Icon Midstream Pipeline, LLC

APPLICATION FOR NSR (45CSR13) CONSTRUCTION PERMIT

Sleepy Dehydration Facility Tyler County, West Virginia

98 Vanadium Road Bridgeville, PA 15017 (412) 221-1100

APPLICATION FOR NSR (45CSR13) CONSTRUCTION PERMIT

Icon Midstream Pipeline, LLC

Sleepy Dehydration Facility

Tyler County, West Virginia

Table of Contents

- I. Application Form
- II. Attachments
 - Attachment A Business Certificate
 - Attachment B Area Map
 - Attachment C Installation and Start-Up Schedule
 - Attachment D Regulatory Discussion
 - Attachment E Plot Plan
 - Attachment F Process Flow Diagram
 - Attachment G Process Description
 - Attachment I Emission Units Table
 - Attachment J Emission Points Data Summary Sheet
 - Attachment K Fugitive Emissions Data Summary Sheet
 - Attachment L Emissions Unit Data Sheet(s)
 - Attachment N Supporting Emissions Calculations
 - Attachment O Monitoring, Recordkeeping, Reporting and Testing Plan
 - Attachment P Public Notice

SECTION I

Application Form

WEST VIRGINIA DEPARTMENT OF **ENVIRONMENTAL PROTECTION**

DIVISION OF AIR QUALITY

APPLICATION FOR NSR PERMIT

601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 www.dep.wv.gov/dag	ТІ	AND TITLE V PERMIT REVISION (OPTIONAL)								
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOWN CONSTRUCTION MODIFICATION RELOCATION CLASS I ADMINISTRATIVE UPDATE TEMPORARY CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FACT	☐ ADMINISTRAT	PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY): ADMINISTRATIVE AMENDMENT MINOR MODIFICATION SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION								
FOR TITLE V FACILITIES ONLY: Please refer to "Title V Revision Guidance" in order to determine your Title V Revision options (Appendix A, "Title V Permit Revision Flowchart") and ability to operate with the changes requested in this Permit Application.										
Section	ı I. General									
Name of applicant (as registered with the WV Secretary of Icon Midstream Pipeline, LLC	State's Office):	 Federal Employer ID No. (FEIN): 47-1115453 								
3. Name of facility (if different from above):		4. The applicant is the:								
Sleepy Dehydration Facility		☐ OWNER ☐ OPERATOR ☐ BOTH								
5A. Applicant's mailing address: 3130 Grants Lake Blvd, Suite 18859		5B. Facility's present physical address: Off Walnut Fork Road								
Sugarland, TX 77496	Middlebourne in Tyle	Middlebourne in Tyler County								
 6. West Virginia Business Registration. Is the applicant a result of the provide a copy of the Certificate of Incorporation change amendments or other Business Registration Certificate of Authority/Authority/Authority or other Business Certificate as Attachment 	/Organization/Limi icate as Attachmen ority of L.L.C./Reg	nited Partnership (one page) including any name nt A.								
7. If applicant is a subsidiary corporation, please provide the na	ame of parent corpo	oration: N/A								
8. Does the applicant own, lease, have an option to buy or other	erwise have control	I of the <i>proposed site?</i> ⊠ YES □ NO								
 If YES, please explain: Applicant has a lease agreement with the land owner for installation of the facility If NO, you are not eligible for a permit for this source. 										
 Type of plant or facility (stationary source) to be construct administratively updated or temporarily permitted (e.g. crusher, etc.): Dehydration facility 	t ed, modified, reloc , coal preparation pl	d, modified, relocated, coal preparation plant, primary 10. North American Industry Classification System (NAICS) code for the facility								
11A. DAQ Plant ID No. (for existing facilities only): -		CSR13 and 45CSR30 (Title V) permit numbers is process (for existing facilities only):								
All of the required forms and additional information can be found	under the Permitting	g Section of DAQ's website, or requested by phone								

12A.								
 For Modifications, Administrative Updates or Te present location of the facility from the nearest state 		please provide directions to the						
 For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment B. 								
From Middlebourne, proceed south/east on State Route 18 with Indian Creek Road on the left. From WV 18 and Indi left onto CR 13/1 (Walnut Fork) follow north for 1.7 miles	an Creek CR13 intersection, take Indian							
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:						
, ,	Middlebourne	Tyler						
12.E. UTM Northing (KM): 4,369.6	12F. UTM Easting (KM): 522.4	12G. UTM Zone: 17						
13. Briefly describe the proposed change(s) at the facilit This facility will receive gas from the contiguous Jay line owned and operated by others. There is no com	-Bee Oil & Gas well pad, dehydrate th	ne gas and inject it into a gather						
Provide the date of anticipated installation or change. If this is an After-The-Fact permit application, provided happen: / /	· · ·	14B. Date of anticipated Start-Up if a permit is granted: 6/15/16						
14C. Provide a Schedule of the planned Installation of/application as Attachment C (if more than one unit		units proposed in this permit						
15. Provide maximum projected Operating Schedule of Hours Per Day 24 Days Per Week 7	f activity/activities outlined in this applica Weeks Per Year 52	ation:						
16. Is demolition or physical renovation at an existing fac-	cility involved?							
17. Risk Management Plans. If this facility is subject to	112(r) of the 1990 CAAA, or will become	e subject due to proposed						
changes (for applicability help see www.epa.gov/cepp	oo), submit your Risk Management Pla	n (RMP) to U. S. EPA Region III.						
18. Regulatory Discussion. List all Federal and State a	air pollution control regulations that you	believe are applicable to the						
proposed process (if known). A list of possible applica	able requirements is also included in Atta	achment S of this application						
(Title V Permit Revision Information). Discuss applica	bility and proposed demonstration(s) of	compliance (if known). Provide this						
information as Attachment D.								
Section II. Additional atta	achments and supporting d	ocuments.						
19. Include a check payable to WVDEP – Division of Air 45CSR13).	Quality with the appropriate applicatior	n fee (per 45CSR22 and						
20. Include a Table of Contents as the first page of you	ır application package.							
21. Provide a Plot Plan , e.g. scaled map(s) and/or sketo source(s) is or is to be located as Attachment E (Re		rty on which the stationary						
 Indicate the location of the nearest occupied structure 	e (e.g. church, school, business, residen	ce).						
 Provide a Detailed Process Flow Diagram(s) show device as Attachment F. 	ving each proposed or modified emissio	ns unit, emission point and control						
23. Provide a Process Description as Attachment G.								
 Also describe and quantify to the extent possible and process. 	all changes made to the facility since the	e last permit review (if applicable).						
All of the required forms and additional information can be	found under the Permitting Section of DA	AQ's website, or requested by phone.						

24.	Provide Material Safety Data Sheets	(MSDS) for all materials proces	sed, used or produced as Attachment H.					
_ F	For chemical processes, provide a MSDS for each compound emitted to the air.							
25.	25. Fill out the Emission Units Table and provide it as Attachment I.							
26.	Fill out the Emission Points Data Su	mmary Sheet (Table 1 and Tab	le 2) and provide it as Attachment J.					
27.	Fill out the Fugitive Emissions Data	Summary Sheet and provide it	as Attachment K.					
28.	Check all applicable Emissions Unit	Data Sheets listed below:						
	Bulk Liquid Transfer Operations	☐ Haul Road Emissions	☐ Quarry					
	Chemical Processes	☐ Hot Mix Asphalt Plant	☐ Solid Materials Sizing, Handling and Storage					
	Concrete Batch Plant	☐ Incinerator	Facilities					
	Grey Iron and Steel Foundry	☐ Indirect Heat Exchanger	☐ Storage Tanks					
\boxtimes	General Emission Unit, specify: Glycol	Dehydration Unit (1) with Reb	oiler and Still Vent.					
	out and provide the Emissions Unit Da							
29.	Check all applicable Air Pollution Co	ntrol Device Sheets listed below	N:					
	Absorption Systems	☐ Baghouse	☐ Flare					
	Adsorption Systems	☐ Condenser	☐ Mechanical Collector					
	Afterburner	☐ Electrostatic Precipitat	or Wet Collecting System					
	Other Collectors, specify							
	out and provide the Air Pollution Cont							
30.	Provide all Supporting Emissions Ca Items 28 through 31.	alculations as Attachment N, o	r attach the calculations directly to the forms listed in					
31.		compliance with the proposed er	proposed monitoring, recordkeeping, reporting and nissions limits and operating parameters in this permit					
>		not be able to accept all measu	ner or not the applicant chooses to propose such res proposed by the applicant. If none of these plans de them in the permit.					
32.	Public Notice. At the time that the ap	oplication is submitted, place a C	Class I Legal Advertisement in a newspaper of general					
	circulation in the area where the source	e is or will be located (See 45CS	SR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>					
	Advertisement for details). Please su	bmit the Affidavit of Publication	n as Attachment P immediately upon receipt.					
33.	Business Confidentiality Claims. D	• •	dential information (per 45CSR31)?					
	☐ YES	NO						
>		g the criteria under 45CSR§31-4	nitted as confidential and provide justification for each 1.1, and in accordance with the DAQ's "Precautionary instructions as Attachment Q.					
	Sec	ction III. Certification of	f Information					
34.	Authority/Delegation of Authority. Check applicable Authority Form bel		ner than the responsible official signs the application.					
	Authority of Corporation or Other Busin	ess Entity	Authority of Partnership					
	Authority of Governmental Agency	П	Authority of Limited Partnership					
			,					
	Submit completed and signed Authority Form as Attachment R. All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.							
	•		- , , , , , ,					

35A. Certification of Information. To certify 2.28) or Authorized Representative shall check	this permit app k the appropria	olication, a Responsible Offic te box and sign below.	ial (per 45CSR§13-2.22 and 45CSR§30-					
Certification of Truth, Accuracy, and Completeness								
I, the undersigned Responsible Official / [application and any supporting documents appreasonable inquiry I further agree to assume restationary source described herein in accordant Environmental Protection, Division of Air Qualicand regulations of the West Virginia Division of business or agency changes its Responsible Conotified in writing within 30 days of the official of	pended hereto, esponsibility for nce with this ap ty permit issue f Air Quality an Official or Autho	is true, accurate, and compler the construction, modification plication and any amendmend in accordance with this apple dw.Va. Code § 22-5-1 et se	ete based on information and belief after on and/or relocation and operation of the hts thereto, as well as the Department of plication, along with all applicable rules g. (State Air Pollution Control Act). If the					
Compliance Codification								
Compliance Certification Except for requirements identified in the Title V that, based on information and belief formed a compliance with all applicable requirements.	/ Application fo	r which compliance is not ac inquiry, all air contaminant s	ources identified in this application are in					
SIGNATURE	Re	D	ATE: 4-4-2016					
(Please	use blue ink)		(Please use blue ink)					
35B. Printed name of signee: Shane Dowell		a a	35C. Title: Operations Manager					
35D. E-mail: iconmidstream@gmail.com	36E. Phone:	304-904-1700	36F. FAX: 304-628-3111					
36A. Printed name of contact person (if different	nt from above):		36B. Title:					
36C. E-mail:	36D. Phone:		36E. FAX:					
PLEASE CHECK ALL APPLICABLE ATTACHMEN	TS INCLUDED V	VITH THIS PERMIT APPLICATION	ON:					
 △ Attachment D: Regulatory Discussion △ Attachment E: Plot Plan △ Attachment F: Detailed Process Flow Diagram △ Attachment G: Process Description △ Attachment H: Material Safety Data Sheets (M △ Attachment I: Emission Units Table 	 ⚠ Attachment A: Business Certificate ☒ Attachment B: Map(s) ☒ Attachment C: Installation and Start Up Schedule ☒ Attachment D: Regulatory Discussion ☒ Attachment N: Supporting Emissions Calculations ☒ Attachment F: Detailed Process Flow Diagram(s) ☒ Attachment G: Process Description ☐ Attachment R: Authority Forms ☒ Attachment R: Authority Forms 							
address listed on the first	page of this ap	plication. Please DO NOT fax	permit applications.					
FOR AGENCY USE ONLY – IF THIS IS A TITLE V Forward 1 copy of the application to the Title For Title V Administrative Amendments: NSR permit writer should notify Title V For Title V Minor Modifications: Title V permit writer should send appr NSR permit writer should notify Title V For Title V Significant Modifications processe NSR permit writer should notify a Title Public notice should reference both 4: EPA has 45 day review period of a dra	V Permitting Gi / permit writer of opriate notificat / permit writer of d in parallel with to V permit writer 5CSR13 and Titl	of draft permit, tion to EPA and affected states of draft permit. h NSR Permit revision:	s within 5 days of receipt,					
All of the required forms and additional informati		d under the Permitting Section	of DAQ's website, or requested by phone.					

SECTION II

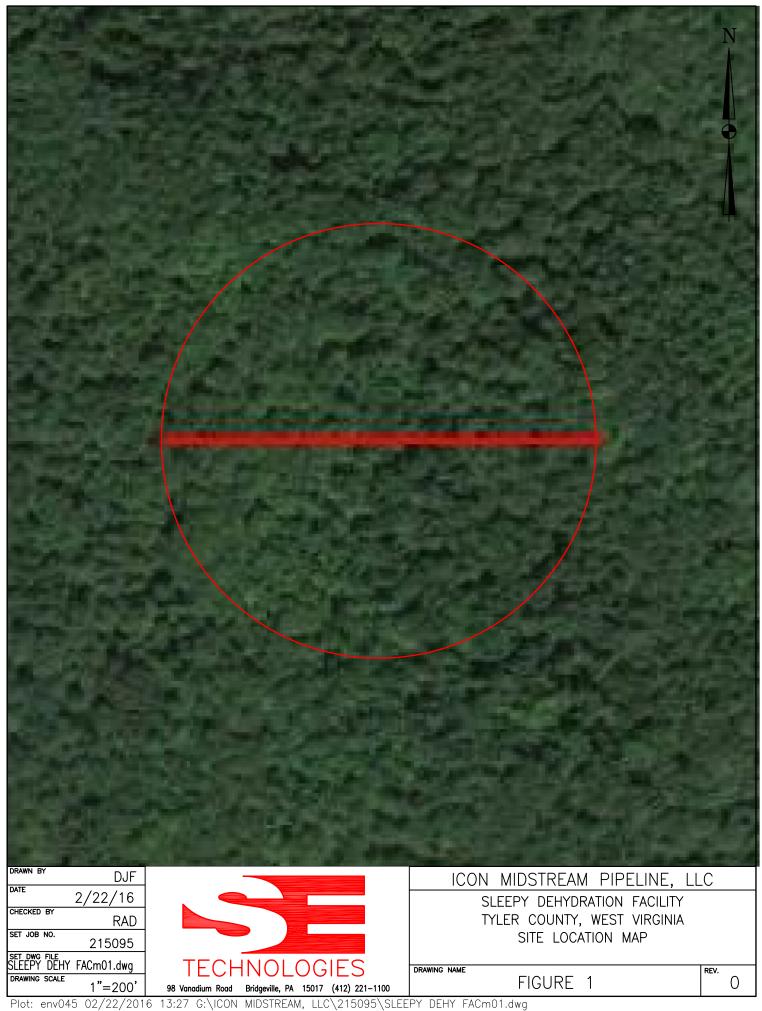
Attachments

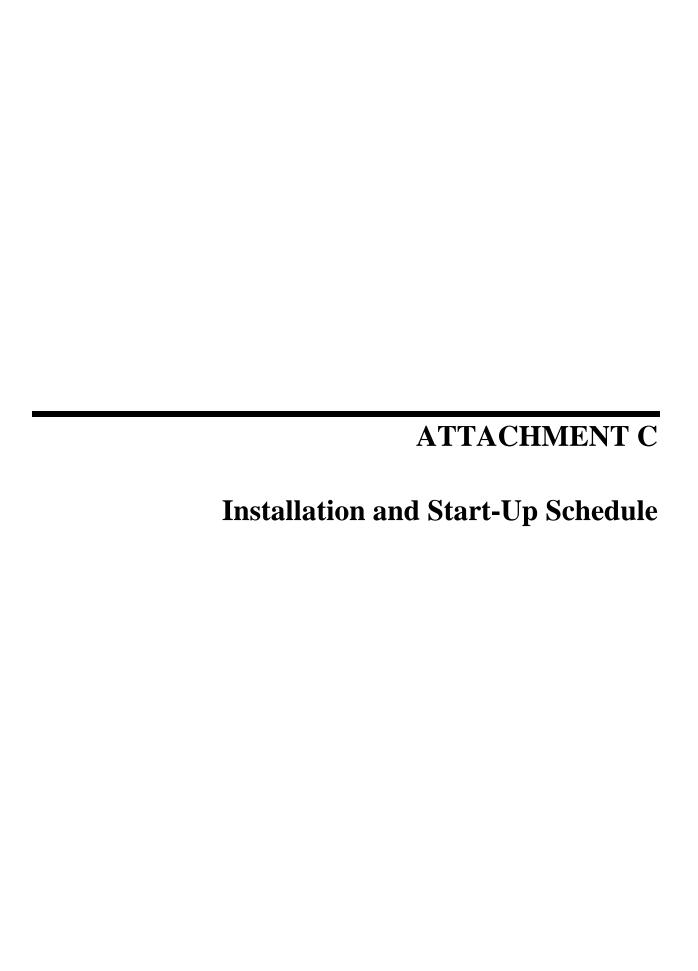
Business Certificate

I, Natalie E. Tennant, Secretary of State, of the State of West Virginia, hereby certify that

Icon Midstream Pipeline, LLC

has filed the appropriate registration documents in my office according to the provisions of the West Virginia Code and hereby declare the organization listed above as duly registered with the Secretary of State's Office.




Given under my hand and the Great Seal of West Virginia on this day of March 13, 2015

Natalil E germant

ATTACHMENT B

Area Map

Icon Midstream Pipeline, LLC Sleepy Dehydration Facility Attachment C – Installation and Start-Up Schedule

Installation of the Sleepy Dehydration Facility, emission point S01, will take place upon receipt of approval of this application. Icon will install the equipment and connect to existing gathering lines. It is anticipated that all work can be completed within 30 days of receipt of approval. Start-up of the Facility is anticipated to begin shortly after permit issuance and installation, approximately the 15th day of June, 2016.

Regulatory Discussion

Icon Midstream Pipeline, LLC

Sleepy Dehydration Facility Attachment D – Regulatory Discussion

Both State and Federal environmental regulations governing air emissions apply to the planned Sleepy Dehydration Facility. The West Virginia Department of Environmental Protection (WVDEP) has been delegated the authority to implement certain federal air quality requirements for the state. Air quality regulations that potentially affect the Facility are discussed herein.

1.1 PSD and NSR

The facility will be a minor source with respect to Prevention of Significant Deterioration (PSD) regulations as it will not have the potential to emit more than the annual emission thresholds of any PSD regulated pollutant.

The facility is within an area designated as attainment. Consequently, the facility is not subject to the New Source Review (NSR) regulations.

1.2 Title V Operating Permit Program

West Virginia has incorporated provisions of the federal Title V operating permit program. Thresholds for inclusion under the Title V program are 10 tpy of any single Hazardous Air Pollutant (HAP) or 25 tons of any combination of HAP and/or 100 tpy of all other regulated pollutants. Additionally, facilities regulated under certain New Source Performance Standards (NSPS) require facilities to have Title V permits.

The facility will be a minor source and is not subject to NSPS; therefore, a Title V permit will not be required for this facility.

1.3 Aggregation

Source aggregation determinations are typically made based on the following criteria:

- Whether the facilities are under common control,
- Whether the facilities belong to the same Major Group (i.e. the first two digit code) as described in the Standard Industrial Classification Manual, 1972, as amended by the 1977 Supplement;
- Whether the facilities are located on one or more contiguous or adjacent properties; and the distance between all pollutant emitting activities,
- Whether the facilities can operate independently

Only if all criteria are met does a permitting authority aggregate the facilities into a single source.

Icon Midstream plans to install its Sleepy Dehydration Facility contiguous with the Jay-Bee Oil & Gas Sleepy Well Pad in Tyler County. The Sleepy Dehydration Facility will receive and manage natural gas from the Sleepy Well Pad, dehydrate the gas and inject into a gathering line owned and operated by others.

There is no gas routed to or received from any other Icon Midstream facility. Hence, no other Icon Midstream facilities in the area should be aggregated with this facility.

The Sleepy Well Pad while under the same general SIC Code, has completely separate ownership (Jay-Bee Oil & Gas) but share common workforces. The facilities do not share common payroll activities. The Sleepy Dehydration Facility supports operation of the Sleepy Well Pad and only exists as a support for gas coming from this well pad. Therefore, emissions from the Sleepy Dehydration Facility should be aggregated with Jay-Bee's Sleepy Well Pad to determine major source status.

1.4 New Source Performance Standards

New Source Performance Standards (NSPS) regulations promulgated under 40 CFR 60 require new and reconstructed facilities to control emissions to the level achievable by Best-Available Technology (BAT). Specific NSPS requirements potentially applicable to the proposed Facility are as follows:

- 40 CFR 60, Subpart Dc Standard of Performance for Small Industrial-Commercial Institutional Steam Generating Units
- 40 CFR 60, Subpart OOOO Standard of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution

1.4.1 Subpart Dc

This subpart limits SO2 and PM emissions from boilers and heaters fired by various fuels. While the primary thrust of this set of regulations is to control SOx and PM emissions from coal and oil-fired boilers and heaters, natural gas fired units are also covered under this rule. The planned heater is well below the threshold of coverage for this rule (10 MMBTU/Hr). Thus, this rule does not apply.

1.4.2 Subpart OOOO

This Subpart governs emissions from a broad spectrum of operations in the oil and natural gas industries, including operations at processing and fractionation plants. Subpart OOOO is potentially applicable to dehydration units; however, the dehydration unit is exempt from these requirements of per 40 CFR 60.5365(f)(2) because it will not be located at a natural gas processing plant.

1.5 National Emission Standards for Hazardous Air Pollutants

National Emission Standards for Hazardous Air Pollutants (NESHAPs) promulgated under 40 CFR 63 regulate the emission of Hazardous Air Pollutants (HAPs) from certain industrial processes. In general, these rules apply to major sources of HAPs with a major source being defined as having the potential to emit more than 10 tpy of any individual HAP or 25 tpy of total HAPs. Emissions standards under these rules have been established as the Maximum Achievable Control Technology (MACT) for each source category. The following NESHAP source category standards are potentially applicable to the planned Sleepy Dehydration Facility:

- 40 CFR 63, Subpart HH National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities
- 40 CFR 63, Subpart JJJJJJ National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers Area Sources

1.5.1 Subpart HH

This Subpart contains MACT standards for major and area source dehydration units located at natural gas production facilities. The proposed equipment for the Facility includes a dehydration unit. Hence, this rule applies.

Exemption criteria are established in 40 CFR 63.764(e)(1). To satisfy the exemption to this subpart, the unit has to satisfy one of the following criteria:

- Annual average flow must be less than 85,000 SCMD (20.0 MMSCFD); or
- Average benzene emissions must be less than 0.9 Mg/yr (1 ton per year).

The average flow through the dehydration unit will exceed 85,000 SCMD; however the potential to emit benzene will be less than 1 ton per year as can be seen in Attachment N; therefore, the dehydration unit is exempt from the requirements of 40 CFR 63 Subpart HH. Although, the dehydration unit is exempt from 40 CFR 63 Subpart HH, records must be maintained of the actual annual benzene emission determination as set forth in 40 CFR 63.774(d)(1).

1.5.2 Subpart JJJJJJ

This subpart contains MACT standards for an industrial, commercial, or institutional boiler that is located at an area source of HAPs. This Facility will contain a gas-fired reboiler so it is not subject to this subpart per 40 CFR 63.11195(e).

1.6 Chemical Accident Prevention

Subparts B-D of 40 CFR 68 present the requirements for the assessment and subsequent preparation of a Risk Management Plan (RMP) for a facility that stores more than a threshold quantity of a regulated substance listed in 40 CFR 68.130. If a facility stores, handles or processes one or more regulated substances in an amount greater than its corresponding threshold, the facility must prepare and implement an RMP. This permit application proposes to

store triethylene glycol which is not a regulated substance per 40 CFR 68.130; therefore, this rule does not apply.

1.7 West Virginia State Requirements

1.7.1 <u>45 CSR 2</u>

The facility is subject to the opacity requirement of 45 CSR 2. Emissions from the facility cannot exceed 10% over any six minute period.

1.7.2 45 CSR 4

This regulation prohibits the emission of objectionable odors. Icon Midstream is obligated to run the station in a manner that does not produce objectionable odors.

1.7.3 45 CSR 10

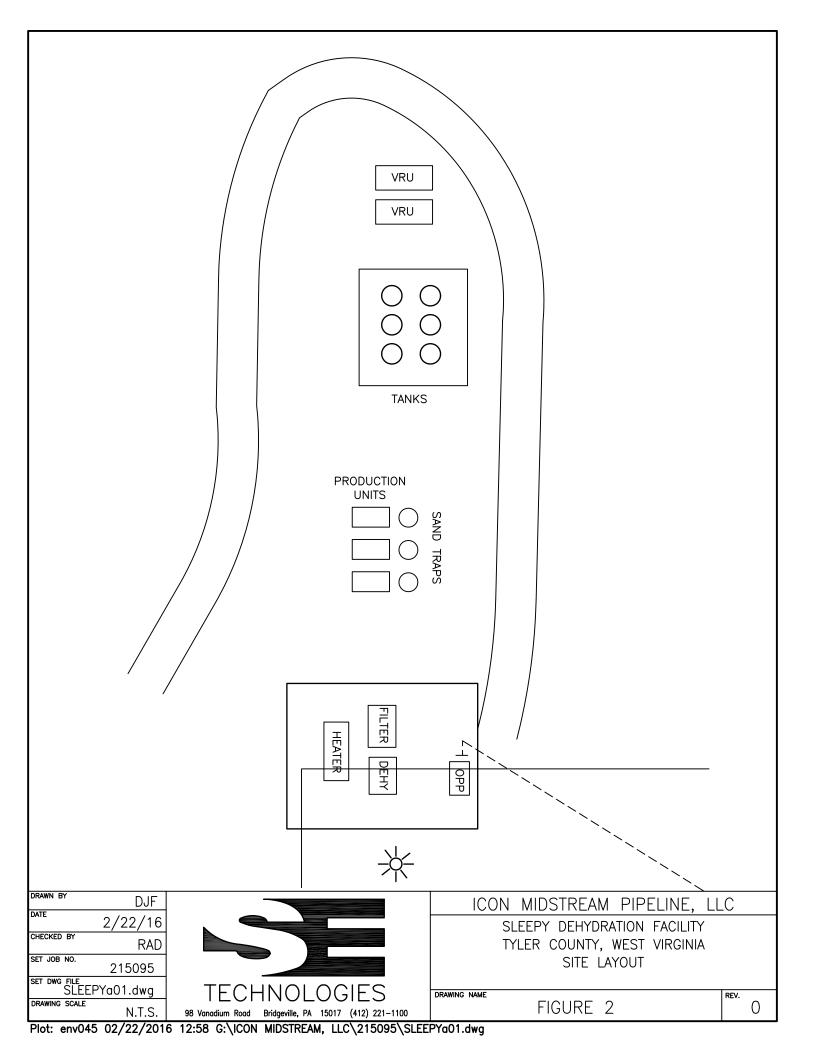
This regulation limits emissions of sulfur oxides. As the sulfur content of the Inlet Gas contains no measurable sulfur, emissions of sulfur oxides is negligible. Thus, while parts of this rule are applicable to the facility, no actions are required on the part of Icon Midstream to attain compliance. The various non-engine combustion units have a design heat input less than 10 MMBTU/Hr and are therefore exempt from the requirements of this rule.

1.7.4 <u>45 CSR 13</u>

The state regulations applicable to the permitting of the proposed construction are in Title 45 Series 13 of the Code of State Regulations. The proposed Facility has the potential to emit several regulated pollutants in excess of the thresholds that define a Stationary Source. It will remain less than the thresholds that would classify the facility as a Major Source under 45 CSR 14.

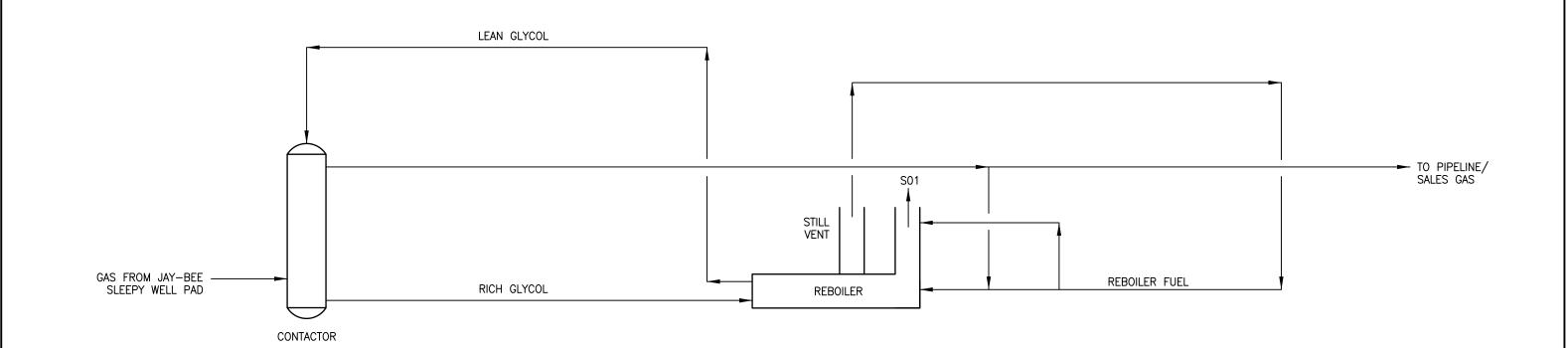
1.7.5 45 CSR 16

This series of regulations is an incorporation, by reference, of the New Source Performance Standards (NSPS) codified under 40 CFR 60. As referenced in 1.4 above, the Facility is not subject to NSPS.


1.7.6 45 CSR 30

The state regulations applicable to Title V operating permits are in Title 45 Series 30. The Facility, as noted above, does not have the potential to emit any regulated pollutant about the threshold that would define it as a major facility.

1.7.7 Other Applicable Requirements


Throughout Series 34, WVDEP has adopted the NESHAPs for Source Categories. NESHAPs have been discussed above.

ATTACHMENT E Plot Plan

Process Flow Diagram

EMISSION POINT

DRAWN BY		DJF
DATE	2/	′16/16
CHECKED BY		RAD
SET JOB NO.		215095
SET DWG FILE SLEEPY DEHY	FAC	FDb01.dwg
DRAWING SCALE		N.T.S.

ICON MIDSTREAM PIPELINE, LLC

SLEEPY DEHYDRATION FACILITY TYLER COUNTY, WEST VIRGINIA PROCESS FLOW DIAGRAM

DRAWING NAME

FIGURE 3

ATTACHMENT G

Process Description

Icon Midstream Pipeline, LLC Sleepy Dehydration Facility Attachment G – Process Description

Icon Midstream plans to install its Sleepy Dehydration Facility contiguous with the Jay-Bee Oil & Gas Sleepy Well Pad in Tyler County. The Facility will receive and manage natural gas from the contiguous well pad, dehydrate the gas and inject into a gathering line owned and operated by others.

The dehydration unit will generate emissions from the still vent and re-boiler. There is no flash tank. Vapors from the still vent are comprised of water and various low molecular weight hydrocarbons. This vapor stream will be used as fuel for the reboiler. Excess still vent vapors are routed to the still vent where they are ignited by a glow plug and combusted. Although needs are anticipated to be minimal, supplemental re-boiler fuel is available from the dehydrated gas stream prior to injection into the sales line.

As all still vent vapors are routed to the re-boiler (either as fuel of for destruction in the re-boiler), there is only one emission point at this facility.

Any water condensing in the still vent column will be routed to wastewater tanks at the contiguous Jay-Bee Sleppy Well Pad.

In summary, emission sources at this facility will include only the following:

• One 20 MMSCFD Dehydration Unit – Exterran w/ 300 MBTU/Hr reboiler

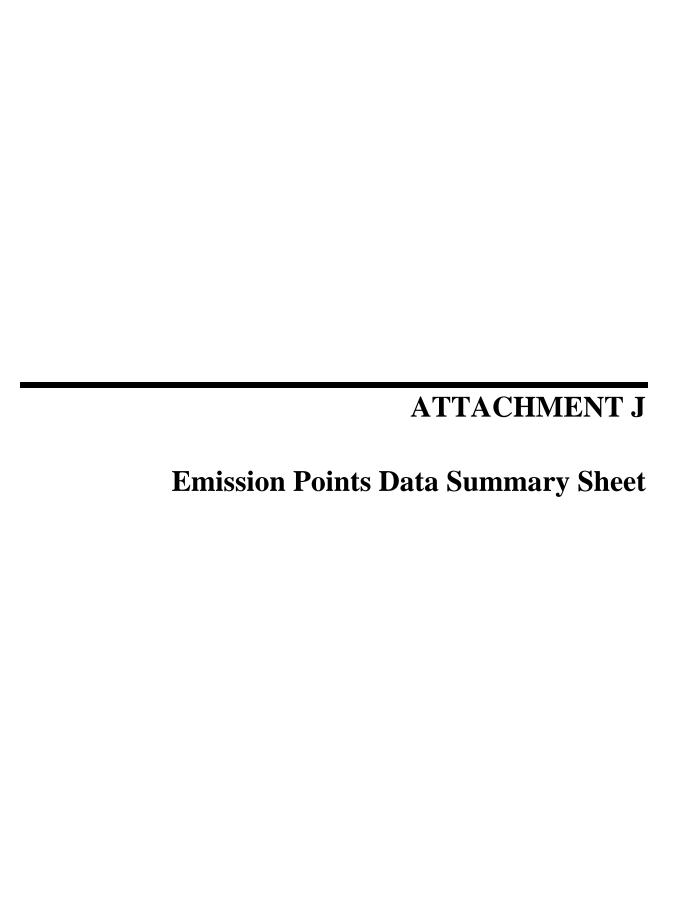
Emission Units Table

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
RBV-1	S01	Dehydration Unit Re-boiler Vent	Upon Permit	0.300 MMBTU/hr	NEW	None
RSV-1	S01	Dehydration Unit Still Vent	Upon Permit	20 MMSCFD	NEW	RBV-1


¹ For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

	Emission Units Table
Page of	03/2007

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

New, modification, removal

⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Attachment J EMISSION POINTS DATA SUMMARY SHEET

	Table 1: Emissions Data														
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissio Ven Throug Poi (Must i Emissio Table & F	ted h This int match n Units	Control (Must Emission	ollution Device match on Units Plot Plan)	(chei	ime for on Unit <i>mical</i> es <i>only)</i>	All Regulated Pollutants - Chemical Name/CAS³ (Speciate VOCs & HAPS) Maximum Potential Uncontrolled Emissions 4		Potential Uncontrolled		kimum ential trolled ssions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
			Re- boiler				-	NO_x	0.03	0.13			Gas	EE	
								СО	0.03	0.11			Gas	EE	
					Reboiler			VOC	3.22	14.09			Gas	EE	
S01	XI a sa t	RBV-1	Vent	DDW 1	(Still	C	0760	SO2	< 0.01	<0.01			Gas	EE	
501	Vent	RSV-1	and Still	RBV-1	Vent routes to	С	8760	PM	< 0.01	0.01			Solid	EE	
			Vent		reboiler)			Benzene	0.03	0.10			Gas	EE	
								Formaldehyde	< 0.01	< 0.01			Gas	EE	
								CO2e	96	421			Gas	EE	

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

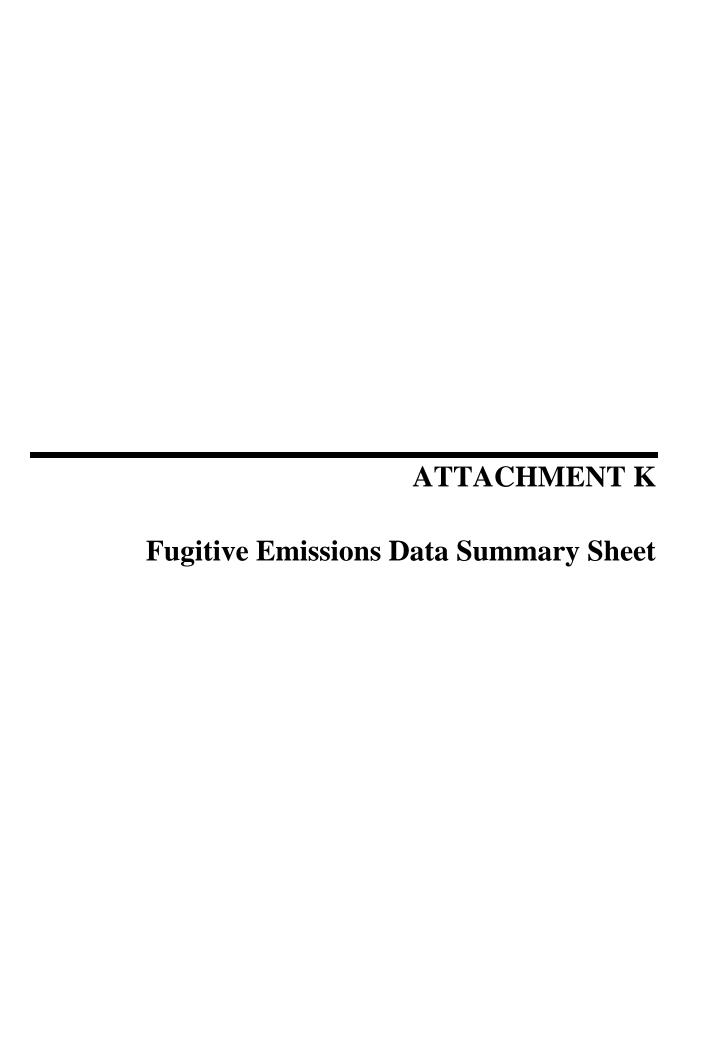
Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂O, N₂, O₂, and Noble Gases.

Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁹ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).


Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment J EMISSION POINTS DATA SUMMARY SHEET

	Table 2: Release Parameter Data										
Emission	Inner		Exit Gas		Emission Point El	evation (ft)	UTM Coordina	UTM Coordinates (km)			
	Diameter (ft.)	Temp. (°F)	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting			
S01	0.5	212	33	2.8	1122	8					

¹ Give at operating conditions. Include inerts. ² Release height of emissions above ground level.

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	☐ Yes ☐ No
	☐ If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	☐ Yes ☐ No
	$\hfill \square$ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	☐ Yes No
	$\ \square$ If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	☐ Yes ☐ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	⊠ Yes □ No
	$\hfill \square$ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	☐ Yes ☐ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	☐ Yes ☐ No
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
-	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions mmary."

Page 1 of 2 Revision 2/11

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants	Maximum Uncontrolled	Potential Emissions ²	Maximum Po Controlled Em	Est. Method	
	Chemical Name/CAS ¹	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads						
Unpaved Haul Roads						
Storage Pile Emissions						
Loading/Unloading Operations						
Wastewater Treatment Evaporation & Operations						
Equipment Leaks	VOC CO2 CH4	Does not apply	0.054 0.001 0.169	Does not apply	0.054 0.001 0.169	EE EE
General Clean-up VOC Emissions						
Other						

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

Page 2 of 2 Revision 2/11

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

LEAK SOURCE DATA SHEET

Source Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (days) ³	Estimated Annual Emission Rate (lb/yr) ⁴
Pumps ⁵	light liquid VOC ^{6,7}				
	heavy liquid VOC8				
	Non-VOC ⁹				
Valves ¹⁰	Gas VOC	24	0	n/a	62.11 lb VOC/yr
	Light Liquid VOC				
	Heavy Liquid VOC				
	Non-VOC	24	0	n/a	1.05 lb CO ₂ /yr 196.14 lb CH ₄ /yr
Safety Relief Valves ¹¹	Gas VOC	2	0	n/a	7.67 lb VOC/yr
	Non VOC	2	0	n/a	0.13 lb lb CO ₂ /yr 24.21 lb CH ₄ /yr
Open-ended Lines ¹²	VOC	2	0	n/a	11.69 lb VOC/yr
	Non-VOC	2	0	n/a	0.20 lb CO ₂ /yr 36.93 lb CH ₄ /yr
Sampling Connections ¹³	VOC				
	Non-VOC				
Compressors	VOC				
	Non-VOC				
Flanges	VOC				
	Non-VOC				
Other - Connectors	VOC	90	0	n/a	25.88 lb VOC/yr
	Non-VOC	90	0	n/a	0.44 lb CO ₂ /yr 81.72 lb CH ₄ /yr

¹⁻¹³ See notes on the following page.

Page 5 of 13 Revision 03/2007

ATTACHMENT L **Emissions Unit Data Sheet(s)**

GLYCOL DEHYDRATION EMISSION UNIT DATA SHEET

General Glycol Dehydration Unit Data		Manufacturer and Model		Exterran HANO-486824035	
		Max Dry Gas Flow Rate (mmscf/day)		20 MMSCFD	
		Design Heat Input (mmBtu/hr)		0.300 MMBTU/Hr (re-boiler)	
		Design Type (DEG or TEG)		TEG	
		Source Status ²		NS	
		Date Installed/Modified/Removed ³		Upon Permit	
		Regenerator Still Vent APCD ⁴			
		Control Device ID ⁴		RBV-1	
		Fuel HV (Btu/scf)		735.1 (HHV)	
		H ₂ S Content (gr/100 scf)		<0.001%	
		Operation (hrs/yr)		8760	
Emission Unit ID/ Emission Point ID ¹	Vent				
		Reference ⁵	Potential Emissions ⁶	lbs/hr	tons/yr
RBV-1	Reboiler Vent	AP-42	NO_X	0.03	0.13
		AP-42	СО	0.03	0.11
		AP-42	VOC	0.0017	0.007
		AP-42	SO_2	< 0.0001	0.001
		AP-42	PM_{10}	< 0.01	0.01
RSV-1	Glycol Regenerator Still Vent	GRI-GLYCalc [™]	VOC	3.2	14.03
		GRI-GLYCalc [™]	Benzene	0.023	0.10
		GRI-GLYCalc [™]	Ethylbenzene	< 0.0001	< 0.0001
		GRI-GLYCalc [™]	Toluene	0.279	1.220
		GRI-GLYCalc [™]	Xylenes	0.175	0.765
		GRI-GLYCalc [™]	n-Hexane	0.089	0.39

- 1. Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a *Glycol Dehydration Emission Unit Data Sheet* shall be completed for each, using Source Identification #s RBV-2 and RSV-2, RBV-3 and RSV-3, etc.
- 2. Enter the Source Status using the following codes:

NS Construction of New Source ES Existing Source
MS Modification of Existing Source RS Removal of Source

3. Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.

4.	Enter the Ai	r Pollution Control Device (APCD)	type designation	n using the following	codes and the control
	device ID nu	mber:			
	NA	None	CD	Condenser	
	FL	Flare	CC	Condenser/Combustion	on Combination
	TO	Thermal Oxidizer			
5.	Enter the Pot	ential Emissions Data Reference desi	gnation using the	following codes:	
	MD	Manufacturer's Data	AP	AP-42	
	GR	GRI-GLYCalc TM	OT	Other	(please list)

6. Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalc Aggregate Calculations Report to this Glycol Dehydration Emission Unit Data Sheet(s). This PTE data shall be incorporated in the Emissions Summary Sheet.

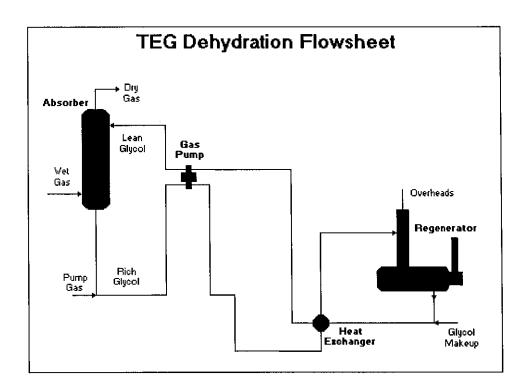
Include a copy of the GRI- $GLYCalc^{TM}$ analysis. This includes a printout of the aggregate calculations report, which shall include emissions reports, equipment reports, and stream reports.

West Virginia Department of Environmental Protection

Division of Air Quality

40 CFR Part 63; Subpart HH & HHH Registration Form

DIVISION OF AIR QUALITY: (304) 926-0475


Web Page: http://www.wvdep.org

Complete this form for any oil and natural gas production or natural gas transmission and storage facility that uses an affected unit under HH/HHH, whether subject or not.

Section A: Facility Description								
Affected facility actual annual average natural gas throughput (scf/day):	0 MMS	CF/Da	y					
Affected facility actual annual average hydrocarbon liquid throughput: (bbl/day):	N/2	4						
The affected facility processes, upgrades, or stores hydrocarbon liquids prior to custody transfer.	Yes	X	No					
The affected facility processes, upgrades, or stores natural gas prior to the point at which natural gas	Yes	X	No					
(NG) enters the NG transmission and storage source category or is delivered to the end user.								
The affected facility is: prior to a NG processing plant a NG processing plant								
prior to the point of custody transfer and there is no NG processing plant								
The affected facility transports or stores natural gas prior to entering the pipeline to a local	Yes	X	No					
distribution company or to a final end user (if there is no local distribution company).								
The affected facility exclusively processes, stores, or transfers black oil. Yes X No								
Initial producing gas-to-oil ratio (GOR):scf/bbl API gravity:degrees								
Section B: Dehydration Unit (if applicable) 1								
Description: 20 MMSCFD Glycol Dehydrator								
Date of Installation: Upon Permit Annual Operating Hours: 8760 Burner rating (MMI	otu/hr):	0.300						
Exhaust Stack Height (ft): 8 Stack Diameter (ft): 0.5 Stack Tem	emp. (°F): 212 (Still Vent)							
Glycol Type:								
Glycol Pump Type:	CFM/gp	m						
Condenser installed?	reps	sig						
Incinerator/flare installed?								
Other controls installed?								
Wet Gas ² : Gas Temp.: <u>85 °F</u> Gas Pressure <u>500</u> psig								
(Upstream of Contact Tower) Saturated Gas? Yes No If no, water content _	lb/	MMSO	CF					
Dry Gas: Gas Flowrate(MMSCFD) Actual <u>Varies</u> Design <u>20 MMS</u>	CF/Day							
(Downstream of Contact Tower) Water Content lb/MMSCF								
Lean Glycol: Circulation rate (gpm) Actual ³ 3.5 Maximum ⁴ 3.5	_							
Pump make/model:								
Glycol Flash Tank (if applicable): Temp.:oF Pressure psig Vented? Yes		lo []					
If no, describe vapor control: Recycle/recompression								
Stripping Gas (if applicable): Source of gas: N/A Rate	_ scfm							

		Please atta	ch the following required dehydration unit information:							
1.	System map indicating the chain of custody information. See Page 43 of this document for an example of a gas flow schematic. It is not intended that the applicant provide this level of detail for all sources. The level of detail that is necessary is to establish where the custody transfer points are located. This can be accomplished by submitting a process flow diagram indicating custody transfer points and the natural gas flow. However, the DAQ reserves the right to request more detailed information in order to make the necessary decisions.									
2.	•									
	, , ,		e should be taken from the inlet gas line, downstream from any inlet separator, and using a manifold to remove							
		1 1	o collect the sample from the center of the gas line. GPA standard 2166 reference method or a modified version of							
		, (or similar) should be used								
3.			on maximum Lean Glycol circulation rate and maximum throughput.							
4.	Detailed calculations	s of gas or hydrocarbon flov	v rate.							
		Section	on C: Facility NESHAPS Subpart HH/HHH status							
		Subject to	ıbpart HH							
A	ffected facility	Subject to Su	ıbpart HHH							
	status:	☐ Not Subject	☐ < 10/25 TPY							
(c)	hoose only one)	because:	Affected facility exclusively handles black oil							
			☐ The facility wide actual annual average NG throughput is < 650 thousand							
			scf/day and facility wide actual annual average hydrocarbon liquid is < 250 bpd							

☐ No affected source is present

Gas Analytical Services

Charleston, WV 844-445-4207

Customer	: 8788 - JayBee Oil & Gas	Dat	e Sampled	11/27/2015
Station ID	: GRUMPY3	Dat	e Analyzed	12/10/2015
Cylinder ID	: 0289	Effe	ective Date	12/01/2015
Producer	:	Cyl	Pressure	935
Lease	: Grumpy 3	Ten	n p	70
Area	: 357 - Union	Cyl	inder Type	Spot
State	:	Sar	nple By	: J Whipkey
Producer Lease Area	COMPONENT	MOL%	GPM@14.73(F	PSIA)
	Carbon-Dioxide	0.1500		0.000
	Nitrogen	0.6184		0.000
	Methane	76.9823		0.000
	Ethana	14 6121		3 021

Ethane 14.6121 3.921 1.321 Propane 4.7780 iso-Butane 0.6014 0.197 1.1765 0.372 N-Butane Neo-Pentane 0.0132 0.005 Iso-Pentane 0.2829 0.104 0.2924 0.106 N-Pentane 0.1102 0.071 N-Hexane 0.019 N-Heptane 0.0408 0.005 N-Octane 0.0103 N-Nonane 0.0016 0.001 N-Decane 0.0003 0.000 0.001 Benzene 0.0021 0.002 Toluene 0.0066 Ethylbenzene 0.0006 0.000 0.001 M-Xylene/P-Xylene 0.0023 0.000 O-Xylene 0.0005 C6's 0.064 0.1568 C7's 0.037 0.0833 C9's 0.0082 0.004 C10's 0.0010 0.001 C11's 0.0000 0.000 C13's 0.0001 0.000 C15's 0.0000 0.000 C8's 0.0681 0.034

Compressibility Factor (Z) @ 14.73 @ 60 Deg. F = 0.9963

TOTAL

BTU @ (PSIA)

Ideal BTU Dry

Ideal BTU Sat

Ideal GPM

Real GPM

ideal Gravity: 0.7255 Real Gravity: 0.7279

@14.65

6.211

6.233

1,259.32

1,237.28

C5+ GPM: 0.28500 C5+ Mole %: 1.0151

6.266

 @14.73
 @15.025

 6.245
 6.370

 1,266.20
 1,291.55

 1,244.16
 1,269.51

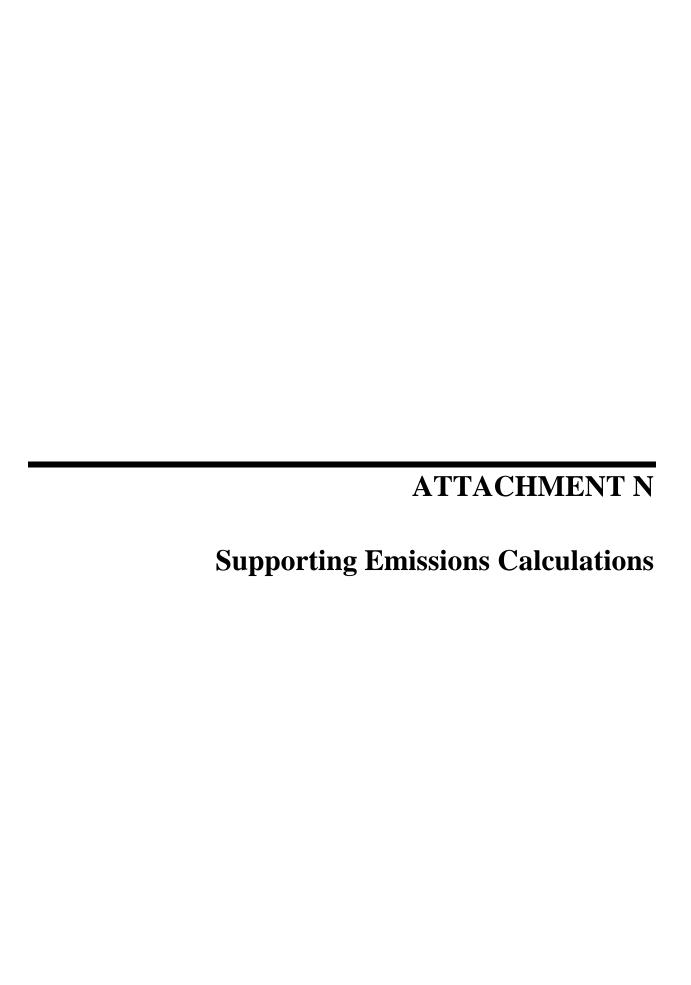
 6.267
 6.393

100.0000

@14.696

1,263.27

1,241.23


6.253

6.230

Real BTU Dry 1,263.91 1,267.89 1,270.84 1,296.38 Real BTU Sat 1,242.30 1,246.28 1,249.23 1,274.78 Comments: Gas Analysis performed in accordance with GPA 2286 Sample Count: 230000007

Analytical Calculations performed in accordance with GPA 2172

COC:

Sleepy Dehydration Facility Tyler County, WV

		NOx	CO	CO2e	VOC	SO2	PM	n-Hexane	benzene	formaldehyde	Total HAPs
Source	Description	lb/hr	lb/hr	lb/hr	lb/hr						
RBV-1	300 MBTU/Hr Reboiler	0.03	0.03	36.2	0.00	0.000	0.00	0.001	0.002	0.000	0.001
RSV-1	Controlled Still Vent			59.0	3.20			0.089	0.023		0.564
	Fittings Fugitive Emissions			1.0	0.01						
Total	0.03	0.03	96	3.22	0.00	0.00	0.09	0.03	0.00	0.56	

Source		NOx tpy	CO tpy	CO2e tpy	VOC tpy	SO2 tpy	PM tpy	n-Hexane tpy	benzene tpy	formaldehyde tpy	Total HAPs tpy
RBV-1	300 MBTU/Hr Reboiler	0.13	0.11	159	0.01	0.001	0.01	0.00	0.00	0.00	0.002
RSV-1	Controlled Still Vent			258	14.03			0.39	0.10		2.470
	Fittings Fugitive Emissions			4	0.05						
Total	Proposed	0.13	0.11	421	14.09	0.00	0.01	0.39	0.10	0.00	2.47
Cor	ntiguous Jay Bee Sleepy Well Pad	3.13	3.82	3,256	32.93	0.02	3.26	0.94	0.00	0.08	1.27
	Aggregated Emissons	3.27	3.93	3,677	47.02	0.02	3.27	1.33	0.10	0.08	3.75

Sleepy Dehydration Facility Tyler County, WV

Dehy Stil Vent Emissions

SOURCE RSV-1

Still Vent Emissions (Controlled)

From Gri GlyCalc 4.0

Dry Gas Rate20 MMSCFDGlycol Circulation Rate3.5 gpmTreating Temperature85 Deg FTreating Pressure500 psiDestruction Efficiency of Re-Boiler90 %

Data From GLYCalc:

Total HC	6.6600	lbs/hr	29.171	TPY
Methane	2.3600	lbs/hr	10.337	TPY
Total VOC	3.2040	lbs/hr	14.034	TPY
Total HAP	0.5640	lbs/hr	2.470	TPY
benzene	0.0229	lbs/hr	0.100	TPY
toluene	0.2785	lbs/hr	1.220	TPY
ethyl benzene	0.0000	lbs/hr	0.000	TPY
xylene	0.1746	lbs/hr	0.765	TPY
n-hexane	0.0889	lbs/hr	0.389	TPY

Sleepy Dehydration Facility Tyler County, WV

Potential Emission Rates

Source RBV-1

Burner Duty Rating
Burner Efficiency
Gas Heat Content (HHV)
Total Gas Consumption
H2S Concentration
Hours of Operation

300.0 Mbtu/hr 98.0 % 735.1 Btu/scf 9,995 scfd 0.000 Mole % 8760

NOx	0.0300	lbs/hr	0.131	TPY
CO	0.0252	lbs/hr	0.110	TPY
CO2	36.0	lbs/hr	157.7	TPY
CO2e	36	lbs/hr	159	tpy
VOC	0.0017	lbs/hr	0.007	TPY
SO2	0.0002	lbs/hr	0.001	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0023	lbs/hr	0.010	TPY
СНОН	0.0000	lbs/hr	0.000	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hexane	0.0005	lbs/hr	0.002	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0006	lbs/hr	0.002	TPY

AP-42 Factors Used

NOx	100 Lbs/MMCF	
CO	84 Lbs/MMCF	
CO_2	120,000 Lbs/MMCF	Global Warming Potential = 1
VOC	5.5 Lbs/MMCF	
PM	7.6 Lbs/MMCF	
SO_2	0.6 Lbs/MMCF	
CH_4	2.3 Lbs/MMCF	Global Warming Potential = 25
N_2O	2.2 Lbs/MMCF	Global Warming Potential =298
нсон	0.075 Lbs/MMCF	
Benzene	0.0021 Lbs/MMCF	
n-Hexane	1.8 Lbs/MMCF	
Toluene	0.0034 Lbs/MMCF	

Sleepy Dehydration Facility Tyler County, WV

Fugitive VOC Emissions

Volatile Organic Compounds, non-methane and non-ethane from gas analysis:18.72weight percentMethane from gas analysis:59.11weight percentCarbon Dioxide from gas analysis:0.32weight percentGas Density0.0585lb/scf

Emission Source:	Number*	Oil & Gas Production**	VOC %	VOC, lb/hr	VOC TPY	VOC, lb/yr	CO2 lb/hr	CO2 TPY	CO2 lb/yr	CH4 lb/hr	CH4 TPY	CH4 lb/yr	CO2e TPY
Valves:													
Gas/Vapor:	24	0.02700 scf/hr	18.7	0.007	0.031	62.11	0.000	0.001	1.05	0.022	0.098	196.14	2.45
Relief Valves:	2	0.04000 scf/hr	18.7	0.001	0.004	7.67	0.000	0.000	0.13	0.003	0.012	24.21	0.30
Open-ended Lines, gas:	2	0.06100 sfc/hr	18.7	0.001	0.006	11.69	0.000	0.000	0.20	0.004	0.018	36.93	0.46
Connectors:													
Gas:	90	0.00300 scf/hr	18.7	0.003	0.013	25.88	0.000	0.000	0.44	0.009	0.041	81.72	1.02

Fugitive Calculations:

	lb/hr	tpy
VOC	0.012	0.054
CH4	0.039	0.169
CO2	0.000	0.001
CO2e	0.968	4.238

Notes:

^{*}Numbers are from 40 CFR 98, Table W-1B

^{**}Factors are from 40 CFR 98, Table W-1A (scf/hr), where available. Remaining are API (lb/hr)

Sleepy Dehydration Facility Tyler County, WV

Inlet Gas Composition:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.618	0.173	0.006	0.829			-		0.0062	
Carbon Dioxide, CO2	0.150	0.066	0.002	0.316			-		0.0015	
Hydrogen Sulfide, H2S	0.000	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	76.982	12.350	0.426	59.108	700.1	777.5	7.336		0.7683	
Ethane, C2H6	14.612	4.394	0.152	21.029	236.5	258.6	2.437		0.1449	3.887
Propane	4.778	2.107	0.073	10.084	110.6	120.2	1.138	10.084	0.0469	1.310
Iso-Butane	0.601	0.349	0.012	1.672	18.0	19.5	0.186	1.672	0.0058	0.196
Normal Butane	1.177	0.684	0.024	3.274	35.4	38.4	0.365	3.274	0.0114	0.369
Iso Pentane	0.296	0.214	0.007	1.022	10.9	11.8	0.113	1.022	0.0030	0.108
Normal Pentane	0.292	0.211	0.007	1.008	10.8	11.7	0.111	1.008	0.0029	0.105
Hexane	0.267	0.119	0.008	0.570	11.8	12.7	0.121	0.570	0.0026	0.109
Heptane+	0.227	0.227	0.008	1.089	11.6	12.5	0.119	1.089	0.0023	0.104
	100.000	20.894	0.725		1,145.8	1,263.0	11.926	18.719	0.9958	6.187

Gas Density (STP) = 0.058

 Ideal Gross (HHV)
 1,263.0

 Ideal Gross (sat'd)
 1,241.8

 GPM

 Real Gross (HHV)
 1,268.3

 Real Net (LHV)
 1,150.6

Sleepy Dehydration Facility Tyler County, WV

Still Vent Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM/NE	Factor	
Nitrogen, N2	0.2350	0.066	0.002	0.293			-		0.0023	
Carbon Dioxide, CO2	0.1540	0.068	0.002	0.301					0.0015	
Hydrogen Sulfide, H2S		-	-	-			-		-	
Water	55.1000	9.918	0.342	44.094			-		0.5513	
Oxygen, O2		-	-						-	
Methane, CH4	29.1000	4.669	0.161	20.756	264.6	293.9	2.773		0.2904	
Ethane, C2H6	7.2100	2.168	0.075	9.639	116.7	127.6	1.203		0.0715	1.918
Propane	3.0400	1.341	0.046	5.960	70.4	76.5	0.724	5.960	0.0299	0.833
Iso-Butane	0.4720	0.274	0.009	1.220	14.2	15.3	0.146	1.220	0.0046	0.154
Normal Butane	1.1100	0.645	0.022	2.868	33.4	36.2	0.344	2.868	0.0107	0.348
Iso Pentane	0.2960	0.214	0.007	0.949	10.9	11.8	0.113	0.949	0.0030	0.108
Normal Pentane	0.3490	0.252	0.009	1.120	12.9	14.0	0.133	1.120	0.0035	0.126
Hexane	0.4350	0.375	0.013	1.667	19.2	20.7	0.197	1.667	0.0043	0.178
Heptane	2.4990	2.504	0.086	11.133	127.4	137.5	1.310	11.133	0.0249	1.147
	100.000	22.493	0.777		669.8	733.6	6.942	24.917	0.9979	4.811

Gas Density (STP) = 0.063

 Ideal Gross (HHV)
 733.6

 Ideal Gross (sat'd)
 721.6

 GPM

 Real Gross (HHV)
 735.1

 Real Net (LHV)
 671.2

GAS DATA INFORMATION

Specific Graivity of Air, @ 29.92 in. Hg and 60 -F, 28.9625
One mole of gas occupies, @ 14.696 psia & 32 -F, 359.2 cu ft. per lb-mole
One mole of gas occupies, @ 14.696 psia & 60 -F, 379.64 cu ft. per lb-mole

Hydrogen Sulfide (H2S) conversion chart:

 0 grains H2S/100 scf
 =
 0.00000 mole % H2S

 0 mole % H2S
 =
 0.0 ppmv H2S

 0 ppmv H2S
 =
 0.0000 grains H2S/100 scf

 0 ppmv H2S
 =
 0.0000 grains H2S/100 scf

 0.00000 mole % H2S

Ideal Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Z factor
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	0.9997
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	0.9964
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	587	637	6,545	7,100	7.15	0.9846
Water	H20	18.000	0.6215	0.0474	21.091	0	0	0	0	0	1.0006
Oxygen	O2	31.999	1.1048	0.0843	11.864	0	0	0	0	0	0.9992
Methane	CH4	16.043	0.5539	0.0423	23.664	909.4	1,010.0	21,520	23,879	9.53	0.9980
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,618.7	1,769.6	20,432	22,320	16.68	0.9919
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,314.9	2,516.1	19,944	21,661	23.82	0.9825
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,000.4	3,251.9	19,629	21,257	30.97	0.9711
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,010.8	3,262.3	19,680	21,308	30.97	0.9667
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,699.0	4,000.9	19,478	21,052	38.11	1.0000
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,706.9	4,008.9	19,517	21,091	38.11	1.0000
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,403.8	4,755.9	19,403	20,940	45.26	0.9879
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,100.0	5,502.5	22,000	23,000	52.41	0.9947

Real Gas at 14.696 psia and 60°F

11cai Gas at 14.000 p	sia ana oo	•									
		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Gal/Mole
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	4.1513
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	6.4532
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	621	672	6,545	7,100	7.15	5.1005
Water	H2O	18.000	0.6215	0.0474	21.091						3.8376
Oxygen	O2	31.999	1.1048	0.0843	11.864	0	0	0	0	0	3.3605
Methane	CH4	16.043	0.5539	0.0423	23.664	911	1,012	21,520	23,879	9.53	6.4172
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,631	1,783	20,432	22,320	16.68	10.126
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,353	3,354	19,944	21,661	23.82	10.433
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,101	3,369	19,629	21,257	30.97	12.386
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,094	3,370	19,680	21,308	30.97	11.937
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,709	4,001	19,478	21,052	38.11	13.86
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,698	4,009	19,517	21,091	38.11	13.713
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,404	4,756	19,403	20,940	45.26	15.566
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,101	5,503	22,000	23,000	52.41	17.468

16.3227 17.468

Sleepy Dehydration Facility Tyler County, WV

Source	Description	NOx lb/hr	CO lb/hr	CO2e lb/hr	VOC lb/hr	SO2 lb/hr	PM lb/hr	n-Hexane lb/hr	benzene lb/hr	formaldehyde lb/hr	Total HAPs lb/hr
RBV-1	300 MBTU/Hr Reboiler	0.03	0.03	36.2	0.00	0.000	0.00	0.001	0.002	0.000	0.001
RSV-1	Controlled Still Vent			59.0	3.20			0.089	0.023		0.564
	Fittings Fugitive Emissions			1.0	0.01						
Total		0.03	0.03	96	3.22	0.00	0.00	0.09	0.03	0.00	0.56

Source		NOx tpy	CO tpy	CO2e tpy	VOC tpy	SO2 tpy	PM tpy	n-Hexane tpy	benzene tpy	formaldehyde tpy	Total HAPs tpy
RBV-1	300 MBTU/Hr Reboiler	0.13	0.11	159	0.01	0.001	0.01	0.00	0.00	0.00	0.002
RSV-1	Controlled Still Vent			258	14.03			0.39	0.10		2.470
	Fittings Fugitive Emissions			4	0.05						
Total	Proposed	0.13	0.11	421	14.09	0.00	0.01	0.39	0.10	0.00	2.47
Con	ntiguous Jay Bee Sleepy Well Pad	3.13	3.82	3,256	32.93	0.02	3.26	0.94	0.00	0.08	1.27
	Aggregated Emissons	3.27	3.93	3,677	47.02	0.02	3.27	1.33	0.10	0.08	3.75

Sleepy Dehydration Facility Tyler County, WV

Dehy Stil Vent Emissions

SOURCE RSV-1

Still Vent Emissions (Controlled)

From Gri GlyCalc 4.0

Dry Gas Rate20 MMSCFDGlycol Circulation Rate3.5 gpmTreating Temperature85 Deg FTreating Pressure500 psiDestruction Efficiency of Re-Boiler90 %

Data From GLYCalc:

Total HC	6.6600	lbs/hr	29.171	TPY
Methane	2.3600	lbs/hr	10.337	TPY
Total VOC	3.2040	lbs/hr	14.034	TPY
Total HAP	0.5640	lbs/hr	2.470	TPY
benzene	0.0229	lbs/hr	0.100	TPY
toluene	0.2785	lbs/hr	1.220	TPY
ethyl benzene	0.0000	lbs/hr	0.000	TPY
xylene	0.1746	lbs/hr	0.765	TPY
n-hexane	0.0889	lbs/hr	0.389	TPY

Sleepy Dehydration Facility Tyler County, WV

Potential Emission Rates

Source RBV-1

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 300.0 Mbtu/hr 98.0 % 735.1 Btu/scf 9,995 scfd 0.000 Mole % 8760

NOx	0.0300	lbs/hr	0.131	TPY
CO	0.0252	lbs/hr	0.110	TPY
CO2	36.0	lbs/hr	157.7	TPY
CO2e	36	lbs/hr	159	tpy
VOC	0.0017	lbs/hr	0.007	TPY
SO2	0.0002	lbs/hr	0.001	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0023	lbs/hr	0.010	TPY
СНОН	0.0000	lbs/hr	0.000	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hexane	0.0005	lbs/hr	0.002	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0006	lbs/hr	0.002	TPY

AP-42 Factors Used

NOx	100 Lbs/MMCF	
CO	84 Lbs/MMCF	
CO_2	120,000 Lbs/MMCF	Global Warming Potential = 1
VOC	5.5 Lbs/MMCF	
PM	7.6 Lbs/MMCF	
SO_2	0.6 Lbs/MMCF	
CH_4	2.3 Lbs/MMCF	Global Warming Potential = 25
N_2O	2.2 Lbs/MMCF	Global Warming Potential =298
НСОН	0.075 Lbs/MMCF	
Benzene	0.0021 Lbs/MMCF	
n-Hexane	1.8 Lbs/MMCF	
Toluene	0.0034 Lbs/MMCF	

Sleepy Dehydration Facility Tyler County, WV

Fugitive VOC Emissions

Volatile Organic Compounds, non-methane and non-ethane from gas analysis:18.72weight percentMethane from gas analysis:59.11weight percentCarbon Dioxide from gas analysis:0.32weight percentGas Density0.0585lb/scf

Emission Source:	Number*	Oil & Gas Production**	VOC %	VOC, lb/hr	VOC TPY	VOC, lb/yr	CO2 lb/hr	CO2 TPY	CO2 lb/yr	CH4 lb/hr	CH4 TPY	CH4 lb/yr	CO2e TPY
Valves:													
Gas/Vapor:	24	0.02700 scf/hr	18.7	0.007	0.031	62.11	0.000	0.001	1.05	0.022	0.098	196.14	2.45
Relief Valves:	2	0.04000 scf/hr	18.7	0.001	0.004	7.67	0.000	0.000	0.13	0.003	0.012	24.21	0.30
Open-ended Lines, gas:	2	0.06100 sfc/hr	18.7	0.001	0.006	11.69	0.000	0.000	0.20	0.004	0.018	36.93	0.46
Connectors:													
Gas:	90	0.00300 scf/hr	18.7	0.003	0.013	25.88	0.000	0.000	0.44	0.009	0.041	81.72	1.02

Fugitive Calculations:

	lb/hr	tpy
VOC	0.012	0.054
CH4	0.039	0.169
CO2	0.000	0.001
CO2e	0.968	4.238

Notes:

^{*}Numbers are from 40 CFR 98, Table W-1B

^{**}Factors are from 40 CFR 98, Table W-1A (scf/hr), where available. Remaining are API (lb/hr)

Sleepy Dehydration Facility Tyler County, WV

Inlet Gas Composition:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.618	0.173	0.006	0.829			i		0.0062	
Carbon Dioxide, CO2	0.150	0.066	0.002	0.316			i		0.0015	
Hydrogen Sulfide, H2S	0.000	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			i		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	76.982	12.350	0.426	59.108	700.1	777.5	7.336		0.7683	
Ethane, C2H6	14.612	4.394	0.152	21.029	236.5	258.6	2.437		0.1449	3.887
Propane	4.778	2.107	0.073	10.084	110.6	120.2	1.138	10.084	0.0469	1.310
Iso-Butane	0.601	0.349	0.012	1.672	18.0	19.5	0.186	1.672	0.0058	0.196
Normal Butane	1.177	0.684	0.024	3.274	35.4	38.4	0.365	3.274	0.0114	0.369
Iso Pentane	0.296	0.214	0.007	1.022	10.9	11.8	0.113	1.022	0.0030	0.108
Normal Pentane	0.292	0.211	0.007	1.008	10.8	11.7	0.111	1.008	0.0029	0.105
Hexane	0.267	0.119	0.008	0.570	11.8	12.7	0.121	0.570	0.0026	0.109
Heptane+	0.227	0.227	0.008	1.089	11.6	12.5	0.119	1.089	0.0023	0.104
	100.000	20.894	0.725		1,145.8	1,263.0	11.926	18.719	0.9958	6.187

Gas Density (STP) = 0.058

 Ideal Gross (HHV)
 1,263.0

 Ideal Gross (sat'd)
 1,241.8

 GPM

 Real Gross (HHV)
 1,268.3

 Real Net (LHV)
 1,150.6

Sleepy Dehydration Facility Tyler County, WV

Still Vent Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.2350	0.066	0.002	0.293			ı		0.0023	
Carbon Dioxide, CO2	0.1540	0.068	0.002	0.301			-		0.0015	
Hydrogen Sulfide, H2S		-	-	-			-		-	
Water	55.1000	9.918	0.342	44.094			-		0.5513	
Oxygen, O2		-	-	-			i		-	
Methane, CH4	29.1000	4.669	0.161	20.756	264.6	293.9	2.773		0.2904	
Ethane, C2H6	7.2100	2.168	0.075	9.639	116.7	127.6	1.203		0.0715	1.918
Propane	3.0400	1.341	0.046	5.960	70.4	76.5	0.724	5.960	0.0299	0.833
Iso-Butane	0.4720	0.274	0.009	1.220	14.2	15.3	0.146	1.220	0.0046	0.154
Normal Butane	1.1100	0.645	0.022	2.868	33.4	36.2	0.344	2.868	0.0107	0.348
Iso Pentane	0.2960	0.214	0.007	0.949	10.9	11.8	0.113	0.949	0.0030	0.108
Normal Pentane	0.3490	0.252	0.009	1.120	12.9	14.0	0.133	1.120	0.0035	0.126
Hexane	0.4350	0.375	0.013	1.667	19.2	20.7	0.197	1.667	0.0043	0.178
Heptane	2.4990	2.504	0.086	11.133	127.4	137.5	1.310	11.133	0.0249	1.147
	100.000	22.493	0.777		669.8	733.6	6.942	24.917	0.9979	4.811

Gas Density (STP) = 0.063

 Ideal Gross (HHV)
 733.6

 Ideal Gross (sat'd)
 721.6

 GPM

 Real Gross (HHV)
 735.1

 Real Net (LHV)
 671.2

GAS DATA INFORMATION

Specific Graivity of Air, @ 29.92 in. Hg and 60 -F, 28.9625 One mole of gas occupies, @ 14.696 psia & 32 -F 359.2 cu ft. per lb-mole One mole of gas occupies, @ 14.696 psia & 60 -F 379.64 cu ft. per lb-mole

Hydrogen Sulfide (H2S) conversion chart:

 $\underline{0}$ grains H2S/100 scf = $\underline{0.00000}$ mole % H2S $\underline{0.0}$ ppmv H2S <u>0</u> mole % H2S 0 grains H2S/100 scf <u>0.0</u> ppmv H2S $\underline{0.000}$ grains H2S/100 scf 0 ppmv H2S 0.00000 mole % H2S

Ideal Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Z factor
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	0.9997
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	0.9964
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	587	637	6,545	7,100	7.15	0.9846
Water	H20	18.000	0.6215	0.0474	21.091	0	0	0	0	0	1.0006
Oxygen	02	31.999	1.1048	0.0843	11.864	0	0	0	0	0	0.9992
Methane	CH4	16.043	0.5539	0.0423	23.664	909.4	1,010.0	21,520	23,879	9.53	0.9980
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,618.7	1,769.6	20,432	22,320	16.68	0.9919
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,314.9	2,516.1	19,944	21,661	23.82	0.9825
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,000.4	3,251.9	19,629	21,257	30.97	0.9711
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,010.8	3,262.3	19,680	21,308	30.97	0.9667
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,699.0	4,000.9	19,478	21,052	38.11	1.0000
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,706.9	4,008.9	19,517	21,091	38.11	1.0000
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,403.8	4,755.9	19,403	20,940	45.26	0.9879
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,100.0	5,502.5	22,000	23,000	52.41	0.9947

Real Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Gal/Mole
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	4.1513
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	6.4532
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	621	672	6,545	7,100	7.15	5.1005
Water	H2O	18.000	0.6215	0.0474	21.091						3.8376
Oxygen	02	31.999	1.1048	0.0843	11.864	0	0	0	0	0	3.3605
Methane	CH4	16.043	0.5539	0.0423	23.664	911	1,012	21,520	23,879	9.53	6.4172
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,631	1,783	20,432	22,320	16.68	10.126
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,353	3,354	19,944	21,661	23.82	10.433
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,101	3,369	19,629	21,257	30.97	12.386
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,094	3,370	19,680	21,308	30.97	11.937
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,709	4,001	19,478	21,052	38.11	13.86
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,698	4,009	19,517	21,091	38.11	13.713
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,404	4,756	19,403	20,940	45.26	15.566
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,101	5,503	22,000	23,000	52.41	17.468

16.3227 17.468

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES

Case Name: Icon Midstream - Sleepy

 $File \ Name: \ C:\ Rogers_Files\ Misc\ Jay-Bee \ Oil \ \& \ Gas\ Icon \ Midstream\ Sleepy\ No \ Cond.ddf$

Date: February 23, 2016

DESCRIPTION:

Description: 20 MMSCFD

Still as Fuel and Excess to Still Column for

destruction No Flash Tank

Annual Hours of Operation: 8760.0 hours/yr

WET GAS:

Temperature: 85.00 deg. F
Pressure: 500.00 psig
Wet Gas Water Content: Saturated

Component	Conc. (vol %)
Carbon Dioxide	0.1500
Nitrogen	0.6180
Methane	76.9820
Ethane	14.6120
Propane	4.7780
Isobutane	0.6010
n-Butane	1.1770
Isopentane	0.2960
n-Pentane	0.2920
n-Hexane	0.1100
Other Hexanes	0.1570
Heptanes	0.1240
Benzene	0.0010
Toluene	0.0070
Xylenes	0.0020
C8+ Heavies	0.0890

DRY GAS:

Flow Rate: 20.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF

LEAN GLYCOL:

Glycol Type: TEG
Water Content: 1.5 wt% H2O
Flow Rate: 3.5 gpm

PUMP:

Glycol Pump Type: Gas Injection

Gas Injection Pump Volume Ratio: 0.080 acfm gas/gpm glycol

REGENERATOR OVERHEADS CONTROL DEVICE:

Control Device: Combustion Device

Destruction Efficiency: 90.0 %
Excess Oxygen: 5.0 %
Ambient Air Temperature: 60.0 deg. F

${\tt GRI-GLYCalc}$ VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Icon Midstream - Sleepy
File Name: C:\Rogers_Files\Misc\Jay-Bee Oil & Gas\Icon Midstream\Sleepy\Sleepy No Cond.ddf
Date: February 23, 2016

DESCRIPTION:

Description: 20 MMSCFD

Still as Fuel and Excess to Still Column for

destruction No Flash Tank

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	2.3603	56.647	10.3380
Ethane	1.0960	26.305	4.8006
Propane	0.6766	16.238	2.9634
Isobutane	0.1386	3.325	0.6069
n-Butane	0.3258	7.820	1.4271
Isopentane	0.1078	2.586	0.4720
n-Pentane	0.1274	3.057	0.5579
n-Hexane	0.0889	2.134	0.3894
Other Hexanes	0.1007	2.417	0.4411
Heptanes	0.2131	5.114	0.9334
Benzene	0.0229	0.550	0.1005
Toluene	0.2785	6.683	1.2197
Xylenes	0.1746	4.189	0.7646
C8+ Heavies	0.9492	22.780	4.1574
Total Emissions	6.6602	159.845	29.1718
Total Hydrocarbon Emissions	6.6602	159.845	29.1718
Total VOC Emissions	3.2039	76.894	14.0332
Total HAP Emissions	0.5649	13.557	2,4741
Total BTEX Emissions	0.4760	11.423	2.0847

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	23.6028	566.466	103.3801
Ethane	10.9602	263.046	48.0059
Propane	6.7657	162.377	29.6338
Isobutane	1.3855	33.252	6.0685
n-Butane	3.2581	78.195	14.2706
Isopentane	1.0776	25.861	4.7197
n-Pentane	1.2738	30.570	5.5791
n-Hexane	0.8890	21.337	3.8940
Other Hexanes	1.0070	24.169	4.4108
Heptanes	2.1310	51.143	9.3336
Benzene	0.2293	5.504	1.0045
Toluene	2.7848	66,834	12.1972
Xylenes	1.7456	41.894	7.6456

C8+ Heavies	9.4918	227.804	Page: 2 41.5741
Total Emissions	66.6022	1598.452	291.7175
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	66.6022 32.0392 5.6487 4.7597	1598.452 768.940 135.569 114.232	291.7175 140.3316 24.7413 20.8473

EOUIPMENT REPORTS:

COMBUSTION DEVICE

Ambient Temperature: 60.00 deg. F
Excess Oxygen: 5.00 %
Combustion Efficiency: 90.00 %

Supplemental Fuel Requirement: 2.92e-001 MM BTU/hr

Component	Emitted	Destroyed
Methane	10.00%	90.00%
Ethane	10.00%	90.00%
Propane	10.00%	90.00%
Isobutane	10.00%	90.00%
n-Butane	10.00%	90.00%
Isopentane	10.00%	90.00%
n-Pentane	10.00%	90.00%
n-Hexane	10.00%	90.00%
Other Hexanes	10.00%	90.00%
Heptanes	10.00%	90.00%
Benzene	10.00%	90.00%
Toluene	10.00%	90.00%
Xylenes	10.00%	90.00%
C8+ Heavies	10.00%	90.00%

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages:

1.25 3.68 lbs. H2O∕MMSCF Calculated Dry Gas Dew Point:

Temperature: 85.0 deg. F Temperature: 85.0 deg. F
Pressure: 500.0 psig
Dry Gas Flow Rate: 20.0000 MMSCF/day
Glycol Losses with Dry Gas: 0.0750 lb/hr
Wet Gas Water Content: Saturated
Calculated Wet Gas Water Content: 63.69 lbs. H2O/MMSCF

Calculated Lean Glycol Recirc. Ratio: 4.20 gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	5.76%	94.24%
Carbon Dioxide	99.84%	0.16%
Nitrogen	99.99%	0.01%

		Page:	3
Methane	99.99%	0.01%	
Ethane	99.96%	0.04%	
Dranana	99.93%	0.07%	
Propane			
Isobutane	99.90%	0.10%	
n-Butane	99.86%	0.14%	
Isopentane	99.85%	0.15%	
n-Pentane	99.80%	0.20%	
n-Hexane	99.65%	0.35%	
Other Hexanes	99.74%	0.26%	
Heptanes	99.30%	0.70%	
Benzene	86.71%	13.29%	
Toluene	80.42%	19.58%	
Xylenes	62.65%	37.35%	
C8+ Heavies	97.23%	2.77%	

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	37.09%	62.91%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.33%	99.67%
n-Pentane	0.36%	99.64%
n-Hexane	0.41%	99.59%
Other Hexanes	0.78%	99.22%
Heptanes	0.45%	99.55%
Benzene	4.97%	95.03%
Toluene	7.87%	92.13%
Xylenes	12.89%	87.11%
C8+ Heavies	11.74%	88.26%

STREAM REPORTS:

WET GAS STREAM

Temperature: 85.00 deg. F Pressure: 514.70 psia Flow Rate: 8.35e+005 scfh

Component		Loading (lb/hr)
	1.34e-001	
Carbon Dioxide	1.50e-001	1.45e+002
Nitrogen	6.17e-001	3.80e+002
Methane	7.69e+0 01	2.710+004
Ethane	1.46e+001	9.65e+003

Propane 4.77e+000 4.63e+003 Isobutane 6.00e-001 7.67e+002 n-Butane 1.18e+000 1.50e+003 Isopentane 2.96e-001 4.69e+002 n-Pentane 2.92e-001 4.63e+002 n-Hexane 1.10e-001 2.08e+002 Other Hexanes 1.57e-001 2.97e+002 Heptanes 1.24e-001 2.73e+002 Benzene 9.99e-004 1.72e+000 Toluene 6.99e-003 1.42e+001 Xylenes 2.00e-003 4.66e+000 C8+ Heavies 8.89e-002 3.33e+002 ------Total Components 100.00 4.63e+004

DRY GAS STREAM

Temperature: 85.00 deg. F Pressure: 514.70 psia Flow Rate: 8.33e+005 scfh

Conc. Loading (vol%) (lb/hr) Component ______ Water 7.74e-003 3.06e+000 Carbon Dioxide 1.50e-001 1.45e+002 Nitrogen 6.18e-001 3.80e+002 Methane 7.70e+001 2.71e+004 Ethane 1.46e+001 9.65e+003 Propane 4.78e+000 4.63e+003 Isobutane 6.01e-001 7.67e+002 n-Butane 1.18e+000 1.50e+003 Isopentane 2.96e-001 4.68e+002 n-Pentane 2.91e-001 4.62e+002 n-Hexane 1.10e-001 2.08e+002Other Hexanes 1.57e-001 2.96e+002 Heptanes 1.23e-001 2.71e+002 Benzene 8.67e-004 1.49e+000 Toluene 5,63e-003 1.14e+001 Xylenes 1.25e-003 2.92e+000 C8+ Heavies 8.66e-002 3.24e+002 Total Components 100.00 4.62e+004

LEAN GLYCOL STREAM

Flow Rate: 3.50e+000 gpm

Conc. Loading (wt%) (lb/hr) Component TEG 9.84e+001 1.94e+003 Water 1.50e+000 2.96e+001 Carbon Dioxide 1.18e-012 2.33e-011 Nitrogen 2.18e-013 4.29e-012 Methane 4.93e-018 9.71e-017 Ethane 8.60e-008 1.69e-006 Propane 6.67e-009 1.31e-007 Isobutane 1.22e-009 2.40e-008

n-Butane 2.66e-009 5.23e-008 Isopentane 1.83e-004 3.61e-003 n-Pentane 2.35e-004 4.62e-003 n-Hexane 1.86e-004 3.67e-003 Other Hexanes 4.00e-004 7.88e-003 Heptanes 4.90e-004 9.66e-003 Benzene 6.09e-004 1.20e-002 Toluene 1.21e-002 2.38e-001 Xylenes 1.31e-002 2.58e-001 C8+ Heavies 6.41e-002 1.26e+000 Total Components 100.00 1.97e+003

RICH GLYCOL AND PUMP GAS STREAM

Temperature: 85.00 deg. F
Pressure: 514.70 psia
Flow Rate: 3.75e+000 gpm
NOTE: Stream has more than one phase.

Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.29e+001 3.82e+000 1.65e-002 1.60e-002 1.13e+000	7.97e+001 3.43e-001 3.33e-001
Propane Isobutane	5.25e-001 3.24e-001 6.64e-002 1.56e-001 5.18e-002	6.77e+000 1.39e+000 3.26e+000
n-Hexane Other Hexanes Heptanes	6.13e-002 4.28e-002 4.86e-002 1.03e-001 1.16e-002	8.93e-001 1.01e+000 2.14e+000
Xylenes C8+ Heavies		2.00e+000 1.08e+001
Total Components	100.00	2.09e+003

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 1.92e+003 scfh

Component		Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	5.51e+001 1.54e-001 2.35e-001 2.91e+001 7.21e+000	3.43e-001 3.33e-001 2.36e+001
Isobutane	3.04e+000 4.72e-001 1.11e+000	1.39e+000

Isopentane 2.96e-001 1.08e+000
n-Pentane 3.49e-001 1.27e+000

n-Hexane 2.04e-001 8.89e-001
Other Hexanes 2.31e-001 1.01e+000
Heptanes 4.21e-001 2.13e+000
Benzene 5.81e-002 2.29e-001
Toluene 5.98e-001 2.78e+000

Xylenes 3.25e-001 1.75e+000
C8+ Heavies 1.10e+000 9.49e+000

Total Components 100.00 1.17e+002

COMBUSTION DEVICE OFF GAS STREAM

Temperature: 1000.00 deg. F Pressure: 14.70 psia Flow Rate: 8.54e+001 scfh

Component	Conc. (vol%)	Loading (lb∕hr)
Ethane Propane Isobutane	6.54e+001 1.62e+001 6.82e+000 1.06e+000 2.49e+000	1.10e+000 6.77e-001 1.39e-001
n-Hexane Other Hexanes	7.84e-001 4.58e-001	1.27e-001 8.89e-002 1.01e-001
Toluene		2.78e-001 1.75e-001

ATTACHMENT O

Monitoring, Recordkeeping, Reporting and Testing Plan

ATTACHMENT O

Icon Midstream Pipeline, LLC

Sleepy Dehydration Facility

Monitoring, Recordkeeping, Reporting and Testing Plan

I. Monitoring

Icon Midstream (Icon) will monitor actual annual benzene emissions.

II. Recordkeeping

Icon will maintain accurate operating records of the dehydration unit for each calendar year. Records will include actual annual benzene emissions.

III. Testing

None anticipated.

IV. Reporting

Icon will submit certified emission statements on an annual basis in accordance with WVDEP, Division of Air Quality requirements.

Public Notice

Tyler Star News Legals Print Ad Proof

ADNo: 2163 Customer Number: L00411

Customer Name: Company: SE TECHNOLOGIES

Address: 98 VANADIUM ROAD

City/St/Zip: BRIDGEVILLE ,PA 15017 Phone: (412) 221-1100 Solicitor: Category: 10 Class: 1000 Rate: LE-0

Start: 4-6-2016 Stop: 4-6-2016

Lines: 48 Inches: 4.67 Words: 221

Credit Card: Expire:

Order Number:

Cost: 45.40 Extra Charges: .00 Adjustments: .00

Payments: .00 Discount: .00

Balance: 45.40

AIR QUALITY PERMIT NOTICE

Notice of Application

Notice is given that Icon Midstream Pipeline, LLC has Notice is given that from Midstream Pipelline, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Construction Permit Registration for its Sleepy Dehydration Facility located off of Walnut Fork (CR 13/1) near Middlebourne in Tyler County, West Virginia (Lat.39.475506, Long. -80.73868).

The applicant estimates the potential to discharge the following regulated air pollutants:

0.13 tons of Nitrogen Oxides per year

0.11 tons of Carbon Monoxide per year

14.24 tons of Volatile Organics per year

< 0.01 tons of Sulfur Dioxide per year

0.01 tons of Particulate Matter per year

0.10 tons of Benzene per year

0.39 tons of n-Hexane per year

1.22 tons of Toluene per year

0.76 tons of Xylene per year

432 tons of CO2e per year

Startup of the modified operation is planned to begin on or about the 15th day of June, 2016. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the 6th day of April, 2016. TSN 2163 4/6

Affidavit Notice Will Be Submitted Upon Receipt

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Icon Midstream Pipeline, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Construction Permit Registration for its Sleepy Dehydration Facility located off of Walnut Fork (CR 13/1) near Middlebourne in Tyler County, West Virginia (Lat.39.475506, Long. -80.73868).

The applicant estimates the potential to discharge the following regulated air pollutants:

- 0.13 tons of Nitrogen Oxides per year
- 0.11 tons of Carbon Monoxide per year
- 14.24 tons of Volatile Organics per year
- < 0.01 tons of Sulfur Dioxide per year
- 0.01 tons of Particulate Matter per year
- 0.10 tons of Benzene per year
- 0.39 tons of n-Hexane per year
- 1.22 tons of Toluene per year
- 0.76 tons of Xylene per year
- 432 tons of CO_{2e} per year

Startup of the modified operation is planned to begin on or about the 15th day of June, 2016. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the (Day) day of (Month), (Year).

By: Mr. Shane Dowell
Operations Manager
Icon Midstream Pipeline, LLC