

Chevron Appalachia, LLC

Air Permit Application Curry Natural Gas Production Site

Moundsville, West Virginia

Prepared By:

ENVIRONMENTAL RESOURCES MANAGEMENT, Inc. Hurricane, West Virginia

August 2016

Gary Orr Appalachia Area Manager

Chevron Appalachia, LLC 700 Cherrington Parkway Coraopolis, PA 15108 Tel 412-865-2509 orrga@chevron.com

August 1, 2016

Mr. William F. Durham, Director WV Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia 25304

HAND DELIVERED

Re: Chevron Appalachia, LLC, Moundsville, West Virginia Curry Pad A Natural Gas Production Facility G70-C Permit Application

Dear Director Durham:

Enclosed are one (1) original hard copy and two (2) CD-ROMs of a G70-C General Air Permit Application for the construction of the Curry Pad A Natural Gas Production Well Site. A check for \$4,000 is enclosed for the application fee.

Chevron Appalachia, LLC currently operates the Curry natural gas production site under R13-3137B and wishes to receive the authority to construct additional stationary sources through the issuance of a G70-C general permit.

If you have any questions concerning this permit application, please contact Ms. Amy McGreevy, Air Specialist, of my staff at (412) 865-2495.

Sincerely,

Ing On

Gary Or Appalachia Area Manager

INTRODUCTION

Chevron Appalachia, LLC (Chevron) is submitting this G70-C General Permit Application to the WVDEP's Division of Air Quality for the Curry Pad A natural gas production site located in Marshall County, West Virginia. This application addresses the operational activities associated with the production of natural gas and condensate at the Curry site, already permitted under R13-3137B. This application seeks to update the authority to construct three (3) additional wells and associated equipment at the Curry natural gas production site through the issuance of a G70-C.

FACILITY DESCRIPTION

The Curry natural gas production site is located in Marshall County, WV and will consist of four (4) natural gas wells. The single well authorized by the R13-3137B permit well was shut in on December 24, 2014 to allow for three (3) additional wells to be drilled on the well pad. The WVDEP was notified of this suspension of activity on February 26, 2015. At this time, all associated equipment was removed from the site.

Natural gas and liquids (including water and condensate) will be extracted from underground deposits. The natural gas and condensate will be transported from the wells to sales pipelines for compression or pumping and additional processing, as necessary. The produced water and fluids realized from blowdown activities will be stored in storage vessels.

The applicant seeks to authorize the operation of the following under the G70-C General Permit Application:

- Four (4) natural gas wells;
- Two (2) line heaters rated at 1.0 mmBtu/hr heat input (BAP-0110, BAP-0810);
- Three (3) line heaters rated at 1.25 mmBtu/hr heat input (BAP-0210, BAP-0910, BAP-0012);
- Two (2) 400 bbl Produced Water Tanks (ABJ-0011A and ABJ-0011B);
- One (1) 400 bbl Blowdown / Test Storage Tank (ABJ-0014);
- One (1) glycol reboiler rated at 0.5 mmBtu/hr heat input (BBC-0100A);
- One (1) glycol dehydration unit rated at 30.0 mmscf/day (BBC-0100B);
- One (1) flash gas compressor engine rated at 276 hp (CBA-0050);
- One (1) electric drive Vapor Recovery Unit (VS-1);
- Two (2) truck liquid loading connections (ZZZ-0011AB and ZZZ-0014).

All equipment operated on the physical site contained within R13-3137B, with the exception of BAP-0110, will be modified with this submittal.

A process flow diagram is included in this application in Attachment D.

STATEMENT OF AGGREGATION

The Curry natural gas production site is located in Marshall County, WV and is operated by Chevron Appalachia, LLC. Stationary sources of air pollutants may require aggregation of total emission levels if these sources share the same industrial grouping, are operating under common control, and are classified as contiguous or adjacent properties. Chevron Appalachia, LLC will operate the Curry site with the same industrial grouping as nearby facilities, and some of these facilities are under common control. Chevron Appalachia, LLC, however, is not subject to the aggregation of stationary emission sources because these sites do not meet the definition of contiguous or adjacent facilities.

The Curry natural gas production site will operate under SIC code 1311 (Crude Petroleum and Natural Gas Extraction). There are surrounding wells operated by Chevron Appalachia, LLC that share the same two-digit major SIC code of 13 for Crude Petroleum and Natural Gas Extraction. Therefore, the Curry site does share the same SIC codes as the surrounding wells.

Chevron Appalachia, LLC is the sole operator of the Curry natural gas production site. Chevron Appalachia, LLC is also the sole operator of other production sites in the area. Therefore, Chevron Appalachia, LLC does qualify as having nearby operations under common control.

Chevron's Curry natural gas production site is within 0.70 miles of the Siburt natural gas production site and 0.60 miles of the Hart B natural gas production site. These facilities do not meet the definition of contiguous or adjacent properties since they are not in contact and do not share a common boundary. Operations conducted at the Curry site do not rely on or interact with other sites. Furthermore, operations separated by this distance do not meet the common sense notion of a "plant."

On June 3, 2016 the EPA Administrator published the *Source Determination for Certain Emission Units in the Oil and Natural Gas Sector*. This notice clarifies how properties in the oil and natural gas sector are determined to be adjacent in order to assist permitting authorities and permit applicants in making consistent source determinations. The following regulatory text defines "adjacent" for the oil and gas sector in terms of proximity.

Pollutant emitting activities shall be considered adjacent if they are located on the same surface site, or on surface sites that are located within $\frac{1}{4}$ mile of one another.

The Siburt and Hart B sites are located on surface sites located greater than ¹/₄ mile. Although the applicant notes that the EPA's Source Determination Rule does not mandate adoption by the State, it is the only guidance available on a finite distance impacting the adjacency determination, and has been noted due to lack of WVDAQ guidance. Based upon the proximity of nearby facilities, Chevron does not believe aggregation based upon adjacency is required.

Based on the above reasoning, Chevron Appalachia, LLC is not subject to the aggregation of stationary emission sources since the stationary sources are not considered contiguous or adjacent facilities.

REGULATORY DISCUSSION

This section outlines the State and Federal air quality regulations that could be reasonably expected to apply to the Curry natural gas production site and makes an applicability determination for each regulation based on activities conducted at the site and the emissions of regulated air pollutants. This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-C permit application forms.

The West Virginia State Regulations address federal regulations, including Prevention of Significant Deterioration permitting, Title V permitting, New Source Performance Standards, and National Emission Standards for Hazardous Air Pollutants. The regulatory requirements in reference to Curry are described in detail in the below section.

WEST VIRGINIA STATE AIR REGULATIONS

45 CSR 02 – To Prevent and Control Particulate Air Pollution From Combustion of Fuel in Indirect Heat Exchangers

The line heaters and glycol reboiler are indirect heat exchangers that combust natural gas with heat input ratings less than 10 MMBtu/hr. Such units are subject to 10% opacity as a six-minute block average limitation, but are exempt from most other requirements in the rule aside from discretionary testing requirements.

45 CSR 04 – To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

Operations conducted at the Curry site are subject to this requirement. Based on the nature of the process at the wellpad, the presence of objectionable odors is unlikely. There will be no combustion of refuse at the Curry site. The VDU permitted under the existing R13-3137B will be replaced by an electric VRU control device. The external fuel combustion heaters do not meet the definition of incinerators under this Rule.

45 CSR 10 – To Prevent and Control Air Pollution From the Emission of Sulfur Oxides

The line heaters and glycol reboiler are indirect heat exchangers that combust natural gas with heat input ratings less than 10 MMBTU/hr. Such units are subject to the 2,000 ppm_v sulfur dioxide concentration limitation but are exempt from most other requirements in the rule aside from discretionary testing requirements. Compliance with the allowable sulfur dioxide concentration limitations is based on a block (3) hour averaging time.

45 CSR 13 – Permits for Construction, Modification, Relocation, And Operation of Stationary Sources of Air Pollutants

This G70-C permit application is being submitted for the operational activities associated with Chevron Appalachia, LLC's production of natural gas.

45 CSR 14 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD). The G70-C applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the Curry site will not exceed emission thresholds established by this permitting program. Chevron Appalachia, LLC will monitor future construction and modification activities at the site closely and will compare any future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

45 CSR 16 - Standards of Performance for New Stationary Sources (NSPS)

45 CSR 16 applies to all registrants that are subject to any of the NSPS requirements described in more detail in the Federal Regulations section. Applicable requirements of NSPS Subpart JJJJ and OOOO are included in the G70-C general permit.

Although not incorporated in the G70-C, this facility is expected to operate as a gas well affected facility and a storage tank affected facility under Subpart OOOOa. No additional NSPS are applicable for this facility. Additional

discussion is provided in the Federal Regulation Discussion of this permit application.

45 CSR R19 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contributed to Non-attainment

Federal construction permitting programs regulate new and modified sources of non-attainment pollutants under Non-Attainment New Source Review (NNSR). The G70-C applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the Curry Site will not exceed emission thresholds established by either of these permitting programs. Chevron Appalachia, LLC will monitor future construction and modification activities at the site closely and will compare any future increase in emissions with the NSR thresholds to ensure these activities will not trigger this program.

45 CSR 25 – Control of Air Pollution from Hazardous Waste Treatment, Storage, and Disposal Facilities

No hazardous waste will be burnt at this well site; therefore, it is not subject to this hazardous waste rule.

45 CSR 30 - Requirements for Operating Permits

45 CSR 30 applies to the requirements of the federal Title V operating permit program (40 CFR 70). The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP, and 100 tpy of all other regulated pollutants.

The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpad is not a major source for Title V purposes.

45 CSR 34 – National Emission Standards for Hazardous Air Pollutants (NESHAP)

45 CSR 34 applies to all registrants that are subject to any of the NESHAP requirements. Excluded from G70-C general permit eligibility are any sources that are subject to NESHAP Subpart HHH.

The Curry site will operate a reciprocating internal combustion engine subject to 40 CFR 63 Subpart ZZZZ (National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines), as discussed in the Federal Regulation Applicability of this application.

The Curry site will also operate a triethylene glycol (TEG) dehydration unit subject to 40 CFR 63 Subpart HH (National Emission Standards for Hazardous Air Pollutants From Oil and Natural Gas Production Facilities), as discussed in the Federal Regulation Applicability of this application.

FEDERAL REGULATIONS

40 CFR 60, Subpart JJJJ (Standards of Performance for Stationary Spark Ignition Internal Combustion Engines)

Subpart JJJJ established standards and compliance schedules for the control of volatile organic compounds (VOC), Nitrogen Oxides (NOx), and Carbon Monoxide (CO) emissions from affected facilities that commence construction, modification, or reconstruction after June 12, 2006. The applicable provisions and requirements of Subpart JJJJJ are included under the G70-C permit.

The natural gas-fired flash gas compressor that will be installed at the Curry natural gas production facility is subject to the requirements of this Rule. The CAT G3406TA Compressor Engine is a 276 bhp 4 stroke rich burn (4SRB), nonemergency spark ignition (SI) engine manufactured in October of 2014. The engine is not classified as a certified stationary SI internal combustion engine and is rated as greater than or equal to 100 hp and less than or equal to 500 hp. Therefore, the engine is required to follow the compliance requirements of Section §60.4243(b)(2)(i):

- Keep maintenance plan and records of conducted maintenance;
- Maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions;
- Conduct an initial performance test within one (1) year of engine startup to demonstrate compliance for NOx, CO, and VOC emissions.

40 CFR 60, Subpart OOOOa (Standards of Performance for Crude oil and Natural Gas Facilities for Which Construction, Modification, or Reconstruction Commenced After September 18, 2015)

Subpart OOOOa establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC), sulfur dioxide (SO₂), and greenhouse gas (GHG) emissions from affected facilities in the crude oil and natural gas source category that commence construction, modification or reconstruction after September 18, 2015. Based upon the Federal applicability of OOOOa, the Curry site will be subject to this rule. The Curry natural gas production site is expected to be subject to NSPS OOOOa, for the affected facility types listed below:

- Each gas well affected facility, which is a single natural gas well.
- Storage vessel affected facility. Based on PTE calculations included within this permit, each storage vessel will be manifolded and routed to a vapor recovery device such that emissions from each of these tanks are expected to exceed 6 tons per year (tpy) of VOC. Therefore, the Curry site will be considered storage vessel affected facilities

The Curry natural gas production site will not qualify as a pneumatic controller affected facility, since <u>p</u>neumatic controller installed at this facility will be intermittent bleed rate devices.

40 CFR 63, Subpart ZZZZ (National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines)

The CAT G3406TA Compressor Engine is a 276 bhp 4 stroke rich burn (4SRB) spark ignition (SI) engine manufactured in October of 2014. The engine meets the requirements of 40 CFR 60 Subpart JJJJ. Per 40CFR63.6590(c)(1), no further requirements apply for a new stationary RICE located at an area source subject to regulation under 40 CFR 60 Subpart JJJJ.

40 CFR 63 Subpart HH (National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities)

The Curry site will contain a natural gas dehydration unit that is upstream from a point of custody transfer and is subject to requirements under Subpart HH. Since the emissions from the storage vessels and natural gas dehydration unit are below major source thresholds, the Curry site should be considered an area source for MACT applicability under this NESHAP. Based on PTE calculations provided within this application, the dehydration unit is expected to emit less than 0.9 megagrams of benzene (or 1 ton of benzene) per year, which classifies the unit as a small dehydration unit. Small dehydration units are exempt from the control requirements expressed in §63.764(e).

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G70-C GENERAL PERMIT REGISTRATION APPLICATION

PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF NATURAL GAS PRODUCTION FACILITIES LOCATED AT THE WELL SITE

⊠CONSTRUCTION □MODIFICATION □RELOCATION □CLASS I ADMINISTRATIVE UPDATE □CLASS II ADMINISTRATIVE UPDATE

Name of Applicant (as registered	with the WV Secretary of S	tate's Office):	
Chevron Appalachia, LLC	,,,, ,, ,		
Federal Employer ID No. (FEIN)	25-0527925		
Applicant's Mailing Address: 70	0 Cherrington Parkway		κ
City: Coraopolis	State: PA		ZIP Code: 15108
Facility Name: Curry Natural	Gas Production Site		55
Operating Site Physical Address: If none available, list road, city o	Moundsville, WV 2604		
City: Moundsville	Zip Code: 2604	1	County: Marshall
Latitude & Longitude Coordinate Latitude: 39.91013 Longitude: -80.66596	s (NAD83, Decimal Degrees	to 5 digits):	
SIC Code: 1381 NAICS Code: 211111		DAQ Facility ID No. (For exist 051-00181	ting facilities)
	CERTIFICATION	OF INFORMATION	
This G70-C General Permit Regis Official is a President, Vice Presi Directors, or Owner, depending o authority to bind the Corporation, Proprietorship. Required records compliance certifications and all Representative. If a business wish off and the appropriate names and unsigned G70-C Registration Ap utilized, the application will be	ident, Secretary, Treasurer, (n business structure. A busin , Partnership, Limited Liabil of daily throughput, hours o required notifications must l nes to certify an Authorized I signatures entered. Any ad pplication will be returned	General Partner, General Manage ness may certify an Authorized R ity Company, Association, Joint f operation and maintenance, gen be signed by a Responsible Offici Representative, the official agree ministratively incomplete or im to the applicant. Furthermore	r, a member of the Board of epresentative who shall have Venture or Sole eral correspondence, ial or an Authorized ement below shall be checked properly signed or , if the G70-C forms are no

I hereby certify that is an Authorized Representative and in that capacity shall represent the interest of the business (e.g., Corporation, Partnership, Limited Liability Company, Association Joint Venture or Sole Proprietorship) and may obligate and legally bind the business. If the business changes its Authorized Representative, a Responsible Official shall notify the Director of the Division of Air Quality immediately.

I hereby certify that all information contained in this G70-C General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible.

Responsible Official Signature:	N 2m Un	
Name and Title: Gary Orr - Appala	chia Area Manager for Chevron Appalachia, LLC	Phone: 412-865-2509
Fax: N/A Ei	mail: orrga@chevron.com	Date:

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G70-C GENERAL PERMIT REGISTRATION APPLICATION

PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF NATURAL GAS PRODUCTION FACILITIES LOCATED AT THE WELL SITE

⊠CONSTRUCTION □MODIFICATION □RELOCATION □CLASS I ADMINISTRATIVE UPDATE □CLASS II ADMINISTRATIVE UPDATE

If applicable:		
Authorized Representative Signature:		
Name and Title:	Phone:	Fax:
Email:	Date:	
If applicable:		
Environmental Contact		
Name and Title: Amy McGreevy – Air Specia	alist Phone: 412-865-2495	Fax: N/A
Email: amy.mcgreevy@chevron.com	Date:	

OPERATING SIT	E INFORMATION
Briefly describe the proposed new operation and/or any chang this permit modification to address three new we tanks, and a dehydration unit to the Curry natura	ells, associated line heaters, phase separators,
Directions to the facility: From Moundsville, WV trave approximately 6.0 miles. Take a left onto Wayma on the left, 1.75 miles ahead.	
ATTACHMENTS AND SU	PPORTING DOCUMENTS
I have enclosed the following required documen	ts:
Check payable to WVDEP – Division of Air Quality with the	appropriate application fee (per 45CSR13 and 45CSR22).
 Check attached to front of application. I wish to pay by electronic transfer. Contact for payment (I wish to pay by credit card. Contact for payment (incl. n 	
 S500 (Construction, Modification, and Relocation) \$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or C \$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or I 	
¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESI requirements by complying with NSPS, Subparts IIII and/or J NSPS and NESHAP fees apply to new construction or if the se	JJJ.
Responsible Official or Authorized Representative Signate	ure (if applicable)
Single Source Determination Form (must be completed in	n its entirety) – Attachment A
Siting Criteria Waiver (if applicable) – Attachment B	Current Business Certificate – Attachment C
Process Flow Diagram – Attachment D	Process Description – Attachment E
🖾 Plot Plan – Attachment F	🔀 Area Map – Attachment G
G70-C Section Applicability Form – Attachment H	Emission Units/ERD Table – Attachment I
Fugitive Emissions Summary Sheet – Attachment J	
Gas Well Affected Facility Data Sheet (if applicable) – Af	tachment K
Storage Vessel(s) Data Sheet (include gas sample data, US HYSYS, etc.), etc. where applicable) – Attachment L	SEPA Tanks, simulation software (e.g. ProMax, E&P Tanks,
Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs M	, Heater Treaters, In-Line Heaters if applicable) – Attachment
Internal Combustion Engine Data Sheet(s) (include manuf	acturer performance data sheet(s) if applicable) – Attachment
Tanker Truck Loading Data Sheet (if applicable) – Attach	
Glycol Dehydration Unit Data Sheet(s) (include wet gas a information on reboiler if applicable) – Attachment P	nalysis, GRI- GLYCalc [™] input and output reports and
Pneumatic Controllers Data Sheet – Attachment Q	
Air Pollution Control Device/Emission Reduction Device(if applicable) – Attachment R	s) Sheet(s) (include manufacturer performance data sheet(s)
Emission Calculations (please be specific and include all	calculation methodologies used) – Attachment S
Facility-wide Emission Summary Sheet(s) – Attachment T	
🛛 Class I Legal Advertisement – Attachment U	
One (1) paper copy and two (2) copies of CD or DVD with	n pdf copy of application and attachments

All attachments must be identified by name, divided into sections, and submitted in order.

Table of Contents

- ATTACHMENT A SINGLE SOURCE DETERMINATION FORM
- ATTACHMENT B SITING CRITERIA WAIVER (NOT APPLICABLE)
- ATTACHMENT C BUSINESS CERTIFICATE
- ATTACHMENT D PROCESS FLOW DIAGRAM
- ATTACHMENT E PROCESS DESCRIPTION
- ATTACHMENT F PLOT PLAN
- ATTACHMENT G AREA MAP
- ATTACHMENT H APPLICABILITY FORM
- ATTACHMENT I EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE
- ATTACHMENT J FUGITIVE EMISSIONS SUMMARY SHEET
- ATTACHMENT K GAS WELL AFFECTED FACILITY DATA SHEET
- ATTACHMENT L STORAGE VESSEL DATA SHEET
- ATTACHMENT M HEATER AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART Dc
- ATTACHMENT N INTERNAL COMBUSTION ENGINE DATA SHEET
- **ATTACHMENT O** TANKER TRUCK LOADING DATA SHEET
- ATTACHMENT P GLYCOL DEHYDRATION UNIT DATA SHEET
- ATTACHMENT Q PNEUMATIC CONTROLLERS DATA SHEET
- ATTACHMENT R AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE (ERD) SHEET
- ATTACHMENT S EMISSION CALCULATIONS
- ATTACHMENT T FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET
- ATTACHMENT U CLASS I LEGAL ADVERTISEMENT

Attachment A

SINGLE SOURCE DETERMINATION FORM

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

Is there a facility owned by or associated with the natural gas industry located within one (1) mile of the proposed facility? Yes \square No \square

If Yes, please complete the questionnaire on the following page (Attachment A).

Please provide a source aggregation analysis for the proposed facility below:

Source aggregation analysis is addressed in the Introduction.

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Answer each question with a detailed explanation to determine contiguous or adjacent properties which are under a common control and any support facilities. This section must be completed in its entirety.

Provide a map of contiguous or adjacent facilities (production facilities, compressor stations, dehydra which are under common control and those facilities that are not under common control but are suppo indicate the SIC code, permit number (if applicable), and the distance between facilities in question o	ort facilities	
Are the facilities owned by the same parent company or a subsidiary of the parent company? Provide the owners identity and the percentage of ownership of each facility.	Yes 🛛	No 🗌
Does an entity such as a corporation have decision making authority over the operation of a second entity through a contractual agreement or voting interest? Please explain.	Yes	No 🔀
Is there a contract for service relationship between the two (2) companies or, a support/dependency relationship that exists between the two (2) companies? Please explain.	Yes	No 🔀
Do the facilities share common workforces, plant managers, security forces, corporate executive officers or board executives?	Yes 🛛	No 🗌
Will managers or other workers frequently shuttle back and forth to be involved actively at both facilities?	Yes 🛛	No 🗌
Do the facilities share common payroll activities, employee benefits, health plans, retirement funds, insurance coverage, or other administrative functions? Please explain.	Yes 🛛	No 🗌
Does one (1) facility operation support the operation of the other facility?	Yes 🗌	No 🔀
Is one (1) facility dependent on the other? If one (1) facility shuts down, what are the limitations on the other to pursue outside business? Please explain.	Yes	No 🔀
Are there any financial arrangements between the two (2) entities?	Yes	No 🔀
Are there any legal or lease agreements between the two (2) facilities?	Yes 🗌	No 🖂
Do the facilities share products, byproducts, equipment, or other manufacturing or air pollution control device equipment? Please explain.	Yes 🗌	No 🛛
Do all the pollutant-emitting activities at the facilities belong to the same SIC Code? Please provide the SIC Codes. 1311	Yes 🛛	No 🗌
Was the location of the new facility chosen primarily because of its proximity to the existing facility to integrate the operation of the two (2) facilities? Please explain.	Yes	No 🛛
Will materials be routinely transferred between the two (2) facilities? Please explain the amount of transfer and how often the transfers take place and what percentages go to the various entities.	Yes 🗌	No 🛛
Does the facility influence production levels or compliance with environmental regulations at other facilities? Who accepts the responsibility for compliance with air quality requirements? Please explain.	Yes	No 🔀

Attachment B

GITING CRITERIA WAIVER – (NOT APPLICABLE)

Attachment C

BUSINESS CERTIFICATE

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

the attached true and exact copy of the Articles of Amendment to the Articles of Organization of

ATLAS AMERICA, LLC

are filed in my office, signed and verified, as required by the provisions of West Virginia Code §31B-2-204 and conform to law. Therefore, I issue this

CERTIFICATE OF AMENDMENT TO THE CERTIFICATE OF AUTHORITY

changing the name of the limited liability company to

CHEVRON APPALACHIA, LLC

Given under my hand and the Great Seal of the State of West Virginia on this day of April 28, 2011

Vlaterie E. Yuman

Secretary of State

Natalie E. Tennant Secretary of State 1900 Kanawha Blvd E. Bldg 1, Suite 157-K Charleston, WV 25305

Penney Barker, Manager Corporations Division Tel: (304)558-8000 Fax: (304)558-8381 <u>WWW.WYSOS.com</u> Hrs: 8:30 a.m. – 5:00 p.m. ET

FILE ONE ORIGINAL (Two if you want a filed stamped copy returned to you) FEE: \$25.00

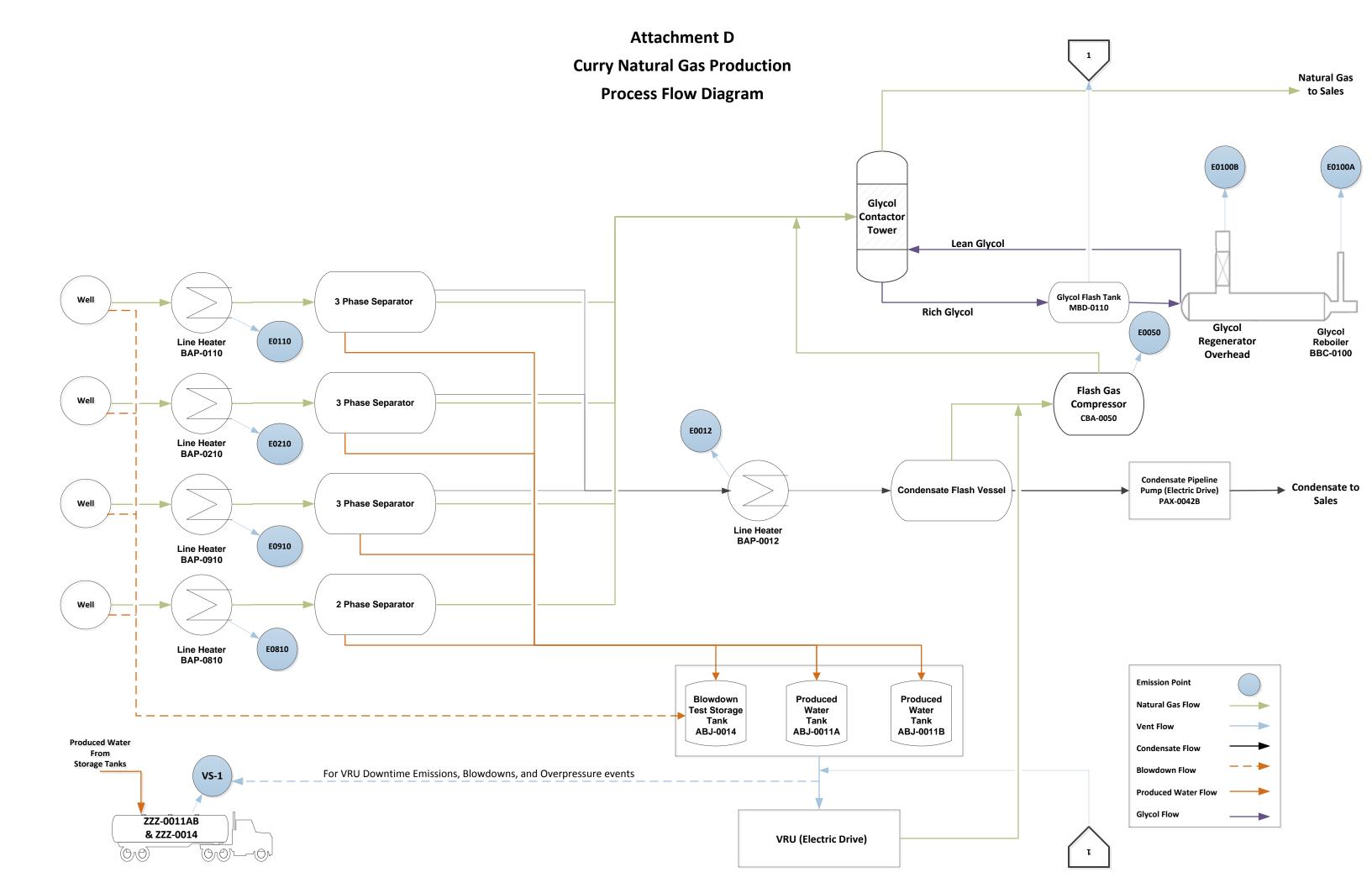
WV APPLICATION FOR AMENDED CERTIFICATE OF AUTHORITY OF A LIMITED LIABILITY COMPANY

In accordance with the provisions of the West Virginia Code, the undersigned limited liability company hereby applies for an Amended Certificate of Authority and submits the following statement:

Name under which the organization was authorized to transact business in WV:		Atlas America, LLC	
Date Certificate of Authority was issued in West Virginia:		03/08/2007	
Change of Name Informa in the home state)	ation or Text of A	Amendment: (Attach one	certified copy of the name change as filed
Change of name from:	Atlas America,		·
To:	Chevron Appala	achia, LLC	
		V:	FILED
Other amendment (use ac	Iditional pages in	f necessary)	APR 28 2011
	<u></u>		IN THE OFFICE OF SECRETARY OF STATE
	authorized to transact bus Date Certificate of Autho issued in West Virginia: Change of Name Informa in the home state) Change of name from: To: Name the organization el (Due to home state name not	authorized to transact business in WV: Date Certificate of Authority was issued in West Virginia: Change of Name Information or Text of A in the home state) Change of name from: <u>Atlas America,</u> To: <u>Chevron Appala</u> Name the organization elects to use in W (Due to home state name not being available)	Name the organization was authorized to transact business in WV: Date Certificate of Authority was issued in West Virginia: 03/08/2007 Change of Name Information or Text of Amendment: (Attach one in the home state) Change of name from: Atlas America, LLC To: Chevron Appalachia, LLC Name the organization elects to use in WV:

4. Contact name and number to reach in case of a problem with filing: (optional, however, listing one may help to avoid a return or rejection of filing if there is a problem with the document)

300-927-9801 x2207	
Phone Number	


Business e-mail address, if any: jsuarez@cscinfo.com

5. Signature of person executing document:

Assistant Secretary

Title/Capacity (Example: member, manager, etc.)

Attachment D PROCESS FLOW DIAGRAM

Attachment E

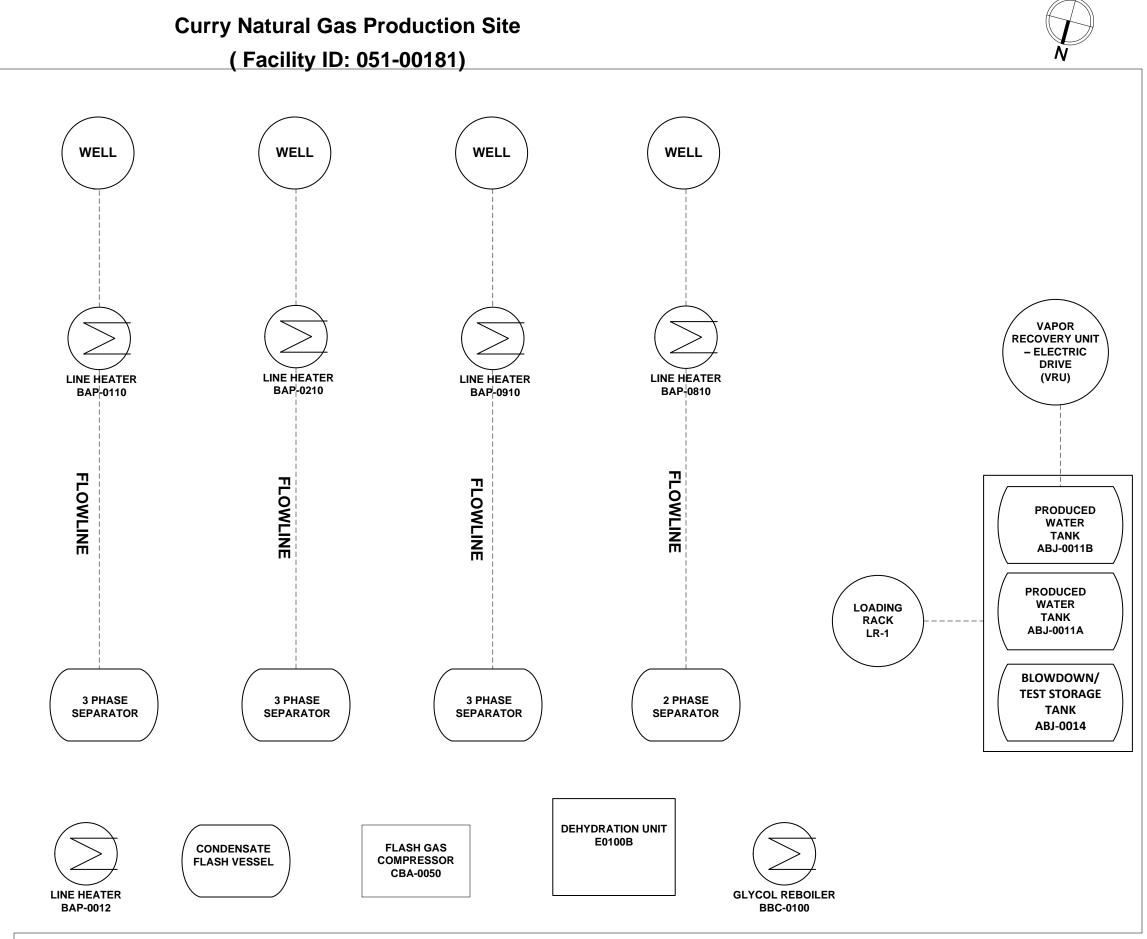
PROCESS DESCRIPTION

Attachment E Process Description

This permit application is being filed by Chevron Appalachia, LLC (Chevron) and addresses operational activities associated with the Curry natural gas production site. Incoming raw natural gas from each of the four wells enter the site and is first routed through a line heater (BAP-0110, BAP-0210, BAP-0410, BAP-0810, and BAP-0910) to assist with the phase separation process in the downstream separators. In the first stage separators, condensate and water is removed from the raw gas.

The raw gas is routed through a Triethylene Glycol (TEG) Dehydration Unit (BBC-0100) for removal of entrained fluids prior to exiting the site via a natural gas sales line. The flash tank (MBD-0110) included within the Curry site route flash vapors to the electric drive Vapor Recovery Unit control device. The rich glycol stream will then flow to the glycol reboiler, where the water and hydrocarbons will be removed from the glycol stream and routed to the glycol regenerator overhead (E100B).

Condensate is removed from the raw gas in the first stage separators and is transferred to the Condensate Flash Vessel via a comingled condensate line. The condensate is routed through a line heater (BAP-0012) prior to the Condensate Flash Vessel to aid in fluid separation. At these pressure and temperature conditions, light hydrocarbon constituents volatilize within the condensate flash vessel and are directed to the Flash Gas Compressor (CBA-0050). Flash Gas Compressor (CBA-0050) will be powered by a 276 hp 4-Stroke Rich Burn Caterpillar-G3406TA engine. The Flash Gas Compressor will increase the pressure of the recovered gas and the gas will be pumped into the raw gas line to the Glycol Contactor Tower. The remaining condensate fluid flows from the condensate flash vessel to a condensate sales line. An Electric Condensate Pipeline Pump (PAX-0042B) is used to lift the condensate through the condensate sales line.

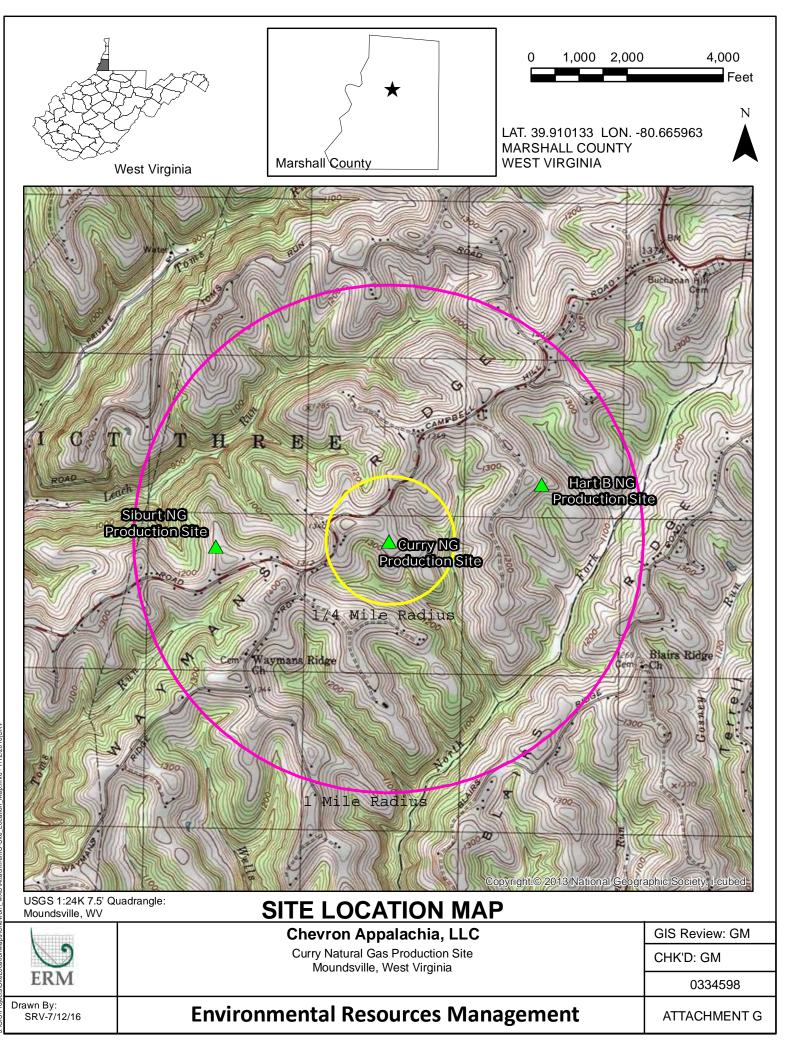

From the first stage separators, produced water flows into two (2) Produced Water Tanks (ABJ-0011A and ABJ-0011B) and a Blowdown/Test Storage Tank (ABJ-0014). Emissions from the produced water tanks and the blowdown/test tank are directed to the electric drive vapor recovery unit (VRU). As a second stage of compression, tank vapors from the VRU are routed to the Flash Gas Compressor (CBA-0050) and into the raw gas line before the Glycol Contactor Tower. From the storage tanks, the produced water and blowdown fluids are pumped into tank trucks on an as needed basis and are managed off-site. Vapors from the unloading of the tanks are directed to a vent stack

(VS-1) and released to atmosphere. Chevron conducts three blowdowns at the Curry site per year and the blowdown fluid flows into the Blowdown/Test Storage Tank (ABJ-0014). Emissions realized during VRU downtime, blowdown events, and overpressure events from the tanks located at the Curry Site are also directed to the vent stack (VS-1).

A process flow diagram is included as Attachment D.

Attachment F

Attachment F **Plot Plan**


Coordinates

Latitude: 39.91013 Longitude: -80.66596 Elevation: 1,314 ft Drawn: 6/23/2016

TRUCK ENTRANCE

Attachment G

AREA MAP

Attachment H APPLICABILITY FORM

ATTACHMENT H – G70-C SECTION APPLICABILITY FORM

General Permit G70-C Registration Section Applicability Form

General Permit G70-C was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-C allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

G	ENERAL PERMIT G70-C APPLICABLE SECTIONS
Section 5.0	Gas Well Affected Facility (NSPS, Subpart OOOO)
Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹
Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO)
Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO and/or NESHAP Subpart HH
Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc
Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)
Section 11.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO) ²
Section 12.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO) ²
Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines, Microturbines
Section 14.0	Tanker Truck Loading ³
Section 15.0	Glycol Dehydration Units ⁴

1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 8.

2 Applicants that are subject to Section 11 and 12 may also be subject to the applicable RICE requirements of Section 13.

3 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.

4 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

Attachment I

EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

ATTACHMENT I - EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
BAP- 0110	E0110	Line Heater	2016	NA	1.00 MMBtu/hr	New	N/A	N/A
BAP- 0210	E0210	Line Heater	2016	NA	1.25 MMBtu/hr	New	N/A	N/A
BAP- 0810	E0810	Line Heater	2016	NA	1.00 MMBtu/hr	New	N/A	N/A
BAP- 0910	E0910	Line Heater	2016	NA	1.25 MMBtu/hr	New	N/A	N/A
BAP- 0012	E0012	Line Heater	2016	NA	1.25 MMBtu/hr	New	N/A	N/A
CBA- 0050	E0050	Flash Gas Compressor	2016	2014	276 hp	New	N/A	N/A
BBC- 0100	E0100A	Glycol Reboiler	2016	NA	0.5MMBtu/hr	New	N/A	N/A
BBC- 0100	E0100B	Glycol Regenerator Overhead	2016	NA	30 mmscf/day	New	N/A	N/A
MBD- 0110	VS-1	Dehydration Unit Glycol Flash Tank	2016	NA	200 psig 35 deg F	New	VRU	N/A
ABJ- 0011A	VS-1	Produced Water Tank	2016	2014	400 bbls	Existing	VRU	N/A
ABJ- 0011B	VS-1	Produced Water Tank	2016	2015	400 bbls	Existing	VRU	N/A
ABJ- 0014	VS-1	Blowdown Test Storage Tank	2016	2016	400 bbls	New	VRU	N/A
ZZZ- 0011AB	VS-1	Truck Process Connection	2016	2016	5,040 gal/day	New	N/A	N/A
ZZZ- 0014	VS-1	Truck Process Connection	2016	2016	5,040 gal/day	New	N/A	N/A

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

Attachment J

FUGITIVE EMISSIONS SUMMARY SHEET

				NT J – FUGITIVE EMIS				
		Sources		ay include loading operation				ions, etc.
S -	unaa /E quin m	ant.	Use extra page	es for each associated sour	ce or equipme	ent if necess	ary.	
	urce/Equipm ak Detection		Audible, visual, and					
	thod Used	L I	olfactory (AVO) inspections	Infrared (FLIR) cameras	Other (plea	se describe)		None required
Component	Closed		Source o	f Leak Factors	Stream type		Estimated Emi	issions (tpy)
Туре	Vent System	Count		ther (specify))	(gas, liquid, etc.)	VOC	НАР	GHG (CO ₂ e)
Pumps	□ Yes □ No							
Valves	□ Yes □ No	241	EPA – 40CFR98 Subpart W	EPA – 40CFR98 Subpart W			0.03	19.79
Safety Relief Valves	□ Yes □ No	8	EPA – 40CFR98 Subpart W	EPA – 40CFR98 Subpart W		0.03	0.002	0.97
Open Ended Lines	□ Yes □ No	16	EPA – 40CFR98 Subpart W	EPA – 40CFR98 Subpart W		0.09	0.005	2.97
Sampling Connections	□ Yes □ No				□ Gas □ Liquid X Both			
Connections (Not sampling)	□ Yes □ No	1058	EPA – 40CFR98 Subpart W	7	□ Gas □ Liquid X Both	0.30	0.02	9.65
Compressors	□ Yes □ No				□ Gas □ Liquid □ Both			
Flanges	□ Yes □ No				□ Gas □ Liquid □ Both			
Other ¹	□ Yes □ No				□ Gas □ Liquid □ Both			

Please provide an explanation of the sources of fugitive emissions (e.g. pigging operations, equipment blowdowns, pneumatic controllers, etc.): Fugitive emissions sources at the site included above cover equipment counts and emissions associated with equipment leaks. Emissions associated with equipment blowdowns are included with the Blowdown/Test Tank PTE calculations and are attributed to emission point VS-1 (Vent Stack -1).

Please indicate if there are any closed vent bypasses (include component):

A closed vent bypass is proposed on the closed vent system from the storage tanks to the VRU. The bypass would direct emissions to VS-1 and would include emissions from tank unloading events and VRU downtime.

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.) Equipment utilized in the closed vent system from the storage tanks includes VRUs and weighted thief hatches.

Attachment K

GAS WELL AFFECTED FACILITY DATA SHEET

ATTACHMENT K - GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device
Well 1H = 47-051-01297	3/13/2010	3/13/2010	N/A
Well 2H = 47-051-01779	TBD	TBD	Green Completion
Well 8H = 47-051-01784	TBD	TBD	Green Completion
Well 9H = 47-051-01785	TBD	TBD	Green Completion

Note: If future wells are planned and no API number is available please list as PLANNED. If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

 $047 = State \ code$. The state code for WV is 047

001 = County Code. County codes are odd numbers, beginning with 001 (Barbour) and continuing to 109 (Wyoming)

00001 = Well number. Each well will have a unique well number.

Attachment L STORAGE VESSEL DATA SHEET

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- Composition of the representative sample used for the simulation
- For each stream that contributes to flashing emissions:
 - \boxtimes Temperature and pressure (inlet and outlet from separator(s))
 - Simulation-predicted composition
 - Molecular weight
 - \boxtimes Flow rate
- Resulting flash emission factor or flashing emissions from simulation
- Working/breathing loss emissions from tanks and/or loading emissions if

simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name: Tank Farm	2. Tank Name: Produced Water Tanks							
3. Emission Unit ID number: ABJ-0011A , ABJ-0011B	4. Emission Point ID number: VS-1							
5. Date Installed, Modified or Relocated (for existing	6. Type of change:							
tanks) 2016	New construction New stored material							
Was the tank manufactured after August 23, 2011?	Other Relocation							
Yes No								
7A. Description of Tank Modification (<i>if applicable</i>) N/A								
7B. Will more than one material be stored in this tank? If so	, a separate form must be completed for each material.							
Yes Xo								
7C. Was USEPA Tanks simulation software utilized?								
\Box Yes \boxtimes No								
If Yes, please provide the appropriate documentation and items 8-42 below are not required.								

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the int	ernal cross-sectional area multiplied by internal height.						
400 bbls							
9A. Tank Internal Diameter (ft.): 12 ft	9B. Tank Internal Height (ft.): 20 ft						
10A. Maximum Liquid Height (ft.): 18 ft	10B. Average Liquid Height (ft.): 10 ft						
11A. Maximum Vapor Space Height (ft.): 18 ft	11B. Average Vapor Space Height (ft.): 10 ft						
12. Nominal Capacity (specify barrels or gallons). This is a	also known as "working volume". 400 bbls						
13A. Maximum annual throughput (gal/yr): 29,632,890	13B. Maximum daily throughput (gal/day): 81,186						
14. Number of tank turnovers per year: 1,764	15. Maximum tank fill rate (gal/min): 56.38						
16. Tank fill method 🔀 Submerged 🗌 Splash	Bottom Loading						
17. Is the tank system a variable vapor space system? 🗌 Yes 🔀 No							
If yes, (A) What is the volume expansion capacity of the sys	tem (gal)?						
(B) What are the number of transfers into the system	per year?						
18. Type of tank (check all that apply):							
Fixed Roof Vertical horizontal flat	roof cone roof dome roof						
other (describe)							
External Floating Roof pontoon roof	louble deck roof						
Domed External (or Covered) Floating Roof							
Internal Floating Roof vertical column support self-supporting							
Variable Vapor Space							
Pressurized spherical cylindrical							
Other (describe)							

PRESSURE/VACUUM CONTROL DATA

19. Check as many as appl	ly:								
Does Not Apply	Rupture Disc (psig)								
Inert Gas Blanket of N	Inert Gas Blanket of Nitrogen Carbon Adsorption ¹								
Vent to Vapor Combu	stion Dev	vice ¹ (vapo	or combu	stors, flares	s, thermal	oxidizers	enclosed	combustor	rs)
Conservation Vent (ps	ig)			Conc	denser ¹				
Vacuum Setting		Pressure	Setting						
Emergency Relief Val	ve (psig)								
0.4 oz Vacuum Setting	16 oz	Pressure S	Setting						
Thief Hatch Weighted	Yes Yes	🗌 No							
¹ Complete appropriate Air	Pollutio	n Control	Device S	heet					
20. Expected Emission Ra	te (subm	it Test Da	ta or Calc	ulations he	ere or else	where in t	he applica	tion).	
Material Name	Flashi	ng Loss	Breath	ing Loss	Worki	ng Loss	Total		Estimation Method ¹
							Emissi	ons Loss	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
See Attachment S									
								_	

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

TANK CONSTRUCTION AND OPERATION INFORMATION									
21. Tank Shell Construction:									
Riveted Gunite lined Epoxy-coated rivets Other (describe) Welded									
21A. Shell Color: Dark Green21B. Roof Color: Dark Green21C. Year Last Painted: 2016									
22. Shell Condition (if metal and unlined):									
No Rust 🔲 Light Rust 🗌 Dense Rust 🗌 Not applicable									
22A. Is the tank heated? \forall Yes \forall No 22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank?									
23. Operating Pressure Range (psig): 0.03	1-1								
Must be listed for tanks using VRUs	with closed vent sy	stem.							
24. Is the tank a Vertical Fixed Roof	24A. If yes, for dome	e roof provide radius	5	es, for cone roof, provide slop					
Tank?	(ft):		(ft/ft):						
Yes No	6 ft		N/A						
25. Complete item 25 for Floating Roof Ta	nks Does not app	y 🖂							
25A. Year Internal Floaters Installed:									
25B. Primary Seal Type (check one): \Box N	Metallic (mechanical)	shoe seal 🛛 Liqu	id mounted	l resilient seal					
	Vapor mounted resili	ent seal \Box Othe	er (describe	e):					
25C. Is the Floating Roof equipped with a s	econdary seal? 🛛 Ye	s 🗆 No							
25D. If yes, how is the secondary seal mour	nted? (check one) \Box	Shoe 🗆 Rim 🛛	Other (lescribe):					
25E. Is the floating roof equipped with a we	eather shield? \Box Yes	s 🗆 No							
25F. Describe deck fittings:									
26. Complete the following section for Inte	rnal Floating Roof Ta	nks 🛛 Does no	ot apply						
26A. Deck Type: Bolted	Welded	26B. For bolted deck	s, provide d	eck construction:					
26C. Deck seam. Continuous sheet constru	ction:								
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. v		vide \Box 5 x 12 ft. wi	de 🗆 otl	her (describe)					
26D. Deck seam length (ft.): 26E. Are	a of deck (ft ²):	26F. For column sup tanks, # of columns:	ported	26G. For column supported tanks, diameter of column:					
27. Closed Vent System with VRU? X	es 🗌 No								
28. Closed Vent System with Enclosed Con	nbustor? 🗌 Yes 🔀	No							
SITE INFORMATION									
29. Provide the city and state on which the c	lata in this section are b	ased: Charleston,	wv						
30. Daily Avg. Ambient Temperature (°F):	70	31. Annual Avg. Ma	ximum Tem	perature (°F): 65.5					
32. Annual Avg. Minimum Temperature (°I	F): 44.0	33. Avg. Wind Speed	d (mph): 18	5					
34. Annual Avg. Solar Insulation Factor (B'	ГU/ft ² -day): 1123	35. Atmospheric Pre	ssure (psia):	14.70					
LIQUID INFORMATION									

36. Avg. daily temperature range of bulk liquid (°F): N/A	36A. Minimum (°F):	30		36B. Maximum (°F): 68		
37. Avg. operating pressure range of tank (psig): 0.52 psig	37A. Minimum (psig): N/A		37B. Maximum (psig): N/A		
38A. Minimum liquid surface temperature (°F): N/A	38B.	Corresponding	vapor pressure	(psia): N/A	
39A. Avg. liquid surface temperature (°F):	N/A	39B.	Corresponding	vapor pressure	(psia): N/A	
40A. Maximum liquid surface temperature	(°F): N/A	40B.	Corresponding	vapor pressure	(psia): N/A	
41. Provide the following for each liquid or	gas to be stored in the ta	ank. Ad	d additional pag	ges if necessary		
41A. Material name and composition:	Produced Wate	r				
41B. CAS number:	N/A					
41C. Liquid density (lb/gal):	8.32					
41D. Liquid molecular weight (lb/lb- mole):	18.02					
41E. Vapor molecular weight (lb/lb- mole):	18.02					
41F. Maximum true vapor pressure (psia):	N/A					
41G. Maximum Reid vapor pressure (psia):	N/A					
41H. Months Storage per year. From: To:	January - December					
42. Final maximum gauge pressure and temperature prior to transfer into tank used as inputs into flashing emission calculations.	1200 psig 120 F					

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- \boxtimes Composition of the representative sample used for the simulation
- \boxtimes For each stream that contributes to flashing emissions:
 - \boxtimes Temperature and pressure (inlet and outlet from separator(s))
 - \boxtimes Simulation-predicted composition
 - ⊠ Molecular weight
 - \boxtimes Flow rate
- ⊠ Resulting flash emission factor or flashing emissions from simulation
- Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name: Tank Farm	2. Tank Name: Blowdown Test Storage Tank
	(Produced Water Mode of Operation)
3. Emission Unit ID number: ABJ-0014	4. Emission Point ID number: VS-1
5. Date Installed , Modified or Relocated (for existing	6. Type of change:
tanks) 2016	New construction New stored material
Was the tank manufactured after August 23, 2011?	Other Relocation
Yes No	
7A. Description of Tank Modification (<i>if applicable</i>) N/A	
7B. Will more than one material be stored in this tank? If see	, a separate form must be completed for each material.
Yes No	
7C. Was USEPA Tanks simulation software utilized?	
Yes No	
If Yes, please provide the appropriate documentation and i	tems 8-42 below are not required.

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.						
400 bbls						
9A. Tank Internal Diameter (ft.): 12 ft	9B. Tank Internal Height (ft.): 20 ft					
10A. Maximum Liquid Height (ft.): 18 ft	10B. Average Liquid Height (ft.): 10 ft					
11A. Maximum Vapor Space Height (ft.): 18 ft	11B. Average Vapor Space Height (ft.): 10 ft					
12. Nominal Capacity (specify barrels or gallons). This is a	lso known as "working volume". 400 bbls					
13A. Maximum annual throughput (gal/yr): 29,632,890	13B. Maximum daily throughput (gal/day): 81,186					
14. Number of tank turnovers per year: 1764	15. Maximum tank fill rate (gal/min): 56.38					
16. Tank fill method 🛛 Submerged 🗌 Splash	Bottom Loading					
17. Is the tank system a variable vapor space system?	Yes 🛛 No					
If yes, (A) What is the volume expansion capacity of the syst	tem (gal)?					
(B) What are the number of transfers into the system p	per year?					
18. Type of tank (check all that apply):						
Fixed Roof 🛛 🛛 vertical 🗌 horizontal 🗌 flat i	roof cone roof dome roof					
other (describe)						
External Floating Roof pontoon roof d	ouble deck roof					
Domed External (or Covered) Floating Roof						
Internal Floating Roof vertical column supp	ort self-supporting					
Variable Vapor Space						
Pressurized spherical cylind	drical					
Other (describe)						

PRESSURE/VACUUM CONTROL DATA

19. Check as many as apply	:								
Does Not Apply	Rupture Disc (psig)								
Inert Gas Blanket of Nit	rogen			Carb	on Adsorp	otion ¹			
Vent to Vapor Combust	ion Dev	ice ¹ (vapo	or combust	tors, flares	s, thermal o	oxidizers,	enclosed c	combustor	s)
Conservation Vent (psig	g)			Cond	lenser ¹				
Vacuum Setting		Pressure	Setting						
Emergency Relief Valve	e (psig)								
0.4 oz Vacuum Setting	16 oz 🛛	Pressure S	Setting						
Thief Hatch Weighted	X Yes	🗌 No							
¹ Complete appropriate Air F	Pollutior	n Control	Device Sh	eet					
20. Expected Emission Rate	e (submi	t Test Dat	a or Calcu	lations he	ere or elsev	where in th	ne applicat	ion).	
Material Name	Flashir	ng Loss	Breathi	ng Loss	Workin	g Loss	Total		Estimation Method ¹
	Emissions Loss								
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
			Se	e Attac	hment S	1	1		

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

TANK CONSTRUCTION AND OPERAT	FION INFORMATIO	N							
21. Tank Shell Construction:									
Riveted Gunite lined Epoxy-coated rivets Other (describe) Welded									
21A. Shell Color: Dark Green21B. Roof Color: Dark Green21C. Year Last Painted: 2016									
22. Shell Condition (if metal and unlined):									
No Rust Light Rust Dense Rust Not applicable									
22A. Is the tank heated? $Yes No$ 22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank?									
23. Operating Pressure Range (psig): 0.03	1-1								
Must be listed for tanks using VRUs	with closed vent sys	stem.							
24. Is the tank a Vertical Fixed Roof	24A. If yes, for dome	e roof provide radius	24B. If y	es, for cone roof, provide slop					
Tank?	(ft):		(ft/ft):						
Yes No	6 ft		N/A						
25. Complete item 25 for Floating Roof Ta	nks Does not appl	y 🖂							
25A. Year Internal Floaters Installed:									
25B. Primary Seal Type (check one):	Metallic (mechanical)	shoe seal 🛛 Liqui	id mounted	l resilient seal					
	Vapor mounted resilie	ent seal \Box Othe	er (describe	e):					
25C. Is the Floating Roof equipped with a s	econdary seal? 🛛 Ye	s 🗆 No							
25D. If yes, how is the secondary seal mour	nted? (check one) \Box	Shoe 🗆 Rim 🗆	Other (lescribe):					
25E. Is the floating roof equipped with a we	eather shield?	s 🗆 No							
25F. Describe deck fittings:									
26. Complete the following section for Inte	rnal Floating Roof Ta	nks 🛛 Does no	t apply						
	Welded	26B. For bolted deck		eck construction:					
	Welded		., I						
26C. Deck seam. Continuous sheet constru	ction:	I							
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. v	wide 🛛 5 x 7.5 ft. v	vide \Box 5 x 12 ft. wi	de 🗆 otl	her (describe)					
26D. Deck seam length (ft.): 26E. Are	26D. Deck seam length (ft.):26E. Area of deck (ft²):26F. For column supported tanks, # of columns:26G. For column supported tanks, diameter of column:								
27. Closed Vent System with VRU?	les 🗌 No								
28. Closed Vent System with Enclosed Combustor? 🗌 Yes 🔀 No									
SITE INFORMATION									
29. Provide the city and state on which the o	lata in this section are b	ased: Charleston,	WV						
30. Daily Avg. Ambient Temperature (°F):	70	31. Annual Avg. Max	ximum Tem	perature (°F): 65.5					
32. Annual Avg. Minimum Temperature (°F): 44.0 33. Avg. Wind Speed (mph): 18									

34. Annual Avg. Solar Insulation Factor (BTU/ft ² -day): 1123			35. Atmospheric Pressure (psia): 14.70			
LIQUID INFORMATION						
36. Avg. daily temperature range of bulk liquid (°F): N/A	36A. Minimum (°F):	: 30		36B. Maxim	um (°F): 68	
37. Avg. operating pressure range of tank(psig): 0.52 psig	37A. Minimum (psig): N/A			37B. Maxim	um (psig): N/A	
38A. Minimum liquid surface temperature (°F): N/A	38B.	Corresponding	vapor pressure	(psia): N/A	
39A. Avg. liquid surface temperature (°F):	N/A	39B. (Corresponding	vapor pressure	(psia): N/A	
40A. Maximum liquid surface temperature			1 0	vapor pressure		
41. Provide the following for each liquid or	gas to be stored in the t	ank. Ad	d additional pag	ges if necessary	<i>.</i>	
41A. Material name and composition:	Produced Wate	r				
41B. CAS number:	N/A					
41C. Liquid density (lb/gal):	8.32					
41D. Liquid molecular weight (lb/lb- mole):	18.02					
41E. Vapor molecular weight (lb/lb- mole):	18.02					
41F. Maximum true vapor pressure (psia):	N/A					
41G. Maximum Reid vapor pressure (psia):	N/A					
41H. Months Storage per year. From: To:	January - December					
42. Final maximum gauge pressure and temperature prior to transfer into tank used as inputs into flashing emission calculations.	1200 psig 120 F					

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- \boxtimes Composition of the representative sample used for the simulation
- For each stream that contributes to flashing emissions:
 - \boxtimes Temperature and pressure (inlet and outlet from separator(s))
 - \boxtimes Simulation-predicted composition
 - Molecular weight
 - \boxtimes Flow rate
- ⊠ Resulting flash emission factor or flashing emissions from simulation
- Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name: Tank Farm	2. Tank Name: Blowdown Test Storage Tank (Blowdown Fluids Mode of Operation)
3. Emission Unit ID number: ABJ-0014	4. Emission Point ID number: VS-1
5. Date Installed, Modified or Relocated (for existing	6. Type of change:
tanks) 2016	New construction New stored material
Was the tank manufactured after August 23, 2011?	Other Relocation
Yes No	
7A. Description of Tank Modification (<i>if applicable</i>) N/A	
7B. Will more than one material be stored in this tank? If so	, a separate form must be completed for each material.
Yes 🗌 No	
7C. Was USEPA Tanks simulation software utilized?	
Yes No	
If Yes, please provide the appropriate documentation and i	tems 8-42 below are not required.

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.							
400 bbls							
9A. Tank Internal Diameter (ft.): 12 ft	9B. Tank Internal Height (ft.): 20 ft						
10A. Maximum Liquid Height (ft.): 18 ft	10B. Average Liquid Height (ft.): 10 ft						
11A. Maximum Vapor Space Height (ft.): 18 ft	11B. Average Vapor Space Height (ft.): 10 ft						
12. Nominal Capacity (specify barrels or gallons). This is a	llso known as "working volume". 400 bbls						
13A. Maximum annual throughput (gal/yr):2,520	13B. Maximum daily throughput (gal/day): 840						
14. Number of tank turnovers per year: 1	15. Maximum tank fill rate (gal/min): 56						
16. Tank fill method 🛛 Submerged 🗌 Splash	Bottom Loading						
17. Is the tank system a variable vapor space system?	Yes 🛛 No						
If yes, (A) What is the volume expansion capacity of the sys	tem (gal)?						
(B) What are the number of transfers into the system	per year?						
18. Type of tank (check all that apply):							
Fixed Roof Vertical horizontal flat	roof \Box cone roof \Box dome roof						
other (describe)							
External Floating Roof pontoon roof d	louble deck roof						
Domed External (or Covered) Floating Roof							
Internal Floating Roof vertical column supp	ort self-supporting						
Variable Vapor Space Ilifter roof diaphragm							
Pressurized spherical cylind	drical						
Other (describe)							

PRESSURE/VACUUM CONTROL DATA

19. Check as many as apply:										
Does Not Apply				Rupture Disc (psig)						
Inert Gas Blanket of N	Inert Gas Blanket of Nitrogen									
Vent to Vapor Combus	stion Dev	vice ¹ (vapo	or combus	tors, flares	s, thermal	oxidizers	, enclosed	combustor	rs)	
Conservation Vent (ps	ig)			Conc	lenser ¹					
Vacuum Setting		Pressure	Setting							
Emergency Relief Val	ve (psig)									
0.4 oz Vacuum Setting	16 oz	Pressure S	Setting							
Thief Hatch Weighted	Yes	No No								
¹ Complete appropriate Air	Pollution	n Control	Device Sh	neet						
20. Expected Emission Rat	te (submi	t Test Da	ta or Calc	ulations he	ere or elsev	where in t	he applica	tion).		
Material Name	Flashir	ng Loss	Breathi	ing Loss	Workin	ng Loss	Total		Estimation Method ¹	
							Emissio	ons Loss		
	lb/hr tpy lb/hr tpy lb/hr tpy lb/hr tpy									
	See Attachment S							1		

 1 EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

TANK CONSTRUCTION AND OPERA	TION INFORMATIO	N							
21. Tank Shell Construction:									
Riveted Gunite lined Epoxy-coated rivets Other (describe) Welded									
21A. Shell Color: Dark Green21B. Roof Color: Dark Green21C. Year Last Painted: 2016									
22. Shell Condition (if metal and unlined):									
No Rust Light Rust I		applicable							
22A. Is the tank heated? \Box Yes \boxtimes No	22A. Is the tank heated? \Box Yes \Box No 22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank?								
23. Operating Pressure Range (psig): 0.03	1-1								
Must be listed for tanks using VRUs	with closed vent sy	stem.							
24. Is the tank a Vertical Fixed Roof	24A. If yes, for dome	e roof provide radius	•	es, for cone roof, provide slop					
Tank?	(ft):		(ft/ft):						
Yes No	6 ft		N/A						
25. Complete item 25 for Floating Roof Ta	anks Does not app	y 🖂							
25A. Year Internal Floaters Installed:									
25B. Primary Seal Type (check one):	Metallic (mechanical)	shoe seal 🛛 Liqui	d mounted	l resilient seal					
	Vapor mounted resilie	ent seal \Box Othe	r (describe	e):					
25C. Is the Floating Roof equipped with a s	secondary seal? 🗆 Ye	s 🗆 No							
25D. If yes, how is the secondary seal mouth	nted? (check one) \Box	Shoe 🗆 Rim 🗆	Other (lescribe):					
25E. Is the floating roof equipped with a we	eather shield?	s 🗆 No							
25F. Describe deck fittings:									
26. Complete the following section for Inte	ernal Floating Roof Ta	nks 🛛 Does no	t apply						
26A. Deck Type:	Welded	26B. For bolted deck	s, provide d	eck construction:					
26C. Deck seam. Continuous sheet constru	ction:								
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft.	wide 🛛 5 x 7.5 ft. v	vide \Box 5 x 12 ft. wi	de 🗆 oth	ner (describe)					
26D. Deck seam length (ft.): 26E. Are	ea of deck (ft ²):	26F. For column supp	ported	26G. For column supported					
		tanks, # of columns:		tanks, diameter of column:					
27. Closed Vent System with VRU?	es 🛛 No – Due to t	he high pressure of th	e blowdov	wn event, Chevron does not					
seek to reduce the PTE of blowdown ev	vents through the use	of the VRU that will	control the	e Produced Water method of					
loading for this tank.	C C								
28. Closed Vent System with Enclosed Combustor? Yes No									
SITE INFORMATION									
29. Provide the city and state on which the	data in this section are b	ased: Charleston, N	NV						
30. Daily Avg. Ambient Temperature (°F): 70 31. Annual Avg. Maximum Temperature (°F): 65.5									

32. Annual Avg. Minimum Temperature (°F): 44.0			33. Avg. Wind Speed (mph): 18				
34. Annual Avg. Solar Insulation Factor (BTU/ft ² -day): 1123			35. Atmospheric Pressure (psia): 14.70				
LIQUID INFORMATION							
36. Avg. daily temperature range of bulk liquid (°F): N/A	36A. Minimum (°F)	: 30		36B. Maxim	uum (°F): 68		
37. Avg. operating pressure range of tank (psig): 0.52 psig	37A. Minimum (psi	g): N/A		37B. Maxim	uum (psig): N/A		
38A. Minimum liquid surface temperature ((°F): N/A	38B.	Corresponding	vapor pressure	(psia): N/A		
39A. Avg. liquid surface temperature (°F):	N/A	39B.	Corresponding	vapor pressure	(psia): N/A		
40A. Maximum liquid surface temperature41. Provide the following for each liquid or			Corresponding d additional pag	1 1	u / .		
41A. Material name and composition:	Blowdown Flui			•			
41B. CAS number:	N/A						
41C. Liquid density (lb/gal):	8.32						
41D. Liquid molecular weight (lb/lb- mole):	18.27						
41E. Vapor molecular weight (lb/lb- mole):	18.02						
41F. Maximum true vapor pressure (psia):	N/A						
41G. Maximum Reid vapor pressure (psia):	N/A						
41H. Months Storage per year.From:To:	January - December						
42. Final maximum gauge pressure and temperature prior to transfer into tank used as inputs into flashing emission calculations.	3914 psig 135 F						

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc.

- 2. Enter storage tank Status using the following:
 - EXIST Existing Equipment
 - NEW Installation of New Equipment
 - REM Equipment Removed

3. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc.

4. Enter the maximum design storage tank volume in gallons.

Attachment M

HEATER AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART Dc

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
BAP- 0110	E0110	Line Heater	2016	New	1.00	1342
BAP- 0210	E0210	Line Heater	2016	New	1.25	1342
BAP- 0810	E0810	Line Heater	2016	New	1.00	1342
BAP- 0910	E0910	Line Heater	2016	New	1.25	1342
BAP- 0012	E0012	Line Heater	2016	New	1.25	1342
BBC- 0100	E0100A	Glycol Reboiler	2016	New	0.5	1342

¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.

²Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.

³ New, modification, removal

⁴ Enter design heat input capacity in MMBtu/hr.

⁵ Enter the fuel heating value in BTU/standard cubic foot.

Attachment N

INTERNAL COMBUSTION ENGINE DATA SHEET

ATTACHMENT N – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. Generator(s) and microturbine generator(s) shall also use this form.

Emission Unit I	$D#^1$		-0050				
Engine Manufac	cturer/Model		or G3406TA				
Manufacturers Rated bhp/rpm		276 hp					
Source Status ²			NS				
Date Installed/ Modified/Remo	ved/Relocated ³		er 2016				
Engine Manufac /Reconstruction	ctured Date ⁴	10/1	/2014				
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		 ↓40CFR60 Subpart JJJJ ↓JJJJ Certified? ↓40CFR60 Subpart IIII ↓III Certified? ↓40CFR63 Subpart ZZZZ ↓NESHAP ZZZZ/ NSPS ↓JJJ Window ↓NESHAP ZZZZ Remote Sources 		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources	
Engine Type ⁶		49	SRB				
APCD Type ⁷		N	SCR				
Fuel Type ⁸		PQ					
H ₂ S (gr/100 scf)						
Operating bhp/r	pm	276 hp					
BSFC (BTU/bhj	p-hr)	8122					
Hourly Fuel Th	coughput	1700 ft ³ /hr gal/hr		ft ³ /hr gal/hr		ft ³ /hr gal/hr	
Annual Fuel Th (Must use 8,760 emergency gene	hrs/yr unless	14.89 MMft ³ /yr gal/yr		9 MMft ³ /yr MMft ³ /yr			Mft ³ /yr il/yr
Fuel Usage or H Operation Meter	lours of red	Yes 🛛	No 🗌	Yes 🗆	No 🗆	Yes 🗆	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
MD	NO _x	0.15	0.67				
MD	СО	0.18	0.80				
MD	VOC	0.10	0.43				
AP-42	SO ₂	0.001	0.006				
AP-42	PM 10	0.02	0.10				
MD	Formaldehyde	0.09	0.42				
AP-42 & MD	Total HAPs	0.10	0.44				
ОТ	GHG (CO ₂ e)	54.02	236.62				

- Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.
- 2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintained in accordance with the manufacturer's emission-related written instructions, the engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6	Enter th	e Engine Type designation(s) using the following co	des:				
	2SLB 4SLB	Two Stroke Lean Burn Four Stroke Lean Burn	4SR	B	Four Str	oke Rich Burn	
7	Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:						
	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction			IR SIPC LEC OxCat	Ignition Retard Screw-in Precombustion Chambers Low Emission Combustion Oxidation Catalyst	
8	Enter th	he Fuel Type using the following codes:					
	PQ	Pipeline Quality Natural Gas R	G	Raw	Natural	Gas /Production Gas D Diesel	
9	Enter t	he Potential Emissions Data Reference design	ation	usin	g the fo	ollowing codes. Attach all reference data used.	
	MD	Manufacturer's Data		AP	AP-	42	
	GR	GRI-HAPCalc TM		OT	Oth	er 40 CFR Subpart C (please list)	
	10						

- 10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.
- 11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# CBA-0050, use extra pages as necessary)					
Air Pollution Control Device Yes	Manufacturer's Data Sheet included?				
⊠ NSCR □ SC	CR Oxidation Catalyst				
Provide details of process control used for proper mixing/o AFR Control	control of reducing agent with gas stream: Emit, Advance				
Manufacturer: Miratech	Model #: RCS-2216-08				
Design Operating Temperature:	Design gas volume: scfm				
Service life of catalyst: Provide manufacturer data? 🛛 Yes 🗌 No					
Volume of gas handled: acfm at ^o F	Operating temperature range for NSCR/Ox Cat: From °F to °F				
Reducing agent used, if any:	Ammonia slip (ppm):				
Pressure drop against catalyst bed (delta P): inches	s of H ₂ O				
Provide description of warning/alarm system that protects Is temperature and pressure drop of catalyst required to be					
How often is catalyst recommended or required to be repla	aced (hours of operation)?				
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please list an NSPS/GACT,	ny maintenance required and the applicable sections in				

	Unit	6569 Caterpillar G	3406TA Engine	Emissions		
Date of Manufacture Octob	per 1, 2014	Engine Serial Number	4FD04852	Date Modified/	Reconstructed	N/A
Driver Rated HP	276	Rated Speed in RPM	1800	Combustion Ty		Spark Ignited 4 Stroke
Number of Cylinders	6	Compression Ratio	9.4:1	Combustion Setting		Rich Burn
Displacement, in ³	824	Fuel Delivery Method	Carburetor	Combustion Air	-	Turbocharged & Aftercooled
	021	ruer benvery method				ransoenangea a vintercoolea
Raw Engine Emissions with Customer Su	pplied Fuel Gas.					
Fuel Consumption 7371	LHV BTU/bhp-hr	or 8122 HHV	/ BTU/bhp-hr			
Altitude 1200	ft					
Maximum Air Inlet Temp 90	F					
		g/bhp-hr ¹	lb/MMBTU ²	lb/hr	ТРҮ	
Nitrogen Oxides (NOx)		17.53	<u> </u>	10.666	46.719	_
Carbon Monoxide (CO)		17.53		10.666	46.719	
Volatile Organic Compounds (VOC or NMI	NEHC; excludes CH2C	0.27		0.164	0.720	
Formaldehyde (CH2O)		0.26		0.158	0.693	
Particulate Matter (PM) Filterable+Condensable			1.94E-02	0.044	0.191	
Sulfur Dioxide (SO2)			5.88E-04	0.001	0.006	
		g/bhp-hr ¹	lb/MMBTU ²	lb/hr	Metric Tonne/	/r
Carbon Dioxide (CO2)		536		326	1296	
Methane (CH4) ¹ g/bhp-hr are based on Caterpillar Specifi It is recommended to add a safety margin	-				1.910	
¹ g/bhp-hr are based on Caterpillar Specifi It is recommended to add a safety margin ² Emission Factor obtained from EPA's AP- Gas-Fired Reciprocating Engines, Table 3.	to emissions to allow -42, Fifth Edition, Vol	/bhp-hr values are based of w for operational flexibility	and fuel gas composition	on variability.		
 g/bhp-hr are based on Caterpillar Specifi It is recommended to add a safety margin ² Emission Factor obtained from EPA's AP 	to emissions to allow -42, Fifth Edition, Vol	/bhp-hr values are based of w for operational flexibility	and fuel gas composition	on variability.		
¹ g/bhp-hr are based on Caterpillar Specifi It is recommended to add a safety margin ² Emission Factor obtained from EPA's AP- Gas-Fired Reciprocating Engines, Table 3.	to emissions to allo -42, Fifth Edition, Vol 2-3).	/bhp-hr values are based of w for operational flexibility	and fuel gas composition	on variability.		
¹ g/bhp-hr are based on Caterpillar Specifi It is recommended to add a safety margin ² Emission Factor obtained from EPA's AP- Gas-Fired Reciprocating Engines, Table 3. Catalytic Converter Emissions	to emissions to allo -42, Fifth Edition, Vol 2-3).	/bhp-hr values are based or w for operational flexibility lume I, Chapter 3: Stationar 1, RCS-2216-08	and fuel gas composition	on variability.		
¹ g/bhp-hr are based on Caterpillar Specifi It is recommended to add a safety margin ² Emission Factor obtained from EPA's AP- Gas-Fired Reciprocating Engines, Table 3. Catalytic Converter Emissions <i>Catalytic Converter Make and Model:</i>	to emissions to allow -42, Fifth Edition, Vol 2-3). <i>Miratech</i>	/bhp-hr values are based or w for operational flexibility lume I, Chapter 3: Stationar 1, RCS-2216-08	and fuel gas composition	on variability.		
¹ g/bhp-hr are based on Caterpillar Specifi It is recommended to add a safety margin ² Emission Factor obtained from EPA's AP- Gas-Fired Reciprocating Engines, Table 3. Catalytic Converter Emissions <i>Catalytic Converter Make and Model:</i> <i>Element Type:</i>	to emissions to allow -42, Fifth Edition, Vol 2-3). <i>Miratech</i> 16" NSCF 2	/bhp-hr values are based or w for operational flexibility lume I, Chapter 3: Stationar 1, RCS-2216-08	and fuel gas composition	on variability.		
¹ g/bhp-hr are based on Caterpillar Specifi It is recommended to add a safety margin ² Emission Factor obtained from EPA's AP- Gas-Fired Reciprocating Engines, Table 3. Catalytic Converter Emissions <i>Catalytic Converter Make and Model:</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i>	to emissions to allow -42, Fifth Edition, Vol 2-3). <i>Miratech</i> 16" NSCF 2	/bhp-hr values are based or w for operational flexibility lume I, Chapter 3: Stationar , RCS-2216-08 8,3-Way	and fuel gas composition	on variability.		
¹ g/bhp-hr are based on Caterpillar Specifi It is recommended to add a safety margin ² Emission Factor obtained from EPA's AP- Gas-Fired Reciprocating Engines, Table 3. Catalytic Converter Emissions <i>Catalytic Converter Make and Model:</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i>	to emissions to allow -42, Fifth Edition, Vol 2-3). <i>Miratech</i> 16" NSCF 2	/bhp-hr values are based or w for operational flexibility lume I, Chapter 3: Stationar p, RCS-2216-08 R,3-Way wance AFR Control	and fuel gas compositic y Internal Combution S	on variability. ources (Section 3.2 1	Natural	
¹ g/bhp-hr are based on Caterpillar Specifi It is recommended to add a safety margin ² Emission Factor obtained from EPA's AP- Gas-Fired Reciprocating Engines, Table 3. Catalytic Converter Emissions <i>Catalytic Converter Make and Model:</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i> <i>Air/Fuel Ratio Control</i>	to emissions to allow -42, Fifth Edition, Vol 2-3). <i>Miratech</i> 16" NSCF 2	/bhp-hr values are based or w for operational flexibility lume I, Chapter 3: Stationar p, RCS-2216-08 R,3-Way wance AFR Control <u>% Reduction</u>	and fuel gas compositic y Internal Combution S <u>g/bhp-hr</u>	on variability. ources (Section 3.2 f	Natural	
¹ g/bhp-hr are based on Caterpillar Specifi It is recommended to add a safety margin ² Emission Factor obtained from EPA's AP- Gas-Fired Reciprocating Engines, Table 3. Catalytic Converter Emissions <i>Catalytic Converter Make and Model:</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx)	to emissions to allow -42, Fifth Edition, Vol 2-3). <i>Miratech</i> 16" NSCF 2 Emit, Adv	/bhp-hr values are based or w for operational flexibility lume I, Chapter 3: Stationar p, RCS-2216-08 R,3-Way vance AFR Control <u>% Reduction</u> 98.6	and fuel gas compositic y Internal Combution S <u>g/bhp-hr</u> 0.25	on variability. ources (Section 3.2 f 	Natural TPY 0.65	
 ¹ g/bhp-hr are based on Caterpillar Specifi It is recommended to add a safety margin ² Emission Factor obtained from EPA's AP-Gas-Fired Reciprocating Engines, Table 3. Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or NMI Formaldehyde (CH2O) 	to emissions to allow -42, Fifth Edition, Vol 2-3). <i>Miratech</i> 16" NSCF 2 Emit, Adv	/bhp-hr values are based or w for operational flexibility lume I, Chapter 3: Stationar p, RCS-2216-08 8,3-Way vance AFR Control <u>% Reduction</u> 98.6 98.3	and fuel gas compositic y Internal Combution S <u>g/bhp-hr</u> 0.25 0.30	ources (Section 3.2 f lb/hr 0.15 0.18	Natural <u>TPY</u> 0.65 0.79 0.43 0.42	
 ¹ g/bhp-hr are based on Caterpillar Specifi It is recommended to add a safety margin ² Emission Factor obtained from EPA's AP-Gas-Fired Reciprocating Engines, Table 3. Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or NMI Formaldehyde (CH2O) Particulate Matter (PM) 	to emissions to allow -42, Fifth Edition, Vol 2-3). <i>Miratech</i> 16" NSCF 2 Emit, Adv	/bhp-hr values are based or w for operational flexibility lume I, Chapter 3: Stationar b, RCS-2216-08 8,3-Way vance AFR Control <u>% Reduction</u> 98.6 98.3 40 40 0	and fuel gas compositic y Internal Combution S <u>g/bhp-hr</u> 0.25 0.30	ources (Section 3.2 M bound of the section 3.2 M ources (Section	Natural <u>TPY</u> 0.65 0.79 0.43 0.42 1.91E-01	
 ¹ g/bhp-hr are based on Caterpillar Specifi It is recommended to add a safety margin ² Emission Factor obtained from EPA's AP-Gas-Fired Reciprocating Engines, Table 3. Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or NMI Formaldehyde (CH2O) 	to emissions to allow -42, Fifth Edition, Vol 2-3). <i>Miratech</i> 16" NSCF 2 Emit, Adv	/bhp-hr values are based or w for operational flexibility lume I, Chapter 3: Stationar b, RCS-2216-08 8,3-Way vance AFR Control <u>% Reduction</u> 98.6 98.3 40 40	and fuel gas compositic y Internal Combution S <u>g/bhp-hr</u> 0.25 0.30	ources (Section 3.2 M bound of the section 3.2 M bound of the section of the se	Natural <u>TPY</u> 0.65 0.79 0.43 0.42	
 ¹ g/bhp-hr are based on Caterpillar Specifi It is recommended to add a safety margin ² Emission Factor obtained from EPA's AP-Gas-Fired Reciprocating Engines, Table 3. Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or NMI Formaldehyde (CH2O) Particulate Matter (PM) Sulfur Dioxide (SO2) 	to emissions to allow -42, Fifth Edition, Vol 2-3). <i>Miratech</i> 16" NSCF 2 Emit, Adv	/bhp-hr values are based or w for operational flexibility lume I, Chapter 3: Stationar b, RCS-2216-08 8,3-Way vance AFR Control <u>% Reduction</u> 98.6 98.3 40 40 0	and fuel gas compositic y Internal Combution S <u>g/bhp-hr</u> 0.25 0.30	ources (Section 3.2 M bound of the section 3.2 M bound of the section of the se	Natural <u>TPY</u> 0.65 0.79 0.43 0.42 1.91E-01 5.77E-03 <u>Metric Tonne/</u>	<u></u>
 ¹ g/bhp-hr are based on Caterpillar Specifi It is recommended to add a safety margin ² Emission Factor obtained from EPA's AP-Gas-Fired Reciprocating Engines, Table 3. Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or NMI Formaldehyde (CH2O) Particulate Matter (PM) 	to emissions to allow -42, Fifth Edition, Vol 2-3). <i>Miratech</i> 16" NSCF 2 Emit, Adv	/bhp-hr values are based or w for operational flexibility lume I, Chapter 3: Stationar b, RCS-2216-08 8,3-Way vance AFR Control <u>% Reduction</u> 98.6 98.3 40 40 0 0	and fuel gas compositic y Internal Combution S <u>g/bhp-hr</u> 0.25 0.30	ources (Section 3.2 M <u>lb/hr</u> 0.15 0.18 0.10 0.09 4.35E-02 1.32E-03	Natural <u>TPY</u> 0.65 0.79 0.43 0.42 1.91E-01 5.77E-03	<u></u>

12620 FM 1960 W, Ste A4 Box # 560, Houston, TX 77065 Tel.: 877-897-9759 Fax: **281-605-5858** E-mail: info@dclamerica.com

.....

То	Chris Magee	Phone	
	USA Compression	Fax	
Date	June 29,2016	Email	

RE: Emissions Statement – Unit 6569 Chevron Curry Pad A

ENGINE DATA

Engine model	Cat 3406TA
Power	276 bhp
Fuel	PQNG
Exhaust Flow	1854 lb/hr
Exhaust Temperature	1080 [°] F

CATALYST SYSTEM DATA

Catalyst Housing	RCS-2216-08
Catalyst Model	IQ16 (A7X5-01-40V9-31)
Catalyst Type	NSCR 3-Way
Element Diameter	Round 14.75" x 3.16 " w/ bonnet
Number of Elements	2
Cell Density	300 cpsi

EMISSION REQUIREMENTS

Exhaust Gas Component	Engine Output g/bhp-hr	Converter Output g/bhp-hr
NOx	17.53	.25
СО	17.53	.30
VOC	.27	.16
CH20	.26	>76% reduction

Regards,

Sam Kirk Regional Sales Manager DCL America 281-253-3091

Confidential Communication

G3406

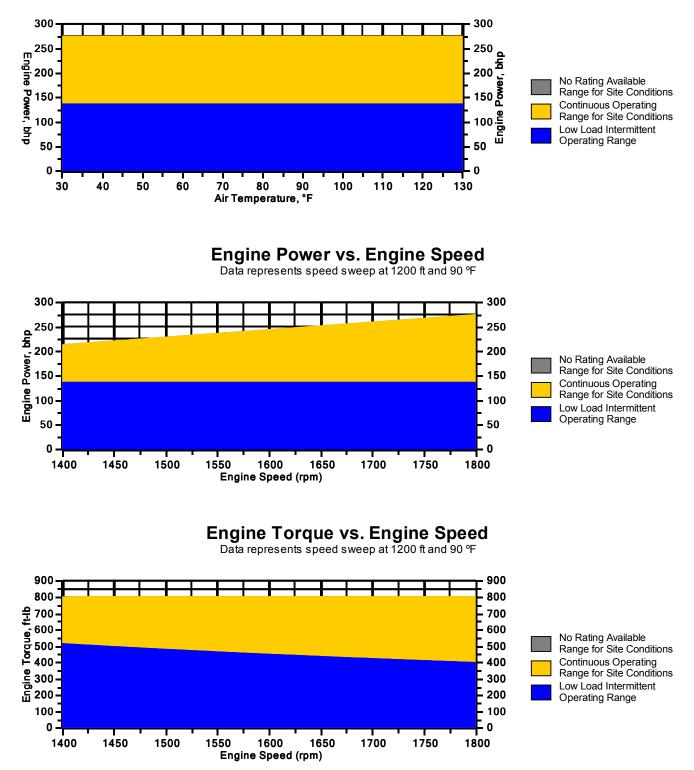
GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Chevron Curry Pad A 6/28/16

ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: AFTERCOOLER WATER INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: EXHAUST OXYGEN (% O2): SET POINT TIMING:	1800 9.4 SCAC 130 210 TA JW+OC, AC CDIS WC CATALYST SETTING 0.3 24	RATING FUEL SY FUEL: FUEL PF FUEL ME FUEL LH ALTITUE MAXIMU	YSTEM: WITH (DNDITIONS: RESSURE RANGE(psig): ETHANE NUMBER: IV (Btu/scf):			STANDA CONTINUO LPG IMP SUPPLIED AIR FUEL RATIO CONTR Chevron Berger Pad A Fue 29 1.5- 5 11 12 276 bhp@1800r		
					MAXIMUM	-	TING AT N	
RATIN	^		NOTES	LOAD	RATING 100%	INLET A	R TEMPE 75%	RATURE 50%
ENGINE POWER	5	(WITHOUT FAN)	(1)	bhp	276	276	207	138
INLET AIR TEMPERATURE		(00000000000000000000000000000000000000	(1)	°F	90	90	90	90
					1			
ENGINE D	ATA							
FUEL CONSUMPTION (LHV)			(2)	Btu/bhp-hr	7371	7371	8030	9385
FUEL CONSUMPTION (HHV)			(2)	Btu/bhp-hr	8122	8122	8849	10342
AIR FLOW (@inlet air temp, 14.7 psia)		(WET)	(3)(4)	ft3/min	387	387	311	239
AIR FLOW		(WET)	(3)(4)	lb/hr	1677	1677	1348	1035
FUEL FLOW (60°F, 14.7 psia)			(=)	scfm	30	30	24	19
INLET MANIFOLD PRESSURE			(5)	in Hg(abs)	43.2	43.2	35.0	26.6
EXHAUST TEMPERATURE - ENGINE OUTLET			(6)	°F	1068	1068	1003	935
EXHAUST GAS FLOW (@engine outlet temp, 14.5 EXHAUST GAS MASS FLOW	o psia)	(WET) (WET)	(7)(4)	ft3/min lb/hr	1194 1775	1194 1775	920 1428	675 1098
EXHAUST GAS MASS FLOW		(****)	(7)(4)		1775	1775	1420	1096
EMISSIONS DATA -	ENGINE OUT							
NOx (as NO2)			(8)(9)	g/bhp-hr	17.53	17.53	17.48	15.75
со			(8)(9)	g/bhp-hr	17.53	17.53	17.48	15.75
THC (mol. wt. of 15.84)			(8)(9)	g/bhp-hr	1.42	1.42	1.66	2.35
NMHC (mol. wt. of 15.84)			(8)(9)	g/bhp-hr	0.63	0.63	0.73	1.03
NMNEHC (VOCs) (mol. wt. of 15.84)			(8)(9)(10)	g/bhp-hr	0.27	0.27	0.31	0.45
HCHO (Formaldehyde)			(8)(9) (8)(9)	g/bhp-hr	0.26	0.26	0.26	0.26
CO2				g/bhp-hr	536	536	561	596
EXHAUST OXYGEN			(8)(11)	% DRY	0.3	0.3	0.3	0.3
HEAT REJE	CTION							
HEAT REJ. TO JACKET WATER (JW)			(12)	Btu/min	10398	10398	9702	8820
HEAT REJ. TO ATMOSPHERE			(12)	Btu/min	1357	1357	1109	864
HEAT REJ. TO LUBE OIL (OC)			(12)	Btu/min	1701	1701	1587	1443
HEAT REJ. TO AFTERCOOLER (AC)			(12)(13)	Btu/min	560	560	342	133

	_		
COOLING SYSTEM SIZING CRITERIA			
TOTAL JACKET WATER CIRCUIT (JW+OC)	(13)	Btu/min	13479
TOTAL AFTERCOOLER CIRCUIT (AC)	(13)(14)	Btu/min	588
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.			

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and resented. No overload permitted at rating shown.


For notes information consult page three. ***WARNINGS ISSUED FOR THIS RATING CONSULT PAGE 3***

CATERPILLAR®

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Chevron Curry Pad A 6/28/16

Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 1200 ft and 1800 rpm

Note: At site conditions of 1200 ft and 90°F inlet air temp., constant torque can be maintained down to 1410 rpm. The minimum speed for loading at these conditions is 1400 rpm.

G3406

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Chevron Curry Pad A 6/28/16

NOTES

1. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

2. Fuel consumption tolerance is ± 5.0% of full load data.

3. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of \pm 5 %.

4. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

5. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.

6. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

7. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of \pm 6 %.

8. Emissions data is at engine exhaust flange prior to any after treatment.

9. Emission values are based on engine operating at steady state conditions. Fuel methane number cannot vary more than ± 3. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. Part Load data requires customer supplied air fuel ratio control.

10. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

11. Exhaust Oxygen tolerance is ± 0.2.

12. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

13. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

14. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

WARNING(S):

1. The lower heating value of the fuel is higher than or equal to 1050 Btu/scf and lower than 1250 Btu/scf. May require on-site adjustment or tuning of the fuel system and up to two 130-5697 valve washers to lean out part load operating points.

RECOMMENDED ACTION

For additional information please contact your Caterpillar engine dealer.

Attachment O

TANKER TRUCK LOADING DATA SHEET

ATTACHMENT O – TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#: ZZZ-0011AB, ZZZ-0014Emission Point ID#: VS-1						Year Installed/Modified: 2016		
Emission Unit Descripti	on: Truck Pro	cess Co	nnection ·	– Produced	d Wate	r Tanks		
Loading Area Data								
Number of Pumps: 2Number of Liquids Loaded: 2Max number of trucks loading at one (1) time: 1							loading at one	
Are tanker trucks pressure tested for leaks at this or any other location? Yes No Not Required If Yes, Please describe:								
Provide description of c N/A	losed vent syster	n and an	y bypasses.					
Closed System to ta	Are any of the following truck loadout systems utilized? Closed System to tanker truck passing a MACT level annual leak test? Closed System to tanker truck passing a NSPS level annual leak test? Closed System to tanker truck not passing an annual leak test and has vapor return?							
Pro	jected Maximun	1 Operat	ting Schedul	e (for rack o	r transf	er point as a	whole)	
Time	Jan – Ma	r	Apr	- Jun	J	ul – Sept		Oct - Dec
Hours/day	As Neede	ed	As Ne	eeded	As	Needed	4	As Needed
Days/week	As Neede	ed	As Ne	eded As Needed		Needed	4	As Needed
	Bull	k Liquid	Data (use e	xtra pages a	s necessa	ary)		
Liquid Name	Produc	ed Wat	er	Blowdown Fluids				
Max. Daily Throughput (1000 gal/day)	81.2			0.84				
Max. Annual Throughpu (1000 gal/yr)	^{it} 29,632 .	.9		2.52				
Loading Method ¹ SUB SUB								
Max. Fill Rate (gal/min) 84 84								
Average Fill Time (min/loading)	200 mii	n		200 min				
Max. Bulk Liquid Temperature (°F) 70°F 70°F								

True Vapor Pressure ²		14.7 psia	14.7 psia	
Cargo Vessel	Condition ³	U	U	
Control Equi Method ⁴	pment or	N/A	N/A	
Max. Collect (%)	ion Efficiency	N/A	N/A	
Max. Control (%)	l Efficiency	N/A	N/A	
Max.VOC Emission	Loading (lb/hr)	0.90	1.31	
Rate	Annual (ton/yr)	3.98	<0.01	
Max.HAP	Loading (lb/hr)	<0.01	<0.01	
Emission Rate Annual (ton/yr)		0.01	<0.01	
Estimation N	lethod ⁵	ProMax	ProMax	

	1	BF	Bottom Fill	SP	Splash Fi	11		SUB	Submerged Fill
	2	At maxir	num bulk liquid temperature						
	3	В	Ballasted Vessel	С	Cleaned			U	Uncleaned (dedicated
service)									
		0	Other (describe)						
	4	List as a	many as apply (complete and s	submit app	propriate A	Air Polluti	on Contro	ol Device	Sheets)
		CA	Carbon Adsorption		VB	Dedicate	d Vapor I	Balance (c	closed system)
		ECD	Enclosed Combustion Devic	e	F	Flare	-		-
		ТО	Thermal Oxidization or Inci	neration					
	5	EPA	EPA Emission Factor in AP	-42			MB	Material	Balance
		ТМ	Test Measurement based up	on test da	ta submitt	al	0	Other (de	escribe)

Attachment P

GLYCOL DEHYDRATION UNIT DATA SHEET

ATTACHMENT P – GLYCOL DEHYDRATION UNIT DATA SHEET								
Complete this of and/or Regener input and aggre	ator at the fac	cility. Include	gas sample ana					
Manufacturer:		Ose extra page	Model:					
Max. Dry Gas Flow R	ate: 30 mmscf/	day	Reboiler Design He	at Input: 0.5 MMB	TU/hr			
Design Type: 🛛 TEG		EG	Source Status ¹ : NS	-				
Date Installed/Modifi	ed/Removed ² : 201	6	Regenerator Still V	ent APCD/ERD ³ :				
Control Device/ERD	ID# ³ : VRU (Flash	Tank Only)	Fuel HV (BTU/scf)	: 1,319				
H ₂ S Content (gr/100 s	scf):		Operation (hours/ye	ear): 8,760				
Pump Rate (gpm): 1.4	44							
Water Content (wt %)	in: Wet Gas: 30	.0 lbs/mmscf	Dry Gas: 7.0	bs/mmscf				
Is the glycol dehydrat			764(d)? Xes	No: If Yes, answe	er the following:			
The actual annual ave meters per day, as det					standard cubic 🛛 No			
The actual average en megagram per year (1 No								
Is the glycol dehydrat	ion unit located wi	thin an Urbanized Ar	ea (UA) or Urban Clu	ster (UC)? 🗌 Yes	No No			
Is a lean glycol pump	optimization plan	being utilized? 🗌 Ye	es 🛛 No					
Recycling the glycol of Yes No	dehydration unit ba	ick to the flame zone	of the reboiler.					
Recycling the glycol of Yes No	dehydration unit ba	ick to the flame zone	of the reboiler and m	ixed with fuel.				
What happens when to Still vent emission Still vent emission Still vent emission	s to the atmosphere s stopped with value	е.	ne reboiler?					
Please indicate if the	following equipme	nt is present.						
│	nt system that conti	inuously burns conde	nser or flash tank vap	ors				
			Technical Data					
	Illutent C			Comment 1.C.				
	ollutants Controlled		Manufacturer's	Guaranteed Control	Efficiency (%)			
Entire Gas Stream fro	m riash lank			95% (VRU)				
Emissions Data								
		Linissie		Controlled	Controll			
Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology ⁵	PTE ⁶	Maximum Hourly Emissions (lb/hr)	Controlled Maximum Annual Emissions (tpy)			
E01004	Reboiler	AP-42	NO _x	0.04	0.17			
E0100A	Exhaust	AP-42	СО	0.03	0.14			

		AP-42	VOC	0.002	0.01
		AP-42	SO ₂	<0.001	<0.001
		AP-42	PM 10	0.003	0.01
		AP-42	GHG (CO ₂ e)	58.55	256.44
E0100B	Glycol Regenerator Still Vent	GRI-GlyCalc [™]	VOC	1.58	6.91
		GRI-GlyCalc TM	Benzene	0.04	0.19
		GRI-GlyCalc TM	Toluene	0.20	0.86
		GRI-GlyCalc TM	Ethylbenzene	0.17	0.73
		GRI-GlyCalc TM	Xylenes	0.67	2.95
		GRI-GlyCalc TM	n-Hexane	0.03	0.11
MBD-0110 / VS-1 (Post Control Emissions Displayed)	Glycol Flash Tank	GRI-GlyCalc [™]	VOC	0.78	3.43
		GRI-GlyCalc TM	Benzene	0.003	0.01
		GRI-GlyCalc TM	Toluene	0.01	0.03
		GRI-GlyCalc TM	Ethylbenzene	0.01	0.04
		GRI-GlyCalc TM	Xylenes	0.02	0.09
		GRI-GlyCalc TM	n-Hexane	0.002	0.01

1 Enter the Source Status using the following codes: NS Construction of New Source ES **Existing Source** MS Modification of Existing Source 2 Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal. 3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number: NA None CD Condenser FL. Flare Condenser/Combustion Combination TO Thermal Oxidizer CC 0 (please list) Other Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol 4 dehydration unit reboiler vent and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc. 5 Enter the Potential Emissions Data Reference designation using the following codes: MDManufacturer's Data AP AP-42 GRI-GLYCalc[™] GR OT Other **ProMax** (please list) Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated 6 pollutants in lbs per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be

pollutants in lbs per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet. GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Chevron Appalachia, LLC File Name: M:\Projects\C\Chevron\WV Air Permit Applications\Curry Wellpad\G70-C Update\GlyCalc\Curry.ddf Date: July 21, 2016

DESCRIPTION:

Description: Curry Wellpad

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane Ethane Propane Isobutane n-Butane	0.0935 0.1303 0.1574 0.0301 0.1002		0.1320
Isopentane	0.0247	0.593	0.1082
n-Pentane	0.0419	1.006	0.1835
Cyclopentane	0.0006	0.014	0.0025
n-Hexane	0.0257	0.616	0.1124
Cyclohexane	0.0235	0.563	0.1028
Other Hexanes	0.0087	0.209	0.0382
Heptanes	0.0369	0.885	0.1615
Methylcyclohexane	0.0491	1.178	0.2150
Benzene	0.0429	1.031	0.1881
Toluene	0.1969	4.725	0.8622
Ethylbenzene	0.1663	3.992	0.7286
Xylenes	0.6727	16.145	2.9464
Total Emissions	1.8014		7.8899
Total Hydrocarbon Emissions	1.8014		7.8899
Total VOC Emissions	1.5776		6.9099
Total HAP Emissions	1.1045		4.8377
Total BTEX Emissions	1.0788		4.7254

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	23.2128	557.108	101.6722
Ethane	11.6321	279.171	50.9487
Propane	6.8366	164.078	29.9443
Isobutane	1.0134	24.321	4.4387
n-Butane	2.7621	66.289	12.0978
Isopentane	0.6882	16.517	3.0144
n-Pentane	0.9853	23.648	4.3158
Cyclopentane	0.0036	0.086	0.0157
n-Hexane	0.3920	9.408	1.7170
Cyclohexane	0.1037	2.489	0.4542

Heptanes Methylcyclohexane Benzene	0.1719 0.3277 0.1899 0.0329 0.1157	4.125 7.864 4.557 0.790 2.777	Page: 2 0.7528 1.4353 0.8316 0.1442 0.5067
C8+ Heavies	0.1909 1.7812	1.571 4.581 42.748	0.2867 0.8361 7.8016
	50.5054		221.2137
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	15.6604 0.7970	1212.130 375.851 19.127 9.719	68.5928 3.4907
EQUIPMENT REPORTS:			
ABSORBER			
Calculated Absorber Stag Specified Dry Gas Dew Poi Temperatu Pressu Dry Gas Flow Ra Glycol Losses with Dry G	ges: 1. int: 7. ure: 120 ure: 1200 ate: 30.00	40 00 lbs. H2O .0 deg. F .0 psig 00 MMSCF/da	/MMSCF Y
Giycol Losses with Dry (Wet Gas Water Conte Specified Wet Gas Water Conte Calculated Lean Glycol Recirc. Rat	ent: Subsatu	rated	
Wet Gas Water Conte Specified Wet Gas Water Conte Calculated Lean Glycol Recirc. Rat	ent: Subsatu	rated 00 lbs. H2O 00 gal/lb H Absorbed	/MMSCF 20
Wet Gas Water Conte Specified Wet Gas Water Conte Calculated Lean Glycol Recirc. Rat Component	ent: Subsatu ent: 30. tio: 3. Remaining in Dry Gas 	rated 00 lbs. H2O 00 gal/lb H Absorbed in Glycol 76.68 0.07 0.01 0.01	/MMSCF 20 - % % % %
Wet Gas Water Conte Specified Wet Gas Water Conte Calculated Lean Glycol Recirc. Rat Component Water Carbon Dioxide Nitrogen Methane	ent: Subsatu ent: 30. tio: 3. Remaining in Dry Gas 23.32% 99.93% 99.99% 99.99%	rated 00 lbs. H2O 00 gal/lb H Absorbed in Glycol 76.68 0.07 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.02	/MMSCF 20 - % % % % % % %
Wet Gas Water Conte Specified Wet Gas Water Conte Calculated Lean Glycol Recirc. Rat Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane	ent: Subsatu ent: 30. tio: 3. Remaining in Dry Gas 23.32% 99.93% 99.99% 99.99% 99.98% 99.98% 99.98% 99.98% 99.98%	rated 00 lbs. H2O 00 gal/lb H Absorbed in Glycol 76.68 0.07 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.12 0.04 0.17 0.03	/MMSCF 20 - % % % % % % % % % % % % % % % % % %
Wet Gas Water Conte Specified Wet Gas Water Conte Calculated Lean Glycol Recirc. Rat Component Water Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane Cyclopentane n-Hexane Cyclohexane Other Hexanes	ent: Subsatu ent: 30. io: 3. Remaining in Dry Gas 23.32% 99.93% 99.99% 99.98% 99.98% 99.98% 99.98% 99.98% 99.98% 99.97% 99.88% 99.97% 99.88% 99.96% 99.83% 99.97%	rated 00 lbs. H2O 00 gal/lb H Absorbed in Glycol 76.68 0.07 0.01 0.02 0.02 0.02 0.02 0.03 0.02 0.03 0.12 0.03 0.12 0.04 0.17 0.03 0.16 1.47 1.72 1.83	/MMSCF 20 - % % % % % % % % % % % % % % % % % %

Page: 3

Flash Temperat		
Component		Removed in Flash Gas
Water Carbon Dioxide Nitrogen Methane Ethane	97.21% 2.95% 0.39% 0.40% 1.11%	99.61% 99.60%
Propane Isobutane n-Butane Isopentane n-Pentane	2.25% 2.89% 3.50% 3.61% 4.25%	96.50%
Cyclopentane n-Hexane Cyclohexane Other Hexanes Heptanes	13.97% 6.33% 20.45% 5.17% 10.34%	93.67% 79.55%
Methylcyclohexane Benzene Toluene Ethylbenzene Xylenes	22.92% 58.70% 65.83% 74.63% 80.71%	34.17%
C8+ Heavies	3.67%	96.33%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	
Water Carbon Dioxide Nitrogen Methane Ethane	30.54% 0.00% 0.00% 0.00% 0.00%	100.00% 100.00%
Propane Isobutane n-Butane Isopentane n-Pentane	0.00% 0.00% 0.00% 4.18% 4.10%	
Cyclopentane n-Hexane Cyclohexane Other Hexanes Heptanes	2.49% 3.22% 11.96% 6.95% 2.44%	97.51% 96.78% 88.04% 93.05% 97.56%
Methylcyclohexane Benzene Toluene Ethylbenzene Xylenes	13.05% 8.23% 11.67% 13.60% 15.78%	86.95% 91.77% 88.33% 86.40% 84.22%
C8+ Heavies	223.13%	-123.13%

STREAM REPORTS:

WET GAS STREAM

 GIND DIREE					
 Temperature: Pressure: Flow Rate:	120.00 1214.70 1.25e+006	deg. F psia scfh			
	Component	:	Conc. (vol%)	Loading (lb/hr)	
	Carbor	n Dioxide Nitrogen Methane	6.32e-002 9.54e-002 4.73e-001 7.20e+001 1.69e+001	1.38e+002 4.37e+002 3.81e+004	
	Is	sobutane n-Butane sopentane	6.47e+000 7.06e-001 1.80e+000 3.82e-001 5.14e-001	1.35e+003 3.46e+003 9.09e+002	
	Сус	n-Hexane clohexane Hexanes	9.98e-004 1.59e-001 2.02e-002 7.45e-002 1.00e-001	4.51e+002 5.60e+001 2.12e+002	
		Benzene Toluene /lbenzene	3.50e-002 1.93e-003 5.81e-003 3.51e-003 9.51e-003	4.97e+000 1.76e+001 1.23e+001	
			1.92e-001 100.00		

DRY GAS STREAM

Pressure:	120.00 deg. F 1214.70 psia 1.25e+006 scfh		
	Component		Loading (lb/hr)
	Carbon Dioxide Nitrogen Methane	1.47e-002 9.54e-002 4.73e-001 7.20e+001 1.69e+001	1.38e+002 4.37e+002 3.81e+004
	Isobutane n-Butane Isopentane	6.47e+000 7.06e-001 1.80e+000 3.82e-001 5.14e-001	1.35e+003 3.46e+003 9.09e+002
	Cyclopentane	9.97e-004	2.30e+000

n-Hexane 1.59e-001 4.51e+002 Cyclohexane 2.02e-002 5.59e+001 Other Hexanes 7.45e-002 2.12e+002 Heptanes 1.00e-001 3.30e+002 Methylcyclohexane 3.50e-002 1.13e+002 Benzene 1.90e-003 4.89e+000 Toluene 5.71e-003 1.73e+001 Ethylbenzene 3.45e-003 1.21e+001 Xylenes 9.28e-003 3.24e+001 C8+ Heavies 1.92e-001 1.08e+003 ----- ------Total Components 100.00 7.40e+004 LEAN GLYCOL STREAM Temperature: 120.00 deg. F Flow Rate: 1.44e+000 gpm Conc. Loading (wt%) (lb/hr) Component TEG 9.85e+001 7.98e+002 Water 1.50e+000 1.22e+001 Carbon Dioxide 1.15e-012 9.32e-012 Nitrogen 4.23e-013 3.43e-012 Methane 1.00e-017 8.14e-017 Ethane 1.50e-007 1.21e-006 Propane 9.23e-009 7.48e-008 Isobutane 1.12e-009 9.05e-009 n-Butane 2.96e-009 2.40e-008 Isopentane 1.33e-004 1.08e-003 n-Pentane 2.21e-004 1.79e-003 Cyclopentane 1.79e-006 1.45e-005 n-Hexane 1.05e-004 8.55e-004 Cyclohexane 3.93e-004 3.19e-003 Other Hexanes 8.04e-005 6.51e-004 Heptanes 1.14e-004 9.22e-004 Methylcyclohexane 9.09e-004 7.37e-003 Benzene 4.75e-004 3.85e-003 Toluene 3.21e-003 2.60e-002 Ethylbenzene 3.23e-003 2.62e-002 Xylenes 1.55e-002 1.26e-001 C8+ Heavies 1.87e-002 1.52e-001 Total Components 100.00 8.10e+002 RICH GLYCOL AND PUMP GAS STREAM Temperature: 120.00 deg. F Pressure: 1214.70 psia Flow Rate: 1.61e+000 gpm

Component (wt%) TEG 8.95e+001 7.99e+002 Water 4.59e+000 4.10e+001 Carbon Dioxide 1.89e-002 1.69e-001 Nitrogen 3.07e-002 2.74e-001

NOTE: Stream has more than one phase.

Methane 2.61e+000 2.33e+001 Ethane 1.32e+000 1.18e+001 Propane 7.83e-001 6.99e+000 Isobutane 1.17e-001 1.04e+000 n-Butane 3.21e-001 2.86e+000 Isopentane 8.00e-002 7.14e-001 n-Pentane 1.15e-001 1.03e+000 Cyclopentane 4.66e-004 4.16e-003 n-Hexane 4.69e-002 4.19e-001 Cyclohexane 1.46e-002 1.30e-001 Other Hexanes 2.03e-002 1.81e-001 Heptanes 4.09e-002 3.65e-001 Methylcyclohexane 2.76e-002 2.46e-001 Benzene 8.93e-003 7.97e-002 Toluene 3.79e-002 3.39e-001 Ethylbenzene 2.89e-002 2.58e-001 Xylenes 1.11e-001 9.90e-001 C8+ Heavies 2.07e-001 1.85e+000 Total Components 100.00 8.93e+002

FLASH TANK OFF GAS STREAM

-----Temperature: 200.00 deg. F Pressure: 49.70 psia Flow Rate: 8.28e+002 scfh Conc. Component Loading (vol%) (lb/hr) Water 2.91e+000 1.14e+000 Carbon Dioxide 1.71e-001 1.64e-001 Nitrogen 4.46e-001 2.73e-001 Methane 6.63e+001 2.32e+001 Ethane 1.77e+001 1.16e+001 Propane 7.11e+000 6.84e+000 Isobutane 7.99e-001 1.01e+000 n-Butane 2.18e+000 2.76e+000 Isopentane 4.37e-001 6.88e-001 n-Pentane 6.26e-001 9.85e-001 Cyclopentane 2.34e-003 3.58e-003 n-Hexane 2.08e-001 3.92e-001 Cyclohexane 5.65e-002 1.04e-001 Other Hexanes 9.14e-002 1.72e-001 Heptanes 1.50e-001 3.28e-001 Methylcyclohexane 8.86e-002 1.90e-001 Benzene 1.93e-002 3.29e-002 Toluene 5.76e-002 1.16e-001 Ethylbenzene 2.83e-002 6.54e-002 Xylenes 8.24e-002 1.91e-001 C8+ Heavies 4.79e-001 1.78e+000 Total Components 100.00 5.21e+001

FLASH TANK GLYCOL STREAM Temperature: 200.00 deg. F Flow Rate: 1.50e+000 gpm

Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.50e+001 4.74e+000 5.94e-004 1.26e-004 1.11e-002	3.98e+001 4.99e-003 1.06e-003
Propane Isobutane	1.55e-002 1.87e-002 3.58e-003 1.19e-002 3.07e-003	1.57e-001 3.01e-002 1.00e-001
Cyclopentane	3.15e-003 3.17e-003	5.82e-004 2.65e-002 2.67e-002
Methylcyclohexane Benzene	5.57e-003 2.65e-002	5.65e-002 4.68e-002 2.23e-001
Xylenes C8+ Heavies	9.50e-002 8.08e-003	
Total Components	100.00	8.41e+002

REGENERATOR OVERHEADS STREAM

-				
	Temperature:	212.00 deg. F		
	Pressure:	14.70 psia 5.93e+002 scfh		
	FIOW Rate:	5.930+002 SCIN		
		Component	Conc.	Loading
		componente		(lb/hr)
		Water	9.82e+001	2.77e+001
		Carbon Dioxide	7.25e-003	4.99e-003
		Nitrogen	2.41e-003	1.06e-003
		Methane	3.72e-001	9.35e-002
		Ethane	2.77e-001	1.30e-001
		-		
			2.28e-001	
			3.32e-002	
			1.10e-001	
		Isopentane	3.71e-002	
		II-Pentane	3.71e-002	4.190-002
		Cyclopentane	5.17e-004	5.67e-004
			1.90e-002	
		Cyclohexane		
		Other Hexanes		
		Heptanes	2.35e-002	3.69e-002
		Methylcyclohexane		
			3.51e-002	
			1.37e-001	
		Ethylbenzene		
		Xylenes	4.05e-001	6.73e-001
		Total Components	100 03	2 950+001
		TOTAL COMPONENTS	100.03	2.996+001

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: Chevron Appalachia, LLC File Name: M:\Projects\C\Chevron\WV Air Permit Applications\Curry Wellpad\G70-C Update\GlyCalc\Curry.ddf Date: July 21, 2016 DESCRIPTION: _____ Description: Curry Wellpad Annual Hours of Operation: 8760.0 hours/yr WET GAS: _____ Temperature: 120.00 40 1200.00 psig 120.00 deg. F Wet Gas Water Content: Subsaturated Specified Wet Gas Water Content: 30.00 lbs. H2O/MMSCF Component Conc. (vol %) ----- -----Carbon Dioxide0.0951Nitrogen0.4718Methane71.7791Ethane16.8548Propane6.4465 Isobutane 0.7037 n-Butane 1.7990 Isopentane 0.3810 n-Pentane 0.5124 Cyclopentane 0.0010 n-Hexane 0.1584 Cyclohexane 0.0201 Other Hexanes 0.0743 Heptanes 0.0997 Methylcyclohexane 0.0349
 Benzene
 0.0019

 Toluene
 0.0058

 Ethylbenzene
 0.0035

 Xylenes
 0.0095

 C8+ Heavies
 0.1913
 DRY GAS: _____ Flow Rate: 30.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF LEAN GLYCOL: _____ Glycol Type: TEG Water Content: 1.5 wt% H20 Flow Rate: 1.4 gpm

Page: 1

PUMP:

Page: 2

Glycol Pump Type: Gas Injection Gas Injection Pump Volume Ratio: 0.080 acfm gas/gpm glycol

FLASH TANK:

Flash Control: Vented to atmosphere Temperature: 200.0 deg. F Pressure: 35.0 psig

Attachment Q

PNEUMATIC CONTROLLERS DATA SHEET

ATTACHMENT Q – PNEUMATIC CONTROLLERS DATA SHEET
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011?
\Box Yes \boxtimes No
Please list approximate number. N/A
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011? □ Yes ○ No
Please list approximate number. N/A

Attachment R

AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE (ERD) SHEET

ATTACHMENT R – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.						
Emission Unit ID:	Make/Model:					
Primary Control Device ID:	Make/Model:					
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No					
Secondary Control Device ID:	Make/Model:					
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No					

	VAPOR RECOVERY UNIT										
	General In	nformation									
Emission U	Jnit ID#: VRU	Installation	n Date: 2016	Relocated							
	Device Information										
	Manufacturer: Hy-Bon Model: HB-HG12307HIE-100-18DV										
List the en	nission units whose emissions are controlled by this	vapor recov	ery unit (Emission Po	int ID# VS-1)							
Emission Unit ID#	Emission Source Description										
ABJ- 0011A	Produced Water Tank										
ABJ- 0011B	Produced Water Tank										
ABJ- 0014	Blowdown Test Storage Tank										
MBD- 0110	Glycol Dehydration Unit Flash Tank										
If this	vapor recovery unit controls emissions from more t	han six (6) e	mission units, please	attach additional pages.							
Please atta	information attached? Xes No ch copies of manufacturer's data sheets, drawings,										
The registr recovery u	ant may claim a capture and control efficiency of 9 nit.	95 % (which	accounts for 5% down	time) for the vapor							

The registrant may claim a capture and control efficiency of 98% if the VRU has a backup flare that meet the requirements of Section 8.1.2 of this general permit.

The registrant may claim a capture and control efficiency of 98% if the VRU has a backup VRU.

	AMBU Vapor Recovery Unit (VRU) DATA SHEET												
	Sheet 1 OF 3												
	Chevro	-					-	ct : <u>C</u>	Curry Pa	ad A			
Chevron North Ame Exploration and Pro							ocation: 1692 Wayn		692 Waymans Ridge Road, Moundsville, WV 26041			/ille, WV 26041	
				duction Com	pany			WBS: UWSAP-D5099-MCH			9-MCH	4	
							ect Own		im Van		0/1/2000		
						Pho	one / Ema	aii: <u>(</u>	724) 27	2-037	0/ tim.vanda	Il@chevron.	
	Α	7/7/2016		Request f	or Quote			JBN	1				JBM
	REV.	DATE		DOCUMEN	T STATUS			ORIC	Э.	(СНК		Approval
1	Note:	~	Information to	ha aamalata	d by Durahaa				By Manu	factur		o Ontio	<u>n</u>
_	Note:	m	Information to	be complete	-		NFORM		,	nactur	er	o Optio	n
_	а. I [.]												
2	Applica		x Propos		o Purch	ase		0 /	As Built				
3		Client:	Chevron AMB							_			
4			VRU Tag (CBA				FMT:	-:40 D a	au sina di		ri-State		-
5		Service:	Vapor from Al Oil Flooded S				No. of U Model N		quirea:	1	:===		-
6 7		Type: Mfr.:	(fill)	crew		<u> </u>		0		<u>(</u>	ill)		-
Ľ	L				DEG		CONDITI	ONE					
8	m	Flow Rate (ms	cfd):	m Initial	155 (120		m N		380(120	nsi)	m Future	55	(300 psig)
0 9		Gas Analysis A	,	x Yes	0 No	-31/			nt (mole		0.003400	33	(000 poly)
10		H ₂ S Content (p		m None	0 110			Value:			ill)		
11		Specific Gravit			rel to air				-	1.			
12		NACE MR-017			ur Trim Requir	red	o S	our Tri	m Requi	ired			
13	m	Pressure (psig):	m Suctio				ischar		120 in	itial 300 f	future	
14	m	Temperature (°F):	m Suctio	n 20-90	_	ΔD	ischar	ge 12	20			
					COMPRE	ESSOF	RS AND	DRIVE	RS				
15	m	Compressor T	ype Required:	o Lobe	o Rotary	/Vane	o S	crew		х О	il Flooded		
16		, v	ment Required:	o Gear	x Direct	Couple	-		/-Belt w/	Jacksh	aft		
17		Compressor M		LeROI		Model	-	G1230		ΔD	ata Sheet		
18		Driver Type Re		o Engine		Elec N		0 T	urbine		o Others		
19		Driver Manufa	cturer:	Marathon (or		Model				ΔD	ata Sheet:		
20 21		Driver Data: Driver Electrica		Horse m Voltag	ower: 100 e: 460		Speed (r Phase:					. 60	
21		Electric Motor		x TEFC			sion Proof		-ph		requency (Hz)	: <u>60</u>	
23		Motor Starter:		Skid Mounted			tely Moun			Λм	anufacturer:	By Chevron	
24		Circuit Breake		Skid Mounted			tely Moun				anufacturer:	•	
25	_		lassification (if	skid mounted)		1 Div 2				-			
_	•				PRF	SSUR	RE VESS	FLS					
26	m	Vessels:	x	Suction Scrub			arge Scru			хО	il/Gas Separa	itor	
27		Corrosion Allow		Yes o			sion Allow		in): 1/	16"			
28			ith Cocks and 0								x Yes	o No	
29	m	Pressure Indic	ator w/Isolating	Valve:	x Yes	0	No						
30	m	Internal coating	g required:		o Yes	х	No *S	See Sh	eet 2 for	r coatin	g details		
							SCRUBE						
31	_	Manufacturer:					l Data Sh						
32		Outside Diame	()		Length, Seam		• • • •			AWP ((
33		Operating Pres			Design Temp						g Temperatur	e (°⊢): 20-90	-
34		Mist Eliminator Nozzle Sched		Yes x Size (in)	No ∆ Rating	Type:	0 N		o Va	ane			
35 36		Inlet		512e (III) 6	150 #	Face RF	Comme	nts:					-
30 37		High Level - P	ump Start	2	3000#		Mounted	on Ve	ssel				-
38		Level Bridle (L	•	2	150#	RF				or sigh	t glass and 2"	NPT for LSF	1
39		Pressure Indic	,	3/4	3000#	NPT			1.5.5		J		-
40		Drain		1	3000#	NPT							-
41	Δx	Outlet		4	150#	RF							-
42		Low Level - Pu	imp Stop	2	3000#	NPT	Mounted						_
43		Relief Valve		2	150#	RF	Mounted	on Ve	ssel ups	tream a	any Mist Extra	actor if any	_
44		Recycle Line	hala	2	150#	RF							-
45 46		Manway/Hand	noie	- 3/4	3000#	NDT	Tompore	turo la	dicator				-
46 47		Other:	3: 316 SS recon		3000#		Tempera	iiure IN	าบเวสเบโ				
47 48			5. 510 55 lecon										
40													

	AMBU Vapor Recovery Unit (VRU) DATA SHEET							
							Sheet	2 OF 3
	Chevr	ron AMBU				Proiec	: Curry Pad A	
		Chevron North Am	erica					oad, Moundsville, WV 2604
		Exploration and Pr		mpany		WB	: UWSAP-D5099-MCH	
					Proi		: Tim Vandall	
							: (724) 272-0370/ tim.vand	dall@chevron.com
			DI	SCHARGE SC	RUBB	ERS (Oil /	Gas Separator)	
1	Δ	Manufacturer:	HYBO				a Sheet No.:	
2	Δ	Outside Diameter (in):	16		Δ	Length, S	am to Seam (ft): 5	
3	m	Operating Pressure (psig):	120 - 3	300	Δ	Design Te	mp. (°F): 300	
4	Δ	Operating Temperature (°F)	: 120			MAWP (p		
5			Yes o	No		Mist Elimi		o Vane
6		Nozzle Schedule:	Size (in)	Rating	-	ace Co	nments:	
7	0	Inlet	2	300#	RF			
8	0	Spare	2	300#	RF	Mo	inted on Vessel	
9		Level Bridle (LSH and LG)	2	300#	RF			
10		Pressure Indicator	3/4	3000#	NPT			
11	-	Drain	1	3000#	NPT			
12	-	Outlet	2	300#	RF			
13	-	Oil Fill	2	300#	RF	An	led up to allow for ease of fillin	g oil
14		Relief Valve	2	300#	RF			
15		Oil Recycle	1	3000#	NPT	Oil	Recycle back to compressor	
16		Manway/Handhole	-					
17	0	Pressure Diff Ind.	1/2"	3000#	NPT		fittings, one upstream Filter, c	one downstrear
10				LIQUIDS	PUMP			N
18		Liquids Pump Required:	x Yes	o No	((1))	BIC	v Case Required: o Yes	x No
19			Centrifugal	Other:			Manufacturer: <u>Tuthil</u>	Dp @ 50)
20	m	Material: o 316 SS		x Ductile			_ (1 0)	ρ @ 50)
04		Oisht Elses la disatana		MPRESSOR				- NI-
21		Sight Flow Indicators:	x Yes	o No o No	m	•	re Indicators: x Yes mperature (°F): 120	o No
22 23		Gas Aftercooling: Auto Control of Cooler Air C		o No o Yes		No	mperature (°F): <u>120</u>	-
23 24		Cooler Control Method:	x Louvre		•	ble Pitch Fa		
24 25		Cooler Bug Screens:	o Yes		vallau		I	
25 26		Gas Pre-cooling:	o Yes	X_No X_No		Cool to Te	mperature (°F): N/A	
20 27		Cooler Structure Hot-Dipped			Yes			-
21				TERNAL AN		-	OATINGS	
28	m	External Coating required	x Yes	o No				
29		Internal Coating Required	o Yes	x No		Co	vell EC-1660 m Other:	
30		ë ,	pating Stand		То	p Coat: Se		uster Green
							anded metal screen cover only	
31	001111	required in areas with		• •		gaara 15 CA		. Bug offorto may be
51					e used	as an alter	ate. Consider gas contract red	quirements.
I							5	

	AMBU \	apor Recovery Unit (VR	J) DATA SHEET			
Chevron AMBU Chevron North Ame Exploration and Pro		Loc / Project O	oject: Curry Pad A ation: 1692 Waym WBS: UWSAP-D5 wner: Tim Vandall Email: (724) 272-03	ans Ridge Ro 099-MCH		
		PIPING AND VALVE	S			
1 m Process Gas Piping: 2 m Utility Piping:	o Scre x Scre	wed o Sock	et Welded et Welded	x Butt W		
3 m Tube Fittings:	o Stee		Stainless Steel	x 316 St	ainless Steel	
4 m Sour Service:	o Yes		Safe Valves required:	o Yes	x No	
5 m Valves Mounted in Piping: 6 m Suct. 150# Disch		ion Block Valve <u>x</u> Disch /down Valve x Purg	narge Block Valve	x Check x By-pas		
7 m Temporary Startup Screens		x Yes o No	e valve	л Бу-раз	s valve	
8 m Relief Valve Vent Pipes Vent G	•	x Upward to A	tmosphere o	Skid Edge		
9 m Height of Discharge:	10 ft		•	ç		
		ELECTRICAL SYST				
10 Δ Electrical Power			ments:			
11 m Main Prime Mover 12 m Transfer Pump Motors	460 3-pl 460 3-pl		will be installed offskid			
13 Δ Heaters						
14 m Instrumentation	-	- 24				
	INS	TRUMENT AIR / INSTRU	MENT GAS			
15 m Instrument air available at sit		Yes o No				
16 m Instrument gas available at s		Yes o No				
		JMENTS AND CONTROLS	8			
17 m Control Rack provided Comp		Yes x No				
18 m Control panel provided Comp	•	Yes X No	Devel Mustimes			
 m Panels with Enclosed Backs: m Panel Type: 			Panel Must mee Skid-Mounted	t Class 1 Divis	id Mounted	
		CAPACITY CONTRO		0 01 01		
21 m Capacity Control:	o No 🛛 x	Yes x Sucti	on Pressure x	Discharge Pre	essure	
22 m Pressure Range:	From 0	ToTo12	O o in psig	x	oz/sq. in.	
23 m Capacity Control Operation:			matic with Manual Ove	rride		
24 Δ Start-up Bypass (for screw co	ompressors):	o <u>No</u> o	Yes o N/A			
		END DEVICES	-			
25 Δ m Instrument Device	Yes No	Manufacturer	Model	Range From:	Range To:	
26 Recycle Valve	х о	Kimray		100-175 psi U/S	3-8 oz D/S	
27 Level Scrubber Switch(s)	хо	Murphy	LS200			
28 Discharge Temp. Transmitter	x o	Rosemount	248	100°F	400°F	
29 Discharge Pressure Transmitter	X O	Rosemount Wika	2088	0 PSIG	300 psig	
30 Pressure Gauge 31 Gauge Cock	X O X O	Penberthy	2-1/2" Silicone Fill	0 PSIG	300 psig	
31 Gauge Cock 32 Lube Oil (Flow) Press Transmitter	x o	Penderthy Pro-Flo Jr	0-PF1-JR-D			
33 Vibration Transmitter	x o	Metrix				
34 Sight Glasses	X O	Penberthy				
35 Thermowells	хо	Rosemount	w/ transmitter			
36 Oxygen Sensor	x o	Rosemount (or equiv.)				
37 Manometer	0 0				I	
1 Div 2 areas and -20	F ambient tempera	I rters By Chevron. Cabling sh ature (or lower). Control Pane PLC shall be specified for cor	el drawings shall be pro			
40 Tubing shall be (Swag 41	elok or SSP)					

Attachment S EMISSION CALCULATIONS

Line Heaters

BAP-0110, BAP-0810

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Heater Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (Ib/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,319	8,760	0.004	0.02
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,319	8,760	0.001	0.006
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,319	8,760	<0.001	<0.001
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,319	8,760	<0.001	<0.001
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,319	8,760	<0.001	<0.001
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,319	8,760	<0.001	<0.001
со	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,319	8,760	0.06	0.28
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,319	8,760	0.08	0.33
PM ₁₀	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,319	8,760	0.006	0.03
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,319	8,760	<0.001	0.002
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	1.00	1,319	8,760	116.98	512.36
CH ₄	0.001	kg CO ₂ / MMBtu	40 CFR Subpart C	1.00	1,319	8,760	0.002	0.01
N ₂ O	0.0001	kg CO ₂ / MMBtu	40 CFR Subpart C	1.00	1,319	8,760	<0.001	<0.001
Total HAPs							0.001	0.006
Total CO ₂ e							117.10	512.89

Notes:

-Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater.

-Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

-AP-42, Chapter 1.4 references are from the July 1998 revision.

⁻Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

-CO2 equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO 2=1, GWP CH4=25, GWP N2O=298

Example Equations:

Max. Hourly Emission Rate (Ib/hr) = Emission Factor (Ib/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Line Heaters

BAP-0210, BAP-0910, BAP-0012

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Heater Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (Ib/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.25	1,319	8,760	0.005	0.02
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.25	1,319	8,760	0.002	0.007
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.25	1,319	8,760	<0.001	<0.001
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.25	1,319	8,760	<0.001	<0.001
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.25	1,319	8,760	<0.001	<0.001
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.25	1,319	8,760	<0.001	<0.001
со	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.25	1,319	8,760	0.08	0.35
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.25	1,319	8,760	0.09	0.42
PM ₁₀	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.25	1,319	8,760	0.007	0.03
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.25	1,319	8,760	<0.001	0.002
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	1.25	1,319	8,760	146.22	640.45
CH ₄	0.001	kg CO ₂ / MMBtu	40 CFR Subpart C	1.25	1,319	8,760	0.003	0.01
N ₂ O	0.0001	kg CO ₂ / MMBtu	40 CFR Subpart C	1.25	1,319	8,760	<0.001	0.001
Total HAPs							0.002	0.008
Total CO ₂ e							146.37	641.11

Notes:

-Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater.

-Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

-AP-42, Chapter 1.4 references are from the July 1998 revision.

⁻Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

-CO2 equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO 2=1, GWP CH4=25, GWP N2O=298

Example Equations:

Max. Hourly Emission Rate (Ib/hr) = Emission Factor (Ib/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Heat Value of Natural Gas (Btu/scf)	Rated bhp	BSFC (Btu/hp-hr)	Annual Operating Hours	Max. Hourly Emissions. (Ib/hr)	Max. Annual Emissions. (tpy)
VOC's	0.16	g/bhp-hr	Manufacturer Guarantee	1,319	276	8,122	8,760	0.19	0.84
Formaldehyde	0.16	g/bhp-hr	Manufacturer Guarantee	1,319	276	8,122	8,760	0.09	0.42
Benzene	1.58E-03	lb/MMBtu	AP-42 Chapter 3.2	1,319	276	8,122	8,760	0.004	0.02
Toluene	5.58E-04	lb/MMBtu	AP-42 Chapter 3.2	1,319	276	8,122	8,760	0.001	0.005
Ethylbenzene	2.48E-05	lb/MMBtu	AP-42 Chapter 3.2	1,319	276	8,122	8,760	<0.001	<0.001
Xylenes	1.95E-04	lb/MMBtu	AP-42 Chapter 3.2	1,319	276	8,122	8,760	<0.001	0.002
со	0.30	g/bhp-hr	Manufacturer Guarantee	1,319	276	8,122	8,760	0.18	0.80
NOx	0.25	g/bhp-hr	Manufacturer Guarantee	1,319	276	8,122	8,760	0.15	0.67
PMFil-10/2.5	9.50E-03	lb/MMBtu	AP-42 Chapter 3.2	1,319	276	8,122	8,760	0.02	0.09
PMCondensable	9.91E-03	lb/MMBtu	AP-42 Chapter 3.2	1,319	276	8,122	8,760	0.02	0.10
SO ₂	5.88E-04	lb/MMBtu	AP-42 Chapter 3.2	1,319	276	8,122	8,760	0.001	0.006
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	1,319	276	8,122	8,760	53.97	236.38
CH ₄	0.001	kg CO ₂ / MMBtu	40 CFR Subpart C	1,319	276	8,122	8,760	0.001	0.004
N ₂ O	1.00E-04	kg CO ₂ / MMBtu	40 CFR Subpart C	1,319	276	8,122	8,760	<0.001	<0.001
Total HAPs		·						0.10	0.44
Total CO ₂ e								54.02	236.62

Flash Gas Compressor Engine - CBA-0050

Notes:

-Engine emissions are controlled through the operation of NSCR.

-Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

- AP-42, Chapter 3.2 references are from the August 2000 revision.

-Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

-CO2 equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO2=1, GWP CH4=25, GWP N2O=298

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/MMBtu) x BSFC (Btu/hp-hr) ÷ 1,000,000 x Engine Rating (bhp)

Glycol Reboiler BBC-0100

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Heater Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (Ib/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.5	1,319	8,760	0.002	0.01
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.5	1,319	8,760	<0.001	0.003
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.5	1,319	8,760	<0.001	<0.001
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.5	1,319	8,760	<0.001	<0.001
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.5	1,319	8,760	<0.001	<0.001
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.5	1,319	8,760	<0.001	<0.001
со	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.5	1,319	8,760	0.03	0.14
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.5	1,319	8,760	0.04	0.17
PM ₁₀	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.5	1,319	8,760	0.003	0.01
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.5	1,319	8,760	<0.001	<0.001
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	0.5	1,319	8,760	58.49	256.18
CH ₄	0.001	kg CO ₂ / MMBtu	40 CFR Subpart C	0.5	1,319	8,760	0.001	0.00
N ₂ O	0.0001	kg CO ₂ / MMBtu	40 CFR Subpart C	0.5	1,319	8,760	<0.001	<0.001
Total HAPs							<0.001	0.003
Total CO ₂ e							58.55	256.44

Notes:

-Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater.

-Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

-AP-42, Chapter 1.4 references are from the July 1998 revision.

⁻Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

-CO2 equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO 2=1, GWP CH4=25, GWP N2O=298

Example Equations:

Max. Hourly Emission Rate (Ib/hr) = Emission Factor (Ib/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Dehydrator Emissions

Regenerator Overhead Vent - E0100B

Pollutant	Max. Hourly Controlled Emissions (lb/hr)	Max. Annual Controlled Emissions (tons/yr)
VOCs	1.58	6.91
HAPs	1.10	4.84
Benzene	0.04	0.19
Ethylbenzene	0.17	0.73
Toluene	0.20	0.86
Xylenes	0.67	2.95
n-Hexane	0.03	0.11
Methane	0.09	0.41
CO ₂ e	2.34	10.23

Flash Tank - MBD 0110

Pollutant	Max. Hourly Controlled Emissions (lb/hr)	Max. Annual Controlled Emissions (tons/yr)
VOCs	15.66	68.59
HAPs	0.80	3.49
Benzene	0.03	0.14
Ethylbenzene	0.07	0.29
Toluene		0.51
Xylenes	0.19	0.84
n-Hexane	0.39	1.72
Methane	23.21	101.67
CO ₂ e	580.32	2,541.81

- The flash tank included within the Curry wellpad will be routed to the Vapor Recovery Unit (VRU). The emission rates displayed above for the Flash Tank are precontrol emission rates. Post-control emissions are calculated on the VRU emission calculations included with this submittal.

- The regenerator overhead vent will at the Curry wellpad will be uncontrolled.

- Emission rates for the dehydrator were calculated using GRI-GLYCALC version 4.0. The GRI-GLYCALC output sheets for the Curry site are attached.

- CO2 equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1. GWP CO 2=1, GWP CH4=25, GWP N2O=298

Produced Water Tanks ABJ-0011(A-B) and Blowdown Test Storage Tank ABJ-0014

Pollutant	Max. Uncontrolled Hourly Emissions using ProMax (Ib/hr)	Max. Uncontrolled Annual Emissions using ProMax (tons/yr)
VOCs	118.65	519.69
Total HAPs	5.71	25.02
Hexane	5.28	23.12
Benzene	0.06	0.26
Toluene	0.16	0.68
Ethylbenzene	0.06	0.28
Xylenes	0.15	0.68
CO ₂	1.33	5.83
CH ₄	50.83	222.61
Total CO ₂ e	1,271.96	5,571.18

Notes:

-Emission rates for Produced Water Tanks ABJ-0011A, ABJ-0011B, and Test Tank ABJ-0014 were calculated using ProMax software. ProMax output sheets for the Curry Pad are attached.

-The Blowdown Test Tank (ABJ-0014) is a tank with 2 modes of operation. The tank will act as as a produced water tank during normal operations and will receive produced water from the separators. The produced water tanks and test tank are manifolded together. The test tank will also receive fluids from maintenance blowdown actitivies, as represented in the Test Tank calculations.

Emissions were calculated using Engineering Estimates to establish input to the ProMax software. Chevron has applied an industry standard assumption that 1% of the produced water realized in the tank will be condensate, based upon imperfect fluid separation.

-The emission rates displayed above are pre-control device emissions.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

-CO₂ and CH₄ emissions solved for using emissions rates (lb/hr) of "Flash Gas" from the ProMax output sheets.

-For emission calculation purposes, the total throughput for tanks ABJ-0011(A-B), ABJ-0014 is modeled as being received through a single tank. The throughput value represents the total throughput for all three (3) 400-barrel tanks. Therefore, emission rates represent a total from all produced fluids tanks located on the well pad. Actual throughput for each tank will vary based on operations.

Blowdown Events (ABJ-0014)

Pollutant	Max. Uncontrolled Hourly Emissions using ProMax (lb/hr)	Max. Uncontrolled Annual Emissions using ProMax (tons/yr)
VOCs	97.46	0.15
Total HAPs	4.47	0.01
Hexane	3.79	0.01
Benzene	0.05	0.000
Toluene	0.19	0.000
Ethylbenzene	0.12	0.000
Xylenes	0.32	0.000
CO ₂	0.81	0.001
CH ₄	134.00	0.20
Total CO ₂ e	3,350.75	5.03

Notes:

-Emissions from short term maintenance blowdowns are not included in the Site PTE for Max. Hourly Emissions (lb/hr), as displayed in the calculation summary table of this application, since they are irregular and are associated with site maintenance activities.

-Emission rates for blowdown test tank ABJ-0014 were calculated using ProMax software. ProMax blowdown summary sheets are attached.

-Pound/hour emissions based on one 15 minute blowdown event. The wells are blown down 3 times per year.

-Blowdown events are routed to a vent stack (VS-1) and are uncontrolled emission releases.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Subpart W Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298 -CO₂ and CH₄ emissions solved for using emissions rates (lb/hr) of flash gas from ProMax summary sheets.

Equations

VOCs (lb/hr) = Total emission rate output from ProMax (lb/hr) x .25 (hrs)

VOCs (tons/yr) = Max. Hourly Emissions (lb/hr) x 3 blowdowns per year ÷ 2000 (lbs/ton)

Tank Unloading Operations ZZZ-001AB, ZZZ-0014

Pollutant	Max. Hourly Emissions (Ib/hr)	Max. Yearly Emissions (tons/yr)
VOCs	2.22	3.98
HAPs	0.003	0.01
CO ₂	0.014	0.06
CH ₄	0.11	0.50
Total CO ₂ e	2.90	12.52

Total Emissions from Tank Unloading Operations

Notes:

Tank Unloading Operations will be uncontrolled at the Curry natural gas production facility

-Emission rates for liquid unloading operations were calculated using ProMax software. ProMax summary sheets are attached.

Vapor Recovery Unit

Emissions from Tanks						
Waste Gas to VRU	Pollutant	Amount of Gas Sent to VRU (Ibs/hr)	Amount of Gas Sent to VRU (tons/year)	VRU Control Efficiency	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)
	VOCs	118.65	519.69	95%	5.93	25.98
	Total HAPs	5.71	25.02	95%	0.29	1.25
	Hexane	5.28	23.12	95%	0.26	1.16
	Benzene	0.06	0.26	95%	0.003	0.01
Produced Water Tanks	Toluene	0.16	0.68	95%	0.01	0.03
ABJ-0011(A-B), Test Tank ABJ-0014	Ethylbenzene	0.06	0.28	95%	0.003	0.01
	Xylenes	0.15	0.68	95%	0.008	0.03
	CO ₂	1.33	5.83	95%	0.07	0.29
	CH ₄	50.83	222.61	95%	2.54	11.13
	CO ₂ e	1,271.96	5,571.18	95%	63.60	278.56
	VOCs	15.66	68.59	95%	0.78	3.43
	Total HAPs	0.80	3.49	95%	0.04	0.17
	Hexane	0.03	0.14	95%	0.002	0.01
	Benzene	0.07	0.29	95%	0.003	0.01
Glycol Dehydration Unit	Toluene	<0.001	0.51	95%	<0.001	0.03
Flash Tank (MBD-0110)	Ethylbenzene	0.19	0.84	95%	0.01	0.04
	Xylenes	0.39	1.72	95%	0.02	0.09
	CO ₂	23.21	101.67	95%	1.16	5.08
	CH ₄	580.32	2541.81	95%	29.02	127.09
	CO ₂ e	14,531.21	63,646.80	95%	726.56	3,182.34
	VOCs	134.31	588.28	95%	6.72	29.41
	Total HAPs	6.51	28.51	95%	0.33	1.43
	Hexane	5.31	23.27	95%	0.27	1.16
	Benzene	0.12	0.55	95%	0.006	0.03
T - (-) -	Toluene	0.16	1.19	95%	0.01	0.06
Totals	Ethylbenzene	0.25	1.12	95%	0.013	0.06
	Xylenes	0.55	2.39	95%	0.03	0.12
	CO ₂	24.54	107.50	95%	1.23	5.37
	CH ₄	631.15	2764.42	95%	31.56	138.22
	CO ₂ e	15,803.17	69,217.98	95%	790.16	3,460.90

Notes:

-Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

-CO2 equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO 2=1, GWP CH4=25, GWP N2O=298

Example Calculations:

Waste Gas Flow Rate (lb/hr) x 1- Control Efficiency (%) = Emission Rate (lb/hr)

Fugitive Emissions from Unpaved Haul Roads

Constant	Industrial Roads							
Constant	PM	PM-10	PM-2.5					
k (lb/VMT)	4.9	1.5	0.15					
а	0.7	0.9	0.9					
b	0.45	0.45	0.45					
where								
k		Patricle size m	ultiplier ¹					
s	4.	8 Silt content of	road surface m					
р	15	0 Number of day	s per year with					

4.8 Silt content of road surface material (%) 150 Number of days per year with precipitation

Item Number	Description	Number of Wheels	W Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)		PM Emissions (tons/yr)	PM-10 Emissions (lbs/hr)	PM-10 Emissions (tons/yr)	PM-2.5 Emissions (Ibs/hr)	PM-2.5 Emissions (tons/yr)
1	Liquids Hauling	14	30	10	0.19	1	7,055	NA	NA	0.81	2.86	0.21	0.73	0.02	0.07
2	Employee Vehicles	4	3	10	0.19	1	200	NA	NA	0.29	0.03	0.07	0.01	0.01	< 0.001
									Totals:	1.10	2.89	0.28	0.74	0.03	0.07

Notes: ¹ - Particle Size Multiplier used from AP-42 13.2.2 - Final Version 11/2006

² - Silt Content of Road Surface uses Sand and Grave I Processing Plant Road from AP-42 13.2.2 - Final Version 11/2006
 ³ - Number of days per year with precipitation >0.01 in 3 found using AP-42 13.2.2 Figure 13.2.2-1 - Final Version 11/2006

Example Calculations: Emissions (lb/Vehicle Mile Traveled) - E = $k \times (s/12)^{a} \times (W/3)^{b}$

Equation 1a from AP-42 13.2.2 - Final Version 11/2006

Size Specific Emissions (Ib/VMT) - E ext = E[(365-p)/365]

Equation 2 from AP-42 13.2.2 - Final Version 11/2006

Fugitive Leaks

Default Average Co	Default Average Component Counts for Major Onshore Natural Gas Production Equipment ¹							
Facility Equipment Type	Valves	Connectors	Open-ended Lines	Pressure Relief Valves				
Wellheads	8	38	0.5	0				
Separators	1	6	0	0				
Meters/Piping	12	45	0	0				
Compressors	12	57	0	0				
In-line Heaters	14	65	2	1				
Dehydrators	24	90	2	2				

Well Specific Equipment Counts					
Facility Equipment Type	Count on Site				
Wellheads	4				
Separators	5				
Meters/Piping	5				
Compressors	2				
In-line Heaters	6				
Dehydrators	1				

1- Table W-1B to 40CFR98 Subpart W

Well Gas Composition														
Emissions from Flaring Operations	Propane	Butane	Pentanes	Heptane	Octane	Nonanes	Decanes	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylene	CO ₂	CH ₄
Mole %	7.187	3.30	1.50	0.35	0.53	0.33	0.289	0.39	0.01	0.026	0.023	0.070	0.15	66.90
MW	44	58	72	100	114	128.000	142	86.00	78.00	92.00	106.00	106.00	44.00	16.00

	Fugitive Emissions												
Facility Equipment Type	Total Count	Emission Rate (scf/hr/component) ²	Hours of Operation	VOCs (Ibs/hr)	VOCs (tons/yr)	HAPs (lbs/hr)	HAPs (tons/yr)	CO ₂ (Ibs/hr)	CO ₂ (tons/yr)	CH₄ (Ibs/hr)	CH ₄ (tons/yr)	Total CO ₂ e (Ibs/hr)	Total CO ₂ e (tons/yr)
Valves	241	0.027	8760	0.14	0.62	0.008	0.03	0.001	0.005	0.18	0.79	4.52	19.79
Connectors	1058	0.003	8760	0.07	0.30	0.004	0.02	< 0.001	0.002	0.09	0.39	2.20	9.65
Open-ended Lines	16	0.06	8760	0.02	0.09	0.001	0.005	< 0.001	< 0.001	0.03	0.12	0.68	2.97
Pressure Relief Valves	8	0.04	8760	0.007	0.03	<0.001	0.002	< 0.001	<0.001	0.01	0.04	0.22	0.97
			Total Emissions:	0.24	1.05	0.01	0.06	0.002	0.01	0.30	1.33	7.62	33.38

2- Table W-1A to 40CFR98 Subpart W

Notes: -The "Wellstream" gas composition in the attached ProMax simulations is utilized to calculate emission from fugitive leaks for the most conservative estimate.

Example Equations: Fugitive Emissions (lb/hr) = Count x Emission Rate x Hours of Operation ÷ 385.5 scf/lbmol x mol VOC's

Curry Natural Gas Production Site Total Emissions	
---	--

	VC	Cs	HA	APs	C	Ö	N	IO _x	PM -	10/2.5	S	0 ₂	С	0 ₂	C	H4	N	2 0	C	O ₂ e
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Line Heater (E0110)	0.004	0.02	0.001	0.006	0.06	0.28	0.08	0.33	0.006	0.03	< 0.001	0.002	116.98	512.36	0.002	0.01	<0.001	<0.001	117.10	512.89
Line Heater (E0210)	0.005	0.02	0.002	0.008	0.08	0.35	0.09	0.42	0.007	0.03	<0.001	0.002	146.22	640.45	0.003	0.01	<0.001	0.001	146.37	641.11
Line Heater (E0810)	0.004	0.02	0.001	0.006	0.06	0.28	0.08	0.33	0.006	0.03	<0.001	0.002	116.98	512.36	0.002	0.01	<0.001	<0.001	117.10	512.89
Line Heater (E0910)	0.005	0.02	0.002	0.008	0.08	0.35	0.09	0.42	0.007	0.03	<0.001	0.002	146.22	640.45	0.003	0.01	<0.001	0.001	146.37	641.11
Line Heater (E0012)	0.005	0.02	0.002	0.008	0.08	0.35	0.09	0.42	0.007	0.03	<0.001	0.002	146.22	640.45	0.003	0.01	<0.001	0.001	146.37	641.11
Glycol Reboiler (E0100A)	0.002	0.009	<0.001	0.003	0.03	0.14	0.04	0.17	0.003	0.01	<0.001	< 0.001	58.49	256.18	0.001	0.005	<0.001	<0.001	58.55	256.44
Flash Gas Compressor (E0050)	0.19	0.84	0.10	0.44	0.18	0.80	0.15	0.67	0.02	0.09	0.001	0.006	53.97	236.38	0.001	0.004	<0.001	<0.001	54.02	236.62
Vapor Recovery Unit (VS-1)	6.72	29.41	0.33	1.43							-		1.23	5.37	31.56	138.22			790.16	3,460.90
Glycol Dehydrator (E0100B)	1.58	6.91	1.10	4.84										-	0.09	0.41			2.34	10.23
Blowdown Events (VS-1)		0.15		0.01							1			0.00		0.20			-	5.03
Tank Truck Loading Activities (VS-1)	2.22	3.98	0.003	0.01			1				1		0.01	0.06	0.11	0.50			2.90	12.52
Haul Roads							-		0.31	0.81	-			-					-	
Fugitives Leaks	0.24	1.05	0.01	0.06									0.002	0.01	0.30	1.33			7.62	33.38
Totals	10.97	42.46	1.55	6.82	0.58	2.54	0.63	2.74	0.37	1.06	0.001	0.02	786.32	3,444.07	32.08	140.73	<0.001	0.004	1,588.91	6,964.23

	Total	HAPs	Hex	ane	Benz	ene	Tolu	ene	Ethylb	enzene	Xyl	ene	Forma	aldehyde
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Line Heater (E0110)	0.001	0.006	0.001	0.006	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Line Heater (E0210)	0.002	0.008	0.002	0.007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Line Heater (E0810)	0.001	0.006	0.001	0.006	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Line Heater (E0910)	0.002	0.008	0.002	0.007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Line Heater (E0012)	0.002	0.008	0.002	0.007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Glycol Reboiler (E0100A)	<0.001	0.003	0.001	0.003	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Flash Gas Compressor (E0050)	0.10	0.44			0.004	0.02	0.001	0.005	<0.001	<0.001	<0.001	0.002	0.09	0.42
Vapor Recovery Unit (VS-1)	0.33	1.43	0.27	1.16	0.006	0.03	0.008	0.06	0.013	0.06	0.03	0.12		
Dehydrator (E0100B)	1.10	4.84	0.03	0.11	0.04	0.19	0.20	0.86	0.17	0.73	0.67	2.95		
Blowdown Events (VS-1)		0.007		0.006		0.000		0.000		0.00		0.00		
Tank Truck Loading Activities (VS-1)	0.003	0.01	0.003	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Haul Roads														
Fugitives Leaks	0.01	0.06	0.02	0.07	<0.001	0.001	<0.001	0.01	<0.001	0.01	<0.001	0.02		
Totals	1.55	6.82	0.32	1.40	0.05	0.23	0.21	0.94	0.18	0.79	0.70	3.09	0.09	0.42

Total Curry Natural Gas Production Site Total Controlled Emission Levels - HAP Speciation

		Flowsheet1 Plant Schematic
Client Name:	Chevron Appalachia, Ll	C Job: 1933 bpd, Updated
Location:	Curry G70-C	
Flowsheet:	Flowsheet1	
		Image: Strate Taylow Image: Strate Taylow Image: Strate

Г

			All S	reams Report treams by Total Phase			
Client Name:	Chevron Appala	chia, LLC			Job: 1933 I	bpd, Updated	
Location:	Curry G70-C						
Flowsheet:	Flowsheet1						
			Conn	ections			
			Gas to Dehy and Sales	Gas to VRU	Stable Liquid	Water	Wellstream
From Block			Phase Separator	PW Tanks	PW Tanks		
To Block						MIX-100	MIX-100
			Gas to Dehy and Sales	omposition Gas to VRU	Stable Liquid	Water	Wellstream
Mole Fraction			%	%	%	%	%
Hydrogen Sulfide			0	0	0	0 *	0 *
Nitrogen			0.469379	0.173589	2.42399E-06	0 *	0.42 *
Carbon Dioxide			0.102584	0.446058	0.000240343	0 *	0.149 *
Methane			71.9471	46.744	0.00143094	0 *	66.896 *
Ethane			16.9144	19.9692	0.00131072	0 *	16.864 *
Propane			6.44009	13.3906	0.00230407	0 *	7.187 *
Isobutane			0.693716	2.17824	0.000810803	0 *	0.881 *
n-Butane			<u> </u>	6.64344	0.00361351	0 *	2.418 *
2,2-Dimethylpropa Isopentane	ne		0.360834	0.0400886	2.94451E-05 0.00257453	0 *	0.014 *
n-Pentane			0.380834	2.7081	0.00237453	0 *	0.886 *
2,2-Dimethylbutan	e		0.00684984	0.0439427	0.000132774	0 *	0.015 *
Cyclopentane	•		0.000918484	0.00611414	1.64335E-05	0 *	0.002 *
2,3-Dimethylbutan	e		0.0139005	0.0923482	0.000381444	0 *	0.034 *
2-Methylpentane	-		0.0818151	0.53781	0.00247815	0 *	0.206 *
3-Methylpentane			0.0495816	0.330282	0.00170055	0 *	0.131 *
n-Hexane			0.138615	0.903792	0.00582133	0 *	0.394 *
Methylcyclopentan	e		0.0119035	0.0830606	0.000552665	0 *	0.036 *
Benzene			0.00169489	0.0111729	0.000112451	0 *	0.006 *
Cyclohexane			0.0173576	0.115836	0.000988242	0 *	0.057 *
2-Methylhexane			0.0301783	0.16232	0.00248631	0 *	0.116 *
3-Methylhexane 2,2,4-Trimethylpen	tono		0.0311862	0.169022	0.00270962	0 *	0.124 *
n-Heptane	liane		0.0806878	0.404779	0.00821953	0 *	0.351 *
Methylcyclohexane	2		0.0283207	0.404779	0.00316101	0 *	0.133 *
Toluene	5		0.00466127	0.0248199	0.000670898	0 *	0.026 *
n-Octane			0.0721549	0.233828	0.0154802	0 *	0.528 *
Ethylbenzene			0.00257588	0.00886359	0.000697127	0 *	0.023 *
m-Xylene			0.00247574	0.00787932	0.000739787	0 *	0.024 *
o-Xylene			0.00438434	0.0136232	0.00143521	0 *	0.046 *
n-Nonane			0.0252616	0.0512095	0.0107205	0 *	0.331 *
n-Decane			0.0134935	0.014753	0.00974808	0 *	0.289 *
C11			0.0195519	0.0121803	0.0278559	0 *	0.806 *
Water			0.183414	2.47669	99.8865	100 *	0 *
			Gas to Dehy and Sales	Gas to VRU	Stable Liquid	Water	Wellstream
Molar Flow			Ibmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
Hydrogen Sulfide			0	0	0	0 *	0 ,
Nitrogen			0.218593	0.0117654	3.76104E-05	0 *	0.230396 *
Carbon Dioxide			0.0477741	0.0302324	0.00372914	0 *	0.0817357 *
Methane			33.5062	3.16816	0.0222023	0 *	36.6966 *
Ethane			7.87715	1.35345	0.020337	0 *	9.25094 *
Propane			2.99919	0.907572	0.0357497	0 *	3.94251 *
In a la sut a se			0.323068	0.147634	0.0125804 0.0560669	0 *	0.483283
Isobutane							
n-Butane	20		0.820084	0.450272		-	1.32642
n-Butane 2,2-Dimethylpropa	ne		0.00450592	0.00271708	0.000456868	0 *	0.00767986
n-Butane 2,2-Dimethylpropa Isopentane	ne		0.00450592 0.168043	0.00271708 0.124988	0.000456868 0.0399463	0 * 0 *	0.00767986 * 0.332977 *
n-Butane 2,2-Dimethylpropa			0.00450592	0.00271708	0.000456868	0 *	0.00767986

* User Specified Values ? Extrapolated or Approximate Values

Licensed to The ERM Group, Inc. and Affiliates

			All St	reams Report Treams by Total Phase			
Client Name:	Chevron Appala	ichia. I I C			Job: 1933 b	ppd. Updated	
Location:	Curry G70-C						
Flowsheet:	Flowsheet1						
			Gas to Dehy and Sales	Gas to VRU	Stable Liquid	Water	Wellstream
Molar Flow			lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
2,3-Dimethylbutar	ne		0.00647357	0.00625907	0.00591845	0 *	0.0186511
2-Methylpentane			0.0381018	0.0364511	0.0384508	0 *	0.113004
3-Methylpentane			0.0230905	0.0223855	0.0263856	0 *	0.0718616
n-Hexane			0.0645537	0.0612562	0.0903233	0 *	0.216133
Methylcyclopenta	ine		0.00554352	0.00562959	0.00857512	0 *	0.0197482
Benzene			0.000789323	0.000757266	0.00174478	0 *	0.00329137
Cyclohexane			0.00808354	0.00785099	0.0153335	0 *	0.031268
2-Methylhexane			0.0140542	0.0110015	0.0385774	0 *	0.0636332
3-Methylhexane			0.0145236	0.0114558	0.0420422	0 *	0.0680216
2,2,4-Trimethylpe	entane		0	0	0	0 *	0
n-Heptane			0.0375768	0.0274346	0.127534	0 *	0.192545
Methylcyclohexar	ne		0.0131892	0.0107235	0.049046	0 *	0.0729587
Toluene			0.00217078	0.00168222	0.0104096	0 *	0.0142626
n-Octane			0.033603	0.0158481	0.240189	0 *	0.289641
Ethylbenzene			0.0011996	0.000600747	0.0108166	0 *	0.0126169
m-Xylene			0.00115297	0.000534036	0.0114785	0 *	0.0131655
o-Xylene			0.00204181	0.00092334	0.0222687	0 *	0.0252338
n-Nonane			0.0117645	0.00347082	0.166339	0 *	0.181574
n-Decane			0.00628399	0.000999912	0.15125	0 *	0.158534
C11			0.00910546	0.000825545	0.43221	0 *	0.442141
Water			0.0854171	0.167862	1549.83	1550.08 *	0
			Gas to Dehy and Sales	Gas to VRU	Stable Liquid	Water	Wellstream
Mass Fraction				Gas to VRU %	Stable Liquid %	Water %	Wellstream %
Hydrogen Sulfide	1		and Sales % 0	%	% 0	%	<mark>%</mark> 0_*
Hydrogen Sulfide Nitrogen			and Sales % 0 0.588467	% 0 0.153472	% 0 3.7466E-06	% 0 * 0 *	% 0.44465
Hydrogen Sulfide Nitrogen Carbon Dioxide			and Sales % 0 0.588467 0.20205	% 0.153472 0.61955	% 0 3.7466E-06 0.000583604	% 0 * 0 * 0 *	% 0 0.44465 0.24782
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane			and Sales % 0 0.588467 0.20205 51.6555	% 0.153472 0.61955 23.6666	% 0 3.7466E-06 0.000583604 0.00126658	% 0 * 0 * 0 *	% 0.44465 0.24782 40.5578
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane			and Sales % 0 0.588467 0.20205 51.6555 22.7619	% 0.153472 0.61955 23.6666 18.9505	% 0 3.7466E-06 0.000583604 0.00126658 0.00217456	% 0 * 0 * 0 * 0 *	% 0.44465 0.24782 40.5578 19.1639
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane			and Sales % 0.588467 0.20205 51.6555 22.7619 12.7093	% 0.153472 0.61955 23.6666 18.9505 18.6352	% 0 3.7466E-06 0.000583604 0.00126658 0.00217456 0.00560572	% 0 * 0 * 0 * 0 * 0 *	% 0.44465 0.24782 40.5578 19.1639 11.977
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane			and Sales % 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045	% 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565	% 0 3.7466E-06 0.000583604 0.00126658 0.00217456 0.00560572 0.00260015	% 0 * 0 * 0 * 0 * 0 * 0 *	% 0.44465 0.24782 40.5578 19.1639 11.977 1.93518
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane			and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058	% 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864	% 0 3.7466E-06 0.000583604 0.00126658 0.00217456 0.00560572 0.00260015 0.0115881	% 0 * 0 * 0 * 0 * 0 * 0 * 0 *	% 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane 2,2-Dimethylpropa			and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416	% 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827	% 0 3.7466E-06 0.000583604 0.00126658 0.00217456 0.00560572 0.00260015 0.0115881 0.000117215	% 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	% 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane 2,2-Dimethylpropa Isopentane			and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416 1.16512	% 0 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827 4.19908	% 0 3.7466E-06 0.000583604 0.00126658 0.00217456 0.00560572 0.00260015 0.0115881 0.000117215 0.00102487	% 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	% 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane 2,2-Dimethylpropa Isopentane n-Pentane	ane		and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416 1.16512 1.55096	% 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827 4.19908 6.16642	% 0 3.7466E-06 0.000583604 0.00126658 0.00217456 0.00560572 0.00260015 0.0115881 0.000117215 0.0102487 0.0202137	% 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	% 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane -Butane 2,2-Dimethylpropa Isopentane n-Pentane 2,2-Dimethylbutar	ane		and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416 1.16512 1.55096 0.0264178	% 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827 4.19908 6.16642 0.119511	% 0 3.7466E-06 0.000583604 0.00126658 0.00217456 0.00560572 0.00260015 0.0115881 0.000117215 0.0102487 0.0202137 0.000631302	% 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	% 0 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane 2,2-Dimethylpropa Isopentane n-Pentane 2,2-Dimethylbutar Cyclopentane	ane		and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416 1.16512 1.55096 0.0264178 0.00288288	% 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827 4.19908 6.16642 0.119511 0.0135331	% 0 3.7466E-06 0.000583604 0.00126658 0.00217456 0.00560572 0.00260015 0.0115881 0.000117215 0.0102487 0.0202137 0.000631302 6.35907E-05	% 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	% 0 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane 2,2-Dimethylpropa Isopentane n-Pentane 2,2-Dimethylbutar Cyclopentane 2,3-Dimethylbutar	ane		and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416 1.16512 1.55096 0.0264178 0.00288288 0.0536102	% 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827 4.19908 6.16642 0.119511 0.0135331 0.25116	% 0 3.7466E-06 0.000583604 0.00126658 0.00217456 0.00260015 0.010260015 0.0115881 0.000117215 0.0102487 0.0202137 0.000631302 6.35907E-05 0.00181365	% 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	% 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane 2,2-Dimethylpropa Isopentane 2,2-Dimethylbutar Cyclopentane 2,3-Dimethylbutar 2,3-Dimethylbutar 2.4-Dimethylbutar	ane		and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416 1.16512 1.55096 0.0264178 0.00288288 0.0536102 0.315536	% 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827 4.19908 6.16642 0.119511 0.0135331 0.25116 1.46269	% 0 3.7466E-06 0.000583604 0.00126658 0.00217456 0.00260015 0.015881 0.000117215 0.0102487 0.0202137 0.000631302 6.35907E-05 0.00181365 0.0117829	% 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	% 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane 2,2-Dimethylpropa Isopentane n-Pentane 2,2-Dimethylbutar Cyclopentane 2,3-Dimethylbutar 2-Methylpentane 3-Methylpentane	ane		and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416 1.16512 1.55096 0.0264178 0.00288288 0.0536102 0.315536 0.191222	% 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827 4.19908 6.16642 0.119511 0.0135331 0.25116 1.46269 0.898269	% 0 3.7466E-06 0.000583604 0.00126658 0.00217456 0.00560572 0.00260015 0.0115881 0.000117215 0.0102487 0.0202137 0.000631302 6.35907E-05 0.00181365 0.0117829 0.00808563	% 0	% 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426636
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane a.2.2-Dimethylprop Isopentane 2,2-Dimethylputar Cyclopentane 2,3-Dimethylbutar 2.3-Dimethylbutar 2.4-Dimethylbutar 2.3-Dimethylpentane 3-Methylpentane n-Hexane	ane ne ne		and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416 1.16512 1.55096 0.0264178 0.00288288 0.0536102 0.315536 0.191222 0.534595	% 0 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827 4.19908 6.16642 0.119511 0.0135331 0.25116 1.46269 0.898269 2.45805	% 0 3.7466E-06 0.000583604 0.00126658 0.00217456 0.00560572 0.00260015 0.0115881 0.000117215 0.0102487 0.0202137 0.000631302 6.35907E-05 0.00181365 0.00117829 0.00808563 0.0276787	% 0	% 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426636 1.28317
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane 2,2-Dimethylprop Isopentane 2,2-Dimethylputar Cyclopentane 2,3-Dimethylbutar 2-Methylpentane 3-Methylpentane n-Hexane Methylcyclopenta	ane ne ne		and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416 1.16512 1.55096 0.0264178 0.00288288 0.0536102 0.315536 0.191222 0.534595 0.0448341	% 0 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827 4.19908 6.16642 0.119511 0.0135331 0.25116 1.46269 0.898269 2.45805 0.220616	% 0 3.7466E-06 0.000583604 0.00126658 0.00217456 0.00560572 0.00260015 0.0115881 0.000117215 0.0102487 0.0202137 0.000631302 6.35907E-05 0.00181365 0.0117829 0.00808563 0.0276787 0.00256629	% 0	% 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426636 1.28317 0.114501
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane 2,2-Dimethylpropi Isopentane 2,2-Dimethylputar Cyclopentane 2,3-Dimethylbutar 2,-Methylpentane 3-Methylpentane n-Hexane Methylcyclopenta Benzene	ane ne ne		and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416 1.16512 1.55096 0.0264178 0.00288288 0.0536102 0.315536 0.191222 0.534595 0.0448341 0.00592505	% 0 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827 4.19908 6.16642 0.119511 0.0135331 0.25116 1.46269 0.898269 2.45805 0.220616 0.0275437	% 0 3.7466E-06 0.000583604 0.00126658 0.00260015 0.00260015 0.0115881 0.000117215 0.00260015 0.012487 0.0202137 0.000631302 6.35907E-05 0.00181365 0.0117829 0.0028663 0.0276787 0.00256629 0.000484642	% 0	% 0 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426636 1.28317 0.114501 0.0177122
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane 2,2-Dimethylprop Isopentane 2,2-Dimethylputar Cyclopentane 2,3-Dimethylbutar 2,3-Dimethylbutar 3-Methylpentane n-Hexane Methylcyclopenta Benzene Cyclohexane	ane ne ne		and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416 1.16512 1.55096 0.0264178 0.00288288 0.0536102 0.315536 0.191222 0.534595 0.0448341 0.00592505 0.065377	% 0 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827 4.19908 6.16642 0.119511 0.0135331 0.25116 1.46269 0.898269 2.45805 0.220616 0.0275437 0.30767	% 0 3.7466E-06 0.000583604 0.00126658 0.00217456 0.00260015 0.0115881 0.000117215 0.0102487 0.020137 0.000631302 6.35907E-05 0.00181365 0.0178787 0.0026629 0.00256629 0.000484642 0.00458889	% 0 0 0 0 0 0 0 0 0	% 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426636 1.28317 0.114501 0.0177122 0.181293
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane 2,2-Dimethylprop Isopentane 2,2-Dimethylputar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 3-Methylpentane n-Hexane Methylcyclopenta Benzene Cyclohexane 2-Methylhexane	ane ne ne		and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416 1.16512 1.55096 0.0264178 0.00288288 0.0536102 0.315536 0.191222 0.534595 0.048341 0.00592505 0.065377 0.135333	% 0 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827 4.19908 6.16642 0.119511 0.0135331 0.25116 1.46269 0.898269 2.45805 0.220616 0.0275437 0.30767 0.513319	% 0 3.7466E-06 0.00126658 0.00217456 0.00560572 0.00260015 0.0115881 0.000117215 0.0012487 0.0026015 0.0115881 0.000117215 0.000631302 6.35907E-05 0.00181365 0.0117829 0.00276787 0.00256629 0.000484642 0.00458889 0.0137459	% 0 0 0 0 0 0	% 0 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426636 1.28317 0.114501 0.0177122 0.181293 0.439276
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane 2,2-Dimethylprop Isopentane 2,2-Dimethylputar 2,3-Dimethylbutar 2,3-Dimethylbutar 2-Methylpentane 3-Methylpentane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane	ane ne ne		and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416 1.16512 1.55096 0.0264178 0.00288288 0.0536102 0.315536 0.191222 0.534595 0.048341 0.00592505 0.065377 0.135333 0.139853	% 0 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827 4.19908 6.16642 0.119511 0.0135331 0.25116 1.46269 0.898269 2.45805 0.220616 0.0275437 0.30767 0.513319 0.534514	% 0 3.7466E-06 0.00126658 0.00217456 0.00560572 0.00260015 0.0115881 0.000117215 0.0012487 0.0026015 0.0115881 0.000117215 0.0102487 0.002631302 6.35907E-05 0.00181365 0.0117829 0.00256629 0.00248642 0.00458889 0.0137459 0.0149805	% 0 0 0 0 <tr< td=""><td>% 0 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426636 1.28317 0.114501 0.0177122 0.181293 0.439276 0.469571</td></tr<>	% 0 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426636 1.28317 0.114501 0.0177122 0.181293 0.439276 0.469571
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane 2,2-Dimethylpropa Isopentane 2,2-Dimethylputar 2,2-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbertane 3-Methylhexane 2,4-Trimethylpe	ane ne ne		and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416 1.16512 1.55096 0.0264178 0.00288288 0.0536102 0.315536 0.191222 0.534595 0.0448341 0.00592505 0.065377 0.135333 0.139853 0	% 0 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827 4.19908 6.16642 0.119511 0.0135331 0.25116 1.46269 0.888269 2.45805 0.220616 0.0275437 0.30767 0.513319 0.534514 0	% 0 3.7466E-06 0.000583604 0.00126658 0.00217456 0.00580572 0.00260015 0.0115881 0.000117215 0.000631302 6.35907E-05 0.00181365 0.0117829 0.00266031302 6.35907E-05 0.00181365 0.0117829 0.00808563 0.0276787 0.00256629 0.00458889 0.0137459 0.0149805 0	% 0 0 0 0 <tbr></tbr> <tbr></tbr>	% 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426636 1.28317 0.114501 0.0177122 0.181293 0.439276 0.469571 0
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane 2,2-Dimethylpropa Isopentane 2,2-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 3-Methylcyclopenta Benzene Cyclohexane 2,2-Methylhexane 3-Methylhexane 2,2,4-Trimethylpe	ane ne ne ne ne		and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416 1.16512 1.55096 0.0264178 0.00288288 0.0536102 0.315536 0.0191222 0.534595 0.0448341 0.00592505 0.065377 0.135333 0.139853 0 0 0.36184	% 0 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827 4.19908 6.16642 0.119511 0.0135331 0.25116 1.46269 0.898269 2.45805 0.220616 0.0275437 0.30767 0.513319 0.534514 0 1.28007	% 0 3.7466E-06 0.000583604 0.00126658 0.00217456 0.00580572 0.00260015 0.0115881 0.000117215 0.000631302 6.35907E-05 0.00181365 0.0117829 0.00266031 0.0117829 0.00484642 0.00458889 0.0137459 0.0149805 0	% 0 0 0 0 0 0 0 <	% 0 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426636 1.28317 0.114501 0.0177122 0.181293 0.439276 0.469571 0 1.32919
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane 2,2-Dimethylpropi Isopentane 2,2-Dimethylbutar 2,2-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 3-Methylpentane Methylcyclopenta Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 2,1-Trimethylpe n-Heptane Methylcyclohexar	ane ne ne ne ne		and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416 1.16512 1.55096 0.0264178 0.00288288 0.0312536 0.091222 0.534595 0.0448341 0.00592505 0.065377 0.135333 0.139853 0 0.36184 0.124448	% 0 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827 4.19908 6.16642 0.119511 0.0135331 0.25116 1.46269 0.898269 2.45805 0.220616 0.0275437 0.30767 0.513319 0.534514 0 1.28007 0.490281	% 0 3.7466E-06 0.000583604 0.00126658 0.00217456 0.00217456 0.00260015 0.00115881 0.000117215 0.000117215 0.000631302 6.35907E-05 0.00181365 0.0117829 0.00266031 0.0117829 0.00484642 0.00458889 0.0137459 0.0149805 0 0.01454427 0.00454427 0.00454427 0.0171245	% 0 0 0 0 <tr< td=""><td>% 0 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426366 1.28317 0.114501 0.0177122 0.181293 0.439276 0.469571 0 0 1.32919 0.49352</td></tr<>	% 0 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426366 1.28317 0.114501 0.0177122 0.181293 0.439276 0.469571 0 0 1.32919 0.49352
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane 2,2-Dimethylpropi Isopentane 2,2-Dimethylbutar 2,2-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 3-Methylpentane 3-Methylpentane 2-Methylpentane 2-Methylpentane 3-Methylpentane 3-Methylpentane 2-Methylhexane 2-Methylhexane 3-Methylhexane 3-Methylhexane 3-Methylpentane methylcyclohexar Methylcyclohexar Toluene	ane ne ne ne ne		and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416 1.16512 1.55096 0.0264178 0.00288288 0.0316102 0.315536 0.191222 0.534595 0.0448341 0.00592505 0.0448341 0.00592505 0.0448341 0.00592505 0.0448341 0.00592505 0.0448341 0.00592505 0.0448341 0.036184 0.139853 0 0 0.36184 0.124448 0.0192211	% 0 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827 4.19908 6.16642 0.119511 0.0135331 0.25116 1.46269 0.898269 2.45805 0.220616 0.0275437 0.30767 0.513319 0.534514 0 1.28007 0.490281 0.0721739	% 0 3.7466E-06 0.000583604 0.00126658 0.00217456 0.00560572 0.00260015 0.0115881 0.000117215 0.0102487 0.0202137 0.000631302 6.35907E-05 0.00181365 0.0117829 0.00808563 0.0276787 0.00256629 0.000484642 0.00458889 0.0137459 0.0149805 0 0.01454427 0.01454427 0.00341066	% 0 0 0 0 <tr< td=""><td>% 0 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426636 1.28317 0.114501 0.0177122 0.181293 0.439276 0.469571 0.0469571 0 0.49352 0.0905352</td></tr<>	% 0 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426636 1.28317 0.114501 0.0177122 0.181293 0.439276 0.469571 0.0469571 0 0.49352 0.0905352
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane 2,2-Dimethylpropi Isopentane 2,2-Dimethylbutar 2,2-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 3-Methylpentane 3-Methylpentane 2-Methylpentane 2-Methylcyclopenta Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 3-Methylhexane 3-Methylhexane 3-Methylpentane methylcyclohexar Toluene n-Octane	ane ne ne ne ne		and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416 1.16512 1.55096 0.0264178 0.00288288 0.0312416 1.16512 1.55096 0.0264178 0.00288288 0.0536102 0.315536 0.191222 0.534595 0.0448341 0.00592505 0.065377 0.135333 0.139853 0 0 0.36184 0.124448 0.0192211 0.36887	% 0 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827 4.19908 6.16642 0.119511 0.0135331 0.25116 1.46269 0.898269 2.45805 0.220616 0.0275437 0.30767 0.513319 0.534514 0 1.28007 0.490281 0.0721739 0.842966	% 0 3.7466E-06 0.000583604 0.00126658 0.00217456 0.00217456 0.00260015 0.00260015 0.0115881 0.000117215 0.0102487 0.0202137 0.000631302 6.35907E-05 0.00181365 0.0117829 0.00808563 0.0276787 0.00256629 0.000484642 0.00458889 0.0137459 0.0147459 0.0147459 0.0147459 0.0147455 0.00341066 0.0975645	% 0 0 0 0 </td <td>% 0 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426636 1.28317 0.114501 0.0177122 0.181293 0.439276 0.469571 0 0 1.32919 0.49352 0.0905352 2.27935</td>	% 0 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426636 1.28317 0.114501 0.0177122 0.181293 0.439276 0.469571 0 0 1.32919 0.49352 0.0905352 2.27935
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane 2,2-Dimethylpropa Isopentane 2,2-Dimethylbutar 2,2-Dimethylbutar 2,2-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2-Methylpentane 3-Methylpentane Methylcyclopenta Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 2,2,4-Trimethylpe n-Heptane Methylcyclohexar Toluene n-Octane Ethylbenzene	ane ne ne ne ne		and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416 1.16512 1.55096 0.0264178 0.00288288 0.0536102 0.315536 0.091222 0.534595 0.0448341 0.00592505 0.065377 0.135333 0.139853 0 0 0.36184 0.124448 0.0192211 0.36887 0.0122388	% 0 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827 4.19908 6.16642 0.119511 0.0135331 0.25116 1.46269 0.898269 2.45805 0.220616 0.0275437 0.30767 0.513319 0.534514 0 1.28007 0.490281 0.0721739 0.842966 0.0296982	% 0 3.7466E-06 0.000583604 0.00126658 0.00217456 0.00217456 0.00260015 0.0126881 0.00217456 0.00260015 0.0115881 0.000117215 0.0102487 0.0202137 0.000631302 6.35907E-05 0.00181365 0.0117829 0.00808563 0.0276787 0.00256629 0.000484642 0.00458889 0.0137459 0.01454427 0.01454427 0.01454427 0.0171245 0.00341066 0.0975645 0.00408352	% 0 0 0 0 </td <td>% 0 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426636 1.28317 0.114501 0.0177122 0.181293 0.439276 0.469571 0 1.32919 0.49352 0.0905352 2.27935 0.0922811</td>	% 0 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426636 1.28317 0.114501 0.0177122 0.181293 0.439276 0.469571 0 1.32919 0.49352 0.0905352 2.27935 0.0922811
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane 2,2-Dimethylpropi Isopentane 2,2-Dimethylbutar Cyclopentane 2,3-Dimethylbutar 2,3-Dimethylbutar 2-Methylpentane 3-Methylpentane 3-Methylpentane Methylcyclopenta Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 3-Methylhexane 2,2,4-Trimethylpe n-Heptane Methylcyclohexar Toluene n-Octane Ethylbenzene m-Xylene	ane ne ne ne ne		and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416 1.16512 1.55096 0.0264178 0.00288288 0.0312416 1.16512 1.55096 0.0264178 0.00288288 0.0536102 0.315536 0.191222 0.534595 0.048341 0.00592505 0.065377 0.135333 0.139853 0.0139853 0 0 0.36184 0.124448 0.0192211 0.36887 0.0122388 0.011763	% 0 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827 4.19908 6.16642 0.119511 0.0135331 0.25116 1.46269 0.898269 2.45805 0.220616 0.0275437 0.30767 0.513319 0.534514 0 1.28007 0.490281 0.0721739 0.842966 0.0296982 0.0264003	% 0 3.7466E-06 0.000583604 0.00126658 0.00217456 0.00217456 0.00260015 0.0126881 0.00217456 0.00260015 0.0115881 0.000117215 0.0102487 0.0202137 0.000631302 6.35907E-05 0.00181365 0.0117829 0.00808563 0.0276787 0.00256629 0.000484642 0.00458889 0.0137459 0.0145845 0.0137459 0.01454427 0.0137459 0.0137459 0.01341066 0.0975645 0.0043334	% 0 0 0	% 0 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426636 1.28317 0.114501 0.0177122 0.181293 0.439276 0.469571 0 1.32919 0.49352 0.0905352 2.27935 0.0922811
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane 2,2-Dimethylpropi Isopentane 2,2-Dimethylbutar Cyclopentane 2,3-Dimethylbutar 2,3-Dimethylbutar 2-Methylpentane 3-Methylpentane 3-Methylpentane 2-Methylpentane 2-Methylpentane 2-Methylpentane 3-Methylcyclopenta Benzene Cyclohexane 2-Methylhexane 2,2,4-Trimethylpe n-Heptane Methylcyclohexar Toluene n-Octane Ethylbenzene m-Xylene o-Xylene	ane ne ne ne ne		and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416 1.16512 1.55096 0.0264178 0.00288288 0.0536102 0.315536 0.191222 0.534595 0.0448341 0.00592505 0.0448341 0.00592505 0.065377 0.135333 0.139853 0 0 0.36184 0.124448 0.0192211 0.36887 0.0122388 0.011763 0.0208314	% 0 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827 4.19908 6.16642 0.119511 0.0135331 0.25116 1.46269 0.898269 2.45805 0.220616 0.0275437 0.30767 0.513319 0.534514 0 1.28007 0.490281 0.0721739 0.842966 0.0296982 0.0264003 0.0456457	% 0 3.7466E-06 0.00126658 0.00217456 0.00560572 0.00260015 0.0115881 0.000117215 0.00260015 0.0115881 0.000117215 0.0026015 0.0117881 0.000631302 6.35907E-05 0.00181365 0.0117829 0.00808563 0.0276787 0.00256629 0.000484642 0.00458889 0.0137459 0.01454427 0.0171245 0.00341066 0.0975645 0.0043334 0.0043334	% 0 0	% 0 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426636 1.28317 0.114501 0.0177122 0.181293 0.439276 0.49352 0.0905352 2.27935 0.0922811 0.0962933 0.184562
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane 2,2-Dimethylpropa Isopentane 2,2-Dimethylputar 2,2-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 3-Methylcyclopenta Benzene Cyclohexane 2,4-Trimethylpe n-Heptane Methylcyclohexar Toluene n-Octane Ethylbenzene m-Xylene o-Xylene n-Nonane	ane ne ne ne ne		and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416 1.16512 1.55096 0.0264178 0.00288288 0.0536102 0.315536 0.191222 0.534595 0.048341 0.00592505 0.048341 0.00592505 0.065377 0.135333 0.139853 0 0.36184 0.124448 0.0192211 0.36887 0.0122388 0.011763 0.0208314 0.145	% 0 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827 4.19908 6.16642 0.119511 0.0135331 0.25116 1.46269 0.898269 2.45805 0.220616 0.0275437 0.30767 0.513319 0.534514 0 1.28007 0.490281 0.0721739 0.842966 0.0296982 0.0264003 0.0456457 0.207283	% 0 3.7466E-06 0.00126658 0.00217456 0.00260015 0.0115881 0.00217456 0.00260015 0.0115881 0.000117215 0.00260015 0.0115881 0.000117215 0.002137 0.000631302 6.35907E-05 0.00181365 0.0117829 0.00808563 0.0276787 0.00256629 0.000484642 0.00458889 0.0137459 0.0149805 0 0.0454427 0.00458454 0.00341066 0.0975645 0.0043334 0.00840696 0.0758632	% 0 <td< td=""><td>% 0 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426636 1.28317 0.114501 0.0177122 0.181293 0.439276 0.469571 0 1.32919 0.49352 0.0905352 2.27935 0.0922811 0.0962933 0.184562 1.60438</td></td<>	% 0 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426636 1.28317 0.114501 0.0177122 0.181293 0.439276 0.469571 0 1.32919 0.49352 0.0905352 2.27935 0.0922811 0.0962933 0.184562 1.60438
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane 2,2-Dimethylpropa Isopentane 2,2-Dimethylputar 2,2-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 2,3-Dimethylbutar 3-Methylcyclopenta Benzene Cyclohexane 2,2,4-Trimethylpe n-Heptane Methylcyclohexar Toluene n-Heptane Methylcyclohexar Toluene n-Octane Ethylbenzene m-Xylene o-Xylene n-Nonane n-Decane	ane ne ne ne ne		and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416 1.16512 1.55096 0.0264178 0.00288288 0.0536102 0.315536 0.191222 0.534595 0.048341 0.00592505 0.048341 0.00592505 0.048341 0.00592505 0.048341 0.0192211 0.36184 0.124448 0.0192211 0.36887 0.0122388 0.011763 0.0208314 0.145 0.0859221	% 0 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827 4.19908 6.16642 0.119511 0.0135331 0.25116 1.46269 0.898269 2.45805 0.220616 0.0275437 0.30767 0.513319 0.534514 0 1.28007 0.490281 0.0721739 0.842966 0.0296982 0.0264003 0.0456457 0.207283 0.0662473	% 0 3.7466E-06 0.00126658 0.00217456 0.00217456 0.00260015 0.0115881 0.00217456 0.00260015 0.0115881 0.000117215 0.00260015 0.0115881 0.000631302 6.35907E-05 0.00181365 0.0117829 0.00256629 0.0024877 0.00256629 0.002484642 0.00484642 0.00458889 0.0137459 0.0149805 0 0.0171245 0.00341066 0.0975645 0.0043334 0.00840696 0.0758632 0.076526	% 0 <td< td=""><td>% 0 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426636 1.28317 0.114501 0.0177122 0.181293 0.439276 0.469571 0 1.32919 0.49352 0.0905352 2.27935 0.0922811 0.0962933 0.184562 1.60438 1.554</td></td<>	% 0 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426636 1.28317 0.114501 0.0177122 0.181293 0.439276 0.469571 0 1.32919 0.49352 0.0905352 2.27935 0.0922811 0.0962933 0.184562 1.60438 1.554
Hydrogen Sulfide Nitrogen Carbon Dioxide Methane Ethane Propane Isobutane n-Butane 2,2-Dimethylpropa Isopentane 2,2-Dimethylbutar Cyclopentane 2,3-Dimethylbutar 2,3-Dimethylbutar 2-Methylpentane	ane ne ne ne ne		and Sales % 0 0.588467 0.20205 51.6555 22.7619 12.7093 1.8045 4.58058 0.0312416 1.16512 1.55096 0.0264178 0.00288288 0.0536102 0.315536 0.191222 0.534595 0.048341 0.00592505 0.048341 0.00592505 0.065377 0.135333 0.139853 0 0.36184 0.124448 0.0192211 0.36887 0.0122388 0.011763 0.0208314 0.145	% 0 0.153472 0.61955 23.6666 18.9505 18.6352 3.99565 12.1864 0.0912827 4.19908 6.16642 0.119511 0.0135331 0.25116 1.46269 0.898269 2.45805 0.220616 0.0275437 0.30767 0.513319 0.534514 0 1.28007 0.490281 0.0721739 0.842966 0.0296982 0.0264003 0.0456457 0.207283	% 0 3.7466E-06 0.00126658 0.00217456 0.00260015 0.0115881 0.00217456 0.00260015 0.0115881 0.000117215 0.00260015 0.0115881 0.000117215 0.002137 0.000631302 6.35907E-05 0.00181365 0.0117829 0.00808563 0.0276787 0.00256629 0.000484642 0.00458889 0.0137459 0.0149805 0 0.0454427 0.00458454 0.00341066 0.0975645 0.0043334 0.00840696 0.0758632	% 0 <td< td=""><td>% 0 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426636 1.28317 0.114501 0.0177122 0.181293 0.439276 0.469571 0 1.32919 0.49352 0.0905352 2.27935 0.0922811 0.0962933 0.184562 1.60438</td></td<>	% 0 0.44465 0.24782 40.5578 19.1639 11.977 1.93518 5.31131 0.0381734 1.65509 2.41583 0.0488515 0.00530097 0.11073 0.670894 0.426636 1.28317 0.114501 0.0177122 0.181293 0.439276 0.469571 0 1.32919 0.49352 0.0905352 2.27935 0.0922811 0.0962933 0.184562 1.60438

L

^{*} User Specified Values ? Extrapolated or Approximate Values

			All St	reams Report treams by Total Phase			
Client Name:	Chevron Appala	chia. LI C			Job: 1933 b	pd, Updated	
Location:	Curry G70-C				000.1000.0	pu, opullou	
Flowsheet:	Flowsheet1						
					Į		
Mass Flow			Gas to Dehy and Sales	Gas to VRU	Stable Liquid	Water	Wellstream
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h
Hydrogen Sulfide			0	0	0	0	0
Nitrogen			6.12353	0.329588	0.00105359	0 *	6.45417
Carbon Dioxide Methane			2.10252	1.33051	0.164118	0 *	3.59715
			236.858	50.8251 40.6971	0.35618	0 *	588.703
Ethane					0.611515	-	278.167
Propane			132.251	40.02	1.57641	0 *	173.848
Isobutane n-Butane			<u>18.7774</u> 47.6651	8.58084 26.1708	0.731198 3.25873	0 *	28.0895 77.0946
			0.325096	0.196034	0.0329625	0 *	0.554093
2,2-Dimethylpropane Isopentane	;		12.1241	9.01772	2.88207	0 *	24.0239
n-Pentane			16.1391	13.2427	5.68436	0 *	35.0662
2,2-Dimethylbutane			0.274901	0.256656	0.177531	0 *	0.709088
Cyclopentane			0.0299989	0.230030	0.0178826	0 *	0.0769444
2,3-Dimethylbutane			0.557862	0.539378	0.510025	0 *	1.60727
2-Methylpentane			3.28344	3.14119	3.31351	0 *	9.73814
3-Methylpentane			1.98983	1.92908	2.27379	0 *	6.1927
n-Hexane			5.56294	5.27878	7.78364	0 *	18.6254
Methylcyclopentane			0.46654	0.473783	0.721677	0 *	1.662
Benzene			0.0616554	0.0591515	0.136288	0 *	0.257095
Cyclohexane			0.680306	0.660735	1.29046	0 *	2.6315
2-Methylhexane			1.40826	1.10238	3.86553	0 *	6.37617
3-Methylhexane			1.4553	1.14789	4.21271	0 *	6.8159
2,2,4-Trimethylpenta	no		0	0	4.21271	0 *	0.0139
n-Heptane			3.76527	2.749	12.7791	0 *	19.2934
Methylcyclohexane			1.29499	1.0529	4.81564	0 *	7.16353
Toluene			0.200013	0.154997	0.959124	0 *	1.31413
n-Octane			3.83842	1.81031	27.4365	0 *	33.0852
Ethylbenzene			0.127356	0.0637783	1.14834	0 *	1.33948
m-Xylene			0.122405	0.0566959	1.21861	0 *	1.39771
o-Xylene			0.216769	0.0980263	2.36415	0 *	2.67895
n-Nonane			1.50885	0.445151	21.3338	0 *	23.2878
n-Decane			0.894097	0.142269	21.5202	0 *	22.5565
C11			1.42326	0.129039	67.558	0 *	69.1102
Water			1.53881	3.02409	27920.6	27925.2 *	0
				3.02.00			
			Stream	Properties			
Property		Units	Gas to Dehy and Sales	Gas to VRU	Stable Liquid	Water	Wellstream
Temperature		°F	120	70	70 *	135 *	135
Pressure		psia	120	14.6959	14.6959 *	3914.7 *	3914.7
Mole Fraction Vapor		psia %	1214.7	14.6959	14.6959	3914.7	100
INDIC I IAULIULI VADUL		/0	100	100	0.110563	U	100

Mole Fraction Vapor	%	100	100	0	0	100
Mole Fraction Light Liquid	%	0	0	0.110563	100	0
Mole Fraction Heavy Liquid	%	0	0	99.8894	0	0
Molecular Weight	lb/lbmol	22.3443	31.6855	18.1242	18.0153	26.4604
Mass Density	lb/ft^3	5.70779	0.0826406	62.1001	61.677	20.3504
Molar Flow	lbmol/h	46.5707	6.77769	1551.59	1550.08	54.8562
Mass Flow	lb/h	1040.59	214.755	28121.4	27925.2	1451.52
Vapor Volumetric Flow	ft^3/h	182.31	2598.66	452.84	452.765	71.3262
Liquid Volumetric Flow	gpm	22.7296	323.988	56.4579	56.4486	8.89262
Std Vapor Volumetric Flow	MMSCFD	0.424148	0.0617287	14.1313	14.1176	0.49961
Std Liquid Volumetric Flow	sgpm	5.86158	0.98835	56.3792	55.8245 *	7.40459 *
Compressibility		0.764402	0.991278	0.000754562	0.179174	0.797593
Specific Gravity		0.771489	1.09401	0.995688	0.988905	0.913606
API Gravity				10.4079	9.54602	
Enthalpy	Btu/h	-1.65301E+06	-284489	-1.90839E+08	-1.88608E+08	-2.15569E+06
Mass Enthalpy	Btu/lb	-1588.53	-1324.72	-6786.25	-6754.04	-1485.13
Mass Cp	Btu/(lb*°F)	0.702264	0.430365	0.979674	0.974348	0.751506
Ideal Gas CpCv Ratio		1.222	1.17154	1.3237	1.32279	1.18487
Dynamic Viscosity	cP	0.0144685	0.00938412	0.991624	0.521301	0.0409878

Licensed to The ERM Group, Inc. and Affiliates

Client Name:	Chevron Appala	chia, LLC			Job: 1933	bpd, Updated	
Location:	Curry G70-C						
Flowsheet:	Flowsheet1						
			Stroom	Proportion			
			· · · · ·	Properties	a		
Property		Units	Gas to Dehy and Sales	Gas to VRU	Stable Liquid	Water	Wellstream
Kinematic Viscosity		cSt	0.158247	7.08891	0.996371	0.527648	0.125736
Thermal Conductivit	у	Btu/(h*ft*°F)	0.0241892	0.0137661	0.344347	0.372658	0.0493115
Surface Tension		lbf/ft			0.00500727 ?	0.00455539	
Net Ideal Gas Heatin	ng Value	Btu/ft^3	1214.29	1653.42	6.53668	0	1420.06
Net Liquid Heating V	/alue	Btu/lb	20546.6	19666.3	-916.564	-1059.76	20270.5
Gross Ideal Gas Hea	ating Value	Btu/ft^3	1336.41	1807.23	57.2935	50.31	1556.76
Gross Liquid Heating	g Value	Btu/lb	22620.5	21508.1	146.172	0	22230.7

Remarks

			reams Report		
			reams by Total Phase		
Client Name:	Chevron Appala			Job: 1933 bpc	
Location:	Curry G70-C				
Flowsheet:	Flowsheet1				
		Conn	ections		
From Block		1 MIX-100	2 Phase		
FIOIII DIUCK		MIX-100	Separator		
To Block		Phase	PW Tanks		
10 Blook		Separator			
		Stream C	omposition		
		1	2		
Mole Fraction		%	%		
Hydrogen Sulfide		0	0		
Nitrogen		0.0143554	0.000757391		
Carbon Dioxide		0.00509275	0.0021793		
Methane		2.28648	0.204725		
Ethane		0.576404	0.0881556		
Propane		0.245648	0.0605326		
Isobutane		0.0301122	0.0102809		
n-Butane		0.0826462	0.0324915		
2,2-Dimethylpropa	ane	0.000478514	0.000203671		
Isopentane n-Pentane		0.020747	0.0105838 0.0168338		
2,2-Dimethylbutan		0.000512693	0.000323313		
Cyclopentane		6.83591E-05	4.29538E-05		
2,3-Dimethylbutan	e	0.0011621	0.000781427		
2-Methylpentane	-	0.00704099	0.00480642		
3-Methylpentane		0.00447752	0.00312962		
n-Hexane		0.0134667	0.0097268		
Methylcyclopentar	ne	0.00123046	0.00091151		
Benzene		0.000205077	0.000160555		
Cyclohexane		0.00194823	0.00148774		
2-Methylhexane		0.00396483	0.00318146 0.00343295		
3-Methylhexane 2,2,4-Trimethylper	ntano	0.00423826	0.00343295		
n-Heptane	itane	0.011997	0.00994426		
Methylcyclohexan	e	0.00454588	0.00383539		
Toluene	•	0.000888668	0.000775927		
n-Octane		0.0180468	0.0164298		
Ethylbenzene		0.00078613	0.000732645		
m-Xylene		0.000820309	0.000770838		
o-Xylene		0.00157226	0.00148822		
n-Nonane		0.0113134	0.0108966		
n-Decane C11		0.00987789	0.00976984 0.0277877		
Water		96.582	99.4628		
		00.002	00.7020		
		1	2		
Molar Flow		lbmol/h	lbmol/h		
Hydrogen Sulfide		0	0		
Nitrogen		0.230396	0.011803		
Carbon Dioxide		0.0817357	0.0339615		
Methane		36.6966	3.19037		
Ethane		9.25094	1.37379		
Propane		3.94251	0.943322		
Isobutane n-Butane		0.483283	0.160215 0.506339		
2,2-Dimethylpropa	ane	0.00767986	0.00317395		
Isopentane		0.332977	0.164934		
n-Pentane		0.486026	0.262333		
2,2-Dimethylbutan	e	0.00822843	0.00503841		
Cyclopentane		0.00109712	0.000669379		
2,3-Dimethylbutan	e	0.0186511	0.0121775		
2-Methylpentane		0.113004	0.0749019		
* User Specified Values		ProMax	3.2.12198.0		icensed to The ERM Group, Inc. and Affiliates

ProMax 3.2.12198.0 Copyright © 2002-2012 BRE Group, Ltd.

		All St	Process Streams Report All Streams Tabulated by Total Phase				
Client Name:	Chevron Appalac	hia. LLC		Job: 1933 bpd. I	Job: 1933 bpd, Updated		
Location:	Curry G70-C						
Flowsheet:	Flowsheet1						
4							
		1	2				
Molar Flow		lbmol/h	lbmol/h				
3-Methylpentane		0.0718616	0.0487711				
n-Hexane		0.216133	0.15158				
Methylcyclopentane		0.0197482	0.0142047				
Benzene		0.00329137	0.00250205				
Cyclohexane		0.031268	0.0231845				
2-Methylhexane		0.0636332	0.0495789				
3-Methylhexane		0.0680216	0.053498				
2,2,4-Trimethylpenta	ne	0	0				
n-Heptane		0.192545	0.154968				
Methylcyclohexane		0.0729587	0.0597695				
Toluene		0.0142626	0.0120918				
n-Octane		0.289641	0.256038				
Ethylbenzene		0.0126169	0.0114173				
m-Xylene		0.0131655	0.0120125				
o-Xylene		0.0252338	0.023192				
n-Nonane		0.181574	0.169809				
n-Decane		0.158534	0.15225				
C11		0.442141	0.433035				
Water		1550.08	1550				
Mass Fraction		1 %	2 %				
Hydrogen Sulfide		0	0				
Nitrogen		0.0219704	0.00116685				
Carbon Dioxide		0.0122449	0.00527465				
Methane		2.00398	0.180622				
Ethane		0.946896	0.145781				
Propane		0.591787	0.146796				
Isobutane		0.0956181	0.0328628				
n-Butane		0.262434	0.103859				
2,2-Dimethylpropane		0.00188616	0.000808142				
Isopentane		0.0817786	0.0419951				
n-Pentane		0.119367	0.0667947				
2,2-Dimethylbutane		0.00241377	0.00153227				
Cyclopentane		0.000261923	0.000165674				
2,3-Dimethylbutane			0.00370341				
2-Methylpentane		0.0331491	0.022779				
3-Methylpentane		0.0210803	0.0148322				
n-Hexane		0.0634018	0.0460981				
Methylcyclopentane		0.00565754	0.00421885				
Benzene		0.000875165 0.00895777	0.000689718				
Cyclohexane			0.00688588				
2-Methylhexane		0.0217048	0.0175321				
3-Methylhexane		0.0232017	0.0189179				
2,2,4-Trimethylpentane		0	0				
n-Heptane		0.0656758	0.0547997				
Methylcyclohexane		0.024385	0.0207104				
Toluene		0.00447338	0.0039318				
n-Octane		0.112624	0.103214				
Ethylbenzene		0.00455965	0.00427764				
m-Xylene		0.00475789	0.00450064				
o-Xylene		0.00911929	0.00868919				
n-Nonane		0.0792729	0.0768592				
n-Decane		0.0767837	0.0764481				
C11		0.235255	0.238872				
Water		95.059	98.5444				
		1	2				
Mass Flow		lb/h	lb/h				
Hydrogen Sulfide							

			All St	reams Report Treams by Total Phase				
Client Name:	Chevron Appala	achia, LLC			Job: 1933	bpd, Updated		
Location:	Curry G70-C							
Flowsheet:	Flowsheet1							
			-			I		
Maga Flow			1	2				
Mass Flow Nitrogen			lb/h 6.45417	lb/h 0.330641				
Carbon Dioxide			3.59715	1.49463				
Methane			588.703	51.1813				
Ethane			278.167	41.3086				
Propane			173.848	41.5964				
Isobutane			28.0895	9.31204				
n-Butane			77.0946	29.4295				
2,2-Dimethylpropane			0.554093	0.228996				
Isopentane			24.0239	11.8998				
n-Pentane			35.0662	18.927				
2,2-Dimethylbutane			0.709088	0.434187				
Cyclopentane			0.0769444	0.0469455				
2,3-Dimethylbutane			1.60727	1.0494				
2-Methylpentane 3-Methylpentane			<u>9.73814</u> 6.1927	6.4547 4.20287				
3-Methylpentane n-Hexane			18.6254	4.20287				
Methylcyclopentane			1.662	1.19546				
Benzene	0		0.257095	0.19544				
	Cyclohexane			1.95119				
2-Methylhexane			2.6315 6.37617	4.96791				
3-Methylhexane			6.8159	5.3606				
2,2,4-Trimethylpentane			0	0				
n-Heptane			19.2934	15.5281				
Methylcyclohexane			7.16353	5.86854				
Toluene			1.31413	1.11412				
n-Octane Ethylbenzene			<u>33.0852</u> 1.33948	29.2468 1.21212				
m-Xylene			1.39771	1.27531				
o-Xylene			2.67895	2.46218				
n-Nonane			23.2878	21.7789				
n-Decane			22.5565	21.6624				
C11			69.1102	67.687				
Water			27925.2	27923.7				
			Stream	Properties				
Property		Units	1	2				
Temperature		°F	135.061	120 *		· · ·		
Pressure		psia	3914.7	1214.7 *				
Mole Fraction Vapo		%	3.19665	0				
Mole Fraction Light		%	96.8034	0.420558				
Mole Fraction Heav	vy Liquid	%	0	99.5794				
Molecular Weight		lb/lbmol	18.3039	18.1832				
Mass Density		lb/ft^3	56.3209	61.0156				
Molar Flow		lbmol/h	1604.94	1558.37				
Mass Flow Vapor Volumetric F	low	lb/h ft^3/h	29376.7 521.596	28336.1 464.408				
Liquid Volumetric F		gpm	65.0301	464.408 57.9003				
Std Vapor Volumet		MMSCFD	14.6172	14.1931				
		sgpm	63.2291	57.3675				
	ric Flow			0.0581905				
Std Liquid Volumet	ric Flow	01	0.199337					
Std Liquid Volumet	ric Flow		0.199337	0.978299				
Std Liquid Volumet Compressibility Specific Gravity API Gravity	ric Flow			0.978299 11.416				
Std Liquid Volumet Compressibility Specific Gravity API Gravity Enthalpy	ric Flow	Btu/h	-1.90764E+08	0.978299 11.416 -1.89682E+08				
Std Liquid Volumet Compressibility Specific Gravity API Gravity Enthalpy Mass Enthalpy	ric Flow	Btu/h Btu/lb	-1.90764E+08 -6493.7	0.978299 11.416 -1.89682E+08 -6694.01				
Std Liquid Volumet Compressibility Specific Gravity API Gravity Enthalpy Mass Enthalpy Mass Cp		Btu/h	-1.90764E+08 -6493.7 0.965651	0.978299 11.416 -1.89682E+08 -6694.01 0.975763				
Std Liquid Volumet Compressibility Specific Gravity API Gravity Enthalpy Mass Enthalpy Mass Cp Ideal Gas CpCv Ra		Btu/h Btu/lb Btu/(lb*°F)	-1.90764E+08 -6493.7	0.978299 11.416 -1.89682E+08 -6694.01 0.975763 1.31977				
Std Liquid Volumet Compressibility Specific Gravity API Gravity Enthalpy Mass Enthalpy Mass Cp Ideal Gas CpCv Ra Dynamic Viscosity	atio	Btu/h Btu/lb Btu/(lb*°F) cP	-1.90764E+08 -6493.7 0.965651	0.978299 11.416 -1.89682E+08 -6694.01 0.975763 1.31977 0.565087				
Std Liquid Volumet Compressibility Specific Gravity API Gravity Enthalpy Mass Enthalpy Mass Cp Ideal Gas CpCv Ra	atio	Btu/h Btu/lb Btu/(lb*°F)	-1.90764E+08 -6493.7 0.965651	0.978299 11.416 -1.89682E+08 -6694.01 0.975763 1.31977				

			Process Stre All Str Tabulated by	eams			
Client Name:	Name: Chevron Appalachia, LLC Job: 1933						
Location:	Curry G70-C						
Flowsheet:	Flowsheet1						
			Stream P	roperties			
Property		Units	1	2			
Net Ideal Gas Heati		Btu/ft^3	48.537	13.6993			
Net Liquid Heating \	/alue	Btu/lb	-5.82362	-760.57			
Gross Ideal Gas He	ating Value	Btu/ft^3	101.8	64.9043			
Gross Liquid Heatin	g Value	Btu/lb	1098.43	308.07			
Remarks							

Simulation Initiated on 77	19/2010 12.43.37 FIV		Curry Gro-C_705,545 bby PW_7.19.16 Opdate.pmx Page					
			Er	nergy Strear	n Report	t		
Client Name:	Chevron Appal	achia, LLC			Job: 1933 b	opd, Updated		
Location:	Curry G70-C							
Flowsheet:	Flowsheet1							
				Energy Str	eams			
Energy Stream		Energy Ra	te	Power		From Block	To Block	
Q-1		-571470	Btu/h	-224.596	hp		Phase Separator	
Q-3	-1.4	14093E+06	Btu/h	-566.307	hp		PW Tanks	
Damanlar								
Remarks								
Remarks								
Remarks								
Remarks								

Simulation Initiated on 7/1	9/2016 12:43:37 PM	Curry G70-C_705,545 bp			Page 1 o	
		MIX	DCKS (-100 itter Report			
Client Name:	Chevron Appalachia, LLC			Job: 1933 b	opd, Updated	
Location:	Curry G70-C	Modified: 8:51 AM, 6/16/2016				
Flowsheet:	Flowsheet1	Status: Solved 12:41 PM, 7/19/2016				
		Conne	ections			
Stream	Connection Type	Other Block	Stream	Connect	ion Type	Other Block
Wellstream	Inlet	-	Water	In	let	
1	Outlet	Phase Separator				
		Block Pa	arameters			
Pressure Drop		0 psi	Fraction to PStream 1			100 %
•		•	1			
Remarks						

Simulation Initiated on 7/19/	2016 12:43:37 PM	C	Curry G70-C_705,545 bpy	PW_7.19.16 Update.pmx			Page 1 of
			Phase S	cks eparator or Report			
Client Name:	Chevron Appala	chia, LLC			Job: 1933 b	pd, Updated	
Location:	Curry G70-C					52 AM, 6/16/2016	
Flowsheet:	Flowsheet1				Status: Solv	/ed 12:41 PM, 7/19	/2016
			Conne	ctions			
Stream	Connect	ion Type	Other Block	Stream	Connect	ion Type	Other Block
1	In	let	MIX-100	Gas to Dehy and Sales	Vapor	Outlet	
2	Light Liqu	uid Outlet	PW Tanks	Q-1	Ene	ergy	
			Block Pa	rameters			
Pressure Drop		2700	psi	Main Liquid Phase		Light Liquid	
Mole Fraction Vap	or	2.90171	%	Heat Duty		-571470	Btu/h
Mole Fraction Ligh	t Liquid	0.408355	%	Heat Release Curve Ty	уре	Plug Flow	
Mole Fraction Hear	vy Liquid	96.6899	%	Heat Release Curve Increments		5	
Remarks							

Simulation Initiated on 7/19/2016 12:43:37 PM Curry G70-C_705,545 bpy PW_7.19.16 Update.pmx						Page 1 of	
				cks anks or Report			
Client Name:	Chevron Appalachia	a, LLC			Job: 1933 b	pd, Updated	
Location:	Curry G70-C	·			Modified: 12	2:12 PM, 7/14/2016	;
Flowsheet:	Flowsheet1 Status: Solved 12:41 PM, 7/19/2016						/2016
			Conne	ctions			
Stream	Connection	Туре	Other Block	Stream	Connecti	on Type	Other Block
2	Inlet	Ph	ase Separator	Gas to VRU	Vapor	Outlet	
Stable Liquid	Light Liquid C	Dutlet		Q-3	Ene	rgy	
			Block Pa	rameters			
Pressure Drop		1200	psi	Main Liquid Phase		Light Liquid	
Mole Fraction Vapo	or	0.434922	%	Heat Duty		-1.44093E+06	Btu/h
Mole Fraction Light	Liquid	0.110082	%	Heat Release Curve T	уре	Plug Flow	
Mole Fraction Heav	/y Liquid	99.455	%	Heat Release Curve		5	
				Increments			
Remarks							

		F		Environment onment1			
Client Name:	Chevron Appala	chia. LLC			Job: 1933 b	opd, Updated	
Location:	Curry G70-C					1., 1	
Flowsheet:	Flowsheet1						
			Environm	ent Settings			
Number of Poyntin	ng Intervals	0		Freeze Out Temperatu Threshold Difference	ire	10 °F	
Gibbs Excess Mo		77 °F		Phase Tolerance		1 %	
Evaluation Tempe	erature						
			Comr	onents			
Component Name		Henry`s Law	Phase	Component Name		Henry`s Law	Phase
component Name		Component	Initiator	component Name		Component	Initiator
Hydrogen Sulfide		False	False	Methylcyclopentane		False	False
Nitrogen		False	False	Benzene		False	False
Carbon Dioxide		False	False	Cyclohexane		False	False
Methane		False	False	2-Methylhexane		False	False
Ethane		False	False	3-Methylhexane		False	False
Propane		False	False	2,2,4-Trimethylpentane		False	False
Isobutane		False	False	n-Heptane		False	False
n-Butane		False	False	Methylcyclohexane		False	False
2,2-Dimethylpropan	e	False	False	Toluene		False	False
Isopentane		False	False	n-Octane		False	False
n-Pentane		False	False	Ethylbenzene		False	False
2,2-Dimethylbutane		False	False	m-Xylene		False	False
Cyclopentane		False	False	o-Xylene		False	False
2,3-Dimethylbutane		False	False	n-Nonane		False	False
2-Methylpentane		False	False	n-Decane		False	False
3-Methylpentane		False	False	C11		False	False
n-Hexane		False	False	Water		False	True
		D'					
Liquid Molar Volume	<u></u>	COSTALD	ical Prope	erty Method Sets Overall Package		Peng-Robins	00
			<u></u>				
Stability Calculation		Peng-Robins		Vapor Package		Peng-Robins	
Light Liquid Package	e	Peng-Robins	011	Heavy Liquid Package		Peng-Robins	011

Remarks

			Calculato	or Report			
Client Name:	Chevron Appala	chia, LLC			Job: 1933 b	opd, Updated	
ocation:	Curry G70-C						
			Simple S	Solver 1			
			Source	e Code			
Residual Error (for (CV1) = TotalFlow-	1933					
· · · · ·							
SourceMoniker Value Unit	ProMax:ProMa 7.40459 sgpm			ariable [CV1] reams!Wellstream!Phases	s!Total!Prope	erties!Std Liquid Volume	tric Flow
		Ме	asured Varia	ble [TotalFlow]			
SourceMoniker	ProMax:ProMa			reams!Stable Liquid!Phas	es!Total!Pro	perties!Std Liquid Volun	netric Flow
/alue	1933			· · · ·			-
Jnit	bbl/d						
						0	
_			Solver Pr			Status: Solved	
Error		0.000522066		Iterations		3	
						20	
Calculated Value		7.40459 s		Max Iterations			
Calculated Value Lower Bound		S	gpm	Weighting		1	
Calculated Value Lower Bound Upper Bound		Si Si	gpm gpm	Weighting Priority		1 0	
Calculated Value Lower Bound Upper Bound Step Size		S S S	gpm	Weighting Priority Solver Active		1	
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm		Si Si	gpm gpm	Weighting Priority	ck	1 0	
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm		s s False	gpm gpm gpm	Weighting Priority Solver Active Group Skip Dependency Che	ck	1 0 Active	
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer		s s False	gpm gpm gpm Simple \$	Weighting Priority Solver Active Group Skip Dependency Che	ck	1 0 Active	
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks		Si Si False Default	gpm gpm gpm	Weighting Priority Solver Active Group Skip Dependency Che	ck	1 0 Active	
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm	CV1) = WaterPerc	Si Si False Default	gpm gpm gpm Simple \$	Weighting Priority Solver Active Group Skip Dependency Che	ck	1 0 Active	
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks	CV1) = WaterPerce	Si Si False Default	gpm gpm gpm Simple \$	Weighting Priority Solver Active Group Skip Dependency Che	ick	1 0 Active	
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks	CV1) = WaterPerce	Si Si False Default ent-99	gpm gpm gpm Simple S Source	Weighting Priority Solver Active Group Skip Dependency Che Solver 2 Code	ick	1 0 Active	
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C		Si Si False Default ent-99	gpm gpm gpm Simple S Source Calculated Va	Weighting Priority Solver Active Group Skip Dependency Che		1 0 Active False	
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for G SourceMoniker /alue		Si Si False Default ent-99	gpm gpm gpm Simple S Source Calculated Va	Weighting Priority Solver Active Group Skip Dependency Che Solver 2 Code		1 0 Active False	low
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for G SourceMoniker /alue	ProMax:ProMa	Si Si False Default ent-99	gpm gpm gpm Simple S Source Calculated Va	Weighting Priority Solver Active Group Skip Dependency Che Solver 2 Code		1 0 Active False	low
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for G SourceMoniker /alue	ProMax:ProMa 55.8245	Si Si False Default ent-99	gpm gpm gpm Simple S Source Calculated Va	Weighting Priority Solver Active Group Skip Dependency Che Solver 2 Code		1 0 Active False	low
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for C SourceMoniker /alue Jnit	ProMax:ProMa 55.8245 sgpm	Si Si False Default ent-99 (xx!Project!Flowsheets) (Meas	gpm gpm gpm Simple S Source Calculated Va !Flowsheet1!PStr sured Variabl	Weighting Priority Solver Active Group Skip Dependency Che Solver 2 Code ariable [CV1] reams!Water!Phases!Tota	al!Properties!	1 0 Active False	
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for G SourceMoniker /alue Jnit SourceMoniker	ProMax:ProMa 55.8245 sgpm ProMax:ProMa Fraction!Water	si Si False Default ent-99 (xx!Project!Flowsheets) (Meas xx!Project!Flowsheets)	gpm gpm gpm Simple S Source Calculated Va !Flowsheet1!PStr sured Variabl	Weighting Priority Solver Active Group Skip Dependency Che Solver 2 Code ariable [CV1] reams!Water!Phases!Tota	al!Properties!	1 0 Active False	
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for O SourceMoniker /alue Jnit SourceMoniker /alue	ProMax:ProMa 55.8245 sgpm ProMax:ProMa Fraction!Water 99	si Si False Default ent-99 (xx!Project!Flowsheets) (Meas xx!Project!Flowsheets)	gpm gpm gpm Simple S Source Calculated Va !Flowsheet1!PStr sured Variabl	Weighting Priority Solver Active Group Skip Dependency Che Solver 2 Code ariable [CV1] reams!Water!Phases!Tota	al!Properties!	1 0 Active False	
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for O SourceMoniker /alue Jnit SourceMoniker	ProMax:ProMa 55.8245 sgpm ProMax:ProMa Fraction!Water	si Si False Default ent-99 (xx!Project!Flowsheets) (Meas xx!Project!Flowsheets)	gpm gpm gpm Simple S Source Calculated Va !Flowsheet1!PStr sured Variabl	Weighting Priority Solver Active Group Skip Dependency Che Solver 2 Code ariable [CV1] reams!Water!Phases!Tota	al!Properties!	1 0 Active False	
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for O SourceMoniker /alue Jnit SourceMoniker /alue	ProMax:ProMa 55.8245 sgpm ProMax:ProMa Fraction!Water 99	si Si False Default ent-99 (xx!Project!Flowsheets) (Meas xx!Project!Flowsheets)	gpm gpm gpm Simple S Source Calculated Va IFlowsheet1!PStr Sured Variabl IFlowsheet1!PStr	Weighting Priority Solver Active Group Skip Dependency Che Solver 2 Code ariable [CV1] reams!Water!Phases!Tota le [WaterPercent] reams!Stable Liquid!Phas	al!Properties!	1 0 Active False IStd Liquid Volumetric F	
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for G SourceMoniker /alue Jnit SourceMoniker /alue	ProMax:ProMa 55.8245 sgpm ProMax:ProMa Fraction!Water 99	si Si False Default ent-99 (xx!Project!Flowsheets) xx!Project!Flowsheets	gpm gpm gpm Simple S Source Calculated Va !Flowsheet1!PStr sured Variabl	Weighting Priority Solver Active Group Skip Dependency Che Solver 2 Code ariable [CV1] reams!Water!Phases!Tota le [WaterPercent] reams!Stable Liquid!Phas	al!Properties!	1 0 Active False !Std Liquid Volumetric F nposition!Std. Liquid Vo	
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Residual Error (for O SourceMoniker /alue Jnit SourceMoniker /alue Jnit	ProMax:ProMa 55.8245 sgpm ProMax:ProMa Fraction!Water 99	si Si False Default ent-99 (xx!Project!Flowsheets) xx!Project!Flowsheets] (x!Project!Flowsheets) (x!Project!Flowsheets) (x!Project!Flowsheets) (x!Project!Flowsheets) (x!Project!Flowsheets)	Igpm Igpm	Weighting Priority Solver Active Group Skip Dependency Che Solver 2 Code ariable [CV1] reams!Water!Phases!Tota le [WaterPercent] reams!Stable Liquid!Phas Iterations	al!Properties!	1 0 Active False IStd Liquid Volumetric F nposition!Std. Liquid Vo	
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Remarks Residual Error (for G SourceMoniker /alue Jnit SourceMoniker /alue Jnit Error Calculated Value	ProMax:ProMa 55.8245 sgpm ProMax:ProMa Fraction!Water 99	si Si False Default ent-99 (xx!Project!Flowsheets) (xx!Project!Flowsheets) (xx!Project!Flowsheets) (1.55563E-05 55.8245 si	Igpm Igpm	Weighting Priority Solver Active Group Skip Dependency Che Solver 2 Code ariable [CV1] reams!Water!Phases!Tota te [WaterPercent] reams!Stable Liquid!Phas reams!Stable Liquid!Phas	al!Properties!	1 0 Active False IStd Liquid Volumetric F nposition!Std. Liquid Vo	
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Remarks Residual Error (for G SourceMoniker /alue Jnit SourceMoniker /alue Jnit Error Calculated Value Lower Bound	ProMax:ProMa 55.8245 sgpm ProMax:ProMa Fraction!Water 99	si False Default Default ent-99 (x!Project!Flowsheets) x!Project!Flowsheets) 1.55563E-05 55.8245 si Si	Igpm Igpm Igpm Igpm Igpm Igpm If Iowsheet1!PStr If Iowsheet1!PS	Weighting Priority Solver Active Group Skip Dependency Che Solver 2 Code ariable [CV1] reams!Water!Phases!Tota reams!Stable Liquid!Phas Iterations Iterations Max Iterations Weighting	al!Properties!	1 0 Active False IStd Liquid Volumetric F nposition!Std. Liquid Vo	
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Remarks Calculated Value Lower Bound Upper Bound	ProMax:ProMa 55.8245 sgpm ProMax:ProMa Fraction!Water 99	si Si False Default ent-99 (ix!Project!Flowsheets) ix!Project!Flowsheets) ix!Project!Flowsheets) ix!Project!Flowsheets) ix!Project!Flowsheets) ix!Project!Flowsheets) ix!Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets]	Igpm Igpm Igpm Igpm Igpm Igpm Iflowsheet1!PStr	Weighting Priority Solver Active Group Skip Dependency Che Solver 2 Code ariable [CV1] reams!Water!Phases!Tota le [WaterPercent] reams!Stable Liquid!Phas Iterations Max Iterations Max Iterations Weighting Priority	al!Properties!	1 0 Active False IStd Liquid Volumetric F nposition!Std. Liquid Vo Status: Solved 3 20 1	
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Remarks Residual Error (for 0 SourceMoniker /alue Jnit SourceMoniker /alue Jnit Error Calculated Value Lower Bound	ProMax:ProMa 55.8245 sgpm ProMax:ProMa Fraction!Water 99	si Si False Default ent-99 (ix!Project!Flowsheets) ix!Project!Flowsheets) ix!Project!Flowsheets) ix!Project!Flowsheets) ix!Project!Flowsheets) ix!Project!Flowsheets) ix!Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets) ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets] ix:Project!Flowsheets]	Igpm Igpm Igpm Igpm Igpm Igpm If Iowsheet1!PStr If Iowsheet1!PS	Weighting Priority Solver Active Group Skip Dependency Che Solver 2 Code ariable [CV1] reams!Water!Phases!Tota reams!Stable Liquid!Phas Iterations Iterations Max Iterations Weighting	al!Properties!	1 0 Active False IStd Liquid Volumetric F nposition!Std. Liquid Vo Status: Solved 3 20 1 0	
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer Algorithm Remarks Remarks SourceMoniker Value Unit SourceMoniker Value Unit Error Calculated Value Lower Bound Upper Bound Step Size	ProMax:ProMa 55.8245 sgpm ProMax:ProMa Fraction!Water 99	si Si False Default ent-99 (xx!Project!Flowsheets) (xx!Project!Flowsheets) (1.55563E-05 55.8245 si si si Si Si Si Si	Igpm Igpm Igpm Igpm Igpm Igpm Iflowsheet1!PStr	Weighting Priority Solver Active Group Skip Dependency Che Solver 2 Code ariable [CV1] reams!Water!Phases!Tota le [WaterPercent] reams!Stable Liquid!Phas Iterations Max Iterations Weighting Priority Solver Active	al!Properties!	1 0 Active False IStd Liquid Volumetric F nposition!Std. Liquid Vo Status: Solved 3 20 1 0	

^{*} User Specified Values ? Extrapolated or Approximate Values

			ie Sets Report		
Client Name:	Chevron Appala	achia, LLC		Job: 1933 I	bpd, Updated
_ocation:	Curry G70-C				
		Cn+	Flow/Frac.		
			e [CnPlusSum]		
* Parameter		519.241 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
Remarks					
	et was programma	tically generated. GUID={28788FI	B9-D5D0-4F3B-A3EE-562C3	3FE5F72A}	
		Tan	k Losses		
			e [ShellLength]		
* Parameter		20 ft	Upper Bound		ft
Lower Bound		0 ft	* Enforce Bounds		False
			ue [ShellDiam]		
Parameter Lower Bound		12 ft 0 ft	Upper Bound * Enforce Bounds		ft
Lower Bound		υπ	* Enforce Bounds		False
		Lisor Valı	e [BreatherVP]		
Parameter		0.03 psig	Upper Bound		psig
Lower Bound		psig	* Enforce Bounds		False
			e [BreatherVacP]		
Parameter		-0.03 psig	Upper Bound		psig
Lower Bound		psig	* Enforce Bounds		False
		Lleor Value	e [DomeRadius]		
Parameter		ft	Upper Bound		ft
Lower Bound		ft ft	* Enforce Bounds		False
		User Va	lue [OpPress]		
Parameter		0 psig	Upper Bound		psig
Lower Bound		psig	* Enforce Bounds		False
			[Aug Dana and Ja]		
Parameter		User Value 50 %	[AvgPercentLiq] Upper Bound		%
Lower Bound		<u> </u>	* Enforce Bounds		False
		User Value	[MaxPercentLiq]		
Parameter		90 %	Upper Bound		%
Lower Bound		%	* Enforce Bounds		False
Deverseter			ue [AnnNetTP]		L I. 17.1
Parameter Lower Bound		1935.67 bbl/day 0 bbl/day	Upper Bound * Enforce Bounds		bbl/day False
		liser V	alue [OREff]		
Parameter		0 %	Upper Bound		%
Lower Bound		%	* Enforce Bounds		False
			e [AtmPressure]		
Parameter Lower Bound		97274.7 Pa Pa	Upper Bound * Enforce Bounds		Pa False

		User Val	lue Sets Report	
lient Name:	Chevron Appalac	hia, LLC		Job: 1933 bpd, Updated
ocation:	Curry G70-C			
		User Value	e [MaxLiqSurfaceT]	
Parameter		70.3624 °F	Upper Bound	°F
Lower Bound		°F	* Enforce Bounds	False
		Lloor Vol	ue [TotalLosses]	
Parameter		0.447504 ton/yr	Upper Bound	ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False
		User Value	e [WorkingLosses]	
Parameter		0.133965 ton/yr	Upper Bound	ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False
		lleen Velee		
Parameter		0.0152032 ton/yr	e [StandingLosses] Upper Bound	ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False
201101 200110				
		User Value	e [RimSealLosses]	
Parameter		0 ton/yr	Upper Bound	ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False
Parameter		User Value 0 ton/yr	e [WithdrawalLoss] Upper Bound	ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False
		User Valu	e [LoadingLosses]	
Parameter		3.97902 ton/yr	Upper Bound	ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False
Description			[DeckFittingLosses]	to a loss
Parameter Lower Bound		0 ton/yr ton/yr	Upper Bound * Enforce Bounds	ton/yr False
Lower Dound			Enloree Bounds	1 000
		User Value	[DeckSeamLosses]	
		0 ton/yr	Upper Bound	ton/yr
Parameter		ton/yr	* Enforce Bounds	False
Parameter Lower Bound				
			[Elaching] occor]	
Lower Bound		User Value		
Lower Bound Parameter		0 ton/yr	Upper Bound	ton/yr
Lower Bound				ton/yr False
Lower Bound Parameter		0 ton/yr ton/yr	Upper Bound * Enforce Bounds	
Lower Bound Parameter Lower Bound		0 ton/yr ton/yr User Value	Upper Bound * Enforce Bounds e [GasMoleWeight]	False
Lower Bound Parameter		0 ton/yr ton/yr	Upper Bound * Enforce Bounds	

		Flowsheet1 Plant Schematic	
Client Name:	Chevron Appalachia, I	LLC	Job: 1933 bpd, Blowdowns
Location:	Curry G70-C		
Flowsheet:	Flowsheet1		
		Notified Notified	il/day downs/year
		Tank los calculations for Stable Liquid". Tank los calculations for Stable Liquid". Total working and breaking loss from the vertical (Andre are 00778 Mpt. Stable Liquid →	

			All S	reams Report treams by Total Phase			
Client Name:	Chevron Appala	chia. LLC			Job: 1933 b	opd, Blowdowns	
Location:	Curry G70-C						
Flowsheet:	Flowsheet1						
			Conn	ections			
			Gas to VRU	Stable Liquid	Water	Wellstream	1
From Block			Blowdown	Blowdown			MIX-100
To Dia di			Tank	Tank		MIX 400	Disculation
To Block					MIX-100	MIX-100	Blowdown Tank
							Idilk
			Stroom C	omposition			
			Gas to VRU	Omposition Stable Liquid	Water	Wellstream	1
Mole Fraction			8 10 VRU %	Stable Liquid %	%	weiistream %	%
Hydrogen Sulfide			0	0	0 *	0 *	0
Nitrogen			0.418378	5.54655E-06	0 *	0.42 *	0.0131223
Carbon Dioxide			0.146087	7.76264E-05	0 *	0.149 *	0.00465528
Methane			66.6066	0.00188725	0 *	66.896 *	2.09007
Ethane			16.7794	0.000853015	0 *	16.864 *	0.526891
Propane			7.13631	0.000837002	0 *	7.187 *	0.224547
Isobutane			0.871802	0.000199207	0 *	0.881 *	0.0275255
n-Butane 2,2-Dimethylpropar			2.38496 0.0137605	0.00079905 6.18693E-06	0 *	<u>2.418</u> * 0.014 *	0.0755468
Isopentane	le		0.589412	0.000501402	0 *	0.607 *	0.0189648
n-Pentane			0.852923	0.000971519	0 *	0.886 *	0.0276818
2,2-Dimethylbutane	1		0.0141558	2.56474E-05	0 *	0.015 *	0.000468653
Cyclopentane			0.00189628	3.13337E-06	0 *	0.002 *	6.2487E-05
2,3-Dimethylbutane	9		0.0314741	7.7954E-05	0 *	0.034 *	0.00106228
2-Methylpentane			0.189151	0.000522326	0 *	0.206 *	0.00643616
3-Methylpentane			0.119177	0.00036802	0 *	0.131 *	0.0040929
n-Hexane			0.350862	0.00135217	0 *	0.394 *	0.0123099
Methylcyclopentane Benzene	9		0.0319083	0.000128411 3.64084E-05	0 *	0.036 *	0.00112477 0.000187461
Cyclohexane			0.0489901	0.000252879	0 *	0.008	0.00178088
2-Methylhexane			0.0900161	0.000828041	0 *	0.116 *	0.00362425
3-Methylhexane			0.0952628	0.000916261	0 *	0.124 *	0.0038742
2,2,4-Trimethylpent	ane		0	0	0 *	0 *	0
n-Heptane			0.254112	0.0030967	0 *	0.351 *	0.0109665
Methylcyclohexane			0.0967573	0.00115818	0 *	0.133 *	0.00415539
Toluene			0.0168254	0.000294044	0 *	0.026 *	0.000812331
n-Octane			0.235434	0.00941032	0 *	0.528 *	0.0164966
Ethylbenzene m-Xylene			0.00919141 0.00860953	0.000444365	* * 0 *	0.023 *	0.000718601 0.000749844
o-Xylene			0.0152798	0.000989166	0 *	0.024	0.0014372
n-Nonane			0.0670951	0.00850469	0 *	0.331 *	0.0103416
n-Decane			0.0213608	0.00863025	0 *	0.289 *	0.00902938
C11			0.0180639	0.0254127	0 *	0.806 *	0.0251823
Water			2.4799	99.9309	100 *	0 *	96.8756
			0		14/-1	14/- II - /-	4
Molor Flow			Gas to VRU	Stable Liquid	Water	Wellstream	1 Ibmol/h
Molar Flow Hydrogen Sulfide			lbmol/h 0	lbmol/h 0	Ibmol/h 0 *	Ibmol/h 0 *	n/iomai 0
Nitrogen			0.209864	8.59599E-05	0 *	0.20995 *	0.20995
Carbon Dioxide			0.0732793	0.00120305	0 *	0.0744823 *	0.0744823
Methane			33.4108	0.0292484	0 *	33.4401 *	33.4401
Ethane			8.41678	0.0132199	0 *	8.43 *	8.43
			3.57968	0.0129718	0 *	3.59265 *	3.59265
Propane			0.437308	0.00308729	0 *	0.440395 *	0.440395
Isobutane					0 *	1.20871 *	1.20871
Isobutane n-Butane			1.19633	0.0123836			0 0000004
Isobutane n-Butane 2,2-Dimethylpropar	ne		0.00690245	9.58845E-05	0 *	0.00699834 *	0.00699834
Isobutane n-Butane 2,2-Dimethylpropar Isopentane	ie		0.00690245 0.295657	9.58845E-05 0.00777068	0 * 0 *	0.00699834 * 0.303428 *	0.303428
Isobutane n-Butane 2,2-Dimethylpropar Isopentane n-Pentane			0.00690245 0.295657 0.427838	9.58845E-05 0.00777068 0.0150565	0 * 0 * 0 *	0.00699834 * 0.303428 * 0.442895 *	0.303428 0.442895
Isobutane n-Butane 2,2-Dimethylpropar Isopentane			0.00690245 0.295657	9.58845E-05 0.00777068	0 * 0 *	0.00699834 * 0.303428 *	0.303428
Isobutane n-Butane 2,2-Dimethylpropar Isopentane n-Pentane 2,2-Dimethylbutane	9		0.00690245 0.295657 0.427838 0.00710074	9.58845E-05 0.00777068 0.0150565 0.000397481	0 * 0 * 0 *	0.00699834 * 0.303428 * 0.442895 * 0.00749822 *	0.303428 0.442895 0.00749822

* User Specified Values ? Extrapolated or Approximate Values

Licensed to The ERM Group, Inc. and Affiliates

			All S	reams Report treams by Total Phase			
Client Name:	Chevron Appala	achia, LLC			Job: 1933 b	ppd, Blowdowns	
Location:	Curry G70-C	•				1 '	
Flowsheet:	Flowsheet1						
	•				•		
			Gas to VRU	Stable Liquid	Water	Wellstream	1
Molar Flow			lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
3-Methylpentane			0.0597809	0.00570354	0 *	0.0654845 *	0.0654845
n-Hexane			0.175997	0.0209558	0 *	0.196953 *	0.196953
Methylcyclopentane	е		0.0160056	0.00199009	0 *	0.0179957 *	0.0179957
Benzene			0.00243503	0.000564254	0 *	0.00299929 *	0.00299929
Cyclohexane 2-Methylhexane			0.0245741 0.0451533	0.00391909 0.0128329	0 *	0.0284932 * 0.0579862 *	0.0284932 0.0579862
3-Methylhexane			0.0451555	0.0120329	0 *	0.0619853 *	0.0619853
2,2,4-Trimethylpent	tane		0.0477032	0.0142001	0 *	0.0019033	0.0013033
n-Heptane	lane		0.127466	0.0479924	0 *	0.175458 *	0.175458
Methylcyclohexane	•		0.0485348	0.0179494	0 *	0.0664842 *	0.0664842
Toluene			0.00843985	0.00455707	0 *	0.0129969 *	0.0129969
n-Octane			0.118097	0.14584	0 *	0.263937 *	0.263937
Ethylbenzene			0.00461054	0.00688673	0 *	0.0114973 *	0.0114973
m-Xylene			0.00431866	0.00767849	0 *	0.0119972 *	0.0119972
o-Xylene			0.00766454	0.01533	0 *	0.0229945 *	0.0229945
n-Nonane			0.0336558	0.131805	0 *	0.165461 *	0.165461
n-Decane			0.0107149	0.133751	0 *	0.144466 *	0.144466
C11			0.00906112	0.393843	0 *	0.402904 *	0.402904
Water			1.24395	1548.72	1549.96 *	0 *	1549.96
Mass Fraction			Gas to VRU %	Stable Liquid %	Water %	Wellstream %	1 %
Hydrogen Sulfide			0	0	0 *	0 *	0
Nitrogen			0.485723	8.58925E-06	0 *	0.44465 *	0.0201103
Carbon Dioxide			0.266448	0.000188852	0 *	0.24782 *	0.0112082
Methane			44.2836	0.00167366	0 *	40.5578 *	1.83432
Ethane			20.9098	0.00141789	0 *	19.1639 *	0.866731
Propane			13.0414	0.00204027	0 *	11.977 *	0.541686
Isobutane			2.09998	0.000640049	0 *	1.93518 *	0.087523
n-Butane			5.74483	0.00256733	0 *	5.31131 *	0.240216
2,2-Dimethylpropar	ne		0.041145	2.46758E-05	0 *	0.0381734 *	0.00172648
Isopentane			1.76239	0.00199978	0 *	1.65509 * 2.41583 *	0.0748552
n-Pentane 2,2-Dimethylbutane			2.55031 0.0505558	0.00387478 0.000122178	0 * 0 *	0.0488515 *	0.109261 0.00220942
Cyclopentane	5		0.00551162	1.21479E-05	0 *	0.00530097 *	0.000239749
2,3-Dimethylbutane	2		0.112406	0.000371354	0 *	0.11073 *	0.00500802
2-Methylpentane	5		0.675531	0.00248823	0 *	0.670894 *	0.0303427
3-Methylpentane			0.425628	0.00175316	0 *	0.426636 *	0.0192956
n-Hexane			1.25307	0.00644142	0 *	1.28317 *	0.0580341
Methylcyclopentane	e		0.111291	0.000597407	0 *	0.114501 *	0.00517857
Benzene			0.0157147	0.000157212	0 *	0.0177122 *	0.000801073
Cyclohexane							
			0.17087	0.00117647	0 *	0.181293 *	0.0081994
2-Methylhexane						0.181293 * 0.439276 *	0.0081994 0.0198673
2-Methylhexane 3-Methylhexane			0.17087	0.00117647	0 *		
	tane		0.17087 0.37381	0.00117647 0.00458664	0 * 0 *	0.439276 *	0.0198673
3-Methylhexane 2,2,4-Trimethylpent n-Heptane			0.17087 0.37381 0.395598 0 1.05525	0.00117647 0.00458664 0.0050753	0 * 0 * 0 *	0.439276 * 0.469571 *	0.0198673 0.0212374 0 0.0601156
3-Methylhexane 2,2,4-Trimethylpen			0.17087 0.37381 0.395598 0 1.05525 0.39372	0.00117647 0.00458664 0.0050753 0 0.0171531 0.00628628	0 * 0 * 0 * 0 *	0.439276 * 0.469571 * 0 * 1.32919 * 0.49352 *	0.0198673 0.0212374 0
3-Methylhexane 2,2,4-Trimethylpent n-Heptane Methylcyclohexane Toluene			0.17087 0.37381 0.395598 0 1.05525 0.39372 0.0642481	0.00117647 0.00458664 0.0050753 0 0.0171531 0.00628628 0.00149768	0 * 0 * 0 * 0 * 0 * 0 *	0.439276 * 0.469571 * 0 * 1.32919 * 0.49352 * 0.0905352 *	0.0198673 0.0212374 0 0.0601156 0.0223206 0.00409466
3-Methylhexane 2,2,4-Trimethylpent n-Heptane Methylcyclohexane			0.17087 0.37381 0.395598 0 1.05525 0.39372 0.0642481 1.11455	0.00117647 0.00458664 0.0050753 0 0.0171531 0.00628628 0.00149768 0.0594218	0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.439276 * 0.469571 * 0 * 1.32919 * 0.49352 * 0.0905352 * 2.27935 *	0.0198673 0.0212374 0 0.0601156 0.0223206 0.00409466 0.103089
3-Methylhexane 2,2,4-Trimethylpeni n-Heptane Methylcyclohexane Toluene n-Octane Ethylbenzene			0.17087 0.37381 0.395598 0 1.05525 0.39372 0.0642481 1.11455 0.0404406	0.00117647 0.00458664 0.0050753 0 0.0171531 0.00628628 0.00149768 0.0594218 0.00260788	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.439276 * 0.469571 * 0 * 1.32919 * 0.49352 * 0.0905352 * 2.27935 * 0.0922811 *	0.0198673 0.0212374 0 0.0601156 0.0223206 0.00409466 0.103089 0.00417363
3-Methylhexane 2,2,4-Trimethylpeni n-Heptane Methylcyclohexane Toluene n-Octane Ethylbenzene m-Xylene			0.17087 0.37381 0.395598 0 1.05525 0.39372 0.0642481 1.11455 0.0404406 0.0378804	0.00117647 0.00458664 0.0050753 0 0.0171531 0.00628628 0.00149768 0.00594218 0.00260788 0.00290771	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.439276 * 0.469571 * 0 * 1.32919 * 0.49352 * 0.0905352 * 2.27935 * 0.0922811 * 0.0962933 *	0.0198673 0.0212374 0 0.0601156 0.0223206 0.00409466 0.103089 0.00417363 0.00435509
3-Methylhexane 2,2,4-Trimethylpeni n-Heptane Methylcyclohexane Toluene n-Octane Ethylbenzene m-Xylene o-Xylene			0.17087 0.37381 0.395598 0 1.05525 0.39372 0.0642481 1.11455 0.0404406 0.0378804 0.0672283	0.00117647 0.00458664 0.0050753 0 0.0171531 0.00628628 0.00149768 0.0594218 0.00260788 0.00290771 0.0058052	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.439276 * 0.469571 * 0 * 1.32919 * 0.49352 * 0.0905352 * 2.27935 * 0.0922811 * 0.0962933 * 0.184562 *	0.0198673 0.0212374 0 0.0601156 0.0223206 0.00409466 0.103089 0.00417363 0.00435509 0.00834725
3-Methylhexane 2,2,4-Trimethylpeni n-Heptane Methylcyclohexane Toluene n-Octane Ethylbenzene m-Xylene o-Xylene n-Nonane			0.17087 0.37381 0.395598 0 1.05525 0.39372 0.0642481 1.11455 0.0404406 0.0378804 0.0672283 0.356631	0.00117647 0.00458664 0.0050753 0 0.0171531 0.00628628 0.00149768 0.00294218 0.00260788 0.00290771 0.0058052 0.0602976	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.439276 * 0.469571 * 0 * 1.32919 * 0.49352 * 0.0905352 * 2.27935 * 0.0922811 * 0.0962933 * 0.184562 * 1.60438 *	0.0198673 0.0212374 0 0.0601156 0.0223206 0.00409466 0.103089 0.00417363 0.00435509 0.00834725 0.0725616
3-Methylhexane 2,2,4-Trimethylpeni n-Heptane Methylcyclohexane Toluene n-Octane Ethylbenzene m-Xylene o-Xylene n-Nonane n-Decane			0.17087 0.37381 0.395598 0 1.05525 0.39372 0.0642481 1.11455 0.0404406 0.0378804 0.0672283 0.356631 0.125957	0.00117647 0.00458664 0.0050753 0 0.0171531 0.00628628 0.00149768 0.00594218 0.00260788 0.00290771 0.0058052 0.0602976 0.0678795	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.439276 * 0.469571 * 0 * 1.32919 * 0.49352 * 0.0905352 * 0.0905352 * 0.0922811 * 0.0962933 * 0.184562 * 1.60438 * 1.554 *	0.0198673 0.0212374 0 0.0601156 0.0223206 0.00409466 0.103089 0.00417363 0.00435509 0.00435509 0.00834725 0.0725616 0.0702831
3-Methylhexane 2,2,4-Trimethylpent n-Heptane Methylcyclohexane Toluene n-Octane Ethylbenzene m-Xylene o-Xylene n-Nonane n-Decane C11			0.17087 0.37381 0.395598 0 1.05525 0.39372 0.0642481 1.11455 0.0404406 0.0378804 0.0672283 0.356631 0.125957 0.117017	0.00117647 0.00458664 0.0050753 0 0.0171531 0.00628628 0.00149768 0.00294218 0.00260788 0.00290771 0.0058052 0.0602976 0.0678795 0.219583	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.439276 * 0.469571 * 0 * 1.32919 * 0.49352 * 0.0905352 * 0.0902811 * 0.0962933 * 0.184562 * 1.60438 * 1.554 * 4.76124 *	0.0198673 0.0212374 0 0.0601156 0.0223206 0.00409466 0.103089 0.00417363 0.00435509 0.00435509 0.00834725 0.0725616 0.0702831 0.215338
3-Methylhexane 2,2,4-Trimethylpeni n-Heptane Methylcyclohexane Toluene n-Octane Ethylbenzene m-Xylene o-Xylene n-Nonane n-Decane			0.17087 0.37381 0.395598 0 1.05525 0.39372 0.0642481 1.11455 0.0404406 0.0378804 0.0672283 0.356631 0.125957	0.00117647 0.00458664 0.0050753 0 0.0171531 0.00628628 0.00149768 0.00594218 0.00260788 0.00290771 0.0058052 0.0602976 0.0678795	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.439276 * 0.469571 * 0 * 1.32919 * 0.49352 * 0.0905352 * 0.0905352 * 0.0922811 * 0.0962933 * 0.184562 * 1.60438 * 1.554 *	0.0198673 0.0212374 0 0.0601156 0.0223206 0.00409466 0.103089 0.00417363 0.00435509 0.00435509 0.00834725 0.0725616 0.0702831
3-Methylhexane 2,2,4-Trimethylpent n-Heptane Methylcyclohexane Toluene n-Octane Ethylbenzene m-Xylene o-Xylene n-Nonane n-Decane C11			0.17087 0.37381 0.395598 0 1.05525 0.39372 0.0642481 1.11455 0.0404406 0.0378804 0.0672283 0.356631 0.125957 0.117017 1.85152	0.00117647 0.00458664 0.0050753 0 0.0171531 0.00628628 0.00149768 0.00294218 0.00290771 0.0058052 0.0602976 0.0678795 0.219583 99.5193	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.439276 * 0.469571 * 0 * 1.32919 * 0.49352 * 0.0905352 * 0.0902811 * 0.0922811 * 0.0922811 * 0.184562 * 1.60438 * 1.554 * 4.76124 * 0 *	0.0198673 0.0212374 0 0.0601156 0.0223206 0.00409466 0.103089 0.00417363 0.00435509 0.00435509 0.00834725 0.0725616 0.0702831 0.215338 95.4773
3-Methylhexane 2,2,4-Trimethylpent n-Heptane Methylcyclohexane Toluene n-Octane Ethylbenzene m-Xylene o-Xylene n-Nonane n-Decane C11			0.17087 0.37381 0.395598 0 1.05525 0.39372 0.0642481 1.11455 0.0404406 0.0378804 0.0672283 0.356631 0.125957 0.117017	0.00117647 0.00458664 0.0050753 0 0.0171531 0.00628628 0.00149768 0.00294218 0.00260788 0.00290771 0.0058052 0.0602976 0.0678795 0.219583	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.439276 * 0.469571 * 0 * 1.32919 * 0.49352 * 0.0905352 * 0.0902811 * 0.0962933 * 0.184562 * 1.60438 * 1.554 * 4.76124 *	0.0198673 0.0212374 0 0.0601156 0.0223206 0.00409466 0.103089 0.00417363 0.00435509 0.00435509 0.00834725 0.0725616 0.0702831 0.215338

* User Specified Values ? Extrapolated or Approximate Values

Simulation initiated on 6/17/	2010 12.43.101 M		Ouny 070-0_700,040 bp	y P W Blowdown_0.10.10.			Fage 3 01 4					
			All S	reams Report treams by Total Phase								
Client Name:	Chevron Appala	chia, LLC			Job: 1933 I	bpd, Blowdowns						
Location:	Curry G70-C											
Flowsheet:	Flowsheet1											
			Gas to VRU	Stable Liquid	Water	Wellstream	1					
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h					
Nitrogen			5.87901	0.00240803	0 *	5.88142 *	5.88142					
Carbon Dioxide			3.22498	0.0529455	0 *	3.27793 *	3.27793					
Methane Ethane			535.992 253.084	0.469217 0.397511	0 *	536.461 * 253.482 *	536.461 253.482					
Propane			157.848	0.397511	0 *	158.42 *	158.42					
Isobutane			25.4173	0.17944	0 *	25.5968 *	25.5968					
n-Butane			69.5333	0.719762	0 *	70.2531 *	70.2531					
2,2-Dimethylpropane			0.498004	0.00691795	0 *	0.504922 *	0.504922					
Isopentane			21.3313	0.560645	0 *	21.892 *	21.892					
n-Pentane			30.868	1.08631	0 *	31.9543 *	31.9543					
2,2-Dimethylbutane			0.611909	0.034253	0 *	0.646162 *	0.646162					
Cyclopentane			0.0667105	0.00340571	0 *	0.0701163 *	0.0701163					
2,3-Dimethylbutane			1.36052	0.104111	0 *	1.46463 *	1.46463					
2-Methylpentane			8.17637	0.697586	0 *	8.87396 *	8.87396					
3-Methylpentane			5.15164	0.491505	0 *	5.64315 * 16.9725 *	5.64315					
n-Hexane Methylcyclopentane			<u>15.1666</u> 1.34703	1.80588 0.167485	0 *	16.9725 *	16.9725 1.51451					
Benzene			0.190205	0.044075	0 *	0.23428 *	0.23428					
Cyclohexane			2.06815	0.329828	0 *	2.39798 *	2.39798					
2-Methylhexane			4.52445	1.28588	0 *	5.81033 *	5.81033					
3-Methylhexane			4.78816	1.42288	0 *	6.21105 *	6.21105					
2,2,4-Trimethylpenta	ne		0	0	0 *	0 *	0					
n-Heptane			12.7723	4.80893	0 *	17.5813 *	17.5813					
Methylcyclohexane			4.76544	1.76238	0 *	6.52782 *	6.52782					
Toluene			0.777634	0.419881	0 *	1.19752 *	1.19752					
n-Octane			13.4901	16.6591	0 *	30.1492 *	30.1492					
Ethylbenzene			0.489478	0.73113	0 *	1.22061 *	1.22061					
m-Xylene o-Xylene			0.458491	0.815187 1.62751	0 *	1.27368 * 2.44122 *	1.27368 2.44122					
n-Nonane			4.31653	16.9046	0 *	21.2212 *	21.2212					
n-Decane			1.52453	19.0303	0 *	20.5548 *	20.5548					
C11			1.41633	61.5609	0 *	62.9773 *	62.9773					
Water			22.4102	27900.6	27923 *	0 *	27923					
			Stream	Properties								
Property		Units	Gas to VRU	Stable Liquid	Water	Wellstream	1					
Temperature		°F	70	70 *	135 *	135 *	135.064					
Pressure		psia	14.6959	14.6959 *	3914.7 *	3914.7 *						
Mole Fraction Vapor		%	100	0	0	100	2.90226					
Mole Fraction Light L		%	0	0.0663301	100	0	97.0977					
Mole Fraction Heavy	Liquid	%	0	99.9337	0	0	0					
Molecular Weight		lb/lbmol	24.1294	18.0898	18.0153	26.4604	18.2791					
Mass Density		lb/ft^3	0.0627055	62.164	61.677	20.3504	56.7622					
Molar Flow		Ibmol/h	50.1614	1549.79	1549.96	49.9881	1599.95					
Mass Flow		lb/h	1210.36	28035.4	27923	1322.71	29245.7					
Vapor Volumetric Flo		ft^3/h	19302.3	450.99	452.73	64.9966	515.233					
Std Vapor Volumetric Flo		gpm MMSCFD	2406.53 0.456852	56.2274 14.1149	56.4442 14.1165	8.10347 0.455273	64.2368 14.5718					
Std Liquid Volumetric		sgpm	6.41977	56.1479	55.8202 *	6.74749 *	62.5677					
Compressibility		зурт	0.994875	0.000752354	0.179174	0.797593	0.197518					
Specific Gravity			0.833121	0.996713	0.988905	0.913606	0.107010					
API Gravity				10.2638	9.54602							
Enthalpy		Btu/h	-1.88492E+06	-1.9064E+08	-1.88593E+08	-1.96439E+06	-1.90558E+08					
Mass Enthalpy		Btu/lb	-1557.32	-6799.98	-6754.04	-1485.13	-6515.75					
Mass Cp		Btu/(lb*°F)	0.458651	0.980799	0.974348	0.751506	0.96659					
Ideal Gas CpCv Ration	0		1.21981	1.32436	1.32279	1.18487	1.31543					

Ideal Gas CpCv Ratio

Dynamic Viscosity

Kinematic Viscosity

Surface Tension

Thermal Conductivity

* User Specified Values ? Extrapolated or Approximate Values

1.32436

0.994072

0.998362

0.345279

0.00501966 ?

1.32279

0.521301

0.527648

0.372658

0.00455539

1.21981

10.0985

0.0101434

0.0159102

сΡ

cSt

lbf/ft

Btu/(h*ft*°F)

Licensed to The ERM Group, Inc. and Affiliates

1.31543

1.18487

0.0409878

0.0493115

0.125736

Process Streams Report All Streams Tabulated by Total Phase											
Client Name: Chevron Appalachia, LLC Job: 1933 bpd, Blowdowns											
Location:	Curry G70-C					·					
Flowsheet:	Flowsheet1										
			Stream	Properties							
Property		Units	Gas to VRU	Stable Liquid	Water	Wellstream	1				
Net Ideal Gas Hea	ting Value	Btu/ft^3	1279.54	4.38931	0	1420.06	44.3677				
Net Liquid Heating	Value	Btu/lb	20017.9	-963.379	-1059.76	20270.5	-95.0504				
Gross Ideal Gas F		Btu/ft^3	1406.61	55.0013	50.31	1556.76	97.3768				
		Btu/lb	22016.1	98.3479	0	22230.7	1005.43				
Gross Liquid Heat											

Simulation Initiated on 6/1	7/2016 12:49:10 PM		Curry G	70-C_705,545 bpy PW B	owdown_6.16.	.16.pmx			Page	of 1	
Energy Stream Report											
Client Name:	Chevron Appala	achia, LLC			Job: 1933 bpd, Blowdowns						
Location:	Curry G70-C										
Flowsheet:	Flowsheet1	Flowsheet1									
				Energy Str	eams						
Energy Stream		Energy Rate		Power		From Block			To Block		
Q-1	-1.9	6714E+06 Bt	tu/h	-773.117	hp				Blowdown Tank		
			·								
Remarks											

Blocks Blowdown Tank Separator Report											
Client Name:	Chevron Appalachia,	LLC			Job: 1933 bp	od, Blowdowns					
ocation:	Curry G70-C				Modified: 8:5	2 AM, 6/16/2016					
lowsheet:	Flowsheet1				Status: Solve	ed 9:20 AM, 6/16/2	2016				
Connections											
Stream	Connection Ty	/pe	Other Block	Stream	Connectio		Other Block				
1	Inlet		MIX-100	Gas to VRU	Vapor C						
Stable Liquid	Light Liquid Ou	tlet		Q-1	Ener	ду					
			Block Pa	arameters							
Pressure Drop		3900		Main Liquid Phase		Light Liquid					
Mole Fraction Var	oor	3.13518		Heat Duty		-1.96714E+06					
Mole Fraction Lig		0.0642506	%	Heat Release Curve T	ype	Plug Flow					
Mole Fraction Hea	avy Liquid	96.8006	%	Heat Release Curve	, , , , , , , , , , , , , , , , , , ,	5					
				Increments							

		MIX	ocks (-100 litter Report						
Client Name:	Chevron Appalachia, LLC			Job: 1933 bpd, Blowdow	Ins				
Location: Curry G70-C Modified: 8:51 AM, 6/16/2016									
lowsheet:	: Flowsheet1 Status: Solved 8:59 AM, 6/16/2016								
		Conn	ections						
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block				
Wellstream	Inlet		Water	Inlet					
1	Outlet	Blowdown Tank							
		Block P	arameters						
Pressure Drop		0 psi	Fraction to PStream 1		100 %				
Remarks									

Flowsheet Environment Environment1 Client Name: Chevron Appalachia, LLC Job: 1933 bpd, Blowdowns											
Client Name:	Chevron Appala	achia, LLC			lob: 1933 b	pd, Blowdowns					
Location:	Curry G70-C	,				, <i>,</i>					
Flowsheet:	Flowsheet1										
			Environm	ent Settings							
Number of Poyntin	0		Freeze Out Temperature Threshold Difference	!	10 °F						
Gibbs Excess Mo Evaluation Tempe		77 °F		Phase Tolerance		1 %					
				onents							
Component Name		Henry`s Law Component	Phase Initiator	Component Name		Henry`s Law Component	Phase Initiator				
Hydrogen Sulfide		False	False	Methylcyclopentane		False	False				
Nitrogen		False	False	Benzene		False	False				
Carbon Dioxide		False	False	Cyclohexane		False	False				
Methane		False	False	2-Methylhexane		False	False				
Ethane		False	False	3-Methylhexane		False	False				
Propane		False	False	2,2,4-Trimethylpentane		False	False				
Isobutane		False	False	n-Heptane		False	False				
n-Butane		False	False	Methylcyclohexane		False	False				
2,2-Dimethylpropan	e	False	False	Toluene		False	False				
Isopentane		False	False	n-Octane		False	False				
n-Pentane		False	False	Ethylbenzene		False	False				
2,2-Dimethylbutane		False	False	m-Xylene		False	False				
Cyclopentane		False	False	o-Xylene		False	False				
2,3-Dimethylbutane		False	False	n-Nonane		False	False				
2-Methylpentane		False	False	n-Decane		False	False				
3-Methylpentane		False	False	C11		False	False				
n-Hexane		False	False	Water		False	True				
		Phys	ical Prope	erty Method Sets							
Liquid Molar Volume		COSTALD		Overall Package		Peng-Robins					
Stability Calculation		Peng-Robins		Vapor Package		Peng-Robins					
Light Liquid Package	e	Peng-Robins	son	Heavy Liquid Package		Peng-Robins	on				

Remarks

	11/2010 12:40:10 1 1	Outry 010-0_103,540			
		User Valu	ue Sets Report		
Client Name:	Chevron Appala	achia. LLC		Job: 1933 b	pd, Blowdowns
Location:	Curry G70-C				<u></u>
		Cn+	Flow/Frac.		
* 5			ue [CnPlusSum]		
* Parameter		389.772 lb/h	Upper Bound		F - 1
Lower Bound		lb/h	* Enforce Bounds		False
Remarks This User Value S	et was programma	tically generated. GUID={28788F		FE5F72A}	
		Tai	nk Losses		
			ue [ShellLength]		
* Parameter		20 ft	Upper Bound		
* Lower Bound		20 It	* Enforce Bounds		False
Lower Dound		0 11	Efficice Bounds		1 8136
* Dava 1			lue [ShellDiam]		
* Parameter		12 ft	Upper Bound		F -1
* Lower Bound		0 ft	* Enforce Bounds		False
		User Val	ue [BreatherVP]		
* Parameter		0.03 psig	Upper Bound		
Lower Bound			* Enforce Bounds		False
		User Valu	e [BreatherVacP]		
* Parameter		-0.03 psig	Upper Bound		
Lower Bound			* Enforce Bounds		False
		Lloor Volu	e [DomeRadius]		
Parameter			Upper Bound		ft
Lower Bound		ft ft	* Enforce Bounds		False
Lower Bound			Enlorce Bounds		Faise
		llsor Va	alue [OpPress]		
* Parameter					
		0 psig	Upper Bound		
Lower Bound					False
		0 psig	Upper Bound * Enforce Bounds		False
		0 psig	Upper Bound * Enforce Bounds [* [AvgPercentLiq]		False
		0 psig	Upper Bound * Enforce Bounds		False
Lower Bound		0 psig User Value	Upper Bound * Enforce Bounds [* [AvgPercentLiq]		False
Lower Bound * Parameter		0 psig User Value 50 %	Upper Bound * Enforce Bounds • [AvgPercentLiq] Upper Bound		
Lower Bound * Parameter		0 psig User Value 50 % %	Upper Bound * Enforce Bounds (AvgPercentLiq) Upper Bound * Enforce Bounds		
Lower Bound * Parameter Lower Bound		0 psig User Value 50 % % User Value	Upper Bound * Enforce Bounds • [AvgPercentLiq] Upper Bound * Enforce Bounds • Enforce Bounds • [MaxPercentLiq]		
Lower Bound * Parameter Lower Bound * Parameter		0 psig User Value 50 % % User Value 90 %	Upper Bound * Enforce Bounds		False
Lower Bound * Parameter Lower Bound		0 psig User Value 50 % % User Value	Upper Bound * Enforce Bounds • [AvgPercentLiq] Upper Bound * Enforce Bounds • Enforce Bounds • [MaxPercentLiq]		
Lower Bound * Parameter Lower Bound * Parameter		0 psig User Value 50 % % User Value 90 % %	Upper Bound * Enforce Bounds • [AvgPercentLiq] Upper Bound * Enforce Bounds • [MaxPercentLiq] Upper Bound * Enforce Bounds * Enforce Bounds		False
Lower Bound * Parameter Lower Bound * Parameter Lower Bound		0 psig User Value 50 % % User Value 90 % % User Value	Upper Bound * Enforce Bounds • [AvgPercentLiq] Upper Bound * Enforce Bounds • [MaxPercentLiq] Upper Bound * Enforce Bounds • Inforce Bounds • Inforce Bounds • Enforce Bounds • Enforce Bounds		False
Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter		0 psig User Value 50 % % User Value 90 % % User Value 90 % 1935.67 bbl/day	Upper Bound * Enforce Bounds • [AvgPercentLiq] Upper Bound * Enforce Bounds • [MaxPercentLiq] Upper Bound * Enforce Bounds • Iue [AnnNetTP] Upper Bound Upper Bound		False
Lower Bound * Parameter Lower Bound * Parameter Lower Bound		0 psig User Value 50 % % User Value 90 % % User Value	Upper Bound * Enforce Bounds • [AvgPercentLiq] Upper Bound * Enforce Bounds • [MaxPercentLiq] Upper Bound * Enforce Bounds • Inforce Bounds • Inforce Bounds • Enforce Bounds • Enforce Bounds		False
Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter		0 psig User Value 50 % % User Value 90 % % User Value 90 % 90 % 90 % 90 % 90 % 90 % 90 % 90 %	Upper Bound * Enforce Bounds • [AvgPercentLiq] Upper Bound * Enforce Bounds • [MaxPercentLiq] Upper Bound * Enforce Bounds • Enforce Bounds • Enforce Bound * Enforce Bound * Enforce Bound * Enforce Bound * Enforce Bounds		False
Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter		0 psig User Value 50 % % User Value 90 % % User Value 1935.67 bbl/day 0 bbl/day	Upper Bound * Enforce Bounds • [AvgPercentLiq] Upper Bound * Enforce Bounds • [MaxPercentLiq] Upper Bound * Enforce Bounds • Enforce Bounds • Enforce Bounds • Enforce Bound * Enforce Bounds • Upper Bound * Enforce Bounds • Upper Bound • Enforce Bounds • Upper Bound • Enforce Bounds • En		False
Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter		0 psig User Value 50 % % User Value 90 % % User Value 90 % 90 % 90 % 90 % 90 % 90 % 90 % 90 %	Upper Bound * Enforce Bounds		False
Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter * Lower Bound		0 psig User Value 50 % % User Value 90 % % User Value 1935.67 bbl/day 0 bbl/day	Upper Bound * Enforce Bounds • [AvgPercentLiq] Upper Bound * Enforce Bounds • [MaxPercentLiq] Upper Bound * Enforce Bounds • Enforce Bounds • Enforce Bounds • Enforce Bound * Enforce Bounds • Upper Bound * Enforce Bounds • Upper Bound • Enforce Bounds		False
Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter * Lower Bound * Parameter * Lower Bound		0 psig User Value 50 % % User Value 90 % % User Value 1935.67 bbl/day 0 bbl/day User Value 1935.67 bbl/day	Upper Bound * Enforce Bounds		False False False
Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter * Lower Bound * Parameter * Lower Bound		0 psig User Value 50 % % User Value 90 % % User Val 1935.67 bbl/day 0 bbl/day User \ User \ 0 % %	Upper Bound * Enforce Bounds		False False False
Lower Bound * Parameter Lower Bound		0 psig User Value 50 % % User Value 90 % % User Val 1935.67 bbl/day 0 bbl/day User Val 0 % %	Upper Bound * Enforce Bounds		False False False
Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter * Lower Bound * Parameter * Lower Bound		0 psig User Value 50 % % User Value 90 % % User Val 1935.67 bbl/day 0 bbl/day User \ User \ 0 % %	Upper Bound * Enforce Bounds		False False False

		alue Sets Report	
lient Name:	Chevron Appalachia, LLC Curry G70-C		Job: 1933 bpd, Blowdowns
	User Valu	ue [MaxLiqSurfaceT]	
Parameter	70.3624 °F	Upper Bound	
Lower Bound		* Enforce Bounds	False
		alue [TotalLosses]	
Parameter Lower Bound	0.0779819 lb/h lb/h	Upper Bound * Enforce Bounds	Falsa
Lower Bound	ID/II	Enforce Bounds	False
	Liser Val	ue [WorkingLosses]	
Parameter	0.074679 lb/h	Upper Bound	
Lower Bound	lb/h	* Enforce Bounds	False
	User Valu	ue [StandingLosses]	
Parameter	0.00330289 lb/h	Upper Bound	
Lower Bound	lb/h	* Enforce Bounds	False
	<u> </u>		
		ue [RimSealLosses]	
Parameter Lower Bound	0 ton/yr	Upper Bound * Enforce Bounds	False
Lower Bound		Enlorce Bounds	i dise
	User Valu	ue [WithdrawalLoss]	
Parameter	0 ton/yr	Upper Bound	
Lower Bound	×	* Enforce Bounds	False
		ue [LoadingLosses]	
Parameter	0.868747 lb/h	Upper Bound	- .
Lower Bound	lb/h	* Enforce Bounds	False
Parameter	0 ton/yr	e [DeckFittingLosses] Upper Bound	
Lower Bound	0 1017/91	* Enforce Bounds	False
	User Value	e [DeckSeamLosses]	
Parameter	0 ton/yr	Upper Bound	
Lower Bound		* Enforce Bounds	False
		ue [FlashingLosses]	
Parameter	0 ton/yr	Upper Bound	F . 1
Lower Bound		* Enforce Bounds	False
Parameter	Oser Vall 0.018351 kg/mol	ue [GasMoleWeight]	
	0.016351 Kg/1101	* Enforce Bounds	False
Lower Bound			1 4150

Attachment T

FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET

AT	TACHN	MENT	T – FA	CILIT	Y-WID	E CON	NTROL	LED E	MISSI	ONS S	UMMA	RY SI	HEET	
List all sources o	f emiss	ions in	this tab	ole. Use	e extra	pages i	f necess	sary.						
	NO _x		СО		v	VOC		SO ₂		PM 10		PM 2.5		(CO ₂ e)
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Line Heater (E0100)	0.08	0.33	0.06	0.28	<0.01	0.02	<0.01	<0.01	<0.01	0.03	<0.01	0.03	117.10	512.89
Line Heater (E0210)	0.09	0.42	0.08	0.35	<0.01	0.02	<0.01	<0.01	<0.01	0.03	<0.01	0.03	146.37	641.11
Line Heater (E0810)	0.08	0.33	0.06	0.28	<0.01	0.02	<0.01	<0.01	<0.01	0.03	<0.01	0.03	117.10	512.89
Line Heater (E0910)	0.09	0.42	0.08	0.35	<0.01	0.02	<0.01	<0.01	<0.01	0.03	<0.01	0.03	146.37	641.11
Line Heater (E0012)	0.09	0.42	0.08	0.35	<0.01	0.02	<0.01	<0.01	<0.01	0.03	<0.01	0.03	146.37	641.11
Reboiler Exhaust (E0100A)	0.04	0.17	0.03	0.14	<0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	0.01	58.55	256.44
Flash Gas Compressor (E0050)	0.15	0.67	0.18	0.80	0.19	0.84	<0.01	<0.01	0.02	0.09	0.02	0.09	54.02	236.62
Vapor Recovery Unit (VS-1)					6.72	29.41							790.16	3,460.90
Glycol Dehydrator (E0100B)					1.58	6.91							2.34	10.23
Blowdown Events (VS-1)						0.15								5.03
Truck Loading Activities (VS-1)					2.22	3.98							2.90	12.52
TOTAL	0.63	2.74	0.58	2.54	10.73	41.41	<0.01	0.02	0.06	0.25	0.06	0.25	1,581.29	6,930.85

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTA	ATTACHMENT T – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET													
List all sources o	f emissi	ons in t	this tab	le. Use	extra p	ages if	necessa	ıry.						
Emission Point ID#	Formalo	lehyde	Ben	zene	Toluene		Ethylbenzene		Xylenes		Hexane		Total HAPs	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Line Heater (E0100)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E0210)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E0810)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E0910)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E0012)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Glycol Reboiler (E0100A)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Flash Gas Compressor (E0050)	0.09	0.42	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			0.10	0.44
Vapor Recovery Unit (VS-1)			<0.01	0.03	0.01	0.06	0.01	0.06	0.03	0.12	0.27	1.16	0.33	1.43
Dehydrator (E0100B)			0.03	0.11	0.20	0.86	0.17	0.73	0.67	2.95	0.03	0.11	1.10	4.84
Blowdown Events (VS-1)				<0.01		<0.01		<0.01		<0.01		<0.01		<0.01
Truck Loading Activities (VS-1)			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	0.02
TOTAL	0.09	0.42	0.05	0.23	0.21	0.93	0.18	0.78	0.70	3.07	0.30	1.33	1.54	6.76

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

Attachment U

CLASS I LEGAL ADVERTISEMENT

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Chevron Appalachia, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-C General Permit Registration, for a natural gas production facility located at 9 Waymans Ridge Road, in Moundsville, in Marshall County, West Virginia. The latitude and longitude coordinates are: 39.91013, -80.66596.

The applicant estimates the potential to discharge the following regulated air pollutants on a facility-wide basis will be:

Carbon Monoxide (CO) = 2.54 tpy Nitrogen Oxides (NO_x) = 2.74 tpy Particulate Matter - 2.5 = 1.06 tpy Particulate Matter - 10 = 1.06 tpy Sulfur Dioxide (SO₂) = 0.02 tpy Volatile Organic Compounds (VOC) = 42.46 tpy Formaldehyde = 0.42 tpy Benzene = 0.23 tpy Toluene = 0.94 tpy Ethylbenzene = 0.79 tpy Xylenes = 3.09 tpy Hexane = 1.40 tpy Total Hazardous Air Pollutants (HAPs) =6.82 tpy

Startup of operation is planned to begin on or about the 1st day of December, 2016. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated this the 21st day of July, 2016.

By: Chevron Appalachia, LLC Gary Orr Appalachia Area Manager for Chevron Appalachia, LLC 700 Cherrington Parkway Coraopolis, PA 15108