625 Liberty Ave, Suite 1700 Pittsburgh PA 15222 www.eqt.com

TEL: (412) 395-3699 FAX: (412) 395-2156

R. Alex Bosiljevac Environmental Coordinator

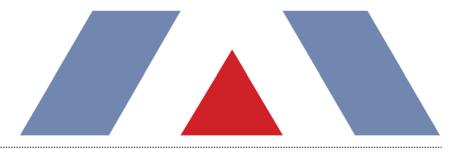
August 17, 2016

CERTIFIED MAIL # 7015 1660 0000 9339 6437

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: G70A Permit Application EQT Production Company Permit No: G70-A188 GLO-76 Natural Gas Production Site

Dear Mr. Durham,


Enclosed are two electronic copies and one original hard copy of a proposed G70-C General Air Permit for the GLO-76 Natural Gas Production Well Site. A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely,

R. Alex Bosiljevac EQT Corporation

Enclosures

PROJECT REPORT

EQT Production GLO-76 Pad

G70-C Permit Application

Where energy meets innovation.

TRINITY CONSULTANTS 4500 Brooktree Drive Suite 103 Wexford, PA 15090 (724) 935-2611

August 2016

Environmental solutions delivered uncommonly well

1. INTRODUCTION	4
1.1. FACILITY AND PROJECT DESCRIPTION	4
1.2. SOURCE STATUS	5
1.3. G70-C APPLICATION ORGANIZATION	5
2. SAMPLE EMISSION SOURCE CALCULATIONS	6
3. REGULATORY DISCUSSION	8
3.1. Prevention of Significant Deterioration (PSD) Source Classification	8
3.2. Title V Operating Permit Program	8
3.3. New Source Performance Standards	8
3.3.1. NSPS Subparts D, Da, Db, and Dc	9
3.3.2. NSPS Subparts K, Ka, and Kb	9
3.3.3. NSPS Subpart 0000—Crude Oil and Natural Gas Production, Transmission, and Distribution	9
3.3.4. NSPS Subpart 0000a—Crude Oil and Natural Gas Facilities	9
3.3.5. Non-Applicability of All Other NSPS	10
3.4. National Emission Standards for Hazardous Air Pollutants (NESHAP)	10
3.4.1. 40 CFR 63 Subpart HH – Oil and Natural Gas Production Facilities	10
3.4.2. 40 CFR 63 Subpart JJJJJJ – Industrial, Commercial, and Institutional Boilers	10
3.5. West Virginia SIP Regulations	10
3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers	11
3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contribu	ites
to an Objectionable Odor	11
3.5.3. 45 CSR 6: Control of Air Pollution from the Combustion of Refuse	11
3.5.4. 45 CSR 16: Standards of Performance for New Stationary Sources	11
3.5.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation Storage and Other Sources of Fugitive Particulate Matter	on, 11
3.5.6. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks	11
3.5.7. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants	12
3.5.8. Non-Applicability of Other SIP Rules	12
4. G70-C APPLICATION FORMS	13

ATTACHMENT A: SINGLE SOURCE DETERMINATION

ATTACHMENT B: SITING CRITERIA WAIVER (NOT APPLICABLE)

ATTACHMENT C: BUSINESS CERTIFICATE

ATTACHMENT D: PROCESS FLOW DIAGRAM

ATTACHMENT E: PROCESS DESCRIPTION

ATTACHMENT F: PLOT PLAN

ATTACHMENT G: AREA MAP

- ATTACHMENT H: APPLICABILITY FORM
- ATTACHMENT I: EMISSION UNITS TABLE
- ATTACHMENT J: FUGITIVE EMISSIONS SUMMARY SHEET
- ATTACHMENT K: GAS WELL DATA SHEET
- ATTACHMENT L: STORAGE VESSEL DATA SHEET
- ATTACHMENT M: HEATERS DATA SHEET
- ATTACHMENT N: ENGINES DATA SHEET (NOT APPLICABLE)
- ATTACHMENT O: TRUCK LOADING DATA SHEET
- ATTACHMENT P: GLYCOL DEHYDRATOR DATA SHEET
- ATTACHMENT Q: PNEUMATIC CONTROLLER DATA SHEET (NOT APPLICABLE)
- ATTACHMENT R: AIR POLLUTION CONTROL DEVICE DATA SHEET
- ATTACHMENT S: EMISSION CALCULATIONS
- ATTACHMENT T: EMISSION SUMMARY SHEET
- ATTACHMENT U: CLASS I LEGAL ADVERTISEMENT
- ATTACHMENT V: GENERAL PERMIT REGISTRATION APPLICATION FEE

EQT Production Company (EQT) is submitting this Class II General Permit (G70-C) application to the West Virginia Department of Environmental Protection (WVDEP) for the GLO-76 pad, an existing production well pad, located in Marion County, West Virginia. The GLO-76 is currently operating under G70-A permit number G70-A188. This general permit application is to convert the permit to a G70-C and for the replacement of combustor C001, which has a maximum design capacity of 93 scf/min, for a combustor that has a maximum design capacity of 3.33 MMBtu/hr.

1.1. FACILITY AND PROJECT DESCRIPTION

The GLO-76 pad is a natural gas production facility consists of nine (9) natural gas wells. Natural gas and produced water are extracted from deposits underneath the surface. Natural gas is transported from the well to a gas line for additional processing and compression, as necessary. The liquids produced are stored in storage vessels. The facility does not produce condensate.

This application seeks to continue authorization for the following existing equipment at the GLO-76 pad under the G70-C permit:

- > Ten (10) 400 barrel (bbl) storage tanks for produced fluids,
- > One (1) 140 bbl storage tank for sand and produced fluids from the sand separator;
- > Nine (9) line heaters, each rated at 1.54 MMBtu/hr (heat input),
- > Three (3) thermoelectric generators (TEG), each rated at 0.013 MMBtu/hr,
- > One (1) 65 million standard cubic feet per day (MMscfd) triethylene glycol dehydration unit with associate reboiler (rated at 0.75 MMBtu/hr heat input), and enclosed combustor (rated 8.33 MMBtu/hr). The dehy is equipped with a BTEX condenser; however, no emission reduction credit is being claimed for the condenser,
- > One (1) 100 bbl dehy drip fluids tank,
- > Produced fluid truck loading, and
- > Associated piping and components.

This application seeks to authorize the following new equipment at the GLO-76 pad:

Once (1) enclosed combustor rated at 3.33 MMBtu/hr for control of the dehydration unit. This unit will replace the existing combustor

EQT would also like to note that, although included in the original permit application, the dehy drip fluid tank (S-026) was not included in the current G70-A permit. EQT is requesting that this tank be listed in the issued G70-C permit.

A process flow diagram is included as Attachment D. A comparison of the potential emissions of the proposed and existing equipment at the wellpad in comparison with G70-C emission limits is provided in Table 1. Facility emissions are well below the permit limits. Note that in accordance with condition 1.1.1. of the G70-C permit, fugitive emissions are not considered in determining eligibility of the permit.

Pollutant	Wellpad Potential Annual Emissions (tpy)	G70-C Maximum Annual Emission Limits (tpy)		
Nitrogen Oxides	7.15	50		
Carbon Monoxide	6.01	80		
Volatile Organic Compounds	16.09	80		
Particulate Matter – 10/2.5	1.07	20		
Sulfur Dioxide	0.04	20		
Individual HAP (n-hexane) ¹	0.21	8		
Total HAP ¹	0.49	20		

 Table 1 - Comparison of Wellpad Potential Emissions to G70-C Permit Emission Limits

1. Includes fugitive emissions

1.2. SOURCE STATUS

WVDEP must make stationary source determinations on a case-by-case basis using the guidance under the Clean Air Act (CAA) and EPA's and WVDEP's implementing regulations. The definition of stationary source in 40 CFR 51.166(b) includes the following:

"(6) Building, structure, facility, or installation means all of the pollutant emitting activities which belong to the same industrial grouping, are located on or more contiguous or adjacent properties, and are under control of the same person (or persons under common control)."

Other additional pollutant emitting facilities should be aggregated with the proposed GLO-76 Pad for air permitting purposes if, and only if, all three elements of the "stationary source" definition above are fulfilled.

There are no Marcellus facilities within a one-mile radius of the GLO-76 Pad. The nearest wellpad, BIG-182, is located approximately 1.7 miles west of GLO-76. Therefore, the GLO-76 pad should be considered a separate stationary source with respect to permitting programs, including Title V and Prevention of Significant Deterioration (PSD). As discussed in this application, the facility is a minor source of air emissions with respect to New Source Review (NSR) and Title V permitting.

1.3. G70-C APPLICATION ORGANIZATION

This West Virginia Code of State Regulations, Title 45 (CSR) Series 13 (45 CSR 13) G70-C permit application is organized as follows:

- > Section 2: Sample Emission Source Calculations;
- > Section 3: Regulatory Discussion;
- > Section 4: G70-C Application Forms;
- > Attachment A: Single Source Determination;
- > Attachment B: Siting Criteria Waiver (Not Applicable);
- > Attachment C: Business Certificate;
- > Attachment D: Process Flow Diagram;
- > Attachment E: Process Description;
- > Attachment F: Plot Plan;
- > Attachment G: Area Map;
- > Attachment H: Applicability Form;
- > Attachment I: Emission Units Table;
- > Attachment J: Fugitive Emissions Summary Sheet;
- > Attachment K: Gas Well Data Sheet;
- > Attachment L: Storage Vessel Data Sheet;
- > Attachment M: Heaters Data Sheet;
- > Attachment N: Engines Data Sheet (Not Applicable);
- > Attachment O: Truck Loading Data Sheet;
- > Attachment P: Glycol Dehydrator Data Sheet;
- > Attachment Q: Pneumatic Controller Data Sheet (Not Applicable);
- > Attachment R: Air Pollution Control Device Data Sheet;
- > Attachment S: Emission Calculations;
- > Attachment T: Emission Summary Sheet;
- > Attachment U: Class I Legal Advertisement; and
- > Attachment V: General Permit Registration Application Fee.

The characteristics of air emissions from the existing natural gas production operations, along with the methodology for calculating emissions, are briefly described in this section of the application. Detailed emission calculations are presented in Attachment S of this application.

Emissions from this project will result from natural gas combustion in the line heaters, TEGs, and reboiler, dehydration enclosed combustor. In addition, emissions will also result from the storage of organic liquids in storage tanks and loading of organic liquids into tank trucks. Fugitive emissions will result from component leaks from the operation of the station. The methods by which emissions from each of these source types, as well as the existing source types, are calculated are summarized below.

- > Reboiler, Line Heaters and TEGs: Potential emissions of criteria pollutants and hazardous air pollutants (HAPs) are calculated using U.S. EPA's AP-42 factors for natural gas external combustion.¹ These calculations assume a site-specific heat content of natural gas. Greenhouse gas emissions are calculated according to 40 CFR 98 Subpart C.² Please note that potential emissions of NO_x, CO, PM, SO₂ and GHGs from the combustor are also calculated according to the aforementioned methodologies.
- Fugitive Equipment Leaks: Emissions of VOC and HAPs from leaking equipment components have been estimated using facility estimated component counts and types along with Table 2-4: Oil & Gas Production Operations Average Emission Factors, Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017, November 1995. Emission factors used are based on average measured TOC from component types indicated in gas service at 0&G Production Operations. Greenhouse gas emissions from component leaks are calculated according to the procedures in 40 CFR 98 Subpart W.³ Pneumatic devices at the wellpad are intermittent bleed and are assumed to be in operation 1/3 of the year.
- Storage Tanks: Working, breathing and flashing emissions of VOC and HAPs from the produced fluid stored in the tanks at the facility are calculated using API E&P TANK v2.0. The site is not expected to produce condensate, so the estimate condensate throughput is zero. The site's maximum expected produced water throughput is 9,831,213 gallons per year (which is approximately 8 times the maximum monthly throughput at the BIG-192 wellpad, annualized). The E&P Tank throughput takes into account that produced water is conservatively assumed to contain 1% condensate in accordance with guidance from the Texas Commission on Environmental Quality on estimating emissions from produced water.^{4,5} This results in a total of 98,312 gallons/year of condensate for all tanks, and approximately 1 bbl/day per tank. This throughput is used in E&P Tank calculations. Below is an example calculation for the total throughput used as an input to E&P Tank on a bbl/day per tank basis.

16************************************

Throughput per Tank $\left(\frac{bbl}{day}\right)$	
$\left(Condensate Throughput \left(\frac{bbl}{month}\right) + \left(Produced Water Throughput \left(\frac{bbl}{month}\right) * 1\% (Condensate in Produced Water)\right) * - \frac{1}{2} + $	$\left(\frac{months}{year}\right) \\ \overline{365\left(\frac{days}{year}\right)} \right)$
– Number of tanks at wellpad	

- > Tank Truck Loading: Emissions of VOC and HAPs from the loading of organic liquids from storage tanks to tank truck are calculated using U.S. EPA's AP-42 Chapter 5 Section 2 factors.⁶
- > Haul Roads: Fugitive dust emitted from facility roadways has been estimated using projected vehicle miles traveled along with U.S. EPA's AP-42 factors for unpaved haul roads.⁷
- Triethylene Glycol Dehydration Unit: Potential emissions of HAPs, VOC, and methane from the dehy are calculated using GRI-GLYCalc. Controlled emissions assume a total control efficiency of 98% (100% capture, 98% destruction) from the combustor.

This section documents the applicability determinations made for Federal and State air quality regulations. In this section, applicability or non-applicability of the following regulatory programs is addressed:

- > Prevention of Significant Deterioration (PSD) permitting;
- > Title V of the 1990 Clean Air Act Amendments;
- New Source Performance Standards (NSPS);
- > National Emission Standards for Hazardous Air Pollutants (NESHAP); and
- > West Virginia State Implementation Plan (SIP) regulations.

This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-C permit application forms.

In addition to providing a summary of applicable requirements, this section of the application also provides nonapplicability determinations for certain regulations, allowing the WVDEP to confirm that identified regulations are not applicable to the wellpad. Note that explanations of non-applicability are limited to those regulations for which there may be some question of applicability specific to the operations at the wellpad. Regulations that are categorically non-applicable are not discussed (e.g., NSPS Subpart J, Standards of Performance for Petroleum Refineries).

3.1. PREVENTION OF SIGNIFICANT DETERIORATION (PSD) SOURCE CLASSIFICATION

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD). PSD regulations apply when a major source makes a change, such as installing new equipment or modifying existing equipment, and a significant increase in emissions results from the change. The wellpad is not a major source with respect to the PSD program since its potential emissions are below all the PSD thresholds. As such, PSD permitting is not triggered by this permitting activity. EQT will monitor future construction activities at the site closely and will compare any future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

3.2. TITLE V OPERATING PERMIT PROGRAM

Title 40 of the Code of Federal Regulations Part 70 (40 CFR 70) establishes the federal Title V operating permit program. West Virginia has incorporated the provisions of this federal program in its Title V operating permit program in West Virginia Code of State Regulations (CSR) 45-30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP and 100 tpy of all other regulated pollutants.⁸ The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpad is not a major source for Title V purposes.

3.3. NEW SOURCE PERFORMANCE STANDARDS

New Source Performance Standards (NSPS), located in 40 CFR 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best demonstrated technology as specified in the applicable

provisions. Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, except where expressly noted. The following is a summary of applicability and non-applicability determinations for NSPS regulations of relevance to the wellpad.

3.3.1. NSPS Subparts D, Da, Db, and Dc

These subparts apply to steam generating units of various sizes, all greater than 10 MMBtu/hr. The proposed project does not include any steam generating units, therefore the requirements of these subparts do not apply.

3.3.2. NSPS Subparts K, Ka, and Kb

These subparts apply to storage tanks of certain sizes constructed, reconstructed, or modified during various time periods. Subpart K applies to storage tanks constructed, reconstructed, or modified prior to 1978, and Subpart Ka applies to those constructed, reconstructed, or modified prior to 1984. Both Subparts K and Ka apply to storage tanks with a capacity greater than 40,000 gallons. Subpart Kb applies to volatile organic liquid (VOL) storage tanks constructed, reconstructed, or modified after July 23, 1984 with a capacity equal to or greater than 75 m³ (~19,813 gallons). All of the tanks at the wellpad will have a capacity of 19,813 gallons or less. As such, Subparts K, Ka, and Kb do not apply to the storage tanks at the wellpad.

3.3.3. NSPS Subpart OOOO–Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart OOOO, Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution, applies to affected facilities that commenced construction, reconstruction, or modification after August 23, 2011 and on or before September 18, 2015. The GLO-76 wellpad does not include any equipment which falls into this date range; therefore, this subpart is not applicable to this permitting activity.

3.3.4. NSPS Subpart OOOOa-Crude Oil and Natural Gas Facilities

Subpart OOOOa, Standards of Standards of Performance for Crude Oil and Natural Gas Facilities, applies to affected facilities that commenced construction, reconstruction, or modification after September 18, 2015. The regulation was published final in the Federal Register on June 3, 2016. The rule includes provisions for the following facilities:

- > Hydraulically fractured wells;
- Centrifugal compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- Reciprocating compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- Continuous bleed natural gas-driven pneumatic controllers with a bleed rate of > 6 scfh located in the production, gathering, processing, or transmission and storage segments (excluding natural gas processing plants);
- > Continuous bleed natural gas-driven pneumatic controllers located at natural gas processing plants;
- > Pneumatic pumps located in the production and processing segments;
- > Storage vessels located in the production, gathering, processing, or transmission and storage segments;
- > The collection of fugitive emissions components at a well site;
- > The collection of fugitive emissions components at a compressor station; and
- > Sweetening units located onshore that process natural gas produced from either onshore or offshore wells.

There are ten (10) produced fluid storage vessels, one (1) sand separator storage vessel, and one (1) dehydrator drip fluid storage vessel at the wellpad. The storage vessels at the facility will each have uncontrolled potential VOC emissions less than 6 tpy based on the permit application materials and enforceable limits to be included in the G70-C permit. As such, per 60.5365a(e), the tanks are not storage vessel affected facilities under the rule.

As the collection of fugitive emissions components at the well site commenced construction after September 18, 2015, the well site will be subject to the leak detection and repair (LDAR) requirements of the rule. This includes developing an emissions monitoring plan, conducting leak surveys (on a semi-annual basis) and associated repair activities, and maintaining records and submitting annual reports in accordance with the requirements of the rule.

The pneumatic controllers will potentially subject to NSPS 0000a. Per 60.5365a(d)(1), a pneumatic controller affected facility is a single continuous bleed natural gas driven pneumatic controller operating at a natural gas bleed rate greater than 6 scfh. No pneumatic controllers installed will meet the definition of a pneumatic controller affected facility. Therefore, these units are not subject to the requirements of Subpart 0000a.

3.3.5. Non-Applicability of All Other NSPS

NSPS are developed for particular industrial source categories. Other than NSPS developed for natural gas processing plants (Subparts 0000) and associated equipment (Subparts D-Dc and K-Kb), the applicability of a particular NSPS to the wellpad can be readily ascertained based on the industrial source category covered. All other NSPS are categorically not applicable to the proposed project.

3.4. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP)

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The wellpad is an Area (minor) source of HAP since its potential emissions of HAP are less than the 10/25 major source thresholds. NESHAP apply to sources in specifically regulated industrial source categories (Clean Air Act Section 112(d)) or on a case-by-case basis (Section 112(g)) for facilities not regulated as a specific industrial source type. Besides 40 CFR 63 Subpart A (NESHAP Subpart A), which is similar to 40 CFR 60 Subpart A (NSPS Subpart A), the following NESHAP could potentially apply to the wellpad:

- > 40 CFR Part 63 Subpart HH Oil and Natural Gas Production Facilities
- > 40 CFR Part 63 Subpart JJJJJJ Industrial, Commercial, and Institutional Boilers

The applicability of these NESHAP Subparts is discussed in the following sections.

3.4.1. 40 CFR 63 Subpart HH - Oil and Natural Gas Production Facilities

Glycol dehydration units are potentially subject to Subpart HH, NESHAP from Natural Gas Production Facilities. This standard applies to such units at natural gas production facilities that are major or area sources of HAP emissions. The GLO-76 wellpad will be an area source of HAP emissions. Even though the dehydration unit at the wellpad is considered an affected area source, it is exempt from the requirements of § 63.764(d)(2) since the actual average benzene emissions from the glycol dehydration unit process vent to the atmosphere is less than 0.90 Mg (1.0 TPY), as determined by the procedures specified in § 63.772(b)(2). However, the facility must maintain records as required in §63.774(d)(1).

3.4.2. 40 CFR 63 Subpart JJJJJJ - Industrial, Commercial, and Institutional Boilers

This MACT standard applies to industrial, commercial, and institutional boilers of various sizes and fuel types at area sources. All proposed units are natural gas fired; therefore the requirements of this subpart do not apply.

3.5. WEST VIRGINIA SIP REGULATIONS

The wellpad is potentially subject to regulations contained in the West Virginia Code of State Regulations, Chapter 45 (Code of State Regulations). The Code of State Regulations fall under two main categories, those regulations that are

generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., PM standards for manufacturing equipment).

3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

45 CSR 2 applies to fuel burning units, defined as equipment burning fuel "for the primary purpose of producing heat or power by indirect heat transfer". The reboiler, TEGs, and line heaters are fuel burning units and therefore must comply with this regulation. Per 45 CSR 2-3, opacity of emissions from units shall not exceed 10 percent. Per 45 CSR 2-4, PM emissions from the units will not exceed a level of 0.09 multiplied by the heat design input in MMBtu/hr of the unit.

3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

According to 45 CSR 4-3:

No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.

The wellpad is generally subject to this requirement. However, due to the nature of the process at the wellpad, production of objectionable odor from the wellpad during normal operation is unlikely.

3.5.3. 45 CSR 6: Control of Air Pollution from the Combustion of Refuse

45 CSR 6 applies to activities involving incineration of refuse, defined as "the destruction of combustible refuse by burning in a furnace designed for that purpose. For the purposes of this rule, the destruction of any combustible liquid or gaseous material by burning in a flare or flare stack, thermal oxidizer or thermal catalytic oxidizer stack shall be considered incineration." The enclosed combustor is an incinerator and therefore must comply with this regulation. Per 45 CSR 6-4.3, opacity of emissions from this unit shall not exceed 20 percent, except as provided by 4.4. PM emissions from this unit will not exceed the levels calculated in accordance with 6-4.1

3.5.4. 45 CSR 16: Standards of Performance for New Stationary Sources

45 CSR 16-1 incorporates the federal Clean Air Act (CAA) standards of performance for new stationary sources set forth in 40 CPR Part 60 by reference. As such, by complying with all applicable requirements of 40 CFR Part 60 at the wellpad, EQT will be complying with 45 CSR 16.

3.5.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage and Other Sources of Fugitive Particulate Matter

According to 45 CSR 17-3.1:

No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

Due to the nature of the activities at the wellpad, it is unlikely that fugitive particulate matter emissions will be emitted under normal operating conditions. However, EQT will take measures to ensure any fugitive particulate matter emissions will not cross the property boundary should such emissions occur.

3.5.6. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks

45 CSR 21-28 applies to any fixed roof petroleum liquid storage tank with a capacity greater than 40,000 gallons. The capacity of each storage tank proposed for the wellpad is less than 40,000 gallons; therefore, 45 CSR 21-28 will not apply to the petroleum liquid storage tanks at this wellpad.

3.5.7. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants

45 CSR 34-1 incorporates the federal Clean Air Act (CAA) national emissions standards for hazardous air pollutants (NESHAPs) as set forth in 40 CPR Parts 61 and 63 by reference. As such, by complying with all applicable requirements of 40 CFR Parts 61 and 63 at the wellpad, EQT will be complying with 45 CSR 34. Note that there are no applicable requirements under 40 CFR Parts 61 and 63 for the wellpad.

3.5.8. Non-Applicability of Other SIP Rules

A thorough examination of the West Virginia SIP rules with respect to applicability at the wellpad reveals many SIP regulations that do not apply or impose additional requirements on operations. Such SIP rules include those specific to a particular type of industrial operation that is categorically not applicable to the wellpad.

The WVDEP permit application forms contained in this application include all applicable G70-C application forms including the required attachments.

	POLLUTION IN F DMINISTRATIVE		CTION, MODIFICATION,
CONSTRUCTION MODIFICATION RELOCATION		□CLASS I ADMINISTRATIV ⊠CLASS II ADMINISTRATIV	E UPDATE
SEC	CTION 1. GENERA	L INFORMATION	annoonling as a second second second by data by d
Name of Applicant (as registered with the W	V Secretary of Sta	te's Office): EQT Production	Company
Federal Employer ID No. (FEIN): 25-07246	685		
Applicant's Mailing Address: 625 Liberty A	venue, Suite 170	0	
City: Pittsburgh	State: PA		ZIP Code: 15222
Facility Name: GLO-76 Wellpad			
Operating Site Physical Address: If none available, list road, city or town and	zip of facility. Ma	nnington, Marion County	
City: Mannington	Zip Code:		County: Marion
Latitude & Longitude Coordinates (NAD83, Latitude: 39.56398 N Longitude: -80.48958 W	Decimal Degrees to	o 5 digits):	
SIC Code: 1311		DAO Facility ID No. (For exis	ting facilities)
NAICS Code: 211111		049-00188	•
С	ERTIFICATION OI	F INFORMATION	
This G70-C General Permit Registration Official is a President, Vice President, Sec Directors, or Owner, depending on business authority to bind the Corporation, Pa Proprietorship. Required records of dail compliance certifications and all requir Representative. If a business wishes to certi off and the appropriate names and signa unsigned G70-C Registration Application utilized, the application will b	retary, Treasurer, G structure. A busine rtnership, Limited L y throughput, hours ed notifications mu fy an Authorized R atures entered. Any will be returned to e returned to the a	eneral Partner, General Manag ess may certify an Authorized F Liability Company, Association of operation and maintenance st be signed by a Responsible epresentative, the official agree administratively incomplete the applicant. Furthermore pplicant. No substitution of	er, a member of the Board of Representative who shall have , Joint Venture or Sole , general correspondence, Official or an Authorized ement below shall be checked or improperly signed or e, if the G70-C forms are not forms is allowed.
l hereby certify that <u>Kenneth Kirk</u> of the business (e.g., Corporation, Partnersh Proprietorship) and may obligate and legally Responsible Official shall notify the Directo	ip, Limited Liabilit bind the business	If the business changes its Au	Venture or Sole
l hereby certify that all information contain documents appended hereto is, to the best o have been made to provide the most compre	f my knowledge, tru	ie, accurate and complete, and	lication and any supporting that all reasonable efforts
Responsible Official Signature: Name and Title: Kenneth Kirk, Executive V Email: KKirk@eqt.com	ice President Date: 4	4125539 115516	5700 Fax:
lf applicable			
Authorized Representative Signature: Name and Title:		Phone	Fax:
Email:	Date:		
If applicable: Environmental Contact Name and Title: Alex Bosiljevac, Environm Email: ABosiljevac@eqt.com	ental Coordinator Date:	Phone: 412-395-3699	Fax: 412-395-7027

OPERATING SITE INFORMATION						
Briefly describe the proposed new operation and/or any change(s) to the facility:						
General permit application for an existing natural gas production well pad. This application seeks to replace current combustor with a smaller one.						
Directions to the facility: Head North on I-79 to exit 136. At the bottom of the ramp make a left onto Fairmont Gateway Connector, then go 1.2 miles going straight through two traffic circles. Continue straight onto Jefferson St. crossing the bridge, for 0.4 miles. Turn left onto Jackson St. and continue 0.1 miles to U.S. Rt. 250 North. Turn right and go 13.4 miles to Market Street, then turn left. Travel 0.1 miles, continue on Buffalo St. Continue 5.9 miles, then turn left onto Brink Road (Co Rt. 1). Travel 4.5 miles to access road on right.						
ATTACHMENTS AND SUPPORTING DOC	UMENTS					
I have enclosed the following required documents:						
Check payable to WVDEP – Division of Air Quality with the appropriate applica	ntion fee (per 45CSR13 and 45CSR22).					
 □ Check attached to front of application. □ I wish to pay by electronic transfer. Contact for payment (incl. name and email address): □ I wish to pay by credit card. Contact for payment (incl. name and email address): R. Alex Bosiljevac, abosiljevac@eqt.com □ \$500 (Construction, Modification, and Relocation) □ \$300 (Class II Administrative Update) □ \$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or OOOO ¹ □ \$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH ² 						
 ¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be wa requirements by complying with NSPS, Subparts IIII and/or JJJJ. NSPS and NESHAP fees apply to new construction or if the source is being modified. 						
⊠ Responsible Official or Authorized Representative Signature (if applicable)						
Single Source Determination Form (must be completed in its entirety) – Att	achment A					
□ Siting Criteria Waiver (if applicable) – Attachment B ⊠ Current Busin	ess Certificate – Attachment C					
☐ Process Flow Diagram – Attachment D ☐ Process Descr	iption – Attachment E					
⊠ Plot Plan – Attachment F ⊠ Area Map – A	ttachment G					
☐ G70-C Section Applicability Form – Attachment H ⊠ Emission Unit	s/ERD Table – Attachment I					
🖾 Fugitive Emissions Summary Sheet – Attachment J						
🖾 Gas Well Affected Facility Data Sheet (if applicable) – Attachment K						
Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simula HYSYS, etc.), etc. where applicable) – Attachment L	tion software (e.g. ProMax, E&P Tanks,					
⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In M	n-Line Heaters if applicable) – Attachment					
□ Internal Combustion Engine Data Sheet(s) (include manufacturer performance N	e data sheet(s) if applicable) – Attachment					
🖾 Tanker Truck Loading Data Sheet (if applicable) – Attachment O						
\boxtimes Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P						
Pneumatic Controllers Data Sheet – Attachment Q						
Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include applicable) – Attachment R	Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment R					
Emission Calculations (please be specific and include all calculation methodologies used) – Attachment S						
⊠ Facility-wide Emission Summary Sheet(s) – Attachment T						
🛛 Class I Legal Advertisement – Attachment U						
Solution One (1) paper copy and two (2) copies of CD or DVD with pdf copy of applic	ation and attachments					

All attachments must be identified by name, divided into sections, and submitted in order.

ATTACHMENT A

Single Source Determination

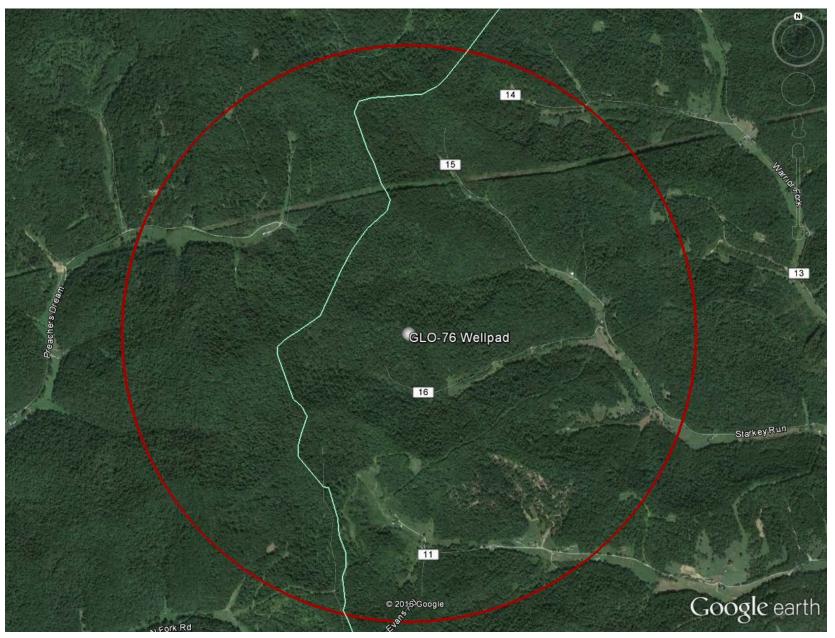
ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

Is there a facility owned by or associated with the natural gas industry located within one (1) mile of the proposed facility? Yes \square No \boxtimes

If Yes, please complete the questionnaire on the following page (Attachment A).


Please provide a source aggregation analysis for the proposed facility below:

Please see discussion in the Application Report.

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM – NOT APPLICABLE

Answer each question with a detailed explanation to determine contigu		
properties which are under a common control and any support facilitie	s. This	section
must be completed in its entirety.		
Provide a map of contiguous or adjacent facilities (production facilities, compressor stations, dehydr which are under common control and those facilities that are not under common control but are supp indicate the SIC code, permit number (if applicable), and the distance between facilities in question	ort facilitie	s. Please
Are the facilities owned by the same parent company or a subsidiary of the parent company? Provide the owners identity and the percentage of ownership of each facility.	Yes 🗆	No 🗆
Does an entity such as a corporation have decision making authority over the operation of a second entity through a contractual agreement or voting interest? Please explain.	Yes 🗆	No 🗆
Is there a contract for service relationship between the two (2) companies or, a support/dependency relationship that exists between the two (2) companies? Please explain.	Yes 🗆	No 🗆
Do the facilities share common workforces, plant managers, security forces, corporate executive officers or board executives?	Yes 🗆	No 🗆
Will managers or other workers frequently shuttle back and forth to be involved actively at both facilities?	Yes 🗆	No 🗆
Do the facilities share common payroll activities, employee benefits, health plans, retirement funds, insurance coverage, or other administrative functions? Please explain.	Yes 🗆	No 🗆
Does one (1) facility operation support the operation of the other facility?	Yes 🗆	No 🗆
Is one (1) facility dependent on the other? If one (1) facility shuts down, what are the limitations on the other to pursue outside business? Please explain.	Yes 🗆	No 🗆
Are there any financial arrangements between the two (2) entities?	Yes 🗆	No 🗆
Are there any legal or lease agreements between the two (2) facilities?	Yes 🗆	No 🗆
Do the facilities share products, byproducts, equipment, or other manufacturing or air pollution control device equipment? Please explain.	Yes 🗆	No 🗆
Do all the pollutant-emitting activities at the facilities belong to the same SIC Code? Please provide the SIC Codes.	Yes 🗆	No 🗆
Was the location of the new facility chosen primarily because of its proximity to the existing facility to integrate the operation of the two (2) facilities? Please explain.	Yes 🗆	No 🗆
Will materials be routinely transferred between the two (2) facilities? Please explain the amount of transfer and how often the transfers take place and what percentages go to the various entities.	Yes 🗆	No 🗆
Does the facility influence production levels or compliance with environmental regulations at other facilities? Who accepts the responsibility for compliance with air quality requirements? Please explain.	Yes 🗆	No 🗆
	<u> </u>	

ATTACHMENT A: SINGLE SOURCE DETERMINATION MAP

Note – red ring is a 1-mile radius from GLO-76

ATTACHMENT B

Siting Criteria Waiver (Not Applicable)

ATTACHMENT B - SITING CRITERIA WAIVER – NOT APPLICABLE

If applicable, please complete this form and it must be notarized.

G70-C General Permit Siting Criteria Waiver

WV Division of Air Quality 300' Waiver

I ______ hereby
Print Name
acknowledge and agree that ______ will
General Permit Applicant's Name

construct an emission unit(s) at a natural gas production facility that will be located within 300' of my dwelling and/or business.

I hereby offer this waiver of siting criteria to the West Virginia Department of Environmental Protection Division of Air Quality as permission to construct, install and operate in such location.

.

Signed:

Signature	Date
Signature	Date
Taken, subscribed and sworn before me this _	dav of
,	
, 20	
, 20	
My commission expires:	
SEAL	
Notary Public	

ATTACHMENT C

Business Certificate

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: EQT PRODUCTION COMPANY 625 LIBERTY AVE 1700 PITTSBURGH, PA 15222-3114

BUSINESS REGISTRATION ACCOUNT NUMBER:

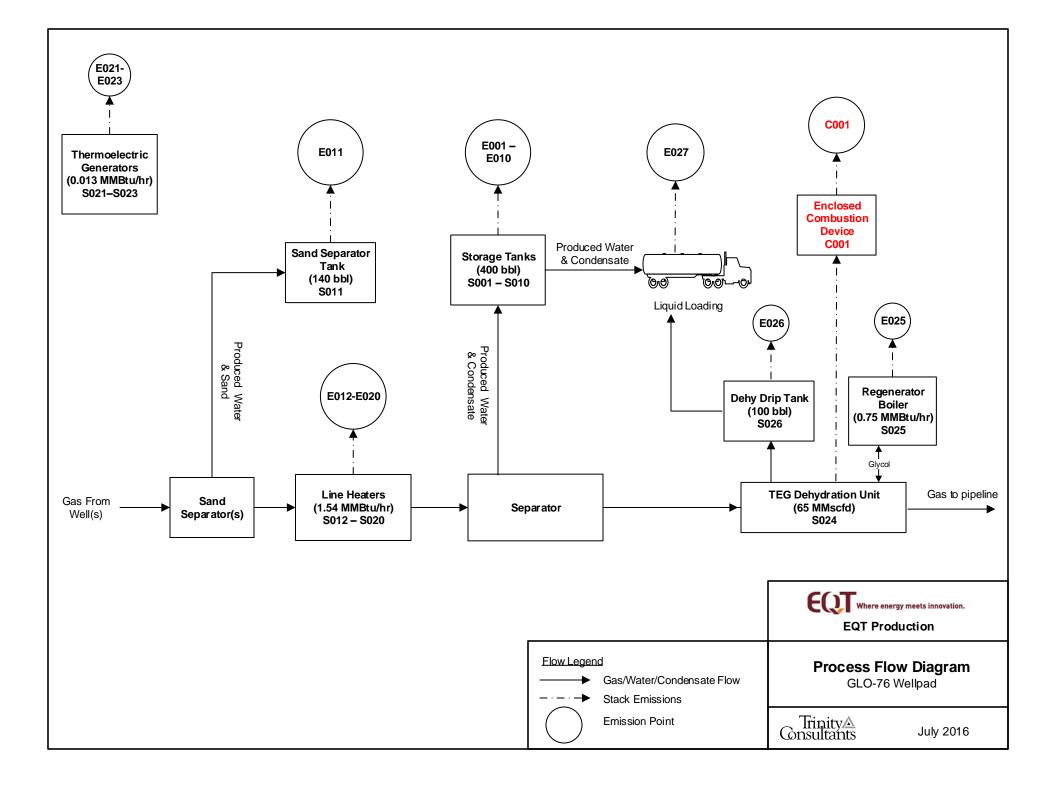
1022-8081

This certificate is issued on: 08/4/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.


Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.3 L0553297664

ATTACHMENT D

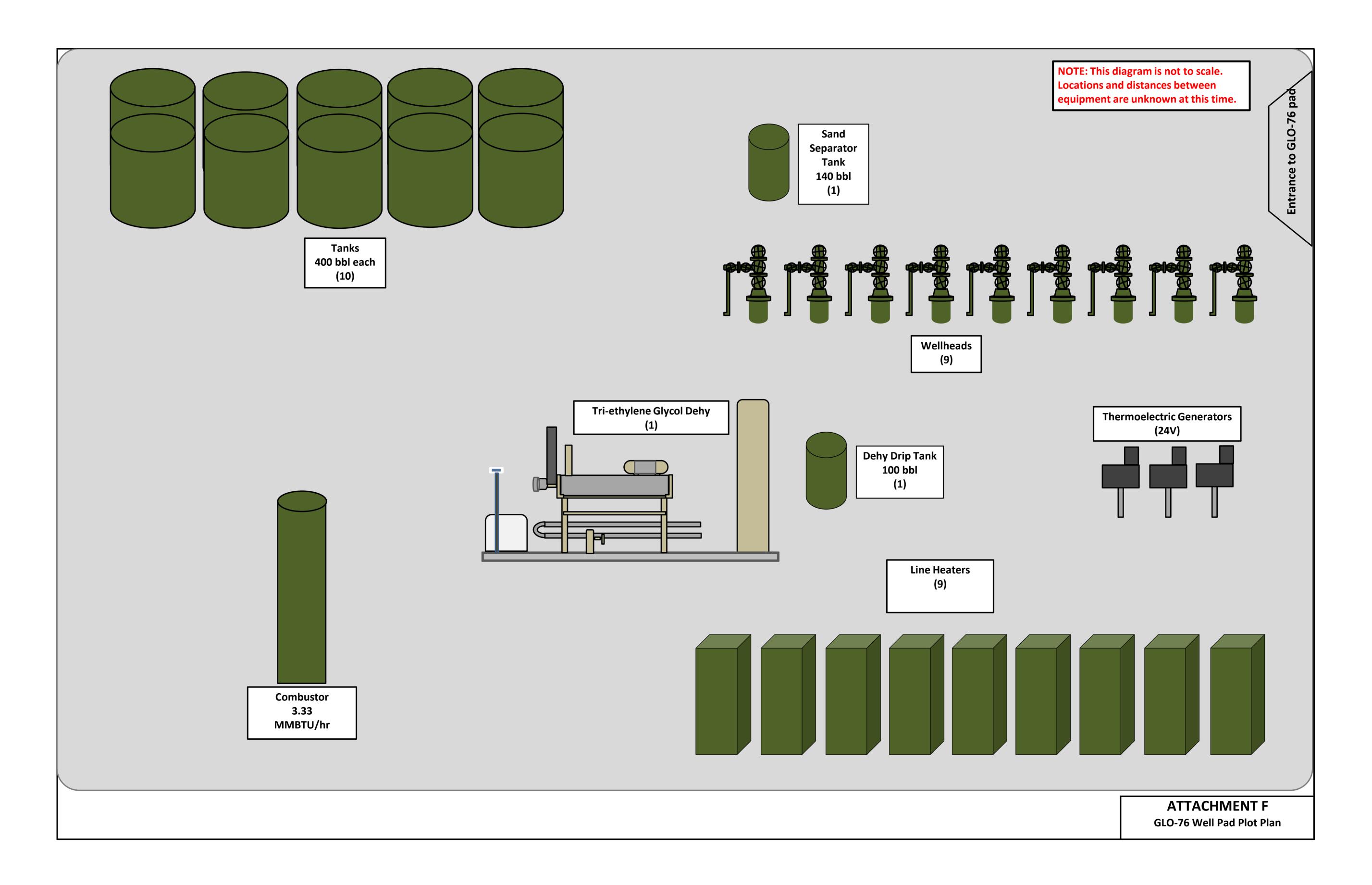
Process Flow Diagram

ATTACHMENT E

Process Description

ATTACHMENT E: PROCESS DESCRIPTION

EQT is submitting the application to replace the existing 36" combustor associated with the triethylene glycol (TEG) dehydration unit at the wellpad with a 24" combustor. Additionally, this application seeks to convert the current General Permit G70-A188 to the G-70C.


The GLO-76 wellpad will consist of nine (9) wells, each with the same basic operation. The incoming gas stream from the underground wells will pass through a sand separator, where sand, water, and residual solids are displaced and transferred to the sand separator tank. The gas will then flow into a separator which separates produced fluids from the gas stream. The produced fluid will be transferred to the storage tanks. Once the tanks are filled, the contents will be loaded into trucks for transport. The wet gas stream from the separator will pass through the TEG dehydration unit to remove excess water from the gas stream. Emissions from the dehydrator will be controlled by an enclosed combustor. Excess produced fluids separated from the dehydrator will be stored at the dehydrator drip tank. At the wellpad, heat will be provided by line heaters and electricity will be provided by thermoelectric generators.

A process flow diagram is included as Attachment D.

ATTACHMENT F

Plot Plan

EQT Production, LLC | GLO-76 Pad Trinity Consultants

ATTACHMENT G

Area Map

EQT Production, LLC | GLO-76 Pad Trinity Consultants

ATTACHMENT G: AREA MAP

Figure 1 - Map of GLO-76 Location

 UTM Northing (KM):
 4,337.873

 UTM Easting (KM):
 515.746

 Elevation:
 ~1,114 ft

ATTACHMENT H

Applicability Form

ATTACHMENT H – G70-C SECTION APPLICABILITY FORM

General Permit G70-C Registration Section Applicability Form

General Permit G70-C was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-C allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PERMIT G70-C APPLICABLE SECTIONS					
⊠ Section 5.0	Gas Well Affected Facility (NSPS, Subpart OOOO)				
Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹				
□ Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO)				
Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO and/or NESHAP Subpart HH				
Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc				
□ Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)				
□ Section 11.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO) ²				
□ Section 12.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO) ²				
□ Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines, Microturbines				
Section 14.0	Tanker Truck Loading ³				
Section 15.0	Glycol Dehydration Units ⁴				

1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 8.

2 Applicants that are subject to Section 11 and 12 may also be subject to the applicable RICE requirements of Section 13.

3 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.

4 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

ATTACHMENT I

Emission Units Table

EQT Production, LLC | GLO-76 Pad Trinity Consultants

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
S001	E001	Produced Fluid Storage Tank	2016	2016	400 bbl	Existing; No change	None	
S002	E002	Produced Fluid Storage Tank	2016	2016	400 bbl	Existing; No change	None	
S003	E003	Produced Fluid Storage Tank	2016	2016	400 bbl	Existing; No change	None	
S004	E004	Produced Fluid Storage Tank	2016	2016	400 bbl	Existing; No change	None	
S005	E005	Produced Fluid Storage Tank	2016	2016	400 bbl	Existing; No change	None	
S006	E006	Produced Fluid Storage Tank	2016	2016	400 bbl	Existing; No change	None	
S007	E007	Produced Fluid Storage Tank	2016	2016	400 bbl	Existing; No change	None	
S008	E008	Produced Fluid Storage Tank	2016	2016	400 bbl	Existing; No change	None	
S009	E009	Produced Fluid Storage Tank	2016	2016	400 bbl	Existing; No change	None	
S010	E010	Produced Fluid Storage Tank	2016	2016	400 bbl	Existing; No change	None	
S011	E011	Sand Separator Tank	2016	2016	140 bbl	Existing; No change	None	
S012	E012	Line Heater	2016	2016	1.54 MMBtu/hr	Existing; No change	None	
S013	E013	Line Heater	2016	2016	1.54 MMBtu/hr	Existing; No change	None	
S014	E014	Line Heater	2016	2016	1.54 MMBtu/hr	Existing; No change	None	
S015	E015	Line Heater	2016	2016	1.54 MMBtu/hr	Existing; No change	None	
S016	E016	Line Heater	2016	2016	1.54 MMBtu/hr	Existing; No change	None	
S017	E017	Line Heater	2016	2016	1.54 MMBtu/hr	Existing; No change	None	
S018	E018	Line Heater	2016	2016	1.54 MMBtu/hr	Existing; No change	None	
S019	E019	Line Heater	2016	2016	1.54 MMBtu/hr	Existing; No change	None	

S020	E020	Line Heater	2016	2016	1.54 MMBtu/hr	Existing; No change	None	
S021	E021	Thermoelectric Generator	2016	2016	0.013 MMBtu/hr	Existing; No change	None	
S022	E022	Thermoelectric Generator	2016	2016	0.013 MMBtu/hr	Existing; No change	None	
S023	E023	Thermoelectric Generator	2016	2016	0.013 MMBtu/hr	Existing; No change	None	
S024	C001	Dehydration Unit	2016	2016	65 MMSCFD	Existing; No change	C001	
S025	E025	Reboiler	2016	2016	0.75 MMBtu/hr	Existing; No change	None	
S026	E026	Dehy Drip Tank	2016	2016	100 bbl	Existing; No change	None	
S027	E027	Liquid Loading	2016	2016	9,972,333 Gal	Existing; No change	None	
C001	C001	Combustor	TBD	TBD	3.33 MMBTU/hr	New (Replacement)	N/A	

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.
 ² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.
 ³ When required by rule
 ⁴ New, modification, removal, existing
 ⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.
 ⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

ATTACHMENT J

Fugitive Emissions Summary Sheet

			ATTACHMEN	T J – FUGITIVE EMIS	SIONS SUMN	IARY SHEET	Г	
		Sources	of fugitive emissions may Use extra pages	y include loading operation for each associated source	· • •			etc.
	Source/Equipm	ent: Fugiti	ve Emissions					
	Leak Detection Method Used		Audible, visual, and Audible, Visual, and Audible, AVO) inspections	□ Infrared (FLIR) cameras	⊠ Other (please Will satisfy con	e describe) dition 4.1.4. of the	e G70-C	□ None required
Componen	Closed	Closed Source of Look Factors		Leak Factors	Stream type	E	stimated Emissions	(tpy)
Туре	Vent System	Count		Source of Leak Factors (EPA, other (specify))		VOC	НАР	GHG (CO ₂ e)
Pumps	□ Yes ⊠ No	1	Protocol for Equipment Leak	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).			1.4E-04	
Valves	□ Yes ⊠ No	485	Protocol for Equipment Leak	ality Planning and Standards. Emission Estimates. Table 2-1. 95-017, 1995).	⊠ Gas □ Liquid □ Both	2.03	0.02	54.48
Safety Relie Valves	ef □ Yes ⊠ No	51	Protocol for Equipment Leak	ality Planning and Standards. Emission Estimates. Table 2-1. 95-017, 1995).	⊠ Gas □ Liquid □ Both	3.73	0.04	8.49
Open Endec Lines	l □ Yes ⊠ No	25	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).		☐ Gas □ Liquid ⊠ Both	0.03	2.9E-4	6.34
Sampling Connection	s I Yes No		1	N/A				
Connection: (Not samplin		2,028	Protocol for Equipment Leak	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).		2.61	0.03	25.31
Compressor	rs		!	N/A	☐ Gas ☐ Liquid ☐ Both			
Flanges	□ Yes □ No		(included ir	connections)	☐ Gas ☐ Liquid ☐ Both			
Other ¹	□ Yes ⊠ No	45	40 CFR 98	3 Subpart W	⊠ Gas □ Liquid □ Both	3.03	0.03	842.45
¹ Other equ	ipment types m	ay include	compressor seals, relief valves, c	liaphragms, drains, meters, etc.	,			

Other equipment types may include compressor sears, rener varyes, drapmagins, drams, meters, etc.

Please provide an explanation of the sources of fugitive emissions (e.g. pigging operations, equipment blowdowns, pneumatic controllers, etc.): Pneumatic Controller count is 'Other' category. An estimate of Miscellaneous Gas Venting emissions are included in the Emission Calculations and serve to include such sources as compressor venting, pigging, vessel blowdowns and other sources.

Please indicate if there are any closed vent bypasses (include component): N/A

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.) N/A

ATTACHMENT K

Gas Well Data Sheet

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback ¹	Date of Well Completion ²	Green Completion and/or Combustion Device
47-049-02346	04/21/2016	03/16/2016	Green
47-049-02329	04/26/2016	03/27/2016	Green
47-049-02347	04/30/2016	03/25/2016	Green
47-049-02401	04/30/2016	03/30/2016	Green
47-049-02334	04/22/2016	03/21/2016	Green
47-049-02332	04/26/2016	04/02/2016	Green

Note: If future wells are planned and no API number is available please list as PLANNED. If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

047 =	State code. The state code for WV is 047.
001 =	County Code. County codes are odd numbers, beginning with 001
	(Barbour) and continuing to 109 (Wyoming).
00001=	Well number. Each well will have a unique well number.

¹ Start date of well fluid flowback

² Start date of frac plug drill out

ATTACHMENT L

Storage Vessel Data Sheet

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water . (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- ⊠ Composition of the representative sample used for the simulation
- ☑ For each stream that contributes to flashing emissions:
 - \boxtimes Temperature and pressure (inlet and outlet from separator(s))
 - ⊠ Simulation-predicted composition
 - ⊠ Molecular weight
 - \boxtimes Flow rate
- ⊠ Resulting flash emission factor or flashing emissions from simulation
- ⊠ Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name	2. Tank Name
GLO-76 Wellpad	Produced Liquid Tanks
3. Emission Unit ID number	4. Emission Point ID number
S001-S010	E001-E010
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change: none
Was the tank manufactured after August 23, 2011?	\Box New construction \Box New stored material
\boxtimes Yes \square No	\Box Other (Low Pressure Tower) \Box Relocation
7A. Description of Tank Modification (if applicable) N/A	
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.
\Box Yes \boxtimes No	
7C. Was USEPA Tanks simulation software utilized?	
🗆 Yes 🛛 No	
If Yes, please provide the appropriate documentation and items	8-42 below are not required.

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the interna	l cross-sectional area multiplied by internal height.						
400 bbls							
9A. Tank Internal Diameter (ft.) ~12	9B. Tank Internal Height (ft.) ~20						
10A. Maximum Liquid Height (ft.) ~20	10B. Average Liquid Height (ft.) ~10						
11A. Maximum Vapor Space Height (ft.) ~20	11B. Average Vapor Space Height (ft.) ~10						
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 400 bbls						
13A. Maximum annual throughput (gal/yr) See attached	13B. Maximum daily throughput (gal/day) See attached						
emissions calculations for all throughput values	emissions calculations for all throughput values						
14. Number of tank turnovers per year See attached	15. Maximum tank fill rate (gal/min) See attached emissions						
emissions calculations for all throughput values	calculations for all throughput values						
16. Tank fill method \Box Submerged \boxtimes Splash	Bottom Loading						
17. Is the tank system a variable vapor space system? \Box Yes	🖾 No						
If yes, (A) What is the volume expansion capacity of the system	(gal)?						
(B) What are the number of transfers into the system per y	/ear?						
18. Type of tank (check all that apply):							
\boxtimes Fixed Roof \boxtimes vertical \square horizontal \square flat roof	\boxtimes cone roof \square dome roof \square other (describe)						
□ External Floating Roof □ pontoon roof □ double	deck roof						
Domed External (or Covered) Floating Roof							
□ Internal Floating Roof □ vertical column support	□ self-supporting						
□ Variable Vapor Space □ lifter roof □ diaphragm							
□ Pressurized □ spherical □ cylindrical							
□ Other (describe)							

PRESSURE/VACUUM CONTROL DATA

19. Check as many as appl	y:									
\Box Does Not Apply	□ Rupture Disc (psig)									
□ Inert Gas Blanket of				□ Carbo	n Adsorpt	tion ¹				
□ Vent to Vapor Combus	tion Dev	ice ¹ (vapo	r combust	tors, flares	, thermal o	oxidizers,	enclosed o	combustors	3)	
Conservation Vent (psi	g) – Enai	rdo Valve			Condense	r^1				
0.5 oz Vacuum Setting	12.5 o	z Pressur	e Setting							
Emergency Relief Valv	e (psig)									
Vacuum Setting	14.4 Pr	essure Set	tting							
□ Thief Hatch Weighted	□Yes [⊠ No – Ca	ashco Loc	kdown Ha	itch					
¹ Complete appropriate Air	Pollutio	n Control	Device Sl	heet						
20. Expected Emission Rat	te (submi	it Test Da	ta or Calc	ulations he	ere or else	where in t	he applica	tion).		
	Flashing Loss Breathing Loss Working Loss Total Estimation Method ¹									
Material Name	Flashi	ng Loss	Breath	ing Loss	Workir	ng Loss	Total		Estimation Method ¹	
Material Name	Flashi	ng Loss	Breath	ing Loss	Workir	ng Loss		ons Loss	Estimation Method ¹	
Material Name	Flashin lb/hr	ng Loss tpy	Breath lb/hr	ing Loss	Workin	ng Loss tpy		ons Loss tpy	Estimation Method ¹	
Material Name		tpy	lb/hr	_	lb/hr	tpy	Emissio lb/hr		Estimation Method ¹	
Material Name		tpy	lb/hr	tpy	lb/hr	tpy	Emissio lb/hr		Estimation Method ¹	
Material Name		tpy	lb/hr	tpy	lb/hr	tpy	Emissio lb/hr		Estimation Method ¹	
Material Name		tpy	lb/hr	tpy	lb/hr	tpy	Emissio lb/hr		Estimation Method ¹	
Material Name		tpy	lb/hr	tpy	lb/hr	tpy	Emissio lb/hr		Estimation Method ¹	

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

	N INFORMATION									
21. Tank Shell Construction:										
\square Riveted \square Gunite lined \square Epoxy	v-coated rivets 🛛 🔿	ther (describe) Welde	d or riveted							
21A. Shell Color: Gray	21B. Roof Color: Gra			t Painted: New						
22. Shell Condition (if metal and unlined):	21B. R001 C0101. 01a	у	21C. Teal Las	a raineu. New						
	Pust	abla								
⊠ No Rust □ Light Rust □ Dense										
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating t	emperature:	22C. If yes, ho	ow is heat provided to tank?						
23. Operating Pressure Range (psig):										
Must be listed for tanks using VRUs wit	th closed vent system	L.								
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome		24B If yes fo	r cone roof, provide slop (ft/ft):						
\boxtimes Yes \square No	2471. If yes, for dome i	toor provide radius (it).	0.06							
25. Complete item 25 for Floating Roof Tanks	\Box Does not apply									
25A. Year Internal Floaters Installed:										
25B. Primary Seal Type (check one): \Box Met		-	ounted resilient	seal						
🗆 Vap	or mounted resilient s	eal 🛛 🗆 Other (de	escribe):							
25C. Is the Floating Roof equipped with a second	ndary seal? 🗌 Yes	🗆 No								
25D. If yes, how is the secondary seal mounted	$\frac{1}{2}$ (check one) \Box Sho	e 🗆 Rim 🗆 O	ther (describe):							
			(deserree).							
25E. Is the floating roof equipped with a weather	er shield? 🗌 Yes									
25F. Describe deck fittings:										
			l							
26. Complete the following section for Internal Floating Roof Tanks 🛛 Does not apply										
26A. Deck Type: Deck Type: Welded 26B. For bolted decks, provide deck construction:										
26C. Deck seam. Continuous sheet constructio										
			□ (.1	1)						
	\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide \Box 5 x 7.5 ft. wide \Box 5 x 12 ft. wide \Box other (describe)									
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. For column supp		G. For column supported						
		tanks, # of columns:	tar	nks, diameter of column:						
27. Closed Vent System with VRU? Yes		tanks, # of columns:	tar	iks, diameter of column:						
28. Closed Vent System with Enclosed Combus	stor? 🗆 Yes 🖾 No									
28. Closed Vent System with Enclosed Combus SITE INFORMATION - Not Applicable:	stor? □ Yes ⊠ No Tank calculations pe	rformed using E&P								
 28. Closed Vent System with Enclosed Combus SITE INFORMATION - Not Applicable: 29. Provide the city and state on which the data 	stor? □ Yes ⊠ No Tank calculations pe	rformed using E&P	TANK softwa	re						
 28. Closed Vent System with Enclosed Combus SITE INFORMATION - Not Applicable: 29. Provide the city and state on which the data 30. Daily Avg. Ambient Temperature (°F): 	stor? □ Yes ⊠ No Tank calculations pe	rformed using E&P 31. Annual Avg. Max	TANK softwa	re						
 28. Closed Vent System with Enclosed Combus SITE INFORMATION - Not Applicable: 29. Provide the city and state on which the data 30. Daily Avg. Ambient Temperature (°F): 32. Annual Avg. Minimum Temperature (°F): 	stor?	rformed using E&P 31. Annual Avg. Max 33. Avg. Wind Speed	TANK softwa imum Temperatu (mph):	re						
 28. Closed Vent System with Enclosed Combus SITE INFORMATION - Not Applicable: 29. Provide the city and state on which the data 30. Daily Avg. Ambient Temperature (°F): 32. Annual Avg. Minimum Temperature (°F): 34. Annual Avg. Solar Insulation Factor (BTU/ 	stor?	 rformed using E&P 31. Annual Avg. Max 33. Avg. Wind Speed 35. Atmospheric Pres 	TANK softwar imum Temperatu (mph): sure (psia):	re re (°F):						
 28. Closed Vent System with Enclosed Combus SITE INFORMATION - Not Applicable: 29. Provide the city and state on which the data 30. Daily Avg. Ambient Temperature (°F): 32. Annual Avg. Minimum Temperature (°F): 34. Annual Avg. Solar Insulation Factor (BTU/ LIQUID INFORMATION - Not Applicable 	stor?	 rformed using E&P 31. Annual Avg. Max 33. Avg. Wind Speed 35. Atmospheric Pres 	TANK softwar imum Temperatu (mph): sure (psia): &P TANK softw	re re (°F): vare						
 28. Closed Vent System with Enclosed Combus SITE INFORMATION - Not Applicable: 29. Provide the city and state on which the data 30. Daily Avg. Ambient Temperature (°F): 32. Annual Avg. Minimum Temperature (°F): 34. Annual Avg. Solar Insulation Factor (BTU/ LIQUID INFORMATION - Not Applicable 36. Avg. daily temperature range of bulk 	stor?	 rformed using E&P 31. Annual Avg. Max 33. Avg. Wind Speed 35. Atmospheric Pres 	TANK softwar imum Temperatu (mph): sure (psia):	re re (°F): vare						
 28. Closed Vent System with Enclosed Combus SITE INFORMATION - Not Applicable: 29. Provide the city and state on which the data 30. Daily Avg. Ambient Temperature (°F): 32. Annual Avg. Minimum Temperature (°F): 34. Annual Avg. Solar Insulation Factor (BTU/ LIQUID INFORMATION - Not Applicable 36. Avg. daily temperature range of bulk liquid (°F): 	stor? Yes No Tank calculations pe in this section are based: ft ² -day): e: Tank calculations 36A. Minimum (°F):	rformed using E&P 31. Annual Avg. Max 33. Avg. Wind Speed 35. Atmospheric Pres performed using E&	TANK softwar imum Temperatu (mph): sure (psia): &P TANK softw 36B. Maximum	re re (°F): vare m (°F):						
 28. Closed Vent System with Enclosed Combus SITE INFORMATION - Not Applicable: 29. Provide the city and state on which the data 30. Daily Avg. Ambient Temperature (°F): 32. Annual Avg. Minimum Temperature (°F): 34. Annual Avg. Solar Insulation Factor (BTU/ LIQUID INFORMATION - Not Applicable 36. Avg. daily temperature range of bulk liquid (°F): 37. Avg. operating pressure range of tank 	stor? Yes No Tank calculations pe in this section are based: ft ² -day): e: Tank calculations	rformed using E&P 31. Annual Avg. Max 33. Avg. Wind Speed 35. Atmospheric Pres performed using E&	TANK softwar imum Temperatu (mph): sure (psia): &P TANK softw	re re (°F): vare m (°F):						
 28. Closed Vent System with Enclosed Combus SITE INFORMATION - Not Applicable: 29. Provide the city and state on which the data 30. Daily Avg. Ambient Temperature (°F): 32. Annual Avg. Minimum Temperature (°F): 34. Annual Avg. Solar Insulation Factor (BTU/ LIQUID INFORMATION - Not Applicable 36. Avg. daily temperature range of bulk liquid (°F): 37. Avg. operating pressure range of tank (psig): 	stor? ☐ Yes ⊠ No Tank calculations per in this section are based: ft ² -day): e: Tank calculations 36A. Minimum (°F): 37A. Minimum (psig):	rformed using E&P 31. Annual Avg. Max 33. Avg. Wind Speed 35. Atmospheric Pres performed using E&	TANK softwar imum Temperatu (mph): sure (psia): &P TANK softwar 36B. Maximum 37B. Maximum	re re (°F): vare m (°F): m (psig):						
 28. Closed Vent System with Enclosed Combus SITE INFORMATION - Not Applicable: 29. Provide the city and state on which the data 30. Daily Avg. Ambient Temperature (°F): 32. Annual Avg. Minimum Temperature (°F): 34. Annual Avg. Solar Insulation Factor (BTU/ LIQUID INFORMATION - Not Applicable 36. Avg. daily temperature range of bulk liquid (°F): 37. Avg. operating pressure range of tank (psig): 38A. Minimum liquid surface temperature (°F): 	stor? ☐ Yes ⊠ No Tank calculations per in this section are based: ft ² -day): e: Tank calculations 36A. Minimum (°F): 37A. Minimum (psig):	Image: system of the system	TANK softwar imum Temperatu (mph): sure (psia): &P TANK softwar 36B. Maximum 37B. Maximum yapor pressure (ps	re re (°F): vare m (°F): m (psig): ia):						
 28. Closed Vent System with Enclosed Combus SITE INFORMATION - Not Applicable: 29. Provide the city and state on which the data 30. Daily Avg. Ambient Temperature (°F): 32. Annual Avg. Minimum Temperature (°F): 34. Annual Avg. Solar Insulation Factor (BTU/ LIQUID INFORMATION - Not Applicable 36. Avg. daily temperature range of bulk liquid (°F): 37. Avg. operating pressure range of tank (psig): 38A. Minimum liquid surface temperature (°F): 39A. Avg. liquid surface temperature (°F): 	stor? ☐ Yes ⊠ No Tank calculations pe in this section are based: ft ² -day): e: Tank calculations 36A. Minimum (°F): 37A. Minimum (psig):	rformed using E&P 31. Annual Avg. Max 33. Avg. Wind Speed 35. Atmospheric Pres performed using E& 38B. Corresponding v 39B. Corresponding v	TANK softwar imum Temperatu (mph): sure (psia): &P TANK softwar 36B. Maximum 37B. Maximum /apor pressure (ps /apor pressure (ps	re re (°F): vare m (°F): m (psig): ia): ia):						
 28. Closed Vent System with Enclosed Combus SITE INFORMATION - Not Applicable: 29. Provide the city and state on which the data 30. Daily Avg. Ambient Temperature (°F): 32. Annual Avg. Minimum Temperature (°F): 34. Annual Avg. Solar Insulation Factor (BTU/ LIQUID INFORMATION - Not Applicable 36. Avg. daily temperature range of bulk liquid (°F): 37. Avg. operating pressure range of tank (psig): 38A. Minimum liquid surface temperature (°F): 39A. Avg. liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F): 	stor? ☐ Yes ⊠ No Tank calculations pe in this section are based: ft ² -day): e: Tank calculations 36A. Minimum (°F): 37A. Minimum (psig): :	rformed using E&P 31. Annual Avg. Max 33. Avg. Wind Speed 35. Atmospheric Pres performed using E& 38B. Corresponding v 39B. Corresponding v 40B. Corresponding v	TANK softwar imum Temperatu (mph): sure (psia): XP TANK softv 36B. Maximum 37B. Maximum /apor pressure (ps /apor pressure (ps /apor pressure (ps	re re (°F): vare m (°F): m (psig): ia): ia):						
 28. Closed Vent System with Enclosed Combus SITE INFORMATION - Not Applicable: 29. Provide the city and state on which the data 30. Daily Avg. Ambient Temperature (°F): 32. Annual Avg. Minimum Temperature (°F): 34. Annual Avg. Solar Insulation Factor (BTU/ LIQUID INFORMATION - Not Applicable 36. Avg. daily temperature range of bulk liquid (°F): 37. Avg. operating pressure range of tank (psig): 38A. Minimum liquid surface temperature (°F): 39A. Avg. liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F): 41. Provide the following for each liquid or gas 	stor? ☐ Yes ⊠ No Tank calculations pe in this section are based: ft ² -day): e: Tank calculations 36A. Minimum (°F): 37A. Minimum (psig): :	rformed using E&P 31. Annual Avg. Max 33. Avg. Wind Speed 35. Atmospheric Pres performed using E& 38B. Corresponding v 39B. Corresponding v 40B. Corresponding v	TANK softwar imum Temperatu (mph): sure (psia): XP TANK softv 36B. Maximum 37B. Maximum /apor pressure (ps /apor pressure (ps /apor pressure (ps	re re (°F): vare m (°F): m (psig): ia): ia):						
 28. Closed Vent System with Enclosed Combus SITE INFORMATION - Not Applicable: 29. Provide the city and state on which the data 30. Daily Avg. Ambient Temperature (°F): 32. Annual Avg. Minimum Temperature (°F): 34. Annual Avg. Solar Insulation Factor (BTU/ LIQUID INFORMATION - Not Applicable 36. Avg. daily temperature range of bulk liquid (°F): 37. Avg. operating pressure range of tank (psig): 38A. Minimum liquid surface temperature (°F): 39A. Avg. liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F): 41. Provide the following for each liquid or gas 41A. Material name and composition: 	stor? ☐ Yes ⊠ No Tank calculations pe in this section are based: ft ² -day): e: Tank calculations 36A. Minimum (°F): 37A. Minimum (psig): :	rformed using E&P 31. Annual Avg. Max 33. Avg. Wind Speed 35. Atmospheric Pres performed using E& 38B. Corresponding v 39B. Corresponding v 40B. Corresponding v	TANK softwar imum Temperatu (mph): sure (psia): XP TANK softv 36B. Maximum 37B. Maximum /apor pressure (ps /apor pressure (ps /apor pressure (ps	re re (°F): vare m (°F): m (psig): ia): ia):						
 28. Closed Vent System with Enclosed Combus SITE INFORMATION - Not Applicable: 29. Provide the city and state on which the data 30. Daily Avg. Ambient Temperature (°F): 32. Annual Avg. Minimum Temperature (°F): 34. Annual Avg. Solar Insulation Factor (BTU/ LIQUID INFORMATION - Not Applicable 36. Avg. daily temperature range of bulk liquid (°F): 37. Avg. operating pressure range of tank (psig): 38A. Minimum liquid surface temperature (°F): 39A. Avg. liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F): 41. Provide the following for each liquid or gas 41B. CAS number: 	stor? ☐ Yes ⊠ No Tank calculations pe in this section are based: ft ² -day): e: Tank calculations 36A. Minimum (°F): 37A. Minimum (psig): :	rformed using E&P 31. Annual Avg. Max 33. Avg. Wind Speed 35. Atmospheric Pres performed using E& 38B. Corresponding v 39B. Corresponding v 40B. Corresponding v	TANK softwar imum Temperatu (mph): sure (psia): XP TANK softv 36B. Maximum 37B. Maximum /apor pressure (ps /apor pressure (ps /apor pressure (ps	re re (°F): vare m (°F): m (psig): ia): ia):						
 28. Closed Vent System with Enclosed Combus SITE INFORMATION - Not Applicable: 29. Provide the city and state on which the data 30. Daily Avg. Ambient Temperature (°F): 32. Annual Avg. Minimum Temperature (°F): 34. Annual Avg. Solar Insulation Factor (BTU/ LIQUID INFORMATION - Not Applicable 36. Avg. daily temperature range of bulk liquid (°F): 37. Avg. operating pressure range of tank (psig): 38A. Minimum liquid surface temperature (°F): 39A. Avg. liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F): 41A. Material name and composition: 41B. CAS number: 41C. Liquid density (lb/gal): 	stor? ☐ Yes ⊠ No Tank calculations pe in this section are based: ft ² -day): e: Tank calculations 36A. Minimum (°F): 37A. Minimum (psig): :	rformed using E&P 31. Annual Avg. Max 33. Avg. Wind Speed 35. Atmospheric Pres performed using E& 38B. Corresponding v 39B. Corresponding v 40B. Corresponding v	TANK softwar imum Temperatu (mph): sure (psia): XP TANK softv 36B. Maximum 37B. Maximum /apor pressure (ps /apor pressure (ps /apor pressure (ps	re re (°F): vare m (°F): m (psig): ia): ia):						
 28. Closed Vent System with Enclosed Combust SITE INFORMATION - Not Applicable: 29. Provide the city and state on which the data 30. Daily Avg. Ambient Temperature (°F): 32. Annual Avg. Minimum Temperature (°F): 34. Annual Avg. Solar Insulation Factor (BTU/ LIQUID INFORMATION - Not Applicable 36. Avg. daily temperature range of bulk liquid (°F): 37. Avg. operating pressure range of tank (psig): 38A. Minimum liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F): 41B. CAS number: 41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 	stor? ☐ Yes ⊠ No Tank calculations pe in this section are based: ft ² -day): e: Tank calculations 36A. Minimum (°F): 37A. Minimum (psig): :	rformed using E&P 31. Annual Avg. Max 33. Avg. Wind Speed 35. Atmospheric Pres performed using E& 38B. Corresponding v 39B. Corresponding v 40B. Corresponding v	TANK softwar imum Temperatu (mph): sure (psia): XP TANK softv 36B. Maximum 37B. Maximum /apor pressure (ps /apor pressure (ps /apor pressure (ps	re re (°F): vare m (°F): m (psig): ia): ia):						
 28. Closed Vent System with Enclosed Combus SITE INFORMATION - Not Applicable: 29. Provide the city and state on which the data 30. Daily Avg. Ambient Temperature (°F): 32. Annual Avg. Minimum Temperature (°F): 34. Annual Avg. Solar Insulation Factor (BTU/ LIQUID INFORMATION - Not Applicable 36. Avg. daily temperature range of bulk liquid (°F): 37. Avg. operating pressure range of tank (psig): 38A. Minimum liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F): 41B. CAS number: 41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 41E. Vapor molecular weight (lb/lb-mole): 	stor? ☐ Yes ⊠ No Tank calculations pe in this section are based: ft ² -day): e: Tank calculations 36A. Minimum (°F): 37A. Minimum (psig): :	rformed using E&P 31. Annual Avg. Max 33. Avg. Wind Speed 35. Atmospheric Pres performed using E& 38B. Corresponding v 39B. Corresponding v 40B. Corresponding v	TANK softwar imum Temperatu (mph): sure (psia): XP TANK softv 36B. Maximum 37B. Maximum /apor pressure (ps /apor pressure (ps /apor pressure (ps	re re (°F): vare m (°F): m (psig): ia): ia):						
 28. Closed Vent System with Enclosed Combus SITE INFORMATION - Not Applicable: 29. Provide the city and state on which the data 30. Daily Avg. Ambient Temperature (°F): 32. Annual Avg. Minimum Temperature (°F): 34. Annual Avg. Solar Insulation Factor (BTU/ LIQUID INFORMATION - Not Applicable 36. Avg. daily temperature range of bulk liquid (°F): 37. Avg. operating pressure range of tank (psig): 38A. Minimum liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F): 41B. CAS number: 41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 	stor? ☐ Yes ⊠ No Tank calculations pe in this section are based: ft ² -day): e: Tank calculations 36A. Minimum (°F): 37A. Minimum (psig): :	rformed using E&P 31. Annual Avg. Max 33. Avg. Wind Speed 35. Atmospheric Pres performed using E& 38B. Corresponding v 39B. Corresponding v 40B. Corresponding v	TANK softwar imum Temperatu (mph): sure (psia): XP TANK softv 36B. Maximum 37B. Maximum /apor pressure (ps /apor pressure (ps /apor pressure (ps	re re (°F): vare m (°F): m (psig): ia): ia):						
 Closed Vent System with Enclosed Combus SITE INFORMATION - Not Applicable: Provide the city and state on which the data Daily Avg. Ambient Temperature (°F): Annual Avg. Minimum Temperature (°F): Annual Avg. Solar Insulation Factor (BTU/ LIQUID INFORMATION - Not Applicable Avg. daily temperature range of bulk liquid (°F): Avg. operating pressure range of tank (psig): Avg. liquid surface temperature (°F): Avg. liquid surface temperature (°F): Avg. liquid surface temperature (°F): Maximum liquid surface temperature (°F): Maximum liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F): 41B. CAS number: 41C. Liquid density (lb/gal): 41B. Vapor molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 	stor? ☐ Yes ⊠ No Tank calculations pe in this section are based: ft ² -day): e: Tank calculations 36A. Minimum (°F): 37A. Minimum (psig): :	rformed using E&P 31. Annual Avg. Max 33. Avg. Wind Speed 35. Atmospheric Pres performed using E& 38B. Corresponding v 39B. Corresponding v 40B. Corresponding v	TANK softwar imum Temperatu (mph): sure (psia): XP TANK softv 36B. Maximum 37B. Maximum /apor pressure (ps /apor pressure (ps /apor pressure (ps	re re (°F): vare m (°F): m (psig): ia): ia):						
 28. Closed Vent System with Enclosed Combus SITE INFORMATION - Not Applicable: 29. Provide the city and state on which the data 30. Daily Avg. Ambient Temperature (°F): 32. Annual Avg. Minimum Temperature (°F): 34. Annual Avg. Solar Insulation Factor (BTU/ LIQUID INFORMATION - Not Applicable 36. Avg. daily temperature range of bulk liquid (°F): 37. Avg. operating pressure range of tank (psig): 38A. Minimum liquid surface temperature (°F): 39A. Avg. liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F): 41B. CAS number: 41C. Liquid density (lb/gal): 41B. Liquid molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41H. Months Storage per year. 	stor? ☐ Yes ⊠ No Tank calculations pe in this section are based: ft ² -day): e: Tank calculations 36A. Minimum (°F): 37A. Minimum (psig): :	rformed using E&P 31. Annual Avg. Max 33. Avg. Wind Speed 35. Atmospheric Pres performed using E& 38B. Corresponding v 39B. Corresponding v 40B. Corresponding v	TANK softwar imum Temperatu (mph): sure (psia): XP TANK softv 36B. Maximum 37B. Maximum /apor pressure (ps /apor pressure (ps /apor pressure (ps	re re (°F): vare m (°F): m (psig): ia): ia):						
 28. Closed Vent System with Enclosed Combus SITE INFORMATION - Not Applicable: 29. Provide the city and state on which the data 30. Daily Avg. Ambient Temperature (°F): 32. Annual Avg. Minimum Temperature (°F): 34. Annual Avg. Solar Insulation Factor (BTU/ LIQUID INFORMATION - Not Applicable 36. Avg. daily temperature range of bulk liquid (°F): 37. Avg. operating pressure range of tank (psig): 38A. Minimum liquid surface temperature (°F): 39A. Avg. liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F): 41A. Material name and composition: 41B. CAS number: 41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 41H. Months Storage per year. From: To: 	stor? ☐ Yes ⊠ No Tank calculations pe in this section are based: ft ² -day): e: Tank calculations 36A. Minimum (°F): 37A. Minimum (psig): :	rformed using E&P 31. Annual Avg. Max 33. Avg. Wind Speed 35. Atmospheric Pres performed using E& 38B. Corresponding v 39B. Corresponding v 40B. Corresponding v	TANK softwar imum Temperatu (mph): sure (psia): XP TANK softv 36B. Maximum 37B. Maximum /apor pressure (ps /apor pressure (ps /apor pressure (ps	re re (°F): vare m (°F): m (psig): ia): ia):						
 28. Closed Vent System with Enclosed Combus SITE INFORMATION - Not Applicable: 29. Provide the city and state on which the data 30. Daily Avg. Ambient Temperature (°F): 32. Annual Avg. Minimum Temperature (°F): 34. Annual Avg. Solar Insulation Factor (BTU/ LIQUID INFORMATION - Not Applicable 36. Avg. daily temperature range of bulk liquid (°F): 37. Avg. operating pressure range of tank (psig): 38A. Minimum liquid surface temperature (°F): 39A. Avg. liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F): 41B. CAS number: 41C. Liquid density (lb/gal): 41B. Liquid molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41H. Months Storage per year. 	stor? ☐ Yes ⊠ No Tank calculations pe in this section are based: ft ² -day): e: Tank calculations 36A. Minimum (°F): 37A. Minimum (psig): :	rformed using E&P 31. Annual Avg. Max 33. Avg. Wind Speed 35. Atmospheric Pres performed using E& 38B. Corresponding v 39B. Corresponding v 40B. Corresponding v	TANK softwar imum Temperatu (mph): sure (psia): XP TANK softv 36B. Maximum 37B. Maximum /apor pressure (ps /apor pressure (ps /apor pressure (ps	re re (°F): vare m (°F): m (psig): ia): ia):						

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name	2. Tank Name					
GLO-76 Wellpad	Sand Separator Tank					
3. Emission Unit ID number	4. Emission Point ID number					
S011	E011					
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:					
Was the tank manufactured after August 23, 2011?	\Box New construction \Box New stored material					
🖾 Yes 🛛 No	\Box Other (Low Pressure Tower) \Box Relocation					
7A. Description of Tank Modification (<i>if applicable</i>) N/A						
7B. Will more than one material be stored in this tank? If so, a separate form must be completed for each material.						
\Box Yes \boxtimes No						
7C. Was USEPA Tanks simulation software utilized?						
\Box Yes \boxtimes No						
If Yes, please provide the appropriate documentation and items	8-42 below are not required.					

TANK INFORMATION

8. Design Capacity (specify barrels or gallons).	Use the internal	l cross-sectional area multiplied by	y internal height.		
140 bbls					
9A. Tank Internal Diameter (ft.) ~10		9B. Tank Internal Height (ft.) ~	10		
10A. Maximum Liquid Height (ft.) ~10		10B. Average Liquid Height (ft	.) ~5		
11A. Maximum Vapor Space Height (ft.) ~10		11B. Average Vapor Space Hei	ght (ft.) ~5		
12. Nominal Capacity (specify barrels or gallons	s). This is also l	known as "working volume". 140	bbls		
13A. Maximum annual throughput (gal/yr) See a	ittached	13B. Maximum daily throughput	ıt (gal/day) See attached		
emissions calculations for all throughput valu	es	emissions calculations for all	throughput values		
14. Number of tank turnovers per year See attac	hed	15. Maximum tank fill rate (gal	/min) See attached emissions		
emissions calculations for all throughput valu	es	calculations for all throughput values			
16. Tank fill method \Box Submerged \boxtimes S	Splash	□ Bottom Loading			
17. Is the tank system a variable vapor space system	tem? 🗆 Yes	🖾 No			
If yes, (A) What is the volume expansion capacity	y of the system	(gal)?			
(B) What are the number of transfers into	the system per y	vear?			
18. Type of tank (check all that apply):					
\square Fixed Roof \square vertical \square horizonta	l 🗌 flat roof	\Box cone roof \Box dome roof	\Box other (describe)		
\Box External Floating Roof \Box pontoon roo	of \Box double	deck roof			
Domed External (or Covered) Floating Roof					
\Box Internal Floating Roof \Box vertical col	umn support	□ self-supporting			
□ Variable Vapor Space □ lifter roof	🗆 diaphragm				
□ Pressurized □ spherical	\Box cylindrical				

PRESSURE/VACUUM CONTROL DATA

19. Check as many as apply:	
\boxtimes Does Not Apply	□ Rupture Disc (psig)
□ Inert Gas Blanket of	\Box Carbon Adsorption ¹
\Box Vent to Vapor Combustion Device ¹ (vapor combus	stors, flares, thermal oxidizers, enclosed combustors)
□ Conservation Vent (psig)	\Box Condenser ¹
Vacuum Setting Pressure Setting	
□ Emergency Relief Valve (psig)	
Vacuum Setting Pressure Setting	
\Box Thief Hatch Weighted \Box Yes \Box No	

Material Name	Flashing Loss		Breathing Loss		Working Loss		Total Emissions Loss		Estimation Method ¹
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERAT	ION INFORMATION			
21. Tank Shell Construction:				
\square Riveted \square Gunite lined \square Ep	oxy-coated rivets 🛛 C	ther (describe) Welded	1	
21A. Shell Color: Gray	21B. Roof Color: Gra	ıy	21C. Year	Last Painted: New
22. Shell Condition (if metal and unlined):		•		
🛛 No Rust 🗆 Light Rust 🗆 Der	se Rust 🛛 Not applic	able		
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating	temperature:	22C. If ye	s, how is heat provided to tank?
23. Operating Pressure Range (psig):				
Must be listed for tanks using VRUs	vith closed vent systen	1.		
24. Is the tank a Vertical Fixed Roof Tank?	24A. If yes, for dome	roof provide radius (ft):	24B. If ye	es, for cone roof, provide slop (ft/ft):
\Box Yes \boxtimes No				
25. Complete item 25 for Floating Roof Tan	ks Does not apply	\boxtimes		
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type (check one):	etallic (mechanical) sho	e seal 🛛 🗆 Liquid mo	ounted resili	ent seal
□ V	apor mounted resilient s	seal 🗌 Other (des	scribe):	
25C. Is the Floating Roof equipped with a se	condary seal? 🗌 Yes	🗆 No		
25D. If yes, how is the secondary seal mount	ed? (check one) 🗌 Sho	be 🗆 Rim 🗆 Ot	her (describ	be):
25E. Is the floating roof equipped with a wea		□ No		
25F. Describe deck fittings:				
26. Complete the following section for Inter	nal Floating Roof Tanks	⊠ Does not appl	У	
26A. Deck Type: \Box Bolted \Box	Welded	26B. For bolted decks	, provide dec	k construction:
26C. Deck seam. Continuous sheet construct	ion			
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. w		□ 5 x 12 ft wide □	other (de	escribe)
	rea of deck (ft^2):	26F. For column supp		26G. For column supported
	ea of deek (it).	tanks, # of columns:	oned	tanks, diameter of column:
27. Closed Vent System with VRU?	No No			
28. Closed Vent System with Enclosed Com	oustor? 🗆 Yes 🗵 No			
SITE INFORMATION - Not Applicabl	e: Tank calculations p	erformed using E&P	Tank softv	vare
29. Provide the city and state on which the d	ta in this section are based	:		
30. Daily Avg. Ambient Temperature (°F):		31. Annual Avg. Max	imum Tempe	erature (°F):
32. Annual Avg. Minimum Temperature (°F		33. Avg. Wind Speed	(mph):	
34. Annual Avg. Solar Insulation Factor (BT	U/ft ² -day):	35. Atmospheric Press	sure (psia):	
LIQUID INFORMATION - Not Applica	ble: Tank calculations	performed using E&	P Tank so	ftware

36. Avg. daily temperature range of bulk liquid (°F):	36A. Minimum (°F):			36B. Maximur	n (°F):
37. Avg. operating pressure range of tank (psig):	37A. Minimum (psig):			37B. Maximur	n (psig):
38A. Minimum liquid surface temperature (°F):		38B. 0	Corresponding va	apor pressure (psi	ia):
39A. Avg. liquid surface temperature (°F):		39B. (Corresponding va	apor pressure (psi	ia):
40A. Maximum liquid surface temperature (°F)	:	40B. 0	Corresponding va	apor pressure (psi	ia):
41. Provide the following for each liquid or gas	to be stored in the tank.	Add add	litional pages if r	necessary.	
41A. Material name and composition:					
41B. CAS number:					
41C. Liquid density (lb/gal):					
41D. Liquid molecular weight (lb/lb-mole):					
41E. Vapor molecular weight (lb/lb-mole):					
41F. Maximum true vapor pressure (psia):					
41G. Maximum Reid vapor pressure (psia):					
41H. Months Storage per year.					
From: To:					
42. Final maximum gauge pressure and					
temperature prior to transfer into tank used as					
inputs into flashing emission calculations.					

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name	2. Tank Name
GLO-76 Wellpad	Dehy Drip Fluid Tank
3. Emission Unit ID number	4. Emission Point ID number
S026	E026
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:
Was the tank manufactured after August 23, 2011?	\Box New construction \Box New stored material
🖾 Yes 🛛 No	\Box Other (Low Pressure Tower) \Box Relocation
7A. Description of Tank Modification (<i>if applicable</i>) N/A	·
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.
\Box Yes \boxtimes No	
7C. Was USEPA Tanks simulation software utilized?	
\Box Yes \boxtimes No	
If Yes, please provide the appropriate documentation and items	s 8-42 below are not required.

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the interna	l cross-sectional area multiplied by internal height.
100 bbls	
9A. Tank Internal Diameter (ft.) ~8	9B. Tank Internal Height (ft.) ~11
10A. Maximum Liquid Height (ft.) ~11	10B. Average Liquid Height (ft.) ~5.5
11A. Maximum Vapor Space Height (ft.) ~11	11B. Average Vapor Space Height (ft.) ~5.5
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 100 bb1s
13A. Maximum annual throughput (gal/yr) See attached	13B. Maximum daily throughput (gal/day) See attached
emissions calculations for all throughput values	emissions calculations for all throughput values
14. Number of tank turnovers per year See attached	15. Maximum tank fill rate (gal/min) See attached emissions
emissions calculations for all throughput values	calculations for all throughput values
16. Tank fill method \Box Submerged \boxtimes Splash	Bottom Loading
17. Is the tank system a variable vapor space system? \Box Yes	🖂 No
If yes, (A) What is the volume expansion capacity of the system	(gal)?
(B) What are the number of transfers into the system per y	year?
18. Type of tank (check all that apply):	
\boxtimes Fixed Roof \boxtimes vertical \square horizontal \boxtimes flat roof	\Box cone roof \Box dome roof \Box other (describe)
\Box External Floating Roof \Box pontoon roof \Box double	deck roof

Domed External (or Cov		U U							
□ Internal Floating Roof		□ vertical c		• •	□ self-sup	porting			
□ Variable Vapor Space		lifter roof	🗌 🗆 dia	phragm					
□ Pressurized		spherical	□ cy	lindrical					
		PRESS	SURE/N	ACUUN	A CONT	ROL DA	АТА		
19. Check as many as apply	/:								
\boxtimes Does Not Apply				🗆 Ruptu	re Disc (p	sig)			
□ Inert Gas Blanket of				□ Carbo	on Adsorp	tion ¹			
□ Vent to Vapor Combusti	ion Devi	ice1 (vapor	combust	ors, flares	, thermal	oxidizers,	enclosed of	combustors	s)
□ Conservation Vent (psig	g)			□ Conde	enser ¹				
Vacuum Setting Press	ure Setti	ing							
Emergency Relief Valve									
Ũ	sure Set	•							
\Box Thief Hatch Weighted \Box									
¹ Complete appropriate Air l	Pollution	n Control D	evice Sł	neet					
	(1)		0.1	1 1	1	1	1 1.		
20. Expected Emission Rate Material Name							Total	t10n).	Estimation Method ¹
Material Name	Flashi	ng Loss	вгеати	ng Loss	Workin	ig Loss		ons Loss	Estimation Method
-	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	-
		1.						·FJ	
		See atta	ched En	hissions C	alculatio	n for all v	values	1	1

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATIO	N INFORMATION	
21. Tank Shell Construction:		
\Box Riveted \Box Gunite lined \Box Epox	y-coated rivets 🛛 Other (describe) Welded	1
21A. Shell Color: Gray	21B. Roof Color: Gray	21C. Year Last Painted: New
22. Shell Condition (if metal and unlined):		
\square No Rust \square Light Rust \square Dense	Rust 🛛 Not applicable	
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating temperature:	22C. If yes, how is heat provided to tank?
23. Operating Pressure Range (psig):		
Must be listed for tanks using VRUs with	th closed vent system.	
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome roof provide radius (ft):	24B. If yes, for cone roof, provide slop (ft/ft):
\Box Yes \boxtimes No		
25. Complete item 25 for Floating Roof Tanks	\square Does not apply \square	
25A. Year Internal Floaters Installed:		
25B. Primary Seal Type (check one):	allic (mechanical) shoe seal \Box Liquid mo	unted resilient seal
🗆 Vap	or mounted resilient seal \Box Other (des	scribe):
25C. Is the Floating Roof equipped with a seco	ndary seal? 🗌 Yes 🛛 No	
25D. If yes, how is the secondary seal mounted	? (check one) \Box Shoe \Box Rim \Box Ot	her (describe):

25E. Is the floating roof equipped with a weather	er shield? 🗌 Yes		0		
25F. Describe deck fittings:					
26. Complete the following section for Interna	l Floating Roof Tanks		Does not apply		
26A. Deck Type: Bolted W	Velded	26B. 1	For bolted decks,	provide decl	k construction:
26C. Deck seam. Continuous sheet constructio	n:				
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	e \Box 5 x 7.5 ft. wide	□ 5 x	12 ft. wide \Box	other (de	scribe)
26D. Deck seam length (ft.): 26E. Area	a of deck (ft ²):	26F. I	For column suppo	orted	26G. For column supported
		tanks,	# of columns:		tanks, diameter of column:
27. Closed Vent System with VRU? Yes	⊠ No				
28. Closed Vent System with Enclosed Combus	stor? 🗆 Yes 🗵 No				
SITE INFORMATION - Not Applicable:	Tank calculations pe	rforme	d using E&P	Fank softw	are
29. Provide the city and state on which the data	in this section are based:				
30. Daily Avg. Ambient Temperature (°F):		31. A	nnual Avg. Maxi	mum Tempe	rature (°F):
32. Annual Avg. Minimum Temperature (°F):			vg. Wind Speed (
34. Annual Avg. Solar Insulation Factor (BTU/	-		mospheric Press	-	
LIQUID INFORMATION - Not Applicable		perfor	ned using E&		
36. Avg. daily temperature range of bulk	36A. Minimum (°F):			36B. Maxi	mum (°F):
liquid (°F):					
37. Avg. operating pressure range of tank (psig):	37A. Minimum (psig):			3/B. Maxi	mum (psig):
(psig). 38A. Minimum liquid surface temperature (°F).		38B	Corresponding va	nor pressure	(psia):
39A. Avg. liquid surface temperature (°F):			Corresponding va		
40A. Maximum liquid surface temperature (°F)			Corresponding va		
41. Provide the following for each liquid or gas					(point).
41A. Material name and composition:		1100 000	nuonai pageo n'n	eeessarj.	
41B. CAS number:					
41C. Liquid density (lb/gal):					
41D. Liquid molecular weight (lb/lb-mole):					
41E. Vapor molecular weight (lb/lb-mole):					
41F. Maximum true vapor pressure (psia):					
41G. Maximum Reid vapor pressure (psia):					
41H. Months Storage per year.					
From: To:					
42. Final maximum gauge pressure and					
temperature prior to transfer into tank used as					
inputs into flashing emission calculations.					

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID #1	Status ²	Content ³	Volume ⁴
		Not Applicable	

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc. Enter storage tank Status using the following: 2.

- EXIST
- Existing Equipment Installation of New Equipment NEW

Equipment Removed REM

Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. 3.

4. Enter the maximum design storage tank volume in gallons.

ATTACHMENT M

Heaters Data Sheet

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete th	his data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at
the facility.	The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
S012	E012	Line Heater	2016	Existing; No change	1.54	~1,102
S013	E013	Line Heater	2016	Existing; No change	1.54	~1,102
S014	E014	Line Heater	2016	Existing; No change	1.54	~1,102
S015	E015	Line Heater	2016	Existing; No change	1.54	~1,102
S016	E016	Line Heater	2016	Existing; No change	1.54	~1,102
S017	E017	Line Heater	2016	Existing; No change	1.54	~1,102
S018	E018	Line Heater	2016	Existing; No change	1.54	~1,102
S019	E019	Line Heater	2016	Existing; No change	1.54	~1,102
S020	E020	Line Heater	2016	Existing; No change	1.54	~1,102
S021	E021	Thermoelectric Generator	2016	Existing; No change	0.013	~1,102
S022	E022	Thermoelectric Generator	2016	Existing; No change	0.013	~1,102
S023	E023	Thermoelectric Generator	2016	Existing; No change	0.013	~1,102

- ¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- ² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- ³ New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

ATTACHMENT N

Engines Data Sheet (Not Applicable)

ATTACHMENT N – INTERNAL COMBUSTION ENGINE DATA SHEET NOT APPLICABLE

manufactur applicable.	his data shee er performat Use extra pa use this form	nce data sh ages if nec	neet(s) or an	ny other su	pporting do	ocument if	
Emission Unit I	D#1						
Engine Manufac	turer/Model						
Manufacturers F	Rated bhp/rpm						
Source Status ²							
Date Installed/ Modified/Remov	ved/Relocated ³						
Engine Manufac /Reconstruction							
Check all applic Rules for the en EPA Certificate if applicable) ⁵	gine (include	☐ 40CFR60 S ☐ JJJJ Certifi ☐ 40CFR60 S ☐ IIII Certific ☐ 40CFR63 S ☐ NESHAP 2 JJJJ Window ☐ NESHAP 2 Sources	ed? ubpart IIII ed? ubpart ZZZZ	□ NESHAP 2 JJJJ Window	ed? Subpart IIII ed? Subpart ZZZZ	□ NESHAP 2 JJJJ Window	ed? Subpart IIII ed? Subpart ZZZZ
Engine Type ⁶							
APCD Type ⁷							
Fuel Type ⁸							
H ₂ S (gr/100 scf))						
Operating bhp/r	pm						
BSFC (BTU/bhp	p-hr)						
Hourly Fuel Thr	oughput	ft³/hr gal/hr		ft³/hr gal/hr			/hr l/hr
Annual Fuel The (Must use 8,760) emergency gene	hrs/yr unless	MMft ³ /y gal/yr	r	MMft ³ /y gal/yr	r		Aft ³ /yr l/yr
Fuel Usage or H Operation Meter		Yes 🗆	No 🗆	Yes 🗆	No 🗆	Yes 🗆	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
Manufacturer	NO _x						
Manufacturer	СО						
Manufacturer	VOC						
AP-42	SO ₂						
AP-42	PM ₁₀						
AP-42	Formaldehyde						
AP-42	Total HAPs						
40 CFR Part 98 Subpart C	GHG (CO ₂ e)						

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

Modification of Existing Source

Construction of New Source (installation)

NS

MS

ES Existing Source

RS Relocated Source

REM Removal of Source

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

- Enter the Engine Type designation(s) using the following codes: 6 2SLB Two Stroke Lean Burn 4SRB Four Stroke Rich Burn 4SLB Four Stroke Lean Burn Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes: 7 Air/Fuel Ratio Ignition Retard A/F IR HEIS High Energy Ignition System SIPC Screw-in Precombustion Chambers PSC Prestratified Charge LEC Low Emission Combustion NSCR Rich Burn & Non-Selective Catalytic Reduction OxCat Oxidation Catalyst SCR Lean Burn & Selective Catalytic Reduction Enter the Fuel Type using the following codes: 8 Pipeline Quality Natural Gas RG Raw Natural Gas /Production Gas D Diesel PQ 9 Enter the Potential Emissions Data Reference designation using the following codes. Attach all reference data used. MD Manufacturer's Data AP AP-42 GRI-HAPCalcTM OT GR Other (please list)
- 10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device – NOT APPLICABLE (Emission Unit ID# S030-S031, use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included?

Yes 🗆 No 🗆

See attached certification

□ Oxidation Catalyst

□ SCR

Provide details of process control used for proper mixing/control of reducing agent with gas stream:

Manufacturer:	Model #:
Design Operating Temperature:	Design gas volume: scfm
Service life of catalyst:	Provide manufacturer data? 🗆 Yes 🛛 No
Volume of gas handled:	Operating temperature range for NSCR/Ox Cat: From °F to °F
Reducing agent used, if any:	Ammonia slip (ppm):
Pressure drop against catalyst bed (delta P):	
Provide description of warning/alarm system the	hat protects unit when operation is not meeting design conditions:

Is temperature and pressure drop of catalyst required to be monitored per 40CFR63 Subpart ZZZZ? \Box Yes \Box No

How often is catalyst recommended or required to be replaced (hours of operation)?

How often is performance test required?

□ NSCR

Initial Annual

 Annual
 Every 8,760 hours of operation
 Field Testing Required
 No performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT, Per 40 CFR §60.4243(a)(1), EQT must maintain the certified engine and control device according to the manufacturer's emission related written instructions and keep records of conducted maintenance to demonstrate compliance, but no performance testing is required.

ATTACHMENT O

Truck Loading Data Sheet

ATTACHMENT O – TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

					X T (11 1/X 1°C° 1			
			Emission Point ID#: E027			Year Installed/Modified: 2015		
Emission Unit Descripti	Emission Unit Description: Uncaptured losses from loading of produced fluids into tanker trucks							
Loading Area Data								
Number of Pumps: 1	Number of Pumps: 1Number of Liquids Loaded: 1Max number of trucks loading at one (1) time: 1					s loading at one		
Are tanker trucks pressu If Yes, Please describe:	are tested for lea	ks at this	or any other	location?	□ Yes	🛛 No	□ Not R	equired
Provide description of c No vapor balancing requ		m and an	y bypasses.					
□ Closed System to tai □ Closed System to tai	 Are any of the following truck loadout systems utilized? Closed System to tanker truck passing a MACT level annual leak test? Closed System to tanker truck passing a NSPS level annual leak test? Closed System to tanker truck not passing an annual leak test and has vapor return? 							
Pro	jected Maximur	n Operat	ting Schedul	e (for rack o	r transf	er point as a	whole)	
Time	Jan – Ma	ır	Apr	- Jun	J	ul – Sept		Oct - Dec
Hours/day	Varies		Va	ries		Varies		Varies
Days/week	7		,	7		7		7
	Bul	k Liquid	Data (use e	xtra pages a	s necess	ary)		
Liquid Name	Pr	oduced F	luids					
Max. Daily Throughput (1000 gal/day)	calc	See attached emissions calculations for all throughput values						
Max. Annual Throughpu (1000 gal/yr)	See attached emissions calculations for all throughput values							
Loading Method ¹		SP						
Max. Fill Rate (gal/min))	Varies						
Average Fill Time (min/loading)		Varies						
Max Bulk Liquid		&P TAN	K results					
True Vapor Pressure ²	See E	&P TAN	K results					
Cargo Vessel Condition	3	U						
Control Equipment or Method ⁴		None						

Max. Collection Efficiency (%)		0	
Max. Control Efficiency (%)		0	
Max.VOC Emission		See attached emission calculations for breakdown	
Rate	Annual (ton/yr)	See attached emission calculations for breakdown	
Max.HAP Emission	Loading (lb/hr)	See attached emission calculations for breakdown	
Rate	Annual (ton/yr)	See attached emission calculations for breakdown	
Estimation Method ⁵		AP-42 Section 5.2 Methodology	

1	BF	Bottom Fill	SP	Splash Fi	11		SUB	Submerged Fill
2	At maxin	num bulk liquid temperature						
3	В	Ballasted Vessel	С	Cleaned			U	Uncleaned (dedicated service)
	0	Other (describe)						
4	List as 1	nany as apply (complete and a	submit app	propriate A	Air Polluti	ion Conti	ol Device	Sheets)
	CA	Carbon Adsorption		VB	Dedicate	ed Vapor	Balance (c	closed system)
	ECD	Enclosed Combustion Device	ce	F	Flare	-		-
	ТО	Thermal Oxidization or Inc	ineration					
5	EPA	EPA Emission Factor in AP	-42			MB	Material	l Balance
	TM	Test Measurement based up	on test dat	ta submitt	al	0	Other (de	escribe)

ATTACHMENT P

Glycol Dehydrator Data Sheet

ATTACHMENT P – GLYCOL DEHYDRATION UNIT DATA SHEET

		DAIA	SHEEI			
and/or Regen	erator at the fa	each Glycol D cility. Include Use extra page	gas sample an	alysis and GRI		
Manufacturer: Vale		10	Model:			
Max. Dry Gas Flow			Reboiler Design H	eat Input: 0.75 MMB	tu/hr	
Design Type: 🛛 TH		□ EG	Source Status ¹ : ES			
• • •	ified/Removed ² : 201:	15 Regenerator Still Vent APCD/ERD ³ : FL (enclosed)				
Control Device/ER						
	H ₂ S Content (gr/100 scf): neg. Operation (hours/year): 8,760					
Pump Rate (gpm): 7				cui): 0,700		
	%) in: Wet Gas: Sat	urated Dry Gas: 7.0) #/MMSCE			
	,	om 40CFR63 Section		□ No: If Yes, answ	ver the following:	
meters per day, as of The actual average	letermined by the pro emissions of benzend	atural gas to the glyco ocedures specified in the from the glycol dehy letermined by the pro	§63.772(b)(1) of this ydration unit process	subpart. □ Yes vent to the atmosphe	⊠ No re are less than 0.90	
Is the glycol dehyd	ration unit located wi	thin an Urbanized Ar	ea (UA) or Urban Cl	uster (UC)?	□ No N/A	
		being utilized? Ye	. ,			
		ack to the flame zone				
 ☐ Yes ⊠ No What happens when ☐ Still vent emissi ☐ Still vent emissi ☐ Still vent emissi 	a temperature control ons to the atmospher ons stopped with val ons to glow plug.	ve.	ne reboiler?			
Please indicate if th ⊠ Flash Tank	e following equipme	inuously burns conde	nser or flash tank va			
		Control Device	Technical Data			
	Pollutants Controlled	1	Manufacturer	s Guaranteed Control	l Efficiency (%)	
	VOC			98		
	НАР			98		
	Benzene			98		
		Emissio	ons Data			
Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology ⁵	PTE ⁶	Controlled Maximum Hourly Emissions (lb/hr)	Controlled Maximum Annual Emissions (tpy)	
		AP	NOx	0.07	0.30	
		AP	СО	0.06	0.25	
S025/E025	Reboiler Vent	AP	VOC	<0.01	0.02	
2010, 2020		AP				
			SO ₂	< 0.01	< 0.01	
		AP	PM10	0.01	0.02	

	Glycol Regenerator Still Vent	GRI-GLYCalc [™]	VOC	0.24	1.07
		GRI-GLYCalc [™]	Benzene	0.01	0.02
S024 / C001		GRI-GLYCalc [™] Ethylbenzen		0.01	0.06
3024 / 0001		GRI-GLYCalc [™]	Toluene	0.02	0.08
		GRI-GLYCalc [™]	Xylenes	0.02	0.08
		GRI-GLYCalc [™]	n-Hexane	2.2E-03	0.01

1 Enter the Source Status using the following codes: ES Construction of New Source NS

Existing Source

- MS Modification of Existing Source
- 2 Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.
- 3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number:
 - NA None CD Condenser FL Flare
- CCCondenser/Combustion Combination TO Thermal Oxidizer Other 0 (please list) Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent 4 and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc.
- Enter the Potential Emissions Data Reference designation using the following codes: 5

Enter the	1 otontiai	Linissions	Data Reference	designation	using the	10110 w 11
MD	Manufact	turer's Data	ı	AP	AP-42	

1010	manufacturer 5 Data	111	111 12
GR	GRI-GLYCalc TM	OT	Other

(please list) Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs 6 per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

ATTACHMENT Q

Pneumatic Controller Data Sheet (Not Applicable)

ATTACHMENT Q – PNEUMATIC CONTROLLERS
DATA SHEET

Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011?

Yes	🖂 No
-----	------

Please list approximate number.

Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011?

Yes	🖂 No
-----	------

Please list approximate number.

ATTACHMENT R

Air Pollution Control Device Data Sheet

ATTACHMENT R – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

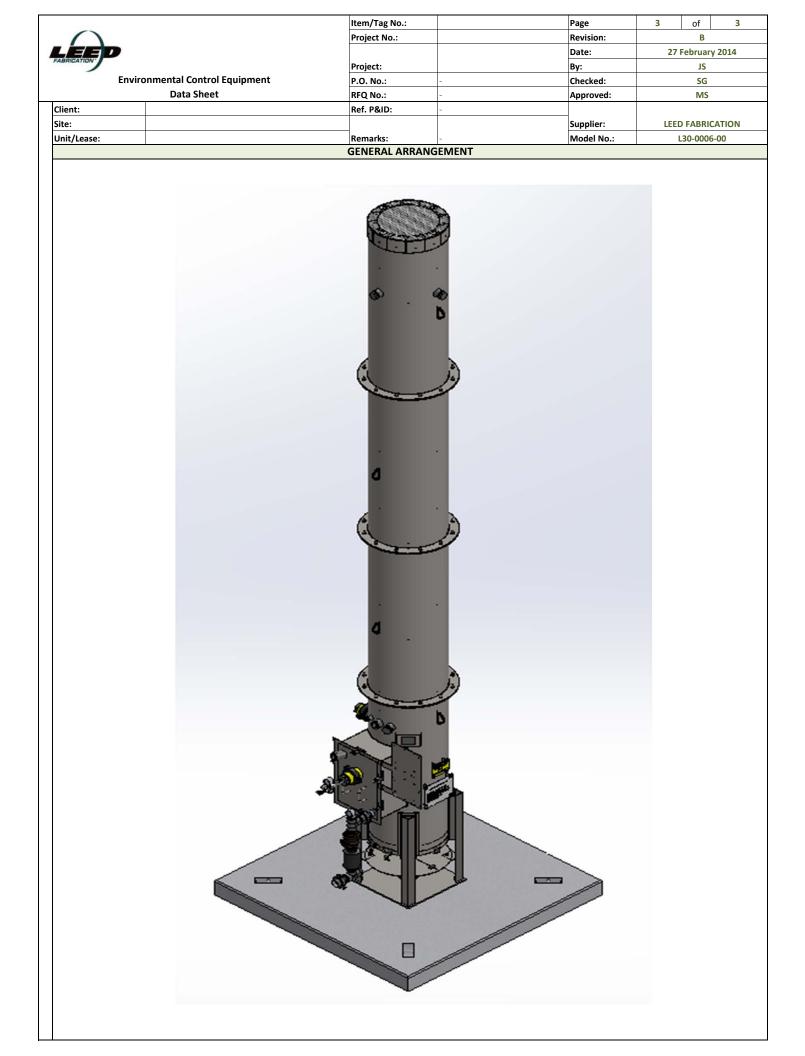
Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.				
Emission Unit ID: Not Applicable Make/Model:				
Primary Control Device ID:	Make/Model:			
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No			
Secondary Control Device ID:	Make/Model:			
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No			

VAPOR COMBUSTION						
(Including Enclosed Combustors)						
		General II	nformation			
Control Device ID#: CO	001		Installation Date:	lodified	Relocated	
Maximum Rated Total I ~2,243 scfh ~	ty	Maximum Design Heat Input (from mfg. spec sheet)Design Heat Content 1,500 BTU/scf3.33 MMBTU/hr				
		Control Devic	e Information			
Enclosed Combustion	on Device	Type of Vapor Co	mbustion Control? ed Flare		Ground Flare	
Manufacturer: LEED Fa Model: Enclosed Comb			Hours of operation	per year? 8	3,760	
List the emission units	whose emiss	ions are controlled by this	s vapor control device	(Emission	n Point ID# S024)	
Emission Unit ID#	Emission S	Source Description	Emission Unit ID#	Emissi	on Source Description	
S024	Dehydratio	on Unit				
If this vapor comb	ustor contro	ls emissions from more th	an six (6) emission un	its, please	attach additional pages.	
Assist Type (Flares onl	y)	Flare Height	Tip Diamete	r	Was the design per §60.18?	
Steam Pressure	Air Non	24 feet	~2 feet		$\Box Yes \Box No \boxtimes N/A$ Provide determination.	
	I	Waste Gas	Information		1	
Maximum Waste Ga 38 (scfm			Vaste Gas Stream BTU/ft ³	Exit Vel	ocity of the Emissions Stream Varies (ft/s)	
Pro	vide an attac	hment with the characteri	stics of the waste gas	stream to	be burned.	
		Pilot Gas I	nformation			
Number of Pilot LightsFuel Flow Rate to Pilot1Flame per Pilot~24 scfh		Heat Input per Pilot 0.03 MMBTU/hr		Will automatic re-ignition be used? □ Yes ⊠ No		
If automatic re-ignition	is used, plea	ase describe the method.				
Is pilot flame equipped with a monitor to detect the presence of the flame? If Yes, what type? ⊠ Thermocouple □ Infrared □ Ultraviolet □ Camera □ Other:						
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (If unavailable, please indicate). See attached information on unit						
Additional information attached? 🛛 Yes 🗌 No Please attach copies of manufacturer's data sheets, drawings, flame demonstration per §60.18 or §63.11(b) and performance testing.						

CONDENSER – Not Applicable							
General Information							
Control Device ID#:	Installation Date:						
Manufacturer:	Model:	Control Device Name:					
Control Efficiency (%):							
Manufacturer's required temperature range for control efficient	ncy. °F						
Describe the warning and/or alarm system that protects against operation when unit is not meeting the design requirements:							
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty.							
Additional information attached?							
Is condenser routed to a secondary APCD or ERD?							

ADSORPTION SYS	STEM – Not Applicable						
Genera	l Information						
Control Device ID#:	Installation Date:						
Manufacturer:	Model: Control Device Name:						
Design Inlet Volume: scfm	Adsorbent charge per adsorber vessel and number of adsorber vessels:						
Length of Mass Transfer Zone supplied by the manufacturer:	Adsorber diameter: ft Adsorber area: ft ²						
Adsorbent type and physical properties:	Overall Control Efficiency (%):						
Working Capacity of Adsorbent (%):							
Operati	ng Parameters						
Inlet volume: scfm @ °F							
Adsorption time per adsorption bed (life expectancy):	Breakthrough Capacity (lbs of VOC/100 lbs of adsorbent):						
Temperature range of carbon bed adsorber. °F - °F							
Control Dev	ice Technical Data						
Pollutants Controlled	Manufacturer's Guaranteed Control Efficiency (%)						
Describe the warning and/or alarm system that protects again	ainst operation when unit is not meeting the design requirements:						
Has the control device been tested by the manufacturer and	l certified?						
Describe all operating ranges and maintenance procedures	required by the manufacturer to maintain the warranty.						
Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawin	gs, and performance testing.						


VAPOR RECOVERY UNIT – Not Applicable									
General Information									
Emission U	Jnit ID#:	Installation Date:							
Device Information									
Manufactu Model:	rer:								
List the emission units whose emissions are controlled by this vapor recovery unit (Emission Point ID# NA)									
Emission Unit ID#	Emission Source Description	Emission Unit ID#	Emission Source Description						
If this vapor recovery unit controls emissions from more than six (6) emission units, please attach additional pages.									
Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings, and performance testing. The registrant may claim a capture and control efficiency of 95 % (which accounts for 5% downtime) for the vapor									
recovery unit.									

The registrant may claim a capture and control efficiency of 98% if the VRU has a backup flare that meet the requirements of Section 8.1.2 of this general permit.

The registrant may claim a capture and control efficiency of 98% if the VRU has a backup VRU.

		Item/Ta				p.: Pa					1	of	3		
\cap				Project No.:					Revision:			В	-		
				Project No											
LEED									Date:		27 February 2014				
FABRICATION				Drojest					D.//						
				Project:		B			By:			JS			
Enviromental Control Equipment				P.O. No.:		-			Checked:		SG				
	Data Sheet			RFQ No.:					A						
		Data Sileet		RFQ NO.:	-		Appro			a:		MS			
	Client:			Ref. P&ID:	-										
	Site:					Suppli			Supplier:	er: LEED FABRICATION					
	Unit/Lease:			Remarks:	-				Model N	o.:		L30-0006	5-00		
										•					
				GEI	NERAL										
1	Design Code:						NDE:			LE	EED Fabrica	tion Sta	ndards		
	-						• •	-							
2	Service:						Custom	er Specs:		L Yes					
3	Description:	Standard Single	e Stage 24 H	igh Efficiency Combu	stor						✓ No				
-															
				PROCI	CESS DATA										
					Process Conditions:										
	Gas Composition:			mol %											
					v	Variable Value				Units	5				
4	Methane				FL	low Rate	Rate Up to 40			Mscfd					
	wethane														
5	Ethane				Р	Pressure	ure Up to 12			oz/in2					
6	Dronano				Ton	mperature				٩c					
0	Propane					· ·				г					
7	I-Butane				Moleo	cular Weig	ght								
	n-Butane					/Waste St		√ Gas							
8	п-витапе				-	-				Liquid					
9	I-Pentane				Detailed Pr	rocess Des	scription	n / Process N	otes:						
								an expected		noratio	a rato indi-	ated at	01/0		
10	n-Pentane									perating		area ano	JVC.		
11	n-Hexane		1		2. DRE: 98	% operat	ing at d	esign conditi	ons						
							-	n. 0.10 oz/in							
12	CO2						- 10 - 10 11								
13	N2				1										
					-										
14	Helium														
15	H ₂ O														
15	-				-										
16	C7														
17	C8														
1/	6				_										
18	C9														
10	C10														
19	C10														
20	C11+														
24		TOTAL													
21		TOTAL													
	Other Components:			PPMV	Available Utilities:										
22					Fuel				0.41.0	20		. /Dunne			
22	H2S				Fuel	l / Pilot Ga	15		iviin.	Subsid i	vatural Ga	s / Propa	ne 40-50 SCFH		
23	Benzene				Insti	rument Ai	r		NA						
						D									
24	Toluene					Power		120 V / 60 Hz or Solar Power							
25	E-Benzene					Steam			NA						
26	Xylene				PL	urge Gas									
				DESIG	GN DATA										
	A		1		- -						Unda				
27	Ambient Temperatures				Noise Perfo	ormance H	vequirei	nents:			unae	r 85 dBA	·		
28		Low, °F		-20	Structural I										
				420											
29		High, ⁰F		120	Wind Desig	gn code:				ASCE					
30	Design Conditions:	Pressure/Temperature													
			1	90	Duran a la const							. h.			
31	Max. Relative Humidity	/ , 70	ļ	90	Pressure/Speed					100 mph					
32	Elevation (ASL), ft		1		Category										
			-	lace Div 2						+					
33	Area Classification:		0	lass I Div 2	Seismic Design Code:										
34	Electrical Design Code:		1	NEC	1		Locatio	n							
1			•	EQUIPMENT	SDECIEIC										
1				LQUIPIVIEIVI	JF ECIFICA										
35	Туре:	Elevated 🗸 E	Enclosed		Equipment	t Design:									
36		Above Ground		Component					Material / Size / Rating / Other						
						- CC	mpone			IVID	.endi / 3126	. / nating	5/ Other		
37		✓ Stack	Aultiple Stack	(Burner								ļ		
38		Portable / Trailer				Burner Tin / Assist Gas Burner					20.4 55				
					Burner Tip / Assist Gas Burner					304 SS					
39							Burner Body					Carbon Steel			
40	Smokeless By:	Steam A	Assist Air												
	e.nonciess by.				Pilot										
41		🗌 Gas Assist 🗸 S	Staging		1	1	Pilot Tip				30)4 SS	ļ		
42					Pilot Line(s)					Carbon Steel					
42					l	PI	IOL LINE	(5)			Carbo	un steel			
43	Stack:	Self Supporting			Firebox / S	Stack									
44	Flare Burner:		Smokeless	Gas Assist	1		Chall				C	on Stort	-		
			-		l		Shell					on Steel			
45	Pilot: 🗸 Intermittent 🗌 Continuous				Piping					Carbon Steel					
46					Nozzles										
										Carbon Steel					
47	Pilot Flame Control:	Iot Flame Control: No Ves (Thermocouple)				Flanges				Carbon Steel					
48															
						Insulation				Blanket					
49	Pilot Ignition:	t Ignition: 🗌 Flamefront Generator 🗸 Inspirating Ignitor			Insulation Pins					304 SS					
50	_	Electronic 🗸	Automatic	Manual	1										
				Manual	Refra			Refractory			NA				
51		With Pilot Flame Control			1	Refra	ctory Ar	nchors				NA			
			1		İ										
52		With Auto Pilot Re-Ignition				Ladders and Platforms				NA					
53					1	Stack San	nple Co	nnections			Per EPA r	equirem	ents		
	Billion I. and the state				1										
54	Pilot Ignition Backup:	Ignition Backup: Manual Specify: i.e Piezo-Electric				Sight Glass				2					
55		Battery Pack			1		Other		T						

		Item/Tag No.:	F	Page	2	of	3
\cap		Project No.:		Revision:		В	
LEED		-		Date:	2	7 February	/ 2014
FABRICATION		Project:	E	By:		JS	
Enviro	nmental Control Equipment	P.O. No.:		Checked:		SG	
	Data Sheet	RFQ No.:		Approved:		MS	
Client:		Ref. P&ID:		PP····			
Site:		iten r dib.		Supplier:	LE	ED FABRIC	ATION
Unit/Lease:		Remarks:		Model No.:		L30-0006	
only Lease.		EQUIPMENT SPEC		noucl non.		230 0000	00
Flame Detection:	Thermocouple / Ionizat		ary Equipment				
	UV Scanner		Valves			NA	
General Configuration:			Blowers			NA	
			Dampers			NA	
	and the second s		Inlet KO / Liquid Seal			NA	
	6 . e		Flame / Detonation Arrestor			Yes	
		Instru	mentation & Controls			163	
		listu	Solenoids / Shut-Off Valves	Char	k with Sale	s for avail	able cont
			Flow Meters	cilet	at writh JdR	NA	able coll
			Calorimeter			NA	
	and a second		Pressure Switches/Transmitters			NA	
			Thermocouples	Char	k with Sale		able con
	a		Temperature Switches/Transmitters		K WILLI Sale	NA	able con
			BMS		k with Sale		able con
			CEMS	clied	K WILLI Sale	NA	able con
	A COLOR		Other			NA	
			Other			INA	
		FABRICATION AND I	NSPECTION				
Special requirements	Skid Mounted 🗸 Concrete I			pment Info			
opecial requirements	Other		Component		Woight	/ Dimensi	
		Burno			weight	/ Dimensi	UIIS
Inspection	Vendor Standard	Burne					
Inspection	Other. Specify:	Charle	Burner Assembly				
Material Certification		Stack	Stack Assembly		24."	00 x 24 1	
	Vendor Standard		Stack Assembly		24 "	OD x 24 ' H	1
	Certificate of Compliance		Pilot Tip				
	<u> </u>		Pilot Line(s)				
NDE	Other (Specify):		Stack Assembly				
		Auxili	ary Equipment				
	Radiography. Specify:		Blowers				
	Ultrasonic. Specify:		Inlet KO / Liquid Seal				
	Liquid Penetrant. Magnetic Particles.		Flame / Detonation Arrestor				
			Skid mentation & Controls				
	PMI. Specify: Other. Specify:	instru					
Surface Preparation	Vendor Standard		BMS Control Banol				
	Other. Specify:		Control Panel				
Paint System	Vendor Standard						
i unit system							
Finished Color	Other. Specify:						
Finished Color	Other. Specify:						
1							

		Pressure			
Flare Size	# of Orifices (N)	(OZ/in^2)	m³/s	mSCFD	MMBTU/hr
18	2	1	0.0021	6.34	0.39
18	2	2	0.0029	8.97	0.56
18	2	3	0.0036	10.99	0.68
18	2	4	0.0042	12.69	0.78
18	2	5	0.0046	14.18	0.88
18	2	6	0.0051	15.54	0.96
18	2	7	0.0055	16.78	1.04
18	2	8	0.0059	17.94	1.11
18	2	9	0.0062	19.03	1.18
18	2	10	0.0066	20.06	1.24
18	2	11	0.0069	21.04	1.30
18	2	12	0.0072	21.97	1.36
18	2	13	0.0075	22.87	1.42
18	2	14	0.0078	23.73	1.47
18	2	15	0.0081	24.57	1.52
18	2	16	0.0083	25.37	1.57
18	2	17	0.0086	26.15	1.62
18	2	18	0.0088	26.91	1.67
24	4	1	0.0042	12.69	0.78
24	4	2	0.0059	17.94	1.11
24	4	3	0.0072	21.97	1.36
24	4	4	0.0083	25.37	1.57
24	4	5	0.0093	28.37	1.76
24	4	6	0.0102	31.08	1.92
24	4	7	0.0110	33.56	2.08
24	4	8	0.0118	35.88	2.22
24	4	9	0.0125	38.06	2.35
24	4	10	0.0131	40.12	2.48
24	4	11	0.0138	42.08	2.60
24	4	12	0.0144	43.95	2.72
24	4	13	0.0150	45.74	2.83
24	4	14	0.0156	47.47	2.94
24	4	15	0.0161	49.13	3.04
24	4	16	0.0166	50.75	3.14
24	4	17	0.0171	52.31	3.24
24	4	18	0.0176	53.82	3.33
36	10	1	0.0104	31.72	1.96
36	10	2	0.0147	44.85	2.78
36	10	3	0.0180	54.93	3.40

§ MMBTU/hr values are calculated based on 1500 BTU/scf gas

 $P_{age} 15$

36	10	4	0.0208	63.43	3.92
36	10	5	0.0232	70.92	4.39
36	10	6	0.0255	77.69	4.81
36	10	7	0.0275	83.91	5.19
36	10	8	0.0294	89.71	5.55
36	10	9	0.0312	95.15	5.89
36	10	10	0.0329	100.29	6.21
36	10	11	0.0345	105.19	6.51
36	10	12	0.0360	109.87	6.80
36	10	13	0.0375	114.35	7.08
36	10	14	0.0389	118.67	7.34
36	10	15	0.0403	122.83	7.60
36	10	16	0.0416	126.86	7.85
36	10	17	0.0429	130.77	8.09
36	10	18	0.0441	134.56	8.33
48	14	1	0.0146	44.40	2.75
48	14	2	0.0206	62.79	3.89
48	14	3	0.0252	76.91	4.76
48	14	4	0.0291	88.80	5.49
48	14	5	0.0325	99.29	6.14
48	14	6	0.0356	108.76	6.73
48	14	7	0.0385	117.48	7.27
48	14	8	0.0412	125.59	7.77
48	14	9	0.0437	133.21	8.24
48	14	10	0.0460	140.41	8.69
48	14	11	0.0483	147.27	9.11
48	14	12	0.0504	153.81	9.52
48	14	13	0.0525	160.09	9.91
48	14	14	0.0545	166.14	10.28
48	14	15	0.0564	171.97	10.64
48	14	16	0.0582	177.61	10.99
48	14	17	0.0600	183.07	11.33
48	14	18	0.0617	188.38	11.66

 $\frac{1}{2}$

Enclosed (Passive Swirl) Flare Flow Rates

 $Q = \begin{bmatrix} C_d \mathbf{A} \cdot \sqrt{\frac{2\left(\frac{P}{16}\right)R}{\rho}} \end{bmatrix} \mathbf{N}$

Convert to mSCFD $(Q \cdot M \cdot 24) / 1000$

	3/8" Orifice: Dia =		0.00635 m			
	Area =		3.16692E-05 m ²		6894.757 (Conversion from PSI to Pa (R)
	Cd =		1			m^3/s to ft ³ /hr (M)
	Density =		0.8 kg/m ³			,
	,					
Flare Size	# of Orifices (N)	P	ressure (OZ/in ²)	m³/s	mSCFD	99% Combustion Efficiency
	18	2	1	0.00207892	6.34316015	6.28
	18	2	2	0.00294003	8.97058312	8.88
	18	2	3	0.00360079	10.98667566	10.88
	18	2	4	0.00415783	12.68632031	12.56
	18	2	5	0.00464860	14.18373729	14.04
	18	2	6	0.00509228	15.53750573	15.38
	18	2	7	0.00550029	16.78242429	16.61
	18	2	8	0.00588006	17.94116623	17.76
	18	2	9	0.00623675	19.02948046	18.84
	18	2	10	0.00657411	20.05883365	19.86
	18	2	11	0.00689498	21.03788221	20.83
	18	2	12	0.00720157	21.97335133	21.75
	18	2	13	0.00749564	22.87058918	22.64
	18	2	14	0.00777859	23.73393204	23.50
	18	2	15	0.00805160	24.56695363	24.32
	18	2	16	0.00831566	25.37264061	25.12
	18	2	17	0.00857159	26.15351931	25.89
	18	2	18	0.00882009	26.91174935	26.64
:	24	4	1	0.00415783	12.68632031	12.56
:	24	4	2	0.00588006	17.94116623	17.76
:	24	4	3	0.00720157	21.97335133	21.75
:	24	4	4	0.00831566	25.37264061	25.12
:	24	4	5	0.00929719	28.36747459	28.08
:	24	4	6	0.01018456	31.07501146	30.76
:	24	4	7	0.01100059	33.56484858	33.23
:	24	4	8	0.01176012	35.88233246	35.52
:	24	4	9	0.01247349	38.05896092	37.68
:	24	4	10	0.01314822	40.11766729	39.72
:	24	4	11	0.01378996	42.07576442	41.66
:	24	4	12	0.01440315	43.94670266	43.51
:	24	4	13	0.01499127	45.74117836	45.28
:	24	4	14	0.01555718	47.46786408	46.99
	24	4	15	0.01610321	49.13390727	48.64
	24	4	16	0.01663132	50.74528122	50.24
	24	4	17	0.01714318	52.30703862	51.78
	24	4	18	0.01764018	53.82349870	53.29
		10	1	0.01039458	31.71580076	31.40
		10	2	0.01470015	44.85291558	44.40
		10	3	0.01800394	54.93337832	54.38
		10	4	0.02078915	63.43160153	62.80
		10	5	0.02324298	70.91868647	70.21
		10	6 7	0.02546141	77.68752865	76.91
	36	10		0.02750147	83.91212145	83.07

36	10	8	0.02940030	89.70583116	88.81
36	10	9	0.03118373	95.14740229	94.20
36	10	10	0.03287054	100.29416823	99.29
36	10	11	0.03447491	105.18941106	104.14
36	10	12	0.03600787	109.86675665	108.77
36	10	13	0.03747818	114.35294589	113.21
36	10	14	0.03889295	118.66966020	117.48
36	10	15	0.04025802	122.83476817	121.61
36	10	16	0.04157831	126.86320305	125.59
36	10	17	0.04285794	130.76759655	129.46
36	10	18	0.04410046	134.55874674	133.21
48	14	1	0.01455241	44.40212107	43.96
48	14	2	0.02058021	62.79408181	62.17
48	14	3	0.02520551	76.90672965	76.14
48	14	4	0.02910482	88.80424214	87.92
48	14	5	0.03254017	99.28616105	98.29
48	14	6	0.03564597	108.76254012	107.67
48	14	7	0.03850205	117.47697003	116.30
48	14	8	0.04116043	125.58816363	124.33
48	14	9	0.04365722	133.20636321	131.87
48	14	10	0.04601875	140.41183552	139.01
48	14	11	0.04826488	147.26517548	145.79
48	14	12	0.05041102	153.81345931	152.28
48	14	13	0.05246945	160.09412425	158.49
48	14	14	0.05445012	166.13752428	164.48
48	14	15	0.05636123	171.96867543	170.25
48	14	16	0.05820963	177.60848427	175.83
48	14	17	0.06000112	183.07463517	181.24
48	14	18	0.06174064	188.38224544	186.50

ATTACHMENT S

Emission Calculations

EQT Production, LLC | GLO-76 Pad Trinity Consultants

EQT Production, LLC GLO 76 Wellpad G70C Application

Site Wide Summary

Emission Source	Value	Units	Emission Unit ID(s)	Emission Point ID(s)	Control Device
Well(s)	9	per pad			
Storage Tank(s) (400 bbl)	10	per pad	S001 - S010	E001 - E010	None
Sand Separator Tank	1	per pad	S011	E011	None
Line Heater(s) (1.54 MMBtu/hr)	9	per pad	S012 - S020	E012 - E020	None
Thermoelectric Generator(s) (TEGs)	3	per pad	S021 - S023	E021 - E023	None
Dehydrator(s)	1	per pad	S024	C001	C001
Reboiler(s)	1	per pad	S025	E025	
Dehy Drip Tank	1	per pad	S026	E026	
Fank Combustor(s)	0	per pad			
Dehy Combustor(s)	1	per pad	C001	C001	N/A
Length of lease road	1,000	feet			

Emission	Emission	Emission	N	D _x	C	0	V	OC	S	02	PM	A110	PN	M25	C	O ₂ e
Point ID #	Source ID#s	Source Description	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001	S024	Dehydrator					0.24	1.07							46.68	204.46
C001	C001	Dehy Combustor	0.30	1.34	0.26	1.12	0.02	0.07	0.00	0.01	0.02	0.10	0.02	0.10	393.52	1,723.60
C001	S024, C001		0.30	1.34	0.26	1.12	0.26	1.14	0.00	0.01	0.02	0.10	0.02	0.10	440.20	1,928.06
E001	S001	Storage Tank					0.05	0.20							0.13	0.53
E002	S002	Storage Tank					0.05	0.20							0.13	0.53
E003	S003	Storage Tank					0.05	0.20							0.13	0.53
E004	S004	Storage Tank					0.05	0.20							0.13	0.53
E005	S005	Storage Tank					0.05	0.20							0.13	0.53
E006	S006	Storage Tank					0.05	0.20							0.13	0.53
E007	S007	Storage Tank					0.05	0.20							0.13	0.53
E008	S008	Storage Tank					0.05	0.20							0.13	0.53
E009	S009	Storage Tank					0.05	0.20							0.13	0.53
E010	S010	Storage Tank					0.05	0.20							0.13	0.53
E011	S011	Sand Separator Tank					0.01	0.02							1.1E-02	0.05
E012	S012	Line Heater	0.14	0.61	0.12	0.51	0.01	0.03	8.4E-04	3.7E-03	0.01	0.05	0.01	0.05	180.18	789.20
E013	S013	Line Heater	0.14	0.61	0.12	0.51	0.01	0.03	8.4E-04	3.7E-03	0.01	0.05	0.01	0.05	180.18	789.20
E014	S014	Line Heater	0.14	0.61	0.12	0.51	0.01	0.03	8.4E-04	3.7E-03	0.01	0.05	0.01	0.05	180.18	789.20
E015	S015	Line Heater	0.14	0.61	0.12	0.51	0.01	0.03	8.4E-04	3.7E-03	0.01	0.05	0.01	0.05	180.18	789.20
E016	S016	Line Heater	0.14	0.61	0.12	0.51	0.01	0.03	8.4E-04	3.7E-03	0.01	0.05	0.01	0.05	180.18	789.20
E017	S017	Line Heater	0.14	0.61	0.12	0.51	0.01	0.03	8.4E-04	3.7E-03	0.01	0.05	0.01	0.05	180.18	789.20
E018	S018	Line Heater	0.14	0.61	0.12	0.51	0.01	0.03	8.4E-04	3.7E-03	0.01	0.05	0.01	0.05	180.18	789.20
E019	S019	Line Heater	0.14	0.61	0.12	0.51	0.01	0.03	8.4E-04	3.7E-03	0.01	0.05	0.01	0.05	180.18	789.20
E020	S020	Line Heater	0.14	0.61	0.12	0.51	0.01	0.03	8.4E-04	3.7E-03	0.01	0.05	0.01	0.05	180.18	789.20
E021	S021	Thermoelectric Generator	1.2E-03	0.01	9.9E-04	4.3E-03	6.5E-05	2.8E-04	7.1E-06	3.1E-05	8.9E-05	3.9E-04	8.9E-05	3.9E-04	1.52	6.65
E022	S022	Thermoelectric Generator	1.2E-03	0.01	9.9E-04	4.3E-03	6.5E-05	2.8E-04	7.1E-06	3.1E-05	8.9E-05	3.9E-04	8.9E-05	3.9E-04	1.52	6.65
E023	S023	Thermoelectric Generator	1.2E-03	0.01	9.9E-04	4.3E-03	6.5E-05	2.8E-04	7.1E-06	3.1E-05	8.9E-05	3.9E-04	8.9E-05	3.9E-04	1.52	6.65
E025	S025	Reboiler	0.07	0.30	0.06	0.25	3.7E-03	0.02	4.1E-04	1.8E-03	0.01	0.02	0.01	0.02	87.84	384.73
E026	S026	Dehy Drip Tank					0.05	0.20							0.13	0.53
E027	S027	Liquid Loading					3.71	0.96								
		Fugitives						11.44								937.07
		Haul Roads										0.53		0.05		
Facility Total			1.63	7.15	1.37	6.01	4.55	16.09	0.01	0.04	0.12	1.07	0.12	0.60	2,155.61	10,378.39
Facility Total (excluding fu	gitive emissions)		1.63	7.15	1.37	6.01	0.85	3.68	0.01	0.04	0.12	0.54	0.12	0.54	2,155.61	9,441.33

1. Hourly emissions for liquid loading assume two hours of loading per day, five days per week. Emissions from the dehy drip tank are conservatively assumed equal to one produced fluid storage tank.

EOT Production, LLC GLO 76 Wellpad G70C Application

Site Wide Summary

Emission Source	Value	Units	Emission Unit ID(s)	Emission Point ID(s)	Control Device
Well(s)	9	per pad			
Storage Tank(s) (400 bbl)	10	per pad	S001 - S010	E001 - E010	None
Sand Separator Tank	1	per pad	S011	E011	None
Line Heater(s) (1.54 MMBtu/hr)	9	per pad	S012 - S020	E012 - E020	None
Thermoelectric Generator(s) (TEGs)	3	per pad	S021 - S023	E021 - E023	None
Dehydrator(s)	1	per pad	S024	C001	C001
Reboiler(s)	1	per pad	S025	E025	
Dehy Drip Tank	1	per pad	S026	E026	
Fank Combustor(s)	0	per pad			
Dehy Combustor(s)	1	per pad	C001	C001	N/A
Length of lease road	1,000	feet			

Emission	Emission	Emission	Forma	ldehyde	Ben	zene	Tol	uene	Ethylt	oenzene	Xy	lenes	n-H	exane	Total	l HAP
Point ID #	Source ID#s	Source Description	lb/hr	tpy												
C001	S024	Dehydrator			0.01	0.02	0.02	0.08	0.01	0.06	0.02	0.08	0.00	0.01	0.06	0.25
C001	C001	Dehy Combustor														
C001	S024, C001		< 0.01	<0.01	0.01	0.02	0.02	0.08	0.01	0.06	0.02	0.08	0.00	0.01	0.06	0.25
E001	S001	Storage Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	1.0E-03	< 0.01	< 0.01
E002	S002	Storage Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	1.0E-03	< 0.01	< 0.01
E003	S003	Storage Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	1.0E-03	< 0.01	< 0.01
E004	S004	Storage Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	1.0E-03	< 0.01	< 0.01
E005	S005	Storage Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	1.0E-03	< 0.01	< 0.01
E006	S006	Storage Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	1.0E-03	< 0.01	< 0.01
E007	S007	Storage Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	1.0E-03	< 0.01	< 0.01
E008	S008	Storage Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	1.0E-03	< 0.01	< 0.01
E009	S009	Storage Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	1.0E-03	< 0.01	< 0.01
E010	S010	Storage Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	1.0E-03	< 0.01	< 0.01
E011	S011	Sand Separator Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
E012	S012	Line Heater	1.0E-04	4.6E-04	2.9E-06	1.3E-05	4.7E-06	2.1E-05					2.5E-03	0.01	2.6E-03	0.01
E013	S013	Line Heater	1.0E-04	4.6E-04	2.9E-06	1.3E-05	4.7E-06	2.1E-05					2.5E-03	0.01	2.6E-03	0.01
E014	S014	Line Heater	1.0E-04	4.6E-04	2.9E-06	1.3E-05	4.7E-06	2.1E-05					2.5E-03	0.01	2.6E-03	0.01
E015	S015	Line Heater	1.0E-04	4.6E-04	2.9E-06	1.3E-05	4.7E-06	2.1E-05					2.5E-03	0.01	2.6E-03	0.01
E016	S016	Line Heater	1.0E-04	4.6E-04	2.9E-06	1.3E-05	4.7E-06	2.1E-05					2.5E-03	0.01	2.6E-03	0.01
E017	S017	Line Heater	1.0E-04	4.6E-04	2.9E-06	1.3E-05	4.7E-06	2.1E-05					2.5E-03	0.01	2.6E-03	0.01
E018	S018	Line Heater	1.0E-04	4.6E-04	2.9E-06	1.3E-05	4.7E-06	2.1E-05					2.5E-03	0.01	2.6E-03	0.01
E019	S019	Line Heater	1.0E-04	4.6E-04	2.9E-06	1.3E-05	4.7E-06	2.1E-05					2.5E-03	0.01	2.6E-03	0.01
E020	S020	Line Heater	1.0E-04	4.6E-04	2.9E-06	1.3E-05	4.7E-06	2.1E-05					2.5E-03	0.01	2.6E-03	0.01
E021	S021	Thermoelectric Generator	8.8E-07	3.9E-06	2.5E-08	1.1E-07	4.0E-08	1.8E-07					2.1E-05	9.3E-05	2.2E-05	9.7E-05
E022	S022	Thermoelectric Generator	8.8E-07	3.9E-06	2.5E-08	1.1E-07	4.0E-08	1.8E-07					2.1E-05	9.3E-05	2.2E-05	9.7E-05
E023	S023	Thermoelectric Generator	8.8E-07	3.9E-06	2.5E-08	1.1E-07	4.0E-08	1.8E-07					2.1E-05	9.3E-05	2.2E-05	9.7E-05
E025	S025	Reboiler	5.1E-05	2.2E-04	1.4E-06	6.3E-06	2.3E-06	1.0E-05					1.2E-03	0.01	1.3E-03	0.01
E026	S026	Dehy Drip Tank					< 0.01	< 0.01							< 0.01	< 0.01
E027	S027	Liquid Loading			1.9E-03	4.8E-04	3.5E-03	9.1E-04	2.0E-04	5.1E-05	2.6E-03	6.9E-04	0.08	0.02	0.09	0.02
		Fugitives				< 0.01		0.01		< 0.01		< 0.01		0.07		0.11
		Haul Roads														
Facility Total			1.0E-03	4.4E-03	0.01	0.02	0.02	0.09	0.01	0.06	0.02	0.09	0.10	0.21	0.17	0.49
Facility Total (excluding fu	gitive emissions)		1.0E-03	4.4E-03	0.01	0.02	0.02	0.08	0.01	0.06	0.02	0.09	0.03	0.12	0.08	0.36

1. Hourly emissions for liquid loading assume two hours of loading per day, five days per week. Emissions from the dehy drip tank are conservatively assumed equal to one produced fluid storage tank.

Produced Fluid Storage Tanks and Dehy Drip Tank

Throughput Parameter	Value	Units
Operational Hours	8,760	hrs/yr
Total Produced Fluid Throughput for E&P ¹	1.00	bbl/day (per tank) bbl/month
Total Condensate Throughput	0	bbl/month
Total Produced Water Throughput	19,506	bbl/month

Description	Potential Throughput ^{2, 3} (gal/yr)
Produced Water and Condensate	9,831,213

¹ This pad is not expected to produce condensate. For the purposes of establishing PTE, produced water is conservatively assumed to contain 1% condensate. E&P Tank throughput is on a per-tank basis.

² Based on maximum historical produced water and condensate throughput for BIG-182 wellpad.

³ Potential liquid throughput is representative of liquid produced from each well, and liquid accumulated in the dehydrator drip tank.

Storage Tanks (400 bbl, each) - Uncontrolled (Per tank)

	Total En	nissions ¹
Constituent	lb/hr	tpy
Methane	0.005	0.021
Ethane	0.007	0.031
Propane	0.015	0.065
Isobutane	0.009	0.039
n-Butane	0.016	0.068
Isopentane	0.003	0.011
n-Pentane	0.001	0.005
n-Hexane	< 0.001	0.001
Cyclohexane	< 0.001	< 0.001
Other Hexanes	< 0.001	0.002
Heptanes	0.001	0.004
Benzene	< 0.001	< 0.001
Toluene	< 0.001	< 0.001
Ethylbenzene	< 0.001	< 0.001
Xylenes	< 0.001	0.001
2,2,4-Trimethylpentane	< 0.001	< 0.001
C8+ Heavies	0.001	0.004
Total Emissions:	0.058	0.253
Total VOC Emissions:	0.046	0.200
Total HAP Emissions:	< 0.001	< 0.001

¹ E&P TANK v2.0 calculates working, breathing and flashing losses and reports the sum as one total.

 2 E&P TANK v2.0 emission calculations are based on 9/12/2014 condensate sample from BIG 192 wellpad (located within 5 miles of GLO-76 and best estimate for condensate composition as none is expected).

Produced Fluid Storage Tanks and Dehy Drip Tank

Storage Tanks (400 bbl, each) - Controlled (Per tank)

	Total Emissions	
Constituent	lb/hr	tpy
Methane	0.005	0.021
Ethane	0.007	0.031
Propane	0.015	0.065
Isobutane	0.009	0.039
n-Butane	0.016	0.068
Isopentane	0.003	0.011
n-Pentane	0.001	0.005
n-Hexane	< 0.001	0.001
Cyclohexane	< 0.001	< 0.001
Other Hexanes	< 0.001	0.002
Heptanes	0.001	0.004
Benzene	< 0.001	< 0.001
Toluene	< 0.001	< 0.001
Ethylbenzene	< 0.001	< 0.001
Xylenes	< 0.001	0.001
2,2,4-Trimethylpentane	< 0.001	< 0.001
C8+ Heavies	0.001	0.004
Total Emissions:	0.058	0.253
Total VOC Emissions:	0.046	0.200
Total HAP Emissions:	< 0.001	< 0.001

Company Name: Facility Name: Project Description:

EQT Production, LLC GLO 76 Wellpad G70C Application

Sand Separator Tank

Throughput Parameter	Value	Units
Tank Capacity	5,880	gallons
Operational Hours	8,760	hrs/yr
Total Produced Water and Sand Throughput	280	bbl/month
Percent Produced Water	50%	
Total Produced Water Throughput	140	bbl/month

¹ Conservatively assumes 2 turnovers/month of sand and produced water.

Description	Potential Throughput (gal/yr)
Produced Water and Sand	141,120

Sand Separator Tank (140 bbl) - Uncontrolled (Per tank)

Constituent	Total Emissions ¹ lb/hr tpy	
Methane	<0.001	0.002
Ethane	0.001	0.003
Propane	0.002	0.007
Isobutane	0.001	0.004
n-Butane	0.002	0.007
Isopentane	< 0.001	0.001
n-Pentane	< 0.001	0.001
n-Hexane	< 0.001	< 0.001
Cyclohexane	< 0.001	< 0.001
Other Hexanes	< 0.001	< 0.001
Heptanes	< 0.001	< 0.001
Benzene	< 0.001	< 0.001
Toluene	< 0.001	< 0.001
Ethylbenzene	< 0.001	< 0.001
Xylenes	< 0.001	< 0.001
2,2,4-Trimethylpentane	< 0.001	< 0.001
C8+ Heavies	< 0.001	< 0.001
Total Emissions:	0.006	0.025
Total VOC Emissions:	0.005	0.020
Total HAP Emissions:	< 0.001	< 0.001

 1 E&P TANK 2.0 calculates working, breathing and flashing losses and reports the sum as one total.

² E&P TANK v2.0 emission calculations are based on 9/12/2014 condensate sample from BIG 192 wellpad.

Company Name: Facility Name: Project Description:

EQT Production, LLC GLO 76 Wellpad G70C Application

Sand Separator Tank

Sand Separator Tank (140 bbl) - Controlled (Per tank)

Constituent	Total Emissions lb/hr tpy	
Methane	< 0.001	0.002
Ethane	0.001	0.003
Propane	0.002	0.007
Isobutane	0.001	0.004
n-Butane	0.002	0.007
Isopentane	< 0.001	0.001
n-Pentane	< 0.001	0.001
n-Hexane	< 0.001	< 0.001
Cyclohexane	< 0.001	< 0.001
Other Hexanes	< 0.001	< 0.001
Heptanes	< 0.001	< 0.001
Benzene	< 0.001	< 0.001
Toluene	< 0.001	< 0.001
Ethylbenzene	< 0.001	< 0.001
Xylenes	< 0.001	< 0.001
2,2,4-Trimethylpentane	< 0.001	< 0.001
C8+ Heavies	< 0.001	< 0.001
Total Emissions:	0.006	0.025
Total VOC Emissions:	0.005	0.020
Total HAP Emissions:	0.000	0.000

EQT Production, LLC GLO 76 Wellpad G70C Application

Line Heaters

Parameter	Value	Units
Fuel Used	Natural Gas	
Higher Heating Value (HHV)	1,102	BTU/scf
Heat Input	1.54	MMBtu/hr (each)
Fuel Consumption	1.40E-03	MMscf/hr (each)
Potential Annual Hours of Operation	8,760	hr/yr

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential Emissions	
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
NO _x	100	1.4E-01	6.1E-01
со	84	1.2E-01	5.1E-01
SO_2	0.6	8.4E-04	3.7E-03
PM Total	7.6	1.1E-02	4.6E-02
PM Condensable	5.7	8.0E-03	3.5E-02
PM ₁₀ (Filterable)	1.9	2.7E-03	1.2E-02
PM _{2.5} (Filterable)	1.9	2.7E-03	1.2E-02
VOC	5.5	7.7E-03	3.4E-02
Lead	5.0E-04	7.0E-07	3.1E-06
CO ₂ (Natural Gas Firing) ⁴	128,931	180	788
CH ₄ (Natural Gas Firing) ⁴	2.4	3.4E-03	1.5E-02
N ₂ O (Natural Gas Firing) ⁴	0.24	3.4E-04	1.5E-03

Line Heaters

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³	
HAPs:				
Methylnaphthalene (2-)	2.4E-05	3.4E-08	1.5E-07	
3-Methylchloranthrene	1.8E-06	2.5E-09	1.1E-08	
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.2E-08	9.8E-08	
Acenaphthene	1.8E-06	2.5E-09	1.1E-08	
Acenaphthylene	1.8E-06	2.5E-09	1.1E-08	
Anthracene	2.4E-06	3.4E-09	1.5E-08	
Benz(a)anthracene	1.8E-06	2.5E-09	1.1E-08	
Benzene	2.1E-03	2.9E-06	1.3E-05	
Benzo(a)pyrene	1.2E-06	1.7E-09	7.3E-09	
Benzo(b)fluoranthene	1.8E-06	2.5E-09	1.1E-08	
Benzo(g,h,i)perylene	1.2E-06	1.7E-09	7.3E-09	
Benzo(k)fluoranthene	1.8E-06	2.5E-09	1.1E-08	
Chrysene	1.8E-06	2.5E-09	1.1E-08	
Dibenzo(a,h) anthracene	1.2E-06	1.7E-09	7.3E-09	
Dichlorobenzene	1.2E-03	1.7E-06	7.3E-06	
Fluoranthene	3.0E-06	4.2E-09	1.8E-08	
Fluorene	2.8E-06	3.9E-09	1.7E-08	
Formaldehyde	7.5E-02	1.0E-04	4.6E-04	
Hexane	1.8E+00	2.5E-03	1.1E-02	
Indo(1,2,3-cd)pyrene	1.8E-06	2.5E-09	1.1E-08	
Naphthalene	6.1E-04	8.5E-07	3.7E-06	
Phenanthrene	1.7E-05	2.4E-08	1.0E-07	
Pyrene	5.0E-06	7.0E-09	3.1E-08	
Toluene	3.4E-03	4.7E-06	2.1E-05	
Arsenic	2.0E-04	2.8E-07	1.2E-06	
Beryllium	1.2E-05	1.7E-08	7.3E-08	
Cadmium	1.1E-03	1.5E-06	6.7E-06	
Chromium	1.4E-03	2.0E-06	8.6E-06	
Cobalt	8.4E-05	1.2E-07	5.1E-07	
Manganese	3.8E-04	5.3E-07	2.3E-06	
Mercury	2.6E-04	3.6E-07	1.6E-06	
Nickel	2.1E-03	2.9E-06	1.3E-05	
Selenium	2.4E-05	3.4E-08	1.5E-07	
Total HAP		2.6E-03	1.2E-02	

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, 1.4-3, & 1.4-4.

 2 Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) \times Emission Factor (lb/MMscf)

³ Annual Emissions $(tons/yr)_{potential} = (lb/hr)_{Emissions} \times (Maximum Allowable Operating Hours, 8760 hr/yr) \times (1 ton/2000 lb).$

 4 GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Thermoelectric Generators (TEGs)

Parameter	Value	Units
Manufacturer	Global Thermoelectric	
Fuel Used	Natural Gas	
Higher Heating Value (HHV)	1,102	BTU/scf
Heat Input	0.013	MMBtu/hr (each)
Fuel Consumption ¹	1.18E-05	MMscf/hr (each)
Potential Annual Hours of Operation	8,760	hr/yr

¹ Global Themoelectric specification sheet states 311 f³/day at 1000 BTU/ft³.

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential Emissions	
Pollutant	(lb/MMscf) ¹	$(lb/hr)^2$	(tons/yr) ³
NO _x	100	1.2E-03	5.2E-03
СО	84	9.9E-04	4.3E-03
SO ₂	0.6	7.1E-06	3.1E-05
PM Total	7.6	8.9E-05	3.9E-04
PM Condensable	5.7	6.7E-05	2.9E-04
PM ₁₀ (Filterable)	1.9	2.2E-05	9.8E-05
PM _{2.5} (Filterable)	1.9	2.2E-05	9.8E-05
VOC	5.5	6.5E-05	2.8E-04
Lead	5.00E-04	5.9E-09	2.6E-08
CO_2 (Natural Gas Firing) ⁴	128,931	2	7
CH_4 (Natural Gas Firing) ⁴	2.4	2.9E-05	1.3E-04
N_2O (Natural Gas Firing) ⁴	0.24	2.9E-06	1.3E-05

Thermoelectric Generators (TEGs)

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential Emissions	
Pollutant	(lb/MMscf) ¹	$(lb/hr)^2$	(tons/yr) ³
HAPs:			
Methylnaphthalene (2-)	2.4E-05	2.8E-10	1.2E-09
3-Methylchloranthrene	1.8E-06	2.1E-11	9.3E-11
7,12-Dimethylbenz(a)anthracene	1.6E-05	1.9E-10	8.2E-10
Acenaphthene	1.8E-06	2.1E-11	9.3E-11
Acenaphthylene	1.8E-06	2.1E-11	9.3E-11
Anthracene	2.4E-06	2.8E-11	1.2E-10
Benz(a)anthracene	1.8E-06	2.1E-11	9.3E-11
Benzene	2.1E-03	2.5E-08	1.1E-07
Benzo(a)pyrene	1.2E-06	1.4E-11	6.2E-11
Benzo(b)fluoranthene	1.8E-06	2.1E-11	9.3E-11
Benzo(g,h,i)perylene	1.2E-06	1.4E-11	6.2E-11
Benzo(k)fluoranthene	1.8E-06	2.1E-11	9.3E-11
Chrysene	1.8E-06	2.1E-11	9.3E-11
Dibenzo(a,h) anthracene	1.2E-06	1.4E-11	6.2E-11
Dichlorobenzene	1.2E-03	1.4E-08	6.2E-08
Fluoranthene	3.0E-06	3.5E-11	1.5E-10
Fluorene	2.8E-06	3.3E-11	1.4E-10
Formaldehyde	7.5E-02	8.8E-07	3.9E-06
Hexane	1.8E+00	2.1E-05	9.3E-05
Indo(1,2,3-cd)pyrene	1.8E-06	2.1E-11	9.3E-11
Naphthalene	6.1E-04	7.2E-09	3.1E-08
Phenanthrene	1.7E-05	2.0E-10	8.8E-10
Pyrene	5.0E-06	5.9E-11	2.6E-10
Toluene	3.4E-03	4.0E-08	1.8E-07
Arsenic	2.0E-04	2.4E-09	1.0E-08
Beryllium	1.2E-05	1.4E-10	6.2E-10
Cadmium	1.1E-03	1.3E-08	5.7E-08
Chromium	1.4E-03	1.6E-08	7.2E-08
Cobalt	8.4E-05	9.9E-10	4.3E-09
Manganese	3.8E-04	4.5E-09	2.0E-08
Mercury	2.6E-04	3.1E-09	1.3E-08
Nickel	2.1E-03	2.5E-08	1.1E-07
Selenium	2.4E-05	2.8E-10	1.2E-09
Total HAP		2.2E-05	9.7E-05

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, 1.4-3, & 1.4-4.

 2 Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) \times Emission Factor (lb/MMscf)

³ Annual Emissions $(tons/yr)_{Potential} = (lb/hr)_{Emissions} \times (Maximum Allowable Operating Hours, 8760 hr/yr) \times (1 ton/2000 lb).$

⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Triethylene Glycol Dehydrator

GRI-GLYCalc Version 4.0 - EMISSIONS SUMMARY				
Uncontrolled Regenerator Emissions				
Pollutant	(lbs/hr)	(lbs/day)	(tons/yr)	
Carbon Dioxide	0.22	5.30	0.97	
Methane	1.1264	27.0340	4.9336	
Ethane	0.9511	22.8260	4.1658	
Propane	0.6191	14.8590	2.7118	
Isobutane	0.1933	4.6390	0.8465	
n-Butane	0.3154	7.5700	1.3815	
Isopentane	0.1261	3.0270	0.5525	
n-Pentane	0.0876	2.1010	0.3835	
Cyclopentane	0.0216	0.5190	0.0948	
n-Hexane*	0.0584	1.4020	0.2558	
Cyclohexane	0.0521	1.2500	0.2281	
Other Hexanes	0.1347	3.2340	0.5902	
Heptanes	0.2286	5.4870	1.0014	
Methylcyclohexane	0.0708	1.7000	0.3103	
2,2,4-Trimethylpentane*	0.0056	0.1340	0.0245	
Benzene*	0.2478	5.9460	1.0852	
Toluene*	0.8560	20.5430	3.7491	
Ethylbenzene*	0.6544	15.7050	2.8661	
Xylenes*	0.9003	21.6080	3.9434	
C8 + Heavier Hydrocarbons	0.3203	7.6870	1.4029	
Total Emissions	6.9696	167.2710	30.5270	
Total Hydrocarbon Emissions	6.9696	167.271	30.5270	
Total VOC Emissions	4.8921	117.412	21.4276	
Total HAP Emissions	2.7224	65.338	11.9241	

GRI-GLYCalc Version 4.0 - EMISSIONS SUMMARY ^I Controlled Combined Regenerator and Flash Tank Off Gas Emissions						
Pollutant	(lbs/hr)	(lbs/day)	(tons/yr)			
Carbon Dioxide	1.18	28.39	5.18			
Methane	1.8199	43.6770	7.9710			
Ethane	0.3850	9.2410	1.6865			
Propane	0.1050	2.5210	0.4601			
Isobutane	0.0207	0.4960	0.0905			
n-Butane	0.0259	0.6220	0.1136			
Isopentane	0.0088	0.2110	0.0385			
n-Pentane	0.0050	0.1210	0.0221			
Cyclopentane	0.0006	0.0160	0.0028			
n-Hexane*	0.0022	0.0530	0.0097			
Cyclohexane	0.0013	0.0310	0.0056			
Other Hexanes	0.0061	0.1460	0.0267			
Heptanes	0.0063	0.1520	0.0277			
Methylcyclohexane	0.0016	0.0390	0.0072			
2,2,4-Trimethylpentane*	0.0002	0.0050	0.0009			
Benzene*	0.0051	0.1220	0.0222			
Toluene*	0.0173	0.4160	0.0759			
Ethylbenzene*	0.0132	0.3160	0.0577			
Xylenes*	0.0181	0.4340	0.0792			
C8 + Heavier Hydrocarbons	0.0068	0.1630	0.0297			
Total Emissions	2.4492	58.7810	10.7276			
Total Hydrocarbon Emissions	2.4492	58.7810	10.7276			
Total VOC Emissions	0.2443	5.8640	1.0701			
Total HAP Emissions	0.0561	1.3460	0.2457			

Pollutant	(lbs/hr)	(lbs/day)	(tons/yr)
Carbon Dioxide	0.96	23.09	4.21
Methane	89.8666	2156.7980	393.6156
Ethane	18.3011	439.2260	80.1588
Propane	4.6333	111.2000	20.2940
Isobutane	0.8396	20.1520	3.6777
n-Butane	0.9808	23.5400	4.2960
Isopentane	0.3135	7.5240	1.3730
n-Pentane	0.1642	3.9420	0.7194
Cyclopentane	0.0107	0.2570	0.0470
n-Hexane*	0.0528	1.2670	0.2312
Cyclohexane	0.0120	0.2880	0.0526
Other Hexanes	0.1700	4.0810	0.7447
Heptanes	0.0878	2.1070	0.3845
Methylcyclohexane	0.0114	0.2730	0.0498
2,2,4-Trimethylpentane*	0.0047	0.1130	0.0206
Benzene*	0.0056	0.1340	0.0245
Toluene*	0.0109	0.2600	0.0475
Ethylbenzene*	0.0042	0.1020	0.0185
Xylenes*	0.0038	0.0900	0.0165
C8 + Heavier Hydrocarbons	0.0187	0.4480	0.0817
Total Emissions	115.4917	2771.8010	505.8537
Total Hydrocarbon Emissions	115.4917	2771.8010	505.8537
Total VOC Emissions	7.3240	175.7770	32.0793
Total HAP Emissions	0.0819	1.9670	0.3589

Enclosed Combustor Emissions

Pollutant	Emission Factors (lb/MMBtu)	Combustor Potential Emissions (lb/hr) (tpy)		Pil Potential (lb/hr)	lot Emissions (tpy)
NO _x	9.1E-02	0.30	1.32	< 0.01	0.01
со	7.6E-02	0.25	1.11	< 0.01	0.01
PM/PM ₁₀	6.9E-03	0.02	0.10	< 0.01	< 0.01
SO ₂	5.4E-04	< 0.01	0.01	< 0.01	< 0.01
VOC	5.0E-03	0.02	0.07	< 0.01	< 0.01
CO2 (Natural Gas Firing)	116.997	389.60	1,706.45	3.51	15.37
CH4 (Natural Gas Firing)	2.2E-03	0.01	0.03	< 0.01	< 0.01
N2O (Natural Gas Firing)	2.2E-04	< 0.01	< 0.01	< 0.01	< 0.01

Emission factors for criteria pollutants are from AP-42 Section 1.4. Emission factors for GHG's are from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Combustor Specifications:

Combustor Rating	3.33 MMBtu/hr	Maximum rating for LEED 24" enclosed combustor.
Pilot Rating	0.03 MMBtu/hr	
Capture Efficiency:	100 %	
Destruction Efficiency:	98 %	
Total Control Efficiency:	98 %	

* HAPs

¹ Based on GRI GLYCalc 4.0 run at dry gas flowrate of 65 MMsct/day, tower temperature of 90 °F and tower pressure of 800 psig. The flash tank operating parameters are 75 °F and 70 psig. Emissions from both the flash tank and regenerator are routed to the combustor with 98% total control efficiency.

Reboiler

Parameter	Value	Units
Fuel Used	Natural Gas	
Higher Heating Value (HHV)	1,102	BTU/scf
Heat Input	0.75	MMBtu/hr
Fuel Consumption	6.81E-04	MMscf/hr
Potential Annual Hours of Operation	8,760	hr/yr

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
NO _x	100	6.8E-02	3.0E-01
СО	84	5.7E-02	2.5E-01
SO_2	0.6	4.1E-04	1.8E-03
PM Total	7.6	5.2E-03	2.3E-02
PM Condensable	5.7	3.9E-03	1.7E-02
PM ₁₀ (Filterable)	1.9	1.3E-03	5.7E-03
PM _{2.5} (Filterable)	1.9	1.3E-03	5.7E-03
VOC	5.5	3.7E-03	1.6E-02
Lead	5.00E-04	3.4E-07	1.5E-06
CO ₂ (Natural Gas Firing) ⁴	128,931	88	384
CH_4 (Natural Gas Firing) ⁴	2.4	1.7E-03	7.2E-03
N ₂ O (Natural Gas Firing) ⁴	0.24	1.7E-04	7.2E-04

Reboiler

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
HAPs:			
Methylnaphthalene (2-)	2.4E-05	1.6E-08	7.2E-08
3-Methylchloranthrene	1.8E-06	1.2E-09	5.4E-09
7,12-Dimethylbenz(a)anthracene	1.6E-05	1.1E-08	4.8E-08
Acenaphthene	1.8E-06	1.2E-09	5.4E-09
Acenaphthylene	1.8E-06	1.2E-09	5.4E-09
Anthracene	2.4E-06	1.6E-09	7.2E-09
Benz(a)anthracene	1.8E-06	1.2E-09	5.4E-09
Benzene	2.1E-03	1.4E-06	6.3E-06
Benzo(a)pyrene	1.2E-06	8.2E-10	3.6E-09
Benzo(b)fluoranthene	1.8E-06	1.2E-09	5.4E-09
Benzo(g,h,i)perylene	1.2E-06	8.2E-10	3.6E-09
Benzo(k)fluoranthene	1.8E-06	1.2E-09	5.4E-09
Chrysene	1.8E-06	1.2E-09	5.4E-09
Dibenzo(a,h) anthracene	1.2E-06	8.2E-10	3.6E-09
Dichlorobenzene	1.2E-03	8.2E-07	3.6E-06
Fluoranthene	3.0E-06	2.0E-09	8.9E-09
Fluorene	2.8E-06	1.9E-09	8.3E-09
Formaldehyde	7.5E-02	5.1E-05	2.2E-04
Hexane	1.8E+00	1.2E-03	5.4E-03
Indo(1,2,3-cd)pyrene	1.8E-06	1.2E-09	5.4E-09
Naphthalene	6.1E-04	4.2E-07	1.8E-06
Phenanthrene	1.7E-05	1.2E-08	5.1E-08
Pyrene	5.0E-06	3.4E-09	1.5E-08
Toluene	3.4E-03	2.3E-06	1.0E-05
Arsenic	2.0E-04	1.4E-07	6.0E-07
Beryllium	1.2E-05	8.2E-09	3.6E-08
Cadmium	1.1E-03	7.5E-07	3.3E-06
Chromium	1.4E-03	9.5E-07	4.2E-06
Cobalt	8.4E-05	5.7E-08	2.5E-07
Manganese	3.8E-04	2.6E-07	1.1E-06
Mercury	2.6E-04	1.8E-07	7.8E-07
Nickel	2.1E-03	1.4E-06	6.3E-06
Selenium	2.4E-05	1.6E-08	7.2E-08
Total HAP		1.3E-03	5.6E-03

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, 1.4-3, & 1.4-4.

 2 Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) \times Emission Factor (lb/MMscf).

³ Annual Emissions $(tons/yr)_{Potential} = (lb/hr)_{Emissions} \times (Maximum Allowable Operating Hours, 8760 hr/yr) \times (1 ton/2000 lb).$

 4 GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Fugitive Components

Component Counts

Facility Equipment Type ¹	Valves	Connectors	Open-Ended Lines	Pressure Relief Devices
Wellhead	8	38	0.5	0
Separators	1	6	0	0
Meters/Piping	12	45	0	0
Compressors	12	57	0	0
In-line heaters	14	65	2	1
Dehydrators	24	90	2	2

¹ Table W-1B to Subpart W of Part 98 — Default Average Component Counts for Major Onshore Natural Gas Production

Fugitive Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Total Fugitive Emissions (lb/hr)	TOC Annual Fugitive Emissions (tpy)
Valves	Gas	5.97E-03	485	6.38	27.96
Intermittent Pneumatic Devices	Gas	2.88E-01	45	28.56	41.70
Pump Seals	Light Liquid	1.99E-02	1	0.04	0.19
Pressure Relief Valves	Gas	1.04E-01	51	11.69	51.22
Connectors	All	1.83E-03	2,028	8.18	35.84
Open-Ended Lines	All	1.70E-03	25	0.09	0.41
			Emission Totals:	54.96	157.32

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates*. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. The pneumatic device emission factors are converted from Subpart W factors using the molecular weight of the gas and assuming 379 scf/lb-mol. Assumes intermittent pneumatic operation 1/3 of the year.

² Assumes one pump for liquid loading, no compressors, and one meter per wellhead. Pressure relief valves count includes an Enardo valve and Emergency Pressure Relief valve for each storage tank.

VOC and HAP Weight Fractions¹

Service	Weight Fraction VOC	Weight Fraction Hexane	Weight Fraction Benzene	Weight Fraction Toluene	Weight Fraction Ethylbenzene	Weight Fraction 2,2,4- trimethylpentane	Weight Fraction Xylene
Gas	0.047	2.9E-04	<0.001	5.2E-05	<0.001	1.3E-04	<0.001
Light Liquid	1.000	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
All	0.047	2.9E-04	<0.001	5.2E-05	<0.001	1.3E-04	<0.001

Fugitive Components

¹ All weight fractions are based on a representative gas analysis.

VOC and HAP Fugitive Emissions

Pollutant	Hourly Fugitive Emissions (lb/hr)	Annual Fugitive Emissions (tpy)
VOC	2.61	11.44
Hexane	1.6E-02	7.0E-02
Benzene	< 0.001	< 0.001
Toluene	2.8E-03	0.01
Ethylbenzene	< 0.001	< 0.001
2,2,4-trimethylpentane	7.0E-03	3.1E-02
Xylene	< 0.001	< 0.001
Total HAP	2.6E-02	0.11
10101111	2.02 02	0.111

GHG Fugitive Emissions from Component Leaks

Component	Component Count ¹	GHG Emission Factor ² (scf/hr/component)	CH ₄ Emissions ^{3,4} (tpy)	CO ₂ Emissions ^{3,4} (tpy)	CO ₂ e Emissions ⁵ (tpy)
Connectors	2,028	3.0E-03	1.0E+00	5.2E-03	25.31
Open-Ended Lines	25	6.1E-02	2.5E-01	1.3E-03	6.34
Pressure Relief Devices	51	4.0E-02	3.4E-01	1.7E-03	8.49
Pneumatic Devices	45	13.5	3.4E+01	1.7E-01	842.45
Valves	485	2.7E-02	2.2E+00	1.1E-02	54.48
7	fotal		37.5	0.192	937

¹ The component count for pneumatics assumes 5 pneumatics per well. ² Population emission factors for gas service in the Eastern U.S. from *Table W-1A of Subpart W - Default Whole Gas Emission Factors for Onshore Production*, 40 CFR 98, Subpart W. The pneumatic controller value is equal to Subpart W value for intermittent controlled (sc/hr). Intermittent devices assume operation 1/3 of the time. ³ Calculated in accordance with Equations W-31, W-35 and W-36 in Subpart W of 40 CFR 98.

⁴ Mole fractions of CH₄ and CO₂ based on gas analysis:

CH4 89.74% CO₂: 0.17%

⁵ Carbon equivalent emissions (CO₂e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1: Carbon Dioxide (CO2): 1 Methane (CH₄): 25

Liquid Loading

Liquid Loading Losses:

Uncontrolled Loading Losses: L_L (lb/10³ gal) = 12.46 (SPM)/T Controlled Loading Losses: L_L (lb/10³ gal) = 12.46 (SPM)/T * (1 - collection efficiency * control efficiency)

Parameter	Value	Description
S	1.45	saturation factor for splash loading (AP-42 Table 5.2-1)
Collection Efficiency	0%	
Control Efficiency	0%	
Р	0.29	max true vapor pressure of liquid loaded (psia) - EPA TANKS Data
М	18.77	molecular weight of vapors (lb/lb-mol) - EPA TANKS Data
Т	511.0	temperature of liquids loaded (deg R) - EPA TANKS Data

Description	Loading	Maximum	VOC Emissions		
	Losses	Throughput ¹	Total Uncontrolled		
	(lb/10 ³ gal)	(gal)	(tpy)		
Liquids Hauling	0.2	9,972,333	0.96		

¹ Sum of the annual throughput from each well at the pad including the sand separator tank.

Speciated HAP Emission Potential:

Constituent	mol% ¹	True Vapor Pressure of Organic Compounds in liquid (psia) ²	Partial Vapor Pressure (psia)	Mole Fraction	Molecular Weight	VOC Vapor Weight	Speciated Weight Fraction	Uncontrolled Speciated Liquid Loading Emissions (tpy) ³
Methane	0.095							
Ethane	0.602							
Propane	1.646	127.310	2.1E+00	3.2E-01	4.4E+01	1.4E+01	2.0E-01	1.9E-01
Isobutane	0.867	46.110	4.0E-01	6.1E-02	5.8E+01	3.6E+00	4.9E-02	4.7E-02
n-Butane	2.986	32.045	9.6E-01	1.5E-01	5.8E+01	8.5E+00	1.2E-01	1.1E-01
Isopentane	3.103	12.530	3.9E-01	5.9E-02	7.2E+01	4.3E+00	5.9E-02	5.7E-02
n-Pentane	3.943	8.433	3.3E-01	5.1E-02	7.2E+01	3.7E+00	5.1E-02	4.9E-02
n-Hexane	4.692	2.436	1.1E-01	1.7E-02	8.6E+01	1.5E+00	2.1E-02	2.0E-02
Other Hexanes	4.939	2.436	1.2E-01	1.8E-02	8.6E+01	1.6E+00	2.2E-02	2.1E-02
Heptanes	14.686	0.735	1.1E-01	1.7E-02	9.8E+01	1.6E+00	2.2E-02	2.2E-02
Benzene	0.200	1.508	3.0E-03	4.6E-04	7.8E+01	3.6E-02	5.0E-04	4.8E-04
Toluene	1.138	0.425	4.8E-03	7.4E-04	9.2E+01	6.8E-02	9.4E-04	9.1E-04
Ethylbenzene	0.155	0.151	2.3E-04	3.6E-05	1.1E+02	3.8E-03	5.3E-05	5.1E-05
Xylenes	1.763	0.180	3.2E-03	4.8E-04	1.1E+02	5.1E-02	7.1E-04	6.9E-04
2,2,4-Trimethylpentane	0.031	0.596	1.8E-04	2.8E-05	1.1E+02	3.2E-03	4.5E-05	4.3E-05
C8+ Heavies	59.154	3.400	2.0E+00	3.1E-01	1.1E+02	3.3E+01	4.6E-01	4.4E-01
	100.0		6.54			72.15	1.00	
Total Emissions: Total HAP Emissions:								0.96 0.02

¹ An atmospheric analysis of a representative condensate sample (from wellpad OXF-131, Well #512441) is utilized to estimate the composition.

² Emission factors from AP-42 Section 7.1 "Liquid Storage Tanks" Tables 7.1-2, 7.1-3 and 7.1-5 (at 70 deg F or ~21 deg C) and Handbook of Chemistry and Physics: 84th Edition (at 295 K) ³ Speciated emissions (tpy) = Speciated Weight Fraction x Calculated Controlled Liquid Loading Emissions (tpy). As methane and ethane will flash off prior to loading, the emissions from these constituents are not included in the speciation.

Haul Roads

Estimated Potential Road Fugitive Emissions

Unpaved Road Emissions

Unpaved Roads: E (lb/VMT) = $k(s/12)^{a}(W/3)^{b}$ *[(365-p)/365]

-	PM	PM_{10}	PM _{2.5}	-
k Factor (lb/VMT)	4.9	1.5	0.15	AP-42 Table 13.2.2-2 (Final, 11/06)
Silt content, s	4.8	%		AP-42 Table 13.2.2-1 (11/06), for Sand and Gravel Processing
Number of Rain Days, p	150			AP-42 Figure 13.2.1-2
а	0.7	0.9	0.9	AP-42 Table 13.2.2-2 (Final, 11/06)
b	0.45	0.45	0.45	AP-42 Table 13.2.2-2 (Final, 11/06)

Description	Weight of Empty Truck (tons)	Weight of Truck w/ Max Load (tons)	Mean Vehicle Weight (tons)	Length of Unpaved Road Traveled (mile/trip)	Trips Per Year	Mileage Per Year	Control (%)	РМ	Emissions (tpy) PM ₁₀	PM _{2.5}
Liquids Hauling	20	40	30	0.38	2,493	944	0	2.02	0.52	0.052
Employee Vehicles	3	3	3	0.38	200	76	0	0.06	0.01	0.001
Total Potential Emissions	•							2.08	0.53	0.05

Combustor Flow Rate Calculations

•	lb/hr	lb-mol/hr	mol%	MW lb/lb-mol	MW in Mixture
arbon Dioxide	1.183	0.027	0.004	44.01	0.18
itrogen	0.557	0.020	0.003	28.00	0.08
lethane	91.030	5.675	0.864	16.04	13.85
thane	19.251	0.640	0.097	30.07	2.93
ropane	5.249	0.119	0.018	44.10	0.80
obutane	1.033	0.018	0.003	58.12	0.16
Butane	1.296	0.022	0.003	58.12	0.20
opentane	0.439	0.006	0.001	72.15	0.07
Pentane	0.252	0.003	0.001	72.15	0.04
-Hexane	0.111	0.001	< 0.001	85.67	0.02
yclohexane	0.064	0.001	< 0.001	84.16	0.01
ther Hexanes	0.305	0.004	0.001	86.18	0.05
eptanes	0.317	0.003	< 0.001	97.88	0.05
2,4-Trimethylpentane	0.010	< 0.001	< 0.001	114.23	0.00
enzene	0.254	0.003	< 0.001	78.11	0.04
oluene	0.867	0.009	0.001	92.14	0.13
thylbenzene	0.658	0.006	0.001	106.17	0.10
ylenes	0.904	0.009	0.001	106.17	0.14
8 + Heavies	0.339	0.003	< 0.001	107.73	0.052

1. Representative gas stream from the dehydration unit regenerator and flash tank flowing to the combustor.

C001

0001		
Combustor Rating	3.33 MMBtu/hr	Max. input from Leed Enclosed Combustor Operations Manual
Pilot Rating	0.03 MMBtu/hr	Max. pilot fuel usage for Leed Enclosed Combustor
Pilot Rating	26,335 btu/hr	
Pilot Fuel Usage	24 scf/hr	
Combustor Flow Capacity	53.82 MSCFD	Max. flowrate from LEED Combustor Operations Manual
	2,243 scf/hr	
	37 scf/min	

Enclosed Combustor Mass Flow Rate (C001)			
2.243 scf	*	1 Ibmole	

hr

379 scf lbmole

18.89 **lb**

112

=

lb

hr

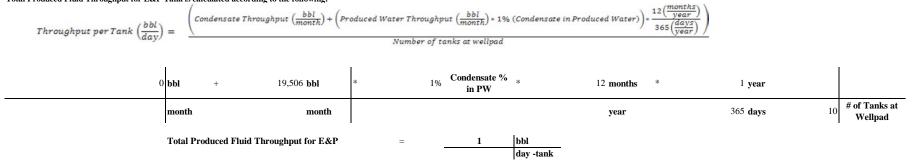
Mass flow rate (lb/hr) = <u>Maximum Rated total flow capacity (scf/hr) * Vapor Molecular Weight (lb/lbmole)</u> Molar Gas Volume (scf/lbmole)

Company Name: Facility Name: Project Description:

Gas Analysis

Sample Location:	Big 57 Dehy Inlet
Sample Date:	11/20/2014
HHV (Btu/scf):	1,102

Constituent	Natural Gas Stream Speciation (Mole %)	Molecular Weight	Molar Weight	Average Weight Fraction	Natural Gas Stream Speciation (Wt. %)
Carbon Dioxide	0.168	44.01	7.4E-02	4.1E-03	4.1E-01
Nitrogen	0.311	28.01	8.7E-02	4.9E-03	4.9E-01
Methane	89.740	16.04	1.4E+01	8.1E-01	8.1E+01
Ethane	8.085	30.07	2.4E+00	1.4E-01	1.4E+01
Propane	1.252	44.10	5.5E-01	3.1E-02	3.1E+00
Isobutane	0.160	58.12	9.3E-02	5.2E-03	5.2E-01
n-Butane	0.173	58.12	1.0E-01	5.6E-03	5.6E-01
Isopentane	0.047	72.15	3.4E-02	1.9E-03	1.9E-01
n-Pentane	0.023	72.15	1.7E-02	9.3E-04	9.3E-02
n-Hexane	0.006	86.18	5.2E-03	2.9E-04	2.9E-02
Cyclohexane	0.001	84.16	8.4E-04	4.7E-05	4.7E-03
Other Hexanes	0.021	86.18	1.8E-02	1.0E-03	1.0E-01
Heptanes	0.009	100.21	9.0E-03	5.1E-04	5.1E-02
2,2,4-Trimethylpentane	0.002	114.23	2.3E-03	1.3E-04	1.3E-02
Benzene*	< 0.001	78.11	0.0E+00	0.0E+00	0.0E+00
Toluene*	0.001	92.14	9.2E-04	5.2E-05	5.2E-03
Ethylbenzene*	< 0.001	106.17	< 0.001	< 0.001	< 0.001
Xylenes*	< 0.001	106.16	0.0E + 00	0.0E+00	0.0E+00
C8 + Heavies	0.001	114.23	1.1E-03	6.4E-05	6.4E-03
Totals	100		17.82	1.00	100


TOC (Total)	99.52	99.10
VOC (Total)	1.70	4.68
HAP (Total)	0.01	0.05

Company Name:	EQT Production, LLC
Facility Name:	GLO 76 Wellpad
Project Description:	G70C Application

Produced Water Throughput Sample Calculations

Throughput Parameter	Value	Units
Operational Hours	8,760	hrs/yr
Total Condensate Throughput	0	bbl/month
Total Produced Water Throughput	19,506	bbl/month Conservativ
Produced Water % Condensate	1%	e Estimate

Total Produced Fluid Throughput for E&P Tank is calculated according to the following:

20150727_GLO-76_Sand Separator Tank.txt

***** Project Setup Information ***** Project File : \\tsclient\Z\Client\EQT Corporation\West Virginia\WV Production Wells\153901.0056 WV Wellpads 2015\GL0 76\02 Production weils (153901.0056 WV Weilpads 2015\GL0 76\02Draft\2015-0727_EQT_GL0-76_G70 Application\Attach I - Emission Calcs\E&PTank\20150727_GL0-76_Sand Separator Tank.eptFlowsheet SelectionCalculation MethodControl EfficiencyKnown Separator StreamLow Pressure 0il Entering Air Composition : No : EQT - GLO 76 Sand Separator Tank : PTE for G70A Application Filed Name Well Name Well ID : Condensate Analysis from BIG-192 Wellpad (Sample date 9/12/2014) Date : 2015.07.27 ***** Data Input ***** Separator Pressure: 1000.00[psig]Separator Temperature: 60.00[F]Ambi ent Pressure: 14.70[psi a]Separator Temperature: 14.70[psi a] Ambient Pressure Ambient Temperature : 55.00[F] : 0.7861 C10+ SG C10+ MW : 168.15 -- Low Pressure Oil Component mol % No. 0.0000 1 H2S' 0.0000 2 02 3 C02 0.0060 4 N2 0.0000 5 C1 0.4330 C2 0.3350 6 7 С3 0.4850 8 i -C4 0.2770 9 n-C4 0.6680 10 i - C5 0.6310 n-C5 0.5480 11 12 C6 1.1670 7.7640 13 C7 17.5600 14 C8 14. 4830 47. 7340 0. 0370 15 C9 16 C10+ 17 Benzene 18 0.9610 Tol uene 19 E-Benzene 0.2690 Xyl enes 5.8420 20 21 n-C6 0.7890 224Trimethylp 22 0.0110

Page 1

20150727_GL0-76_Sand Separator Tank.txt

-- Sales Oil ----------Production Rate: 0.1[bbl/day]Days of Annual Operation: 365 [days/year]API Gravity: 59.11Reid Vapor Pressure: 1.00[psia] ***** Calculation Results ***** -- Emission Summary Item Uncontrolled Uncontrolled [ton/yr] [lb/hr] Page 1------ E&P TANK Total HAPs 0.000 0.000 0.000 Total HC 0.006 VOCs, C2+ 0.005 VOCs, C3+ 0.020 0.005 Uncontrolled Recovery Info. 1.2600 x1E-3 1.2600 x1E-3 [MSCFD] [MSCFD] Vapor HC Vapor GOR 12.60 [SCF/bbl] -- Emission Composition -----No Component Uncontrolled Uncontrolled [ton/yr] [lb/hr] H2S Ō. 000 Ō. 000 1 0.000 0.000 2 3 02 0.000 C02 0.000 4 0.000 0.000 N2 5 0.000 C1 0.002 6 C2 0.003 0.001 7 C3 0.007 0.002 i -C4 8 0.004 0.001 n-C4 9 0.007 0.002 10 i -C5 0.001 0.000 0.001 0.000 11 n-C5 0.000 0.000 12 C6 13 C7 0.000 0.000 14 C8 0.000 0.000 15 C9 0.000 0.000 16 C10+ 0.000 0.000 17 Benzene 0.000 0.000 Tol uene 0.000 0.000 18 19 E-Benzene 0.000 0.000 0.000 20 Xyl enes 0.000 0.000 0.000 21 n-C6 224Trimethylp 0.000 0.000 22 Total 0.025 0.006 -- Stream Data _____

No. Component	20150727_GL0 MW	D-76_Sand LP 0i I	Separator ⁻ Flash Oil	Tank.txt Sale Oil	Flash Gas	W&S Gas
Total Emissions		mol %	mol %	mol %	mol %	mol %
mol % 1 H2S	34.80	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000 2 02	32.00	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000 3 CO2	44.01	0.0060	0.0059	0.0000	0. 3678	0. 3046
0.3052 4 N2	28.01	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000 5 C1	16.04	0. 4330	0. 4186	0.0000	79. 9252	21. 4832
22.0208 6 C2	30.07	0.3350	0. 3331	0.0001	10. 7360	17.0907
17.0323 7 C3	44.10	0. 4850	0. 4843	0.0068	4. 3275	24. 5099
24. 3242 8 i - C4	58.12	0. 2770	0. 2769	0. 0598	0. 9311	11. 2021
11. 1077 9 n-C4	58.12	0. 6680	0. 6678	0. 2967	1. 5436	19. 3414
19. 1777 10 i -C5	72.15	0. 6310	0.6310	0. 5921	0. 5384	2.5906
2.5717 11 n-C5	72.15	0. 5480	0. 5480	0. 5349	0.3400	1. 2104
1.2024 12 C6	86.16	1. 1670	1. 1672	1. 1827	0. 2138	0. 3846
0.3830 13 C7	100.20	7.7640	7.7653	7.9044	0. 4571	0. 7648
0.7619 14 C8	114.23	17.5600	17. 5631	17. 9012	0. 3151	0. 5529
0.5507 15 C9	128.28	14.4830	14.4856	14.7700	0. 0868	0. 1725
0. 1717 16 C10+ 0. 0208	168.15	47.7340	47.7426	48.6908	0. 0126	0.0309
0. 0308 17 Benzene	78. 11	0. 0370	0.0370	0. 0376	0.0046	0.0079
0. 0078 18 Tol uene 0. 0546	92.13	0.9610	0. 9612	0. 9792	0. 0321	0.0548
0. 0548 19 E-Benzene 0. 0051	106.17	0. 2690	0.2690	0. 2743	0.0029	0.0052
20 Xyl enes 0. 0978	106. 17	5.8420	5.8430	5.9572	0. 0536	0.0982
0. 0978 21 n-C6 0. 1938	86. 18	0. 7890	0. 7891	0.8009	0. 1113	0. 1945
0.1938 22 224Trimethylp 0.0009	114.24	0. 0110	0.0110	0. 0112	0.0005	0.0009
0.0009						
MW 42.11		135.89	135. 91	137.77	21. 48	42.30
Stream Mole Ratio		1.0000	0. 9998	0. 9803	0.0002	0. 0195
Heating Value 2398.53	[BTU/SCF]				1292.84	2408.79
Gas Gravity 1.45	[Gas/Air]				0.74	1.46
Bubble Pt. @ 100F	[psi a]	18.49	18.01	1.00		
Page 2					E&	P TANK
RVP @ 100F	[psi a]	5.07 Page	5.02 3	0. 96		

20150727_GL0-76_Sand Separator Tank.txt

 Spec.
 Gravity @ 100F
 0.726
 0.726
 0.728

20151029_GL0-76_Produced Water Tank

***** Project Setup Information ***** Project File : Z:\Client\EQT Corporation\West Virginia\WV Wells\163901.0058 WV Wells 2016\GL0 76\02 Draft\2016-0511 Class II AA (G70B App)\Att S Emission Calcs\E&P Tank\20151029_GL0-76_Produced Water Tank.ept Flowsheet Selection : 0il Tank with Separator Calculation Method : RVP Distillation Control Efficiency : 100.0% Known Separator Stream : Low Pressure 0il Entering Air Composition : No EQT - GLO 76 Produced Fluid Tanks Filed Name Well Name Well ID PTE for G70A Application : Condensate Analysis from BIG-192 Wellpad (Sample date 9/12/2014) : 2015.10.29 Date ***** Data Input ***** Separator Pressure: 80.00[psig]Separator Temperature: 60.00[F]Ambi ent Pressure: 14.70[psia]Ambi ent Temperature: 55.00[F]C10+ SG: 0.7861C10+ SG: 15 C10+ SG C10+ MW : 168.15 -- Low Pressure Oil _____ Component mol % No. 0.0000 H2S 1 0.0000 2 02 3 C02 0.0060 4 N2 0.0000 5 C1 0.4330 C2 0.3350 6 7 С3 0.4850 0.2770 8 i -C4 9 n-C4 0.6680 10 i -C5 0.6310 0.5480 11 n-C5 12 C6 1.1670 13 C7 7.7640 14 C8 17.5600 14.4830 47.7340 15 C9 C10+ 16 17 Benzene 0.0370 0.9610 18 Tol uene 19 0.2690 E-Benzene Xyl enes 20 5.8420 0. 7890 21 n-C622 224Trimethylp 0.0110

Sales Oil	20151029_(GL0-76_Produced Water Tank	
Production Rate : 1[bbl/day] Days of Annual Operation : 365 [days/year] API Gravity : 59.11 Reid Vapor Pressure : 1.00[psia]			
* * * * * *		****************	
* Calculation F		****	
*****		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
Emission Summary	/		
ltem	Uncontrolled [ton/vr]	Uncontrolled	
Page 1	[[[[]]]]	[lb/hr] E&P TANK	
Total HAPs Total HC	0. 000 0. 253	0. 000 0. 058	
VOCs, C2+ VOCs, C3+	0. 253 0. 231 0. 200	0. 058 0. 053 0. 046	
Uncontrolled Recove	ery Info.		
Vapor HC Vapor GOR	12.5700 x1E-3 12.5300 x1E-3 12.57	[MSCFD] [MSCFD] [SCF/bbl]	
Emission Composi	tion		
No Component 1 H2S 2 O2 3 CO2 4 N2 5 C1 6 C2 7 C3 8 i -C4 9 n-C4 10 i -C5 11 n-C5 12 C6 13 C7 14 C8 15 C9 16 C10+ 17 Benzene 18 Tol uene 19 E-Benzene 20 Xyl enes 21 n-C6 22 224Tri methyl p Total Stream Data	Uncontrolled [ton/yr] 0.000 0.001 0.001 0.021 0.031 0.065 0.039 0.068 0.011 0.005 0.002 0.004 0.003 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.253	Uncontrolled [lb/hr] 0.000 0.000 0.000 0.005 0.007 0.015 0.009 0.016 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.001 0.000 0.001 0.001 0.000 0.001 0.000 0.001 0.000	
No. Component	 MW	LP Oil Flash Oil Sale Oil Flash Gas W&S Gas Page 2	

20151029_GL0-76_Produced Water Tank

20151029_GLO-76_Produced Water Tank						
Total Emissions		mol %	mol %	mol %	mol %	mol %
mol % 1 H2S	34.80	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000 2 02	32.00	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000 3 CO2	44.01	0.0060	0.0060	0.0000	0.0000	0. 3065
0. 3065 4 N2	28.01	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000 5 C1	16.04	0. 4330	0. 4330	0.0000	0.0000	22. 1152
22. 1152 6 C2	30. 07	0. 3350	0.3350	0. 0001	0.0000	17. 1058
17. 1058 7 C3	44.10	0. 4850	0. 4850	0.0067	0.0000	24.4356
24. 4356 8 i -C4	58. 12	0. 2770	0. 2770	0. 0594	0.0000	11. 1733
11. 1733 9 n-C4	58. 12	0. 6680	0. 6680	0. 2975	0.0000	19. 2242
19. 2242 10 i -C5	72. 15	0. 6310	0. 6310	0. 5939	0.0000	2. 4885
2. 4885 11 n-C5	72. 15	0. 5480	0. 5480	0. 5361	0.0000	1. 1447
1. 1447 12 C6	86. 16	1. 1670	1. 1670	1. 1834	0.0000	0. 3483
0. 3483 13 C7	100. 20	7.7640	7.7640	7.9055	0.0000	0. 6787
0. 6787 14 C8	114. 23	17.5600	17.5600	17. 9010	0.0000	0. 4832
0.4832 15 C9	128. 28	14.4830	14. 4830	14.7692	0.0000	0. 1489
0. 1489 16 C10+	168. 15	47.7340	47.7340	48.6867	0.0000	0. 0258
0. 0258 17 Benzene	78.11	0.0370	0.0370	0.0376	0.0000	0.0071
0. 0071 18 Tol uene	92.13	0.9610	0. 9610	0. 9792	0.0000	0. 0484
0.0484 19 E-Benzene	106. 17	0. 2690	0. 2690	0. 2743	0.0000	0. 0045
0. 0045 20 Xyl enes	106. 17	5.8420	5.8420	5.9570	0.0000	0. 0854
0. 0854 21 n-C6 0. 1750	86. 18	0. 7890	0. 7890	0.8013	0.0000	0. 1750
	114.24	0.0110	0.0110	0.0112	0.0000	0.0008
0.0008						
MW 41.90		135.89	135.89	137.77	0.00	41.90
Stream Mole Ratio		1.0000	1.0000	0. 9804	0.0000	0. 0196
	[BTU/SCF]				0.00	2387.71
2387.71 Gas Gravity	[Gas/Air]				0.00	1.45
1.45 Bubble Pt. @ 100F	[psi a]	18.49	18.49	1.00		
Page 2					E&	P TANK
RVP @ 100F	[psi a]	5.07	5.07	0.96		

20151029_GL0-76_Produced Water Tank Spec. Gravity @ 100F 0.726 0.726 0.728

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification	
User Identification:	GLO-76 Liquid Loading
City:	eze re ziquid zodality
State:	
Company:	
Type of Tank:	Vertical Fixed Roof Tank
Description:	Liquid Loading parameters for GLO-76 wellpad using OXF-131 atmospheric condensate analysis.
Tank Dimensions	
Shell Height (ft):	20.00
Diameter (ft):	12.00
Liquid Height (ft) :	20.00
Avg. Liquid Height (ft):	10.00
Volume (gallons):	16,800.00
Turnovers:	593.59
Net Throughput(gal/yr):	9,972,333.00
Is Tank Heated (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	Gray/Light
Shell Condition	Good
Roof Color/Shade:	Gray/Light
Roof Condition:	Good
Roof Characteristics	
Type:	Cone
Height (ft)	0.00
Slope (ft/ft) (Cone Roof)	0.00
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.70

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

GLO-76 Liquid Loading - Vertical Fixed Roof Tank

			aily Liquid Son Aperature (de		Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
lixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
roduced Fluid	All	55.41	46.54	64.27	51.30	0.2195	0.1638	0.2912	18.7659			18.17	
Benzene						1.0267	0.7943	1.3132	78.1100	0.0000	0.0000	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane (-n)						0.4614	0.3889	0.5438	58.1200	0.0002	0.0004	58.12	Option 2: A=5.09536, B=935.86, C=238.73
Decane (-n)						0.0301	0.0245	0.0369	142.2900	0.0044	0.0006	142.29	Option 1: VP50 = .026411 VP60 = .033211
Ethylbenzene						0.0923	0.0669	0.1257	106.1700	0.0000	0.0000	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.5323	0.4043	0.6943	100.2000	0.0012	0.0029	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						1.6957	1.3330	2.1360	86.1700	0.0007	0.0052	86.17	Option 2: A=6.876, B=1171.17, C=224.41
sopentane						9.0329	7.1932	11.0836	72.1500	0.0002	0.0076	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Nonane (-n)						0.0588	0.0475	0.0729	128.2600	0.0014	0.0004	128.26	Option 1: VP50 = .051285 VP60 = .065278
Octane (-n)						0.1303	0.1035	0.1637	114.2300	0.0013	0.0008	114.23	Option 1: VP50 = .112388 VP60 = .145444
Pentane (-n)						6.1673	5.0301	7.5097	72.1500	0.0002	0.0065	72.15	Option 3: A=27691, B=7.558
Propane (-n)						100.7917	87.8791	115.0985	44.0956	0.0001	0.0356	44.10	Option 2: A=7.340862493, B=1104.2267744 C=291.70993941
Toluene						0.2857	0.2141	0.3766	92.1300	0.0001	0.0001	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Vater						0.2153	0.1602	0.2863	18.0150	0.9900	0.9399	18.02	Option 1: VP50 = .178 VP60 = .247
Kylene (-o)						0.0601	0.0431	0.0827	106.1700	0.0002	0.0000	106.17	Option 2: A=6.998, B=1474.679, C=213.69

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

GLO-76 Liquid Loading - Vertical Fixed Roof Tank

Annual Emission Coloculations	
Annual Emission Calcaulations Standing Losses (lb):	6.6848
Vapor Space Volume (cu ft):	1,130.9734
Vapor Density (lb/cu ft):	0.0007
Vapor Space Expansion Factor:	0.0243
Vented Vapor Saturation Factor:	0.8958
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,130.9734
Tank Diameter (ft):	12.0000
Vapor Space Outage (ft):	10.0000
Tank Shell Height (ft):	20.0000
Average Liquid Height (ft):	10.0000
Roof Outage (ft):	0.0000
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0000
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0000
Shell Radius (ft):	6.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0007
Vapor Molecular Weight (lb/lb-mole):	18.7659
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.2195
Daily Avg. Liquid Surface Temp. (deg. R):	515.0759
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	49.0583
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	510.9683
Tank Paint Solar Absorptance (Shell):	0.5400
Tank Paint Solar Absorptance (Roof):	0.5400
Daily Total Solar Insulation	0.0100
Factor (Btu/sqft day):	1,193.8870
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0243
Daily Vapor Temperature Range (deg. R):	35.4636
Daily Vapor Pressure Range (psia):	0.1274
Breather Vent Press. Setting Range(psia):	0.7300
Vapor Pressure at Daily Average Liquid	0.0105
Surface Temperature (psia):	0.2195
Vapor Pressure at Daily Minimum Liquid	0.1638
Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid	0.1030
Surface Temperature (psia):	0.2912
Daily Avg. Liquid Surface Temp. (deg R):	515.0759
Daily Min. Liquid Surface Temp. (deg R):	506.2100
Daily Max. Liquid Surface Temp. (deg R):	523.9417
Daily Ambient Temp. Range (deg. R):	24.1833
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.8958
Vapor Pressure at Daily Average Liquid:	0.0000
Surface Temperature (psia):	0.2195
Vapor Space Outage (ft):	10.0000
Norking Losses (Ib):	212.4802
Vapor Molecular Weight (lb/lb-mole):	18.7659
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.2195
Annual Net Throughput (gal/yr.):	9,972,333.0000
Annual Turnovers:	593.5913
Turnover Factor:	0.2172
Maximum Liquid Volume (gal):	16,800.0000
Maximum Liquid Height (ft):	20.0000
Tank Diameter (ft):	12.0000
Working Loss Product Factor:	1.0000
Total Losses (Ib):	219.1650

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

GLO-76 Liquid Loading - Vertical Fixed Roof Tank

	Losses(lbs)				
Components	Working Loss	Breathing Loss	Total Emissions		
Produced Fluid	212.48	6.68	219.17		
Propane (-n)	7.56	0.24	7.79		
Butane (-n)	0.08	0.00	0.08		
Isopentane	1.61	0.05	1.66		
Pentane (-n)	1.39	0.04	1.43		
Hexane (-n)	1.11	0.03	1.15		
Benzene	0.01	0.00	0.01		
Heptane (-n)	0.61	0.02	0.63		
Toluene	0.03	0.00	0.03		
Octane (-n)	0.16	0.01	0.17		
Ethylbenzene	0.00	0.00	0.00		
Xylene (-o)	0.01	0.00	0.01		
Nonane (-n)	0.08	0.00	0.08		
Decane (-n)	0.12	0.00	0.13		
Water	199.71	6.28	206.00		

TANKS 4.0 Report

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: GLO-76 File Name: Z:\Client\EQT Corporation\West Virginia\WV Wells\153901.0056 WV Wells 2015\GLO 76\02 Draft\2015-1030 EQT GLO-76 G70 Ap Revised\Attach I - Emission Calcs\GLYCalc\20160223 GLO 76 Dehy PTE_v2.0.ddf Date: February 23, 2016

Page: 1

DESCRIPTION:

Description: DEHY 65 MMSCFD Max Pump Rate: 7.5 GPM BIG57 Gas Analysis Sample: 11/20/14

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.0225	0.541	0.0987
Ethane	0.0190	0.457	0.0833
Propane	0.0124	0.297	0.0542
Isobutane	0.0039	0.093	0.0169
n-Butane	0.0063	0.151	0.0276
Isopentane	0.0025	0.061	0.0110
n-Pentane	0.0018	0.042	0.0077
Cyclopentane	0.0004	0.010	0.0019
n-Hexane	0.0012	0.028	0.0051
Cyclohexane	0.0010	0.025	0.0046
Other Hexanes	0.0027	0.065	0.0118
Heptanes	0.0046	0.110	0.0200
Methylcyclohexane	0.0014	0.034	0.0062
2,2,4-Trimethylpentane	0.0001	0.003	0.0005
Benzene	0.0050	0.119	0.0217
Toluene	0.0171	0.411	0.0750
Ethylbenzene	0.0131	0.314	0.0573
Xylenes	0.0180	0.432	0.0789
C8+ Heavies	0.0064	0.154	0.0281
Total Emissions	0.1394	3.345	0.6105
Total Hydrocarbon Emissions	0.1394	3.345	0.6105
Total VOC Emissions	0.0978	2.348	0.4286
Total HAP Emissions	0.0544	1.307	0.2385
Total BTEX Emissions	0.0532	1.276	0.2329

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane Ethane Propane Isobutane n-Butane	1.1264 0.9511 0.6191 0.1933 0.3154	27.034 22.826 14.859 4.639 7.570	4.9336 4.1658 2.7118 0.8465 1.3815
Isopentane	0.1261	3.027	0.5525

n-Pentane Cyclopentane n-Hexane Cyclohexane	0.0876 0.0216 0.0584 0.0521	2.101 0.519 1.402 1.250	Page: 2 0.3835 0.0948 0.2558 0.2281
Other Hexanes	0.1347	3.234	$\begin{array}{c} 0.5902 \\ 1.0014 \\ 0.3103 \\ 0.0245 \\ 1.0852 \end{array}$
Heptanes	0.2286	5.487	
Methylcyclohexane	0.0708	1.700	
2,2,4-Trimethylpentane	0.0056	0.134	
Benzene	0.2478	5.946	
Toluene	0.8560	20.543	3.7491
Ethylbenzene	0.6544	15.705	2.8661
Xylenes	0.9003	21.608	3.9434
C8+ Heavies	0.3203	7.687	1.4029
Total Emissions	6.9696	167.271	30.5270
Total Hydrocarbon Emissions	6.9696	167.271	30.5270
Total VOC Emissions	4.8921	117.412	21.4276
Total HAP Emissions	2.7224	65.338	11.9241
Total BTEX Emissions	2.6584	63.802	11.6438

FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	1.7973	43.136	7.8723
Ethane	0.3660	8.785	1.6032
Propane	0.0927	2.224	0.4059
Isobutane	0.0168	0.403	0.0736
n-Butane	0.0196	0.471	0.0859
Isopentane	0.0063	0.150	0.0275
n-Pentane	0.0033	0.079	0.0144
Cyclopentane	0.0002	0.005	0.0009
n-Hexane	0.0011	0.025	0.0046
Cyclohexane	0.0002	0.006	0.0011
Other Hexanes	0.0034	$\begin{array}{c} 0.082 \\ 0.042 \\ 0.005 \\ 0.002 \\ 0.003 \end{array}$	0.0149
Heptanes	0.0018		0.0077
Methylcyclohexane	0.0002		0.0010
2,2,4-Trimethylpentane	0.0001		0.0004
Benzene	0.0001		0.0005
Toluene	0.0002	0.005	0.0010
Ethylbenzene	0.0001	0.002	0.0004
Xylenes	0.0001	0.002	0.0003
C8+ Heavies	0.0004	0.009	0.0016
Total Emissions	2.3098	55.436	10.1171
Total Hydrocarbon Emissions	2.3098	55.436	10.1171
Total VOC Emissions	0.1465	3.516	0.6416
Total HAP Emissions	0.0016	0.039	0.0072
Total BTEX Emissions	0.0005	0.012	0.0021

FLASH TANK OFF GAS				
Component		lbs/hr	lbs/day	tons/yr
	Methane Ethane Propane Isobutane n-Butane	89.8666 18.3011 4.6333 0.8396 0.9808	2156.798 439.226 111.200 20.152 23.540	393.6156 80.1588 20.2940 3.6777 4.2960

Isopentane	0.3135	7.524	1.3730
n-Pentane	0.1642	3.942	0.7194
Cyclopentane	0.0107	0.257	0.0470
n-Hexane	0.0528	1.267	
Cyclohexane	0.0120	0.288	0.0526
cycronexane	0.0120	0.200	0.0520
Other Hexanes	0.1700	4.081	0.7447
Heptanes	0.0878	2.107	0.3845
Methylcyclohexane	0.0114		0.0498
2,2,4-Trimethylpentane	0.0047		0.0206
Benzene	0.0056	0.134	0.0245
Delizene	0.0050	0.134	0.0245
Toluene	0.0109	0.260	0.0475
	0.0042		
2	0.0038		
C8+ Heavies			
			0.001/
Total Emissions	115,4917	2771.801	505.8537
	11011917	27727002	00000000
Total Hydrocarbon Emissions	115.4917	2771.801	505.8537
Total VOC Emissions	7.3240	175.777	32.0793
Total HAP Emissions	0.0819	1.967	0.3589
Total BTEX Emissions	0.0244	0.587	0.1071

Page: 3

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	1.8199	43.677	7.9710
Ethane	0.3850	9.241	1.6865
Propane	0.1050	2.521	0.4601
Isobutane	0.0207	0.496	0.0905
n-Butane	0.0259	0.622	0.1136
Isopentane	0.0088	0.211	0.0385
n-Pentane	0.0050	0.121	0.0221
Cyclopentane	0.0006	0.016	0.0028
n-Hexane	0.0022	0.053	0.0097
Cyclohexane	0.0013	0.031	0.0056
Other Hexanes	0.0061	0.146	0.0267
Heptanes	0.0063	0.152	0.0277
Methylcyclohexane	0.0016	0.039	0.0072
2,2,4-Trimethylpentane	0.0002	0.005	0.0009
Benzene	0.0051	0.122	0.0222
Toluene	0.0173	0.416	0.0759
Ethylbenzene	0.0132	0.316	0.0577
Xylenes	0.0181	0.434	0.0792
C8+ Heavies	0.0068	0.163	0.0297
Total Emissions	2.4492	58.781	10.7276
Total Hydrocarbon Emissions	2.4492	58.781	10.7276
Total VOC Emissions	0.2443	5.864	1.0701
Total HAP Emissions	0.0561	1.346	0.2457
Total BTEX Emissions	0.0537	1.288	0.2350

COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT:

Component	 Controlled tons/yr	% Reduction

			Page: 4
Methane	398.5492	7.9710	98.00
Ethane	84.3246	1.6865	98.00
Propane	23.0058	0.4601	98.00
Isobutane	4.5242	0.0905	98.00
n-Butane	5.6775	0.1136	98.00
Isopentane	1.9255	0.0385	98.00
n-Pentane	1.1029	0.0221	98.00
Cyclopentane	0.1417	0.0028	98.00
n-Hexane	0.4870	0.0097	98.00
Cyclohexane	0.2808	0.0056	98.00
Other Hexanes	1.3349	0.0267	98.00
Heptanes	1.3858	0.0277	98.00
Methylcyclohexane	0.3601	0.0072	98.00
2,2,4-Trimethylpentane	0.0451	0.0009	98.00
Benzene	1.1097	0.0222	98.00
Toluene	3.7967	0.0759	98.00
Ethylbenzene	2.8847	0.0577	98.00
Xylenes	3.9598	0.0792	98.00
C8+ Heavies	1.4846	0.0297	98.00
Total Emissions	536.3807	10.7276	98.00
Total Hydrocarbon Emissions	536.3807	10.7276	98.00
Total VOC Emissions	53.5069	1.0701	98.00
Total HAP Emissions	12.2830	0.2457	98.00
Total BTEX Emissions	11.7509	0.2350	98.00

EQUIPMENT REPORTS:

COMBUSTION DEVICE

Ambient Temperature: 60.00 deg. F Excess Oxygen: 5.00 % Combustion Efficiency: 98.00 % Supplemental Fuel Requirement: 7.82e-002 MM BTU/hr

Component	Emitted	Destroyed
Methane Ethane Propane Isobutane n-Butane	2.00% 2.00% 2.00% 2.00% 2.00%	98.00% 98.00% 98.00% 98.00% 98.00% 98.00%
Isopentane	2.00%	98.00%
n-Pentane	2.00%	98.00%
Cyclopentane	2.00%	98.00%
n-Hexane	2.00%	98.00%
Cyclohexane	2.00%	98.00%
Other Hexanes	2.00%	98.00%
Heptanes	2.00%	98.00%
Methylcyclohexane	2.00%	98.00%
2,2,4-Trimethylpentane	2.00%	98.00%
Benzene	2.00%	98.00%
Toluene	2.00%	98.00%
Ethylbenzene	2.00%	98.00%
Xylenes	2.00%	98.00%
C8+ Heavies	2.00%	98.00%

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages:	1.25	
Calculated Dry Gas Dew Point:	3.33	lbs. H2O/MMSCF
Temperature:	90.0	deg. F
Pressure:	800.0	psig
Dry Gas Flow Rate:	65.0000	MMSCF/day
Glycol Losses with Dry Gas:	0.4325	lb/hr
Wet Gas Water Content:	Saturated	
Calculated Wet Gas Water Content:	51.12	lbs. H2O/MMSCF
Calculated Lean Glycol Recirc. Ratio:	3.48	gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	6.50%	93.50%
Carbon Dioxide	99.85%	0.15%
Nitrogen	99.99%	0.01%
Methane	99.99%	0.01%
Ethane	99.97%	0.03%
Propane	99.95%	0.05%
Isobutane	99.92%	0.08%
n-Butane	99.90%	0.10%
Isopentane	99.90%	0.10%
n-Pentane	99.87%	0.13%
Cyclopentane	99.43%	0.57%
n-Hexane	99.78%	0.22%
Cyclohexane	99.01%	0.99%
Other Hexanes	99.83%	0.17%
Heptanes	99.59%	0.41%
Methylcyclohexane	98.91%	1.09%
2,2,4-Trimethylpentane	99.83%	0.17%
Benzene	90.99%	9.01%
Toluene	86.90%	13.10%
Ethylbenzene	82.70%	17.30%
Xylenes	76.21%	23.79%
C8+ Heavies	98.68%	1.32%

FLASH TANK

Flash Control: Combustion device Flash Control Efficiency: 98.00 % Flash Temperature: 75.0 deg. F Flash Pressure: 70.0 psig

Component	Left in Glycol	Removed in Flash Gas
Water	99.97%	0.03%
Carbon Dioxide	18.67%	81.33%
Nitrogen	1.18%	98.82%
Methane	1.24%	98.76%
Ethane	4.94%	95.06%

Propane	11.79%	88.21%
Isobutane	18.71%	81.29%
n-Butane	24.33%	75.67%
Isopentane	28.89%	71.11%
n-Pentane	34.98%	65.02%
Cyclopentane	67.02%	32.98%
n-Hexane	52.70%	47.30%
Cyclohexane	81.81%	18.19%
Other Hexanes	44.59%	55.41%
Heptanes	72.37%	27.63%
Methylcyclohexane	86.69%	13.31%
2,2,4-Trimethylpentane	54.76%	45.24%
Benzene	97.90%	2.10%
Toluene	98.85%	1.15%
Ethylbenzene	99.42%	0.58%
Xylenes	99.64%	0.36%
C8+ Heavies	95.12%	4.88%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	32.82%	67.18%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.98%	99.02%
n-Pentane	0.90%	99.10%
Cyclopentane	0.66%	99.34%
n-Hexane	0.70%	99.30%
Cyclohexane	3.63%	96.37%
Other Hexanes	1.53%	98.47%
Heptanes	0.58%	99.42%
Methylcyclohexane	4.32%	95.68%
2,2,4-Trimethylpentane	1.90%	98.10%
Benzene	5.07%	94.93%
Toluene	7.95%	92.05%
Ethylbenzene	10.43%	89.57%
Xylenes	12.94%	87.06%
C8+ Heavies	12.02%	87.98%

STREAM REPORTS:

WET GAS STREAM

Temperature: 90.00 deg. F -----

Pressure: 814.70 psia Flow Rate: 2.71e+006 scfh

Component	Conc. (vol%)	Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	1.08e-001 1.68e-001 3.11e-001 8.96e+001 8.08e+000	5.28e+002 6.22e+002 1.03e+005
Isobutane n-Butane Isopentane	1.25e+000 1.60e-001 1.73e-001 4.69e-002 2.30e-002	6.64e+002 7.18e+002 2.42e+002
Cyclopentane n-Hexane Cyclohexane Other Hexanes Heptanes	5.99e-003 9.99e-004 2.00e-002	3.69e+001 6.01e+000 1.23e+002
Methylcyclohexane 2,2,4-Trimethylpentane Benzene Toluene Ethylbenzene	4.99e-004 4.99e-004 9.99e-004	4.08e+000 2.79e+000 6.58e+000
Xylenes C8+ Heavies	4.99e-004 2.00e-003	
Total Components	100.00	1.27e+005

DRY GAS STREAM

_____ Temperature: 90.00 deg. F Pressure: 814.70 psia Flow Rate: 2.71e+006 scfh Component Conc. Loading (vol%) (lb/hr) Water 7.01e-003 9.02e+000 Carbon Dioxide 1.68e-001 5.27e+002 Nitrogen 3.11e-001 6.22e+002 Methane 8.97e+001 1.03e+005 Ethane 8.08e+000 1.73e+004 Propane 1.25e+000 3.94e+003 Isobutane 1.60e-001 6.63e+002 n-Butane 1.73e-001 7.17e+002 Isopentane 4.70e-002 2.42e+002 n-Pentane 2.30e-002 1.18e+002 Cyclopentane 9.94e-004 4.98e+000 n-Hexane 5.99e-003 3.68e+001 Cyclohexane 9.90e-004 5.95e+000 Other Hexanes 2.00e-002 1.23e+002 Heptanes 8.96e-003 6.41e+001 Methylcyclohexane 9.89e-004 6.93e+000 2,2,4-Trimethylpentane 4.99e-004 4.07e+000 Benzene 4.55e-004 2.54e+000 Toluene 8.69e-004 5.72e+000 Ethylbenzene 4.14e-004 3.13e+000

Page: 8

Xylenes 3.81e-004 2.89e+000 C8+ Heavies 1.97e-003 2.40e+001 Total Components 100.00 1.27e+005

LEAN GLYCOL STREAM _____ Temperature: 90.00 deg. F Flow Rate: 7.50e+000 gpm Component Conc. Loading (wt%) (lb/hr) TEG 9.85e+001 4.16e+003 Water 1.50e+000 6.33e+001 Carbon Dioxide 1.82e-012 7.67e-011 Nitrogen 1.60e-013 6.77e-012 Methane 8.06e-018 3.40e-016 Ethane 6.25e-008 2.64e-006 Propane 2.07e-009 8.75e-008 Isobutane 3.63e-010 1.53e-008 n-Butane 4.30e-010 1.81e-008 Isopentane 2.96e-005 1.25e-003 n-Pentane 1.89e-005 7.97e-004 Cyclopentane 3.38e-006 1.43e-004 n-Hexane 9.78e-006 4.13e-004 Cyclohexane 4.65e-005 1.96e-003 Other Hexanes 4.97e-005 2.10e-003 Heptanes 3.16e-005 1.34e-003 Methylcyclohexane 7.57e-005 3.20e-003 2,2,4-Trimethylpentane 2.56e-006 1.08e-004 Benzene 3.13e-004 1.32e-002 Toluene 1.75e-003 7.40e-002 Ethylbenzene 1.80e-003 7.62e-002 Xylenes 3.17e-003 1.34e-001 C8+ Heavies 1.04e-003 4.38e-002 Total Components 100.00 4.22e+003

RICH GLYCOL AND PUMP GAS STREAM

Temperature: 90.00 deg. F Pressure: 814.70 psia Flow Rate: 8.03e+000 gpm NOTE: Stream has more than one phase.

 Component
 Conc. (wt%)
 Loading (lb/hr)

 TEG
 9.29e+001
 4.16e+003

 Water
 4.31e+000
 1.93e+002

 Carbon Dioxide
 2.64e-002
 1.18e+000

 Nitrogen
 1.24e-002
 5.57e-001

 Methane
 2.03e+000
 9.10e+001

 Propane
 1.17e-001
 5.25e+000

 Isobutane
 2.31e-002
 1.03e+000

 n-Butane
 9.85e-003
 4.41e-001

 n-Pentane
 5.64e-003
 2.53e-001

Cyclopentane 7.26e-004 3.25e-002 n-Hexane 2.49e-003 1.12e-001 Cyclohexane 1.48e-003 6.61e-002 Other Hexanes 6.86e-003 3.07e-001 Heptanes 7.10e-003 3.18e-001 Methylcyclohexane 1.91e-003 8.54e-002 2,2,4-Trimethylpentane 2.33e-004 1.04e-002 Benzene 5.96e-003 2.67e-001 Toluene 2.10e-002 9.41e-001 Ethylbenzene 1.64e-002 7.35e-001 Xylenes 2.32e-002 1.04e+000 C8+ Heavies 8.55e-003 3.83e-001 ----- -----Total Components 100.00 4.47e+003 FLASH TANK OFF GAS STREAM _____ Temperature: 75.00 deg. F Pressure: 84.70 psia Flow Rate: 2.43e+003 scfh Component Conc. Loading (vol%) (lb/hr) Water 5.05e-002 5.82e-002 Carbon Dioxide 3.41e-001 9.62e-001 Nitrogen 3.07e-001 5.50e-001 Methane 8.75e+001 8.99e+001 Ethane 9.50e+000 1.83e+001 Propane 1.64e+000 4.63e+000 Isobutane 2.26e-001 8.40e-001 n-Butane 2.64e-001 9.81e-001 Isopentane 6.79e-002 3.13e-001 n-Pentane 3.56e-002 1.64e-001 Cyclopentane 2.39e-003 1.07e-002 n-Hexane 9.57e-003 5.28e-002 Cyclohexane 2.23e-003 1.20e-002 Other Hexanes 3.08e-002 1.70e-001 Heptanes 1.37e-002 8.78e-002 Methylcyclohexane 1.81e-003 1.14e-002 2,2,4-Trimethylpentane 6.44e-004 4.71e-003 Benzene 1.12e-003 5.60e-003 Toluene 1.84e-003 1.09e-002 Ethylbenzene 6.23e-004 4.23e-003 Xylenes 5.53e-004 3.76e-003 C8+ Heavies 1.71e-003 1.87e-002 ----- -----Total Components 100.00 1.17e+002

FLASH TANK GLYCOL STREAM Temperature: 75.00 deg. F Flow Rate: 7.77e+000 gpm Component Conc. Loading (wt%) (lb/hr) TEG 9.54e+001 4.16e+003 Water 4.43e+000 1.93e+002 Carbon Dioxide 5.07e-003 2.21e-001

Nitrogen 1.50e-004 6.55e-003 Methane 2.58e-002 1.13e+000 Ethane 2.18e-002 9.51e-001 Propane 1.42e-002 6.19e-001 Isobutane 4.44e-003 1.93e-001 n-Butane 7.24e-003 3.15e-001 Isopentane 2.92e-003 1.27e-001 n-Pentane 2.03e-003 8.84e-002 Cyclopentane 5.00e-004 2.18e-002 n-Hexane 1.35e-003 5.88e-002 Cyclohexane 1.24e-003 5.41e-002 Other Hexanes 3.14e-003 1.37e-001 Heptanes 5.28e-003 2.30e-001 Methylcyclohexane 1.70e-003 7.40e-002 2,2,4-Trimethylpentane 1.31e-004 5.70e-003 Benzene 5.99e-003 2.61e-001 Toluene 2.13e-002 9.30e-001 Ethylbenzene 1.68e-002 7.31e-001 Xylenes 2.37e-002 1.03e+000 C8+ Heavies 8.35e-003 3.64e-001 ----- -----Total Components 100.00 4.36e+003

FLASH GAS EMISSIONS Flow Rate: 7.87e+003 scfh Control Method: Combustion Device Control Efficiency: 98.00 Component Conc. Loading (vol%) (lb/hr) Water 6.46e+001 2.41e+002 Carbon Dioxide 3.47e+001 3.17e+002 Nitrogen 9.47e-002 5.50e-001 Methane 5.40e-001 1.80e+000 Ethane 5.87e-002 3.66e-001 Propane 1.01e-002 9.27e-002 Isobutane 1.39e-003 1.68e-002 n-Butane 1.63e-003 1.96e-002

Isopentane 4.19e-004 6.27e-003 n-Pentane 2.19e-004 3.28e-003 Cyclopentane 1.47e-005 2.14e-004 n-Hexane 5.90e-005 1.06e-003 Cyclohexane 1.38e-005 2.40e-004 Other Hexanes 1.90e-004 3.40e-003 Heptanes 8.44e-005 1.76e-003 Methylcyclohexane 1.12e-005 2.27e-004 2,2,4-Trimethylpentane 3.97e-006 9.42e-005 Benzene 6.91e-006 1.12e-004 Toluene 1.14e-005 2.17e-004 Ethylbenzene 3.84e-006 8.47e-005 C8+ Heavies 1.06e-005 3.73e-004

Total Components 100.00 5.61e+002

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 2.80e+003 scfh Component Conc. Loading (vol%) (lb/hr) Water 9.77e+001 1.30e+002 Carbon Dioxide 6.81e-002 2.21e-001 Nitrogen 3.17e-003 6.55e-003 Methane 9.53e-001 1.13e+000 Ethane 4.29e-001 9.51e-001 Propane 1.91e-001 6.19e-001 Isobutane 4.51e-002 1.93e-001 n-Butane 7.37e-002 3.15e-001 Isopentane 2.37e-002 1.26e-001 n-Pentane 1.65e-002 8.76e-002 Cyclopentane 4.19e-003 2.16e-002 n-Hexane 9.20e-003 5.84e-002 Cyclohexane 8.40e-003 5.21e-002 Other Hexanes 2.12e-002 1.35e-001 Heptanes 3.10e-002 2.29e-001 Methylcyclohexane 9.79e-003 7.08e-002 2,2,4-Trimethylpentane 6.65e-004 5.59e-003 Benzene 4.31e-002 2.48e-001 Toluene 1.26e-001 8.56e-001 Ethylbenzene 8.37e-002 6.54e-001 Xylenes 1.15e-001 9.00e-001 C8+ Heavies 2.55e-002 3.20e-001 ----- ------Total Components 100.00 1.37e+002

COMBUSTION DEVICE OFF GAS STREAM

Temperature: Pressure: Flow Rate:	1000.00 d 14.70 g 1.24e+000 s	psia			
	Component		Conc. (vol%)	Loading (lb/hr)	
		Ethane	4.31e+001 1.94e+001 8.62e+000	1.90e-002	
		sobutane	2.04e+000 3.33e+000	3.87e-003	

Cyclopentane	7.45e-001 1.90e-001 4.16e-001	1.75e-003 4.33e-004 1.17e-003
Methylcyclohexane 2,2,4-Trimethylpentane	1.40e+000 4.43e-001	4.57e-003 1.42e-003 1.12e-004
Ethylbenzene	5.21e+000	1.31e-002 1.80e-002

Page: 12

Total Components 100.00 1.39e-001

Page: 1 GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: GLO-76 File Name: C:\Users\dtedesco\Desktop\2016-0519 Class I AA (G70B App)\Att S Emission Calcs\GLYCalc\20160223 GLO 76 Dehy PTE v2.0.ddf Date: May 19, 2016 DESCRIPTION: _____ Description: DEHY 65 MMSCFD Max Pump Rate: 7.5 GPM BIG57 Gas Analysis Sample: 11/20/14 Annual Hours of Operation: 8760.0 hours/yr WET GAS: _____ Temperature: 90.00 acy. 800.00 psig 90.00 deg. F Wet Gas Water Content: Saturated Component Conc. (vol %) _____ ____
 Carbon Dioxide
 0.1680

 Nitrogen
 0.3110

 Methane
 89.7400

 Ethane
 8.0850

 Propane
 1.2520
 Isobutane 0.1600 n-Butane 0.1730 Isopentane 0.0470 n-Pentane 0.0230 Cyclopentane 0.0010 n-Hexane 0.0060 Cyclohexane 0.0010 Other Hexanes 0.0200 Heptanes 0.0090 Methylcyclohexane 0.0010 2,2,4-Trimethylpentane 0.0005 Benzene 0.0005 Toluene 0.0010 Ethylbenzene 0.0005 Xylenes 0.0005 C8+ Heavies 0.0020 DRY GAS: _____ Flow Rate: 65.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF LEAN GLYCOL: _____ Glycol Type: TEG Water Content: 1.5 wt% H20 Flow Rate: 7.5 gpm

PUMP:

Glycol Pump Type: Gas Injection Gas Injection Pump Volume Ratio: 0.080 acfm gas/gpm glycol

FLASH TANK:

Flash Control: Combustion device Flash Control Efficiency: 98.00 % Temperature: 75.0 deg. F Pressure: 70.0 psig REGENERATOR OVERHEADS CONTROL DEVICE:

> Control Device: Combustion Device Destruction Efficiency: 98.0 % Excess Oxygen: 5.0 % Ambient Air Temperature: 60.0 deg. F

J-L	Certificate of Analysis Number: 2030-14120043-001A
Gary Vermillion	Extended Gas

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Dec. 08, 2014

Gary Vermillion Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Field: EQT	Sampled By:	CD-GA	S
Station Name: Big 57 Dehy Inlet	Sample Of:	Gas	Spot
Sample Point: Wellhead	Sample Date:	11/20/2	014 10:30
Cylinder No: 0421	Sample Conditio	ns:60 psig	
analyzed: 12/03/2014 06:53:38 by GR2	Method:	GPA 22	86

Analysis

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.73 psia			
Nitrogen	0.311	0.489		GPM TOTAL C2+	2.662	
Methane	89.740	80.772		and the second second second second second		
Carbon Dioxide	0.168	0.415				
Ethane	8.085	13.640	2.167			
Propane	1.252	3.097	0.346			
Iso-Butane	0.160	0.522	0.052			
n-Butane	0.173	0.564	0.055			
Iso-Pentane	0.047	0.190	0.017			
n-Pentane	0.023	0.093	0.008			
i-Hexanes	0.021	0.086	0.007			
n-Hexane	0.006	0.024	0.002			
Benzene	NIL	0.001	NIL			
Cyclohexane	0.001	0.004	NIL			
i-Heptanes	0.008	0.041	0.003			
n-Heptane	0.001	0.007	0.001			
Toluene	0.001	0.003	NIL			
i-Octanes	0.002	0.023	0.002			
n-Octane	NIL	0.002	NIL			
Ethylbenzene	NIL	NIL	NIL			
Xylenes	NIL	0.004	NIL			
i-Nonanes	NIL	0.007	0.001			
n-Nonane	NIL	0.002	NIL			
i-Decanes	0.001	0.009	0.001			
n-Decane	NIL	NIL	NIL			
Undecanes	NIL	0.005	NIL			
Dodecanes	NIL	NIL	NIL			
Tridecanes	NIL	NIL	NIL			
Tetradecanes Plus	NIL	NIL	NIL			
	100.000	100.000	2.662			
Physical Properties		То	otal			

· ····································	
Calculated Molecular Weight	17.824
GPA 2172-09 Calculation:	
Calculated Gross BTU per ft ³ @ 14.7	73 psia & 60°F
Real Gas Dry BTU	1102.0
Water Sat. Gas Base BTU	1082.8
Relative Density Real Gas	0.6167
Compressibility Factor	0.9975

Pater L. Perro

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Certificate of Analysis

Number: 2030-14090265-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Gary Vermillion Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Field:EQTStation Name:513876Station Number:Sample Point:Sample Point:WellheadAnalyzed:09/30/2014 11:32:18 by CC

Pressurized Condensate Analysis

Sep. 30, 2014

Sampled By:GR-GASSample Of:CondensateSpotSample Date:09/12/2014 10:30Sample Conditions: 80 psigMethod:GPA-2186M/GPA-2103Cylinder No:GAS

Analytical Data

Components	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %	
Nitrogen	NIL	28.013	NIL	0.807	NIL	
Methane	0.433	16.043	0.051	0.300	0.131	
Carbon Dioxide	0.006	44.010	0.002	0.817	0.002	
Ethane	0.335	30.069	0.074	0.356	0.159	
Propane	0.485	44.096	0.157	0.507	0.237	
Iso-Butane	0.277	58.122	0.118	0.563	0.160	
n-Butane	0.668	58.122	0.285	0.584	0.373	
Iso-Pentane	0.631	72.149	0.334	0.625	0.409	
n-Pentane	0.548	72.149	0.290	0.631	0.352	
i-Hexanes	1.167	85.215	0.730	0.667	0.837	
n-Hexane	0.789	86.175	0.499	0.664	0.575	
2,2,4-Trimethylpentane	0.011	114.231	0.009	0.697	0.010	
Benzene	0.037	78.114	0.021	0.885	0.018	
Heptanes	7.764	98.897	5.637	0.699	6.170	
Toluene	0.961	92.141	0.650	0.872	0.570	
Octanes	17.560	110.849	14.291	0.729	14.992	
Ethylbenzene	0.269	106.167	0.210	0.872	0.184	
Xylenes	5.842	106.167	4.553	0.869	4.006	
Nonanes	14.483	123.813	13.165	0.747	13.475	
Decanes Plus	47.734	168.149	58.924	0.786	57.340	
	100.000		100.000		100.000	
Physical Properties			Total	C10+		
Specific Gravity at 60°F		0.	7649	0.7861		
API Gravity at 60°F			3.487	48.503		
Molecular Weight			5.216 5.377	168.149		
Pounds per Gallon (in Vacuu	Pounds per Gallon (in Vacuum)			6.554		
Pounds per Gallon (in Air)	6	5.370	6.547			
Cu. Ft. Vapor per Gallon @	17	7.725	14.757			

Patti L. Petro

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Atmospheric Condensate Analysis

6.658

6.650

15.682

Certificate of Analysis : 2012120125-001A

Company:	Gas Analytical Services
Well:	512441
Field:	EQT Production
Sample of:	Condensate
Conditions:	N.G. @ N.G.
Sampled by:	GR-GAS
Sample date:	12/05/2012 @ 16:00
Remarks:	Cylinder No.: GAS
Remarks:	-

For: Gas Analytical Services Chuck Honaker PO Box 1028

Bridgeport, WV, 26330

Report Date:

12/17/2012

Analysis: (GPA 2186M)	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %	
Nitrogen	0.000	28.013	0.000	the second se	0.000	
Methane	0.095	16.043	0.013		0.032	
Carbon Dioxide	0.000	44.010	0.000	0.8180	0.000	
Ethane	0.602	30.070	0.154	0.3562	0.321	
Propane	1.646	44.097	0.618	0.5070	0.905	
lso-butane	0.867	58.123	0.429	0.5629	0.566	
N-butane	2.986	58.123	1.478	0.5840	1.879	
lso-pentane	3.103	72.150	1.907	0.6244	2.267	
N-pentane	3.943	72.150	2.424	0.6311	2.851	
i-Hexanes	4.939	86.177	3.584	0.6795	4.019	
n-Hexane	4.692	85.671	3.445	0.6640	3.823	
2,2,4 trimethylpentane	0.031	114.231	0.030	0.6967	0.032	
Benzene	0.200	78.114	0.143	0.8846	0.113	
Heptanes	14.686	97.881	12.265	0.7024	13.001	
Toluene	1.138	92.141	0.967	0.8719	0.766	
Octanes	14.442	107.726	13.331	0.7406	13.565	
E-benzene	0.155	106.167	0.080	0.8718	0.120	
M-,O-,P-xylene	1.763	106.167	1.595	0.8731	1.370	
Nonanes	12.747	123.607	13.767	0.7557	13.680	
Decanes Plus	31.965	160.734	43.770	0.7985	40.690	
		-				
	100.000		100.000		100.000	
Calculated Values		Tota	al Sample		Deca	anes Plus
Specific Gravity at 60 °F			0.7423			0.7985
Api Gravity at 60 °F			59.115			45.704
Molecular Weight			117.386			160.734
			0.400			0.050

Pounds per Gallon (in Air) Cu. Ft. Vapor per Gallon @ 14.73 psia

Pounds per Gallon (in Vacuum)

6.189

6.182

20.054

Southern Petroleum Laboratories, Inc.

ATTACHMENT T

Emission Summary Sheet

EQT Production, LLC | GLO-76 Pad Trinity Consultants

	ATTACHMENT T – FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET													
List all sources of	List all sources of emissions in this table. Use extra pages if necessary.													
Emission Point ID#	N	O _x	С	0	VOC		SO ₂		PM_{10}		PM _{2.5}		GHG (CO ₂ e)	
(Emission Source ID)	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001 (S024, C001)	0.30	1.34	0.26	1.12	0.26	1.14	0.00	0.01	0.02	0.10	0.020	0.10	440.20	1,928.06
E001					0.05	0.20							0.13	0.53
E002					0.05	0.20							0.13	0.53
E003					0.05	0.20							0.13	0.53
E004					0.05	0.20							0.13	0.53
E005					0.05	0.20							0.13	0.53
E006					0.05	0.20							0.13	0.53
E007					0.05	0.20							0.13	0.53
E008					0.05	0.20							0.13	0.53
E009					0.05	0.20							0.13	0.53
E010					0.05	0.20							0.13	0.53
E011					0.01	0.02							1.1E-02	0.05
E012	0.14	0.61	0.12	0.51	0.01	0.03	8.4 E-04	3.7 E-03	0.01	0.05	0.01	0.05	180.18	789.20
E013	0.14	0.61	0.12	0.51	0.01	0.03	8.4 E-04	3.7 E-03	0.01	0.05	0.01	0.05	180.18	789.20
E014	0.14	0.61	0.12	0.51	0.01	0.03	8.4 E-04	3.7 E-03	0.01	0.05	0.01	0.05	180.18	789.20
E015	0.14	0.61	0.12	0.51	0.01	0.03	8.4 E-04	3.7 E-03	0.01	0.05	0.01	0.05	180.18	789.20
E016	0.14	0.61	0.12	0.51	0.01	0.03	8.4 E-04	3.7 E-03	0.01	0.05	0.01	0.05	180.18	789.20

E017	0.14	0.61	0.12	0.51	0.01	0.03	8.4 E-04	3.7 E-03	0.01	0.05	0.01	0.05	180.18	789.20
E018	0.14	0.61	0.12	0.51	0.01	0.03	8.4 E-04	3.7 E-03	0.01	0.05	0.01	0.05	180.18	789.20
E019	0.14	0.61	0.12	0.51	0.01	0.03	8.4 E-04	3.7 E-03	0.01	0.05	0.01	0.05	180.18	789.20
E020	0.14	0.61	0.12	0.51	0.01	0.03	8.4 E-04	3.7 E-03	0.01	0.05	0.01	0.05	180.18	789.20
E021	1.2 E-03	0.01	9.9 E-04	4.3 E-03	6.5 E-05	2.8 E-04	7.1 E-06	3.1 E-05	8.9 E-05	3.9 E-04	8.9 E-05	3.9 E-04	1.52	6.65
E022	1.2 E-03	0.01	9.9 E-04	4.3 E-03	6.5 E-05	2.8 E-04	7.1 E-06	3.1 E-05	8.9 E-05	3.9 E-04	8.9 E-05	3.9 E-04	1.52	6.65
E023	1.2 E-03	0.01	9.9 E-04	4.3 E-03	6.5 E-05	2.8 E-04	7.1 E-06	3.1 E-05	8.9 E-05	3.9 E-04	8.9 E-05	3.9 E-04	1.52	6.65
E025	0.07	0.30	0.06	0.25	3.7 E-03	0.02	4.1 E-04	1.8 E-03	0.01	0.02	0.01	0.02	87.84	384.73
E026					0.05	0.20							0.13	0.53
E027					3.71	0.96								
Fugitives						11.44								937.07
Haul Roads										0.53		0.05		
Facility Total	1.63	7.15	1.37	6.01	4.55	16.09	0.01	0.04	0.12	1.07	0.12	0.60	2,155.61	10,378.39
Facility Total (excl. fugitives)	1.63	7.15	1.37	6.01	0.85	3.68	0.01	0.04	0.12	0.54	0.12	0.54	2,155.61	9,441.33

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

	ATTAC	CHMEN	$\Gamma T - FA$	CILITY	-WIDE	HAP CC	ONTROL	LLED EN	MISSIO	NS SUM	MARY	SHEET		
List all sources of	of emiss	ions in t	his table	Use ex	tra pages	s if necess	sary.							
Emission Point ID#	Forma	ldehyde	Ben	zene	Tol	uene	Ethylbenzene		Xylenes		Hexane		Total HAPs	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001 (S024, C001)	0.00	0.00	0.01	0.02	0.02	0.08	0.01	0.06	0.02	0.08	0.00	0.01	0.06	0.25
E001			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0 E-03	< 0.01	1.0 E-03	< 0.01	< 0.01
E002			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0 E-03	< 0.01	1.0 E-03	< 0.01	< 0.01
E003			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0 E-03	< 0.01	1.0 E-03	< 0.01	< 0.01
E004			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0 E-03	< 0.01	1.0 E-03	< 0.01	< 0.01
E005			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0 E-03	< 0.01	1.0 E-03	< 0.01	< 0.01
E006			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	1.0 E-03	< 0.01	1.0 E-03	< 0.01	< 0.01
E007			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0 E-03	< 0.01	1.0 E-03	< 0.01	< 0.01
E008			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0 E-03	< 0.01	1.0 E-03	< 0.01	< 0.01
E009			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0 E-03	< 0.01	1.0 E-03	< 0.01	< 0.01
E010			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	1.0 E-03	< 0.01	1.0 E-03	< 0.01	< 0.01
E011			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
E012	1.0 E-04	4.6 E-04	2.9 E-06	1.3 E-05	4.7 E-06	2.1 E-05					2.5 E-03	0.01	2.6 E-03	0.01
E013	1.0 E-04	4.6 E-04	2.9 E-06	1.3 E-05	4.7 E-06	2.1 E-05					2.5 E-03	0.01	2.6 E-03	0.01
E014	1.0 E-04	4.6 E-04	2.9 E-06	1.3 E-05	4.7 E-06	2.1 E-05					2.5 E-03	0.01	2.6 E-03	0.01
E015	1.0 E-04	4.6 E-04	2.9 E-06	1.3 E-05	4.7 E-06	2.1 E-05					2.5 E-03	0.01	2.6 E-03	0.01
E016	1.0 E-04	4.6 E-04	2.9 E-06	1.3 E-05	4.7 E-06	2.1 E-05					2.5 E-03	0.01	2.6 E-03	0.01

E017	1.0 E-04	4.6 E-04	2.9 E-06	1.3 E-05	4.7 E-06	2.1 E-05					2.5 E-03	0.01	2.6 E-03	0.01
E018	1.0 E-04	4.6 E-04	2.9 E-06	1.3 E-05	4.7 E-06	2.1 E-05					2.5 E-03	0.01	2.6 E-03	0.01
E019	1.0 E-04	4.6 E-04	2.9 E-06	1.3 E-05	4.7 E-06	2.1 E-05					2.5 E-03	0.01	2.6 E-03	0.01
E020	1.0 E-04	4.6 E-04	2.9 E-06	1.3 E-05	4.7 E-06	2.1 E-05					2.5 E-03	0.01	2.6 E-03	0.01
E021	8.8 E-07	3.9 E-06	2.5 E-08	1.1 E-07	4.0 E-08	1.8 E-07					2.1 E-05	9.3 E-05	2.2 E-05	9.7 E-05
E022	8.8 E-07	3.9 E-06	2.5 E-08	1.1 E-07	4.0 E-08	1.8 E-07					2.1 E-05	9.3 E-05	2.2 E-05	9.7 E-05
E023	8.8 E-07	3.9 E-06	2.5 E-08	1.1 E-07	4.0 E-08	1.8 E-07					2.1 E-05	9.3 E-05	2.2 E-05	9.7 E-05
E025	5.1 E-05	2.2 E-04	1.4 E-06	6.3 E-06	2.3 E-06	1.0 E-05					1.2 E-03	0.01	1.3 E-03	0.01
E026					< 0.01	< 0.01							< 0.01	< 0.01
E027			1.9 E-03	4.8 E-04	3.5 E-03	9.1 E-04	2.0 E-04	5.1 E-05	2.6 E-03	6.9 E-04	0.08	0.02	0.09	0.02
Fugitives				< 0.01		0.01		< 0.01		< 0.01		0.07		0.11
Haul Roads														
Facility Total	1.0 E-03	4.4 E-03	0.01	0.02	0.02	0.09	0.01	0.06	0.02	0.09	0.10	0.21	0.17	0.49
Facility Total (excl. fugitives)	1.0 E-03	4.4 E-03	0.01	0.02	0.02	0.08	0.01	0.06	0.02	0.09	0.03	0.12	0.08	0.36

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT U

Class I Legal Advertisement

RECOMMENDED PUBLIC NOTICE TEMPLATE

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Class II Administrative Update to convert the current G-70A General Permit Registration into a G70-C for the natural gas production facility GLO-76 located approximately 1.0 miles north of Brink in Marion County, West Virginia. The latitude and longitude coordinates are: 39.18999 N, -80.81767 W.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Pollutant	Emissions in tpy (tons per year)
NOx	7.15
СО	6.01
VOC	16.09
SO ₂	0.04
PM	1.07
Total HAPs	0.49
Carbon Dioxide Eq (CO ₂ e)	uivalents 9,441.33

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated this the <u>(Day)</u> day of <u>(Month)</u>, 2016.

By: EQT Production Company Kenneth Kirk, Executive Vice President 625 Liberty Ave Suite 1700 Pittsburgh, PA 15222

ATTACHMENT V

General Permit Registration Application Fee