Icon Midstream Pipeline, LLC

APPLICATION FOR NSR (45CSR13) CONSTRUCTION PERMIT

Doc Dehydration Facility Tyler County, West Virginia

98 Vanadium Road Bridgeville, PA 15017 (412) 221-1100

APPLICATION FOR NSR (45CSR13) CONSTRUCTION PERMIT

Icon Midstream Pipeline, LLC

Doc Dehydration Facility

Tyler County, West Virginia

Table of Contents

I. Application Form

II. Attachments

- Attachment A Business Certificate
- Attachment B Area Map
- Attachment C Installation and Start-Up Schedule
- Attachment D Regulatory Discussion
- Attachment E Plot Plan
- Attachment F Process Flow Diagram
- Attachment G Process Description
- Attachment I Emission Units Table
- Attachment J Emission Points Data Summary Sheet
- Attachment K Fugitive Emissions Data Summary Sheet
- Attachment L Emissions Unit Data Sheet(s)
- Attachment N Supporting Emissions Calculations
- Attachment O Monitoring, Recordkeeping, Reporting and Testing Plan
- Attachment P Public Notice

SECTION I

Application Form

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.dep.wv.gov/dag		APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)							
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOWN CONSTRUCTION DIMODIFICATION RELOCATION CLASS I ADMINISTRATIVE UPDATE TEMPORARY CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FACT	ADMINISTRA SIGNIFICANT IF ANY BOX ABC INFORMATION A	PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY): ADMINISTRATIVE AMENDMENT IMINOR MODIFICATION SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION							
FOR TITLE V FACILITIES ONLY: Please refer to "Title V Revision Guidance" in order to determine your Title V Revision options (Appendix A, "Title V Permit Revision Flowchart") and ability to operate with the changes requested in this Permit Application.									
Section 1. Name of applicant (as registered with the WV Secretary of	Section I. General 1. Name of applicant (as registered with the WV Secretary of State's Office): 2. Federal Employer ID No. (FEIN):								
Icon Midstream Pipeline, LLC		47-1115453							
3. Name of facility (if different from above):		4. The applicant is the:							
Doc Dehydration Facility									
5A. Applicant's mailing address: 3130 Grants Lake Blvd, Suite 18859	5B. Facility's pres Off Indian Creek Ro	ent physical address: bad							
Sugarland, TX 77496	Middlebourne in Tyl	Middlebourne in Tyler County							
 6. West Virginia Business Registration. Is the applicant a re- If YES, provide a copy of the Certificate of Incorporation change amendments or other Business Registration Certi If NO, provide a copy of the Certificate of Authority/Autil amendments or other Business Certificate as Attachmen 	n/Organization/Lim ficate as Attachmer nority of L.L.C./Reg	ited Partnership (one page) including any name nt A.							
7. If applicant is a subsidiary corporation, please provide the r	ame of parent corpo	oration: N/A							
8. Does the applicant own, lease, have an option to buy or oth	erwise have control	of the proposed site? XES DO							
- If YES, please explain: Applicant has a lease agree	ement with the lar	nd owner for installation of the facility							
 If NO, you are not eligible for a permit for this source. 									
 9. Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary crusher, etc.): Dehydration facility 10. North American Industry Classification System (NAICS) code for the fact 211111 									
11A. DAQ Plant ID No. (for existing facilities only): -		SR13 and 45CSR30 (Title V) permit numbers s process (for existing facilities only):							
All of the required forms and additional information can be found	d under the Permitting	g Section of DAQ's website, or requested by phone.							

12A.

 For Modifications, Administrative Updates or Te present location of the facility from the nearest state 		please provide directions to the						
 For Construction or Relocation permits, please p 		site location from the nearest state						
road. Include a MAP as Attachment B. From Middlebourne, proceed southeast on State Route 18	(Main Street) out of town. Proceed app	coximately 5.8 miles to the junction						
with CR 1/3 (Indian Creek Road) on the left. From WV 1 miles. Turn left onto lease road, follow north for 0.2 miles	8 and Indian Creek (CR13) intersection,							
	to wen put entrance.							
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:						
	Middlebourne	Tyler						
12.E. UTM Northing (KM): 4,366.6	12F. UTM Easting (KM): 519.9	12G. UTM Zone: 17						
13. Briefly describe the proposed change(s) at the facilit	l y:							
This facility will receive gas from the contiguous Jay line owned and operated by others. There is no com	-Bee Oil & Gas well pad, dehydrate t	he gas and inject it into a gather						
The owned and operated by others. There is no comp	pression at this time.							
14A. Provide the date of anticipated installation or change		14B. Date of anticipated Start-Up						
 If this is an After-The-Fact permit application, providence of the second second	ide the date upon which the proposed	if a permit is granted: 6/15/16						
14C. Provide a Schedule of the planned Installation of/ application as Attachment C (if more than one uni		units proposed in this permit						
15. Provide maximum projected Operating Schedule o		ation:						
Hours Per Day 24 Days Per Week 7	Weeks Per Year 52							
16. Is demolition or physical renovation at an existing fa	-							
17. Risk Management Plans. If this facility is subject to								
changes (for applicability help see www.epa.gov/cepp								
18. Regulatory Discussion . List all Federal and State a								
proposed process <i>(if known)</i> . A list of possible application (Title V Permit Revision Information). Discuss application								
information as Attachment D.	binty and proposed demonstration(s) of							
	achments and supporting d							
 Include a check payable to WVDEP – Division of Air 45CSR13). 	Quality with the appropriate application	1 fee (per 4505R22 and						
20. Include a Table of Contents as the first page of your application package.								
21. Provide a Plot Plan, e.g. scaled map(s) and/or skete	ch(es) showing the location of the prope	erty on which the stationary						
source(s) is or is to be located as Attachment E (Re								
 Indicate the location of the nearest occupied structure Provide a Detailed Process Flow Diagram(s) show 								
device as Attachment F.		,						
23. Provide a Process Description as Attachment G.								
 Also describe and quantify to the extent possible and quantify to the extent possible and quantify to the extent possible and quantify the second seco								
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.								

24. Provide Material Safety Data Shee	ts (MSDS) for all materials pro	cessed, used or produced as Attachment H.					
- For chemical processes, provide a M	SDS for each compound emitte	ed to the air.					
25. Fill out the Emission Units Table and provide it as Attachment I.							
26. Fill out the Emission Points Data S	Summary Sheet (Table 1 and	Table 2) and provide it as Attachment J.					
27. Fill out the Fugitive Emissions Dat	a Summary Sheet and provide	e it as Attachment K.					
28. Check all applicable Emissions Un	it Data Sheets listed below:						
Bulk Liquid Transfer Operations	Haul Road Emissions	Quarry					
Chemical Processes	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage					
Concrete Batch Plant	Incinerator						
Grey Iron and Steel Foundry	Indirect Heat Exchange	r Storage Tanks					
General Emission Unit, specify: Glyc	ol Dehydration Unit (1) with F	Reboiler and Still Vent.					
Fill out and provide the Emissions Unit							
29. Check all applicable Air Pollution C	Control Device Sheets listed b	elow:					
Absorption Systems	Baghouse	☐ Flare					
Adsorption Systems	Condenser	Mechanical Collector					
	Electrostatic Precip	Ditator Wet Collecting System					
Other Collectors, specify							
Fill out and provide the Air Pollution Co							
30. Provide all Supporting Emissions Items 28 through 31.	Calculations as Attachment	N, or attach the calculations directly to the forms listed in					
	e compliance with the proposed	ach proposed monitoring, recordkeeping, reporting and demissions limits and operating parameters in this permit					
	ay not be able to accept all me	hether or not the applicant chooses to propose such asures proposed by the applicant. If none of these plans clude them in the permit.					
32. Public Notice. At the time that the	application is submitted, place	a Class I Legal Advertisement in a newspaper of general					
circulation in the area where the sou	rce is or will be located (See 4	5CSR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>					
Advertisement for details). Please	submit the Affidavit of Public	ation as Attachment P immediately upon receipt.					
33. Business Confidentiality Claims.	Does this application include c	confidential information (per 45CSR31)?					
	🖂 NO						
segment claimed confidential, includ Notice – Claims of Confidentiality	ling the criteria under 45CSR§ " guidance found in the Gener						
Section III. Certification of Information							
34. Authority/Delegation of Authority Check applicable Authority Form b		e other than the responsible official signs the application.					
Authority of Corporation or Other Bus	iness Entity	Authority of Partnership					
Authority of Governmental Agency		Authority of Limited Partnership					
Submit completed and signed Authority Form as Attachment R.							
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.							

35A. Certification of Information. To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE	use blue ink)	DATE: _	4-4-2016 (Please use blue ink)
35B. Printed name of signee: Shane Dowell		35C. Title:	Operations Manager
35D. E-mail: iconmidstream@gmail.com	36E. Phone: 304-904-1700	36F. FAX:	304-628-3111
36A. Printed name of contact person (if differe	nt from above):	36B. Title:	
36C. E-mail:	36D. Phone:	36E. FAX:	

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUD	
Attachment A: Business Certificate	Attachment K: Fugitive Emissions Data Summary Sheet
Attachment B: Map(s)	Attachment L: Emissions Unit Data Sheet(s)
Attachment C: Installation and Start Up Schedule	Attachment M: Air Pollution Control Device Sheet(s)
Attachment D: Regulatory Discussion	Attachment N: Supporting Emissions Calculations
🛛 Attachment E: Plot Plan	Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans
Attachment F: Detailed Process Flow Diagram(s)	Attachment P: Public Notice
Attachment G: Process Description	Attachment Q: Business Confidential Claims
Attachment H: Material Safety Data Sheets (MSDS)	Attachment R: Authority Forms
Attachment I: Emission Units Table	Attachment S: Title V Permit Revision Information
Attachment J: Emission Points Data Summary Sheet	Application Fee
Please mail an original and three (3) copies of the complete address listed on the first page of the	permit application with the signature(s) to the DAQ, Permitting Section, at the is application. Please DO NOT fax permit applications.
FOR AGENCY USE ONLY IF THIS IS A TITLE V SOURCE:	
Forward 1 copy of the application to the Title V Permittin	ig Group and:
For Title V Administrative Amendments:	
NSR permit writer should notify Title V permit write	ter of draft permit,
For Title V Minor Modifications:	

Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,

□ NSR permit writer should notify Title V permit writer of draft permit.

□ For Title V Significant Modifications processed in parallel with NSR Permit revision:

- □ NSR permit writer should notify a Title V permit writer of draft permit,
- Dublic notice should reference both 45CSR13 and Title V permits,

EPA has 45 day review period of a draft permit.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

SECTION II

Attachments

ATTACHMENT A

Business Certificate

I, Natalie E. Tennant, Secretary of State, of the State of West Virginia, hereby certify that

Icon Midstream Pipeline, LLC

has filed the appropriate registration documents in my office according to the provisions of the West Virginia Code and hereby declare the organization listed above as duly registered with the Secretary of State's Office.

Given under my hand and the Great Seal of West Virginia on this day of March 13, 2015

talil E Yeman

Secretary of State

ATTACHMENT B

Area Map

ATTACHMENT C

Installation and Start-Up Schedule

Icon Midstream Pipeline, LLC Doc Dehydration Facility Attachment C – Installation and Start-Up Schedule

Installation of the Doc Dehydration Facility, emission point S01, will take place upon receipt of approval of this application. Icon will install the equipment and connect to existing gathering lines. It is anticipated that all work can be completed within 30 days of receipt of approval. Start-up of the Facility is anticipated to begin shortly after permit issuance and installation, approximately the 15th day of June, 2016.

ATTACHMENT D

Regulatory Discussion

Icon Midstream Pipeline, LLC Doc Dehydration Facility Attachment D – Regulatory Discussion

Both State and Federal environmental regulations governing air emissions apply to the planned Doc Dehydration Facility. The West Virginia Department of Environmental Protection (WVDEP) has been delegated the authority to implement certain federal air quality requirements for the state. Air quality regulations that potentially affect the Facility are discussed herein.

1.1 PSD and NSR

The facility will be a minor source with respect to Prevention of Significant Deterioration (PSD) regulations as it will not have the potential to emit more than the annual emission thresholds of any PSD regulated pollutant.

The facility is within an area designated as attainment. Consequently, the facility is not subject to the New Source Review (NSR) regulations.

1.2 Title V Operating Permit Program

West Virginia has incorporated provisions of the federal Title V operating permit program. Thresholds for inclusion under the Title V program are 10 tpy of any single Hazardous Air Pollutant (HAP) or 25 tons of any combination of HAP and/or 100 tpy of all other regulated pollutants. Additionally, facilities regulated under certain New Source Performance Standards (NSPS) require facilities to have Title V permits.

The facility will be a minor source and is not subject to NSPS; therefore, a Title V permit will not be required for this facility.

1.3 Aggregation

Source aggregation determinations are typically made based on the following criteria:

- Whether the facilities are under common control,
- Whether the facilities belong to the same Major Group (i.e. the first two digit code) as described in the Standard Industrial Classification Manual, 1972, as amended by the 1977 Supplement;
- Whether the facilities are located on one or more contiguous or adjacent properties; and the distance between all pollutant emitting activities,
- Whether the facilities can operate independently

Only if all criteria are met does a permitting authority aggregate the facilities into a single source.

Icon Midstream plans to install its Doc Dehydration Facility contiguous with the Jay-Bee Oil & Gas Doc Well Pad in Tyler County. The Doc Dehydration Facility will receive and manage natural gas from the Doc Well Pad, dehydrate the gas and inject into a gathering line owned and operated by others.

There is no gas routed to or received from any other Icon Midstream facility. Hence, no other Icon Midstream facilities in the area should be aggregated with this facility.

The Doc Well Pad while under the same general SIC Code, has completely separate ownership (Jay-Bee Oil & Gas) but share common workforces. The facilities do not share common payroll activities. The Doc Dehydration Facility supports operation of the Doc Well Pad and only exists as a support for gas coming from this well pad. Therefore, emissions from the Doc Dehydration Facility should be aggregated with Jay-Bee's Doc Well Pad to determine major source status.

1.4 New Source Performance Standards

New Source Performance Standards (NSPS) regulations promulgated under 40 CFR 60 require new and reconstructed facilities to control emissions to the level achievable by Best-Available Technology (BAT). Specific NSPS requirements potentially applicable to the proposed Facility are as follows:

- 40 CFR 60, Subpart Dc Standard of Performance for Small Industrial-Commercial Institutional Steam Generating Units
- 40 CFR 60, Subpart OOOO Standard of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution

1.4.1 Subpart Dc

This subpart limits SO2 and PM emissions from boilers and heaters fired by various fuels. While the primary thrust of this set of regulations is to control SOx and PM emissions from coal and oil-fired boilers and heaters, natural gas fired units are also covered under this rule. The planned heater is well below the threshold of coverage for this rule (10 MMBTU/Hr). Thus, this rule does not apply.

1.4.2 Subpart OOOO

This Subpart governs emissions from a broad spectrum of operations in the oil and natural gas industries, including operations at processing and fractionation plants. Subpart OOOO is potentially applicable to dehydration units; however, the dehydration unit is exempt from these requirements of per 40 CFR 60.5365(f)(2) because it will not be located at a natural gas processing plant.

1.5 National Emission Standards for Hazardous Air Pollutants

National Emission Standards for Hazardous Air Pollutants (NESHAPs) promulgated under 40 CFR 63 regulate the emission of Hazardous Air Pollutants (HAPs) from certain industrial processes. In general, these rules apply to major sources of HAPs with a major source being defined as having the potential to emit more than 10 tpy of any individual HAP or 25 tpy of total HAPs. Emissions standards under these rules have been established as the Maximum Achievable Control Technology (MACT) for each source category. The following NESHAP source category standards are potentially applicable to the planned Doc Dehydration Facility:

- 40 CFR 63, Subpart HH National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities
- 40 CFR 63, Subpart JJJJJJ National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers Area Sources

1.5.1 Subpart HH

This Subpart contains MACT standards for major and area source dehydration units located at natural gas production facilities. The proposed equipment for the Facility includes a dehydration unit. Hence, this rule applies.

Exemption criteria are established in 40 CFR 63.764(e)(1). To satisfy the exemption to this subpart, the unit has to satisfy one of the following criteria:

- Annual average flow must be less than 85,000 SCMD (20.0 MMSCFD); or
- Average benzene emissions must be less than 0.9 Mg/yr (1 ton per year).

The average flow through the dehydration unit will exceed 85,000 SCMD; however the potential to emit benzene will be less than 1 ton per year as can be seen in Attachment N; therefore, the dehydration unit is exempt from the requirements of 40 CFR 63 Subpart HH. Although, the dehydration unit is exempt from 40 CFR 63 Subpart HH, records must be maintained of the actual annual benzene emission determination as set forth in 40 CFR 63.774(d)(1).

1.5.2 Subpart JJJJJJ

This subpart contains MACT standards for an industrial, commercial, or institutional boiler that is located at an area source of HAPs. This Facility will contain a gas-fired reboiler so it is not subject to this subpart per 40 CFR 63.11195(e).

1.6 Chemical Accident Prevention

Subparts B-D of 40 CFR 68 present the requirements for the assessment and subsequent preparation of a Risk Management Plan (RMP) for a facility that stores more than a threshold quantity of a regulated substance listed in 40 CFR 68.130. If a facility stores, handles or processes one or more regulated substances in an amount greater than its corresponding threshold, the facility must prepare and implement an RMP. This permit application proposes to store triethylene glycol which is not a regulated substance per 40 CFR 68.130; therefore, this rule does not apply.

1.7 West Virginia State Requirements

1.7.1 <u>45 CSR 2</u>

The facility is subject to the opacity requirement of 45 CSR 2. Emissions from the facility cannot exceed 10% over any six minute period.

1.7.2 <u>45 CSR 4</u>

This regulation prohibits the emission of objectionable odors. Icon Midstream is obligated to run the station in a manner that does not produce objectionable odors.

1.7.3 <u>45 CSR 10</u>

This regulation limits emissions of sulfur oxides. As the sulfur content of the Inlet Gas contains no measurable sulfur, emissions of sulfur oxides is negligible. Thus, while parts of this rule are applicable to the facility, no actions are required on the part of Icon Midstream to attain compliance. The various non-engine combustion units have a design heat input less than 10 MMBTU/Hr and are therefore exempt from the requirements of this rule.

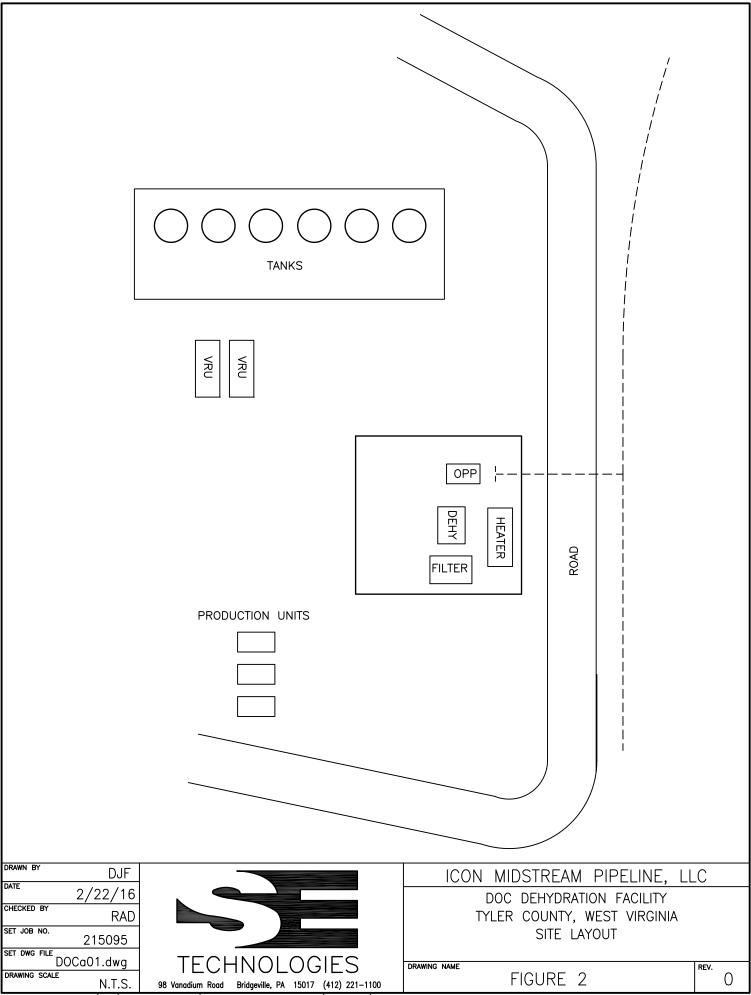
1.7.4 <u>45 CSR 13</u>

The state regulations applicable to the permitting of the proposed construction are in Title 45 Series 13 of the Code of State Regulations. The proposed Facility has the potential to emit several regulated pollutants in excess of the thresholds that define a Stationary Source. It will remain less than the thresholds that would classify the facility as a Major Source under 45 CSR 14.

1.7.5 <u>45 CSR 16</u>

This series of regulations is an incorporation, by reference, of the New Source Performance Standards (NSPS) codified under 40 CFR 60. As referenced in 1.4 above, the Facility is not subject to NSPS.

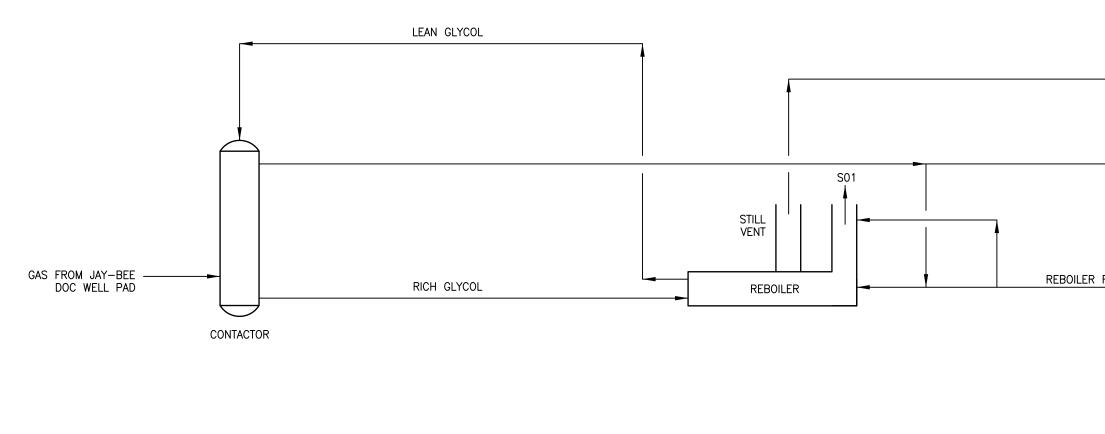
1.7.6 <u>45 CSR 30</u>


The state regulations applicable to Title V operating permits are in Title 45 Series 30. The Facility, as noted above, does not have the potential to emit any regulated pollutant about the threshold that would define it as a major facility.

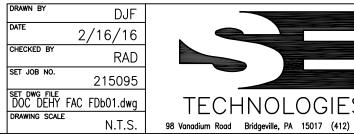
1.7.7 Other Applicable Requirements

Throughout Series 34, WVDEP has adopted the NESHAPs for Source Categories. NESHAPs have been discussed above.

ATTACHMENT E


Plot Plan

Plot: env045 02/22/2016 12:37 G:\ICON MIDSTREAM, LLC\215095\FIGURE 2 DOCa01.dwg


ATTACHMENT F

Process Flow Diagram

LEGEND:

EMISSION POINT

FUEL	TO PIPELINE/ SALES GAS	
	ICON MIDSTREAM PIPELINE, LL DOC DEHYDRATION FACILITY TYLER COUNTY, WEST VIRGINIA PROCESS FLOW DIAGRAM	<u>_C</u>
S 221-1100	drawing name FIGURE 3	rev. 1

ATTACHMENT G

Process Description

Icon Midstream Pipeline, LLC Doc Dehydration Facility Attachment G – Process Description

Icon Midstream plans to install its Doc Dehydration Facility contiguous with the Jay-Bee Oil & Gas Doc Well Pad in Tyler County. The Facility will receive and manage natural gas from the contiguous well pad, dehydrate the gas and inject into a gathering line owned and operated by others.

The dehydration unit will generate emissions from the still vent and re-boiler. There is no flash tank. Vapors from the still vent are comprised of water and various low molecular weight hydrocarbons. This vapor stream will be used as fuel for the reboiler. Excess still vent vapors are routed to the still vent where they are ignited by a glow plug and combusted. Although needs are anticipated to be minimal, supplemental re-boiler fuel is available from the dehydrated gas stream prior to injection into the sales line.

As all still vent vapors are routed to the re-boiler (either as fuel of for destruction in the reboiler), there is only one emission point at this facility.

Any water condensing in the still vent column will be routed to wastewater tanks at the contiguous Jay-Bee Doc Well Pad.

In summary, emission sources at this facility will include only the following:

• One 20 MMSCFD Dehydration Unit – Exterran w/ 300 MBTU/Hr reboiler

ATTACHMENT I

Emission Units Table

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
RBV-1	S01	Dehydration Unit Re-boiler Vent	Upon Permit	0.300 MMBTU/hr	NEW	None
RSV-1	S01	Dehydration Unit Still Vent	Upon Permit	20 MMSCFD	NEW	RBV-1
		purces) use the following numbering system	40.00.00 see at have		the	

Page _____ of _____

ATTACHMENT J

Emission Points Data Summary Sheet

Attachment J EMISSION POINTS DATA SUMMARY SHEET

	Table 1: Emissions Data																		
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissic Ven Throug Poi <i>(Must)</i> <i>Emissio</i> Table & F	ted h This int <i>match</i> <i>n Units</i>	Control (Must Emissi	ollution Device match on Units Plot Plan)	Emissi <i>(che</i>	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)		Potential Uncontrolled		Potential Uncontrolled		Potential Uncontrolled Emissions ⁴		kimum ential trolled ssions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)	or Gas/Vapor)					
						-r	-	NO _x	0.03	0.13			Gas	EE					
			Re-					СО	0.03	0.11			Gas	EE					
			boiler		Reboiler			VOC	3.92	17.19			Gas	EE					
S01	X 7 (RBV-1	Vent		(Still	C	0760	SO2	< 0.01	< 0.01			Gas	EE					
501	Vent	RSV-1	and Still	RBV-1	Vent routes to	С	8760 -	РМ	< 0.01	0.01			Solid	EE					
			Vent		reboiler)			Benzene	0.08	0.36			Gas	EE					
								Formaldehyde	< 0.01	< 0.01			Gas	EE					
								CO2e	95	416			Gas	EE					

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

² List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂, H₂O, N₂, O₂, and Noble Gases.

Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

6 Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment J **EMISSION POINTS DATA SUMMARY SHEET**

	Table 2: Release Parameter Data									
Emission	Inner		Exit Gas		Emission Point El	evation (ft)	UTM Coordina	tes (km)		
Point ID No. (Must match Emission Units Table)	Diameter (ft.)	Temp. (°F)	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting		
S01	0.5	212	33	2.8	1058	8				

¹Give at operating conditions. Include inerts. ²Release height of emissions above ground level.

ATTACHMENT K

Fugitive Emissions Data Summary Sheet

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	□ Yes
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	□ Yes
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	□ Yes
	☐ If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	Yes 🗌 No
	If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	🗌 Yes 🛛 No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	bu answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions nmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹	Maximum Uncontrolled	Potential Emissions ²	Maximum Po Controlled Em	Est. Method	
	Chemical Name/CAS	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads						
Unpaved Haul Roads						
Storage Pile Emissions						
Loading/Unloading Operations						
Wastewater Treatment Evaporation & Operations						
Equipment Leaks	VOC CO2 CH4	Does not apply	0.075 0.001 0.164	Does not apply	0.075 0.001 0.164	EE EE
General Clean-up VOC Emissions						
Other						

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

O₂, and Noble Gases.
 ² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
 ³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

LEAK SOURCE DATA SHEET

Source Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (days) ³	Estimated Annual Emission Rate (Ib/yr) ⁴
Pumps⁵	light liquid VOC ^{6,7}				
	heavy liquid VOC ⁸				
	Non-VOC ⁹				
Valves ¹⁰	Gas VOC	24	0	n/a	86.47 lb VOC/yr
	Light Liquid VOC				
	Heavy Liquid VOC				
	Non-VOC	24	0	n/a	1.07 lb CO ₂ /yr 189.45 lb CH ₄ /yr
Safety Relief Valves ¹¹	Gas VOC	2	0	n/a	10.68 lb VOC/yr
	Non VOC	2	0	n/a	0.13 lb lb CO ₂ /yr 23.39 lb CH ₄ /yr
Open-ended Lines ¹²	VOC	2	0	n/a	16.28 lb VOC/yr
	Non-VOC	2	0	n/a	0.20 lb CO ₂ /yr 35.67 lb CH ₄ /yr
Sampling Connections ¹³	VOC				
	Non-VOC				
Compressors	VOC				
	Non-VOC				
Flanges	VOC				
	Non-VOC				
Other - Connectors	VOC	90	0	n/a	36.03 lb VOC/yr
	Non-VOC	90	0	n/a	0.45 lb CO ₂ /yr 78.94 lb CH ₄ /yr

¹⁻¹³ See notes on the following page.

ATTACHMENT L

Emissions Unit Data Sheet(s)

Notes for Leak Source Data Sheet

- 1. For VOC sources include components on streams and equipment that contain greater than 10% w/w VOC, including feed streams, reaction/separation facilities, and product/by-product delivery lines. Do not include certain leakless equipment as defined below by category.
- By monitoring frequency, give the number of sources routinely monitored for leaks, using a portable detection device that measures concentration in ppm. Do not include monitoring by visual or soap-bubble leak detection methods. "M/Q(M)/Q/SA/A/O" means the time period between inspections as follows:

Monthly/Quarterly, with Monthly follow-up of repaired leakers/Quarterly/Semi-annual/Annually/Other (specify time period)

If source category is not monitored, a single zero in the space will suffice. For example, if 50 gas-service valves are monitored quarterly, with monthly follow-up of those repaired, 75 are monitored semi-annually, and 50 are checked bimonthly (alternate months), with non checked at any other frequency, you would put in the category "valves, gas service:" 0/50/0/75/0/50 (bimonthly).

- 3. Give the average number of days, after a leak is discovered, that an attempt will be made to repair the leak.
- 4. Note the method used: MB material balance; EE engineering estimate; EPA emission factors established by EPA (cite document used); O other method, such as in-house emission factor (specify).
- 5. Do not include in the equipment count sealless pumps (canned motor or diaphragm) or those with enclosed venting to a control device. (Emissions from vented equipment should be included in the estimates given in the Emission Points Data Sheet.)
- 6. Volatile organic compounds (VOC) means the term as defined in 40 CFR
- 7. A light liquid is defined as a fluid with vapor pressure equal to or greater than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if 20% w/w or more of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a light liquid.
- 8. A heavy liquid is defined as a fluid with a vapor pressure less than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if less than 20% w/w of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a heavy liquid.
- 9. LIST CO, H₂S, mineral acids, NO, NO₂, SO₃, etc. DO NOT LIST CO₂, H₂, H₂O, N₂, O₂, and Noble Gases.
- 10. Include all process valves whether in-line or on an open-ended line such as sample, drain and purge valves. Do not include safety-relief valves, or leakless valves such as check, diaphragm, and bellows seal valves.
- 11. Do not include a safety-relief valve if there is a rupture disk in place upstream of the valve, or if the valve vents to a control device.
- 12 Open-ended lines include purge, drain and vent lines. Do not include sampling connections, or lines sealed by plugs, caps, blinds or second valves.
- 13. Do not include closed-purge sampling connections.

		Manufact	urer and Model	Exterran HAN	O-486824035	
		Max Dry Gas F	low Rate (mmscf/day)	20 MMSCFD		
		Design Heat	Input (mmBtu/hr)	0.300 MMBTU	/Hr (re-boiler)	
		Design Typ	be (DEG or TEG)	TE	G	
Genera	l Glycol	Sou	rce Status ²	N	S	
Dehydra	tion Unit	Date Installed/	/Modified/Removed ³	Upon I	Permit	
Da	ata	Regenerator	Still Vent APCD ⁴			
		Contro	l Device ID ⁴	RB	V-1	
		Fuel H	HV (Btu/scf)	808.5 (HHV)	
		H ₂ S Cont	tent (gr/100 scf)	<0.00	01%	
		Operation (hrs/yr)		8760		
Emission Unit ID/ Emission	Vent					
Point ID ¹		Reference ⁵	Potential Emissions ⁶	lbs/hr	tons/yr	
		AP-42	NO _X	0.03	0.13	
	Reboiler Vent	AP-42	СО	0.03	0.11	
RBV-1		AP-42	VOC	0.0017	0.007	
		AP-42	SO_2	< 0.0001	0.001	
		AP-42	PM ₁₀	< 0.01	0.01	
		GRI-GLYCalc [™]	VOC	3.9	17.1	
	Glycol	GRI-GLYCalc [™]	Benzene	0.082	0.36	
RSV-1	Regenerator	GRI- $GLYCalc$ TM	Ethylbenzene	0.044	0.192	
100 7 1	Still Vent	GRI-GLYCalc [™]	Toluene	0.337	1.475	
		GRI-GLYCalc [™]	Xylenes	0.033	0.146	
		GRI-GLYCalc [™]	n-Hexane	0.149	0.65	

GLYCOL DEHYDRATION EMISSION UNIT DATA SHEET

1. Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a *Glycol Dehydration Emission Unit Data Sheet* shall be completed for each, using Source Identification #s RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

2. Enter the Source Status using the following codes:

NS	Construction of New Source	ES	Existing Source
MS	Modification of Existing Source	RS	Removal of Source

3. Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.

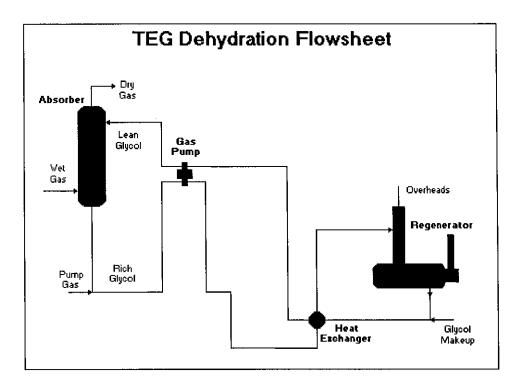
- 4. Enter the Air Pollution Control Device (APCD) type designation using the following codes and the control device ID number:
 - NANoneCDCondenserFLFlareCCCondenser/Combustion CombinationTOThermal Originary
 - TO Thermal Oxidizer
- 5. Enter the Potential Emissions Data Reference designation using the following codes:

	Manufacturer's Data	AP	AP-42	
GR	GRI-GLYCalc TM	OT	Other	(please list)

6. Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalc Aggregate Calculations Report to this Glycol Dehydration Emission Unit Data Sheet(s). This PTE data shall be incorporated in the Emissions Summary Sheet.

Include a copy of the GRI-GLYCalcTM analysis. This includes a printout of the aggregate calculations report, which shall include emissions reports, equipment reports, and stream reports.

West Virginia Department of Environmental Protection


DIVISION OF AIR QUALITY : (304) 926-0475 WEB PAGE: http://www.wvdep.org

Division of Air Quality 40 CFR Part 63; Subpart HH & HHH Registration Form

Complete this form for any oil and natural gas production or natural gas transmission and storage facility that uses an affected unit under HH/HHH, whether subject or not.

Section A: Facility Description		
Affected facility actual annual average natural gas throughput (scf/day):	20 MMS	CF/Day
Affected facility actual annual average hydrocarbon liquid throughput: (bbl/day):	N/.	A
The affected facility processes, upgrades, or stores hydrocarbon liquids prior to custody transfer.	Yes	X No
The affected facility processes, upgrades, or stores natural gas prior to the point at which natural gas	Yes	X No
(NG) enters the NG transmission and storage source category or is delivered to the end user.		
The affected facility is: 🛛 prior to a NG processing plant 🗌 a NG processing plant		
prior to the point of custody transfer and there is no NG processing plant		
The affected facility transports or stores natural gas prior to entering the pipeline to a local	Yes	X No
distribution company or to a final end user (if there is no local distribution company).		
The affected facility exclusively processes, stores, or transfers black oil.	Yes	X No
Initial producing gas-to-oil ratio (GOR):scf/bbl		
Section B: Dehydration Unit (if applicable) ¹		
Description: 20 MMSCFD Glycol Dehydrator		
Date of Installation: Upon Permit Annual Operating Hours: 8760 Burner rating (MM	Abtu/hr):	0.300
Exhaust Stack Height (ft):8Stack Diameter (ft):0.5Stack Tex	mp. (°F):	212 (Still Vent)
Glycol Type: \square TEG \square EG \square Other:		
Glycol Pump Type: \Box Electric \boxtimes Gas If gas, what is the volume ratio? <u>0.08</u>	_ACFM/gr	om
Condenser installed?	ure <u>p</u>	sig
Incinerator/flare installed? Yes No Destruction Eff. <u>90%</u>		
Other controls installed?		
Wet Gas ² : Gas Temp.: <u>85 °F</u> Gas Pressure <u>500</u> psig		
(Upstream of Contact Tower) Saturated Gas? 🛛 Yes 🗌 No If no, water content	: lb/	MMSCF
Dry Gas: Gas Flowrate(MMSCFD) Actual Varies Design 20 MM	SCF/Day	
(Downstream of Contact Tower) Water Content <u>7.0</u> lb/MMSCF		
Lean Glycol: Circulation rate (gpm) Actual ³ <u>3.5</u> Maximum ⁴ <u>3.5</u>		
Pump make/model:		
Glycol Flash Tank (if applicable): Temp.:°F Pressure psig Vented? Yes	1	No 🗌
If no, describe vapor control: Recycle/recompression		
Stripping Gas (if applicable): Source of gas: N/A Rate	scfm	

 Please attach the following required dehydration unit information: System map indicating the chain of custody information. See Page 43 of this document for an example of a gas flow schematic. It is not intended that the applicant provide this level of detail for all sources. The level of detail that is necessary is to establish where the custody transfer points are located. This can be accomplished by submitting a process flow diagram indicating custody transfer points and the natural gas flow. However, the DAQ reserves the right to request more detailed information in order to make the necessary decisions. Extended gas analysis from the Wet Gas Stream including mole percents of C₁-C₈, benzene, ethylbenzene, toluene, xylene and n-Hexane, using Gas Processors Association (GPA) 2286 (or similar). A sample should be taken from the inlet gas line, downstream from any inlet separator, and using a manifold to remove entrained liquids from the sample and a probe to collect the sample from the center of the gas line. GPA standard 2166 reference method or a modified version of EPA Method TO-14, (or similar) should be used. 							
	3.0 aggregate report based on sof gas or hydrocarbon flow	on maximum Lean Glycol circulation rate and maximum throughput.					
	Section C: Facility NESHAPS Subpart HH/HHH status						
	Subject to S	ıbpart HH					
Affected facility	Subject to S	ıbpart HHH					
status:	Not Subject	□ < 10/25 TPY					
(choose only one)	because:	Affected facility exclusively handles black oil					
		\Box The facility wide actual annual average NG throughput is < 650 thousand					
		scf/day and facility wide actual annual average hydrocarbon liquid is < 250 bpd					
		No affected source is present					

,

Gas Analytical Services

Charleston, WV 844-445-4207

		044-	440-4207		
Customer	: 8788 - JayBee C	il & Gas	Dat	te Sampled : 0	1/08/2016
Station ID	: DOC 1H		Dat	te Analyzed : 0	2/01/2016
Cylinder ID	: 0406		Eff	ective Date : 0	2/01/2016
Producer	:		Cyl	I Pressure : 1	,115
Lease	: DOC 1H		Ter	mp :0	1
Area	: 357 - Union		Cyl	linder Type : S	Spot
State	:		Sai	mple By : J	ustin Whipkey
	COMPONENT		MOL%	<u>GPM@14.73(PSIA)</u>	
	Carbon-Dioxide		0.1516	0.000	
	Oxygen		0.0007	0.000	
	Nitrogen		0.3537	0.000	
	Methane		73.6835	0.000	
	Ethane		15.3223	4.114	
	Propane		5.7741	1.597	
	Iso-Butane		0.8689	0.285	
	N-Butane		1.8700	0.592	
	Neo-Pentane		0.0175	0.007	
	Iso-Pentane		0.5626	0.207	
	N-Pentane		0.5966	0.217	
	N-Hexane		0.1919	0.124	
	N-Heptane		0.0470	0.022	
	N-Octane		0.0101	0.005	
	N-Nonane		0.0019	0.001	
	Benzene		0.0037	0.001	
	Toluene		0.0089	0.003	
	Ethylbenzene		0.0007	0.000	
	O-Xylene		0.0004	0.000	
	C6's		0.3168	0.130	
	C7's		0.1363	0.060	
	C9's		0.0140	0.007	
	C10's		0.0013	0.001	
	C8's		0.0655	0.033	
	TOTAL		100.0000	7.406	
Compressibili	ity Factor (Z) @ 14.73	@ 60 Deg. F = 0.995	8	C5+ GPM : 0	.55200
Ideal Grav	vity: 0.7706	Real Gravity: 0.773	5	C5+ Mole % : 1	.8987
BTU @ (PSIA)		@14.65	@14.696	@14.73	@15.025
Ideal GPM		7.336	7.359	7.376	7.523
Ideal BTU Dry		1,333.10	1,337.29	1,340.38	1,367.22
Ideal BTU Sat		1,309.77	1,313.95	1,317.05	1,343.89
Real GPM		7.366	7.390	7.407	7.556
Real BTU Dry		1,338.70	1,342.92	1,346.04	1,373.12
		1,000.70	1,072.02	1,0+0.04	1,070.12

Real BTU Sat Comments:

Gas Analysis performed in accordance with GPA 2286

Sample Count : 23000009

1,350.26

1,323.18

1,320.06

1,315.84

ATTACHMENT N

Supporting Emissions Calculations

Doc Dehydration Facility Tyler County, WV

Source	Description	NOx lb/hr	CO lb/hr	CO2e lb/hr	VOC lb/hr	SO2 lb/hr	PM lb/hr	n-Hexane Ib/Hr	benzene lb/hr	formaldehyde lb/hr	Total HAPs lb/hr
RBV-1	300 MBTU/Hr Reboiler	0.03	0.03	36.2	0.0	0.000	0.00	0.001	0.002	0.000	0.001
RSV-1	Controlled Still Vent			57.8	3.9			0.149	0.082		0.645
	Fittings Fugitive Emissions			0.9	0.02						
Total		0.03	0.03	95	3.92	0.00	0.00	0.15	0.08	0.00	0.65

Source		NOx tpy	CO tpy	CO2e tpy	VOC tpy	SO2 tpy	PM tpy	n-Hexane TPY	benzene tpy	formaldehyde tpy	Total HAPs tpy
RBV-1	300 MBTU/Hr Reboiler	0.13	0.11	159	0.01	0.001	0.01	0.00	0.00	0.00	0.002
RSV-1	Controlled Still Vent			253	17.10			0.65	0.36		2.823
	Fittings Fugitive Emissions			4	0.07						
Total	Proposed	0.13	0.11	416	17.19	0.00	0.01	0.66	0.36	0.00	2.83
0 1	Bee Doc Well Pad (current permit pplication update)	3.43	6.62	3,997	43.89	0.01	1.57	1.40	0.01	0.08	1.94
	Aggregated Emissons	3.56	6.73	4,413	61.08	0.01	1.58	2.06	0.36	0.08	4.77

Doc Dehydration Facility Tyler County, WV

Dehy Stil Vent Emissions

SOURCE RSV-1

Still Vent Emissions (Controlled)

Dry Gas Rate Glycol Circulation Rate Treating Temperature Treating Pressure Destruction Efficiency of Re-Boiler 20 MMSCFD 3.5 gpm 85 Deg F 500 psi 90 %

Data From GLYCalc:

Total HC	7.3851	lbs/hr	32.347	TPY
Methane	2.3118	lbs/hr	10.126	TPY
Total VOC	3.9050	lbs/hr	17.104	TPY
Total HAP	0.6446	lbs/hr	2.823	TPY
benzene	0.0815	lbs/hr	0.357	TPY
toluene	0.3367	lbs/hr	1.475	TPY
ethyl benzene	0.0438	lbs/hr	0.192	TPY
xylene	0.0333	lbs/hr	0.146	TPY
n-hexane	0.1494	lbs/hr	0.654	TPY

From Gri GlyCalc 4.0

Doc Dehydration Facility Tyler County, WV

Potential Emission Rates

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation

300.0 Mbtu/hr 98.0 % 808.5 Btu/scf 9,088 scfd 0.000 Mole % 8760

Source RBV-1

NOx	0.0300	lbs/hr	0.131	TPY
СО	0.0252	lbs/hr	0.110	TPY
CO2	36.0	lbs/hr	157.7	TPY
CO2e	36	lbs/hr	159	tpy
VOC	0.0017	lbs/hr	0.007	TPY
SO2	0.0002	lbs/hr	0.001	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0023	lbs/hr	0.010	TPY
СНОН	0.0000	lbs/hr	0.000	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hexane	0.0005	lbs/hr	0.002	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0006	lbs/hr	0.002	TPY

AP-42 Factors Used

N	Ox 100	Lbs/MMCF	
C	2 O 84	Lbs/MMCF	
C	O ₂ 120,000	Lbs/MMCF	Global Warming Potential = 1
V	OC 5.5	5 Lbs/MMCF	
Р	М 7.6	Lbs/MMCF	
S	O ₂ 0.6	Lbs/MMCF	
C	2.3 2.3	Lbs/MMCF	Global Warming Potential = 25
N	2.0 2.2	Lbs/MMCF	Global Warming Potential =298
H	СОН 0.075	5 Lbs/MMCF	
В	enzene 0.0021	Lbs/MMCF	
n	-Hexane 1.8	B Lbs/MMCF	
Т	oluene 0.0034	Lbs/MMCF	

Doc Dehydration Facility Tyler County, WV

Fugitive VOC Emissions

Volatile Organic Compounds, non-methane and non-ethane from gas analysis:	24.54
Methane from gas analysis:	53.76
Carbon Dioxide from gas analysis:	0.30
Gas Density	0.0621

weight percent weight percent weight percent lb/scf

Emission Source:	Number*	Oil & Gas Production**	VOC %	VOC, lb/hr	VOC TPY	VOC, lb/yr	CO2 lb/hr	CO2 TPY	CO2 lb/yr	CH4 lb/hr	CH4 TPY	CH4 lb/yr	CO2e TPY
Valves:													
Gas/Vapor:	24	0.02700 scf/hr	24.5	0.010	0.043	86.47	0.000	0.001	1.07	0.022	0.095	189.45	2.37
Relief Valves:	2	0.04000 scf/hr	24.5	0.001	0.005	10.68	0.000	0.000	0.13	0.003	0.012	23.39	0.29
Open-ended Lines, gas:	2	0.06100 sfc/hr	24.5	0.002	0.008	16.28	0.000	0.000	0.20	0.004	0.018	35.67	0.45
Connectors:													
Gas:	90	0.00300 scf/hr	24.5	0.004	0.018	36.03	0.000	0.000	0.45	0.009	0.039	78.94	0.99

Fug	itive Calculat	ions:
	lb/hr	tpy
VOC	0.017	0.075
CH4	0.037	0.164
CO2	0.000	0.001
CO2e	0.935	4.094

Notes:

*Numbers are from 40 CFR 98, Table W-1B

**Factors are from 40 CFR 98, Table W-1A (scf/hr), where available. Remaining are API (lb/hr)

Doc Dehydration Facility Tyler County, WV

Inlet Gas Composition:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.354	0.099	0.003	0.451			-		0.0035	
Carbon Dioxide, CO2	0.152	0.067	0.002	0.304			-		0.0015	
Hydrogen Sulfide, H2S	0.000	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	0.001	0.000	0.000	0.001			-		0.0000	
Methane, CH4	73.684	11.821	0.408	53.755	670.1	744.2	7.022		0.7354	
Ethane, C2H6	15.322	4.607	0.159	20.952	248.0	271.1	2.556		0.1520	4.076
Propane	5.774	2.546	0.088	11.578	133.7	145.3	1.375	11.578	0.0567	1.583
Iso-Butane	0.869	0.505	0.017	2.297	26.1	28.3	0.269	2.297	0.0084	0.283
Normal Butane	1.870	1.087	0.038	4.943	56.3	61.0	0.579	4.943	0.0181	0.586
Iso Pentane	0.580	0.418	0.014	1.903	21.5	23.2	0.221	1.903	0.0058	0.211
Normal Pentane	0.597	0.430	0.015	1.957	22.1	23.9	0.227	1.957	0.0060	0.215
Hexane	0.509	0.119	0.015	0.541	22.4	24.2	0.230	0.541	0.0050	0.208
Heptane+	0.289	0.290	0.010	1.317	14.7	15.9	0.151	1.317	0.0029	0.133
	100.000	21.990	0.770		1,214.8	1,337.1	12.631	24.536	0.9953	7.294

Gas Density (STP) = 0.062

Ideal Gross (HHV)	1,337.1
Ideal Gross (sat'd)	1,314.6
GPM	-
Real Gross (HHV)	1,343.4
Real Net (LHV)	1,220.6

Doc Dehydration Facility Tyler County, WV

Still Vent Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Ζ	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.1380	0.039	0.001	0.164			-		0.0014	
Carbon Dioxide, CO2	0.1540	0.068	0.002	0.288			-		0.0015	
Hydrogen Sulfide, H2S		-	-	-			-		-	
Water	53.8000	9.684	0.334	41.113			-		0.5383	
Oxygen, O2		-	-	-			-		-	
Methane, CH4	27.9000	4.476	0.155	19.003	253.7	281.8	2.659		0.2784	
Ethane, C2H6	7.5200	2.261	0.078	9.600	121.7	133.1	1.254		0.0746	2.000
Propane	3.6100	1.592	0.055	6.758	83.6	90.8	0.860	6.758	0.0355	0.989
Iso-Butane	0.6650	0.387	0.013	1.641	20.0	21.6	0.206	1.641	0.0065	0.216
Normal Butane	1.7100	0.994	0.034	4.220	51.5	55.8	0.530	4.220	0.0165	0.536
Iso Pentane	0.5580	0.403	0.014	1.709	20.6	22.3	0.213	1.709	0.0056	0.203
Normal Pentane	0.6850	0.494	0.017	2.098	25.4	27.5	0.261	2.098	0.0069	0.247
Hexane	0.7780	0.670	0.023	2.846	34.3	37.0	0.352	2.846	0.0077	0.318
Heptane	2.4820	2.487	0.086	10.559	126.6	136.6	1.301	10.559	0.0247	1.139
	100.000	23.554	0.813		737.3	806.5	7.635	29.832	0.9975	5.649

Gas Density (STP) =	0.066
---------------------	-------

806.5
793.2
-
808.5
739.2

GAS DATA INFORMATION

 Specific Graivity of Air, @ 29.92 in. Hg and 60 -F,
 28.9625

 One mole of gas occupies, @ 14.696 psia & 32 -F,
 359.2 cu ft. per lb-mole

 One mole of gas occupies, @ 14.696 psia & 60 -F,
 379.64 cu ft. per lb-mole

Hydrogen Sulfide (H2S) conversion chart:

0 grains H2S/100 scf	=	0.00000 mole % H2S
		0.0 ppmv H2S
0 mole % H2S	=	0 grains H2S/100 scf
		0.0 ppmv H2S
0 ppmv H2S	=	0.000 grains H2S/100 scf
		0.00000 mole % H2S

Ideal Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Z factor
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	0.9997
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	0.9964
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	587	637	6,545	7,100	7.15	0.9846
Water	H20	18.000	0.6215	0.0474	21.091	0	0	0	0	0	1.0006
Oxygen	02	31.999	1.1048	0.0843	11.864	0	0	0	0	0	0.9992
Methane	CH4	16.043	0.5539	0.0423	23.664	909.4	1,010.0	21,520	23,879	9.53	0.9980
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,618.7	1,769.6	20,432	22,320	16.68	0.9919
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,314.9	2,516.1	19,944	21,661	23.82	0.9825
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,000.4	3,251.9	19,629	21,257	30.97	0.9711
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,010.8	3,262.3	19,680	21,308	30.97	0.9667
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,699.0	4,000.9	19,478	21,052	38.11	1.0000
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,706.9	4,008.9	19,517	21,091	38.11	1.0000
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,403.8	4,755.9	19,403	20,940	45.26	0.9879
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,100.0	5,502.5	22,000	23,000	52.41	0.9947

Real Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /		
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Gal/Mole	
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	4.1513	
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	6.4532	
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	621	672	6,545	7,100	7.15	5.1005	
Water	H2O	18.000	0.6215	0.0474	21.091						3.8376	
Oxygen	02	31.999	1.1048	0.0843	11.864	0	0	0	0	0	3.3605	
Methane	CH4	16.043	0.5539	0.0423	23.664	911	1,012	21,520	23,879	9.53	6.4172	
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,631	1,783	20,432	22,320	16.68	10.126	
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,353	3,354	19,944	21,661	23.82	10.433	
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,101	3,369	19,629	21,257	30.97	12.386	
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,094	3,370	19,680	21,308	30.97	11.937	
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,709	4,001	19,478	21,052	38.11	13.86	
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,698	4,009	19,517	21,091	38.11	13.713	
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,404	4,756	19,403	20,940	45.26	15.566	16.
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,101	5,503	22,000	23,000	52.41	17.468	17

16.3227

17.468

Doc Dehydration Facility Tyler County, WV

Source	Description	NOx lb/hr	CO lb/hr	CO2e lb/hr	VOC lb/hr	SO2 lb/hr	PM lb/hr	n-Hexane Ib/Hr	benzene lb/hr	formaldehyde lb/hr	Total HAPs lb/hr
RBV-1	300 MBTU/Hr Reboiler	0.03	0.03	36.2	0.0	0.000	0.00	0.001	0.002	0.000	0.001
RSV-1	Controlled Still Vent			57.8	3.9			0.149	0.082		0.645
	Fittings Fugitive Emissions			0.9	0.02						
Total		0.03	0.03	95	3.92	0.00	0.00	0.15	0.08	0.00	0.65

Source		NOx tpy	CO tpy	CO2e tpy	VOC tpy	SO2 tpy	PM tpy	n-Hexane TPY	benzene tpy	formaldehyde tpy	Total HAPs tpy
RBV-1	300 MBTU/Hr Reboiler	0.13	0.11	159	0.01	0.001	0.01	0.00	0.00	0.00	0.002
RSV-1	Controlled Still Vent			253	17.10			0.65	0.36		2.823
	Fittings Fugitive Emissions			4	0.07						
Total	Proposed	0.13	0.11	416	17.19	0.00	0.01	0.66	0.36	0.00	2.83
••••	Bee Doc Well Pad (current permit application update)	3.43	6.62	3,997	43.89	0.01	1.57	1.40	0.01	0.08	1.94
ć	Aggregated Emissons	3.43	6.73	4,413	43.89 61.08	0.01	1.58	2.06	0.36	0.08	4.77

Doc Dehydration Facility Tyler County, WV

Dehy Stil Vent Emissions

SOURCE RSV-1

Still	Vent Emissions	s (Conti	rolled)
Dry Gas Rate	20	MMSCFD	
Glycol Circulation Rate	3.5	gpm	
Treating Temperature	85	Deg F	
Treating Pressure	500	psi	
Destruction Efficiency of Re-Boiler	90	%	
	Total HC	7.3851	lbs/hr

Total HC	7.3851	lbs/hr	32.347	TPY
Methane	2.3118	lbs/hr	10.126	TPY
Total VOC	3.9050	lbs/hr	17.104	TPY
Total HAP	0.6446	lbs/hr	2.823	TPY
benzene	0.0815	lbs/hr	0.357	TPY
toluene	0.3367	lbs/hr	1.475	TPY
ethyl benzene	0.0438	lbs/hr	0.192	TPY
xylene	0.0333	lbs/hr	0.146	TPY
n-hexane	0.1494	lbs/hr	0.654	TPY

From Gri GlyCalc 4.0

Data From GLYCalc:

Doc Dehydration Facility Tyler County, WV

Potential Emission Rates

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 300.0 Mbtu/hr 98.0 % 808.5 Btu/scf 9,088 scfd 0.000 Mole % 8760

Source RBV-1

NOx	0.0300	lbs/hr	0.131	TPY
СО	0.0252	lbs/hr	0.110	TPY
CO2	36.0	lbs/hr	157.7	TPY
CO2e	36	lbs/hr	159	tpy
VOC	0.0017	lbs/hr	0.007	TPY
SO2	0.0002	lbs/hr	0.001	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0023	lbs/hr	0.010	TPY
СНОН	0.0000	lbs/hr	0.000	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hexane	0.0005	lbs/hr	0.002	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0006	lbs/hr	0.002	TPY

AP-42 Factors Used

NOx	100 Lbs/MMCF	
СО	84 Lbs/MMCF	
CO ₂	120,000 Lbs/MMCF	Global Warming Potential = 1
VOC	5.5 Lbs/MMCF	
PM	7.6 Lbs/MMCF	
SO_2	0.6 Lbs/MMCF	
CH ₄	2.3 Lbs/MMCF	Global Warming Potential = 25
N_2O	2.2 Lbs/MMCF	Global Warming Potential =298
нсон	0.075 Lbs/MMCF	
Benzene	0.0021 Lbs/MMCF	
n-Hexane	1.8 Lbs/MMCF	
Toluene	0.0034 Lbs/MMCF	

Doc Dehydration Facility Tyler County, WV

Fugitive VOC Emissions

Volatile Organic Compounds, non-methane and non-ethane from gas analysis:	24.54
Methane from gas analysis:	53.76
Carbon Dioxide from gas analysis:	0.30
Gas Density	0.0621

weight percent weight percent weight percent lb/scf

Emission Source:	Number*	Oil & Gas Production**	VOC %	VOC, lb/hr	VOC TPY	VOC, lb/yr	CO2 lb/hr	CO2 TPY	CO2 lb/yr	CH4 lb/hr	CH4 TPY	CH4 lb/yr	CO2e TPY
Valves:													
Gas/Vapor:	24	0.02700 scf/hr	24.5	0.010	0.043	86.47	0.000	0.001	1.07	0.022	0.095	189.45	2.37
Relief Valves:	2	0.04000 scf/hr	24.5	0.001	0.005	10.68	0.000	0.000	0.13	0.003	0.012	23.39	0.29
Open-ended Lines, gas:	2	0.06100 sfc/hr	24.5	0.002	0.008	16.28	0.000	0.000	0.20	0.004	0.018	35.67	0.45
Connectors:													
Gas:	90	0.00300 scf/hr	24.5	0.004	0.018	36.03	0.000	0.000	0.45	0.009	0.039	78.94	0.99

	Fug	itive Calculat	ions:
		lb/hr	tpy
	VOC	0.017	0.075
	CH4	0.037	0.164
	CO2	0.000	0.001
	CO2e	0.935	4.094
· · · · · ·			

Notes:

*Numbers are from 40 CFR 98, Table W-1B

**Factors are from 40 CFR 98, Table W-1A (scf/hr), where available. Remaining are API (lb/hr)

Doc Dehydration Facility Tyler County, WV

Inlet Gas Composition:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Ζ	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.354	0.099	0.003	0.451			-		0.0035	
Carbon Dioxide, CO2	0.152	0.067	0.002	0.304			-		0.0015	
Hydrogen Sulfide, H2S	0.000	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	0.001	0.000	0.000	0.001			-		0.0000	
Methane, CH4	73.684	11.821	0.408	53.755	670.1	744.2	7.022		0.7354	
Ethane, C2H6	15.322	4.607	0.159	20.952	248.0	271.1	2.556		0.1520	4.076
Propane	5.774	2.546	0.088	11.578	133.7	145.3	1.375	11.578	0.0567	1.583
Iso-Butane	0.869	0.505	0.017	2.297	26.1	28.3	0.269	2.297	0.0084	0.283
Normal Butane	1.870	1.087	0.038	4.943	56.3	61.0	0.579	4.943	0.0181	0.586
Iso Pentane	0.580	0.418	0.014	1.903	21.5	23.2	0.221	1.903	0.0058	0.211
Normal Pentane	0.597	0.430	0.015	1.957	22.1	23.9	0.227	1.957	0.0060	0.215
Hexane	0.509	0.119	0.015	0.541	22.4	24.2	0.230	0.541	0.0050	0.208
Heptane+	0.289	0.290	0.010	1.317	14.7	15.9	0.151	1.317	0.0029	0.133
	100.000	21.990	0.770		1,214.8	1,337.1	12.631	24.536	0.9953	7.294

Gas Density (STP) = 0.062

Ideal Gross (HHV)	1,337.1
Ideal Gross (sat'd)	1,314.6
GPM	-
Real Gross (HHV)	1,343.4
Real Net (LHV)	1,220.6

Doc Dehydration Facility Tyler County, WV

Still Vent Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.1380	0.039	0.001	0.164			-		0.0014	
Carbon Dioxide, CO2	0.1540	0.068	0.002	0.288			-		0.0015	
Hydrogen Sulfide, H2S		-	-	-			-		-	
Water	53.8000	9.684	0.334	41.113			-		0.5383	
Oxygen, O2		-	-	-			-		-	
Methane, CH4	27.9000	4.476	0.155	19.003	253.7	281.8	2.659		0.2784	
Ethane, C2H6	7.5200	2.261	0.078	9.600	121.7	133.1	1.254		0.0746	2.000
Propane	3.6100	1.592	0.055	6.758	83.6	90.8	0.860	6.758	0.0355	0.989
Iso-Butane	0.6650	0.387	0.013	1.641	20.0	21.6	0.206	1.641	0.0065	0.216
Normal Butane	1.7100	0.994	0.034	4.220	51.5	55.8	0.530	4.220	0.0165	0.536
Iso Pentane	0.5580	0.403	0.014	1.709	20.6	22.3	0.213	1.709	0.0056	0.203
Normal Pentane	0.6850	0.494	0.017	2.098	25.4	27.5	0.261	2.098	0.0069	0.247
Hexane	0.7780	0.670	0.023	2.846	34.3	37.0	0.352	2.846	0.0077	0.318
Heptane	2.4820	2.487	0.086	10.559	126.6	136.6	1.301	10.559	0.0247	1.139
	100.000	23.554	0.813		737.3	806.5	7.635	29.832	0.9975	5.649

	Gas Density (STP) =	0.066
Ideal Gross (HHV)	806.5	
Ideal Gross (sat'd)	793.2	
GPM	-	
Real Gross (HHV)	808.5	
Real Net (LHV)	739.2	

GAS DATA INFORMATION

Specific Graivity of Air, @ 29.92 in. Hg and 60 -F,28.9625One mole of gas occupies, @ 14.696 psia & 32 -F359.2 cu ft. per lb-mole One mole of gas occupies, @ 14.696 psia & 60 -F 379.64 cu ft. per lb-mole

Hydrogen Sulfide (H2S) conversion chart:

<u>0</u> grains H2S/100 scf	=	0.00000 mole % H2S
		0.0 ppmv H2S
<u>0</u> mole % H2S	=	0 grains H2S/100 scf
		0.0 ppmv H2S
<u>0</u> ppmv H2S	=	0.000 grains H2S/100 scf
		<u>0.00000</u> mole % H2S

Ideal Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Z factor
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	0.9997
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	0.9964
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	587	637	6,545	7,100	7.15	0.9846
Water	H20	18.000	0.6215	0.0474	21.091	0	0	0	0	0	1.0006
Oxygen	02	31.999	1.1048	0.0843	11.864	0	0	0	0	0	0.9992
Methane	CH4	16.043	0.5539	0.0423	23.664	909.4	1,010.0	21,520	23,879	9.53	0.9980
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,618.7	1,769.6	20,432	22,320	16.68	0.9919
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,314.9	2,516.1	19,944	21,661	23.82	0.9825
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,000.4	3,251.9	19,629	21,257	30.97	0.9711
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,010.8	3,262.3	19,680	21,308	30.97	0.9667
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,699.0	4,000.9	19,478	21,052	38.11	1.0000
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,706.9	4,008.9	19,517	21,091	38.11	1.0000
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,403.8	4,755.9	19,403	20,940	45.26	0.9879
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,100.0	5,502.5	22,000	23,000	52.41	0.9947

Real Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /		
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Gal/Mole	
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	4.1513	
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	6.4532	
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	621	672	6,545	7,100	7.15	5.1005	
Water	H2O	18.000	0.6215	0.0474	21.091						3.8376	
Oxygen	02	31.999	1.1048	0.0843	11.864	0	0	0	0	0	3.3605	
Methane	CH4	16.043	0.5539	0.0423	23.664	911	1,012	21,520	23,879	9.53	6.4172	
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,631	1,783	20,432	22,320	16.68	10.126	
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,353	3,354	19,944	21,661	23.82	10.433	
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,101	3,369	19,629	21,257	30.97	12.386	
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,094	3,370	19,680	21,308	30.97	11.937	
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,709	4,001	19,478	21,052	38.11	13.86	
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,698	4,009	19,517	21,091	38.11	13.713	
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,404	4,756	19,403	20,940	45.26	15.566	16.322
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,101	5,503	22,000	23,000	52.41	17.468	17.46
											-	

227 168 GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: Icon Midstream - Doc File Name: C:\Rogers_Files\Misc\Jay-Bee Oil & Gas\Icon Midstream\Doc\Doc No Cond.ddf Date: February 23, 2016 DESCRIPTION: Description: 20 MMSCFD Still as Fuel and Excess to Still Column for destruction No Flash Tank Annual Hours of Operation: 8760.0 hours/yr WET GAS: Temperature: 85.00 deg. F Pressure: 500.00 psig Pressure: 500.00 psig Wet Gas Water Content: Saturated Component Conc. (vol %) _____
 Carbon Dioxide
 0.1516

 Nitrogen
 0.3624

 Methane
 73.6835

 Ethane
 15.3223

 Propane
 5.7741

 Isobutane
 0.8689

 n-Butane
 1.8700

 Isopentane
 0.5801

 n-Pentane
 0.5966

 n-Hexane
 0.1919
 Other Hexanes 0.3168 Ther nexanes0.3168Heptanes0.1833Benzene0.0037Toluene0.0089Ethylbenzene0.0007 Xylenes 0.0004 C8+ Heavies 0.0808 DRY GAS: Flow Rate: 20.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF LEAN GLYCOL: _____ Glycol Type: TEG Water Content: 1.5 wt% H2O Flow Rate: 3.5 gpm PUMP: ______ Glycol Pump Type: Gas Injection Gas Injection Pump Volume Ratio: 0.080 acfm gas/gpm glycol

Page: 2

REGENERATOR OVERHEADS CONTROL DEVICE:

Control Device: Combustion Device Destruction Efficiency: 90.0 % Excess Oxygen: 5.0 % Ambient Air Temperature: 60.0 deg. F

1 and

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Icon Midstream - Doc File Name: C:\Rogers_Files\Misc\Jay-Bee Oil & Gas\Icon Midstream\Doc\Doc No Cond.ddf Date: February 23, 2016

DESCRIPTION:

Description: 20 MMSCFD Still as Fuel and Excess to Still Column for destruction No Flash Tank

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

	lbs/hr	lbs∕day	tong/un
Component	105/11	IDS/UAY	tons/yr
Methane	2.3118	55.484	10.1258
Ethane	1,1682	28.037	5.1168
Propane	0.8225	19.739	3.6025
Isobutane	0.1995	4,789	0.8740
n-Butane	0.5135	12.323	2.2489
Isopentane	0.2082	4.997	0,9119
n-Pentane	0.2553	6.126	1.1180
n-Hexane	0.1494	3,586	0.6544
Other Hexanes	0.1968	4.723	0.8620
Heptanes	0.2989	7.173	1.3091
Benzene	0.0815	1.957	0.3571
Toluene	0.3367	8.080	1.4746
Ethylbenzene	0.0438	1.050	0.1917
Xylenes	0.0333	0.798	0.1457
C8+ Heavies	0.7657	18.378	3.3540
Total Emissions	7.3851	177.241	32.3465
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	7.3851 3.9050 0.6446 0.4952	177.241 93.720 15.471 11.886	32.3465 17.1039 2.8235 2.1692

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons∕yr
Methane	23.1184	554.841	101.2584
Ethane	11.6821	280.371	51.1677
Propane	8.2248	197.395	36.0245
Isobutane	1.9955	47.891	8.7401
n-Butane	5.1345	123.228	22.4891
Isopentane	2.0819	49.966	9.1187
n-Pentane	2.5526	61.263	11.1804
n-Hexane	1.4940	35.857	6.5438
Other Hexanes	1.9680	47.233	8.6199
Heptanes	2.9888	71.732	13.0910
Benzene Toluene	0.8154 3.3667	19.569 80,800	3.5713 14.7460

Ethylbenzene Xylenes C8+ Heavies	0.4377 0.3327 7.6575	10.504 7.985 183.780	Page; 2 1.9170 1.4572 33.5398
Total Emissions	73.8505	1772.413	323,4653
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	73.8505 39.0500 6.4464 4.9524	1772.413 937.201 154.715 118.858	323.4653 171.0392 28.2354 21.6916

EQUIPMENT REPORTS:

COMBUSTION DEVICE

Ambient Temperatu:	re: 60.00) deg. F
Excess Oxyg		1 %
Combustion Efficien	cy: 90.00	1 %
Supplemental Fuel Requireme	nt: 3.20e-001	. MM BTU∕hr
Component	Emitted	Destroyed

Component	Emitted	Destroyed
Methane	10.00%	90.00%
Ethane	10.00%	90.00%
Propane	10.00%	90.00%
Isobutane	10.00%	90,00%
n-Butane	10.00%	90.00%
Isopentane	10.00%	90.00%
n-Pentane	10.00%	90,00%
n-Hexane	10.00%	90.00%
Other Hexanes	10.00%	90.00%
Heptanes	10.00%	90.00%
Benzene	10.00%	90.00%
Toluene	10.00%	90,00%
Ethylbenzene	10.00%	90.00%
Xylenes	10.00%	90.00%
C8+ Heavies	10.00%	90.00%

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: Calculated Dry Gas Dew Point:	1.25 3.67	lbs. H2O/MMSCF
Temperature:		deg, F
Pressure:	500.0	psig
Dry Gas Flow Rate:	20.0000	MMSCF/day
Glycol Losses with Dry Gas:	0.0849	lb/hr
Wet Gas Water Content:	Saturated	
Calculated Wet Gas Water Content:	63.57	lbs. H2O/MMSCF
Calculated Lean Glycol Recirc. Ratio:	4.21	gal∕lb H2O
	maining Dry Gas	Absorbed in Glycol

		Page:	3
Water	5.76%	94.24%	
Carbon Dioxide	99.84%	0.16%	
Nitrogen	99.99%	0.01%	
Methane	99.99%	0.01%	
Ethane	99.96%	0.04%	
Propane	99.93%	0.07%	
Isobutane	99,90%	0.10%	
n-Butane	99.86%	0, 14%	
Isopentane	99.85%	0.15%	
n-Pentane	99.81%	0.19%	
n-Hexane	99.67%	0,33%	
Other Hexanes	99.75%	0.25%	
Heptanes	99.34%	0.66%	
Benzene	87.24%	12.76%	
Toluene	81,39%	18.61%	
Ethylbenzene	73.27%	26.73%	
Xylenes	64.41%	35.59%	
C8+ Heavies	97.54%	2.46%	

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water Carbon Dioxide	37.13% 0.00% 0.00%	62.87% 100.00% 100.00%
Nitrogen Methane Ethane	0.00%	
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.33%	99.67%
n-Pentane	0.36%	99.64%
n-Hexane	0.41%	99.59%
Other Hexanes	0.76%	99.24%
Heptanes	0.45%	99.55%
Benzene	4.97%	95.03%
Toluene	7.87%	92.13%
Ethylbenzene	10.38%	89.62%
Xylenes	12.89%	87.11%
C8+ Heavies	11.70%	88.30%

STREAM REPORTS:

WET	GAS	STREAM	

Temperature: Pressure: Flow Rate:	514.70	psia	F			
	Component	;		Conc. (vol%)	Loading (lb∕hr)	

Water 1.34e-001 5.31e+001 Carbon Dioxide 1.51e-001 1.47e+002 Nitrogen 3.62e-001 2.23e+002 Methane 7.36e+001 2.60e+004 Ethane 1.53e+001 1.01e+004 Propane 5.77e+000 5.59e+003 Isobutane 8.68e-001 1.11e+003 n-Butane 1.87e+000 2.39e+003 Isopentane 5.790-001 9.200+002 n-Pentane 5.96e-001 9.46e+002 n-Hexane 1.92e-001 3.63e+002 Other Hexanes 3.16e-001 6.00e+002 Heptanes 1.83e-001 4.04e+002 Benzene 3.70e-003 6.35e+000 Toluene 8.89e-003 1.80e+001 Ethylbenzene 6.99e-004 1.63e+000 Xylenes 3.99e-004 9.33e-001 C8+ Heavies 8.07e-002 3.02e+002 _____ _____ Total Components 100.00 4.92e+004

DRY GAS STREAM

Temperature: 85.00 deg. F Pressure: 514.70 psia Flow Rate: 8.33e+005 scfh Component Conc. (vol%) (lb/hr) Water 7.72e-003 3.05e+000 Carbon Dioxide 1.51e-001 1.46e+002 Nitrogen 3.62e-001 2.23e+002 Methane 7.37e+001 2.60e+004 Ethane 1.53e+001 1.01e+004 Propane 5.77e+000 5.59e+003 Isobutane 8.68e-001 1.11e+003 n-Butane 1.87e+000 2.38e+002 n-Butane 1.87e+000 2.38e+002 n-Pentane 5.96e-001 9.18e+002 n-Pentane 5.96e-001 9.44e+002 Nethene 1.91e-001 3.62e+002 n-Hexane 1.91e-001 3.62e+002 Nethene 1.91e-001 3.62e+002 Nethene 1.92e-001 4.01e+002 Benzene 3.23e-003 5.54e+000 Toluene 7.25e-003 1.47e+001 Ethylbenzene 5.13e-004 1.20e+000 Xylenes 2.58e-004 6.01e-001 C8+ Heavies 7.88e-002 2.95e+002 Total Components 100.00 4.91e+004				
(vol%) (lb/hr) Water 7.72e-003 3.05e+000 Carbon Dioxide 1.51e-001 1.46e+002 Nitrogen 3.62e-001 2.23e+002 Methane 7.37e+001 2.60e+004 Ethane 1.53e+001 1.01e+004 Propane 5.77e+000 5.59e+003 Isobutane 8.68e-001 1.11e+003 n-Butane 1.87e+000 2.38e+003 Isopentane 5.79e-001 9.18e+002 n-Pentane 5.96e-001 9.14e+002 n-Hexane 1.91e-001 3.62e+002 0ther Hexanes 3.16e-001 5.98e+002 Heptanes 1.82e-001 4.01e+002 Benzene 3.23e-003 5.54e+000 Toluene 7.25e-003 1.47e+001 Ethylbenzene 5.13e-004 1.20e+000 Xylenes 2.58e-004 6.01e-001 C8+ Heavies 7.88e-002 2.95e+002	Pressure:	514.70 psia		
Carbon Dioxide 1.51e-001 1.46e+002 Nitrogen 3.62e-001 2.23e+002 Methane 7.37e+001 2.60e+004 Ethane 1.53e+001 1.01e+004 Propane 5.77e+000 5.59e+003 Isobutane 8.68e-001 1.11e+003 n-Butane 1.87e+000 2.38e+003 Isopentane 5.79e-001 9.18e+002 n-Pentane 5.96e-001 9.44e+002 n-Pentane 5.96e-001 3.62e+002 Other Hexanes 3.16e-001 5.98e+002 Heptanes 1.82e-001 4.01e+002 Benzene 3.23e-003 5.54e+000 Toluene 7.25e-003 1.47e+001 Ethylbenzene 5.13e-004 1.20e+000 Xylenes 2.58e-004 6.01e-001 C8+ Heavies 7.88e-002 2.95e+002		Component		
Isobutane 8.68e-001 1.11e+003 n-Butane 1.87e+000 2.38e+003 Isopentane 5.79e-001 9.18e+002 n-Pentane 5.96e-001 9.44e+002 0ther Hexanes 3.16e-001 3.62e+002 Heptanes 1.82e-001 4.01e+002 Benzene 3.23e-003 5.54e+000 Toluene 7.25e-003 1.47e+001 Ethylbenzene 5.13e-004 1.20e+000 Xylenes 2.58e-004 6.01e-001 C8+ Heavies 7.88e-002 2.95e+002		Carbon Dioxide Nitrogen Methane	1.510-001 3.620-001 7.370+001	1.46e+002 2.23e+002 2.60e+004
Other Hexanes 3.16e-001 5.98e+002 Heptanes 1.82e-001 4.01e+002 Benzene 3.23e-003 5.54e+000 Toluene 7.25e-003 1.47e+001 Ethylbenzene 5.13e-004 1.20e+000 Xylenes 2.58e-004 6.01e-001 C8+ Heavies 7.88e-002 2.95e+002		Isobutane n-Butane Isopentane	8.68e-001 1.87e+000 5.79e-001	1.11e+003 2.38e+003 9.18e+002
Xylenes 2.580-004 6.01e-001 C8+ Heavies 7.88e-002 2.95e+002		Other Hexanes Heptanes Benzene	3.16e-001 1.82e-001 3.23e-003	5.980+002 4.010+002 5.540+000
Total Components 100.00 4.91e+004		Xylenes	2.58e-004	6.01e-001
		Total Components	100.00	4.910+004

LEAN GLYCOL STREAM

Temperature: Flow Rate:			F			
	Component	5			Loading (lb/hr)	
		w		9.84e+001 1.50e+000		

Carbon Dioxide 1.20e-012 2.37e-011 Nitrogen 1.31e-013 2.58e-012 Methane 4.82e-018 9.49e-017 Ethane 9.03e-008 1.78e-006 Propane 7.96e-009 1.57e-007 Isobutane 1.72e-009 3.38e-008 n-Butane 4.11e-009 8.10e-008 Isopentane 3.48e-004 6.85e-003 n-Pentane 4.63e-004 9.11e-003 n-Hexane 3.09e-004 6.08e-003 Other Hexanes 7.69e-004 1.51e-002 Heptanes 6.82e-004 1.34e-002 Benzene 2,17e-003 4.27e-002 Toluene 1.46e-002 2.88e-001 Ethylbenzene 2.57e-003 5.07e-002 Xylenes 2.50e-003 4.92e-002 C8+ Heavies 5.15e-002 1.01e+000 Total Components 100.00 1.97e+003

RICH GLYCOL AND PUMP GAS STREAM

Temperature: 85.00 deg. F Pressure: 514.70 psia Flow Rate: 3.76e+000 gpm NOTE: Stream has more than one phase.

Component	Conc. (wt%)	Loading (lb∕hr)
Water Carbon Dioxide Nitrogen	9.260+001 3.800+000 1.680-002 9.560-003 1.100+000	7.96e+001 3.51e-001 2.00e-001
Propane Isobutane	5.58e-001 3.93e-001 9.53e-002 2.45e-001 9.98e-002	8.22e+000 2.00e+000 5.13e+000
n-Hexane Other Hexanes Heptanes		1.50e+000 1.98e+000 3.00e+000
Ethylbenzene Xylenes C8+ Heavies	1.820-002	4.88e-001 3.82e-001 8.67e+000
Total Components	100.00	2.096+003

REGENERATOR OVERHEADS STREAM

Temperature: Pressure: Flow Rate:	212.00 deg. 14.70 psia 1.96e+003 scfh	F		
	Component	Conc. (vol%)	Loading (lb∕hr)	

Water 5.38e+001 5.01e+001 Carbon Dioxide 1.540-001 3.510-001 Nitrogen 1.380-001 2.000-001 Methane 2.790+001 2.310+001 Ethane 7.520+000 1.170+001 Propane 3.61e+000 8.22e+000 Isobutane 6.65e-001 2.00e+000 n-Butane 1.71e+000 5.13e+000 Isopentane 5.58e-001 2.08e+000 n-Pentane 6.85e-001 2.55e+000 n-Hexane 3.36e-001 1.49e+000 Other Hexanes 4.42e-001 1.97e+000 Heptanes 5.77e-001 2.99e+000 Benzene 2.02e-001 8.15e-001 Toluene 7.07e-001 3.37e+000 Ethylbenzene 7.98e-002 4.38e-001 Xylenes 6.06e-002 3.33e-001 C8+ Heavies 8.70e-001 7.66e+000 _____ ____ Total Components 100.00 1.24e+002

COMBUSTION DEVICE OFF GAS STREAM

Pressure:	000.00 deg. F 14.70 psia 0e+001 scfh		
Co	mponent	Conc. (vol%)	Loading (lb∕hr)
	Ethane Propane Isobutane	6.08e+001 1.64e+001 7.86e+000 1.45e+000 3.72e+000	1.170+000 8.220-001 2.000-001
	n-Hexane Other Hexanes	1.49e+000 7.31e-001	2.55e-001 1.49e-001 1.97e-001
	Toluene Ethylbenzene	1.320-001	3.37e-001 4.38e-002 3.33e-002
 ן	Cotal Components	100.00	7.39⊖+000

ATTACHMENT O

Monitoring, Recordkeeping, Reporting and Testing Plan

ATTACHMENT O

Icon Midstream Pipeline, LLC

Doc Dehydration Facility

Monitoring, Recordkeeping, Reporting and Testing Plan

I. Monitoring

Icon Midstream (Icon) will monitor actual annual benzene emissions.

II. Recordkeeping

Icon will maintain accurate operating records of the dehydration unit for each calendar year. Records will include actual annual benzene emissions.

III. Testing

None anticipated.

IV. Reporting

Icon will submit certified emission statements on an annual basis in accordance with WVDEP, Division of Air Quality requirements.

ATTACHMENT P

Public Notice

Tyler Star News Legals Print Ad Proof

ADNo: 2160 Customer Number: L00411 Customer Name: Company: SE TECHNOLOGIES Address: 98 VANADIUM ROAD City/St/Zip: BRIDGEVILLE ,PA 15017 Phone: (412) 221-1100 Solicitor: VV Category: 10 Class: 1000 Rate: LE-0 Start: 4-6-2016 Stop: 4-6-2016 Lines: 48 Inches: 4.67 Words: 221

Credit Card: Expire: Order Number: Cost: 45.40 Extra Charges: .00 Adjustments: .00 Payments: .00 Discount: .00 Balance: 45.40

AIR QUALITY PERMIT NOTICE

Notice of Application

Notice is given that Icon Midstream Pipeline, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Construction Permit Registration for its **Doc Dehydration Facility** Iocated off of Indian Creek Road near Middlebourne, WV in Tyler County, West Virginia (Lat.39.449105, Long. -80.768234).

The applicant estimates the potential to discharge the following regulated air pollutants:

0.13 tons of Nitrogen Oxides per year

0.11 tons of Carbon Monoxide per year

17.31 tons of Volatile Organics per year

<0.01 tons of Sulfur Dioxide per year

0.01 tons of Particulate Matter per year

0.36 tons of Benzene per year

0.66 tons of n-Hexane per year

1.48 tons of Toluene per year

0.15 tons of Xylene per year

426 tons of CO2e per year

Startup of the modified operation is planned to begin on or about the 15th day of June, 2016. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the 6th day of April, 2016. TSN 2160 4/6

Affidavit Notice Will Be Submitted Upon Receipt

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Icon Midstream Pipeline, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Construction Permit Registration for its Doc Dehydration Facility located off of Indian Creek Road near Middlebourne, WV in Tyler County, West Virginia (Lat.39.449105, Long. -80.768234).

The applicant estimates the potential to discharge the following regulated air pollutants:

0.13 tons of Nitrogen Oxides per year 0.11 tons of Carbon Monoxide per year 17.31 tons of Volatile Organics per year <0.01 tons of Sulfur Dioxide per year 0.01 tons of Particulate Matter per year 0.36 tons of Benzene per year 0.66 tons of n-Hexane per year 1.48 tons of Toluene per year 0.15 tons of Xylene per year 426 tons of CO_{2e} per year

Startup of the modified operation is planned to begin on or about the 15th day of June, 2016. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the (Day) day of (Month), (Year).

By: Mr. Shane Dowell Operations Manager Icon Midstream Pipeline, LLC