissions of regulated air pollutants. This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-B permit application forms.

The West Virginia State Regulations address federal regulations, including Prevention of Significant Deterioration permitting, Title V permitting, New Source Performance Standards, and National Emission Standards for Hazardous Air Pollutants. The regulatory requirements in reference to OXF-163 are described in detail in the below section.

WEST VIRGINIA STATE AIR REGULATIONS

45 CSR 02 – To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

The line heaters are indirect heat exchangers that combust natural gas but are exempt since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 04 – To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

Operations conducted at the OXF-122 wellpad are subject to this requirement. Based on the nature of the process at the wellpad, the presence of objectionable odors is unlikely.

45 CSR 06 - Control of Air Pollution from the Combustion of Refuse

The enclosed combustion devices located on the OXF-122 natural gas production site are subject to this regulation. Per 45 CSR 6-4.3, opacity of emissions from the enclosed combustion devices shall not exceed 20 percent, except as provided by

4.4. Particulate matter emissions from this unit will not exceed the levels calculated in accordance with 6-4.1.

§45-6-4.1 Determination for Maximum Allowable Particulate Emissions

Emissions (lb/hr) = F x Incinerator Capacity (tons/hr)

Enclosed Combustion Device with 20.00 MMBtu/hr heat input:

Incinerator Capacity = 0.26 tons per hour or 525 lbs/hr

 $\rho NG = 0.042$ lb/scf – Density of NG from EPA AP42 – Sections 1.4 and 3.2 (NG combustion)

$$\frac{300,000\ scf}{day} imes \frac{1\ day}{24\ hrs} imes \frac{0.042\ lb}{scf} = \frac{525\ lb}{hr} = \frac{0.26\ ton}{hr}$$

If the Incinerator Capacity is less than $15,000 \, lbs/hr$, then F = 5.43

F = 5.43 * (0.26 tons per hour)

F = 1.41 lbs/hour

Enclosed Combustion Device with 11.66 MMBtu/hr heat input:

Incinerator Capacity = 0.12 tons per hour or 245 lbs/hr

 ρNG = 0.042 lb/scf – Density of NG from EPA AP42 – Sections 1.4 and 3.2 (NG combustion)

$$\frac{140,000 \ scf}{day} * \frac{1 \ day}{24 \ hours} * \frac{0.042 \ lb}{scf} = \frac{245 \ lb}{hr} = \frac{1,073 \ tons}{year}$$

If the Incinerator Capacity is less than $15,000 \, \text{lbs/hr}$, then $F = 5.43 \, \text{m}$

F = 5.43 * (0.12 tons per hour)

F = 0.67 lbs/hour

The enclosed combustion devices utilize AP-42 Section 1.4 PM emission factors to determine emissions from the combustion of refuse natural gas. Based upon the type of fuel combusted and the emission factors utilized, the PM emissions from the enclosed combustion devices will be well below the maximum allowable particulate emissions mandated by 45 CSR 06.

45 CSR 10 - To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

The line heaters are indirect heat exchangers that combust natural gas but are exempt since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 13 – Permits for Construction, Modification, Relocation, and Operation of Stationary Sources of Air Pollutants

This G70-B permit application is being submitted for the operational activities associated with EQT's production of natural gas.

45 CSR 14 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD). The G70-B applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the OXF-122 pad will not exceed emission thresholds established by this permitting program. EQT will monitor future construction and modification activities at the site closely and will compare future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

45 CSR 16 - Standards of Performance for New Stationary Sources (NSPS)

45CSR 16 applies to registrants that are subject to NSPS requirements described in more detail in the Federal Regulations section. Applicable requirements of NSPS, Subpart JJJJ and OOOO are included in the G70-B general permit.

This facility is expected to contain gas well affected facilities under Subpart OOOO. This facility will contain a spark ignition internal combustion engine subject to Subpart JJJJ. No additional NSPS are applicable for this facility. Additional discussion is provided in the Federal Regulation Discussion of this permit application.

45 CS R19 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contributed to Non-attainment

Federal construction permitting programs regulate new and modified sources of non-attainment pollutants under Non-Attainment New Source Review (NNSR). The G70-B applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the OXF-122 pad will not exceed emission thresholds established by either of these permitting programs. EQT will monitor future construction and modification activities at the site closely and will compare future increase in emissions with the NSR thresholds to ensure these activities will not trigger this program.

45 CSR 25 – Control of Air Pollution from Hazardous Waste Treatment, Storage, and Disposal Facilities

No hazardous waste will be burnt at this well site; therefore, it is not subject to this hazardous waste rule.

45 CSR 30 - Requirements for Operating Permits

45 CSR 30 applies to the requirements of the federal Title V operating permit program (40 CFR 70). The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of combination of HAPs, and 100 tpy of other regulated pollutants.

The potential emissions of regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpad is not a major source for Title V purposes.

45 CSR 34 – National Emission Standards for Hazardous Air Pollutants (NESHAP)

45 CSR 34 applies to registrants that are subject to the NESHAP requirements. Excluded from G70-B general permit eligibility are sources that are subject to NESHAP Subpart HHH.

The following NESHAP included in the G70-B permit are not subject to the OXF-122 facility:

• 40CFR63 Subpart HH (National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities).

FEDERAL REGULATIONS

40 CFR 60 Subpart JJJJ (Standards of Performance for Stationary Spark Ignition Internal Combustion Engines).

Subpart JJJJ sets forth nitrogen oxides (NOx), carbon monoxide (CO), and volatile organic compound (VOC) emission limits, fuel requirements, installation requirements, and monitoring requirements based on the year of installation of the subject internal combustion engine.

The CAT G3408C is a 425 bhp 4 stroke rich burn (4SRB) spark ignition (SI) engine manufactured in 2016. Per 40CFR60.4230(a)(4)(iii), an engine manufactured on or after July 1, 2008 with a maximum engine power less than 500 HP must comply with the provisions of 40 CFR 60 Subpart JJJJ.

The CAT 3408C compressor engine is subject to the emission standards contained in 40 CFR 60 Subpart JJJJ Table 1 - NOx, CO, VOC Emissions Standards for Stationary Non-Emergency SI Engines greater than 100 HP. In order to demonstrate compliance with these standards, EQT is subject to the requirements of 40 CFR §60.4243(b)(2)(ii), which mandates that a maintenance plan and maintenance records are kept, the engine is maintained and operated in a manner consistent with good air pollution control practices, and an initial performance test is conducted with one (1) year of engine startup.

40 CFR 60 Subpart OOOO (Standards of Performance for Crude oil and Natural Gas Production, Transmission and Distribution)

EPA published the NSPS for the oil and gas sector on August 16, 2012. EPA published final amendments to the subpart on September 23, 2013.

Subpart OOOO establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC) and sulfur dioxide (SO₂) emissions from affected facilities that commence construction, modification or reconstruction after August 23, 2011. The applicable provisions and requirements of Subpart OOOO are included under the G70-B permit.

The only affected facilities expected to be subject to Subpart OOOO located at the OXF-122 production pad are listed below:

• Each gas well affected facility, which is a single natural gas well.

There are several equipment types that will be installed at OXF-122 that do not meet the affected facility definitions as specified by EPA. These include pneumatic controllers and storage vessels.

<u>Pneumatic Controllers:</u> Pneumatic controller installed at this facility will be intermittent bleed rate devices. Therefore, the facility will not qualify as a pneumatic controller affected facility.

Storage vessels: Based on PTE calculations included within this permit, each storage vessel will be manifolded and routed to an enclosed combustion device such that emissions from each of these tanks are expected to be below 6 tons per year (tpy) of VOC. Therefore, these tanks will not be considered group 2 storage vessel affected facilities as specified in §60.5365(e).

No additional NSPS are expected to be applicable to this facility.

40CFR63 Subpart ZZZZ (National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines)

Subpart ZZZZ establishes national emission limitations and operating limitations for hazardous air pollutants (HAPs) emitted from stationary reciprocating internal combustion engines (RICE) located at major and area sources of HAP emissions. This Subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations and operating limitations.

The CAT G3408C is a 425 bhp 4 stroke rich burn (4SRB) spark ignition (SI) engine manufactured in 2016. The engine meets the requirements of 40 CFR 60 Subpart JJJJ. Per 40CFR63.6590(c)(1), no further requirements apply for a new stationary RICE located at an area source subject to regulation under 40 CFR 60 Subpart JJJJ.

No additional NESHAP are expected to be applicable to this facility.

General Permit G70-B will establish an emission cap on the following regulated and hazardous air pollutants:

	Maximum Annual	OXF-122 Site Emission Levels		
Pollutant	Emission Limit			
	(tons/year)	(tons/year)		
Nitrogen Oxides	50	23.90		
Carbon Monoxide	80	22.29		
Volatile Organic	80	15.02		
Compounds	00	15.02		
Particulate Matter – 10/2.5	20	0.47		
Sulfur Dioxide	20	0.10		
Any Single Hazardous Air	8	1 21 (as UCUO)		
Pollutant	O	1.31 (as HCHO)		
Total Hazardous Air	20	2.13		
Pollutants	20	2,13		

The fugitive emissions of a stationary source shall not be considered in determining whether it is a major stationary source for the purposes of 45CSR30-2.26.b or for eligibility of this General Permit.

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25304 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G70-B GENERAL PERMIT REGISTRATION APPLICATION

PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF NATURAL GAS PRODUCTION FACILITIES LOCATED AT THE WELL SITE

GOVERNMENT OF THE PROPERTY OF	DUCTION TACIL		TED AT THE WE		
□CONSTRUCTION □MODIFICATION			ADMINISTRATIV I ADMINISTRATIV		
□RELOCATION					
	CTION 1. GENER				
Name of Applicant (as registered with the	WV Secretary of St	ate's Office):	EQT Production	n Company	
Federal Employer ID No. (FEIN): 25-0724	685				
Applicant's Mailing Address: 625 Liberty	Avenue, Suite 1	700			
City: Pittsburgh	State: PA			ZIP Code: 152 :	22
Facility Name: OXF-122					
Operating Site Physical Address: None If none available, list road, city or town and	d zip of facility.				
City: Harrisville, WV	Zip Code: 26456			County: Ritchi	e
Latitude & Longitude Coordinates (NAD83 Latitude: 39.13226 Longitude: -80.83105	, Decimal Degrees	to 5 digits):			
SIC Code: 1311		DAQ Facili	ty ID No. (For exist	ing facilities)	
NAICS Code: 211111		085-00048		,	
C	CERTIFICATION O	OF INFORMA	TION		
This G70-B General Permit Registration Official is a President, Vice President, Sec Directors, or Owner, depending on business authority to bind the Corporation, Pa Proprietorship. Required records of dai compliance certifications and all required Representative. If a business wishes to cert off and the appropriate names and sign unsigned G70-B Registration Application utilized, the application will be	retary, Treasurer, structure. A busin intership, Limited ly throughput, hou red notifications may a Authorized latures entered. An will be returned	General Partn tess may certi Liability Con rs of operatio ust be signed Representativ y administra to the applic	er, General Manage fy an Authorized R npany, Association, n and maintenance, by a Responsible C e, the official agree tively incomplete o ant. Furthermore,	er, a member of the epresentative who Joint Venture or general correspondicial or an Author below shall or improperly signific the G70-B foot of the G70-B f	he Board of o shall have Sole indence, horized be checked gned or
I hereby certify that is an Authorized (e.g., Corporation, Partnership, Limited Lia obligate and legally bind the business. If th notify the Director of the Division of Air Q I hereby certify that all information contain documents appended hereto is, to the best of have been made to provide the most compression.	bility Company, A e business changes uality immediately ed in this G70-B C f my knowledge, to	ssociation Joints Authorized	ed Representative, a	Proprietorship) a Responsible Off	ind may ficial shall
Responsible Official Signature: Name and Title: Kenneth Kirk - Executive Email: kkirk@eqt.com		<u>t</u> Phone:	(412) 553-5700 25 6	F	Fax:
If applicable: Authorized Representative Signature: Name and Title: Email:	Phone: Date:		Fax:		
If applicable: Environmental Contact_Alex Bosilievac Name and Title: Environmental Coordin Email: abosilievac@eqt.com	ator Phone: [41] Date:	2) 395-3699		Fax:	

OPERATING SITE INFORMATION

Briefly describe the proposed new operation and/or any change(s) to the facility: EQT proposes the addition of one (1) low pressure separator to regulate flashing emissions from produced fluids originating from the eight (8) high pressure phase separators. The low pressure separator will be installed between the phase separators and produced fluid tanks. The fluid stream will pass through a line heater prior to entering the low pressure separator. A natural gas compressor engine will be installed to compress the natural gas realized at the low pressure tower and directed to the sales pipeline. The applicant also seeks to increase the heat input of five (5) line heaters from 1.0 MMBtu/hr to 1.54 MMBtu/hr and add four (4) additional 1.54 MMBtu/hr line heaters to the registration.

Directions to the facility: From US-50, travel South on Sunnyside, CR-50/30 to Oxford Rd, CR-21. Go Southwest on Oxford Rd/S.Fork Hughes River 5.4 mi to Taylor Drain Rd, Cr-19. Go South on Taylor Drain Rd I Cr-19 for 4.2 miles (past EQT Pierce). Go West on Sugar Run Rd for 1.9 miles. At fork, go South, across bridge, on Summers Rd Brushy Fork for 1.5 miles. At top of hill, access road will be on the Left. Take access road 0.9 miles back to pads, going left at fork.

ATTACHMENTS AND SUPPORTING DOCUMENTS

ATTACHMENTS AND SU	TORTING DOCUMENTS						
I have enclosed the following required document	ts:						
Check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22).							
 □ Check attached to front of application. □ I wish to pay by electronic transfer. Contact for payment (incl. name and email address): ☑ I wish to pay by credit card. Contact for payment (incl. name and email address): Alex Bosiljevac - abosiljevac@eqt.com 							
	⊠\$500 (Construction, Modification, and Relocation) □\$300 (Class II Administrative Update) ⊠\$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or OOOO ¹ □\$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH ²						
¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESF requirements by complying with NSPS, Subparts IIII and/or J. NSPS and NESHAP fees apply to new construction or if the so	JJJ.						
⊠ Responsible Official or Authorized Representative Signatu	re (if applicable)						
⊠ Single Source Determination Form (must be completed in	its entirety) - Attachment A						
☐ Siting Criteria Waiver (if applicable) – Attachment B	□ Current Business Certificate – Attachment C						
□ Process Flow Diagram – Attachment D	□ Process Description – Attachment E						
□ Plot Plan – Attachment F	☐ Area Map – Attachment G						
☐ G70-B Section Applicability Form – Attachment H	☐ Emission Units/ERD Table – Attachment I						
□ Fugitive Emissions Summary Sheet – Attachment J							
☐ Gas Well Affected Facility Data Sheet (if applicable) – Att	achment K						
 ⊠ Storage Vessel(s) Data Sheet (include gas sample data, US HYSYS, etc.), etc. where applicable) – Attachment L 	EPA Tanks, simulation software (e.g. ProMax, E&P Tanks,						
	Heater Treaters, In-Line Heaters if applicable) - Attachment						
□ Tanker Truck Loading Data Sheet (if applicable) – Attachn	nent O						
☐ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P							
□ Pneumatic Controllers Data Sheet – Attachment Q							
 ⊠ Air Pollution Control Device/Emission Reduction Device(sapplicable) – Attachment R 	Sheet(s) (include manufacturer performance data sheet(s) if						
⊠ Emission Calculations (please be specific and include all c	alculation methodologies used) - Attachment S						
☐ Facility-wide Emission Summary Sheet(s) – Attachment T							
⊠ Class I Legal Advertisement – Attachment U							
☐ One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments							

All attachments must be identified by name, divided into sections, and submitted in order.

Table of Contents

ATTACHMENT A SINGLE SOURCE DETERMINATION FORM

ATTACHMENT B CITING CRITERIA WAIVER – (NOT APPLICABLE)

ATTACHMENT C BUSINESS CERTIFICATE

ATTACHMENT D PROCESS FLOW DIAGRAM

ATTACHMENT E PROCESS DESCRIPTION

ATTACHMENT F PLOT PLAN

ATTACHMENT G AREA MAP

ATTACHMENT H APPLICABILITY FORM

ATTACHMENT I EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

ATTACHMENT J FUGITIVE EMISSIONS SUMMARY SHEET

ATTACHMENT K GAS WELL AFFECTED FACILITY DATA SHEET

ATTACHMENT L STORAGE VESSEL DATA SHEET

ATTACHMENT M HEATER AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART Dc

ATTACHMENT N INTERNAL COMBUSTION ENGINE DATA SHEET

ATTACHMENT O TANKER TRUCK LOADING DATA SHEET

ATTACHMENT P GLYCOL DEHYDRATION UNIT DATA SHEET – (NOT APPLICABLE)

ATTACHMENT Q PNEUMATIC CONTROLLERS DATA SHEET

ATTACHMENT R AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION

DEVICE (ERD) SHEET

ATTACHMENT S EMISSION CALCULATIONS

ATTACHMENT T FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET

ATTACHMENT U CLASS I LEGAL ADVERTISEMENT

Attachment A SINGLE SOURCE DETERMINATION FORM

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Answer each question with a detailed explanation to determine contiguous or adjacent properties which are under a common control and any support facilities. This section must be completed in its entirety.

Provide a map of contiguous or adjacent facilities (production facilities, compressor stations, dehydration facilities, etc.) which are under common control and those facilities that are not under common control but are support facilities. Please indicate the SIC code, permit number (if applicable), and the distance between facilities in question on the map.

1	· · · · · · · · · · · · · · · · · · ·	
Are the facilities owned by the same parent company or a subsidiary of the parent company? Provide the owners identity and the percentage of ownership of each facility.	Yes ⊠	No 🗆
Does an entity such as a corporation have decision making authority over the operation of a second entity through a contractual agreement or voting interest? Please explain.	Yes □	No ⊠
Is there a contract for service relationship between the two (2) companies or, a support/dependency relationship that exists between the two (2) companies? Please explain.	Yes 🗆	No ⊠
Do the facilities share common workforces, plant managers, security forces, corporate executive officers or board executives?	Yes ⊠	No □
Will managers or other workers frequently shuttle back and forth to be involved actively at both facilities?	Yes ⊠	No 🗆
Do the facilities share common payroll activities, employee benefits, health plans, retirement funds, insurance coverage, or other administrative functions? Please explain.	Yes ⊠	No □
Does one (1) facility operation support the operation of the other facility?	Yes 🗆	No ⊠
Is one (1) facility dependent on the other? If one (1) facility shuts down, what are the limitations on the other to pursue outside business? Please explain.	Yes 🗆	No ⊠
Are there any financial arrangements between the two (2) entities?	Yes 🗆	No ⊠
Are there any legal or lease agreements between the two (2) facilities?	Yes 🗆	No ⊠
Do the facilities share products, byproducts, equipment, or other manufacturing or air pollution control device equipment? Please explain.	Yes 🗆	No ⊠
Do all the pollutant-emitting activities at the facilities belong to the same SIC Code? Please provide the SIC Codes. 1311	Yes ⊠	No □
Was the location of the new facility chosen primarily because of its proximity to the existing facility to integrate the operation of the two (2) facilities? Please explain.	Yes 🗆	No ⊠
Will materials be routinely transferred between the two (2) facilities? Please explain the amount of transfer and how often the transfers take place and what percentages go to the various entities.	Yes 🗆	No ⊠
Does the facility influence production levels or compliance with environmental regulations at other facilities? Who accepts the responsibility for compliance with air quality requirements? Please explain.	Yes 🗆	No ⊠

Attachment B CITING CRITERIA WAIVER – (NOT APPLICABLE)

Attachment C BUSINESS CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO:
EQT PRODUCTION COMPANY
625 LIBERTY AVE 1700
PITTSBURGH, PA 15222-3114

BUSINESS REGISTRATION ACCOUNT NUMBER:

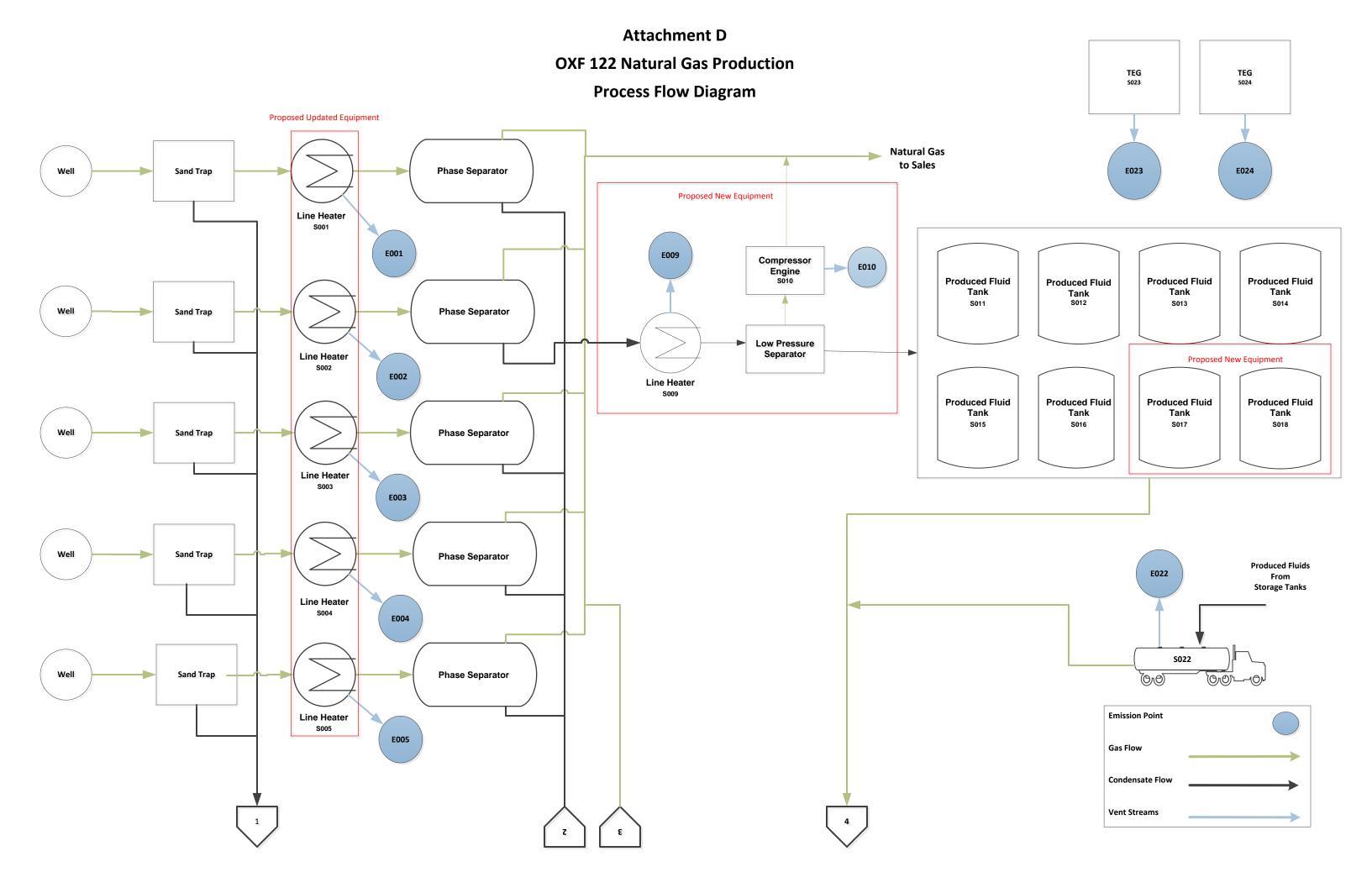
1022-8081

This certificate is issued on:

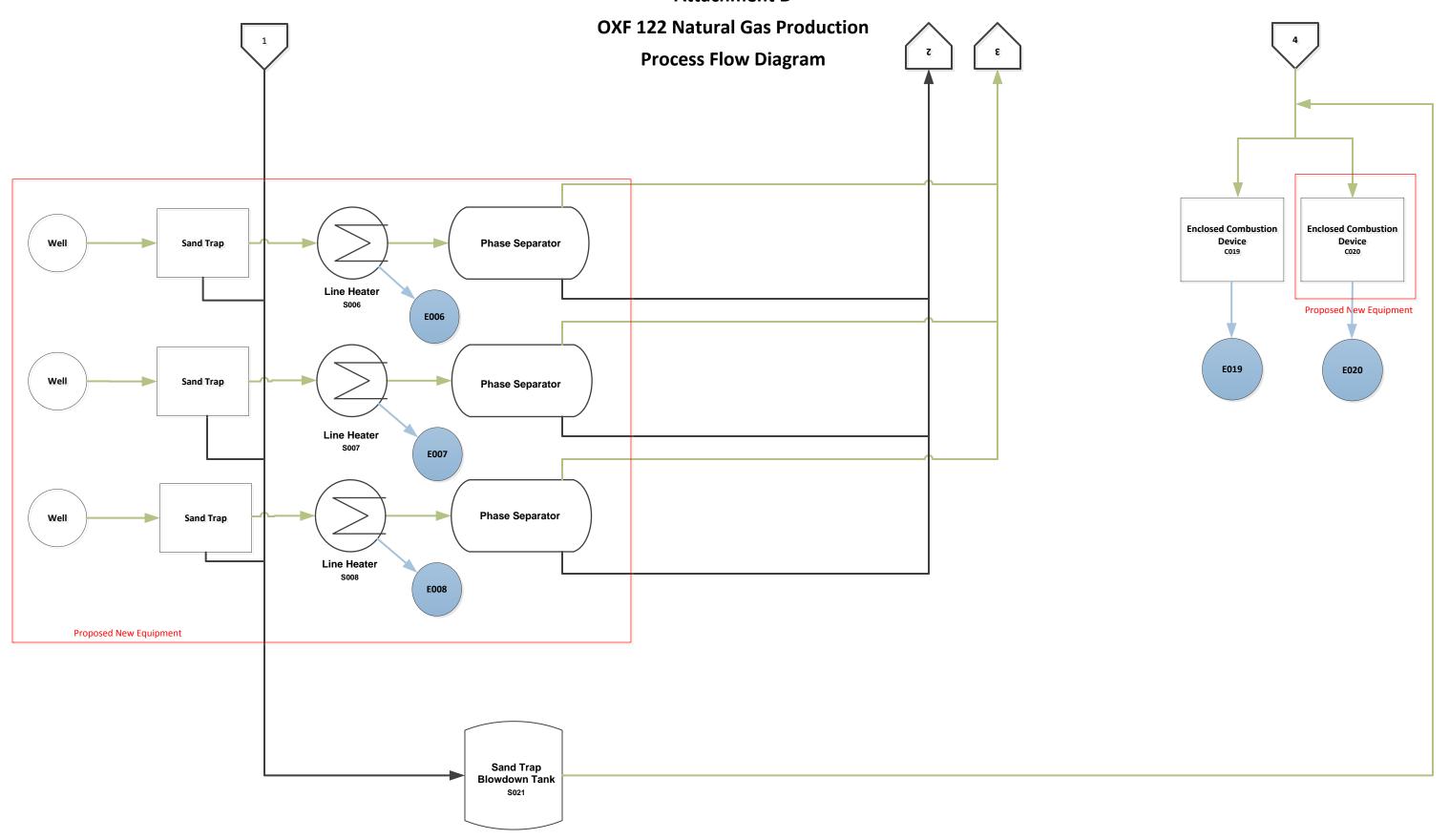
08/4/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.


This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.


TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.3 L0553297664

Attachment D PROCESS FLOW DIAGRAM

Attachment D

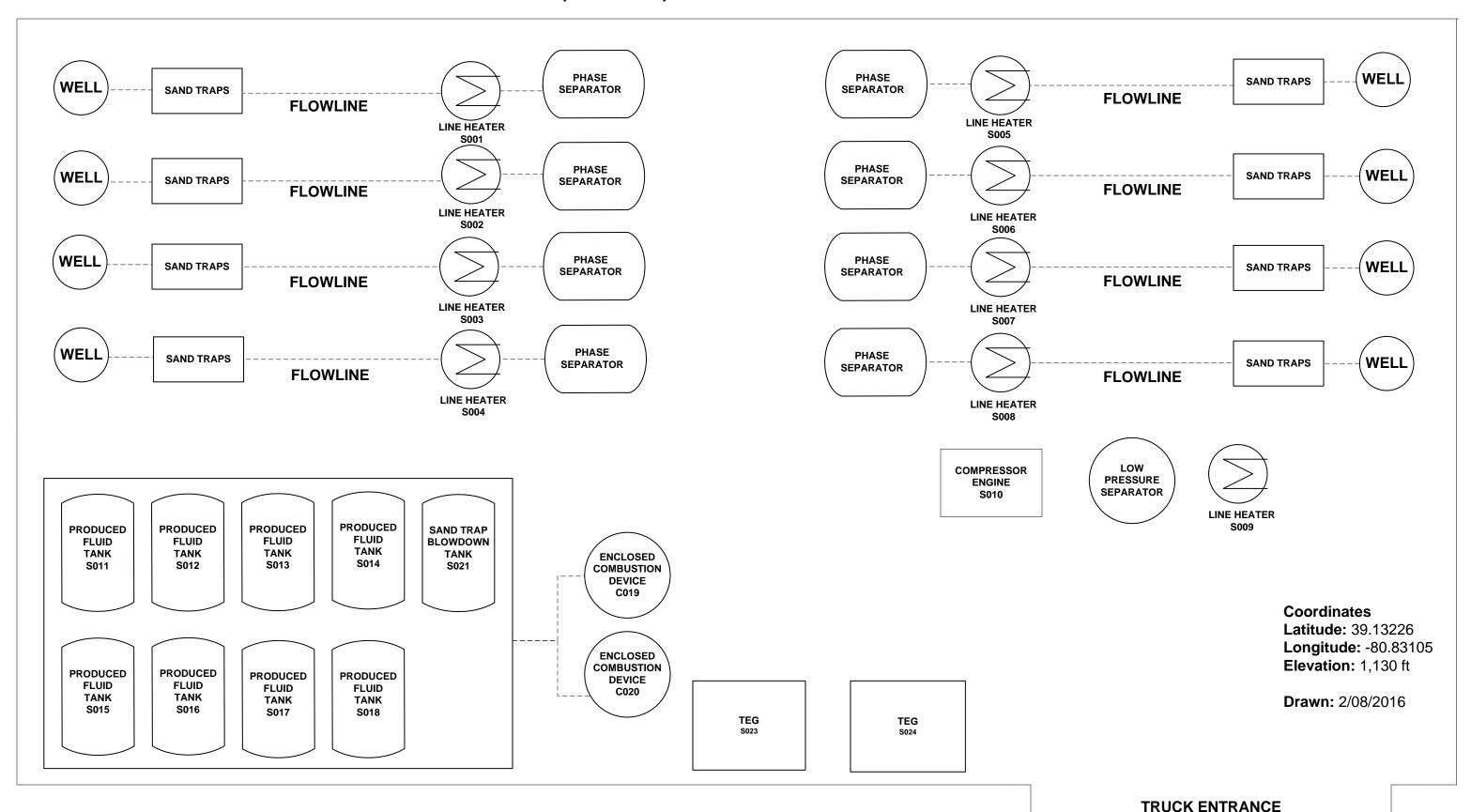
Attachment E PROCESS DESCRIPTION

Attachment E Process Description

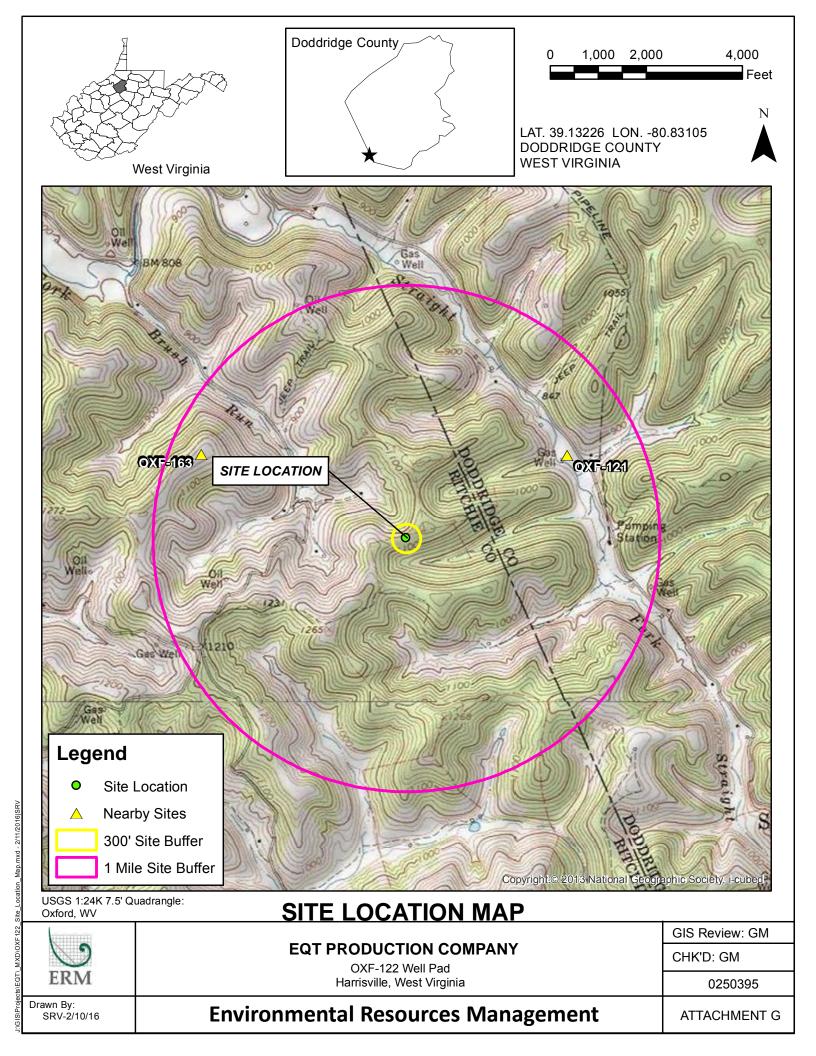
This permit application is being filed for EQT Production Company and addresses operational activities associated with the OXF-122 natural gas production site. Incoming raw natural gas from the eight (8) wells enters the site through a pipeline. The raw gas is first routed through the sand traps to remove sediment. Fluids from these sand traps are manually blowdown to the sand trap blowdown tank (S021), as needed. From the sand traps, raw gas is routed through line heaters (S001-S008) to assist with the phase separation process in the downstream phase separators. In the high pressure phase separators, produced fluids are removed from the raw gas before being dumped to a second stage of fluid separation. The produced fluids pass through a line heater (\$009) to further assist in the separation process. At this low pressure separator, produced fluid pressure is reduced from approximately 390 psig to 30 psig. Vapors realized at the low pressure separator are directed to a 425 bhp compressor engine (S010) and routed to the sales pipeline. Produced fluid from the low pressure separator is sent to the produced fluids storage tanks (S011-S018). Emissions from the produced fluids tanks and sand trap blowdown tank are directed to one of the two enclosed combustion units (C019, C020) and burnt. Produced fluids are pumped into a tank truck (S022) on an asneeded basis and are disposed of off-site. Vapors during truck loading will be controlled by either of the two enclosed combustion units.

Two thermoelectric generation units (S023, S024) are operated and provide power to the OXF-122 natural gas production site.

A process flow diagram is included as Attachment D.


Attachment F PLOT PLAN

z


Attachment F Plot Plan

EQT Production Company

OXF 122 (085-00048) Natural Gas Production Site

Attachment G AREA MAP

Attachment H APPLICABILITY FORM

ATTACHMENT H - G70-B SECTION APPLICABILITY FORM

General Permit G70-B Registration Section Applicability Form

General Permit G70-B was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-B allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

G	SENERAL PERMIT G70-B APPLICABLE SECTIONS
X Section 5.0	Gas Well Affected Facility (NSPS, Subpart OOOO)
X Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹
□Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO)
X Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO and/or NESHAP Subpart HH
X Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc
□Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)
□Section 11.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO) ²
□Section 12.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO) ²
X Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines, Microturbines
X Section 14.0	Tanker Truck Loading ³
□Section 15.0	Glycol Dehydration Units ⁴

- 1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 8.
- 2 Applicants that are subject to Section 11 and 12 may also be subject to the applicable RICE requirements of Section 13.
- 3 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.
- 4 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

Attachment I

EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
S001	E001	Line Heater	2016	2016	1.54 MMBtu/hr	Modification *July 2016	NA	NA
S002	E002	Line Heater	2016	2016	1.54 MMBtu/hr	Modification *July 2016	NA	NA
S003	E003	Line Heater	2016	2016	1.54 MMBtu/hr	Modification *July 2016	NA	NA
S004	E004	Line Heater	2016	2016	1.54 MMBtu/hr	Modification *July 2016	NA	NA
S005	E005	Line Heater	2016	2016	1.54 MMBtu/hr	Modification *July 2016	NA	NA
S006	E006	Line Heater	2016	2016	1.54 MMBtu/hr	New *July 2016	NA	NA
S007	E007	Line Heater	2016	2016	1.54 MMBtu/hr	New *July 2016	NA	NA
S008	E008	Line Heater	2016	2016	1.54 MMBtu/hr	New *July 2016	NA	NA
S009	E009	Line Heater	2016	2016	1.15 MMBtu/hr	New *July 2016	NA	NA
S010	E010	Natural Gas Compressor Engine	2016	2016	425 bhp	New *July 2016	NA	NA
S011	E019 E020	Produced Fluid Tank	2016	2015	400 bbl	Modification *July 2016	C019 C020	NA
S012	E019 E020	Produced Fluid Tank	2016	2015	400 bbl	Modification *July 2016	C019 C020	NA
S013	E019 E020	Produced Fluid Tank	2016	2015	400 bbl	Modification *July 2016	C019 C020	NA
S014	E019 E020	Produced Fluid Tank	2016	2015	400 bbl	Modification *July 2016	C019 C020	NA
S015	E019 E020	Produced Fluid Tank	2016	2015	400 bbl	Modification *July 2016	C019 C020	NA
S016	E019 E020	Produced Fluid Tank	2016	2015	400 bbl	Modification *July 2016	C019 C020	NA
S017	E019 E020	Produced Fluid Tank	2016	2015	400 bbl	Modification *July 2016	C019 C020	NA

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
S018	E019 E020	Produced Fluid Tank	2016	2015	400 bbl	Modification *July 2016	C019 C020	NA
C019	E019	Enclosed Combustion Device	2016	2015	11.66 MMBtu/hr	Modification *July 2016	NA	NA
C020	E020	Enclosed Combustion Device	2016	2015	20.00 MMBtu/hr	New *July 2016	NA	NA
S021	E019 E020	Sand Trap Blowdown Tank	2016	2015	100 bbl	Existing	C019 C020	NA
S022	E019 E020 E022	Tank Truck Loading Rack	2016	2015	79,660 gal/day	Modification *July 2016	NA	NA
S023	E023	Thermal Electric Generator	2016	2015	0.013 MMBtu/hr	Existing	NA	NA
S024	E024	Thermal Electric Generator	2016	2015	0.013 MMBtu/hr	Existing	NA	NA

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

*OXF-122 is currently permitted to operate under G70-A151. This facility has not commenced operations at the time of this submittal. To provide clarity to Attachment I, units are noted as "New" if they were not included in G70-A151, "Existing" if there was no change from the permitted conditions, or "Modification" if there is a difference between the G70-A151 issued registration and the requested updates in this G70-B application. Since operations have not commenced at the time of this application submittal, all installation dates are listed as 2016.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

Attachment J FUGITIVE EMISSIONS SUMMARY SHEET

			ATTACHMEN	T J – FUGITIVE EMISS	SIONS SUMN	IARY SHE	ET				
	Sources of fugitive emissions may include loading operations, equipment leaks, blowdown emissions, etc.										
	Use extra pages for each associated source or equipment if necessary.										
	Source/Equipment: Facility Wide										
	Leak Detection Method Used □ Audible, visual, and olfactory (AVO) inspections □ Infrared (FLIR) cameras □ Other (please describe) Permittee will follow section 4.1.4 in issued permit.							☐ None required			
Componer	nent Closed		Source of Leak Factors		Stream type	Estimated Emissions (tpy)					
Туре	Vent System	Count		er (specify))	(gas, liquid, etc.)	VOC	HAP	GHG (CO ₂ e)			
Pumps	☐ Yes ☐ No				☐ Gas ☐ Liquid ☐ Both						
Valves	☐ Yes ⊠ No	306	EPA, 40 CFF	R 98 Subpart W	⊠ Gas □ Liquid □ Both	0.69	0.38	29.34			
Safety Reli Valves	ef ☐ Yes ⊠ No	9	EPA, 40 CFF	EPA, 40 CFR 98 Subpart W			0.02	1.28			
Open Ended Lines	d □ Yes ⊠ No	22	EPA, 40 CFF	EPA, 40 CFR 98 Subpart W		0.11	0.06	4.77			
Sampling Connection	□ Yes □ No				☐ Gas ☐ Liquid ☐ Both						
Connection (Not sampling	I IXI NO	1,342	EPA, 40 CFF	EPA, 40 CFR 98 Subpart W		0.34	0.19	14.30			
Compressor	□ Yes ⊠ No	1	component counts are Compressor components (Table W-1B: Default average used for major equipment. 12 valves and 57 connections) and connection counts.	⊠ Gas □ Liquid □ Both						
Flanges	☐ Yes ☐ No				☐ Gas ☐ Liquid ☐ Both						
Other ¹	☐ Yes ☐ No				☐ Gas ☐ Liquid ☐ Both						
1 Other equ	ipment types m	ay includ	e compressor seals, relief valves,	diaphragms, drains, meters, etc.							
			sources of fugitive emissions (e.gled surfaces associated with pro			natic controllers	, etc.):				
Please indic	cate if there are	any close	ed vent bypasses (include compone	ent): NA							
Specify all	equipment used	l in the cl	osed vent system (e.g. VRU, ERD	, thief hatches, tanker truck loadi	ng, etc.) NA						

Attachment K GAS WELL AFFECTED FACILITY DATA SHEET

ATTACHMENT K - GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device
47-085-10086	05/2016	05/2016	Green Completion
47-085-10087	05/2016	05/2016	Green Completion
47-085-10085	05/2016	05/2016	Green Completion
TBD			Green Completion

^{*}Anticipated

Note:

If future wells are planned and no API number is available please list as PLANNED. If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

047 = State code. The state code for WV is 047.

001 = County Code. County codes are odd numbers, beginning with 001

(Barbour) and continuing to 109 (Wyoming).

00001= Well number. Each well will have a unique well number.

Attachment L STORAGE VESSEL DATA SHEET

ATTACHMENT L – STORAGE VESSEL DATA SHEET

1. Bulk Storage Area Name OXF-122 Storage Tank Area	2. Tank Name Produced Fluid Tanks (S011-S018)
3. Emission Unit ID number S011 – S018	4. Emission Point ID number E019 or E020
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:
Anticipated 6/2016	☐ New construction ☐ New stored material ☒ Other
Was the tank manufactured after August 23, 2011?	☐ Relocation
⊠ Yes □ No	Refocution
7A. Description of Tank Modification (if applicable) Addition	of upstream low pressure separator.
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.
☐ Yes ⊠ No	
7C. Was USEPA Tanks simulation software utilized?	
☐ Yes ⊠ No	
If Yes, please provide the appropriate documentation and items	s 8-42 below are not required.
ANK INFORMATION	
8. Design Capacity (specify barrels or gallons). Use the internal	ll cross-sectional area multiplied by internal height.
16,800 gallons	T
9A. Tank Internal Diameter (ft.) 12	9B. Tank Internal Height (ft.) 20
10A. Maximum Liquid Height (ft.) 20	10B. Average Liquid Height (ft.) 10
11A. Maximum Vapor Space Height (ft.) 20	11B. Average Vapor Space Height (ft.) 10
12. Nominal Capacity (specify barrels or gallons). This is also	
13A. Maximum annual throughput (gal/yr) 28,769,597	13B. Maximum daily throughput (gal/day) 78,821
14. Number of tank turnovers per year 1,713	15. Maximum tank fill rate (gal/min) 54.74
16. Tank fill method ☐ Submerged ☐ Splash	⊠ Bottom Loading
17. Is the tank system a variable vapor space system? \Box Yes	⊠ No
If yes, (A) What is the volume expansion capacity of the system	· ·
(B) What are the number of transfers into the system per	year?
18. Type of tank (check all that apply):	
oximes Fixed Roof $oximes$ vertical $oximes$ horizontal $oximes$ flat root	\boxtimes cone roof \square dome roof \square other (describe)
\square External Floating Roof \square pontoon roof \square double	deck roof
☐ Domed External (or Covered) Floating Roof	
\square Internal Floating Roof \square vertical column support	\square self-supporting
\square Variable Vapor Space \square lifter roof \square diaphragm	
☐ Pressurized ☐ spherical ☐ cylindrical	
☐ Other (describe)	
RESSURE/VACUUM CONTROL DATA	
19. Check as many as apply:	
☐ Does Not Apply ☐ Rupt	ure Disc (psig)
☐ Inert Gas Blanket of ☐ Carb	on Adsorption ¹
	es, thermal oxidizers, enclosed combustors)
□ Conservation Vent (psig) □ Conservati	denser ¹
-0.5 oz Vacuum Setting 14.0 oz Pressure Setting	
 ☑ Emergency Relief Valve (psig) 	
-0.5 oz Vacuum Setting 14.4 oz Pressure Setting	
☐ Thief Hatch Weighted ☐ Yes ☒ No - A lock down screw	hatch will be installed instead of Thief Hatch.
1 Complete appropriate Air Pollution Control Device Sheet	

20. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).									
Material Name	Flashing I	Flashing Loss		Breathing Loss		Working Loss		ssions	Estimation
							Loss		Method ¹
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Produced Fluid (Pre-Control)	136.38	597.34	0.02	0.07	0.10	0.43	136.49	597.84	O - ProMax

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

TANK CONSTRUCTION AND OPERATIO	N INFORMATION							
21. Tank Shell Construction:								
☐ Riveted ☐ Gunite lined ☐ Epoxy-coated rivets ☐ Other (describe) WELDED								
21A. Shell Color: Green								
22. Shell Condition (if metal and unlined):								
22A. Is the tank heated? \square Yes \boxtimes No	22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank							
23. Operating Pressure Range (psig):			•					
24. Is the tank a Vertical Fixed Roof Tank?	24A. If yes, for dome roof provide radius (ft): 24B. If yes, for cone roof, provide sl							
⊠ Yes □ No			0.06	-				
25. Complete item 25 for Floating Roof Tanks	\Box Does not apply	\boxtimes	l					
25A. Year Internal Floaters Installed:								
25B. Primary Seal Type (check one): Meta	allic (mechanical) show for mounted resilient se	-		ent seal				
<u> </u>			SCI10C).					
25C. Is the Floating Roof equipped with a second				`				
25D. If yes, how is the secondary seal mounted			ner (describ	e):				
25E. Is the floating roof equipped with a weath	er shield?	□ No						
25F. Describe deck fittings:								
26. Complete the following section for Interna	l Floating Roof Tanks	□ Does not apply	y					
26A. Deck Type: ☐ Bolted ☐ W	elded/	26B. For bolted decks.	, provide dec	k construction:				
26C. Deck seam. Continuous sheet constructio	n:							
\square 5 ft. wide \square 6 ft. wide \square 7 ft. wide		\square 5 x 12 ft. wide \square	other (de	escribe)				
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. For column supp	orted	26G. For column supported				
		tanks, # of columns:		tanks, diameter of column:				
27. Closed Vent System with VRU? ☐ Yes [⊠ No							
28. Closed Vent System with Enclosed Combus	stor? ⊠ Yes □ No							
SITE INFORMATION								
29. Provide the city and state on which the data	in this section are based:	Charleston, WV						
30. Daily Avg. Ambient Temperature (°F): 70.	0	31. Annual Avg. Maxi	mum Tempe	rature (°F): 65.5				
32. Annual Avg. Minimum Temperature (°F): 4	14.0	33. Avg. Wind Speed	(mph): 18 m	ph				
34. Annual Avg. Solar Insulation Factor (BTU/	ft²-day): 1,123	35. Atmospheric Press	eure (psia): 14	4.7 (Atmosphere)				
LIQUID INFORMATION								
36. Avg. daily temperature range of bulk liquid (°F): 82.9	36A. Minimum (°F): 8	2.9		imum (°F): 82.9				
37. Avg. operating pressure range of tank (psig): 0 psig	37A. Minimum (psig):	0 psig	37B. Max	imum (psig): 0 psig				

38A. Minimum liquid surface temperature (°F):	82.9	38B. 0	88B. Corresponding vapor pressure (psia): 0.43				
39A. Avg. liquid surface temperature (°F): 82.9)	39B. (39B. Corresponding vapor pressure (psia): 0.43				
40A. Maximum liquid surface temperature (°F)	: 82.9	40B. (Corresponding vapor pressure (psia): 0.43				
41. Provide the following for each liquid or gas	to be stored in the tank.	Add add	ditional pages if necessary.				
41A. Material name and composition:	Produced Flui	d					
41B. CAS number:							
41C. Liquid density (lb/gal):	7.9						
41D. Liquid molecular weight (lb/lb-mole):	19.68						
41E. Vapor molecular weight (lb/lb-mole):							
41F. Maximum true vapor pressure (psia):							
41G. Maximum Reid vapor pressure (psia):							
41H. Months Storage per year.	From: January To: December						
42. Final maximum gauge pressure and temperature prior to transfer into tank used as inputs into flashing emission calculations.	30 psig 110 F						

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴
NA	NA	NA	NA

- 1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc.
- 2. Enter storage tank Status using the following:

EXIST Existing Equipment

NEW Installation of New Equipment

REM Equipment Removed

- 3. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc.
- 4. Enter the maximum design storage tank volume in gallons.

ATTACHMENT L – STORAGE VESSEL DATA SHEET GENERAL INFORMATION (REQUIRED)

GENERAL INFORMATION (REQUIRED)	
1. Bulk Storage Area Name OXF-122 Storage Tank Area	2. Tank Name Sand Trap Blowdown Tank
3. Emission Unit ID number S021	4. Emission Point ID number E019 or E020
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:
Anticipated 06/2016	☐ New construction ☐ New stored material ☒ Other
Was the tank manufactured after August 23, 2011?	☐ Relocation
⊠ Yes □ No	
7A. Description of Tank Modification (if applicable) Addit	-
7B. Will more than one material be stored in this tank? <i>If so, a</i>	a separate form must be completed for each material.
☐ Yes	
7C. Was USEPA Tanks simulation software utilized?	
☐ Yes No	
If Yes, please provide the appropriate documentation and item	ns 8-42 below are not required.
ANK INFORMATION	2 2 1 12 2 11 2 2 11 2 1
8. Design Capacity (specify barrels or gallons). Use the interr 5,880 gallons	nal cross-sectional area multiplied by internal height.
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.) 10
10A. Maximum Liquid Height (ft.) 8	10B. Average Liquid Height (ft.) 5
11A. Maximum Vapor Space Height (ft.) 8	11B. Average Vapor Space Height (ft.) 5
12. Nominal Capacity (<i>specify barrels or gallons</i>). This is also	
13A. Maximum annual throughput (gal/yr) 306,600	13B. Maximum daily throughput (gal/day) 840
	15. Maximum tank fill rate (gal/min) 4.1
16. Tank fill method □ Submerged □ Splash	⊠ Bottom Loading
17. Is the tank system a variable vapor space system? Yes	
If yes, (A) What is the volume expansion capacity of the system (B) What are the number of transfers into the system per	
18. Type of tank (check all that apply):	year?
	of \square cone roof \square dome roof \square other (describe)
☐ External Floating Roof ☐ pontoon roof ☐ doubl	e deck roof
☐ Domed External (or Covered) Floating Roof	
☐ Internal Floating Roof ☐ vertical column support	□ self-supporting
☐ Variable Vapor Space ☐ lifter roof ☐ diaphragm	1
☐ Pressurized ☐ spherical ☐ cylindrica	
☐ Other (describe)	
PRESSURE/VACUUM CONTROL DATA	
19. Check as many as apply:	
\square Does Not Apply \square Rup	oture Disc (psig)
☐ Inert Gas Blanket of ☐ Car	bon Adsorption ¹
☑ Vent to Vapor Combustion Device¹ (vapor combustors, flat	res, thermal oxidizers, enclosed combustors)
☐ Conservation Vent (psig) ☐ Con	ndenser ¹
Vacuum Setting Pressure Setting	
-0.5 oz Vacuum Setting 14.4 oz Pressure Setting	
☐ Thief Hatch Weighted ☐ Yes ☒ No - Two (2) emergence	y hatches set at 16 oz

¹ Complete appropriate Air Pollution Control Device Sheet										
20. Expected Emission Ra	ite (submi	it Test Dat	ta or Calcı	ılations he	re or elsev	where in th	ne applicat	ion).		
Material Name	Flashi	ng Loss	Breathing Loss		Working Loss		Total Emissions Loss		Estimation Method ¹	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy		
Produced Fluid (Pre control)	5.49	1.00	<0.01	<0.01	<0.01	<0.01	5.50	1.00	EPA - ProMax	

TANK CONSTRUCTION AND OPERATIO	ON INFORMATION							
21. Tank Shell Construction:								
☐ Riveted ☐ Gunite lined ☐ Epoxy-coated rivets ☒ Other (describe) WELDED								
21A. Shell Color: Green	21B. Roof Color: Green	21C. Year Last Painted: NA						
22. Shell Condition (if metal and unlined):								
⊠ No Rust □ Light Rust □ Dense	Rust							
22A. Is the tank heated? ☐ Yes ☒ No	22B. If yes, operating temperature:	22C. If yes, how is heat provided to tank?						
23. Operating Pressure Range (psig):								
24. Is the tank a Vertical Fixed Roof Tank?	24A. If yes, for dome roof provide radius (ft):	24B. If yes, for cone roof, provide slop (ft/ft):						
⊠ Yes □ No	5 ft.	NA						
25. Complete item 25 for Floating Roof Tanks	s □ Does not apply ⊠							
25A. Year Internal Floaters Installed:								
25B. Primary Seal Type (check one): Met	rallic (mechanical) shoe seal	unted resilient seal						
□ Vaŗ	oor mounted resilient seal	scribe):						
25C. Is the Floating Roof equipped with a seco	ndary seal? Yes No							
25D. If yes, how is the secondary seal mounted	1? (check one) \square Shoe \square Rim \square Ot	her (describe):						
25E. Is the floating roof equipped with a weath	er shield?							
25F. Describe deck fittings:								
26. Complete the following section for Interna	al Floating Roof Tanks \boxtimes Does not apply	y						
26A. Deck Type: ☐ Bolted ☐ W	Velded 26B. For bolted decks	, provide deck construction:						
26C. Deck seam. Continuous sheet construction	on:							
\square 5 ft. wide \square 6 ft. wide \square 7 ft. wid	e \square 5 x 7.5 ft. wide \square 5 x 12 ft. wide \square	other (describe)						
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²): 26F. For column supp	orted 26G. For column supported						
	tanks, # of columns:	tanks, diameter of column:						
27. Closed Vent System with VRU? ☐ Yes	□ No	•						
28. Closed Vent System with Enclosed Combu	stor? ⊠ Yes □ No							
SITE INFORMATION								
29. Provide the city and state on which the data	in this section are based: Charleston, WV							

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

30. Daily Avg. Ambient Temperature (°F): 70 °F		31. Annual Avg. Maximum Temperature (°F): 65.5 °F					
32. Annual Avg. Minimum Temperature (°F): 44 °F			33. Avg. Wind Speed (mph): 18 mph				
34. Annual Avg. Solar Insulation Factor (BTU/	34. Annual Avg. Solar Insulation Factor (BTU/ft²-day): 1,123			ure (psia): 14.7	0		
LIQUID INFORMATION							
36. Avg. daily temperature range of bulk	36A. Minimum (°F):	79.6		36B. Maximu	n (°F): 79.6		
liquid (°F): 79.6							
37. Avg. operating pressure range of tank	37A. Minimum (psig)	0.0		37B. Maximui	m (psig): 0.0		
(psig): 0.0 (atmospheric)	(atmospheric)			(atmosphe	ric)		
	((,		
38A. Minimum liquid surface temperature (°F)	79.6	38B. Corresponding vapor pressure (psia): 0.59					
39A. Avg. liquid surface temperature (°F): 79.	39A. Avg. liquid surface temperature (°F): 79.6		39B. Corresponding vapor pressure (psia): 0.59				
40A. Maximum liquid surface temperature (°F)	10A. Maximum liquid surface temperature (°F): 79.6		40B. Corresponding vapor pressure (psia): 0.59				
41. Provide the following for each liquid or gas	s to be stored in the tank.	Add add	litional pages if	necessary.			
41A. Material name and composition:	Produced Flu	id					
41B. CAS number:							
41C. Liquid density (lb/gal):	6.83						
41D. Liquid molecular weight (lb/lb-mole):	21.72						
41E. Vapor molecular weight (lb/lb-mole):	37.33						
41F. Maximum true vapor pressure (psia):							
41G. Maximum Reid vapor pressure (psia):		<u> </u>					
41H. Months Storage per year.	From: January						
	To: December						
42. Final maximum gauge pressure and	85.0 F						
temperature prior to transfer into tank used as	393 psig						
inputs into flashing emission calculations.							

Attachment M

HEATER AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART Dc

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
S001	E001	Line Heater	2015	Modification	1.54	1,262
S002	E002	Line Heater	2015	Modification	1.54	1,262
S003	E003	Line Heater	2015	Modification	1.54	1,262
S004	E004	Line Heater	2015	Modification	1.54	1,262
S005	E005	Line Heater	2015	Modification	1.54	1,262
S006	E006	Line Heater	2015	New	1.54	1,262
S007	E007	Line Heater	2015	New	1.54	1,262
S008	E008	Line Heater	2015	New	1.54	1,262
S009	E009	Line Heater	2015	New	1.15	1,262
S021	E021	TEG	2015	Existing	0.013	1,262
S022	E022	TEG	2015	Existing	0.013	1,262

*OXF-122 is currently permitted to operate under G70-A151. This facility has not commenced operations at the time of this submittal. To provide clarity to Attachment M, units are noted as "New" if they were not included in G70-A151, "Existing" if there was no change from the permitted conditions, or "Modification" if there is a difference between the G70-A151 issued registration and the requested updates in this G70-B application. Since operations have not commenced at the time of this application submittal, all installation dates are listed as 2016.

- Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

Attachment N INTERNAL COMBUSTION ENGINE DATA SHEET

ATTACHMENT N - INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

	J						
Emission Unit I	D# ¹	SO	10				
Engine Manufac	turer/Model	CAT / 3408C					
Manufacturers F	Rated bhp/rpm	425 / 1800					
Source Status ²		N	IS				
Date Installed/ Modified/Remov	ved/Relocated ³	07/2	2016				
Engine Manufac		20	16				
Check all applic Rules for the en EPA Certificate if applicable) ⁵	gine (include			□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources	
Engine Type ⁶		48	RB				
APCD Type ⁷		NS	CR				
Fuel Type ⁸		PQ					
H ₂ S (gr/100 scf))	0.25					
Operating bhp/r	pm	425 /	425 / 1800				
BSFC (BTU/bhr	TU/bhp-hr) 9,578		578				
Hourly Fuel Thi	oughput	3,226 ft ³ /hr gal/hr		ft³/hr gal/hr		ft³/hr gal/hr	
Annual Fuel The (Must use 8,760 emergency gene	hrs/yr unless	28.26 MMft ³ /yr		MMft³/yr gal/yr		MMft³/yr gal/yr	
Fuel Usage or H Operation Meter		Yes ⊠	No 🗆	Yes □	No 🗆	Yes 🗆	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) 11	Annual PTE (tons/year)	Hourly PTE (lb/hr) 11	Annual PTE (tons/year)
MD	NOx	1.87	8.21				
MD	СО	2.08	9.11				
MD	VOC	0.56	2.46				
AP	SO_2	<0.01	0.01				
AP	PM (Filterable)	0.04	0.17				
AP	PM (Condensable)	0.04	0.18				
MD	Formaldehyde	0.30	1.31				
MD & AP	Total HAPs	0.31	1.36				
AP	GHG (CO ₂ e)	466.34	2,043				

¹ Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

² Enter the Source Status using the following codes:

MS Modification of Existing Source RS Relocated Source REM Removal of Source

Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.

- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

2SLB Two Stroke Lean Burn 4SRB Four Stroke Rich Burn

4SLB Four Stroke Lean Burn

7 Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F Air/Fuel Ratio IR Ignition Retard

HEISHigh Energy Ignition SystemSIPCScrew-in Precombustion ChambersPSCPrestratified ChargeLECLow Emission Combustion

NSCR Rich Burn & Non-Selective Catalytic Reduction OxCat Oxidation Catalyst

SCR Lean Burn & Selective Catalytic Reduction

8 Enter the Fuel Type using the following codes:

PQ Pipeline Quality Natural Gas RG Raw Natural Gas / Production Gas D Diesel

9 Enter the Potential Emissions Data Reference designation using the following codes. Attach all reference data used.

MD Manufacturer's Data AP AP-42

GR $GRI-HAPCalc^{TM}$ OT Other (please list)

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# E019, use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included? Yes \square ⊠ NSCR \square SCR ☐ Oxidation Catalyst Provide details of process control used for proper mixing/control of reducing agent with gas stream: Manufacturer: TBD Model #: TBD Design Operating Temperature: 854 °F Design gas volume: 2468 scfm Service life of catalyst: Provide manufacturer data? □Yes Volume of gas handled: 2468 cfm at 864 °F Operating temperature range for NSCR/Ox Cat: °F to From Reducing agent used, if any: Ammonia slip (ppm): Pressure drop against catalyst bed (delta P): inches of H₂O Provide description of warning/alarm system that protects unit when operation is not meeting design conditions: Is temperature and pressure drop of catalyst required to be monitored per 40CFR63 Subpart ZZZZ? \square Yes \boxtimes No How often is catalyst recommended or required to be replaced (hours of operation)? How often is performance test required? ☐ Annual ☐ Every 8,760 hours of operation ☐ Field Testing Required No performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT

G3408C

GAS ENGINE SITE SPECIFIC TECHNICAL DATA **Production 3408 Non-Current Model**

GAS COMPRESSION APPLICATION

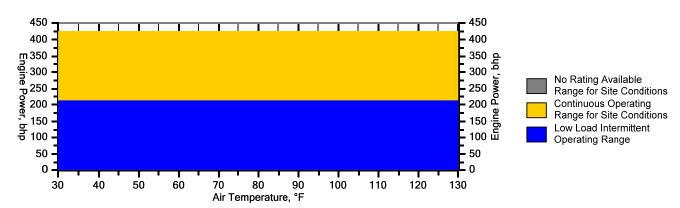
RATING STRATEGY: RATING LEVEL: ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: 1800 STANDARD 8.5 SCAC CONTINUOUS FUEL SYSTEM: LPG IMPCO WITH AIR FUEL RATIO CONTROL AFTERCOOLER WATER INLET (°F): 130 JACKET WATER OUTLET (°F): 210 SITE CONDITIONS: FUEL: ASPIRATION: TΑ Saturn COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: FUEL PRESSURE RANGE(psig): FUEL METHANE NUMBER: JW+OC, AC 1.5-5.0 EIS 59.6 WC FUEL LHV (Btu/scf): 1110 COMBUSTION: ALTITUDE(ft): LOW EMISSION 500 NOx EMISSION LEVEL (g/bhp-hr NOx): MAXIMUM INLET AIR TEMPERATURE(°F): 2.0 77 SET POINT TIMING: 34 STANDARD RATED POWER: 425 bhp@1800rpm

			MAXIMUM	SITE RA	TING AT N	IAXIMUM
			RATING	INLET A	IR TEMPE	RATURE
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN)	(1)	bhp	425	425	319	213
INLET AIR TEMPERATURE		°F	77	77	77	77
ENGINE DATA						
FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	7939	7939	8127	8680
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	8760	8760	8967	9578
AIR FLOW (@inlet air temp, 14.7 psia) (WET)	(3)(4)	ft3/min	935	935	706	499
AIR FLOW (WET)	(3)(4)	lb/hr	4144	4144	3129	2214
FUEL FLOW (60°F, 14.7 psia)	()()	scfm	51	51	39	28
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	64.5	64.5	49.9	35.9
EXHAUST TEMPERATURE - ENGINE OUTLET	(6)	°F	854	854	809	798
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET)	(7)(4)	ft3/min	2468	2468	1802	1264
EXHAUST GAS MASS FLOW (WET)	(7)(4)	lb/hr	4305	4305	3253	2301
EMISSIONS DATA - ENGINE OUT						
NOx (as NO2)	(8)(9)	g/bhp-hr	2.00	2.00	2.00	2.00
co	(8)(9)	g/bhp-hr	1.89	1.89	1.99	2.22
THC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	2.86	2.86	3.18	3.59
NMHC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	1.07	1.07	1.19	1.35
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)(10)	g/bhp-hr	0.48	0.48	0.53	0.60
HCHO (Formaldehyde)	(8)(9)	g/bhp-hr	0.28	0.28	0.29	0.32
CO2	(8)(9)	g/bhp-hr	523	523	528	564
EXHAUST OXYGEN	(8)(11)	% DRY	7.9	7.9	7.8	7.7
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(12)	Btu/min	15217	15217	12925	10258
HEAT REJ. TO ATMOSPHERE	(12)	Btu/min	2250	2250	1727	1230
HEAT REJ. TO LUBE OIL (OC)	(12)	Btu/min	2406	2406	2044	1622
HEAT REJ. TO AFTERCOOLER (AC)	(12)(13)	Btu/min	2796	2796	1825	828
COOLING SYSTEM SIZING CRITERIA						
TOTAL JACKET WATER CIRCUIT (JW+OC)	(13)	Btu/min	19626			
TOTAL AFTERCOOLER CIRCUIT (AC)	(13)(14)	Btu/min	2936			
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.	(10)(14)	Dtd/IIIII	2330			

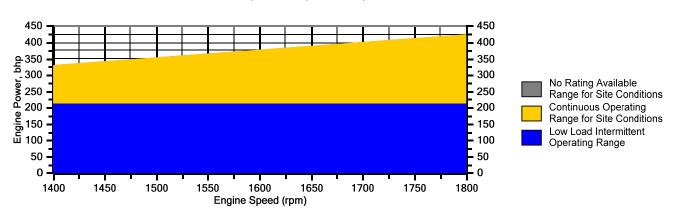
CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

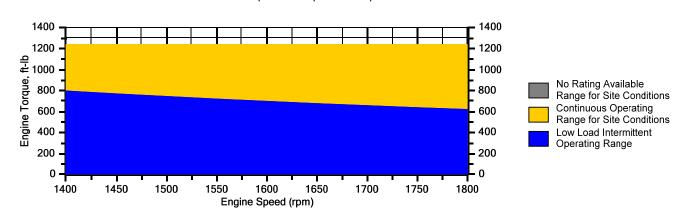
For notes information consult page three.


GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Production 3408 Non-Current Model


Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 500 ft and 1800 rpm


Engine Power vs. Engine Speed

Data represents speed sweep at 500 ft and 77 °F

Engine Torque vs. Engine Speed

Data represents speed sweep at 500 ft and 77 °F

Note: At site conditions of 500 ft and 77°F inlet air temp., constant torque can be maintained down to 1400 rpm. The minimum speed for loading at these conditions is 1400 rpm.

G3408C

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Production 3408 Non-Current Model

NOTES

- 1. Engine rating is with two engine driven water pumps. Tolerance is $\pm 3\%$ of full load.
- 2. Fuel consumption tolerance is $\pm 3.0\%$ of full load data.
- 3. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.
- 4. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 5. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.
- 6. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 7. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of \pm 6 %.
- 8. Emissions data is at engine exhaust flange prior to any after treatment.
- 9. Emission values are based on engine operating at steady state conditions. Fuel methane number cannot vary more than ± 3. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.
- 10. VOCs Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ
- 11. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is \pm 0.5.
- 12. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.
- 13. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.
- 14. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0000	0.0000		
Methane	CH4	79.9200	79.9200	Fuel Makeup:	Saturn
Ethane	C2H6	13.4190	13.4190	Unit of Measure:	English
Propane	C3H8	3.9090	3.9090		-
Isobutane	iso-C4H1O	0.4860	0.4860	Calculated Fuel Properties	
Norbutane	nor-C4H1O	0.9240	0.9240		59.6
Isopentane	iso-C5H12	0.2330	0.2330	Caterpillar Methane Number:	59.0
Norpentane	nor-C5H12	0.2170	0.2170		
Hexane	C6H14	0.1660	0.1660	Lower Heating Value (Btu/scf):	1110
Heptane	C7H16	0.0660	0.0660	Higher Heating Value (Btu/scf):	1224
Nitrogen	N2	0.4500	0.4500	WOBBE Index (Btu/scf):	1330
Carbon Dioxide	CO2	0.1800	0.1800	,	
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	157.73
Carbon Monoxide	CO	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	0.63%
Hydrogen	H2	0.0000	0.0000		
Oxygen	O2	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.997
Octane	C8H18	0.0300	0.0300	Stoich A/F Ratio (Vol/Vol):	11.52
Nonane	C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	16.54
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.697
Propylene	C3H6	0.0000	0.0000	Specific Heat Constant (K):	1.285
TOTAL (Volume %)		100.0000	100.0000	Specific Heat Constant (N).	1.200

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS
Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

Attachment O TANKER TRUCK LOADING DATA SHEET

ATTACHMENT O – TANKER TRUCK LOADING DATA SHEET												
Emission Unit	ID#: S02	2		Emissi	on Point ID#	: E019/E020)	Year Inst	alled/N	Modified: 2015		
Emission Unit	Descripti	on: T	ank Truck	Loadii	ng Rack							
					Loading A	Area Data						
Number of Pu	mps: 1			Numbe	r of Liquids	Loaded: 1		Max num (1) time:		trucks loading at one		
Are tanker true If Yes, Please		re tes	ted for leak	s at this	or any other	· location?	□ Yes	⊠ No	□ N	Not Required		
Provide descri combustion de					y bypasses.	Emissions co	llected	and contro	lled b	y enclosed		
Are any of the following truck loadout systems utilized? □ Closed System to tanker truck passing a MACT level annual leak test? □ Closed System to tanker truck passing a NSPS level annual leak test? ⊠ Closed System to tanker truck not passing an annual leak test and has vapor return?												
 ☑ Closed System to tanker truck not passing an annual leak test and has vapor return? Projected Maximum Operating Schedule (for rack or transfer point as a whole) 												
Time Jan – Mar Apr - Jun Jul – Sept Oct - Dec												
Hours/day			As neede	d	As ne	eded	A	s needed		As needed		
Days/week			As neede	d	As ne	eded	A	s needed		As needed		
			Bulk	Liquid	Data (use e	xtra pages a	s necess:	ary)				
Liquid Name			Proc	duced F	luids							
Max. Daily Th (1000 gal/day)				79.67								
Max. Annual 7 (1000 gal/yr)		ıt	29,081.01									
Loading Metho				BF								
Max. Fill Rate)		42								
Average Fill T (min/loading)	ime.			100 mi	n							
Max. Bulk Liq Temperature (70 °F								
True Vapor Pr	essure ²		NA									
Cargo Vessel	Condition ²	3		U								
Control Equip	ment or		Enclosed Combustion Device (C019 or C020)									
Max. Collection	n Efficie	псу		70 %								
Max. Control 1	Efficiency	,		98 %								
Max.VOC	Loading (lb/hr)			0.07								
Emission Rate	Annual (ton/yr)			0.31								
Max.HAP	Loading (lb/hr)			<0.01								
Emission Rate	Annual (ton/yr)			<0.01								
Estimation Me	thod ⁵		EPA AP-	42, Pro	Max							
1 BF	Botton			SF	Splas	h Fill		SUB	Subn	nerged Fill		
2 At max 3 B	amum bulk Ballast Other (ed Ves		C	Clear	ned		U	Uncl	eaned (dedicated service)		
4 List as CA ECD TO	c many as Carbo Enclos Therm	apply n Ads sed Co al Ox	(complete a orption ombustion I idization or	Device Inciner	VB F	ate Air Pollut Dedicate Flare		Balance (closed	system)		
5 EPA TM			on Factor in ement base		est data subi	mittal	O	Materia Other (de				

Attachment P

GLYCOL DEHYDRATION UNIT DATA SHEET
"fBCH"=B7 @ 898Ł

Attachment Q PNEUMATIC CONTROLLERS DATA SHEET

ATTACHMENT Q – PNEUMATIC CONTROLLERS DATA SHEET									
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011?									
☐ Yes No									
Please list approximate number.									
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011?									
☐ Yes No									
Please list approximate number.									

Attachment R

AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE (ERD) SHEET

ATTACHMENT R – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

VAPOR COMBUSTION (Including Enclosed Combustors)

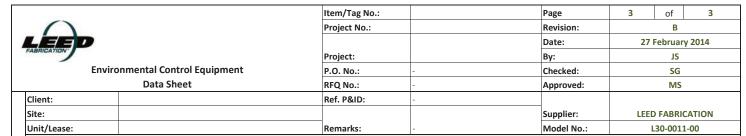
		(Ir	cluding Enclo	sed Con	ıbusto	rs)			
			General In	formation					
Control De	vice ID#: C019			Installation Date: 2016 ☐ New ☑ Modified ☐ Relocated					
Maximum - ~7,800 scf	Rated Total Flow C			Maximum Heat Input mfg. spec 11.66 MMBTU/h	(from sheet)	Design Heat Content 1,262 BTU/scf			
			Control Devic	e Informati	on				
⊠ Enclose □ Therma	ed Combustion Devi	ice	Type of Vapor Co		ontrol?		Ground Flare		
	rer: LEED Fabrica closed Combusto			Hours of o	peration	per year? 8	3,760		
List the em S021 , S02		emissions	are controlled by this	vapor contr	ol device	(Emission	Point ID# S011-S	018,	
Emission Unit ID#	Emission Source I	Descriptio	n	Emission Unit ID#	Emissio	on Source I	Description		
S011- S018	Produ	ced Flui	d Tanks						
S021	Sand Tra	ap Blowd	own Tank						
S022	Tank Tr	uck Load	ling Rack						
If this	vapor combustor c	ontrols en	nissions from more the	an six (6) em	nission un	its, please	attach additional p	ages.	
Assist Typ	e (Flares only)		Flare Height	Tip Diameter			Was the design p	er §60.18?	
Steam Pressur	□ Air re ⊠ Non		~25 feet		4 feet		☐ Yes ☐ No Provide determination.		
			Waste Gas l	Information	ı				
Maximum	Waste Gas Flow Ra (lb/hr)	te 82.20	Heat Value of W Variable		ream	Exit Velo	locity of the Emissions Stream (ft/s)		
	Provide an	attachme	nt with the characteri	stics of the v	waste gas	stream to	be burned.		
			Pilot Gas I	nformation					
Number	of Pilot Lights 1		Flow Rate to Pilot ame per Pilot ~30 scfh		nput per MMBTU		Will automatic re be used¹ □ Yes		
If automati	c re-ignition is used	l, please d	escribe the method.						
-	me equipped with a f the flame?		o detect the No	If Yes, wh	• •	⊠ Thermoo	couple	d	
			enance procedures required manufacture s				iintain the warranty	. (If	
			s	flame demoi	nstration	per §60.18	or §63.11(b) and		

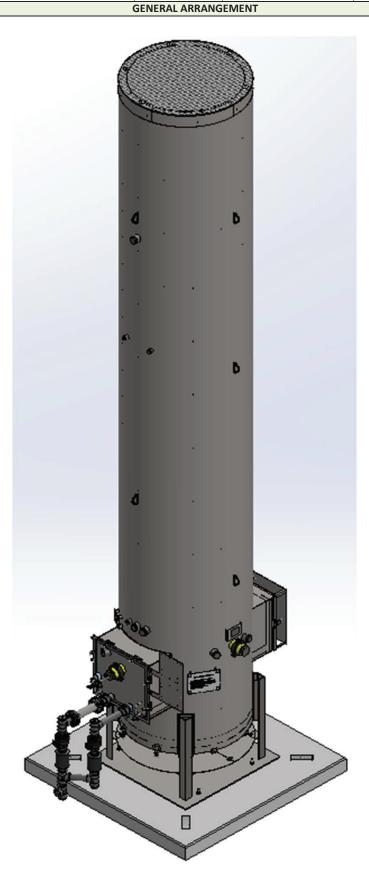
	VAPOR COMBUSTION											
		(Ir	cluding Enclo	sed Com	ıbusto	rs)						
			General In	formation								
Control De	vice ID#: C020			Installation Date: 2016 ☐ New								
	Rated Total Flow 2,500 scfh 300,00	0 scfd		Maximum Design Heat Input (from mfg. spec sheet) 20.00 MMBTU/ hr Design I 1,262 B			Heat Content TU/scf					
			Control Devic	e Informati	on							
Type of Vapor Combustion Control? Enclosed Combustion Device												
	rer: LEED Fabrica closed Combusto			Hours of o	peration	per year? 8	,760					
List the emission units whose emissions are controlled by this vapor control device (Emission Point ID# S011-S018, S021, S022)												
Emission Unit ID#	Emission Source I	Descriptio	n	Emission Unit ID#	Emissio	ion Source Description						
S011- S018	Produ	ced Flui	d Tanks									
S021	Sand Tra	ap Blowd	lown Tank									
S022	Tank Tr	uck Load	ling Rack									
If this	vapor combustor c	ontrols en	nissions from more the	an six (6) em	iission un	its, please	attach additional pages.					
Assist Type	e (Flares only)		Flare Height	Tip Diameter			Was the design per §60.18?					
Steam Pressur	re Air		30 feet	5 feet			☐ Yes ☐ No Provide determination.					
			Waste Gas l	Information								
Maximum	Waste Gas Flow Ra (lb/hr)	te 82.20	Heat Value of W Variable		eam	Exit Velo	ocity of the Emissions Stream (ft/s)					
	Provide an	attachme	nt with the characteri	stics of the v	vaste gas	stream to	be burned.					
			Pilot Gas I	nformation								
Number	of Pilot Lights 1		Flow Rate to Pilot ame per Pilot ~30 scfh		nput per MMBTU		Will automatic re-ignition be used? ☐ Yes ⋈ No					
If automati	c re-ignition is used	l, please d	lescribe the method.									
	me equipped with a the flame?	monitor t Yes	o detect the No	If Yes, what type? ⊠ Thermocouple ☐ Infrared ☐ Ultraviolet ☐ Camera ☐ Other:								
			enance procedures req ched manufacture s				intain the warranty. (If					
			s	flame demoi	nstration	per §60.18	or §63.11(b) and					

§ MMBTU/hr values are calculated based on 1500 BTU/scf gas

		Pressure			
Flare Size	# of Orifices (N)	(OZ/in²)	m³/s	mSCFD	MMBTU/hr
18	2	1	0.0021	6.34	0.39
18	2	2	0.0029	8.97	0.56
18	2	3	0.0036	10.99	0.68
18	2	4	0.0042	12.69	0.78
18	2	5	0.0046	14.18	0.88
18	2	6	0.0051	15.54	0.96
18	2	7	0.0055	16.78	1.04
18	2	8	0.0059	17.94	1.11
18	2	9	0.0062	19.03	1.18
18	2	10	0.0066	20.06	1.24
18	2	11	0.0069	21.04	1.30
18	2	12	0.0072	21.97	1.36
18	2	13	0.0075	22.87	1.42
18	2	14	0.0078	23.73	1.47
18	2	15	0.0081	24.57	1.52
18	2	16	0.0083	25.37	1.57
18	2	17	0.0086	26.15	1.62
18	2	18	0.0088	26.91	1.67
24	4	1	0.0042	12.69	0.78
24	4	2	0.0059	17.94	1.11
24	4	3	0.0072	21.97	1.36
24	4	4	0.0083	25.37	1.57
24	4	5	0.0093	28.37	1.76
24	4	6	0.0102	31.08	1.92
24	4	7	0.0110	33.56	2.08
24	4	8	0.0118	35.88	2.22
24	4	9	0.0125	38.06	2.35
24	4	10	0.0131	40.12	2.48
24	4	11	0.0138	42.08	2.60
24	4	12	0.0144	43.95	2.72
24	4	13	0.0150	45.74	2.83
24	4	14	0.0156	47.47	2.94
24	4	15	0.0161	49.13	3.04
24	4	16	0.0166	50.75	3.14
24	4	17	0.0171	52.31	3.24
24	4	18	0.0176	53.82	3.33
36	10	1	0.0104	31.72	1.96
36	10	2	0.0147	44.85	2.78
36	10	3	0.0180	54.93	3.40

36	10	4	0.0208	63.43	3.92
36	10	5	0.0232	70.92	4.39
36	10	6	0.0255	77.69	4.81
36	10	7	0.0275	83.91	5.19
36	10	8	0.0294	89.71	5.55
36	10	9	0.0312	95.15	5.89
36	10	10	0.0329	100.29	6.21
36	10	11	0.0345	105.19	6.51
36	10	12	0.0360	109.87	6.80
36	10	13	0.0375	114.35	7.08
36	10	14	0.0389	118.67	7.34
36	10	15	0.0403	122.83	7.60
36	10	16	0.0416	126.86	7.85
36	10	17	0.0429	130.77	8.09
36	10	18	0.0441	134.56	8.33
48	14	1	0.0146	44.40	2.75
48	14	2	0.0206	62.79	3.89
48	14	3	0.0252	76.91	4.76
48	14	4	0.0291	88.80	5.49
48	14	5	0.0325	99.29	6.14
48	14	6	0.0356	108.76	6.73
48	14	7	0.0385	117.48	7.27
48	14	8	0.0412	125.59	7.77
48	14	9	0.0437	133.21	8.24
48	14	10	0.0460	140.41	8.69
48	14	11	0.0483	147.27	9.11
48	14	12	0.0504	153.81	9.52
48	14	13	0.0525	160.09	9.91
48	14	14	0.0545	166.14	10.28
48	14	15	0.0564	171.97	10.64
48	14	16	0.0582	177.61	10.99
48	14	17	0.0600	183.07	11.33
48	14	18	0.0617	188.38	11.66

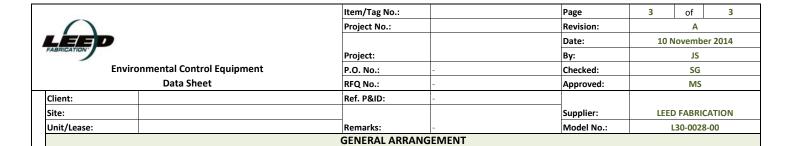

Battery Pack


Item/Tag No.:		Page	1	of	2
Project No.:		Revision:		В	
		Date:	27 1	ebruar	y 2014
Project:		By:		JS	
P.O. No.:	-	Checked:		SG	

1	EARGICATION: D									Date:		27 February 2014
	PABAICATION					Project:				Ву:		JS
	Enviror		tal Control Equip	oment		P.O. No.:	-			Checked		SG
	T		Data Sheet			RFQ No.:	-			Approve	ed:	MS
	Client:					Ref. P&ID:	-			-		
	Site:									Supplier		LEED FABRICATION
	Unit/Lease:					Remarks:	VERAL			Model N	lo.:	L30-0011-00
1	Design Code:					GEI	NERAL	NDE:				EED Fabrication Standards
								_	ner Specs:			Yes
	Description:		Standa	ard Dual	Stage 48 High	Efficiency Combus	tor	Custon	ісі эрссэ.			✓ No
,	200						SS DATA					
							Process Conditions	:				
	Gas Composition:					mol %	Variable		Valu	е	Units	s
4	Methane						Flow Rate		Up to	140	Mscf	d
5	Ethane						Pressure		Up to	12	oz/in	2
6	Propane						Temperatu	re			°F	
7	I-Butane						Molecular We					
8	n-Butane						Process/Waste		✓ Gas			Liquid
9	I-Pentane						Detailed Process D		•			
10											operatin	g rate indicated above.
11							2. DRE: 98 % opera 3. Burner Pressure	_	_			
12							-	210	0.20 02,	_		
13 14							-					
15							-					
16							-					
17							-					
18	C9						-					
19	C10											
20	C11+											
21				TOTAL								
	Other Components:					PPMV	Available Utilities:					
22							Fuel / Pilot (. 30psig	Natural Gas /Propane 40-50 SCF
23							Instrument Power	Air		NA 120	V / CO II	- au Calau Barrau
24 25							Steam			NA	V / 60 H	z or Solar Power
26							Purge Gas			INA		
	жуюте					DESIG	N DATA					
27	Ambient Temperatures:						Noise Performance	Require	ments:			Under 85 dBA
28		L	.ow, °F			-20	Structural Design C	ode:				
29		Н	igh, °F			120	Wind Design Code:					ASCE
	Design Conditions:		ressure/Temperat	ure								
	Max. Relative Humidity,	%				90		Pressu	e/Speed			100 mph
	Elevation (ASL), ft							Catego	ry			
	Area Classification:				Cla	iss I Div 2	Seismic Design Coo					
34	Electrical Design Code:					NEC FOLLIDMENT	SPECIFICATION	Locatio	n			
35	Туре:		Elevated	√ E	Enclosed	LQUIFIVIEIVI	Equipment Design:					
36			Above Ground					Compone	nt		Ma	terial / Size / Rating / Other
37			✓ Stack		Aultiple Stack		Burner		-			, , , , , , , , , , , , , , , , , , , ,
38			Portable / Tra					p / Assist	Gas Burner			304 SS
39								Burner Bo				Carbon Steel
40	Smokeless By:		Steam		Assist Air		Pilot					
41			Gas Assist	√ S	Staging			Pilot Tip)			304 SS
42							1	Pilot Line	(s)			Carbon Steel
			Self Supporting			_	Firebox / Stack					
44			Non-Smokele	ss 🔽 S	Smokeless	Gas Assist		Shell				Carbon Steel
45 46		✓	Intermittent Local	<u> </u>	Continuous Remote			Piping				Carbon Steel
47			No		Yes (Therm	ocouple)		Nozzle:				Carbon Steel
47		<u> </u>		Ľ	1 100 (111611111	осоиріс)		Flange				Carbon Steel Blanket
49			Flamefront Genera	ator 🗸	Inspirating 1	Ignitor	Ir	sulation				304 SS
50			Electronic	√	Automatic	Manual		Refracto				NA NA
51			With Pilot Flame 0	Control			Refi	actory A				NA
52			With Auto Pilot Re	e-Ignition			1	ers and P				NA
53					-		Stack S	mple Co	nnections			Per EPA requirements
54	Pilot Ignition Backup:	\Box	Manual Speci	fv: i o D	Piezo-Flectric		1	Sight Gla	SS			2

Other

					Item/Tag No).:		Page		2	of	3
					Project No.:			Revision	n:	В		
	LEED							Date:		27	February 2	014
	FABRICATION				Project:			Ву:		<u> </u>	JS	
	Enviro	nmenta	al Control Equip	ment	P.O. No.:		-	Checked	d:		SG	
		Da	ata Sheet		RFQ No.:		-	Approve	ed:		MS	
	Client:				Ref. P&ID:		-					
	Site:		-	-				Supplier	r·	LEE	D FABRICAT	TION
	Unit/Lease:				Remarks:			Model N			L30-0011-0	
	Offit/Lease.				EQUIPMENT	CDECIE	ICATION	iviouei i	NO		.30-0011-0	0
56	Flores Detections		hermocouple	✓ Ionization Roo					1			
		=		V IOIIIZation Kot	<u>и</u>	Auxiliai	y Equipment					
57			V Scanner			1	Valves				NA	
58							Blowers				NA	
59	1		Con-				Dampers				NA	
60							Inlet KO / Liquid Seal				NA	
61			4				Flame / Detonation Arrestor				Yes	
62						Instrum	entation & Controls					
63							Solenoids / Shut-Off Valves		Check	with Sales	for availab	ole config.
64							Flow Meters				NA	
65							Calorimeter				NA	
66							Pressure Switches/Transmitters	<u> </u>			NA	
67							Thermocouples		Check	with Sales	for availab	ole config.
68							emperature Switches/Transmitte	ers			NA	
69							BMS	-	Check	with Sales	for availab	ole config.
70			A. S. C.				CEMS				NA	
71							Other				NA	
72												
73												
74			AL TO									
75	1											
					FABRICATION	AND IN	ISPECTION					
76	Special requirements		Skid Mounted	✓ Concrete Pad		1		uipment	Info			
77			Other				Component	uipinent		Weight /	Dimension	10
78						Burner	component			weight /	Difficition	13
79	Inspection	_	Vendor Standa	ard		Durner	Burner Assembly					
80	тэрсскоп		Other. Specify:			Stack	Burrier Assembly					
81	Material Certification					Stack	Stack Assembly			40 " 0	D v 2E ! II	
82	Waterial Certification		MTR	iu						48 0	D x 25 ' H	
83		<u></u>	Certificate of C	Compliance			Pilot Tip					
		<u></u>	Other (Specify)				Pilot Line(s)					
84 85	NDE						Stack Assembly					
86			-			Auxiliai	y Equipment					
			Radiography. S				Blowers					
87		<u> </u>	Ultrasonic. Spe				Inlet KO / Liquid Seal					
88			Liquid Penetrar				Flame / Detonation Arrestor					
89		<u></u> _	Magnetic Partic	JES.		1	Skid					
90			PMI. Specify:			Instrum	entation & Controls					
91	0 1 1		Other. Specify:			1	BMS					
92	Surface Preparation					-	Control Panel					
93		<u> </u>	Other. Specify:									
94	Paint System		-									
95			Other. Specify:	_								
96	Finished Color					-						
97			Other. Specify:	:								
98												
99												
	Additional Notes:											
	1											


Battery Pack

tem/Tag No.:		Page	1	of	3			
Project No.:		Revision:		Α				
		Date:	10 November 2014					
Project:		Ву:		JS				
P.O. No.:	-	Checked:		SG				

-	FABRICATION"									Date:		10 Novembe	r 2014	
	FABRICATION				Project:					Ву:		JS		
	Enviro	oment	al Control Equipment		P.O. No.:	-				Checked	:	SG		
			Data Sheet		RFQ No.:	_				Approve	d:	MS		
	Client:				Ref. P&ID:						-			
					Rei. Paid.	-				6 P		LEED EADDIG	471011	
	Site:								-	Supplier:		LEED FABRIC		
	Unit/Lease:				Remarks:	-				Model N	0.:	L30-0028	-00	
					GEN	NERAL		-						
1	Design Code:							NDE:			LE	ED Fabrication Star	ndards	
2	Service:	vice:				Customer Specs:						Yes		
3	Description:		Standard Dual	Stage 60 High Ef	ficiency Combus	tor						✓ No		
	F					SS DATA								
					I NOCE									
	Gas Composition:				mol %	Process Con		1						
						Va	ariable		Value	2	Units			
4	Methane					Flow Rate		Up to 300		Mscfd				
5	Ethane					Pressure Up to 12			12	oz/in2				
6	Propane					Temperature				°F				
7	· · · · · · · · · · · · · · · · · · ·						ular Wei							
												11. 11		
8						Process/\			✓ Gas			Liquid		
9	I-Pentane								/ Process No					
10	n-Pentane					1. Turndowi	n 10:1. B	ased on	an expected	normal o	operating	g rate indicated abo	ve.	
11	n-Hexane					2. DRE: 98 %	6 operat	ing at de	esign conditio	ons				
12	CO2					3. Burner Pr	ressure D	rop: Mi	n. 0.12 oz/in2	2				
13						4. Gas mixtu	ure heati	ng value	e estimated to	o be 150	0 BTU/SC	F unless specified I	y customer	
14														
15	H ₂ O													
16	C7													
17	C8													
18	C9													
19														
20	C11+													
21			TOTAL											
	Other Components:				PPMV	Available Ut	tilities:							
22	H2S					Fuel /	/ Pilot Ga	as		Min.	. 30psig N	Natural Gas /Propai	ne 40-50 SCFI	
23	Benzene					Instru	ument A	ir		NA				
24										20 V / 60 Hz or Solar Power				
25	E-Benzene						Steam			NA				
26	Xylene						rge Gas							
					DESIG	N DATA								
27	Ambient Temperatures	i:				Noise Perfo	rmance l	Requirer	ments:			Under 85 dBA		
28		10	ow, °F	-2	20	Structural D	esign Co	de:						
29		High, °F		12		Wind Design Code:				ASCE				
				- 12	.0	willa Desigi	ii coue.					ASCE		
	Design Conditions:		essure/Temperature											
31	Max. Relative Humidity	y, %		9	0			Pressure	e/Speed			100 mph		
32	Elevation (ASL), ft			<u> </u>				Categor	у					
33	Area Classification:			Class	l Div 2	Seismic Des	ign Code	::						
34				N	EC			Location	1					
	2.000.100.200.8.1.000.01			1	EQUIPMENT	SDECIFICA	TION		·-	ı				
25	Туре:		Elevated 🗸 I	Enclosed	-4011 1012141									
				Enclosed		Equipment I								
36			Above Ground				C	ompone	nt		Mat	erial / Size / Rating	/ Other	
37	'		✓ Stack 1	Multiple Stack		Burner								
38	-	٦	Portable / Trailer			Bu	urner Tip	/ Assist	Gas Burner	Т		Stainless Steel		
39)						Bı	ırner Bo	dv			Carbon Steel		
40	Smokeless By:		Steam /	Assist Air		Pilot			-,					
	-					FIIOC		D'L . I T' .				Cust days Cust		
41			Gas Assist	Staging				Pilot Tip				Stainless Steel		
42	!						P	ilot Line((s)			Carbon Steel		
43	Stack:		✓ Self Supporting			Firebox / St	ack							
44	Flare Burner:		Non-Smokeless ✓ S	Smokeless	Gas Assist			Shell				Carbon Steel		
45		<u> </u>	Intermittent	Continuous				Piping				Carbon Steel		
		_=		-						+				
46		_=	Local	Remote				Nozzles				Carbon Steel		
47	Pilot Flame Control:		No 🗸	Yes (Thermoco	ouple)			Flanges				Carbon Steel		
48	3						I	nsulatio	n			Blanket		
49	Pilot Ignition:		Flamefront Generator 🗸	Inspirating Ign	itor		Ins	ulation F	Pins			Stainless Steel		
50		$\overline{\Box}$	Electronic		Manual							NA NA		
					, Maridai	Refractory			hors					
51		With Pilot Flame Control				Refractory Anchors			NA					
52	!	Ш	With Auto Pilot Re-Ignition	<u> </u>			Ladder	s and Pla	atforms			NA		
53	ß						Stack Sar	mple Cor	nnections			Per EPA requireme	ents	
54	Pilot Ignition Backup:		Manual Specify i.e.	Piezo-Electric]	5	ight Glas	SS		-	2	· 	

Other

1				Item/Tag No.:		Page	2 of 3				
				Project No.:		Revision:	A				
				.,		Date:	10 November 2014				
	FABRICATION"										
				Project:		By:	JS				
	Environm	ental	Control Equipment	P.O. No.:	-	Checked:	SG				
		Dat	ta Sheet	RFQ No.:	_	Approved:	MS				
_	Cliente										
	Client:			Ref. P&ID:	-						
	Site:					Supplier:	LEED FABRICATION				
	Unit/Lease:			Remarks:	_	Model No.:	L30-0028-00				
				FOLIPMENT SP	NT SPECIFICATION						
		7		-							
	Flame Detection:	_ In	ermocouple	Au	ixiliary Equipment						
57	' <u> </u>	UV	Scanner		Valves		NA				
58	General Configuration:				Blowers		NA				
59											
l				<u> </u>	Dampers		NA				
60	'				Inlet KO / Liquid Seal		NA				
61	:				Flame / Detonation Arrestor		Yes				
62	<u>.</u>			Ins	strumentation & Controls						
63						Ch					
l					Solenoids / Shut-Off Valves	1	eck with Sales for available config.				
64	:				Flow Meters	Ch	eck with Sales for available config.				
65	<i>i</i>				Calorimeter		NA				
66	<u>;</u>				Pressure Switches/Transmitters	Ch	eck with Sales for available config.				
67				 	·						
				<u> </u>	Thermocouples		eck with Sales for available config.				
68	']				Temperature Switches/Transmitte	rs Ch	eck with Sales for available config.				
69	,		7 :: .		BMS	Ch	eck with Sales for available config.				
70)		A G		CEMS		NA				
71				 		- 					
				<u> </u>	Other		NA				
72	•										
73	<i>i</i>										
74	₄										
75											
/3					In this promise is						
			FA	ABRICATION AN	ID INSPECTION						
76	Special requirements		Skid Mounted		Equ	ipment Info					
77		П	Other		Component		Weight / Dimensions				
78				D.	rner						
l		_	Version Charles	Б							
79		\checkmark	Vendor Standard		Burner Assembly						
80	•		Other. Specify:	Sta	ack						
81	Material Certification	V	Vendor Standard		Stack Assembly		60 " OD x 30 ' H. 7,000 Lbs				
82		百	MTR		Pilot Tip		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
l		_									
83		<u> </u>	Certificate of Compliance		Pilot Line(s)						
84			Other (Specify):		Concrete Pad		12'x12' 12". 21,600 Lbs				
85	NDE		Vendor Standard	Au	ixiliary Equipment						
	NDL	🗸			<u>, , , , </u>						
l					Blowers						
86			Radiography. Specify:		Blowers						
86 87					Blowers Inlet KO / Liquid Seal						
86 87			Radiography. Specify:								
86 87 88			Radiography. Specify: Ultrasonic. Specify:		Inlet KO / Liquid Seal						
86 87 88 89			Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles.	lna	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid						
86 87 88 89 90			Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify:	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls						
86 87 88 89 90			Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify:	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90			Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify:	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls						
86 87 88 89 90 91	Surface Preparation		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify:	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90 91 92	Surface Preparation		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify:	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90 91 92 93	Surface Preparation Paint System		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90 91 92 93 94	Surface Preparation Paint System		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90 91 92 93 94	Surface Preparation Paint System		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90 91 92 93 94 95	Surface Preparation Paint System Finished Color		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90 91 92 93 94 95 96	Surface Preparation Paint System Finished Color		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90 91 92 93 94 95 96 97 98	Surface Preparation Paint System Finished Color		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						
86 87 88 89 90 91 92 93 94 95 96 97	Surface Preparation Paint System Finished Color		Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard	Ins	Inlet KO / Liquid Seal Flame / Detonation Arrestor Skid strumentation & Controls BMS						

Attachment S EMISSION CALCULATIONS

Line Heaters S001 - S008

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (lb/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	0.03
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	<0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	<0.01
со	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	0.10	0.45
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	0.12	0.53
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	0.01
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	0.03
PM_Total	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	0.04
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,262	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	1.54	1,262	8,760	180.14	789.03
CH₄	0.001	kg CO ₂ / MMBtu	40 CFR Subpart C	1.54	1,262	8,760	<0.01	0.01
N ₂ O	0.0001	kg CO ₂ / MMBtu	40 CFR Subpart C	1.54	1,262	8,760	<0.01	<0.01
Total HAPs							<0.01	0.01
Total CO ₂ e							180.33	789.85

Notes:

Example Equations:

Max. Hourly Emission Rate (Ib/hr) = Emission Factor (Ib/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

⁻Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater. Cumulative emission rates for all 9 line heaters are diplayed in the Total Site Emissions Table.

⁻Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

⁻AP-42, Chapter 1.4 references are from the July 1998 revision.

⁻Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

⁻CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Line Heaters S009

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (lb/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	0.02
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	<0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	<0.01
со	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	0.08	0.34
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	0.09	0.40
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	<0.01
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	0.02
PM_Total	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	0.03
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.15	1,262	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	1.15	1,262	8,760	134.52	589.21
CH₄	0.001	kg CO ₂ / MMBtu	40 CFR Subpart C	1.15	1,262	8,760	<0.01	0.01
N ₂ O	0.0001	kg CO ₂ / MMBtu	40 CFR Subpart C	1.15	1,262	8,760	<0.01	<0.01
Total HAPs							<0.01	<0.01
Total CO ₂ e							134.66	589.82

Notes:

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

⁻Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater. Cumulative emission rates for all 9 line heaters are diplayed in the Total Site Emissions Table.

⁻Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

⁻AP-42, Chapter 1.4 references are from the July 1998 revision.

⁻Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

⁻CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Thermoelectric Generators S023 - S024

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (lb/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
СО	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
$PM_{Filterable}$	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
PM_Total	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.013	1,262	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	0.013	1,262	8,760	1.52	6.66
CH ₄	0.001	kg CO ₂ / MMBtu	40 CFR Subpart C	0.013	1,262	8,760	<0.01	<0.01
N ₂ O	0.0001	kg CO ₂ / MMBtu	40 CFR Subpart C	0.013	1,262	8,760	<0.01	<0.01
Total HAPs							<0.01	<0.01
Total CO₂e							1.52	6.67

Notes:

Example Equations:

Max. Hourly Emission Rate (Ib/hr) = Emission Factor (Ib/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

⁻Emission rates displayed above represent the max. hourly and max. annual emissions for one TEG. Cumulative emission rates for both TEGs are diplayed in the Total Site Emissions Table.

⁻Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

⁻ AP-42, Chapter 1.4 references are from the July 1998 revision.

⁻Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

⁻CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Compressor Engine S010

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Engine Rating (bhp)	Maximum Fuel Consumption (Btu/bhp-hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours		Annual Emissions (tpy)
VOC's	0.60	g/bhp-hr	Vendor Guarantee ¹	425.0	9,578	1,262	8,760	0.56	2.46
Formaldehyde	3.20E-01	g/bhp-hr	Vendor Guarantee ¹	425.0	9,578	1,262	8,760	0.30	1.31
Benzene	1.58E-03	lb/MMBtu	AP-42 Chapter 3.2	425.0	9,578	1,262	8,760	<0.01	0.03
Toluene	5.58E-04	lb/MMBtu	AP-42 Chapter 3.2	425.0	9,578	1,262	8,760	<0.01	<0.01
Ethylbenze	2.48E-05	lb/MMBtu	AP-42 Chapter 3.2	425.0	9,578	1,262	8,760	<0.01	<0.01
Xylene	1.95E-04	lb/MMBtu	AP-42 Chapter 3.2	425.0	9,578	1,262	8,760	<0.01	<0.01
СО	2.22	g/bhp-hr	Vendor Guarantee ¹	425.0	9,578	1,262	8,760	2.08	9.11
NOx	2.00	g/bhp-hr	Vendor Guarantee ¹	425.0	9,578	1,262	8,760	1.87	8.21
PM _{Filterable}	9.50E-03	lb/MMBtu	AP-42 Chapter 3.2	425.0	9,578	1,262	8,760	0.04	0.17
PM _{Condensable}	9.91E-03	lb/MMBtu	AP-42 Chapter 3.2	425.0	9,578	1,262	8,760	0.04	0.18
SO ₂	5.88E-04	lb/MMBtu	AP-42 Chapter 3.2	425.0	9,578	1,262	8,760	<0.01	0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	425.0	9,578	1,262	8,760	465.85	2,040
CH₄	0.001	kg CH ₄ / MMBtu	40 CFR Subpart C	425.0	9,578	1,262	8,760	<0.01	0.04
N ₂ O	0.0001	kg N ₂ O / MMBtu	40 CFR Subpart C	425.0	9,578	1,262	8,760	<0.01	<0.01
Total HAPs								0.31	1.36
Total CO ₂ e								466.34	2,043

Notes:

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

¹ - Vendor Guarantees utilize the most conservative emisison factor, based upon the varying emission factors presented by the manufacturer based upon the load of the engine. Since the OXF-122 Compressor Engine will operate at or near peak load at startup and engine load will expect to decrease as production declines, EQT utilizes the 50% load emission factors to provide a conservative estimation of PTEs.

⁻ Emission rates displayed above represent the max. hourly and max. annual emissions for one NG compressor.

⁻ Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

⁻ AP-42, Chapter 3.2, Table 3.2-2 - Uncontrolled Emission Factors for 4-Stroke Rich Burn Engines

⁻ Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

⁻ CO₂ equivalency solved for using Global Warming Potentials found in 40 CFR 98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

⁻ Vendor Guarantee Emissions are converted from g/kW-hr to g/bhp-hr. 1 kW = 1.34 bhp

Produced Fluid Tanks S011 - S018

Pollutant	Max. Hourly Emissions using ProMax (lb/hr)	Max. Annual Emissions using ProMax (tons/yr)
VOCs	136.49	597.84
Total HAPs	7.76	33.97
Hexane	6.97	30.51
Benzene	0.19	0.83
Toluene	0.42	1.84
Ethylbenzene	0.02	0.08
Xylene	0.16	0.72
CO ₂	0.17	0.76
CH ₄	2.37	10.37
Total CO₂e	59.34	259.89

Notes:

- -Emission rates for Produced Fluid Tanks S011 S018 were calculated using ProMax software. ProMax output sheets for the OXF-122 Pad are attached.
- -The emission rates displayed above are pre-control device emissions.
- -CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298
- -For emission calculation purposes, the total throughput for tanks S011 S018 is modeled as being received through a single tank. The throughput value represents the total throughput for all eight (8) 400-barrel tanks. Therefore, emission rates represent a total from all produced fluids tanks located on the well pad. Actual throughput for each tank will vary based on operations.

Sand Trap Blow Tank S021

Pollutant	Max. Hourly Emissions using ProMax (lb/hr)	Max. Annual Emissions using ProMax (tons/yr)
VOCs	5.50	1.00
Total HAPs	0.27	0.05
Hexane	0.25	0.04
Benzene	0.01	0.001
Toluene	0.01	0.003
Ethylbenzene	0.001	0.000
Xylene	0.005	0.001
CO ₂	0.02	0.003
CH ₄	0.8765	0.16
Total CO₂e	21.93	4.00

Notes:

- -Blowdown operations are conducted on the OXF-122 pad daily to allow for the removal of fluids from the sand traps. Based on available operational information, blowdowns are assummed to occur for one hour per day.
- -Emissions from the Sand Trap Blow Tank are routed to an enclosed ground flare. The values displayed above a pre-control emission rates.
- -Emission rates for the Sand Trap Blow Tank were calculated using ProMax software. ProMax output sheets for the OXF-122 Pad are attached.
- -CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1. GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Tank Unloading Operations S022

Total Emissions from Tank Unloading Operations

Pollutant	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)	Loading Rack Collection Efficiency	Enclosed Combustion Device Combusion Efficiency	Post-Control Max. Hourly Emissions (lb/hr)	Post-Control Max. Yearly Emissions (tons/yr)	Max. Hourly Emissions Not Collected by Loading Rack (lb/hr)	Max. Yearly Emissions Not Collected by Loading Rack (tons/yr)
VOCs	0.24	1.03	70%	98%	<0.01	0.01	0.07	0.31
HAPs	<0.01	<0.01	70%	98%	<0.01	<0.01	<0.01	<0.01
CO_2	<0.01	<0.01	70%	98%	0.79	3.48	<0.01	<0.01
CH ₄	<0.01	0.01	70%	98%	<0.01	<0.01	<0.01	<0.01
Total CO ₂ e	0.08	0.33			0.79	3.48	0.02	0.10

Notes:

⁻Emission rates for liquid unloading operations were calculated using ProMax software. ProMax summary sheets are attached.

Enclosed Combustion Device S019 - 11.66 MMBtu/hr

Emissions from Tanks

Gas Composition of Vent Gas

Input to Enclosed Combustion Device	Pollutant	Amount of Gas Sent to Enclosed Combustion Device (lbs/hr)	Amount of Gas Sent to Enclosed Combustion Device (tons/year)	Enclosed Combustion Device Combustion Efficiency	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)	Gas Stream	Mole Fraction				
	VOCs	68.25	298.92	98%	1.36	5.98	Methane	0.05				
	HAPs	3.88	16.98	98%	0.08	0.34	Ethane	0.14				
	Hexane	3.48	15.25	98%	0.07	0.31	Propane	0.23	1			
	Benzene	0.09	0.41	98%	<0.01	<0.01	Butane	0.25	1			
Produced Fluid Tanks S011 - S018	Toluene	0.21	0.92	98%	<0.01	0.02	Pentanes	0.11				
	Ethylbenzene	0.01	0.04	98%	<0.01	<0.01	Carbon Dioxide	0.001	1			
	Xylene	0.08	0.36	98%	<0.01	<0.01	1					
	CO ₂	0.09	0.38	98%	180.53	790.70	Ven	t Gas Properties	<u> </u>			
	CH ₄	1.18	5.18	98%	0.02	0.10						
	VOCs	2.75	0.50	98%	0.05	0.01	Vent Gas Properties	Mass Flow Rate	Density (lb/ft ³)			
	HAPs	0.14	0.02	98%	<0.01	<0.01		(lb/hr)				
	Hexane	0.12	0.02	98%	<0.01	<0.01	Condensate Tank	78.28	0.13			
	Benzene	0.00	<0.001	98%	<0.01	<0.01	Blowdown Tank	3.92	0.10			
Sand Trap Blowdown Tank - S021	Toluene	0.01	0.00	98%	<0.01	<0.01						
Cana 11ap 21011a01111 1a1111 CO21	Ethylbenzene	<0.001	<0.001	98%	<0.01	<0.01	1					
	Xylene	0.00	<0.001	98%	<0.01	<0.01	1					
	CO ₂	0.01	0.00	98%	11.27	49.36	1					
	CH₄	0.44	0.08	98%	<0.01	<0.01	1					
	VOCs	0.12	0.51	98%	<0.01	<0.01	1					
	HAPs	<0.001	0.002	98%	<0.01	<0.01	=					
Truck Loading - S022	CO ₂	<0.001	0.002	98%	0.40	1.74	-					
	CH ₄	0.001	0.003	98%	<0.01	<0.01	-					
	VOCs	71.11	299.94		1.42	6.00	4					
	HAPs	4.01	17.01		0.08	0.34	-					
	Hexane	3.61	15.28		0.08	0.34	-					
	Benzene	0.10	0.42		<0.01	<0.01	1					
	Toluene	0.22	0.92		<0.01	0.02	1					
Totals	Ethylbenzene	0.01	0.04		<0.01	<0.01	1					
	Xylene	0.08	0.36		<0.01	<0.01	1					
	CO ₂	0.10	0.39		192.19	841.80	1					
	CH ₄	1.62	5.27		0.03	0.11	1					
	CO2e	40.67	132.11		193.00	844.44	1					

Emissions from Pilot Operations

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factors (kg X/MMBtu)	Heat Value of Natural Gas (Btu/scf)	Enclosed Ground Flare Pilot Rating (Btu/hr)	Enclosed Ground Flare Burner Rating (Btu/hr)	Pilot Max. Hourly Emissions (lb/hr)	Pilot Max. Annual Emissions (tons/yr)	Burner Max. Hourly Emissions (lb/hr)	Burner Max. Annual Emissions (tons/yr)	Max. Hourly Emissions (lb/hr)	Max. Annual Emissions (tons/yr)
VOCs	5.5		1,262	30,000	11,660,000	<0.01	<0.01			<0.01	<0.01
Hexane	1.8		1,262	30,000	11,660,000	<0.01	<0.01			<0.01	<0.01
Formaldehyde	0.075		1,262	30,000	11,660,000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
CO	84		1,262	30,000	11,660,000	<0.01	<0.01	0.78	3.40	0.78	3.41
NO_x	100		1,262	30,000	11,660,000	<0.01	0.01	0.92	4.05	0.93	4.06
PM _{Condensable}	5.70		1,262	30,000	11,660,000	<0.01	<0.01	0.05	0.23	0.05	0.23
PM _{Filterable}	1.90		1,262	30,000	11,660,000	<0.01	<0.01	0.02	0.08	0.02	80.0
PM _{Total}	7.6		1,262	30,000	11,660,000	<0.01	<0.01	0.07	0.31	0.07	0.31
SO ₂	0.6		1,262	30,000	11,660,000	<0.01	<0.01	<0.01	0.02	<0.01	0.02
CO ₂		52	1,262	30,000	11,660,000	3.44	15.08	1226.46	5371.89	1229.90	5386.98
CH ₄		0.0	1,262	30,000	11,660,000	<0.01	<0.01	0.02	0.10	0.02	0.10
N ₂ O		<0.001	1,262	30,000	11,660,000	<0.01	<0.01	<0.01	0.01	<0.01	0.01
Total HAPs				-	_	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
CO₂e						3.45	15.10	1227.75	5377.55	1231.20	5392.65

Total Enclosed Combustion Device Emissions

Pollutant	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)
VOCs	1.42	6.00
HAPs	0.08	0.34
Hexane	0.07	0.31
Formaldehyde	<0.01	<0.01
CO	0.78	3.41
NOx	0.93	4.06
PM _{Condensable}	0.05	0.23
PM _{Filterable}	0.02	0.08
PM_Total	0.07	0.31
SO ₂	<0.01	0.02
CO ₂	1422.10	6228.78
CH₄	0.06	0.21
N ₂ O	<0.01	0.01
CO ₂ e	1,424.20	6,237.08

Notes:

- -Emissions from Enclosed Combustion Device Operations from AP-42, Chapter 1.4 references are from the July 1998 revision.
- -Greenhouse Gas Emissions from the Enclosed Combustion Device Pilot and Burner calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.
- -Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.
- -CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO 2=1, GWP CH₄=25, GWP N₂O=298

Example Calculations:

Emissions from Tanks VOCs (lb/hr) = Amount of Gas sent to Enclosed Combustion Device (lb/hr) x 0.02 = Max. Hourly Emissions (lb/hr)

Emissions from Enclosed Combustion Device Operations (Ib/hr) = Emission factor (Ib/106 Btu) x Heat Value of Natural Gas (Btu/scf) ÷ 1,000,000 x Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 ÷ 24

Emissions from Enclosed Combustion Device Vapor Destruction CO2 Methodologies shown below sample equation

Emissions from Enclosed Combustion Device Operations CO2 (tons/yr) = ((Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 x 365 x Fraction of Gas Combusted by Enclosed Combustion Device x Mole Fraction of Methane x Number of Carbon Atoms in Methane) + ... + (Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 x 365 x Fraction of Gas Combusted by Enclosed Combustion Device x Mole Fraction of Pentanes-plus x Number of Carbon Atoms in Pentanes-plus)) x .0526 (kg/ft3) CO2 x .001 x 1.102 tons/tonnes

$$E_{a,CH4}(un-combusted) = V_a * (1-\eta) * X_{CH4}$$
 (Eq. W-19)

$$E_{a,CO2} (un-combusted) = V_a * X_{CO2}$$
 (Eq. W-20)

$$E_{a,CO2}\left(un-combusted\right) = V_a * X_{CO2}$$
 (Eq. W-20)
$$E_{a,CO2}\left(combusted\right) = \sum_{J=1}^{5} \left(\eta * V_a * Y_j * R_j\right)$$
 (Eq. W-21)

Where:

Ea,CH4(un-combusted) = Contribution of annual un-combusted CH4 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Ea,CO2(un-combusted) = Contribution of annual un-combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Ea,CO2(combusted) = Contribution of annual combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Va = Volume of gas sent to Enclosed Combustion Device in cubic feet, during the year.

η = Fraction of gas combusted by a burning Enclosed Combustion Device (default is 0.98). For gas sent to an unlit Enclosed Combustion Device, η is zero.

XCH4 = Mole fraction of CH4 in gas to the Enclosed Combustion Device.

XCO2 = Mole fraction of CO2 in gas to the Enclosed Combustion Device.

Y_i = Mole fraction of gas hydrocarbon constituents j (such as methane, ethane, propane, butane, and pentanes-plus).

R_i = Number of carbon atoms in the gas hydrocarbon constituent j: 1 for methane, 2 for ethane, 3 for propane, 4 for butane, and 5 for pentanes plus).

Enclosed Combustion Device S020 - 20.00 MMBtu/hr

Emissions from Tanks

Gas Composition of Vent Gas

Emissions from Tanks								of Vent Gas	_
Input to Enclosed Combustion Device	Pollutant	Amount of Gas Sent to Enclosed Combustion Device (lbs/hr)	Amount of Gas Sent to Enclosed Combustion Device (tons/year)	Enclosed Combustion Device Combustion Efficiency	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)	Gas Stream	Mole Fraction	
	VOCs	68.25	298.92	98%	1.36	5.98	Methane	0.05	1
	HAPs	3.88	16.98	98%	0.08	0.34	Ethane	0.14	1
	Hexane	3.48	15.25	98%	0.07	0.31	Propane	0.23	
	Benzene	0.09	0.41	98%	<0.01	<0.01	Butane	0.25	
Produced Fluid Tanks S011 - S018	Toluene	0.21	0.92	98%	<0.01	0.02	Pentanes	0.11	1
	Ethylbenzene	0.01	0.04	98%	<0.01	<0.01	Carbon Dioxide	0.001	1
	Xylene	0.08	0.36	98%	<0.01	<0.01			1
	CO2	0.09	0.38	98%	180.53	790.70	Ven	t Gas Properties	•
	CH4	1.18	5.18	98%	0.02	0.10	V		
	VOCs	2.75	0.50	98%	0.05	0.01	Vent Gas	Mass Flow Rate	Density (lb/ft3)
	HAPs	0.14	0.02	98%	<0.01	<0.01	Properties	(lb/hr)	
	Hexane	0.12	0.02	98%	<0.01	<0.01	Condensate Tank	78.28	0.13
	Benzene	0.00	<0.001	98%	<0.01	<0.01	Blowdown Tank	3.92	0.10
Sand Trap Blowdown Tank - S021	Toluene	0.01	0.00	98%	<0.01	<0.01		•	
	Ethylbenzene	<0.001	<0.001	98%	<0.01	<0.01			
	Xylene	0.00	<0.001	98%	<0.01	<0.01			
	CO2	0.01	0.00	98%	11.27	49.36			
	CH4	0.44	0.08	98%	<0.01	<0.01			
	VOCs	0.12	0.51	98%	<0.01	<0.01	1		
T 11 11 0000	HAPs	<0.001	0.002	98%	<0.01	<0.01	1		
Truck Loading - S022	CO2	<0.001	0.003	98%	0.40	1.74	1		
	CH4	0.001	0.01	98%	<0.01	<0.01	1		
	VOCs	71.11	299.94		1.42	6.00	1		
	HAPs	4.01	17.01		0.08	0.34	1		
	Hexane	3.61	15.28	-	0.07	0.31			
	Benzene	0.10	0.42		<0.01	<0.01			
Totals	Toluene	0.22	0.92	-	<0.01	0.02			
างเลเร	Ethylbenzene	0.01	0.04		<0.01	<0.01			
	Xylene	0.08	0.36		<0.01	<0.01			
	CO2	0.10	0.39		192.19	841.80			
	CH4	1.62	5.27		0.03	0.11	1		
<u> </u>	CO2e	40.67	132.11		193.00	844.44			

Emissions from Pilot Operations

Pollutant	Emission Factor (lb/106 scf)	Emission Factors (kg X/MMBtu)	Heat Value of Natural Gas (Btu/scf)	Enclosed Ground Flare Pilot Rating (Btu/hr)	Enclosed Ground Flare Burner Rating (Btu/hr)	Pilot Max. Hourly Emissions (lb/hr)	Pilot Max. Annual Emissions (tons/yr)	Burner Max. Hourly Emissions (lb/hr)	Burner Max. Annual Emissions (tons/yr)	Max. Hourly Emissions (lb/hr)	Max. Annual Emissions (tons/yr)
VOCs	5.5		1,262	30,000	20,000,000	<0.01	<0.01			<0.01	<0.01
Hexane	1.8		1,262	30,000	20,000,000	<0.01	<0.01			<0.01	<0.01
Formaldehyde	0.075		1,262	30,000	20,000,000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
CO	84		1,262	30,000	20,000,000	<0.01	<0.01	1.33	5.83	1.33	5.84
NOx	100		1,262	30,000	20,000,000	<0.01	0.01	1.58	6.94	1.59	6.95
PMCondensable	5.70		1,262	30,000	20,000,000	<0.01	<0.01	0.09	0.40	0.09	0.40
PMFilterable	1.90		1,262	30,000	20,000,000	<0.01	<0.01	0.03	0.13	0.03	0.13
PMTotal	7.6		1,262	30,000	20,000,000	<0.01	<0.01	0.12	0.53	0.12	0.53
SO2	0.6		1,262	30,000	20,000,000	<0.01	<0.01	<0.01	0.04	<0.01	0.04
CO2	-	52	1,262	30,000	20,000,000	3.44	15.08	2103.71	9214.23	2107.15	9229.31
CH4		0.0	1,262	30,000	20,000,000	<0.01	<0.01	0.04	0.18	0.04	0.18
N2O	-	<0.001	1,262	30,000	20,000,000	<0.01	<0.01	<0.01	0.02	<0.01	0.02
Total HAPs						<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
CO2e						3.45	15.10	2105.92	9223.93	2109.37	9239.02

Total Enclosed Combustion Device Emissions

Total Efficiosed Combustion Device Emissions										
Pollutant	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)								
VOCs	1.42	6.00								
HAPs	0.08	0.35								
Hexane	0.07	0.31								
Formaldehyde	<0.01	<0.01								
CO	1.33	5.84								
NOx	1.59	6.95								
PMCondensable	0.09	0.40								
PMFilterable	0.03	0.13								
PMTotal	0.12	0.53								
SO2	<0.01	0.04								
CO2	2299.34	10071.11								
CH4	0.07	0.28								
N2O	<0.01	0.02								
CO2e	2,302.37	10,083.46								

Notes:

-Emissions from Enclosed Combustion Device Operations from AP-42, Chapter 1.4 references are from the July 1998 revision.

-Greenhouse Gas Emissions from the Enclosed Combustion Device Pilot and Burner calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

-Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

-CO2 equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO2=1, GWP CH4=25, GWP N2O=298

Example Calculations:

Emissions from Tanks VOCs (lb/hr) = Amount of Gas sent to Enclosed Combustion Device (lb/hr) x 0.02 = Max. Hourly Emissions (lb/hr)

Emissions from Enclosed Combustion Device Operations (lb/hr) = Emission factor (lb/106 Btu) x Heat Value of Natural Gas (Btu/scf) + 1,000,000 x Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 + 24

Emissions from Enclosed Combustion Device Vapor Destruction CO2 Methodologies shown below sample equation

Emissions from Enclosed Combustion Device Operations CO2 (tons/yr) = ((Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 x 365 x Fraction of Gas Combusted by Enclosed Combustion Device x Mole Fraction of Methane x Number of Carbon Atoms in Methane) + ... + (Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 x 365 x Fraction of Gas Combusted by Enclosed Combustion Device x Mole Fraction of Pentanes-plus x Number of Carbon Atoms in Pentanes-plus)) x .0526 (kg/ft3) CO2 x .001 x 1.102 tons/tonnes

$$E_{a,CH4}(un-combusted) = V_a * (1-\eta) * X_{CH4}$$
 (Eq. W-19)

$$E_{a,CO2}$$
 (un – combusted) = $V_a * X_{CO2}$ (Eq. W-20)

$$\begin{split} E_{a,CO2}\left(un-combusted\right) &= V_u * X_{CO2} \end{aligned} \tag{Eq. W-20}$$

$$E_{a,CO2}\left(combusted\right) &= \sum_{i=1}^{s} \left(\eta * V_u * Y_j * R_j\right) \tag{Eq. W-21}$$

Where:

Ea,CH4(un-combusted) = Contribution of annual un-combusted CH4 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Ea.CO2(un-combusted) = Contribution of annual un-combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Ea,CO2(combusted) = Contribution of annual combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Va = Volume of gas sent to Enclosed Combustion Device in cubic feet, during the year.

η = Fraction of gas combusted by a burning Enclosed Combustion Device (default is 0.98). For gas sent to an unlit Enclosed Combustion Device, η is zero.

XCH4 = Mole fraction of CH4 in gas to the Enclosed Combustion Device.

XCO2 = Mole fraction of CO2 in gas to the Enclosed Combustion Device.

Yj = Mole fraction of gas hydrocarbon constituents j (such as methane, ethane, propane, butane, and pentanes-plus).

Rj = Number of carbon atoms in the gas hydrocarbon constituent j: 1 for methane, 2 for ethane, 3 for propane, 4 for butane, and 5 for pentanes plus).

Fugitive Emissions from Unpaved Haul Roads

Constant	Industrial Roads								
Constant	PM	PM-10	PM-2.5						
k (lb/VMT)	4.9	1.5	0.15						
а	0.7	0.9	0.9						
b	0.45	0.45	0.45						

where

Patricle size multiplier¹

4.8 Silt content of road surface material (%)
150 Number of days per year with precipitation

Item Number	Description	Number of Wheels	W Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)		PM Emissions (tons/yr)	PM-10 Emissions (lbs/hr)	PM-10 Emissions (tons/yr)	PM-2.5 Emissions (lbs/hr)	PM-2.5 Emissions (tons/yr)
1	Liquids Hauling	14	30	10	0.72	1	6,923	NA	NA	3.10	10.73	0.79	2.73	0.08	0.27
2	Employee Vehicles	4	3	10	0.72	1	200	NA	NA	1.10	0.11	0.28	0.03	0.03	0.003
									Totals:	4.20	10.84	1.07	2.76	0.11	0.28

¹ - Particle Size Multiplier used from AP-42 13.2.2 - Final Version 11/2006

² - Silt Content of Road Surface uses Sand and Gravel Processing Plant Road from AP-42 13.2.2 - Final Version 11/2006

³ - Number of days per year with precipitation >0.01 in3 found using AP-42 13.2.2 Figure 13.2.2-1 - Final Version 11/2006

Example Calculations: Emissions (lb/Vehicle Mile Traveled) - E = $k \times (s/12)^a \times (W/3)^b$

Equation 1a from AP-42 13.2.2 - Final Version 11/2006

Size Specific Emissions (lb/VMT) - E_{ext} = E[(365-p)/365]

Equation 2 from AP-42 13.2.2 - Final Version 11/2006

Fugitive Leaks

	Default Average C	omponent Counts for Ma	jor Onshore Natural Gas Prod	luction Equipment 1	
	Facility Equipment Type	Valves	Connectors	Open-ended Lines	Pressure Relief Valves
Γ	Wellheads	8	38	0.5	0
	Separators	1	6	0	0
	Meters/Piping	12	45	0	0
	Compressors	12	57	0	0
	In-line Heaters	14	65	2	1
	Dehydrators	24	90	2	2

¹- Table W-1B to 40CFR98 Subpart W

Gas Composition										
Emissions from Flaring Operations	Propane	Butane	Pentanes	Hexanes +	CO ₂	CH ₄				
Mole %	4.00	1.78	0.64	0.58	0.15	78.13				
MW	44	58	72	86.00	44.00	16.00				

Well Specific Equipment Counts									
Facility Equipment	0 4 00								
Туре	Count on Site								
Wellheads	8								
Separators	8								
Meters/Piping	9								
Compressors	1								
In-line Heaters	9								
Dehydrators	0								

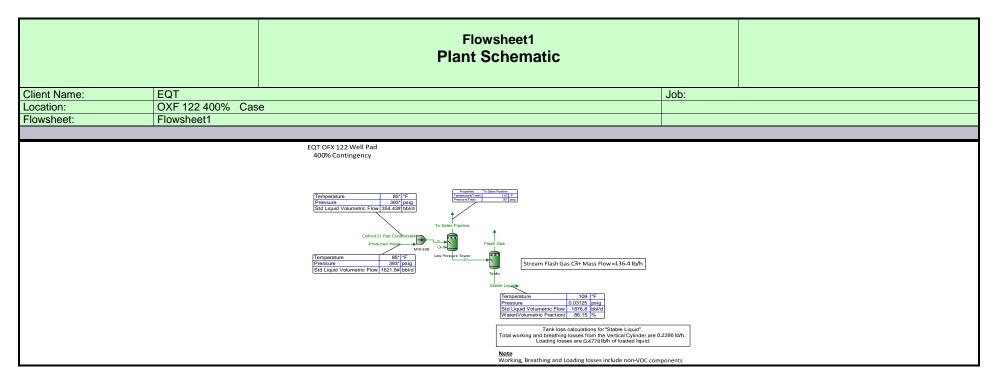
	Fugitive Emissions												
Facility Equipment Type	Total Count	Emission Rate (scf/hr/component) ²	Hours of Operation	VOCs (lbs/hr)	VOCs (tons/yr)	HAPs (lbs/hr)	HAPs (tons/yr)	CO ₂ (lbs/hr)	CO ₂ (tons/yr)	CH ₄ (lbs/hr)	CH ₄ (tons/yr)	Total CO ₂ e (lbs/hr)	Total CO₂e (tons/yr)
Valves	306	0.027	8760	0.16	0.69	0.09	0.38	<0.01	<0.01	0.27	1.17	6.70	29.34
Connectors	1342	0.003	8760	0.08	0.34	0.04	0.19	<0.01	<0.01	0.13	0.57	3.26	14.30
Open-ended Lines	22	0.061	8760	0.03	0.11	0.01	0.06	<0.01	<0.01	0.04	0.19	1.09	4.77
Pressure Relief Valves	9	0.040	8760	<0.01	0.03	<0.01	0.02	<0.01	<0.01	0.01	0.05	0.29	1.28
			Total Emissions:	0.27	1.17	0.15	0.65	<0.01	0.01	0.45	1.99	11.34	49.69

²- Table W-1A to 40CFR98 Subpart W

-A gas sample from the OXF-122 Site is not available. A sample from a representative well is provided with this submittal.

Example Equations:Fugitive Emissions (lb/hr) = Count x Emission Rate x Hours of Operation ÷ 385.5 scf/lbmol x mol VOC's

Total OXF-122 Site Emission Levels


	V	OCs	ш	APs		:0		IO,	DM /	Total)	DM /Ei	lterable)	PM (Con	densable)		50,	(0,		CH ₄		N ₂ O	C	:O₂e
										Totalj	•							-		7				
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr										
Line Heater (S001)	< 0.01	0.03	< 0.01	0.01	0.10	0.45	0.12	0.53	< 0.01	0.04	< 0.01	0.01	< 0.01	0.03	< 0.01	<0.01	180.14	789.03	< 0.01	0.01	< 0.01	< 0.01	180.33	789.85
Line Heater (S002)	< 0.01	0.03	< 0.01	0.01	0.10	0.45	0.12	0.53	< 0.01	0.04	< 0.01	0.01	< 0.01	0.03	< 0.01	<0.01	180.14	789.03	< 0.01	0.01	< 0.01	< 0.01	180.33	789.85
Line Heater (S003)	< 0.01	0.03	< 0.01	0.01	0.10	0.45	0.12	0.53	< 0.01	0.04	< 0.01	0.01	< 0.01	0.03	< 0.01	<0.01	180.14	789.03	< 0.01	0.01	< 0.01	< 0.01	180.33	789.85
Line Heater (S004)	< 0.01	0.03	<0.01	0.01	0.10	0.45	0.12	0.53	<0.01	0.04	<0.01	0.01	<0.01	0.03	< 0.01	<0.01	180.14	789.03	< 0.01	0.01	< 0.01	<0.01	180.33	789.85
Line Heater (S005)	< 0.01	0.03	<0.01	0.01	0.10	0.45	0.12	0.53	< 0.01	0.04	< 0.01	0.01	< 0.01	0.03	< 0.01	<0.01	180.14	789.03	< 0.01	0.01	< 0.01	<0.01	180.33	789.85
Line Heater (S006)	<0.01	0.03	<0.01	0.01	0.10	0.45	0.12	0.53	<0.01	0.04	<0.01	0.01	<0.01	0.03	<0.01	<0.01	180.14	789.03	< 0.01	0.01	<0.01	<0.01	180.33	789.85
Line Heater (S007)	< 0.01	0.03	<0.01	0.01	0.10	0.45	0.12	0.53	< 0.01	0.04	< 0.01	0.01	< 0.01	0.03	< 0.01	< 0.01	180.14	789.03	< 0.01	0.01	<0.01	<0.01	180.33	789.85
Line Heater (S008)	< 0.01	0.03	<0.01	0.01	0.10	0.45	0.12	0.53	<0.01	0.04	< 0.01	0.01	<0.01	0.03	< 0.01	<0.01	180.14	789.03	< 0.01	0.01	<0.01	<0.01	180.33	789.85
Line Heater (S009)	< 0.01	0.02	<0.01	< 0.01	0.08	0.34	0.09	0.40	<0.01	0.03	< 0.01	<0.01	<0.01	0.02	< 0.01	<0.01	134.52	589.21	< 0.01	0.01	<0.01	<0.01	134.66	589.82
Compressor Engine (S010)	0.56	2.46	0.31	1.36	2.08	9.11	1.87	8.21	0.04	0.18	0.04	0.17	0.04	0.18	<0.01	0.01	465.85	2040.44	< 0.01	0.04	<0.01	<0.01	466.34	2042.55
Tank Truck Loading Activities (E022)	0.07	0.31	<0.01	< 0.01													<0.01	<0.01	< 0.01	< 0.01			0.02	0.10
Enclosed Combustion Unit (C019)	1.42	6.00	0.08	0.34	0.78	3.41	0.93	4.06	0.07	0.31	0.02	0.08	0.05	0.23	<0.01	0.02	1422.10	6228.78	0.06	0.21	<0.01	0.01	1424.20	6237.08
Enclosed Combustion Unit (C020)	1.42	6.00	0.08	0.35	1.33	5.84	1.59	6.95	0.12	0.53	0.03	0.13	0.09	0.40	<0.01	0.04	2299.34	10071.11	0.07	0.28	<0.01	0.02	2302.37	10083.46
TEG (S023)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	1.52	6.66	< 0.01	< 0.01	<0.01	<0.01	1.52	6.67
TEG (S024)	< 0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	1.52	6.66	< 0.01	<0.01	<0.01	<0.01	1.52	6.67
Haul Roads									4.20	10.84	4.20	10.84												
Fugitives Leaks	0.27	1.17	0.15	0.65													<0.01	0.01	0.45	1.99			11.34	49.69
Totals	3.80	16.19	0.64	2.78	5.09	22.29	5.46	23.90	4.55	12.38	4.31	11.31	0.24	1.07	0.02	0.10	5,766.02	25,255.15	0.62	2.65	0.01	0.04	5,784.63	25,334.83

⁻Two enclosed combustion devices are being included in this application. Emissions from the produced fluid tanks, sand trap blowdown tanks, and tank truck loading are routed to either C019 or C020. For the permitting of these sources, it is assumed that vapors are being evenly distributed between the two enclosed combustion devices. For this reason, the emissions from the combustion of vent gases between C019 and C020 are additive.

Total OXF-122 Site Emission Levels - HAP Speciation

	Total	HAPs	Formal	dehyde	Hex	ane	Ben	zene	Tolu	iene	Ethylb	enzene	Xyl	ene
Emission Sources	lb/hr	tons/yr												
Line Heater (S001)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S002)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S003)	<0.01	0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S004)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S005)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S006)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S007)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S008)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (S009)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Compressor Engine (S010)	0.31	1.36	0.30	1.31	<0.01	<0.01	<0.01	0.03	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Tank Truck Loading Activities (E022)	<0.01	<0.01			< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Enclosed Combustion Unit (C019)	0.08	0.34	<0.01	<0.01	0.07	0.31	< 0.01	<0.01	< 0.01	0.02	< 0.01	<0.01	< 0.01	< 0.01
Enclosed Combustion Unit (C020)	0.08	0.35	< 0.01	<0.01	0.07	0.31	< 0.01	<0.01	< 0.01	0.02	< 0.01	<0.01	< 0.01	< 0.01
TEG (S023)	< 0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01
TEG (S024)	< 0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01
Haul Roads														
Fugitives Leaks	0.15	0.65	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Totals	0.64	2.78	0.30	1.31	0.14	0.61	<0.01	<0.01	<0.01	0.04	<0.01	<0.01	<0.01	<0.01

⁻Two enclosed combustion devices are being included in this application. Emissions from the produced fluids tanks, sand trap blowdown tanks, and truck loading are routed to either C019 and C020. For the permitting of these sources, it is assumed that vapors are being evenly distributed between the two enclosed combustion devices. For this reason, the emissions from the combustion of vent gases between C019 and C020 are additive.

Process Streams Report All Streams

Tabulated by Total Phase

Client Name:	EQT	Job:	
_ocation:	OXF 122 400% Case		
Flowsheet:	Flowsheet1		

Connections Flash Gas Oxford 21 Pad Produced Stable Liquid To Sales Condensate Water Pipeline From Block Low Pressure Tanks Tanks Tower To Block MIX-100 MIX-100 ----

	Stream C	omposition			
	Flash Gas	Oxford 21 Pad Condensate	Produced Water	Stable Liquid	To Sales Pipeline
Mole Fraction	%	%	%	%	%
Nitrogen	0	0 *	0 *	0	0
Methane	4.81913	12.131 *	0 *	0.000509035	32.9729
Carbon Dioxide	0.128967	0.087 *	0 *	7.21449E-05	0.211068
Ethane	14.1579	10.145 *	0 *	0.00675435	24.9405
Propane	23.259	9.322 *	0 *	0.0341817	18.3248
i-Butane	6.65361	2.446 *	0 *	0.0228118	3.4594
n-Butane	17.9775	6.995 *	0 *	0.0849668	8.34552
i-Pentane	6.96858	3.988 *	0 *	0.0794234	2.66116
n-Pentane	7.41033	5.018 *	0 *	0.109925	2.73385
Isohexane	3.36426	4.263 *	0 *	0.113134	1.1576
n-Hexane	2.6419	4.311 *	0 *	0.119199	0.898046
2,2,4-Trimethylpentane	0.00632265	0.025 *	0 *	0.000746385	0.00212165
Benzene	0.0792278	0.136 *	0 *	0.00378418	0.0270466
Heptane	2.8074	11.691 *	0 *	0.349925	0.943589
Toluene	0.148737	0.717 *	0 *	0.021605	0.0497693
Octane	0.846779	9.741 *	0 *	0.300574	0.28594
Ethylbenzene	0.00547894	0.074 *	0 *	0.00228918	0.00184977
o-Xylene	0.0504191	0.878 *	0 *	0.027249	0.0170584
Nonane	0.151113	4.769 *	0 *	0.148752	0.0512013
Decane	0.152015	13.263 *	0 *	0.41531	0.0527042
Water	8.37132	0 *	100 *	98.1588	2.86393

	Flash Gas	Oxford 21 Pad Condensate	Produced Water	Stable Liquid	To Sales Pipeline
Mass Fraction	%	%	%	%	%
Nitrogen	0	0 *	0 *	0	0
Methane	1.51076	2.49009 *	0 *	0.000415983	14.8981
Carbon Dioxide	0.110913	0.0489906 *	0 *	0.000161737	0.26162
Ethane	8.31905	3.90318 *	0 *	0.0103457	21.1216
Propane	20.042	5.25959 *	0 *	0.0767796	22.7581
i-Butane	7.55709	1.81906 *	0 *	0.0675397	5.66297
n-Butane	20.4187	5.20208 *	0 *	0.251564	13.6615
i-Pentane	9.8249	3.68156 *	0 *	0.291901	5.40756
n-Pentane	10.4477	4.63241 *	0 *	0.404	5.55527
Isohexane	5.66537	4.70052 *	0 *	0.49663	2.80959
n-Hexane	4.44893	4.75345 *	0 *	0.523253	2.17963
2,2,4-Trimethylpentane	0.0141133	0.0365395 *	0 *	0.00434305	0.00682576
Benzene	0.120934	0.135926 *	0 *	0.0150573	0.059502
Heptane	5.49713	14.9891 *	0 *	1.78611	2.66294
Toluene	0.267803	0.845293 *	0 *	0.101403	0.129153
Octane	1.89017	14.2372 *	0 *	1.74898	0.919923
Ethylbenzene	0.0113667	0.100522 *	0 *	0.01238	0.00553098
o-Xylene	0.1046	1.19268 *	0 *	0.147363	0.0510059
Nonane	0.378732	7.82617 *	0 *	0.971841	0.184951
Decane	0.422659	24.1456 *	0 *	3.01009	0.211201
Water	2.94707	0 *	100 *	90.0798	1.45313

	Flash Gas	Oxford 21 Pad Condensate	Produced Water	Stable Liquid	To Sales Pipeline
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Nitrogen	0	0 *	0 *	0	0

Process Streams Report All Streams Tabulated by Total Phase

Client Name: EQT Job: OXF 122 400% Case

Location: Flowsheet: Flowsheet1

	Flash Gas	Oxford 21 Pad Condensate	Produced Water	Stable Liquid	To Sales Pipeline
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Methane	2.36518	81.686 *	0 *	0.109216	79.2116
Carbon Dioxide	0.17364	1.60711 *	0 *	0.0424641	1.39101
Ethane	13.0239	128.042 *	0 *	2.71627	112.302
Propane	31.3769	172.538 *	0 *	20.1585	121.003
i-Butane	11.831	59.6731 *	0 *	17.7326	30.1095
n-Butane	31.9665	170.651 *	0 *	66.0482	72.6367
i-Pentane	15.3814	120.771 *	0 *	76.6385	28.7515
n-Pentane	16.3565	151.964 *	0 *	106.07	29.5369
Isohexane	8.86944	154.198 *	0 *	130.39	14.9383
n-Hexane	6.96504	155.934 *	0 *	137.38	11.5889
2,2,4-Trimethylpentane	0.0220952	1.19866 *	0 *	1.14027	0.036292
Benzene	0.189329	4.45899 *	0 *	3.95329	0.316367
Heptane	8.60605	491.709 *	0 *	468.944	14.1586
Toluene	0.41926	27.7294 *	0 *	26.6234	0.686694
Octane	2.95916	467.045 *	0 *	459.194	4.89115
Ethylbenzene	0.0177951	3.29756 *	0 *	3.25036	0.0294077
o-Xylene	0.163757	39.1252 *	0 *	38.6902	0.271194
Nonane	0.592926	256.733 *	0 *	255.157	0.983369
Decane	0.661696	792.084 *	0 *	790.299	1.12294
Water	4.61379	0 *	23662.8 *	23650.5	7.72618

		Stream	Properties			
Property	Units	Flash Gas	Oxford 21 Pad Condensate	Produced Water	Stable Liquid	To Sales Pipeline
Temperature	°F	108.974	85 *	85 *	108.974	110 *
Pressure	psia	14.7272 *	407.696 *	407.696 *	14.7272	44.6959 *
Mole Fraction Vapor	%	100	2.45359	0	0	100
Mole Fraction Light Liquid	%	0	97.5464	100	1.84119	0
Mole Fraction Heavy Liquid	%	0	0	0	98.1588	0
Molecular Weight	lb/lbmol	51.1734	78.1542	18.0153	19.631	35.5057
Mass Density	lb/ft^3	0.125814	34.8738	62.1455	59.1312	0.266912
Molar Flow	lbmol/h	3.05931	41.974	1313.49	1337.43	14.9748
Mass Flow	lb/h	156.555	3280.45	23662.8	26255	531.691
Vapor Volumetric Flow	ft^3/h	1244.34	94.0662	380.765	444.013	1992.01
Liquid Volumetric Flow	gpm	155.138	11.7277	47.4719	55.3575	248.354
Std Vapor Volumetric Flow	MMSCFD	0.027863	0.382283	11.9627	12.1808	0.136385
Std Liquid Volumetric Flow	sgpm	0.561191	10.3376 *	47.3037 *	54.741	2.33912
Compressibility		0.981589	0.156312	0.0202195	0.000801201	0.972546
Specific Gravity		1.76688		0.996417	0.948086	1.22592
API Gravity				9.96415	16.0845	
Enthalpy	Btu/h	-171230	-3.25278E+06	-1.61206E+08	-1.6296E+08	-649297
Mass Enthalpy	Btu/lb	-1093.74	-991.568	-6812.63	-6206.8	-1221.19
Mass Cp	Btu/(lb*°F)	0.423816	0.531146	0.981529	0.936564	0.44693
Ideal Gas CpCv Ratio		1.10156	1.06777	1.32512	1.29305	1.14561
Dynamic Viscosity	cP	0.00850803		0.833816	0.600194	0.00970043
Kinematic Viscosity	cSt	4.22161		0.837605	0.629803	2.26883
Thermal Conductivity	Btu/(h*ft*°F)	0.01092		0.353848	0.322723	0.0142024
Surface Tension	lbf/ft			0.00492858	0.00426467 ?	
Net Ideal Gas Heating Value	Btu/ft^3	2574.42	3993.4	0	98.7367	1849.1
Net Liquid Heating Value	Btu/lb	18908.4	19235.7	-1059.76	938.286	19616.5
Gross Ideal Gas Heating Value	Btu/ft^3	2795.4	4313.43	50.31	155.802	2017.2
Gross Liquid Heating Value	Btu/lb	20547.1	20789.6	0	2041.41	21413.1

Client Name: Location: Flowsheet:	EQT OXF 122 400% Flowsheet1	Case	All Si Tabulated b	reams Report		Job:	
			2	3			
From Block			Low Pressure Tower	MIX-100			
To Block			Tanks	Low Pressure Tower			
			Stream C	omposition			
			2	3			
Mole Fraction			%	%			
Nitrogen			0.0115063	0 275656			
Methane Carbon Dioxide			0.0115063 0.000366314	0.375656 0.00269409			
Ethane			0.0390506	0.314156			
Propane			0.0871862	0.288671			
i-Butane			0.0379449	0.0757443			
n-Butane			0.125802	0.216611			
i-Pentane			0.0951461	0.123495			
n-Pentane			0.126586	0.15539			
Isohexane			0.120554	0.132011			
n-Hexane			0.124956	0.133497			
2,2,4-Trimethylpenta	ne		0.000759112	0.000774165			
Benzene			0.00395636	0.00421146			
Heptane			0.355534	0.36203			
Toluene			0.0218951	0.022203			
Octane Ethylbenzene			0.301821 0.00229646	0.301646 0.00229153			
o-Xylene			0.00229040	0.00229153			
Nonane			0.148757	0.14768			
Decane			0.414709	0.41071			
Water			97.9539	96.9033			
			0110000				I.
			2	3			
Mass Fraction			%	%			
Nitrogen			0	0			
Methane			0.00936859	0.303178			
Carbon Dioxide			0.000818216	0.0059648			
Ethane			0.0595958	0.475228			
Propane			0.195124	0.640375			
i-Butane			0.111934	0.221477			
n-Butane i-Pentane			0.371105 0.348408	0.633373 0.448244			
n-Pentane			0.463535	0.564014			
Isohexane			0.527267	0.572306			
n-Hexane			0.546523	0.57875			
2,2,4-Trimethylpenta	ne		0.00440097	0.00444882			
Benzene	-		0.0156849	0.0165495			
Heptane			1.80811	1.82498			
Toluene			0.10239	0.102918			
Octane			1.74981	1.73344			
Ethylbenzene			0.012374	0.0122389			
o-Xylene			0.14711	0.145213	1		
Nonane			0.968325	0.952866			
Decane			2.99475	2.93982			
Water			89.5634	87.8246			
Mass Flow			2 lb/h	3 lb/h			
Nitrogen			0	0			
Methane			2.47439	81.686			
Carbon Dioxide			0.216104	1.60711			

Process Streams Report All Streams **Tabulated by Total Phase** Client Name: Job: EQT OXF 122 400% Case Location: Flowsheet: Flowsheet1 **Mass Flow** lb/h lb/h Ethane 15.7402 128.042 Propane 51.5354 172.538 i-Butane 29.5636 59.6731 98.0147 170.651 n-Butane i-Pentane 92.02 120.771 n-Pentane 122.427 151.964 Isohexane 139.26 154.198 n-Hexane 144.345 155.934 1.16236 2,2,4-Trimethylpentane 1.19866 4.14262 4.45899 Benzene Heptane 477.55 491.709 Toluene 27.0427 27.7294 Octane 462.153 467.045 Ethylbenzene 3.26816 3.29756 o-Xylene 38.854 39.1252 Nonane 255.75 256.733 790.961 792.084 Decane Water 23655.1 23662.8 **Stream Properties Property** Units 2 85.0995 Temperature ٥F 110 Pressure 44.6959 407.696 psia Mole Fraction Vapor 0.0194966 % 0 Mole Fraction Light Liquid % 2.04233 3.02197 Mole Fraction Heavy Liquid 97.9577 % 96.9585 Molecular Weight lb/lbmol 19.703 19.8776 Mass Density lb/ft^3 58.8868 57.8849 Molar Flow lbmol/h 1340.49 1355.46 Mass Flow lb/h 26411.6 26943.3 Vapor Volumetric Flow ft^3/h 448.514 465.463 Liquid Volumetric Flow 58.0317 55.9186 gpm Std Vapor Volumetric Flow **MMSCFD** 12.2086 12.345 Std Liquid Volumetric Flow 55.3022 57.6413 sgpm Compressibility 0.00244622 0.0239474 Specific Gravity 0.944168 **API** Gravity 16.6147 -1.63131E+08 -1.64459E+08 Btu/h Enthalpy Mass Enthalpy Btu/lb -6176.49 -6103.89 Btu/(lb*°F) Mass Cp 0.93464 0.927362 Ideal Gas CpCv Ratio 1.2917 1.2909 Dynamic Viscosity сΡ 0.587641 Kinematic Viscosity cSt 0.617324 Thermal Conductivity Btu/(h*ft*°F) 0.320409 Surface Tension lbf/ft 0.00422098 ? Net Ideal Gas Heating Value Btu/ft^3 104.387 123.662 Net Liquid Heating Value Btu/lb 1044.8 1411.29 Btu/ft^3 Gross Ideal Gas Heating Value 161.826 182.324 Gross Liquid Heating Value Btu/lb 2151.11 2531.22

Simulation Initiated on 2/8/2			OXF122_400%Case_2	2.8.2016.pmx			Page 1 of 1	
			E	nergy Strea	m Repo	rt		
Client Name:	EQT						Job:	
Location:	OXF 122 400%	6 Case						
Flowsheet:	Flowsheet1							
				Energy Str	eams			
Energy Stream		Energy Ra	ate	Power		F	rom Block	To Block
Q-1		678583	Btu/h	266.693	hp			Low Pressure Tower
Remarks								

Blocks Low Pressure Tower Separator Report

Client Name: EQT Job:

Location: Flowsheet: OXF 122 400% Case Flowsheet1 Modified: 9:57 AM, 2/8/2016 Status: Solved 10:01 AM, 2/8/2016

Connections									
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block				
3	3 Inlet MIX-100 To Sales Pipeline Vapor Outlet								
2	2 Light Liquid Outlet Tanks Q-1 Energy								

Block Parameters									
Pressure Drop	363 psi	Main Liquid Phase	Light Liquid						
Mole Fraction Vapor	1.10478 %	Heat Duty	678583 Btu/h						
Mole Fraction Light Liquid	2.01977 %	Heat Release Curve Type	Plug Flow						
Mole Fraction Heavy Liquid	96.8755 %	Heat Release Curve	5						
		Increments							

OXF122_400%Case_2.8.2016.pmx Simulation Initiated on 2/8/2016 10:04:34 AM Page 1 of 1

Blocks MIX-100 Mixer/Splitter Report Client Name: EQT OXF 122 400% Case Location: Flowsheet1 Flowsheet:

		Conne	ections		
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block

Job:

Modified: 2:14 PM, 7/24/2014

Inlet

Status: Solved 10:01 AM, 2/8/2016

3 Outlet Low Pressure Tower

Inlet

Block Parameters

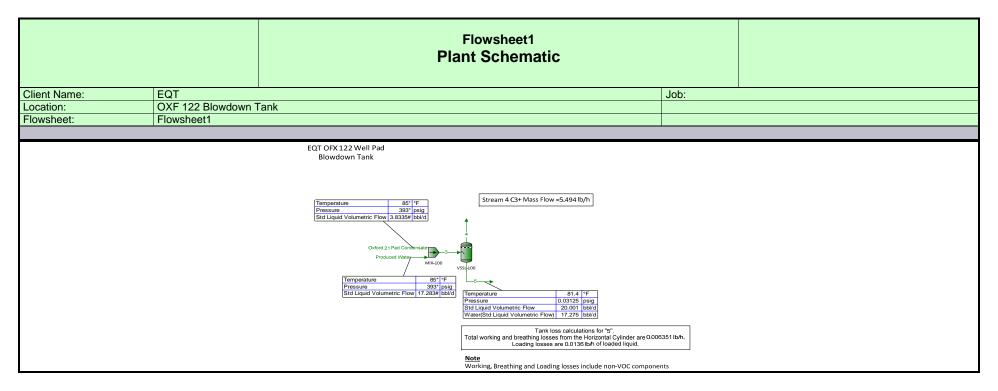
Oxford 21 Pad

Condensate

100 % Fraction to PStream 3 Pressure Drop 0 psi

Remarks

Produced Water


Blocks Tanks Separator Report Client Name: EQT Job: OXF 122 400% Case Modified: 9:58 AM, 2/8/2016 Location: Flowsheet: Flowsheet1 Status: Solved 10:01 AM, 2/8/2016 **Connections** Connection Type Stream **Connection Type** Other Block Stream Other Block Inlet Low Pressure Tower Flash Gas Vapor Outlet Stable Liquid Light Liquid Outlet **Block Parameters** 29.9688 psi Pressure Drop Main Liquid Phase Light Liquid 0.228224 % 1.83699 % Mole Fraction Vapor Heat Duty 0 Btu/h Mole Fraction Light Liquid Heat Release Curve Type Plug Flow Heat Release Curve Mole Fraction Heavy Liquid 97.9348 % 5 Increments Remarks

Silitulation initiated on 2/6/2	2016 10:04:34 AM		OXF122_400%0	Case_2.8.2016.pmx			Page 1 of
		F		Environment nment1			
Client Name:	EQT				Job:		
_ocation:	OXF 122 400%	Case					
Flowsheet:	Flowsheet1						
			Environme	ent Settings			
Number of Poyntir	ng Intervals	0		Freeze Out Temperatu Threshold Difference	ire	10 °F	
Gibbs Excess Mod	del	77 °F		Phase Tolerance		1 %	
Evaluation Tempe	rature						
			Comp	onents			
			Comp	,01101110			
Component Name		Henry`s Law Component	Phase Initiator	Component Name		Henry`s Law Component	Phase Initiator
			Phase			Henry`s Law Component False	
Nitrogen		Component	Phase Initiator	Component Name		Component	Initiator
Nitrogen Methane		Component False	Phase Initiator False	Component Name 2,2,4-Trimethylpentane		Component False	Initiator False
Nitrogen Methane Carbon Dioxide		Component False False	Phase Initiator False False	Component Name 2,2,4-Trimethylpentane Benzene		Component False False	Initiator False False
Nitrogen Methane Carbon Dioxide Ethane		Component False False False	Phase Initiator False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane		Component False False False False False False	Initiator False False False
Nitrogen Methane Carbon Dioxide Ethane Propane -Butane		Component False False False False False False False False	Phase Initiator False False False False False False False False False	2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene		Component False False False False False False False False	Initiator False False False False False False False False False
Nitrogen Methane Carbon Dioxide Ethane Propane -Butane		Component False False False False False False	Phase Initiator False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane		Component False False False False False False	Initiator False False False False False False
Altrogen Methane Carbon Dioxide Ethane Propane Butane Butane		Component False	Phase Initiator False False False False False False False False False	2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene		Component False	Initiator False False False False False False False False False
Mitrogen Methane Carbon Dioxide Ethane Propane -Butane n-Butane -Pentane		Component False	Phase Initiator False	2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane		False	Initiator False
Nitrogen Methane Carbon Dioxide Ethane Propane -Butane -Pentane -Pentane -Pentane sohexane		Component False	Phase Initiator False	2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane		Component False	False
Nitrogen Methane Carbon Dioxide Ethane Propane -Butane -Pentane -Pentane -Pentane sohexane		Component False	Phase Initiator False	2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane		False	Initiator False
Altrogen Alethane Carbon Dioxide Ethane Propane Butane Pentane Pentane Pentane Pentane Sohexane		Component False	Phase Initiator False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water		False	Initiator False
Altrogen Methane Carbon Dioxide Ethane Propane Butane I-Butane I-Pentane I-Pentane I-Hexane		Component False	Phase Initiator False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water		Component False	Initiator False True
Nitrogen Methane Carbon Dioxide Ethane Propane -Butane -Pentane -Pentane -Pentane -Hexane -Hexane		Component False COSTALD	Phase Initiator False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water erty Method Sets Overall Package		Component False	Initiator False True
Component Name Nitrogen Methane Carbon Dioxide Ethane Propane -Butane -Pentane -Pentane sohexane n-Hexane Liquid Molar Volume Stability Calculation Light Liquid Package		Component False	Phase Initiator False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water		Component False	Initiator False True On

		Calcul	ator Report	
lient Name:	EQT		lob	
nent ivame: ocation:	OXF 122 400%	Case	Job:	
			ole Solver 1	
osidual Error (for (CV1) = TP / 1876.7		irce Code	
esiduai Effor (lor c	() = 1F / 1070.7	· · I		
		Calculate	d Variable [CV1]	
ourceMoniker	Volumetric Flow	x!Project!Flowsheets!Flowsheet1	PStreams!Oxford 21 Pad Condensat	te!Phases!Total!Properties!Std Liquid
alue	354.431			
nit	bbl/d			
		Measure	d Variable [TP]	
ourceMoniker				al!Properties!Std Liquid Volumetric Flow
alue	1876.83 bbl/d			
nit	DDI/Q			
		Solve	r Properties	Status: Solved
Error		7.09057E-05	Iterations	10
Calaudata d Malua		10.3376 sgpm	Max Iterations	
			144 . 14.	
Lower Bound		sgpm	Weighting	1
Lower Bound Upper Bound		sgpm	Priority	0
Lower Bound Upper Bound Step Size Is Minimizer Algorithm				-
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm		sgpm sgpm False	Priority Solver Active Group	0 Active
Lower Bound Upper Bound Step Size Is Minimizer Algorithm		sgpm sgpm False	Priority Solver Active Group	0 Active
Lower Bound Upper Bound Step Size Is Minimizer Algorithm		sgpm sgpm False Default	Priority Solver Active Group	0 Active
Lower Bound Upper Bound Step Size Is Minimizer Algorithm emarks		sgpm sgpm False Default Simp	Priority Solver Active Group Skip Dependency Check	0 Active
Lower Bound Upper Bound Step Size Is Minimizer Algorithm emarks	CV1) = LF / 86.373	sgpm sgpm False Default Simp	Priority Solver Active Group Skip Dependency Check	0 Active
Lower Bound Upper Bound Step Size Is Minimizer Algorithm emarks	CV1) = LF / 86.373	sgpm sgpm False Default Simp	Priority Solver Active Group Skip Dependency Check Die Solver 2 urce Code	0 Active
Lower Bound Upper Bound Step Size Is Minimizer Algorithm emarks esidual Error (for C		sgpm sgpm False Default Simp Sou - 1	Priority Solver Active Group Skip Dependency Check Die Solver 2 urce Code d Variable [CV1]	O Active False
Lower Bound Upper Bound Step Size Is Minimizer Algorithm emarks esidual Error (for CoourceMoniker		sgpm sgpm False Default Simp Sou - 1	Priority Solver Active Group Skip Dependency Check Die Solver 2 urce Code d Variable [CV1]	O Active False
Lower Bound Upper Bound Step Size Is Minimizer Algorithm emarks esidual Error (for CourceMoniker	ProMax:ProMax	sgpm sgpm False Default Simp Sou - 1	Priority Solver Active Group Skip Dependency Check Die Solver 2 urce Code d Variable [CV1]	O Active False
Lower Bound Upper Bound Step Size Is Minimizer Algorithm emarks esidual Error (for CourceMoniker alue	ProMax:ProMax 1621.84	sgpm sgpm False Default Simp Sou - 1 Calculate x!Project!Flowsheets!Flowsheet1	Priority Solver Active Group Skip Dependency Check Die Solver 2 Urce Code d Variable [CV1] PStreams!Produced Water!Phases!	0 Active
Lower Bound Upper Bound Step Size Is Minimizer Algorithm emarks esidual Error (for CourceMoniker falue init	ProMax:ProMax 1621.84 bbl/d	sgpm sgpm False Default Simp Sou - 1 Calculate x!Project!Flowsheets!Flowsheet1	Priority Solver Active Group Skip Dependency Check Die Solver 2 Urce Code d Variable [CV1] PStreams!Produced Water!Phases!7	O Active False Fotal!Properties!Std Liquid Volumetric Flo
Lower Bound Upper Bound Step Size Is Minimizer Algorithm emarks esidual Error (for CourceMoniker alue init	ProMax:ProMax 1621.84 bbl/d	sgpm sgpm False Default Simp Sou - 1 Calculate x!Project!Flowsheets!Flowsheet1	Priority Solver Active Group Skip Dependency Check Die Solver 2 Urce Code d Variable [CV1] PStreams!Produced Water!Phases!7	Active False
Lower Bound Upper Bound Step Size Is Minimizer Algorithm emarks esidual Error (for CourceMoniker alue nit ourceMoniker alue	ProMax:ProMax 1621.84 bbl/d ProMax:ProMax Fraction!Water 86.3686	sgpm sgpm False Default Simp Sou - 1 Calculate x!Project!Flowsheets!Flowsheet1	Priority Solver Active Group Skip Dependency Check Die Solver 2 Urce Code d Variable [CV1] PStreams!Produced Water!Phases!7	O Active False Fotal!Properties!Std Liquid Volumetric Flo
Lower Bound Upper Bound Step Size Is Minimizer Algorithm emarks esidual Error (for CourceMoniker alue nit	ProMax:ProMax 1621.84 bbl/d ProMax:ProMax Fraction!Water	sgpm sgpm False Default Simp Sou - 1 Calculate x!Project!Flowsheets!Flowsheet1	Priority Solver Active Group Skip Dependency Check Die Solver 2 Urce Code d Variable [CV1] PStreams!Produced Water!Phases!7	O Active False Fotal!Properties!Std Liquid Volumetric Flo
Lower Bound Upper Bound Step Size Is Minimizer Algorithm emarks esidual Error (for CourceMoniker alue nit	ProMax:ProMax 1621.84 bbl/d ProMax:ProMax Fraction!Water 86.3686	Simp Sou -1 Calculate x!Project!Flowsheets!Flowsheet1 Measure x!Project!Flowsheets!Flowsheet1	Priority Solver Active Group Skip Dependency Check Die Solver 2 Urce Code d Variable [CV1] PStreams!Produced Water!Phases! d Variable [LF] PStreams!Stable Liquid!Phases!Total	O Active False Fotal!Properties!Std Liquid Volumetric Flo
Lower Bound Upper Bound Step Size Is Minimizer Algorithm emarks esidual Error (for CoourceMoniker alue nit ourceMoniker alue nit	ProMax:ProMax 1621.84 bbl/d ProMax:ProMax Fraction!Water 86.3686	Simp Sou -1 Calculate x!Project!Flowsheets!Flowsheet1 Measure x!Project!Flowsheets!Flowsheet1	Priority Solver Active Group Skip Dependency Check Die Solver 2 Urce Code d Variable [CV1] PStreams!Produced Water!Phases!7	O Active False Fotal!Properties!Std Liquid Volumetric Flo
Lower Bound Upper Bound Step Size Is Minimizer Algorithm emarks esidual Error (for CourceMoniker alue nit Error Calculated Value	ProMax:ProMax 1621.84 bbl/d ProMax:ProMax Fraction!Water 86.3686	Simp Solve Simp Solve Simp Solve	Priority Solver Active Group Skip Dependency Check Ple Solver 2 Irce Code d Variable [CV1] PStreams!Produced Water!Phases! d Variable [LF] PStreams!Stable Liquid!Phases!Tota r Properties Iterations Max Iterations	Active False Fotal!Properties!Std Liquid Volumetric Floal!Composition!Std. Liquid Volumetric Status: Solved
Lower Bound Upper Bound Step Size Is Minimizer Algorithm emarks esidual Error (for CoourceMoniker alue nit Error Calculated Value Lower Bound	ProMax:ProMax 1621.84 bbl/d ProMax:ProMax Fraction!Water 86.3686	Simp Solve -5.044E-05	Priority Solver Active Group Skip Dependency Check Please Solver 2 PStreams!Produced Water!Phases! d Variable [CV1] PStreams!Produced Water!Phases! T Properties Iterations Max Iterations Weighting	Active False False Fotal!Properties!Std Liquid Volumetric Floal!Composition!Std. Liquid Volumetric Status: Solved 10 20 1
Lower Bound Upper Bound Step Size Is Minimizer Algorithm emarks esidual Error (for CoourceMoniker alue nit Error Calculated Value Lower Bound Upper Bound	ProMax:ProMax 1621.84 bbl/d ProMax:ProMax Fraction!Water 86.3686	Simp Solve -5.044E-05 47.3037 sgpm sgpm Solve -sgpm Solve -sgpm sgpm sgpm sgpm sgpm sgpm sgpm sgpm	Priority Solver Active Group Skip Dependency Check Die Solver 2 Urce Code d Variable [CV1] PStreams!Produced Water!Phases! d Variable [LF] PStreams!Stable Liquid!Phases!Total r Properties Iterations Max Iterations Weighting Priority	Active False Fotal!Properties!Std Liquid Volumetric Floal!Composition!Std. Liquid Volumetric Status: Solved 10 20 1 0
Lower Bound Upper Bound Step Size Is Minimizer Algorithm Lemarks Lesidual Error (for Community of the Comm	ProMax:ProMax 1621.84 bbl/d ProMax:ProMax Fraction!Water 86.3686	Simp False Default Simp Sou - 1 Calculate x!Project!Flowsheets!Flowsheet1 x!Project!Flowsheets!Flowsheet1 x!Project!Flowsheets!Flowsheet1 Solve -5.044E-05 47.3037 sgpm sgpm sgpm sgpm sgpm sgpm sgpm	Priority Solver Active Group Skip Dependency Check Die Solver 2 Urce Code d Variable [CV1] PStreams!Produced Water!Phases! d Variable [LF] PStreams!Stable Liquid!Phases!Total r Properties Iterations Max Iterations Weighting Priority Solver Active	Active False False Fotal!Properties!Std Liquid Volumetric Floal!Composition!Std. Liquid Volumetric Status: Solved 10 20 1
Lower Bound Upper Bound Step Size Is Minimizer Algorithm emarks esidual Error (for CoourceMoniker alue nit Error Calculated Value Lower Bound Upper Bound	ProMax:ProMax 1621.84 bbl/d ProMax:ProMax Fraction!Water 86.3686	Simp Solve -5.044E-05 47.3037 sgpm sgpm Solve -sgpm Solve -sgpm sgpm sgpm sgpm sgpm sgpm sgpm sgpm	Priority Solver Active Group Skip Dependency Check Die Solver 2 Urce Code d Variable [CV1] PStreams!Produced Water!Phases! d Variable [LF] PStreams!Stable Liquid!Phases!Total r Properties Iterations Max Iterations Weighting Priority	Active False False Fotal!Properties!Std Liquid Volumetric Flo al!Composition!Std. Liquid Volumetric Status: Solved 10 20 1 0

Simulation Initiated on 2	2/8/2016 10:04:34 AM		OXF122_4	.00%Case_2.8.2016.pmx		Page 1 of 2
			loor Val	ua Cata Banart		
		•	Jser vai	ue Sets Report		
Client Name:	EQT				Job:	
Location:	OXF 122 400%	Case				
				- Flow/Frac.		
			User Val	ue [CnPlusSum]		
* Parameter			lb/h	Upper Bound		
Lower Bound			lb/h	* Enforce Bounds		False
Damania						
Remarks This User Value S	ot was programmat	tically gonorated G	D_(E9670	:485-3D3C-49CB-BC24-EA1	6006DB2B41	
This Oser value C	bet was programmat	lically generated.	OID=\L007C	,403-3D3C-49CD-DC24-EAT	0090002013	
			Ta	nk Losses		
				ue [ShellLength]		
* Parameter		20		Upper Bound		
* Lower Bound		0		* Enforce Bounds		False
Lower Board				Efficice Boarias		T dioc
			Hear Va	lue [ShellDiam]		
* Parameter		12 1		Upper Bound		
* Lower Bound		0		* Enforce Bounds		False
Lower Board				Ellielde Bearlac		i dioo
			Hear Val	ue [BreatherVP]		
* Parameter		0.03		Upper Bound		
Lower Bound		0.03	psig	* Enforce Bounds		False
201101 200110				2		. 4.00
			User Valu	e [BreatherVacP]		
* Parameter		-0.03		Upper Bound		
Lower Bound			r - J	* Enforce Bounds		False
			User Valu	ue [DomeRadius]		
Parameter			ft	Upper Bound		ft
Lower Bound		1	ft	* Enforce Bounds		False
			User Va	alue [OpPress]		
* Parameter		0.03125	psig	Upper Bound		
Lower Bound				* Enforce Bounds		False
				e [AvgPercentLiq]		
* Parameter		50		Upper Bound		
Lower Bound			%	* Enforce Bounds		False
				e [MaxPercentLiq]		
* Parameter		90		Upper Bound		
Lower Bound			%	* Enforce Bounds		False
				lue [AnnNetTP]		
* Parameter		1874.26		Upper Bound		Esta
* Lower Bound		0	bbl/day	* Enforce Bounds		False
				Value [OREff]		
* Parameter		0		Upper Bound		Falas
Lower Bound			%	* Enforce Bounds		False
* 5				ue [AtmPressure]		
* Parameter		14.1085	psia	Upper Bound		Folos
Lower Bound				* Enforce Bounds		False

		User Val	ue Sets Report		
Oliant Name	FOT			lah.	
Client Name: Location:	EQT OXF 122 400%	Case		Job:	
Location.	OXI 122 40070	Case			
	1				
		User	Value [TVP]		
* Parameter		0.353847 psia	Upper Bound		
Lower Bound			* Enforce Bounds		False
* D			[AvgLiqSurfaceT]		
* Parameter Lower Bound		57.7675 °F	Upper Bound * Enforce Bounds		False
Lower Boaria			Efficied Bourius		i aisc
		User Value	[MaxLiqSurfaceT]		
* Parameter		66.3119 °F	Upper Bound		
Lower Bound			* Enforce Bounds		False
		User Val	ue [TotalLosses]		
* Parameter		0.238624 lb/h	Upper Bound		
Lower Bound		lb/h	* Enforce Bounds		False
			ma, 11		
* D			e [WorkingLosses]		
* Parameter Lower Bound		0.150644 ton/yr ton/yr	Upper Bound * Enforce Bounds		False
Lower Bound		torryi	Efficice Bourius		raise
		Heer Value	[StandingLosses]		
* Parameter		0.0235518 ton/yr	Upper Bound		
Lower Bound		ton/yr	* Enforce Bounds		False
		User Value	e [RimSealLosses]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds		False
			PLACE I II I		
* Doromotor			[WithdrawalLoss]		
* Parameter Lower Bound		0 ton/yr	Upper Bound * Enforce Bounds		False
Lower Bound			Emoleo Bourido		1 4100
		User Value	e [LoadingLosses]		
* Parameter		0.477812 lb/h	Upper Bound		
Lower Bound		lb/h	* Enforce Bounds		False
			[DeckFittingLosses]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds		False
		Harr Wales	[Deal Ocean Lease 1		
* Danamatan			[DeckSeamLosses]		
* Parameter Lower Bound		0 ton/yr	Upper Bound * Enforce Bounds		False
Lower Bound			Emoleo Bourido		1 4100
		User Value	[FlashingLosses]		
* Parameter		0 ton/yr	Upper Bound		
Lower Bound			* Enforce Bounds		False
		User Value	e [GasMoleWeight]		
* Parameter		0.0284946 kg/mol	Upper Bound		
Lower Bound			* Enforce Bounds		False
Lower Bound Remarks	et was programma	tically generated. GUID={B57AF	* Enforce Bounds	31991004}	False

Process Streams Report All Streams Tabulated by Total Phase

Client Name: EQT Job: OXF 122 Blowdown Tank Flowsheet1 Location: Flowsheet:

Connections								
	Oxford 21 Pad Condensate	Produced Water	3	4	5			
From Block			MIX-100	VSSL-100	VSSL-100			
To Block	MIX-100	MIX-100	VSSL-100					

Stream Composition								
	Oxford 21 Pad Condensate	Produced Water	3	4	5			
Mole Fraction	%	%	%	%	%			
Nitrogen	0 *	0 *	0	0	0			
Methane	12.131 *	0 *	0.381096	27.3797	0.00317			
Carbon Dioxide	0.087 *	0 *	0.00273311	0.188522	0.000132449			
Ethane	10.145 *	0 *	0.318706	22.1556	0.0130338			
Propane	9.322 *	0 *	0.292851	18.5613	0.0371307			
i-Butane	2.446 *	0 *	0.0768412	4.10233	0.0204926			
n-Butane	6.995 *	0 *	0.219748	10.571	0.0748511			
i-Pentane	3.988 *	0 *	0.125283	3.92754	0.0720594			
n-Pentane	5.018 *	0 *	0.157641	4.14733	0.101793			
Isohexane	4.263 *	0 *	0.133922	1.84848	0.109922			
n-Hexane	4.311 *	0 *	0.13543	1.4277	0.117341			
2,2,4-Trimethylpentane	0.025 *	0 *	0.000785376	0.00328405	0.0007504			
Benzene	0.136 *	0 *	0.00427245	0.043334	0.00372566			
Heptane	11.691 *	0 *	0.367273	1.42241	0.352503			
Toluene	0.717 *	0 *	0.0225246	0.075928	0.021777			
Octane	9.741 *	0 *	0.306014	0.394172	0.30478			
Ethylbenzene	0.074 *	0 *	0.00232471	0.00255805	0.00232145			
o-Xylene	0.878 *	0 *	0.0275824	0.0230132	0.0276464			
Nonane	4.769 *	0 *	0.149818	0.0644626	0.151013			
Decane	13.263 *	0 *	0.416658	0.0593386	0.421659			
Water	0 *	100 *	96.8585	3.60198	98.1639			

	Oxford 21 Pad Condensate	Produced Water	3	4	5
Mass Fraction	%	%	%	%	%
Nitrogen	0 *	0 *	0	0	0
Methane	2.49009 *	0 *	0.307152	11.1692	0.0025903
Carbon Dioxide	0.0489906 *	0 *	0.00604298	0.210974	0.000296904
Ethane	3.90318 *	0 *	0.481456	16.9404	0.0199622
Propane	5.25959 *	0 *	0.648769	20.8125	0.0833966
i-Butane	1.81906 *	0 *	0.22438	6.06308	0.0606678
n-Butane	5.20208 *	0 *	0.641675	15.6236	0.221595
i-Pentane	3.68156 *	0 *	0.454119	7.2056	0.264813
n-Pentane	4.63241 *	0 *	0.571406	7.60885	0.374083
Isohexane	4.70052 *	0 *	0.579807	4.05059	0.48249
n-Hexane	4.75345 *	0 *	0.586336	3.12854	0.515055
2,2,4-Trimethylpentane	0.0365395 *	0 *	0.00450713	0.00953904	0.00436604
Benzene	0.135926 *	0 *	0.0167664	0.0860729	0.0148232
Heptane	14.9891 *	0 *	1.8489	3.62428	1.79912
Toluene	0.845293 *	0 *	0.104267	0.177895	0.102202
Octane	14.2372 *	0 *	1.75616	1.14494	1.7733
Ethylbenzene	0.100522 *	0 *	0.0123993	0.00690575	0.0125534
o-Xylene	1.19268 *	0 *	0.147116	0.0621267	0.149499
Nonane	7.82617 *	0 *	0.965355	0.210234	0.986528
Decane	24.1456 *	0 *	2.97835	0.214688	3.05584
Water	0 *	100 *	87.665	1.65008	90.0768

	Oxford 21 Pad Condensate	Produced Water	3	4	5
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Nitrogen	0 *	0 *	0	0	0
Methane	0.88352 *	0 *	0.88352	0.876272	0.00724777

Process Streams Report All Streams Tabulated by Total Phase

Job:

Client Name: EQT Location: OXF 122 Blowdown Tank

Flowsheet: Flowsheet1

	Oxford 21 Pad Condensate	Produced Water	3	4	5
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	0.0173826 *	0 *	0.0173826	0.0165518	0.000830748
Ethane	1.38491 *	0 *	1.38491	1.32905	0.0558551
Propane	1.86618 *	0 *	1.86618	1.63283	0.233347
i-Butane	0.645427 *	0 *	0.645427	0.475676	0.169751
n-Butane	1.84577 *	0 *	1.84577	1.22574	0.620033
i-Pentane	1.30627 *	0 *	1.30627	0.565312	0.740958
n-Pentane	1.64365 *	0 *	1.64365	0.596948	1.0467
Isohexane	1.66781 *	0 *	1.66781	0.317787	1.35003
n-Hexane	1.68659 *	0 *	1.68659	0.245448	1.44114
2,2,4-Trimethylpentane	0.0129647 *	0 *	0.0129647	0.000748381	0.0122163
Benzene	0.0482286 *	0 *	0.0482286	0.00675281	0.0414758
Heptane	5.31834 *	0 *	5.31834	0.284341	5.034
Toluene	0.299922 *	0 *	0.299922	0.0139567	0.285966
Octane	5.05157 *	0 *	5.05157	0.0898254	4.96175
Ethylbenzene	0.0356666 *	0 *	0.0356666	0.000541787	0.0351248
o-Xylene	0.423179 *	0 *	0.423179	0.00487412	0.418305
Nonane	2.77684 *	0 *	2.77684	0.0164938	2.76034
Decane	8.56721 *	0 *	8.56721	0.0168432	8.55037
Water	0 *	252.168 *	252.168	0.129456	252.038

Stream Properties							
Property	Units	Oxford 21 Pad Condensate	Produced Water	3	4	5	
Temperature	°F	85 *	85 *	85.0992	81.3833	81.3833	
Pressure	psia	407.696 *	407.696 *	407.696	14.7272 *	14.7272	
Mole Fraction Vapor	%	2.45359	0	0.0206344	100	0	
Mole Fraction Light Liquid	%	97.5464	100	3.06572	0	1.83443	
Mole Fraction Heavy Liquid	%	0	0	96.9136	0	98.1656	
Molecular Weight	lb/lbmol	78.1542	18.0153	19.9045	39.3259	19.6327	
Mass Density	lb/ft^3	34.8738	62.1455	57.8153	0.101023	59.5744	
Molar Flow	lbmol/h	0.453992	13.9974	14.4514	0.199498	14.2519	
Mass Flow	lb/h	35.4814	252.168	287.649	7.84545	279.804	
Vapor Volumetric Flow	ft^3/h	1.01742	4.0577	4.97531	77.6601	4.69671	
Liquid Volumetric Flow	gpm	0.126848	0.505895	0.620299	9.68229	0.585564	
Std Vapor Volumetric Flow	MMSCFD	0.00413479	0.127484	0.131618	0.00181695	0.129801	
Std Liquid Volumetric Flow	sgpm	0.111812 *	0.504102 *	0.615914	0.0325554	0.583358	
Compressibility		0.156312	0.0202195	0.0240087	0.987359	0.000835865	
Specific Gravity			0.996417		1.35782	0.955193	
API Gravity			9.96415			15.9923	
Enthalpy	Btu/h	-35182.2	-1.71793E+06	-1.75311E+06	-9270.75	-1.74384E+06	
Mass Enthalpy	Btu/lb	-991.568	-6812.63	-6094.6	-1181.67	-6232.36	
Mass Cp	Btu/(lb*°F)	0.531146	0.981529	0.926643	0.42149	0.935133	
Ideal Gas CpCv Ratio		1.06777	1.32512	1.29046	1.13709	1.29546	
Dynamic Viscosity	cP		0.833816		0.0088937	0.807227	
Kinematic Viscosity	cSt		0.837605		5.49593	0.837078	
Thermal Conductivity	Btu/(h*ft*°F)		0.353848		0.0122927	0.313852	
Surface Tension	lbf/ft		0.00492858			0.00446461 ?	
Net Ideal Gas Heating Value	Btu/ft^3	3993.4	0	125.453	2031.99	98.7652	
Net Liquid Heating Value	Btu/lb	19235.7	-1059.76	1443.68	19453.4	938.705	
Gross Ideal Gas Heating Value	Btu/ft^3	4313.43	50.31	184.236	2213.33	155.833	
Gross Liquid Heating Value	Btu/lb	20789.6	0	2564.39	21203.2	2041.78	

Officiation mittated on 12/2	2/2017 3.72.17 1 10		OAI 122_DIOWGOWI	1 Talik_12.22.2014.pmx			i age i t	JI 1
			MIX	ocks K-100 Jlitter Report				
Client Name:	EQT				Job:			
Location:	OXF 122 Blowd	own Tank			Modified: 2:14 PM, 7/24/2014			
Flowsheet:	Flowsheet1				Status: Solved 3:40 PM, 12/22/2014			
Connections								
Stream	Connect	ion Type	Other Block	Stream	Connection	on Type	Other Block	
Produced Water	Inl	let		Oxford 21 Pad Condensate	Inle	et		
3	Ou	tlet	VSSL-100					
			Block P	arameters				
Pressure Drop			0 psi	Fraction to PStream 3			100 %	
Remarks								

Blocks VSSL-100 Separator Report

Client Name:	EQT	Job:
Location:	OXF 122 Blowdown Tank	Modified: 1:11 PM, 7/17/2014
Flowsheet:	Flowsheet1	Status: Solved 3:40 PM, 12/22/2014

Connections							
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block		
3	Inlet	MIX-100	4	Vapor Outlet			
5	Light Liquid Outlet						

Block Parameters					
Pressure Drop	392.969 psi	Main Liquid Phase	Light Liquid		
Mole Fraction Vapor	1.38047 %	Heat Duty	0 Btu/h		
Mole Fraction Light Liquid	1.80911 %	Heat Release Curve Type	Plug Flow		
Mole Fraction Heavy Liquid	96.8104 %	Heat Release Curve Increments	5		

Simulation Initiated on 12/	22/2014 3:42:14 PM	OXF122_Blowdown Tank_12.22.2014.pmx					Page 1 of	
		F		Environment nment1				
Client Name:	EQT				Job:			
Location:	OXF 122 Blowd	lown Tank						
Flowsheet:	Flowsheet1							
			Environm	ent Settings				
Number of Poynting Intervals		0		Freeze Out Temperature Threshold Difference		10 °F	10 °F	
Gibbs Excess Mo Evaluation Tempe		77 °F		Phase Tolerance		1 %		
·								
			Comp	onents				
Component Name		Henry`s Law Component	Phase Initiator	Component Name		Henry`s Law Component	Phase Initiator	
Nitrogen		False	False	2,2,4-Trimethylpentane		False	False	
Methane		False	False	Benzene		False	False	
Carbon Dioxide		False	False	Heptane		False	False	
Ethane		False	False	Toluene		False	False	
Propane		False	False	Octane		False	False	
i-Butane		False	False	Ethylbenzene		False	False	

o-Xylene

Nonane

Decane

Water

	1 11,01001 1 1		
Liquid Molar Volume	COSTALD	Overall Package	Peng-Robinson
Stability Calculation	Peng-Robinson	Vapor Package	Peng-Robinson
Light Liquid Package	Peng-Robinson	Heavy Liquid Package	Peng-Robinson

False

Remarks

n-Butane

i-Pentane

n-Pentane

Isohexane

n-Hexane

False

False

False

True

False

False

False

False

			OXF122_Blowdown Tank_12.22.2014.pmx					
		Er	nvironm	ents Report				
Client Name: EQ	т				Job:			
	F 122 Blowdown Ta	nk						
		P	roject-Wid	de Constants				
Atmospheric Pressure		14.6959 p		IG Ref Pressure		14.6959	psia	
IG Ref Temperature		60 °		IG Ref Volume		379.485	ft^3/lbmol	
Liq Ref Temperature		60 °	'F					
		Env	ironment	[Environment1]				
			Environm	ent Settings				
Number of Poynting In	tervals	0		Freeze Out Temperatu Threshold Difference	10 °F			
Gibbs Excess Model		77 °F		Phase Tolerance		1 %		
Evaluation Temperatur	re			That Tolorano		1 70		
·								
			Comr	onents				
Component Name		Henry`s Law	Phase	Component Name		Henry`s Law	Phase	
		Component	Initiator			Component	Initiator	
		False	False	2,2,4-Trimethylpentane				
						False	False	
Methane		False	False	Benzene		False	False	
Methane Carbon Dioxide		False	False	Benzene Heptane		False False	False False	
Carbon Dioxide Ethane		False False	False False	Benzene Heptane Toluene		False False False	False False False	
Methane Carbon Dioxide Ethane Propane		False False False	False False False	Benzene Heptane Toluene Octane		False False False False	False False False False	
Methane Carbon Dioxide Ethane Propane i-Butane		False False False False	False False False False	Benzene Heptane Toluene Octane Ethylbenzene		False False False False False	False False False False False	
Methane Carbon Dioxide Ethane Propane i-Butane n-Butane		False False False False False	False False False False False	Benzene Heptane Toluene Octane Ethylbenzene o-Xylene		False False False False False False	False False False False False False False	
Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane		False False False False False False False	False False False False False False False	Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane		False False False False False False False False	False False False False False False False False False	
Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane		False False False False False False False False	False False False False False False False False	Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane		False	False	
Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Isohexane		False	False	Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane		False False False False False False False False	False False False False False False False False False	
Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane		False False False False False False False False	False False False False False False False False	Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane		False	False	
Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Isohexane		False	False	Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water		False	False	
Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane lsohexane n-Hexane		False	False	Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water		False	False False False False False False False False False True	
Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane lsohexane n-Hexane Liquid Molar Volume		False COSTALD	False	Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water erty Method Sets Overall Package		False	False False False False False False False False True	
Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Isohexane n-Hexane		False	False Folse	Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water		False	False False False False False False False False True	

Simulation Initiated on 12/22/2014 3:42:14 PM OXF122_Blowdown Tank_12.22.2014.pmx Calculator Report									
Client Name:	EQT		Job:						
ocation:	OXF 122 Blowdown Tank		000.						
		Cimple Colver 4							
		Simple Solver 1 Source Code							
tesidual Error (for C	CV1) = TP / 20 - 1	Cource Code							
00.000.	,, 20								
	Calc	ulated Variable [CV1]							
ourceMoniker	ProMax:ProMax!Project!Flowsheets!Flows	sheet1!PStreams!Oxford 21 Pad C	Condensate!Phases!Total!Properties!Std Liquid						
'alue	3.83354								
Jnit	bbl/d								
	Mea	asured Variable [TP]							
ourceMoniker	ProMax:ProMax!Project!Flowsheets!Flows	sheet1!PStreams!5!Phases!Total!F	Properties!Std Liquid Volumetric Flow						
alue	20.0009								
nit	bbl/d								
		Solver Properties	Status: Solved						
Error	4.26454E-05	Iterations	2						
Calculated Value	0.111812 sgpm	Max Iterations	20						
Lower Bound	sgpm	Weighting	1						
Upper Bound	sgpm	Priority	0						
Step Size	sgpm	Solver Active	Active						
Is Minimizer	False	Group							
Algorithm	Default	Skip Dependency C	heck False						
Remarks									
Remarks		Simple Solver 2							
		Simple Solver 2 Source Code							
	CV1) = LF / 86.373 - 1								
	CV1) = LF / 86.373 - 1	Source Code							
esidual Error (for C	CV1) = LF / 86.373 - 1	Source Code ulated Variable [CV1]	*IDhasas Tota Dropartias Std Liquid Volumetria Ele						
	CV1) = LF / 86.373 - 1	Source Code ulated Variable [CV1]	!Phases!Total!Properties!Std Liquid Volumetric Flo						

Maasurad Variahla [I F]

	Measured Variable [Li]
SourceMoniker	ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!5!Phases!Total!Composition!Std. Liquid Volumetric Fraction!Water
Value	86.3694
Linit	0/2

	Solve	Status: Solved		
Error	-4.1435E-05	Iterations	2	
Calculated Value	0.504102 sgpm	Max Iterations	20	
Lower Bound	sgpm	Weighting	1	
Upper Bound	sgpm	Priority	0	
Step Size	sgpm	Solver Active	Active	
Is Minimizer	False	Group		
Algorithm	Default	Skip Dependency Check	False	

		User Val	lue Sets Report		
Client Name:	EQT	l		Job:	
Location:	OXF 122 Blowd	own Tank			
			+ Flow/Frac.		
			lue [CnPlusSum]		
* Parameter		5.49412 lb/h	Upper Bound		
Lower Bound		lb/h	* Enforce Bounds		False
Remarks This User Value S	Set was programma	tically generated. GUID={E8670	C485-3D3C-49CB-BC24-EA16	:096DB2B1}	
		Та	ink Losses		
			ue [ShellLength]		
* Parameter		10 ft	Upper Bound		
* Lower Bound		0 ft	* Enforce Bounds		False
		User Va	alue [ShellDiam]		
* Parameter		10 ft	Upper Bound		
* Lower Bound		0 ft	* Enforce Bounds		False
			lue [BreatherVP]		
* Parameter		0.03 psig	Upper Bound		
Lower Bound			* Enforce Bounds		False
			ue [BreatherVacP]		
* Parameter		-0.03 psig	Upper Bound		Falsa
Lower Bound			* Enforce Bounds		False
		Hear Val	us [DamaBadius]		
Parameter		ft User val	ue [DomeRadius] Upper Bound		ft
Lower Bound		ft	* Enforce Bounds		False
Lower Bouria		TC.	Emoreo Bourido		1 4130
		Hear V	alue [OpPress]		
* Parameter		0.03125 psig	Upper Bound		
Lower Bound		0.00 .20 po.g	* Enforce Bounds		False
		User Valu	e [AvgPercentLiq]		
* Parameter		50 %	Upper Bound		
Lower Bound		%	* Enforce Bounds		False
			e [MaxPercentLiq]		
* Parameter		90 %	Upper Bound		
Lower Bound		%	* Enforce Bounds		False
			alue [AnnNetTP]		
* Parameter		19.9719 bbl/day	Upper Bound		
* Lower Bound		0 bbl/day	* Enforce Bounds		False
* D			Value [OREff]		
* Parameter Lower Bound		0 %	Upper Bound * Enforce Bounds		Falso
Lower Bound		<u>%</u>	Enlorce Bounds		False
		11	ua [AtmPragares]		
* Dorow			ue [AtmPressure]		
* Parameter Lower Bound		14.1085 psia	Upper Bound * Enforce Bounds		False
Lond. Dound			Emoroo Doundo		1 4100

			User Value	Sets Report		
Client Name:	EQT				Job:	
Location:	OXF 122 Blowdo	own Tank				
				alue [TVP]		
* Parameter		0.40074	8 psia	Upper Bound * Enforce Bounds		Falsa
Lower Bound				Enforce Bounds		False
			II			
* Danamatan		F7 707		vgLiqSurfaceT] Upper Bound		
* Parameter Lower Bound		57.767	5 °F	* Enforce Bounds		False
Lower Bound				Efficied Bourius		i disc
			Hear Value [N	laxLiqSurfaceT]		
* Parameter		66.311		Upper Bound		
Lower Bound		00.011		* Enforce Bounds		False
			User Value	[TotalLosses]		
* Parameter		0.0063514		Upper Bound		
Lower Bound			lb/h	* Enforce Bounds		False
			User Value [V	VorkingLosses]		
* Parameter		0.027819	5 ton/yr	Upper Bound		
Lower Bound			ton/yr	* Enforce Bounds		False
				tandingLosses]		
* Parameter			0 ton/yr	Upper Bound		
Lower Bound			ton/yr	* Enforce Bounds		False
			Haan Value II	Nim Caall accas		
* Parameter			0 ton/yr	RimSealLosses] Upper Bound		
Lower Bound			O ton/yr	* Enforce Bounds		False
Lower Board				Emoreo Bearias		raico
			User Value (V	VithdrawalLoss]		
* Parameter			0 ton/yr	Upper Bound		
Lower Bound			,-	* Enforce Bounds		False
			User Value [L	_oadingLosses]		
* Parameter		0.013600	9 lb/h	Upper Bound		
Lower Bound			lb/h	* Enforce Bounds		False
				eckFittingLosses]		
* Parameter			0 ton/yr	Upper Bound		
Lower Bound				* Enforce Bounds		False
* Danamatan				eckSeamLosses]		
* Parameter Lower Bound			0 ton/yr	Upper Bound * Enforce Bounds		False
LOWEI DOUIIU				Linoice Doullus		i dist
			Hear Value II	lashingLosses]		
* Parameter			0 ton/yr	Upper Bound		
Lower Bound			C COLLY I	* Enforce Bounds		False
			User Value (0	GasMoleWeight]		
* Parameter		0.027810		Upper Bound		
Lower Bound			_	* Enforce Bounds		False
Remarks This User Value Se	t was programmat	ically generated.	GUID={B57AFC7	E-AAE8-4873-921B-7B403	1991004}	

LAFAYETTE AREA LABORATORY

4790 N.E. EVANGELINE THRUWAY CARENCRO, LA 70520 PHONE (337) 896-3055 FAX (337) 896-3077

Certificate of Analysis:

13060035-001A

Company:

Gas Analytical Services

For:

Gas Analytical Services

Well: Field: Oxford 21 Pad **EQT Midstream** Alan Ball

Sample of:

Condensate-Spot

PO Box 1028

Conditions:

393 @ N.G.

Sampled by:

RM-GAS

Bridgeport, WV, 26330

Sample date:

5/28/2013

Report Date:

6/27/2013

Remarks:

Cylinder No.: GAS

Remarks:

Analysis: (GPA 2186M)	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %
Nitrogen	0.000	28.013	0.000	0.8094	0.000
Methane	12.131	16.043	2.159	0.3000	4.855
Carbon Dioxide	0.087	44.010	0.042	0.8180	0.035
Ethane	10.145	30.070	3.384	0.3562	6.403
Propane	9.322	44.097	4.560	0.5070	6.061
Iso-butane	2.446	58.123	1.577	0.5629	1.889
N-butane	6.995	58.123	4.510	0.5840	5.207
Iso-pentane	3.988	72.150	3.191	0.6244	3.446
N-pentane	5.018	72.150	4.016	0.6311	4.291
i-Hexanes	4.263	86.177	4.026	0.6795	4.092
n-Hexane	4.311	85.713	4.125	0.6640	4.172
2,2,4 trimethylpentane	0.025	114.231	0.032	0.6967	0.031
Benzene	0.136	78.114	0.102	0.8846	0.090
Heptanes	11.691	97.742	12.715	0.7030	12.206
Toluene	0.717	92.141	0.630	0.8719	0.569
Octanes	9.741	106.996	11.781	0.7535	10.540
E-benzene	0.074	106.167	0.040	0.8718	0.068
M-,O-,P-xylene	0.878	106.167	1.032	0.8731	0.803
Nonanes	4.769	122.539	6.704	0.7576	6.051
Decanes Plus	13.263	240.460	35.374	0.8174	29.191
		-			
	100.000		100.000	l .	100.000

Calculated Values	Total Sample	Decanes Plus
Specific Gravity at 60 °F	0.6744	0.8174
Api Gravity at 60 °F	78.317	41.616
Molecular Weight	90.157	240.460
Pounds per Gallon (in Vacuum)	5.623	6.815
Pounds per Gallon (in Air)	5.617	6.807
Cu. Ft. Vapor per Gallon @ 14.73 psia	23.722	10.730

Southern Petroleum Laboratories, Inc.

Gas Analytical

Report Date: Sep 14, 2015 9:23a

Client: Equitable Production Date Sampled: Sep 8, 2015 11:00a

Site: 514394 Analysis Date: Sep 11, 2015 2:17p

Field No: 9998 Collected By: J. Brown

Meter: 514394 Date Effective: Sep 8, 2015 12:00a Source Laboratory Clarksburg (Bridgeport), WV Sample Pressure (PSI): 70.0

Source Laboratory Clarksburg (Bridgeport), WV Sample Pressure (PSI):

Lab File No: X_CH1-6024.CHR Sample Temp (°F):

Sample Type: Spot Field H2O: No Test

Reviewed By: Field H2S: No Test

Component	Mol %	Gal/MSCF
Methane	78.1311	
Ethane	14.2559	3.79
Propane	4.0036	1.10
I-Butane	0.5947	0.19
N-Butane	1.1890	0.37
I-Pentane	0.3163	0.12
N-Pentane	0.3248	0.12
Nitrogen	0.4544	
Oxygen	<mdl< td=""><td></td></mdl<>	
Carbon Dioxide	0.1535	
Hexanes+	0.5767	0.24
TOTAL	100.0000	5.93

Analytical Results at Base Conditions (Real)

BTU/SCF (Dry): 1,262.4954 BTU/ft³

BTU/SCF (Saturated): 1,241.4002 BTU/ft³

PSIA: 14.730 PSI

Temperature (°F): 60.00 °F

Z Factor (Dry): 0.99644

Z Factor (Saturated): 0.99604

Analytical Results at Contract Conditions (Real)

BTU/SCF (Dry): 1,262.4954 BTU/ft³

BTU/SCF (Saturated): 1,241.4002 BTU/ft³

PSIA: 14.730 PSI

Temperature (°F): 60.00 °F

Z Factor (Dry): 0.99644

Z Factor (Saturated): 0.99604

Calculated Specific Gravities

Ideal Gravity: 0.7188 Real Gravity: 0.7211

Molecular Wt: 20.8177 lb/lbmol

Gross Heating Values are Based on: GPA 2145-09, 2186 Compressibility is Calculated using AGA-8.

Source	Date	Notes
--------	------	-------

Gas Analytical Sep 11, 2015 results to Bob Gum

Attachment T FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET

ATTACHMENT T – FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Use extra pages if necessary.

Emission Point ID#	NO) _x	C	О	V	OC	so) ₂	PM	I_{10}	PN	$M_{2.5}$	GHG	(CO ₂ e)
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Line Heater (E001)	0.12	0.53	0.10	0.45	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Line Heater (E002)	0.12	0.53	0.10	0.45	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Line Heater (E003)	0.12	0.53	0.10	0.45	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Line Heater (E004)	0.12	0.53	0.10	0.45	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Line Heater (E005)	0.12	0.53	0.10	0.45	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Line Heater (E006)	0.12	0.53	0.10	0.45	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Line Heater (E007)	0.12	0.53	0.10	0.45	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Line Heater (E008)	0.12	0.53	0.10	0.45	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Line Heater (E009)	0.09	0.40	0.08	0.34	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	134.66	589.82
Compressor Engine (E010)	1.87	8.21	2.08	9.11	0.56	2.46	<0.01	0.01	0.04	0.17	0.04	0.17	466.34	2,042.55
Enclosed Combustion Unit (E019)	0.93	4.06	0.78	3.41	1.42	6.00	<0.01	0.02	0.02	0.08	0.02	0.08	1,424.20	6,237.08
Enclosed Combustion Unit (E020)	1.59	6.95	1.33	5.84	1.42	6.00	<0.01	0.04	0.03	0.13	0.03	0.13	2302.37	10083.46
Tank Truck Loading Activities (E022)					0.07	0.31							0.02	0.10

Emission Point ID#	NO _x		СО		VOC		SO ₂		PM ₁₀		PM _{2.5}		GHG (CO ₂ e)	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
TEG (S023)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.52	6.67
TEG (S024)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.52	6.67
TOTAL	5.46	23.90	5.09	22.29	3.53	15.02	0.02	0.10	0.11	0.47	0.11	0.47	5784.63	25334.83

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT T – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Use extra pages if necessary.

Emission Point ID#	Formaldehyde		Benzene		Toluene		Ethylbenzene		Xylenes		Hexane		Total HAPs	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Line Heater (S001)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Line Heater (S002)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Line Heater (S003)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Line Heater (S004)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Line Heater (S005)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Line Heater (S006)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Line Heater (S007)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Line Heater (S008)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Line Heater (S009)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Compressor Engine (S010)	0.30	1.31	<0.01	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.31	1.36
Enclosed Combustion Unit (E019)	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	0.07	0.31	0.08	0.34
Enclosed Combustion Unit (E020)	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	0.07	0.31	0.08	0.35
Tank Truck Loading Activities (E022)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TEG (S023)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TEG (S024)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TOTAL	0.30	1.31	<0.01	<0.01	<0.01	0.04	<0.01	<0.01	<0.01	<0.01	0.14	0.61	0.49	2.13

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

Attachment U CLASS I LEGAL ADVERTISEMENT

Attachment U

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a General Permit for a natural gas production operation located in Harrisville, West Virginia. The latitude and longitude coordinates are: 39.13226 and -80.83105. Startup of operation is scheduled to begin the 1st day of December 2016.

The applicant estimates the maximum potential to discharge the following regulated air pollutants on a facility-wide basis will be:

Particulate Matter (PM) = 12.38 tpy Sulfur Dioxide (SO₂) = 0.10 tpy Volatile Organic Compounds (VOC) = 16.19 tpy Carbon Monoxide (CO) = 22.29 tpy Nitrogen Oxides (NO_x) = 23.90 tpy Total Hazardous Air Pollutants (HAPs) = 2.78 tpy Formaldehyde (HCHO) = 1.31 tpy Hexane (C_6H_{14}) = 0.61 tpy Carbon Dioxide Equivalents (CO₂e) = 25,334.83 tpy

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours.

Dated this the 20th day of July, 2016.

By: EQT Production Company Kenneth Kirk Executive Vice President 625 Liberty Avenue, Suite 1700 Pittsburgh, PA 15222