April 8, 2016

<u>CERTIFIED MAIL</u>

Return Receipt Requested

Mr. William Durham, Director WVDEP Division of Air Quality 601 57th Street SE Charleston, WV 25304

RE: M&G Polymers, Apple Grove, WV Class II Administrative Update

Dear Mr. Director:

Enclosed is a Class II Administrative Update for M&G Polymers, USA, LLC. With this update, M&G proposes to remove CSS7 from the permit, increase the rates on CSS12 and 13 as a result of market requirements, and include various other minor changes and corrections identified in the preparation of the Title V permit renewal application. If you have any questions concerning this update, please contact me at (304) 576-4589

Sincerely,

Scott B. Whitwer QHSE Manager

Enclosures:

Table of Contents R13-1650R Revision Application March 2016

Main Application	
Attachment A	Business Certificate
Attachment B	Site Location Map
Attachment C	Installation and Start-Up Schedule
Attachment D	Regulatory Discussion
Attachment E	Plot Plan
Attachment F	Process Flow Diagrams
Attachment G	Process Description
Attachment H	Safety Data Sheets (SDS)
Attachment I	Equipment List Form
Attachment J	Emission Points Data Summary Sheets
Attachment K	Fugitive Emissions Data Summary Sheets
Attachment L	Emissions Unit Data Sheets
Attachment M	Air Pollution Control Device Sheets
Attachment N	Supporting Calculations
Attachment O	Monitoring/Recordkeeping/Reporting/Testing Plans
Attachment P	Public Notice
Attachment R	Authority of Corporation
Attachment S	Title V Revision Information

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.dep.wv.gov/dag	APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)			
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOWN CONSTRUCTION MODIFICATION RELOCATION CLASS I ADMINISTRATIVE UPDATE TEMPORARY CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FACT	PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY ADMINISTRATIVE AMENDMENT SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION			
(Appendix A, "Title V Permit Revision Flowchart") and ability	sion Guidance" in order to determine your Title V Revision options / to operate with the changes requested in this Permit Application.			
Section	I. General			
 Name of applicant (as registered with the WV Secretary of M&G Polymers, USA, LLC 	State's Office):2. Federal Employer ID No. (FEIN):1 2 1 2 9 9 8 9 0			
3. Name of facility (if different from above):	4. The applicant is the:			
M&G Polymers, USA, LLC	OWNER OPERATOR BOTH			
5A. Applicant's mailing address: 5B. Facility's present physical address: State Route 2 State Route 2				
Apple Grove, West Virginia 25502-0088 Apple Grove, West Virginia 25502-0088				
 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? XES NO If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 				
7. If applicant is a subsidiary corporation, please provide the na	7. If applicant is a subsidiary corporation, please provide the name of parent corporation:			
 8. Does the applicant own, lease, have an option to buy or otherwise have control of the <i>proposed site</i>? XES NO If YES, please explain: Owns If NO, you are not eligible for a permit for this source. 				
9. Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary classification System (NAICS) code for the facility: 10. North American Industry Classification System (NAICS) code for the facility:				
11A. DAQ Plant ID No. (for existing facilities only): 0 5 3 - 0 0 0 0 2	List all current 45CSR13 and 45CSR30 (Title V) permit numbers associated with this process (for existing facilities only): R13-1650R and R30-05300054-2011			
All of the required forms and additional information can be found	under the Permitting Section of DAQ's website, or requested by phone.			

12A.

 For Modifications, Administrative Updates or Temporary permits at an existing facility, please provide directions to the present location of the facility from the nearest state road; 				
 For Construction or Relocation permits, please p road. Include a MAP as Attachment B. 		site location from the nearest state		
WV Route 2 approximately thirteen miles south of Po	bint Pleasant and thirty miles north of	Huntington.		
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:		
ΝΑ	Apple Grove	Mason		
12.E. UTM Northing (KM): 4,280.0	12F. UTM Easting (KM): 397.9	12G. UTM Zone: 17		
13. Briefly describe the proposed change(s) at the facilit This modification is to remove equipment no longer in se equipment.	-	rrect design heat inputs on		
 14A. Provide the date of anticipated installation or change If this is an After-The-Fact permit application, provide and the provided matrix of the provided	-	14B. Date of anticipated Start-Up if a permit is granted: 05/26/2017		
14C. Provide a Schedule of the planned Installation of/ Change to and Start-Up of each of the units proposed in this permit application as Attachment C (if more than one unit is involved).				
15. Provide maximum projected Operating Schedule of activity/activities outlined in this application: Hours Per Day 24 Days Per Week 7 Weeks Per Year 52				
16. Is demolition or physical renovation at an existing facility involved?				
17. Risk Management Plans. If this facility is subject to 112(r) of the 1990 CAAA, or will become subject due to proposed				
changes (for applicability help see www.epa.gov/ceppo), submit your Risk Management Plan (RMP) to U. S. EPA Region III.				
18. Regulatory Discussion. List all Federal and State air pollution control regulations that you believe are applicable to the				
proposed process (if known). A list of possible applicable requirements is also included in Attachment S of this application				
(Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance (if known). Provide this				
information as Attachment D.				
Section II. Additional attachments and supporting documents.				
 Include a check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR22 and 45CSR13). 				
20. Include a Table of Contents as the first page of your application package.				
 Provide a Plot Plan, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as Attachment E (Refer to Plot Plan Guidance). 				
 Indicate the location of the nearest occupied structure (e.g. church, school, business, residence). 				
22. Provide a Detailed Process Flow Diagram(s) showing each proposed or modified emissions unit, emission point and control device as Attachment F.				
23. Provide a Process Description as Attachment G.				
 Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable). 				
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.				

24. Provide Material Safety Da	ta Sheets (MSDS) for all materia	ls processed, used or produced as Attachment H.	
- For chemical processes, prov	ide a MSDS for each compound	emitted to the air.	
25. Fill out the Emission Units	Table and provide it as Attachm	ent I.	
26. Fill out the Emission Points	S Data Summary Sheet (Table 1	and Table 2) and provide it as Attachment J.	
27. Fill out the Fugitive Emission	ons Data Summary Sheet and p	provide it as Attachment K.	
28. Check all applicable Emissi	ons Unit Data Sheets listed belo	ow:	
Bulk Liquid Transfer Operatio	ns 🛛 🗌 Haul Road Emissi	ons 🗌 Quarry	
Chemical Processes	Hot Mix Asphalt P		
Concrete Batch Plant	Incinerator		
Grey Iron and Steel Foundry	Indirect Heat Excl	anger Storage Tanks	
General Emission Unit, speci	fy		
Fill out and provide the Emission	ns Unit Data Sheet(s) as Attach	ment L.	
29. Check all applicable Air Pol	Iution Control Device Sheets lis	sted below:	
Absorption Systems	🛛 Baghouse	Flare	
Adsorption Systems	Condenser	Mechanical Collector	
Afterburner	Electrostatic	Precipitator Wet Collecting System	
Other Collectors, specify Hot	Oiler Heater		
Fill out and provide the Air Pollu	tion Control Device Sheet(s) a	s Attachment M.	
 Provide all Supporting Emissions Calculations as Attachment N, or attach the calculations directly to the forms listed in Items 28 through 31. 			
31. Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O .			
Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.			
32. Public Notice. At the time that the application is submitted, place a Class I Legal Advertisement in a newspaper of general			
circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and Example Legal			
Advertisement for details). Please submit the Affidavit of Publication as Attachment P immediately upon receipt.			
33. Business Confidentiality Claims. Does this application include confidential information (per 45CSR31)?			
If YES, identify each segment of information on each page that is submitted as confidential and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's "Precautionary Notice – Claims of Confidentiality" guidance found in the General Instructions as Attachment Q.			
	Section III. Certific	ation of Information	
34. Authority/Delegation of Au Check applicable Authority		neone other than the responsible official signs the application.	
Authority of Corporation or O	her Business Entity	Authority of Partnership	
Authority of Governmental Ag	jency	Authority of Limited Partnership	
Submit completed and signed Authority Form as Attachment R.			
	-	nder the Permitting Section of DAQ's website, or requested by phone.	

35A. Certification of Information. To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE (Please 35B. Printed name of signee: Scott Whitwer	use blue ink)	DATE: <u>1-8-2016</u> (Please use blue ink) 35C. Title: QHSE Manager
35D. E-mail: Scott.B.Whitwer@gruppomgus.com	36E. Phone: 304-576-4589	36F. FAX: 304-576-4625
36A. Printed name of contact person (if differe	nt from above): Same	36B. Title:
36C. E-mail:	36D. Phone:	36E. FAX:

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDE	ED WITH THIS PERMIT APPLICATION:
 Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table Attachment J: Emission Points Data Summary Sheet 	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information Application with the signature(s) to the DAQ, Permitting Section, at the
address listed on the first page of this	s application. Please DO NOT fax permit applications.
FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:	
Forward 1 copy of the application to the Title V Permitting	g Group and:
For Title V Administrative Amendments:	
NSR permit writer should notify Title V permit writ	er of draft permit,
For Title V Minor Modifications:	
Title V permit writer should send appropriate notif	fication to EPA and affected states within 5 days of receipt,
NSR permit writer should notify Title V permit writ	
For Title V Significant Modifications processed in parallel	
NSR permit writer should notify a Title V permit with the state of	
Public notice should reference both 45CSR13 and	Title V permits,

EPA has 45 day review period of a draft permit.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

ATTACHMENT A – BUSINESS CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

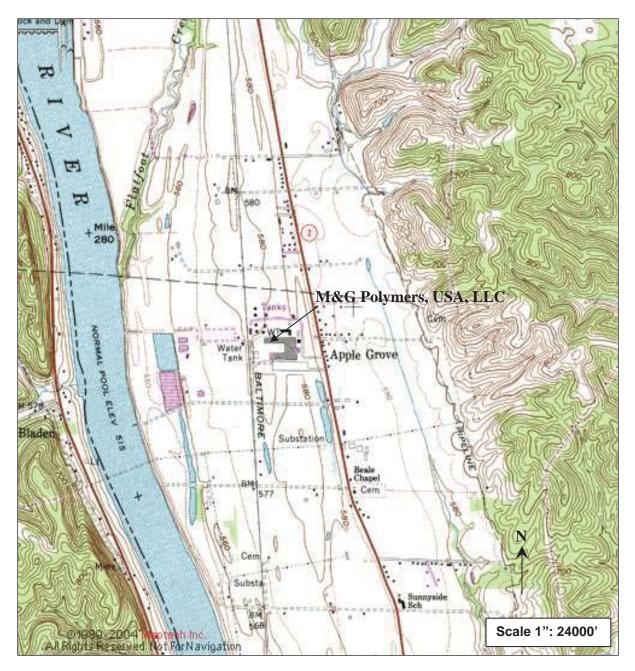
ISSUED TO: M & G POLYMERS USA LLC STATE RT 2 APPLE GROVE, WV 25502-0002

BUSINESS REGISTRATION ACCOUNT NUMBER:

1051-6342

This certificate is issued on: 07/1/2011

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code


The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.4 L2116402304 ATTACHMENT B – SITE LOCATION MAP

Attachment B

Site Location Map

ATTACHMENT C

Installation and Start Up Schedule

The permit application request is to remove from the permit most of the CSS-7 line. The process heater (C2B-B-7020) is subject to 40 CFR 63 Subpart DDDDD. The equipment requested from removal from the permit is non-operational.

In addition, the rates on CSS-12 and CSS-13 production lines will increase due to the change in the physical properties of the polymer that will be produced on that line. No additional equipment is required for this change.

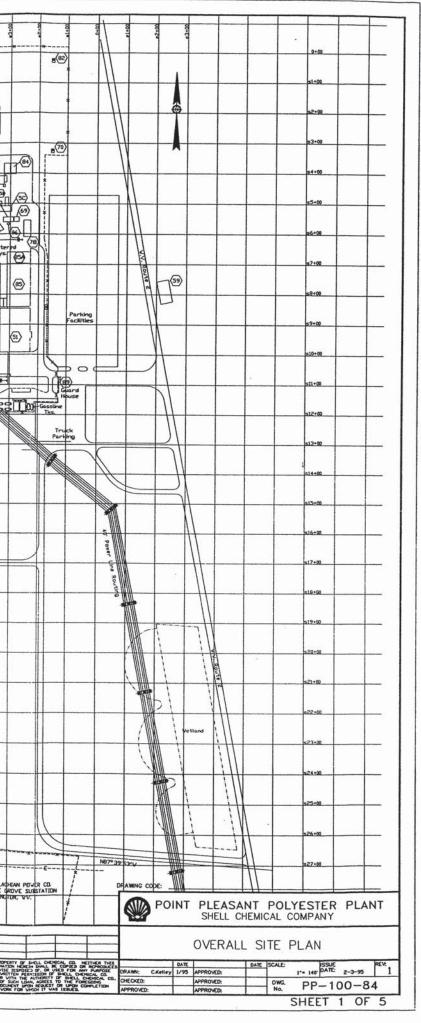
The facility will increase the production rates on CSS-12 and CSS-13 production lines once the permit is issued.

Minor changes were made to the design capacities of crystallizers and pre-heaters after a thorough review during the preparation of the Title V permit renewal application.

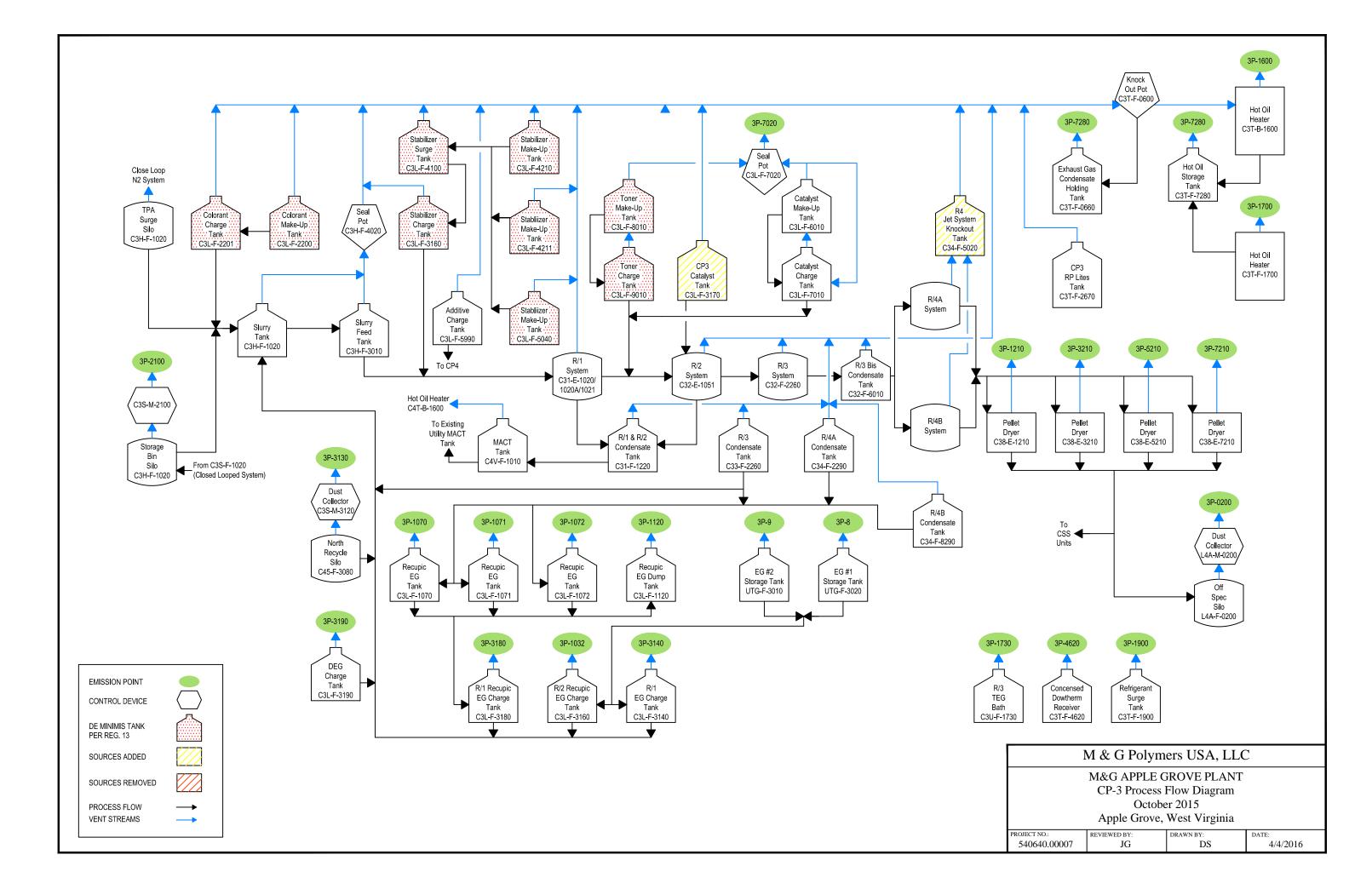
In permit determination PD15-099 approved on December 3, 2015, M&G Polymers changed the heat transfer fluid from Thermoil 66® to Dowtherm RP®. That change occurred after the approval of the permit determination.

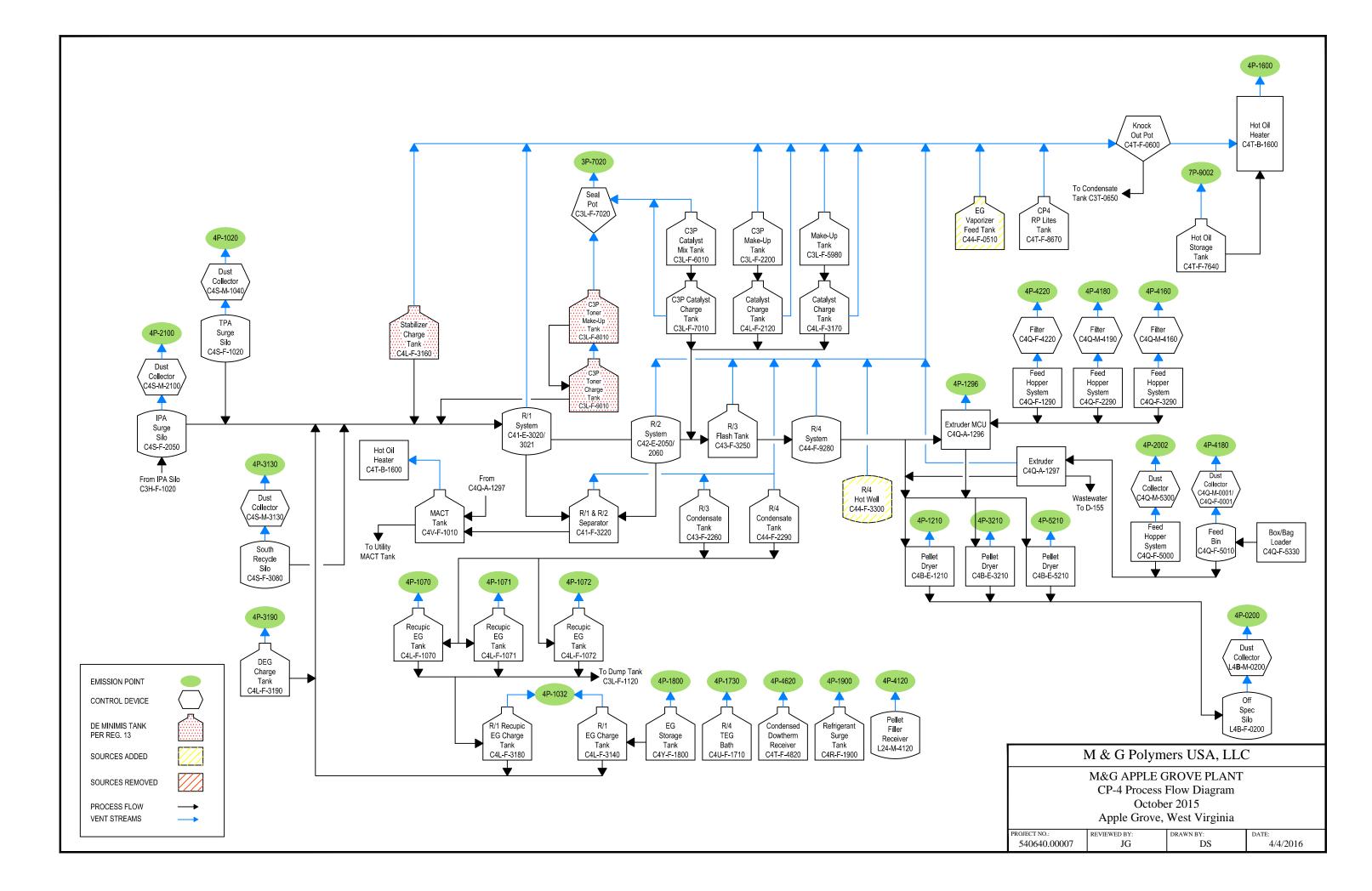
Attachment D

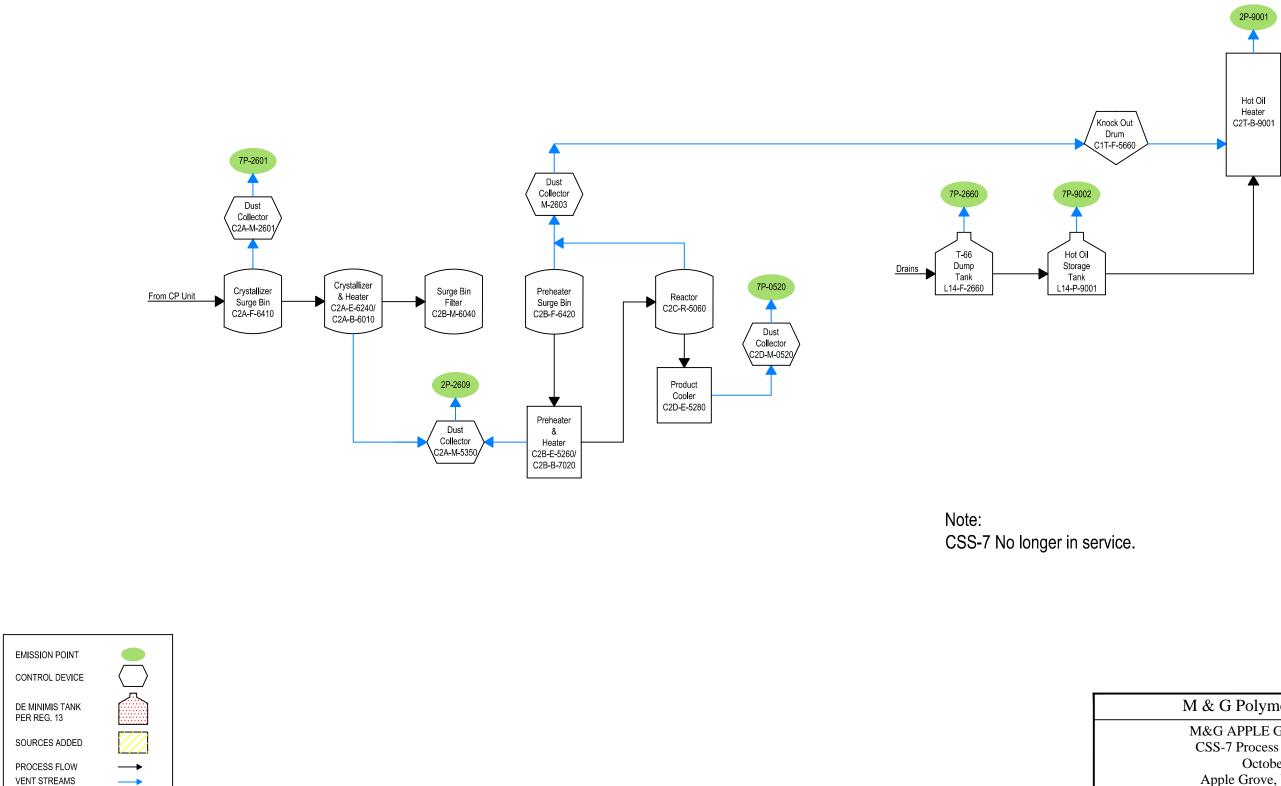
Regulatory Discussion

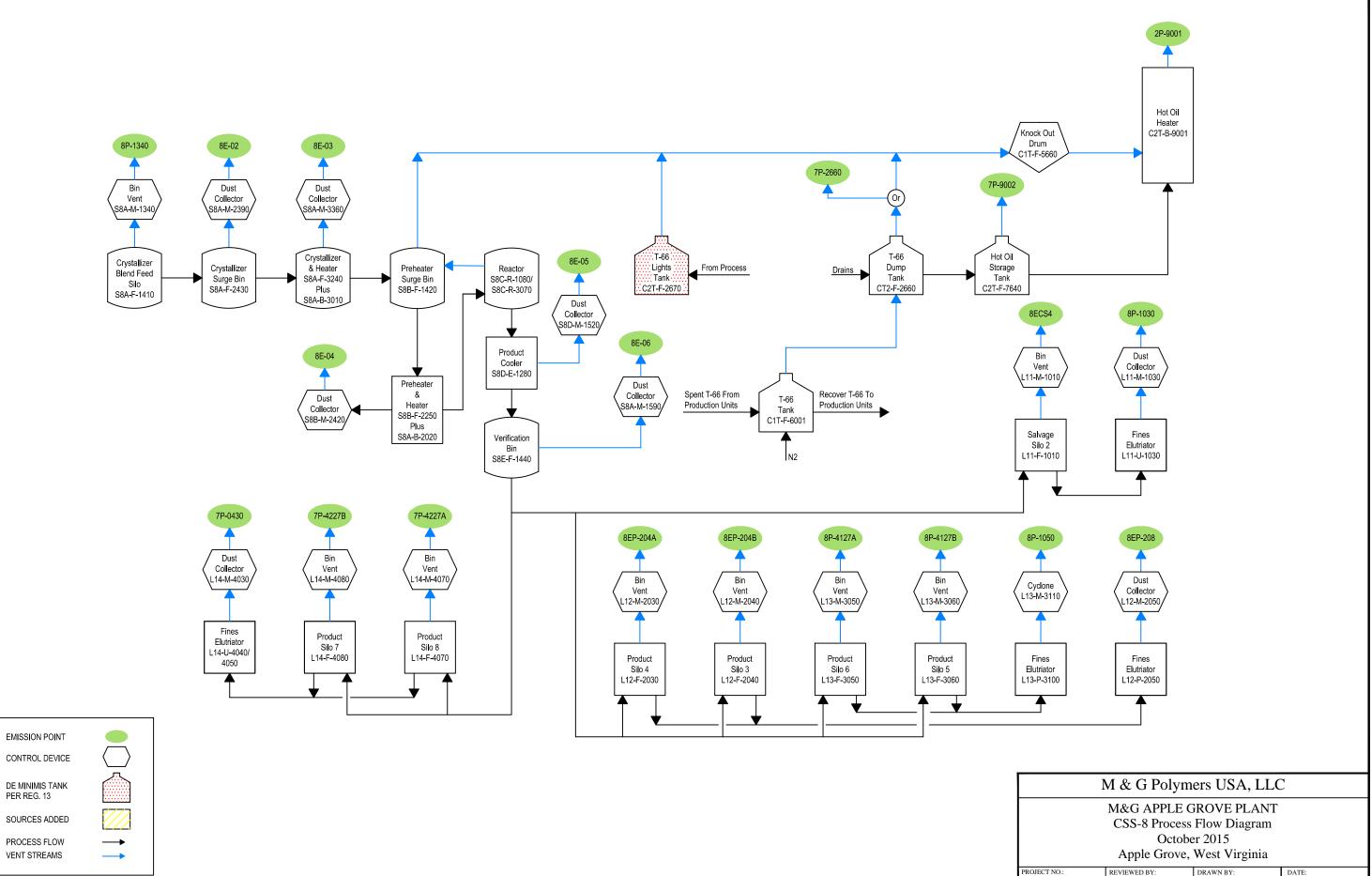

- 45CSR02 Plant's indirect heat exchangers are fired on natural gas, have a design input capacity greater than 10 MMBtu/hr, and comply with the rule's allowable PM Limits.
- 45CSR04 The Plant does not have any odor violations.
- 45CSR06 No on-site incinerators or flares are associated with the processes.
- 45CSR07 Solid material is handled and is vented through baghouses and/or filters. The particulate emission and opacity provisions apply. PM emissions meet the allowable limits and opacity standards under this rule.
- 45CSR10 Plant's indirect heat exchangers are fired on natural gas, have a design heat input capacity greater than 10 mmbtu/hr, and comply with the rule's allowable SO₂ limits.
- 45CSR11 A standby plan will be prepared when requested by the Director.
- 45CSR13 M&G has facilities operating under existing permits. This application is being submitted as a modification.
- 45CSR15 The Plant does not have facilities regulated under 40CFR61.
- 45CSR16 Several storage tanks are subject to the the recordkeeping only requirements of 40CFR60, Subpart Kb
- 45CSR21 Rule 21 is not applicable to M & G's operations since the facility is not located in one of the identified counties.
- 45CSR25 The Plant does not have hazardous waste storage, treatment ore disposal facilities subject to this rule.
- 45CSR27 Toxic Air Pollutants are used in this facility. However, the amounts emitted are below the Rule's deminimis values.
- 45CSR30 The Apple Grove Plant operates under an existing Title V permit. The renewal application will be due October 2015. This application is requested to help with this renewal.
- 45CSR34 Portions of the Plant are subject to the MACT requirements of 40CFR63, Subpart JJJ, Subpart FFFF, and Subpart DDDDD. This application requests the removal of the CP7 line. The CP7 heater will no longer be subject to Subpart DDDDD.

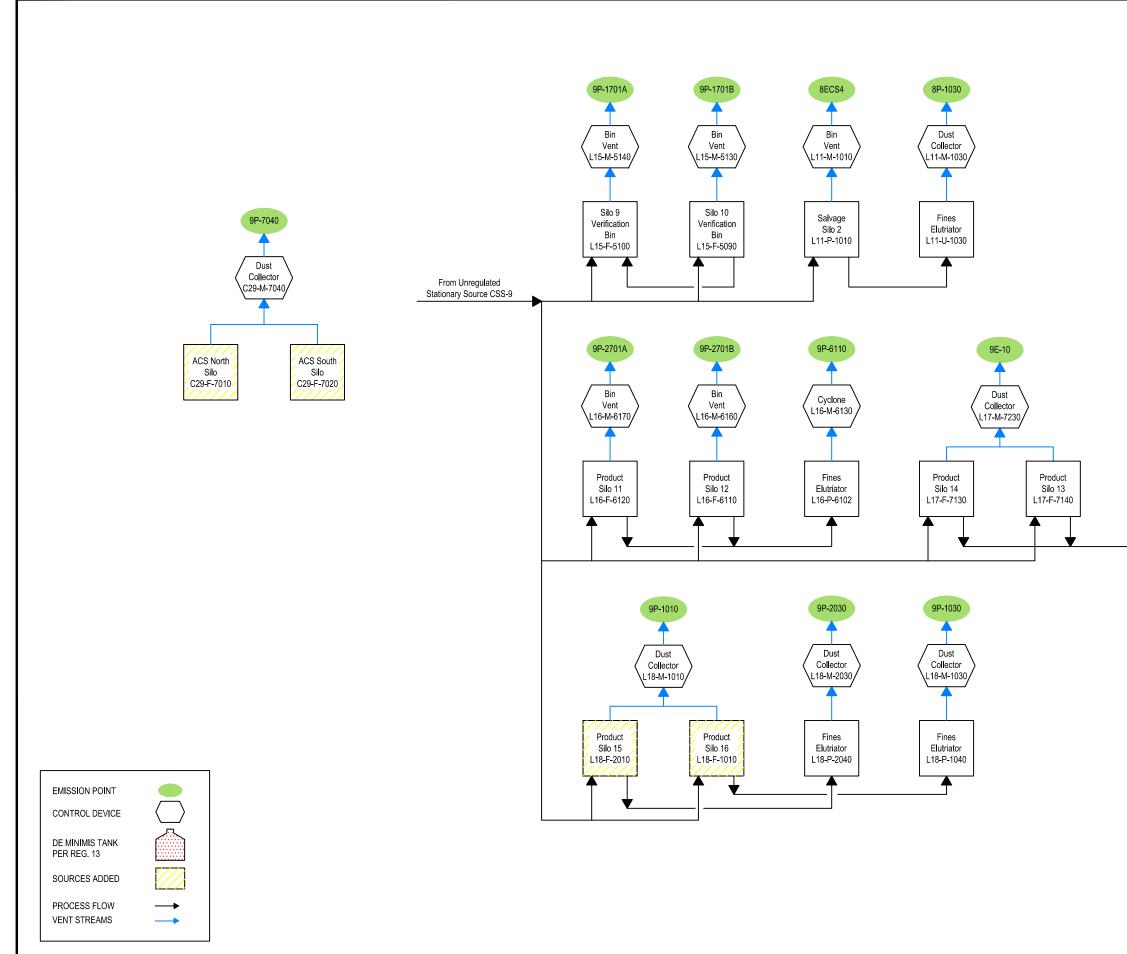
ATTACHMENT E – PLOT PLAN

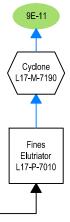

			
*35+00 *35+00 *35+00	23+00 -23	11+00 10+00 12+00	15+00 14+00 13+00
BUILDING NO. & DESCRIPTION		Fire Reserve	
(A) Resilip 1-4 lines		Fire Reserve (F-4) (EthRyco) (B(B3))	B (7)
(18) Resin addition 5-18 lines (12) CSS I & II		C4Y-F-1800	
(1) ESS III (2) Film Bidg (Hot Rod & Salvage)		thaycol Ethaycol	Fuel DI
(3A) Varehouse #1	1 Ranney		
33) Varthouse #3 & #3 30) Varthouse Bulk Loading	Dit Fire Purp House Ditorimator House	Recupic StoTk	
(4) DNT Building SA) Utility		StoTk StoTk F.P. Too.Cond Vtr.Tk (Tr-6) (3) 050 -76	StoTk T
(58) Utility Addition	To Mainfurnance Training(24, 60)		
(3C) Utility Addition (5D) Air Conpressor Bldg.	79) Coursyard Butter Bidg(24'> 607) La Image: Coursyard Butter Bidg(24'> 607) 61) Burn-Out Bidg Secondary Christery Image: Christery Barnet 62) Coursyard Butter Bidg(24'> 607) La 63) Burn-Out Bidg Christery Barnet 64) Durnet Christery Barnet	Stell Image: Construction Im	
	12 Te vielt House Secondary Secondary		
7) Process 31dg, CP-1 (7A) CP-2	(a) as cover a low of the low of	Bridge Subig	P Fatered #1 Fatere Vtr.Sys U Vtr.Sys D Sub.05 U S
(7B) CSS-8 B) Storeroon, Lab, Oper. Center			
(9) Process Blag CP-3 (9A) Process Blag CP-4	Construction Repeted in the second stages: Construction Repeted in the second stage: Constructing Repeted in the second stage:		
(9B) Operations Center CP-3/4	Contractor Hantenance Shop Advettion Shop Ho yell House Tank TT TT TT		
21) Valve House 23) Foar Storage Bidg.			
23) Cherical Control Bldg. al PJMP HOUSE 30) Hot DK Furnace Bldg.(SDMACO			
30) Hot DK Furnece Bidg(SDHACK)			
(0) CSS Varehouse	Ser Burge Switter House	PIR PIR	Proporte
(51) Dffice Bldg. (55) #4 Railcar Loed/Unload Bldg.	(A) H2 TPA SIO	Laped Area	Primar w
56 #3 Ballcar Load/Unload Contro			Sub. 20[10]
(A) Bldg 66 Break Rn (37) PCB Bldg.	255) Vater Treatment Add. (Utility) 10) Opencal Storage Bidg 10) Zeol/Le Addition 10) Zeol/Le Addition	P/R	
(58) Potable Water Bidg. (59) Activity House	Sudge Sudge Image: Sudge		*
(60) (P-3 Fire Vater Pumphuse (61) Cooling Tower #5	(3) Conspare tion Juster Rep		
(62) CP-3 T-66 Heater Blog(Born)	n) (98) #1.Rdii Car Unfoading Sheat		
63) CP-3 Maintenance Bidg.	N (99) 82 Ruit Car Unloading Sted Bulk RR. Car Unloading CR/HCC		
64) CP-3 Dl Vater Bidg (66) #3 Railcar Lond/Unioad Bidg			L
67) RR Track Scale Bldg. 688) Foan House 8 EQ Tank		# [1][# [1]][1]] [[] # [] [] 1]]	eset Stor. Tk
log rous house e La Tank			
		╪ <u>╎</u> ╪╎ <u>╪</u> ╎╢ <u>╷</u>	
Bange Bock			
gmio 1			
	N87*3950*V		
		1	Edst. 138KY
			Dverhead Elec. Line
			APPALACHI APPLE GRO HUNTINGTO
		SIONS	ACCOUNT NUMBER: FILM DATES:
		IPTION MADE CHICO APPO	APP'D
			NOTICE. THIS SOCURENT IS THE PROFESSION IN ANY THORNER, LOAMED OR OTHERWISE IN ANY THOMMER, LOAMED OR OTHERWISE I UNATION OF THE ADAMED OR OTHERWISE IN IT THIS DOCHECKT IS LOAMED BY ON UT THE BORRUSE, IN CONSISTENTION OF SU CONDITIONS AND TO RETURN THIS DOCHE OF THE SPECIFICALLY AUTHORIZED USE
	1 8/7/95 GENERAL UPDATE	RAB	OF THE SPECIFICALLY AUTHORIZED VOIK


.

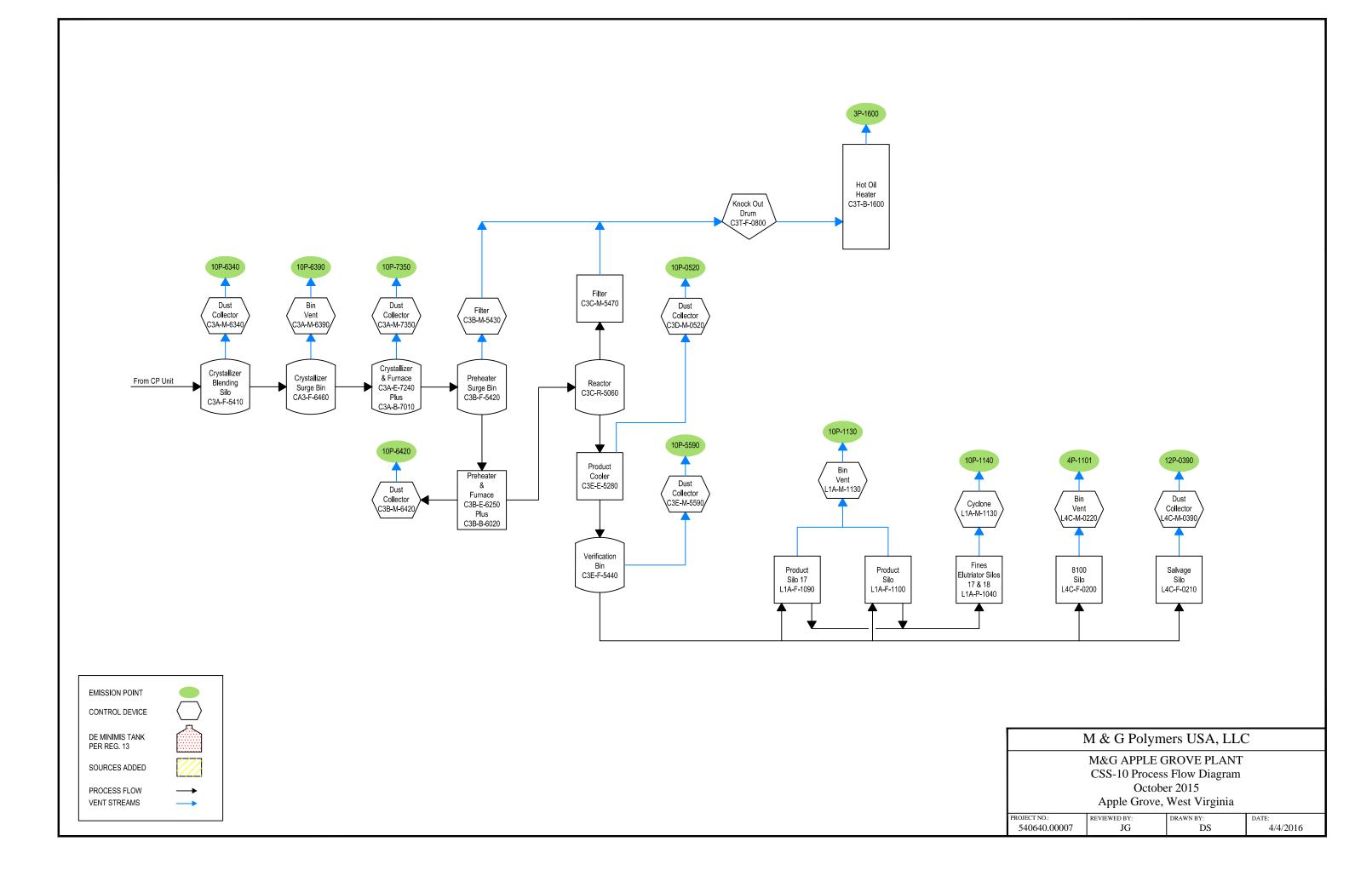

-1

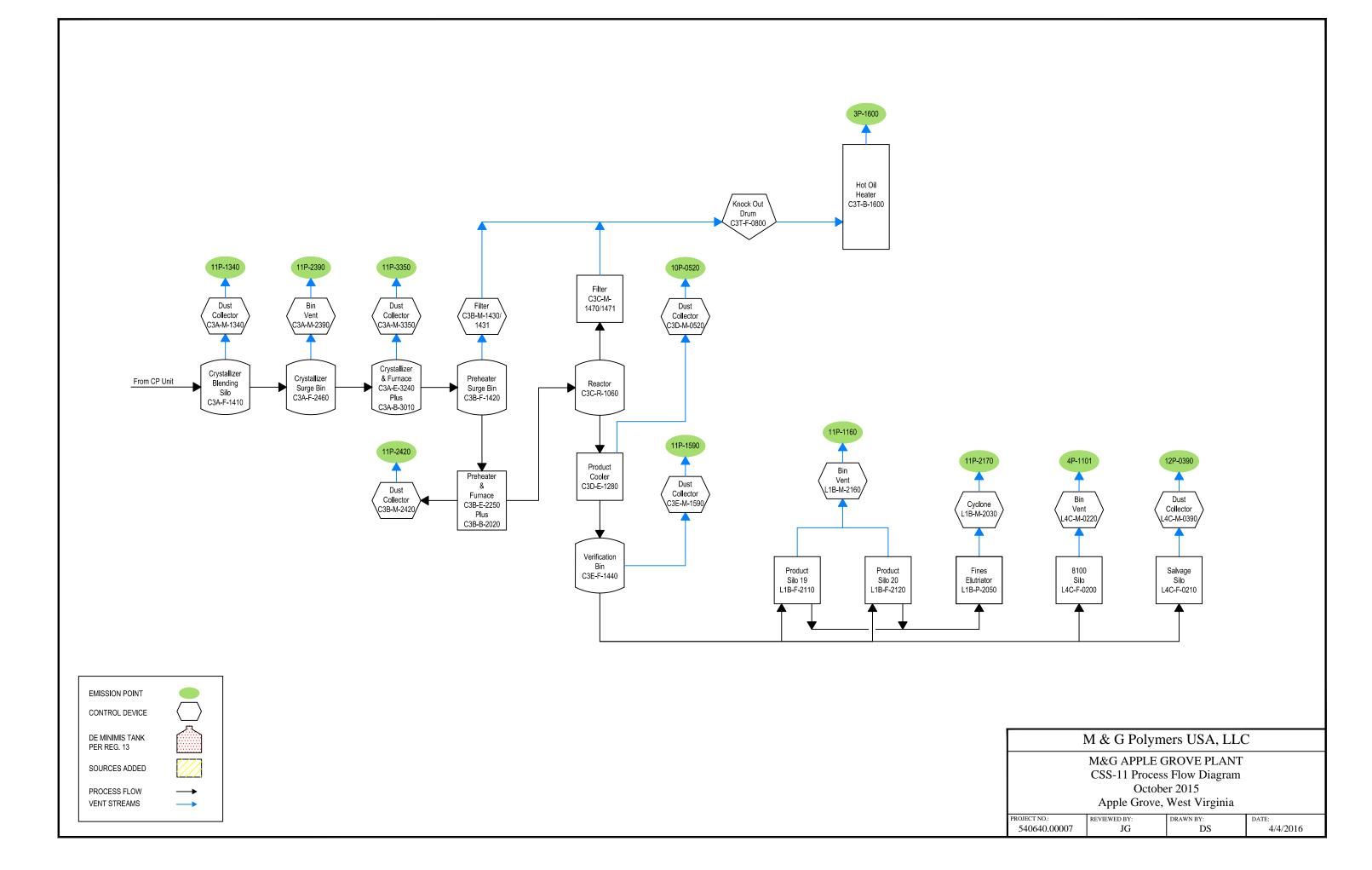

ATTACHMENT F – PROCESS FLOW DIAGRAM

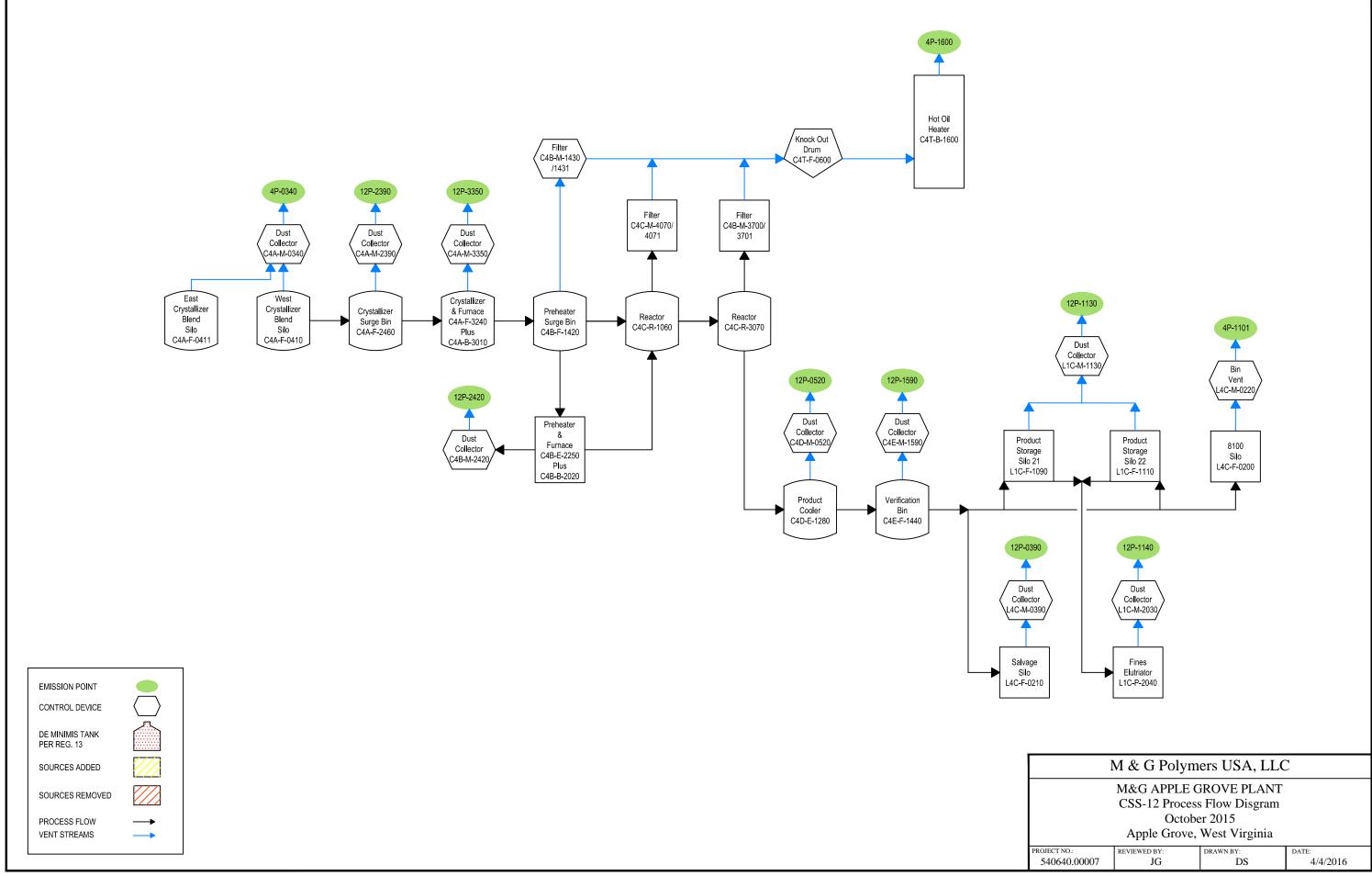


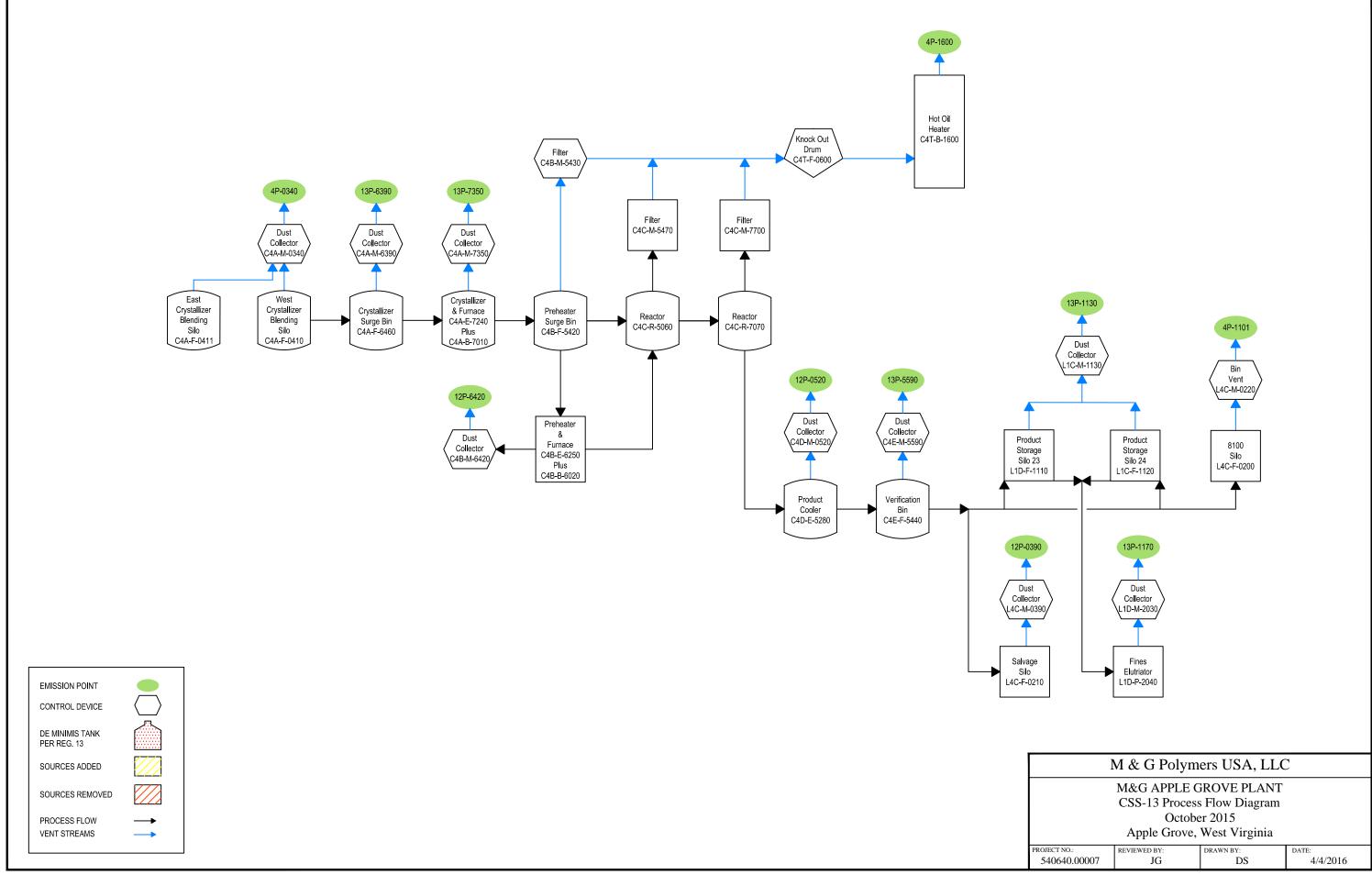


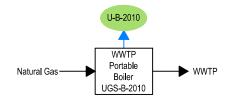
M & G Polymers USA, LLC				
M&G APPLE GROVE PLANT				
CSS-7 Process Flow Diagram				
October 2015				
Apple Grove, West Virginia				
PROJECT NO.: REVIEWED BY: DRAWN BY: DATE:				
540640.00007	JG	DS	4/4/2016	

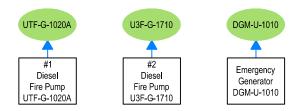



PROJECT NO.:	REVIEWED BY:	DRAWN BY:	DATE:
540640.00007	JG	DS	4/4/2016

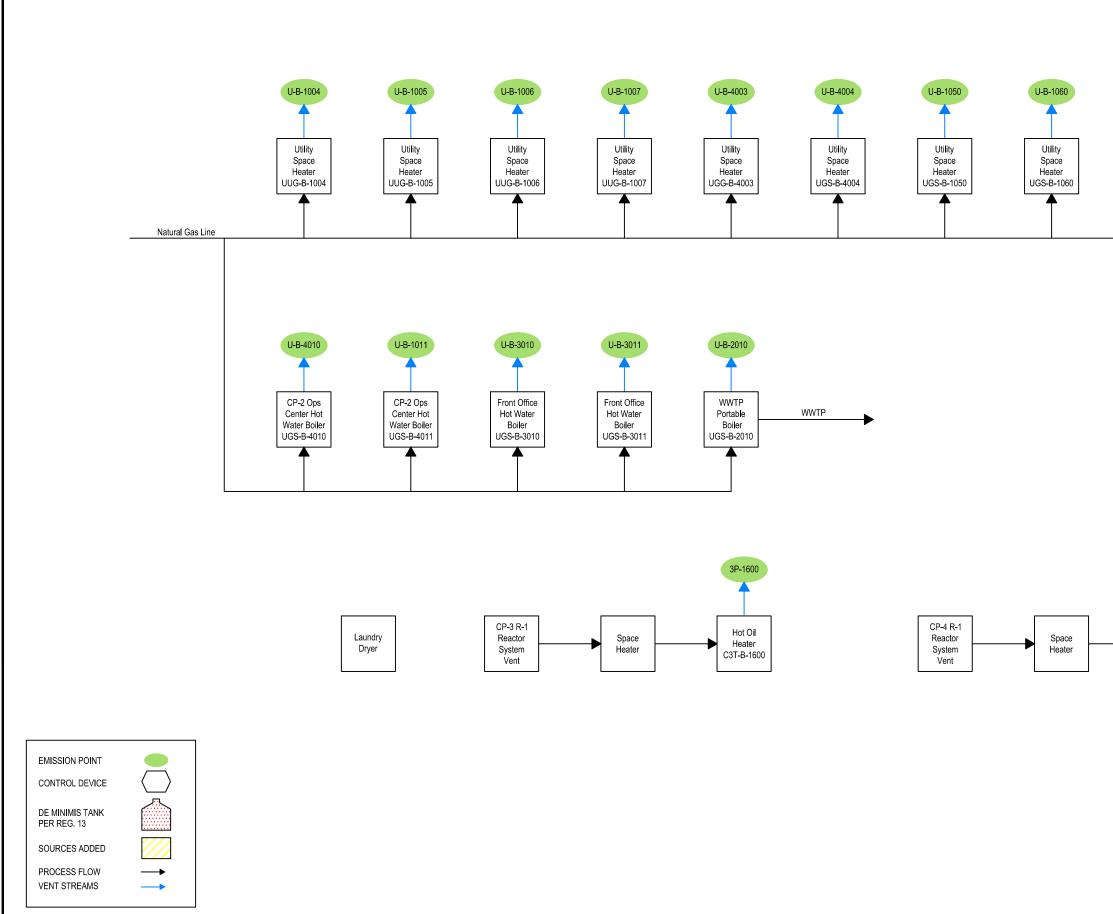


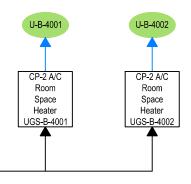

M & G Polymers USA, LLC				
M&G APPLE GROVE PLANT				
CSS-9 Process Flow Diagram				
October 2015				
Apple Grove, West Virginia				
PROJECT NO.: REVIEWED BY: DRAWN BY: DATE:				
540640.00007 JG DS 4/4/2016				

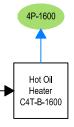


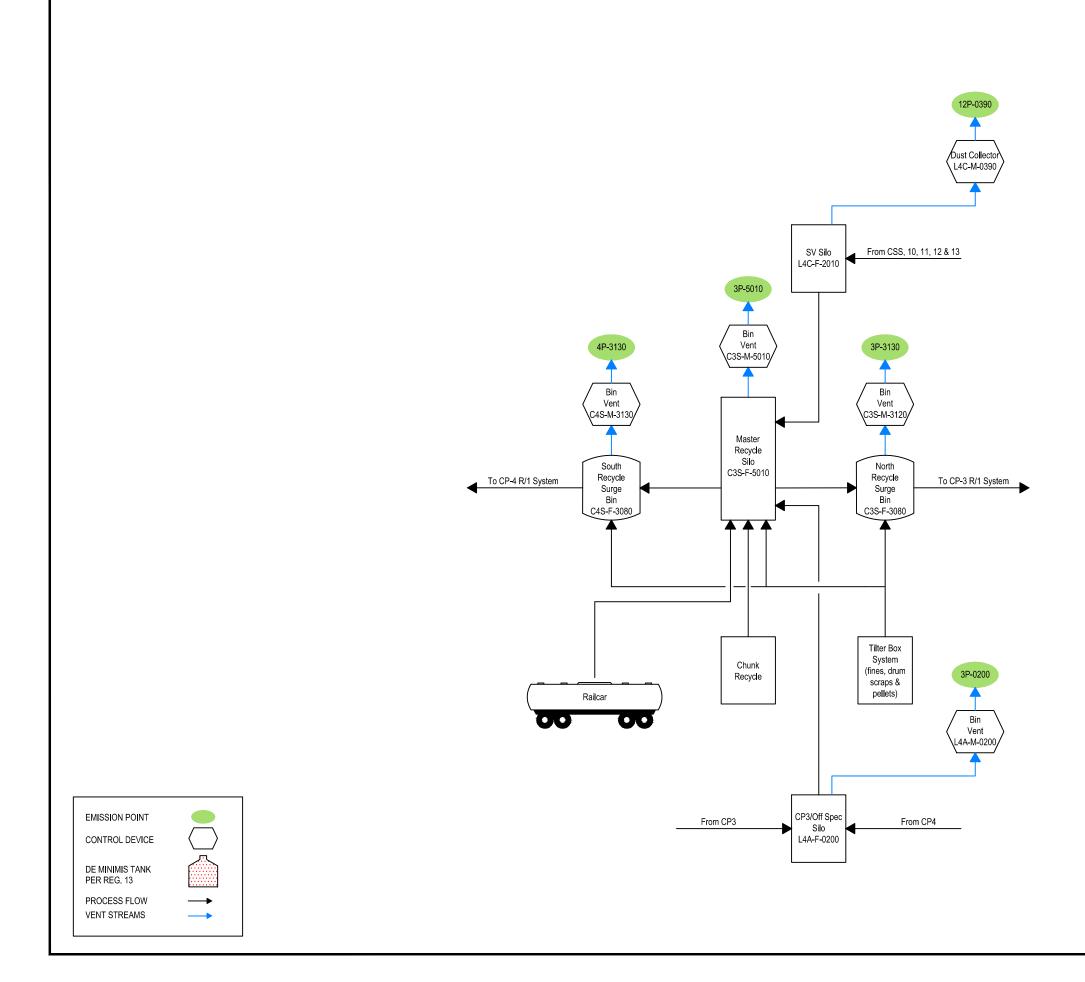


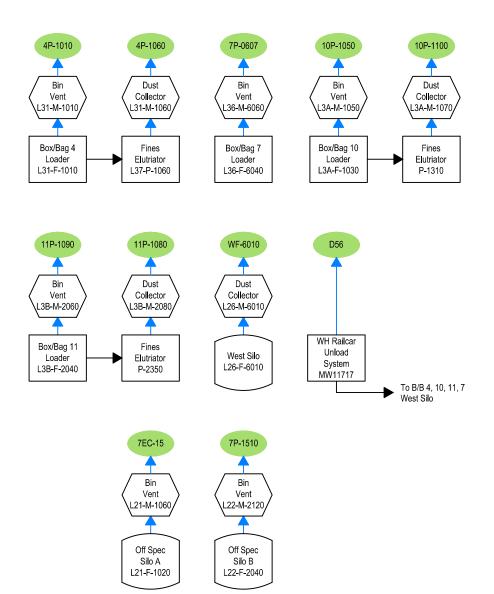
PROJECT NO .:	REVIEWED BY:	DRAWN BY:	DATE:
540640.00007	JG	DS	4/4/2016




PROJECT NO .:	REVIEWED BY:	DRAWN BY:	DATE:
540640.00007	JG	DS	4/4/2016




M & G Polymers USA, LLC			
M&G APPLE GROVE PLANT			
Utility Process Flow Diagram			
October 2015			
Apple Grove, West Virginia			
PROJECT NO .:	REVIEWED BY:	DRAWN BY:	DATE:
540640.00007	JG	DS	4/4/2016



M & G Polymers USA, LLC			
M&G APPLE GROVE PLANT			
Utility Process Flow Diagram			
October 2015			
Apple Grove, West Virginia			
REVIEWED BY: JG	DRAWN BY: DS	DATE: 4/4/2016	
	M&G APPLE C Utility Process Octobe Apple Grove,	M&G APPLE GROVE PLANT Utility Process Flow Diagram October 2015 Apple Grove, West Virginia REVIEWED BY: DRAWN BY:	

M & G Polymers USA, LLC			
M&G APPLE GROVE PLANT			
Off Spec Process Flow Diagram			
October 2015			
Apple Grove, West Virginia			
PROJECT NO .:	REVIEWED BY:	DRAWN BY:	DATE:
540640.00007	JG	DS	4/4/2016

M & G Polymers USA, LLC M&G APPLE GROVE PLANT Warehouse Flow Diagram October 2015 Apple Grove, West Virginia PROJECT NO.: 540640.00007 REVIEWED BY: JG DRAWN BY: 4/4/2016

Attachment G

Process Description

M&G Polymers is submitting this administrative amendment application to allow for increased production rates on CSS-12 and CSS-13 production lines and removal of most of the CSS-7 equipment. The CSS-8 Boxing Silo is being removed from service. The baghouse will be moved to the Warehouse West Silo (L26-M-6010). The Title V permit (R30-0530054-2011) identified the Warehouse West Silo had a baghouse but the emission unit does not and has not been in service since this discovery.

The heat transfer fluid, Therminol 66® was replaced with Dowtherm RP® in the CP-3 unit. The current equipment is designed to accommodate this change. The heat transfer material is used in a closed loop system, and there was no equipment changes (piping or tanks) associated with this change. During normal operations emissions are vented to the Hot Oil Heater (C3T-B-1600) during stripping. Emissions are calculated to be less than 0.01 lb/hr of total HAPs (Total HAPs include: benzene, toluene, ethyl benzene and naphthalene) and less than 0.01 TPY of Total HAPs that could be emitted from emission point 3P-1600. Please note that the 1,4 Dioxane emissions are corrected from 0.01 lb/hr and 0.01 TPY to 0.001 lb/hr and 0.001 TPY.

ATTACHMENT H - MSDS

SAFETY DATA SHEET

THE DOW CHEMICAL COMPANY

Product name: DOWTHERM[™] RP Heat Transfer Fluid

Issue Date: 04/16/2015 Print Date: 06/15/2015

THE DOW CHEMICAL COMPANY encourages and expects you to read and understand the entire (M)SDS, as there is important information throughout the document. We expect you to follow the precautions identified in this document unless your use conditions would necessitate other appropriate methods or actions.

1. IDENTIFICATION

Product name: DOWTHERM™ RP Heat Transfer Fluid

Recommended use of the chemical and restrictions on use

Identified uses: Intended as a heat transfer fluid for closed-loop systems. We recommend that you use this product in a manner consistent with the listed use. If your intended use is not consistent with the stated use, please contact your sales or technical service representative.

COMPANY IDENTIFICATION

THE DOW CHEMICAL COMPANY 2030 WILLARD H DOW CENTER MIDLAND MI 48674-0000 UNITED STATES

Customer Information Number:

800-258-2436 SDSQuestion@dow.com

EMERGENCY TELEPHONE NUMBER

24-Hour Emergency Contact: 800-424-9300 Local Emergency Contact: 800-424-9300

2. HAZARDS IDENTIFICATION

Hazard classification

This material is not hazardous under the criteria of the Federal OSHA Hazard Communication Standard 29CFR 1910.1200.

Other hazards

no data available

3. COMPOSITION/INFORMATION ON INGREDIENTS

Synonyms: Naphthalene, 1,2,3,4-tetrahydro-5-(1-phenylethyl)-This product is a substance.ComponentCASRN

Concentration

1,2,3,4-Tetrahydro-5-(1- phenylethyl)naphthalene	60466-61-7	>= 85.0 %
1,2,3,4-Tetrahydro-6-(1- phenylethyl)naphthalene	6196-98-1	<= 15.0 %

4. FIRST AID MEASURES

Description of first aid measures

General advice: First Aid responders should pay attention to self-protection and use the recommended protective clothing (chemical resistant gloves, splash protection). If potential for exposure exists refer to Section 8 for specific personal protective equipment.

Inhalation: Move person to fresh air. If not breathing, give artificial respiration; if by mouth to mouth use rescuer protection (pocket mask, etc). If breathing is difficult, oxygen should be administered by qualified personnel. Call a physician or transport to a medical facility.

Skin contact: Wash off with plenty of water.

Eye contact: Flush eyes thoroughly with water for several minutes. Remove contact lenses after the initial 1-2 minutes and continue flushing for several additional minutes. If effects occur, consult a physician, preferably an ophthalmologist. Suitable emergency eye wash facility should be available in work area.

Ingestion: If swallowed, seek medical attention. Do not induce vomiting unless directed to do so by medical personnel.

Most important symptoms and effects, both acute and delayed: Aside from the information found under Description of first aid measures (above) and Indication of immediate medical attention and special treatment needed (below), any additional important symptoms and effects are described in Section 11: Toxicology Information.

Indication of any immediate medical attention and special treatment needed

Notes to physician: Maintain adequate ventilation and oxygenation of the patient. If burn is present, treat as any thermal burn, after decontamination. No specific antidote. Treatment of exposure should be directed at the control of symptoms and the clinical condition of the patient.

5. FIREFIGHTING MEASURES

Suitable extinguishing media: Water fog or fine spray. Dry chemical fire extinguishers. Carbon dioxide fire extinguishers. Foam. Alcohol resistant foams (ATC type) are preferred. General purpose synthetic foams (including AFFF) or protein foams may function, but will be less effective.

Unsuitable extinguishing media: Do not use direct water stream. May spread fire.

Special hazards arising from the substance or mixture

Hazardous combustion products: During a fire, smoke may contain the original material in addition to combustion products of varying composition which may be toxic and/or irritating. Combustion products may include and are not limited to: Carbon monoxide. Carbon dioxide.

Unusual Fire and Explosion Hazards: Violent steam generation or eruption may occur upon application of direct water stream to hot liquids. Liquid mist of this product can burn. Flammable concentrations of vapor can accumulate at temperatures above flash point; see Section 9.

Advice for firefighters

Fire Fighting Procedures: Keep people away. Isolate fire and deny unnecessary entry. Do not use direct water stream. May spread fire. Burning liquids may be moved by flushing with water to protect personnel and minimize property damage. Contain fire water run-off if possible. Fire water run-off, if not contained, may cause environmental damage. Review the "Accidental Release Measures" and the "Ecological Information" sections of this (M)SDS.

Special protective equipment for firefighters: Wear positive-pressure self-contained breathing apparatus (SCBA) and protective fire fighting clothing (includes fire fighting helmet, coat, trousers, boots, and gloves). Avoid contact with this material during fire fighting operations. If contact is likely, change to full chemical resistant fire fighting clothing with self-contained breathing apparatus. If this is not available, wear full chemical resistant clothing with self-contained breathing apparatus and fight fire from a remote location. For protective equipment in post-fire or non-fire clean-up situations, refer to the relevant sections.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures: Isolate area. Keep unnecessary and unprotected personnel from entering the area. Keep upwind of spill. Ventilate area of leak or spill. Refer to section 7, Handling, for additional precautionary measures. Use appropriate safety equipment. For additional information, refer to Section 8, Exposure Controls and Personal Protection.

Environmental precautions: Prevent from entering into soil, ditches, sewers, waterways and/or groundwater. See Section 12, Ecological Information. Spills or discharge to natural waterways is likely to kill aquatic organisms.

Methods and materials for containment and cleaning up: Small spills: Absorb with materials such as: Non-combustible material. Collect in suitable and properly labeled containers. Large spills: Contain spilled material if possible. Dike area to contain spill. Wash the spill site with large quantities of water. See Section 13, Disposal Considerations, for additional information.

7. HANDLING AND STORAGE

Precautions for safe handling: Avoid contact with eyes, skin, and clothing. Avoid breathing vapor. Wash thoroughly after handling. Keep container closed. Use with adequate ventilation. See Section 8, EXPOSURE CONTROLS AND PERSONAL PROTECTION.

Conditions for safe storage: Store in original container. Store away from incompatible materials. See STABILITY AND REACTIVITY section. Additional storage and handling information on this product may be obtained by calling your sales or customer service contact.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Control parameters

Exposure limits are listed below, if they exist.

None established

Exposure controls

Engineering controls: Use local exhaust ventilation, or other engineering controls to maintain airborne levels below exposure limit requirements or guidelines. If there are no applicable exposure limit requirements or guidelines, general ventilation should be sufficient for most operations. Local exhaust ventilation may be necessary for some operations.

Individual protection measures

Eye/face protection: Use chemical goggles.

Skin protection

Hand protection: Use gloves chemically resistant to this material when prolonged or frequently repeated contact could occur. Examples of preferred glove barrier materials include: Polyethylene. Ethyl vinyl alcohol laminate ("EVAL"). Polyvinyl alcohol ("PVA"). Polyvinyl chloride ("PVC" or "vinyl"). Styrene/butadiene rubber. Viton. Examples of acceptable glove barrier materials include: Butyl rubber. Chlorinated polyethylene. Neoprene. Nitrile/butadiene rubber ("nitrile" or "NBR"). NOTICE: The selection of a specific glove for a particular application and duration of use in a workplace should also take into account all relevant workplace factors such as, but not limited to: Other chemicals which may be handled, physical requirements (cut/puncture protection, dexterity, thermal protection), potential body reactions to glove materials, as well as the instructions/specifications provided by the glove supplier.

Other protection: When prolonged or frequently repeated contact could occur, use protective clothing chemically resistant to this material. Selection of specific items such as faceshield, boots, apron, or full-body suit will depend on the task.

Respiratory protection: Respiratory protection should be worn when there is a potential to exceed the exposure limit requirements or guidelines. If there are no applicable exposure limit requirements or guidelines, wear respiratory protection when adverse effects, such as respiratory irritation or discomfort have been experienced, or where indicated by your risk assessment process. For most conditions, no respiratory protection should be needed; however, if material is heated or sprayed, use an approved air-purifying respirator. The following should be effective types of air-purifying respirators: Organic vapor cartridge with a particulate pre-filter.

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance

Physical state Color Odor Odor Threshold pH Melting point/range Freezing point Liquid. Colorless to yellow Mild No test data available Not applicable -34 °C (-29 °F) *Literature* -34 °C (-29 °F) *Literature*

Boiling point (760 mmHg) Flash point	332 - 355 °C (630 - 671 °F) Literature closed cup 194 °C (381 °F) Pensky-Martens Closed Cup ASTM D 93
Evaporation Rate (Butyl Acetate = 1)	< 0.1 Estimated.
Flammability (solid, gas)	Not applicable to liquids
Lower explosion limit	0.39 % vol Literature Approximately
Upper explosion limit	4.59 % vol Literature
Vapor Pressure	<= 1.0 mmHg at 20 °C (68 °F) Literature
Relative Vapor Density (air = 1)	Not available
Relative Density (water = 1)	1.03 at 16 °C (61 °F) Literature
Water solubility	< 0.01 % at 25 °C (77 °F) Literature
Partition coefficient: n- octanol/water	log Pow: 6.11 Estimated.
Auto-ignition temperature	385 °C (725 °F) ASTM E659
Decomposition temperature	No test data available
Kinematic Viscosity	30.8 cSt at 25 °C (77 °F) Literature
Explosive properties	no data available
Oxidizing properties	no data available
Molecular weight	236.4 g/mol Literature

NOTE: The physical data presented above are typical values and should not be construed as a specification.

10. STABILITY AND REACTIVITY

Reactivity: no data available

Chemical stability: Thermally stable at typical use temperatures.

Possibility of hazardous reactions: Polymerization will not occur.

Conditions to avoid: Exposure to elevated temperatures can cause product to decompose.

Incompatible materials: Avoid contact with oxidizing materials. Avoid contact with: Mineral acids.

Hazardous decomposition products: Decomposition products depend upon temperature, air supply and the presence of other materials.

11. TOXICOLOGICAL INFORMATION

Toxicological information on this product or its components appear in this section when such data is available.

Acute toxicity Acute oral toxicity Low toxicity if swallowed. Small amounts swallowed incidentally as a result of normal handling operations are not likely to cause injury; however, swallowing larger amounts may cause injury.

LD50, Rat, > 2,000 mg/kg No deaths occurred at this concentration.

Acute dermal toxicity

Prolonged skin contact is unlikely to result in absorption of harmful amounts.

LD50, Rabbit, > 2,000 mg/kg No deaths occurred at this concentration.

Acute inhalation toxicity

At room temperature, exposure to vapor is minimal due to low volatility. If material is heated or aerosol/mist is produced, concentrations may be attained that are sufficient to cause respiratory irritation and other effects. May cause central nervous system effects. Symptoms may include headache, dizziness and drowsiness, progressing to incoordination and unconsciousness.

The LC50 has not been determined.

Skin corrosion/irritation

Brief contact is essentially nonirritating to skin. Prolonged contact may cause skin irritation with local redness. Repeated exposure may cause irritation, even a burn.

Serious eye damage/eye irritation

May cause moderate eye irritation. Corneal injury is unlikely.

Sensitization

Did not cause allergic skin reactions when tested in guinea pigs.

For respiratory sensitization: No relevant data found.

Specific Target Organ Systemic Toxicity (Single Exposure)

Evaluation of available data suggests that this material is not an STOT-SE toxicant.

Specific Target Organ Systemic Toxicity (Repeated Exposure)

Repeated skin application to laboratory animals did not produce systemic toxicity.

Carcinogenicity

No relevant data found.

Teratogenicity

Did not cause birth defects or other effects in the fetus even at doses which caused toxic effects in the mother.

Reproductive toxicity

In animal studies, did not interfere with reproduction.

Mutagenicity

In vitro genetic toxicity studies were negative.

Aspiration Hazard

Based on physical properties, not likely to be an aspiration hazard.

COMPONENTS INFLUENCING TOXICOLOGY:

1,2,3,4-Tetrahydro-5-(1-phenylethyl)naphthalene

Acute inhalation toxicity

At room temperature, exposure to vapor is minimal due to low volatility. If material is heated or aerosol/mist is produced, concentrations may be attained that are sufficient to cause respiratory irritation and other effects. May cause central nervous system effects. Symptoms may include headache, dizziness and drowsiness, progressing to incoordination and unconsciousness.

The LC50 has not been determined.

1,2,3,4-Tetrahydro-6-(1-phenylethyl)naphthalene

Acute inhalation toxicity

At room temperature, exposure to vapor is minimal due to low volatility. If material is heated or aerosol/mist is produced, concentrations may be attained that are sufficient to cause respiratory irritation and other effects. May cause central nervous system effects. Symptoms may include headache, dizziness and drowsiness, progressing to incoordination and unconsciousness.

The LC50 has not been determined.

12. ECOLOGICAL INFORMATION

Ecotoxicological information on this product or its components appear in this section when such data is available.

Toxicity

Acute toxicity to aquatic invertebrates LC50, Daphnia magna (Water flea), 48 Hour, 0.0225 mg/l

Acute toxicity to algae/aquatic plants

Material is very highly toxic to aquatic organisms on an acute basis (LC50/EC50 <0.1 mg/L in the most sensitive species).

EbC50, Pseudokirchneriella subcapitata (green algae), 96 Hour, Biomass, > 0.07 mg/l

Toxicity to bacteria

EC50, activated sludge, 3 Hour, 0.062 mg/l, OECD 209 Test

Persistence and degradability

Biodegradability: Material is expected to biodegrade very slowly (in the environment). Fails to pass OECD/EEC tests for ready biodegradability. Material is inherently biodegradable (reaches > 20% biodegradation in OECD test(s) for inherent biodegradability).
10-day Window: Fail
Biodegradation: 6 %
Exposure time: 28 d
Method: OECD Test Guideline 301B or Equivalent

10-day Window: Not applicable Biodegradation: > 40 % Exposure time: 28 d Method: OECD Test Guideline 302B or Equivalent

Bioaccumulative potential

Bioaccumulation: Bioconcentration potential is high (BCF > 3000 or Log Pow between 5 and 7).

Partition coefficient: n-octanol/water(log Pow): 6.11 Estimated.

Mobility in soil

Expected to be relatively immobile in soil (Koc > 5000). **Partition coefficient(Koc):** > 5000 Estimated.

13. DISPOSAL CONSIDERATIONS

Disposal methods: DO NOT DUMP INTO ANY SEWERS, ON THE GROUND, OR INTO ANY BODY OF WATER. All disposal practices must be in compliance with all Federal, State/Provincial and local laws and regulations. Regulations may vary in different locations. Waste characterizations and compliance with applicable laws are the responsibility solely of the waste generator. AS YOUR SUPPLIER, WE HAVE NO CONTROL OVER THE MANAGEMENT PRACTICES OR MANUFACTURING PROCESSES OF PARTIES HANDLING OR USING THIS MATERIAL. THE INFORMATION PRESENTED HERE PERTAINS ONLY TO THE PRODUCT AS SHIPPED IN ITS INTENDED CONDITION AS DESCRIBED IN MSDS SECTION: Composition Information. FOR UNUSED & UNCONTAMINATED PRODUCT, the preferred options include sending to a licensed, permitted: Reclaimer. Incinerator or other thermal destruction device.

14. TRANSPORT INFORMATION

DOT

Not regulated for transport

Classification for SEA transport (I	MO-IMDG):
Proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID,
	N.O.S.(1,2,3,4-Tetrahydro-5-(1-phenylethyl)naphthalene)
UN number	UN 3082
Class	9
Packing group	III
Marine pollutant	1,2,3,4-Tetrahydro-5-(1-phenylethyl)naphthalene
Transport in bulk	Consult IMO regulations before transporting ocean bulk
according to Annex I or II	
of MARPOL 73/78 and the	
IBC or IGC Code	
Classification for AIR transport (IA	ATA/ICAO):
Proper shipping name	Environmentally hazardous substance, liquid, n.o.s.(1,2,3,4-
	Tetrahydro-5-(1-phenylethyl)naphthalene)
UN number	UN 3082
Class	9
	•

Packing group Ш

This information is not intended to convey all specific regulatory or operational requirements/information relating to this product. Transportation classifications may vary by container volume and may be influenced by regional or country variations in regulations. Additional transportation system information can be obtained through an authorized sales or customer service representative. It is the responsibility of the transporting organization to follow all applicable laws, regulations and rules relating to the transportation of the material.

15. REGULATORY INFORMATION

OSHA Hazard Communication Standard

This product is not a "Hazardous Chemical" as defined by the OSHA Hazard Communication Standard, 29 CFR 1910,1200.

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Sections 311 and 312

Acute Health Hazard

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Section 313

This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.

Pennsylvania Worker and Community Right-To-Know Act:

To the best of our knowledge, this product does not contain chemicals at levels which require reporting under this statute.

California Proposition 65 (Safe Drinking Water and Toxic Enforcement Act of 1986)

This product contains no listed substances knownto the State of California to cause cancer, birth defects or other reproductive harm, at levels which would require a warning under the statute.

United States TSCA Inventory (TSCA)

All components of this product are in compliance with the inventory listing requirements of the U.S. Toxic Substances Control Act (TSCA) Chemical Substance Inventory.

16. OTHER INFORMATION

Hazard Rating System

NFPA

Health	Fire	Reactivity
1	1	0

Revision

Identification Number: 101199007 / A001 / Issue Date: 04/16/2015 / Version: 9.0 Most recent revision(s) are noted by the bold, double bars in left-hand margin throughout this document.

Information Source and References

This SDS is prepared by Product Regulatory Services and Hazard Communications Groups from information supplied by internal references within our company.

THE DOW CHEMICAL COMPANY urges each customer or recipient of this (M)SDS to study it carefully and consult appropriate expertise, as necessary or appropriate, to become aware of and understand the data contained in this (M)SDS and any hazards associated with the product. The information herein is provided in good faith and believed to be accurate as of the effective date shown above. However, no warranty, express or implied, is given. Regulatory requirements are subject to change and may differ between various locations. It is the buyer's/user's responsibility to ensure that his activities comply with all federal, state, provincial or local laws. The information presented here pertains only to the product as shipped. Since conditions for use of the product are not under the control of the manufacturer, it is the buyer's/user's duty to determine the conditions necessary for the safe use of this product. Due to the proliferation of sources for information such as manufacturer-specific (M)SDSs, we are not and cannot be responsible for (M)SDS obtained from any source other than ourselves. If you have obtained an (M)SDS from another source or if you are not sure that the (M)SDS you have is current, please contact us for the most current version.

ATTACHMENT I – EQUIPMENT LIST FORM

Attachment I

Emission Units Table (includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permit status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
C2A-F-5410	7P-2601	CSS-7 Crystallizer Surge Bin	1988	3,500 ft ³	Removal	C2A-M-2601
C2A-E-5240 C2A-M-5350	7P-2609	CSS-7 Crystallizer and Heater	1988	9,000 pph 1.4 MMBtu/hr	Removal	C2A-M-5350
C2B-B-7020 C2B-E-5250	7P-2609	CSS-7 Preheater and Heater	1988	9,000 pph 1.48 MMBtu/hr	Removal	C2A-M-5350
C2D-E-5280	7P-0520	CSS-7 Product Cooler	1988	14,156 acfm	Removal	C2D-M-0520
C2B-F-5420	2P-9001	CSS-7 Preheater Surge Bin	1988	943 ft ³	Removal	M-2603 C2T-B-9001
C2B-M-5040	2P-9001	CSS-7 Surge Bin Filter	1988	1,200 acfm	Removal	M-2603 C2T-B-9001
C2C-R-5060	2P-9001	CSS-7 R/6 Reactor	1988	1,958 ft ³	Removal	M-2603 C2T-B-900 ²
L37-F-7050	8E-08	CSS-8 Boxing Silo	1991	1,200 ft ³	Removal	L37-M-7130
C4A-F-0410 C4A-F-0411	4P-0340	West CSS-12/13 Crystallizer Blend Silo East CSS-12/13 Crystallizer Blend Silo	1994/2013	3,500 ft ³ 4,000 ft ³	Modification	C4A-M-0340
C4D-E-1280 C4D-E-5280	12P-0520	CSS-12 Product Cooler CSS-13 Product Cooler	1996	42.6 ft ²	Modification	C4D-M-0520
C4B-F-1420	4P-1600	CSS-12 Preheater Surge Bin	1996	785 ft ²	Modification	C4B-M-1430 C4T-B-1600
C4C-R-3070	4P-1600	CSS-12 2 nd Reactor	1996	2,110 ft ³	Modification	C4B-M-1430 C4T-B-1600
C4C-R-1060	4P-1600	CSS-12 1 st Reactor	1996	1,958 ft ³	Modification	C4T-B-1600
C4A-E-3240 C4A-B-3010	12P-3350	CSS-12 Crystallizer CSS-12 Crystallizer Furnace	1996	93.5 ft ² 3.04 MMBTU/hr	Modification	C4A-M-335
C4B-E-2250 C4B-B-2020	12P-2420	CSS-12 Preheater and CSS-12 Preheater Furnace	1996	43 ft ² 1.6 MMBTU/hr	Modification	C4B-M-242
C4A-E-7240 C4A-B-7010	13P-7350	CSS-13 Crystallizer CSS-13 Crystallizer Furnace	1996	93.5 ft ² / 3.04 MMBtu/hr	Modification	C4A-M-7350
C4B-E-6250 C4B-B-6020	12P-6420	CSS-13 Preheater CSS-13 Preheater Furnace	1996	43 ft ² 1.6 MMBtu/hr	Modification	C4B-M-6420
C4B-F-5420	4P-1600	CSS-13 Preheater Surge Bin	1996	1,390 ft ³	Modification	C4B-M-5430 C4C-M-7700 C4T-B-1600
C4C-R-5060	4P-1600	CSS-13 1 st Reactor	1996	1,958 ft ³	Modification	C4C-M-5470 C4T-B-1600
C4C-R-7070	4P-1600	CSS-13 2 nd Reactor	1996	2,110 ft ³	Modification	C4B-M-5430 C4C-M-7700 C4T-B-1600

For Emission Units (or <u>Sources</u>) use the following system: 1S, 2S, 3S,... or other appropriate designation.

²For <u>E</u>mission Points use the following numbering system: 1E, 2E, 3E, ...or other appropriate designation.

³New, modification, removal

⁴For <u>C</u>ontrol Devices use the following system: 1C, 2C, 3C,...or other appropriate designation.

Attachment I

Emission Units Table (includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permit status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
L26-F-6010	WF-6010	Warehouse West Silo	1959	750 ft ³	Modification	L26-M-6010
S8A-F-3240 S8A-B-3010	8E-03	CSS-8 Crystallizer CSS-8 Crystallizer Furnace	1991	68.4 ft ² 2.8 MMBtu/hr	Modification	S8A-M-3360
S8B-F-2250 S8B-B-2020	8E-04	CSS-8 Preheater CSS-8 Preheater Furnace	1991	27 ft ² 1.2 MMBtu/hr	Modification	S8B-M-2420
C3A-E-7240 C3A-B-7010	10P-7350	CSS-10 Crystallizer CSS-10 Crystallizer Furnace	1994	93.5 ft ² 3.04 MMBtu/hr	Modification	C3A-M-7350
C3B-F-6250 C3B-B-6020	10P-6420	CSS-10 Preheater CSS-10 Preheater Furnace	1994	27.75 ft ² 1.6 MMBtu/hr	Modification	C3B-M-6420
C3A-E-3240 C3A-B-3010	11P-3350	CSS-11 Crystallizer CSS-11 Crystallizer Furnace	1994	93.5 ft ² 3.04 MMBtu/hr	Modification	C3A-M-3350
C3B-E-2250 C3B-B-2020	11P-2420	CSS-11 Preheater CSS-11 Preheater CSS-11 Preheater Furnace	1994	27.75 ft ² 1.6 MMBtu/hr	Modification	C3B-M-2420
C3T-B-1600	3P-1600	Hot Oil Heater	1994	53.1 MMBtu/hr	Modification	NA
² For <u>E</u> mission ³ New, modifie	n Points use t cation, remov	L urces) use the following system: 1S, 2 he following numbering system: 1E, 2E al he following system: 1C, 2C, 3C,or	E, 3E, …or other appr	opriate designatio		1

ATTACHMENT J – Emission Points Data Summary Sheets

Attachment J EMISSION POINTS DATA SUMMARY SHEET

						-	Table 1	: Emissions D	ata						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissic Ven Throug Po (Must Emissic Table & F	ted h This int match on Units	Contro (Must Emissi	Dilution I Device match on Units Plot Plan)	Emissi <i>(che</i>	ime for on Unit mical ses only)	All Regulated Pollutants - Chemical Name/CAS ³ (<i>Speciate VOCs</i> & <i>HAPS</i>)	Maxi Pote Uncon Emiss	ntial trolled	Pot Cor	ximum tential trolled ssions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
4P-0340	Upward Vertical Stack	C4A-F-0411	Crystallize r Blend	0340	Dust Collector	С	8,760	PM/PM10	5.44	1.65	0.05	0.02	Solid	EE	NA
12P-0520	Upward Vertical Stack	C4D-E-1280 C4D-E-5280	Product Cooler	C4D-M- 0520	Baghouse	С		Ethylene Glycol (CAS NO. 107-21-1) Acetaldehyde (CAS NO. 75-07-0) VOC PM/PM10	0.22 0.01 0.28 4.17	0.92 0.03 1.17 15.28	0.22 0.01 0.28 0.04	0.92 0.03 1.17 0.15	Gas/Vapor Gas/Vapor Gas/Vapor Solid	EE	NA

							Table 1	: Emissions D	ata						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissic Ven Throug Poi (Must Emissio Table & F	ted h This int match n Units	Control (Must Emissio	Ollution Device match on Units Plot Plan)	Emissi <i>(che</i>	Time for ion Unit emical ses only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maxii Pote Uncon Emiss	ntial trolled	Po Cor	ximum tential htrolled ssions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
4P-1600	Upward Vertical Stack	C4C-R-3070 C4C-R-1060 C4B-F-5420 C4C-R-5060 C4C-R-7070	Preheater Surge Bin CSS-12 1 st Reactor CSS-12 2 ^{nc} Reactor CSS-13 Preheater Surge Bin CSS-13 1 ^s Reactor	1430 C4T-B-1600	Baghouse Hot Oil Heater	С		Carbon Monoxide (CAS No. 630-08-0) NOx Ethylene Glycol (CAS No. 107-21-1) Acetaldehyde (CAS NO. 75-07-0) 1,4 Dioxane VOC PM/PM10/PM2.5 SOx Carbon Dioxide (CAS No. 124-38-9) Methane (CAS No. 74-82-8) Nitrous Oxide (CAS # 10024-97-2)	29.61 0.59 236.11 0.13 0.06 6641 0.11 0.01	8.14 14.00 11.84 112.53 0.59 1006.9 0.56 0.23 29088 0.43 0.04	1.90 3.20 0.01 0.06 0.001 0.40 0.13 0.06 6641 0.11 0.01	8.14 14.00 0.02 0.23 0.001 1.72 0.56 0.23 29088 0.43 0.04	Gas Vapor Gas Vapor Gas Vapor Gas Vapor Gas Vapor Solid Gas Vapor Gas Vapor Gas Vapor Gas Vapor	EE	NA

							Table 1	: Emissions Da	ata						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissic Ven Throug Poi <i>(Must r Emissio</i> Table & F	ted h This int <i>match</i> n Units	Contro (Musi Emissi	ollution I Device t match ion Units Plot Plan)	Emissi (che	Time for ion Unit emical ses only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)		-	Pot Con	ximum tential trolled ssions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
12P-3350	Upward Vertical Stack		CSS-12 Crystallizer & Heater	C4A-M- 3350	Baghouse	С		CO NOx Ethylene Glycol (CAS NO. 107-21-1) Acetaldehyde (CAS NO. 75-07-0) VOC PM/PM10/PM2.5 SO2 Carbon Dioxide (CAS No. 124-38-9) Methane (CAS No. 74-82-8) Nitrous Oxide (CAS # 10024-97-2	0.07 0.31 0.42 0.08 0.51 0.60 0.02 448 0.01 <0.01	0.26 1.32 1.82 0.36 2.23 3.00 0.02 1963 0.03 <0.01	0.07 0.31 0.42 0.08 0.51 0.01 0.02 448 0.01 <0.01	0.26 1.32 1.82 0.36 2.23 0.03 0.02 1963 0.03 <0.01	Gas/Vapor Gas/Vapor Gas/Vapor Gas/Vapor Solid Gas/Vapor Gas/Vapor Gas/Vapor Gas/Vapor	EE	NA

							Table 1	: Emissions Da	ata						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissic Ven Throug Po (Must Emissic Table & F	ted h This int match on Units	Control (Must Emissio	Ollution Device match on Units Plot Plan)	Emissi (che	Time for ion Unit emical ses only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)			Pot	kimum eential trolled ssions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
	Upward Vertical Stack		CSS-12 Preheater and Heater	C4B-M-2420	Baghouse	C	8,760	CO NOx Ethylene Glycol (CAS NO. 107-21-1) Acetaldehyde (CAS NO. 75-07-0) VOC PM/PM10/PM2.5 SOx Carbon Dioxide (CAS No. 124-38-9) Methane (CAS No. 74-82-8) Nitrous Oxide (CAS # 10024-97-2	0.02 0.08 0.11 0.18 0.32 0.95 0.02 236 <0.01 <0.01	0.07 0.32 0.42 0.75 1.36 1.90 0.02 1033 0.02 <0.01	0.02 0.08 0.11 0.18 0.32 0.01 0.02 236 <0.01 <0.01	0.09 0.34 0.49 0.79 1.43 0.03 0.02 1033 <0.02 <0.02	Gas/Vapor Gas/Vapor Gas/Vapor Gas/Vapor Solid Gas/Vapor Gas/Vapor Gas/Vapor Gas/Vapor	EE	NA

							Table 1	: Emissions Da	ata						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissic Ven Throug Po <i>(Must Emissic</i> Table & F	Ited Ih This int match on Units	Contro (Mus Emiss	ollution I Device t match ion Units Plot Plan)	Emiss (che	Time for ion Unit emical ses only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)			Pot	ximum tential trolled ssions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
13P-7350	Upward Vertical Stack	C4A-E-7240 C4A-B-7010	Crystallizer	C4A-M- 7350	Baghouse	С		CO NOx Ethylene Glycol (CAS NO. 107-21-1) Acetaldehyde (CAS NO. 75-07-0) VOC PM/PM10 SO2 Carbon Dioxide (CAS No. 124-38-9) Methane (CAS No. 74-82-8) Nitrous Oxide (CAS # 10024-97-2	0.03 0.13 0.42 0.08 0.51 0.61 0.01 448 0.01 <0.01	0.16 0.57 1.74 0.36 2.21 3.04 0.01 1963 0.03 <0.01	0.03 0.13 0.42 0.08 0.51 0.01 448 0.01 <0.01	0.13 0.57 1.74 0.36 2.21 0.03 0.01 1963 0.03 <0.01	Gas/Vapor Gas/Vapor Gas/Vapor Gas/Vapor Solid Gas/Vapor Gas/Vapor Gas/Vapor Gas/Vapor	EE	NA

							Table 1	: Emissions D	ata						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissic Ven Throug Poi (Must Emissio Table & F	ted h This int <i>match</i> on Units	Contro (Musi Emissi	Dilution I Device match on Units Plot Plan)	Emissi <i>(che</i>	Time for on Unit mical ses only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maxi Pote Uncon Emiss	ential trolled	Pot Con	ximum tential trolled ssions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
	Upward Vertical Stack	C4B-E-6250 C4B-B-6020	Preheater	6420	Baghouse	C		CO NOx Ethylene Glycol (CAS NO. 107-21-1) Acetaldehyde (CAS NO. 75-07-0) VOC PM/PM10 SO2 Carbon Dioxide (CAS No. 124-38-9) Methane (CAS No. 74-82-8) Nitrous Oxide (CAS # 10024-97-2	0.03 0.12 0.11 0.18 0.32 0.66 0.01 236 <0.01 <0.01	0.15 0.51 0.49 0.79 1.43 3.30 0.01 1033 0.02 <0.01	0.03 0.12 0.11 0.18 0.32 0.01 0.01 236 <0.01 <0.01	0.15 0.51 0.49 0.79 1.43 0.03 0.01 1033 0.02 <0.01	Gas/Vapor Gas/Vapor Gas/Vapor Gas/Vapor Solid Gas/Vapor Gas/Vapor Gas/Vapor Gas/Vapor	EE	NA
	Upward Vertical Stack	L26-M-6010	Warehouse West Silo	L26-F-6010	NA	С	8,760	PM/PM10	0.08	0.35	<0.01	<0.01	Solid	EE	NA

							Table 1	: Emissions Da	ata						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissic Ven Throug Poi (Must Emissio Table & F	ted h This int match n Units	Contro (Musi Emissi	ollution I Device t match ion Units Plot Plan)	Emissi (che	Time for ion Unit emical ses only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)		ential trolled	Pot	kimum tential trolled ssions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	– or Gas/Vapor)		
8E-03	Upward Vertical Stack	S8A-F-3240 S8A-B-3010	Crystallizer		Baghouse	С		CO NOx Ethylene Glycol (CAS NO. 107-21-1) VOC PM/PM10 SO2 Carbon Dioxide (CAS No. 124-38-9) Methane (CAS No. 74-82-8) Nitrous Oxide (CAS # 10024-97-2	0.06 0.29 0.04 0.11 9.12 0.01 413 0.01 <0.01	0.25 1.17 0.16 0.45 40.37 0.01 1,808 0.03 <0.01	0.06 0.29 0.04 0.11 0.09 0.01 413 0.01 <0.01	0.25 1.17 0.16 0.45 0.40 0.01 1,808 0.03 <0.01	Gas/Vapor Gas/Vapor Gas/Vapor Solid Gas/Vapor Gas/Vapor Gas/Vapor Gas/Vapor	EE	NA

							Table 1	: Emissions Da	ata						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissic Ven Throug Poi (Must r Emissio Table & F	ted h This nt match n Units	Contro (Musi Emissi	ollution I Device t match ion Units Plot Plan)	Emissi <i>(che</i>	Time for ion Unit emical ses only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maxin Pote Uncon Emiss	ntial trolled	Pot Con	kimum tential trolled ssions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
	Upward Vertical Stack	S8B-B-2020	Preheater		Baghouse	С		CO NOx Ethylene Glycol (CAS NO. 107-21-1) Acetaldehyde (CAS NO. 75-07-0) VOC PM/PM10 SO2 Carbon Dioxide (CAS No. 124-38-9) Methane (CAS No. 74-82-8) Nitrous Oxide (CAS # 10024-97-2	0.02 0.12 0.03 0.04 0.13 4.53 0.01 177 <0.01 <0.01	0.11 0.49 0.12 0.19 0.59 22.04 0.01 775 0.01 <0.01	0.02 0.12 0.03 0.04 0.13 0.05 0.01 177 <0.01 <0.01	0.11 0.49 0.12 0.19 0.59 0.22 0.01 775 0.01 <0.01	Gas/Vapor Gas/Vapor Gas/Vapor Gas/Vapor Solid Gas/Vapor Gas/Vapor Gas/Vapor Gas/Vapor	EE	NA

							Table 1	: Emissions Da	ata						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	nt Vented		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
	Upward Vertical Stack	C3A-E-7240 C3A-B-7010		C3A-M- 7350	Baghouse	с	8,760	CO NOx Ethylene Glycol (CAS NO. 107-21-1) Acetaldehyde (CAS NO. 75-07-0) VOC PM/PM10 SO2 Carbon Dioxide (CAS No. 124-38-9) Methane (CAS No. 74-82-8) Nitrous Oxide (CAS # 10024-97-2	0.02 0.08 0.30 0.06 0.37 0.41 0.01 448 0.01 <0.01	0.09 0.35 1.25 0.23 1.53 2.03 0.01 1963 0.03 <0.01	0.02 0.08 0.30 0.06 0.37 0.01 0.01 448 0.01 <0.01	0.09 0.35 1.25 0.23 1.53 0.02 0.01 1963 0.03 <0.01	Gas/Vapor Gas/Vapor Gas/Vapor Gas/Vapor Solid Gas/Vapor Gas/Vapor Gas/Vapor Gas/Vapor	EE	NA

							Table 1	: Emissions Da	ata						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissic Ven Throug Po (Must Emissic Table & F	ted h This int match on Units	Contro (Musi Emissi	ollution I Device t match on Units Plot Plan)	Emissi <i>(che</i>	Time for ton Unit temical ses only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maxii Pote Uncon Emiss	ntial trolled	Pot Con	kimum tential trolled ssions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
	Upward Vertical Stack	C3B-E-6250 C3B-B-6020	Preheater	C3B-M- 6420	Baghouse	С		CO NOx Ethylene Glycol (CAS NO. 107-21-1) Acetaldehyde	0.02 0.08 0.08 0.13	0.07 0.36 0.35 0.57	0.02 0.08 0.08 0.13	0.07 0.36 0.35 0.57	Gas/Vapor Gas/Vapor Gas/Vapor Gas/Vapor	EE	NA
								(CAS NO. 75-07-0) VOC PM/PM10 SO2 Carbon Dioxide (CAS No. 124-38-9) Methane	0.24 0.49 0.01 236 <0.01 <0.01	1.07 2.13 0.01 1033 0.02 <0.01	0.24 0.01 236 <0.01 <0.01	1.07 0.02 0.01 1033 0.02 <0.01	Gas/Vapor Solid Gas/Vapor Gas/Vapor Gas/Vapor Gas/Vapor		
	Upward Vertical Stack	C3A-E-3240 C3A-B-3010	Crystallizer	C3A-M- 3350	Baghouse	с		CO NOx Ethylene Glycol (CAS NO. 107-21-1) Acetaldehyde (CAS NO. 75-07-0) VOC PM/PM10 SO2 Carbon Dioxide (CAS No. 124-38-9) Methane (CAS No. 74-82-8) Nitrous Oxide (CAS # 10024-97-2	0.03 0.15 0.30 0.06 0.37 11.46 0.01 448 0.01 <0.01	0.13 0.65 1.25 0.23 1.53 4.91 0.01 1963 0.03 <0.01	0.03 0.15 0.30 0.06 0.37 0.11 0.01 448 0.01 <0.01	0.13 0.65 1.25 0.23 1.53 0.05 0.01 1963 0.03 <0.01	Gas/Vapor Gas/Vapor Gas/Vapor Gas/Vapor Solid Gas/Vapor Gas/Vapor Gas/Vapor Gas/Vapor	EE	NA

							Table 1	: Emissions D	ata						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
11P-2420	Upward Vertical Stack			C3B-M- 2420	Baghouse	С	8,760	CO NOx Ethylene Glycol (CAS NO. 107-21-1) Acetaldehyde (CAS NO. 75-07-0) VOC PM/PM10 SO2 Carbon Dioxide (CAS No. 124-38-9) Methane (CAS No. 74-82-8) Nitrous Oxide (CAS # 10024-97-2	0.01 0.07 0.08 0.13 0.24 0.01 236 <0.01 <0.01	0.05 0.29 0.35 0.57 1.07 0.02 0.01 1033 0.02 <0.01	0.01 0.07 0.08 0.13 0.24 0.01 236 <0.01 <0.01	0.05 0.29 0.35 0.57 1.07 0.02 0.01 1033 0.02 <0.01	Gas/Vapor Gas/Vapor Gas/Vapor Gas/Vapor Solid Gas/Vapor Gas/Vapor Gas/Vapor Gas/Vapor	EE	NA

							Table 1	: Emissions D	ata						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissio Ven Throug Po <i>(Must Emissio</i> Table & F	Ited Ih This int match In Units	Contro (Musi Emissi	ollution I Device t match on Units Plot Plan)	Emissi (che	Time for ton Unit temical ses only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maxii Pote Uncon Emiss	ntial trolled	Po Cor	ximum tential trolled ssions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid or	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	Gas/Vapor)		
3P-1600	Upward Vertical Stack	C3T-B-1600	Hot Oil Heater	NA	NA	С	8760	Carbon Monoxide (CAS No. 630-08-0) NOx Ethylene Glycol (CAS No. 107-21-1) Acetaldehyde (CAS NO. 75-07-0) 1,4 Dioxane CAS NO. 54841-74-6) VOC PM/PM10/PM2.5 SOx Carbon Dioxide (CAS No. 124-38-9) Methane (CAS No. 124-38-9) Methane (CAS No. 74-82-8) Nitrous Oxide (CAS No. 74-82-8) Nitrous Oxide (CAS # 10024-97-2) Benzene (CAS Mo. 108-88-3) Ethylbenzene (CAS No. 100-41-4) Naphathalene (CAS No. 91-20-3)	3.19 3.50 520.00 5.00 1.32 0.11 0.05 6641 0.10 0.01 0.01 0.09 0.74 0.04	8.14 14.00 10.00 750.0 5.00 2.77 0.47 0.23 29088 0.43 0.04 0.01 0.11 0.01 <0.01	1.86 3.19 0.01 0.05 0.001 1.32 0.11 0.05 6641 0.10 0.01 <0.01 <0.01 <0.01 <0.01	8.14 14.00 0.02 0.19 0.001 2.77 0.47 0.23 29088 0.43 0.04 <0.01 <0.01 <0.01	Gas Vapor Gas Vapor	E	

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

* Only emission units in CSS-12 and CSS-13 listed.

Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂O, N₂O, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

page J13 of J15

WVDEP-DAQ Revision 2/11

Attachment J EMISSION POINTS DATA SUMMARY SHEET

			Table 2: Rele	ase Param	eter Data			
Emission	Inner		Exit Gas		Emission Point Ele	evation (ft)	UTM Coordinat	es (km)
Point ID No. (Must match Emission Units Table)	Diameter - (ft.)	Temp. (°F)	Volumetric Flow ¹ (acfm) <i>at operating conditions</i>	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting
12P-0520	2	297	23,846	123.9	583	35	4,280.0	397.9
12P-1590	0.5	100	1,166.3	99	583	65	4,280.0	397.9
12P-1130	1.33	100	540.4	6.48	583	55	4,280.0	397.9
12P-1140	0.67	90	2,493	117.9	583	30	4,280.0	397.9
12P-0390	0.67	140	2,154	101.8	583	55	4,280.0	397.9
12P-2060	1	100	2.8	0.06	583	45	4,280.0	397.9
12P-2080	0.067	90	928.6	43.9	583	30	4,280.0	397.9
4P-1600	4	550	15,031	19.94	583	100	4,280.0	397.9
12P-2390	0.83	14	1,664	50.64	583	280	4,280.0	397.9
12P-3350	0.83	305	2,333	71.87	583	250	4,280.0	397.9
12P-2420	0.67	450	1,291.6	12.18	583	200	4,280.0	397.9
13P-6390	0.83	14	1,664	50.64	583	280	4,280.0	397.9
13P-7350	0.83	305	2,333	71.87	583	250	4,280.0	397.9
12P-6420	0.67	450	1,291.6	12.18	583	200	4,280.0	397.9
13P-5590	0.5	100	1,166.3	99	583	65	4,280.0	397.9
13P-1130	1.33	100	540.4	6.48	583	55	4,280.0	397.9
13P-1170	0.67	90	2,493	117.9	583	30	4,280.0	397.9
13P-2080	0.067	90	928.6	43.9	583	30	4,280.0	397.9
WP-6010		150	700		583		4,280.0	397.9

3P-1600	4	550	15,031	19.94	583	100	4,280.0	397.9	
---------	---	-----	--------	-------	-----	-----	---------	-------	--

¹Give at operating conditions. Include inerts. ²Release height of emissions above ground level.

page J15 of J15

WVDEP-DAQ Revision 2/11

ATTACHMENT K – Fugitive Emissions Data Summary Sheets

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	□ Yes
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	□ Yes
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	□ Yes
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	□ Yes
	☐ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions nmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹	Maximum Uncontrolled	Potential Emissions ²	Maximum Pe Controlled Em	otential issions ³	Est. Method
	Chemical Name/CAS	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads						
Unpaved Haul Roads						
Storage Pile Emissions						
Loading/Unloading Operations						
Wastewater Treatment Evaporation & Operations						
Equipment Leaks		Does not apply		Does not apply		
General Clean-up VOC Emissions						
Other						

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

ATTACHMENT L – Emissions Unit Data Sheets

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): CA4-F-0410 / CA4-F-0411

1.	Name or type and model of proposed affected source:
	West CSS-12/13 Crystallizer Blend Silo
	•
	East CSS-12/13 Crystallizer Blend Silo
2.	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be
	made to this source, clearly indicated the change(s). Provide a narrative description of all
	features of the affected source which may affect the production of air pollutants.
	· · · · · · · · · · · · · · · · · · ·
3.	Name(s) and maximum amount of proposed process material(s) charged per hour:
	Polyester Pellets - 25,000 lb/hr
	Air – 1527 scfm
4.	Name(s) and maximum amount of proposed material(s) produced per hour:
1	
	Polyester Pellets – 25,000 lbhr
-	
5.	Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
No	ot Applicable
	••
	••
	••
	••
	••
	••

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	6. Combustion Data (if applicable): Not Applicable							
	(a) Type and amo	unt in appropriate u	nits of fuel(s) to be bu	rned:				
	(b) Chemical analy and ash:	ysis of proposed fue	el(s), excluding coal, in	cluding maximum percent sulfur				
	(c) Theoretical co	mbustion air require	ment (ACF/unit of fue):				
		@	°F and	psia.				
				F				
	(d) Percent excess air:							
	(e) Type and BTU/hr of burners and all other firing equipment planned to be used:							
	(f) If coal is propo coal as it will b		fuel, identify supplier a	nd seams and give sizing of the				
		e med.						
┢	(a) Droposod reserv	imum dooise host:	anuti					
	(g) Proposed max	imum design heat i	nput:	× 10 ⁶ BTU/hr.				
7.	Projected operatin	g schedule:						
Hours/Day 24 Days/Week 7				Weeks/Year 52				

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:						
@	450	°F and 14.7	72 psia				
a.	NO _X	lb/hr	grains/ACF				
b.	SO ₂	lb/hr	grains/ACF				
c.	СО	lb/hr	grains/ACF				
d.	PM ₁₀	5.44 lb/hr	grains/ACF				
e.	Hydrocarbons	lb/hr	grains/ACF				
f.	VOCs	lb/hr	grains/ACF				
g.	Pb	lb/hr	grains/ACF				
h.	Specify other(s)						
		lb/hr	grains/ACF				
		lb/hr	grains/ACF				
		lb/hr	grains/ACF				
		lb/hr	grains/ACF				

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
REPORTING	TESTING
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
PROPOSED TO BE MONITORED IN ORDER TO DEMON PROCESS EQUIPMENT OPERATION/AIR POLLUTION	
MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
10. Describe all operating ranges and mainten maintain warranty	nance procedures required by Manufacturer to
Not Applicable	

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): C4D-E-1280 C4D-E-5280

^{*} The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	Combustion Data (if applicable): Not Applicable				
	(a) Type and amount in appropriate units of fuel(s) to be burned:				
	(b) Chemical analysis of proposed fuel(s), excluding coal, including maximum percent sulfur and ash:				
⊢	(a) Theoretical combustion air requirement (ACE/unit of fuel):				
	(c) Theoretical combustion air requirement (ACF/unit of fuel):				
	@	°F and	psia.		
	(d) Percent excess air:				
	(e) Type and BTU/hr of burners and all other firing equipment planned to be used:				
	(f) If coal is proposed as a	source of fuel, identify supplier a	nd seams and give sizing of the		
	coal as it will be fired:				
L					
	(g) Proposed maximum de	sign heat input:	× 10 ⁶ BTU/hr.		
7.	7. Projected operating schedule:				
Но	ours/Day 24	Days/Week 7	Weeks/Year 52		

8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:					
@	450	°F and 14.7	72 psia		
a.	NO _X	lb/hr	grains/ACF		
b.	SO ₂	lb/hr	grains/ACF		
C.	СО	lb/hr	grains/ACF		
d.	PM ₁₀	4.17 lb/hr	grains/ACF		
e.	Hydrocarbons	lb/hr	grains/ACF		
f.	VOCs	0.28 lb/hr	grains/ACF		
g.	Pb	lb/hr	grains/ACF		
h. Specify other(s)					
	Ethylene Glycol	0.22 lb/hr	grains/ACF		
	Acetaldehyde	0.01 lb/hr	grains/ACF		
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. MONITORING 				
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping			
REPORTING	TESTING			
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping			
PROPOSED TO BE MONITORED IN ORDER TO DEMON	IE PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS			
PROCESS EQUIPMENT OPERATION/AIR POLLUTION RECORDKEEPING. PLEASE DESCRIBE THE PROF	CONTROL DEVICE. POSED RECORDKEEPING THAT WILL ACCOMPANY THE			
MONITORING.				
REPORTING. PLEASE DESCRIBE THE PRO RECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE			
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR			
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to			
Not Applicable				

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): C4C-R-3070

1.	Name or type and model of proposed affected source: CSS-12 2 nd Reactor
2.	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3.	Name(s) and maximum amount of proposed process material(s) charged per hour: Polyester Pellets - 25,000 lb/hr
	Name(s) and maximum amount of proposed material(s) produced per hour: lyester Pellets - 25,000 lb/hr
5.	Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
Not	t Applicable

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	Cor	mbustion Data (if applic	able): Not Applicable	
	(a)	Type and amount in ap	propriate units of fuel(s) to be but	rned:
	(1)	<u></u>		
	(D)	and ash: Not Applicable	oposed fuel(s), excluding coal, in e	cluding maximum percent sulfur
F	(c)	Theoretical combustion	air requirement (ACF/unit of fuel):
		@	°F and	psia.
				F
	(d)	Percent excess air:		
	(e)	Type and BTU/hr of bu	rners and all other firing equipme	nt planned to be used:
	(f)	If coal is proposed as a coal as it will be fired:	source of fuel, identify supplier a	nd seams and give sizing of the
		coal as it will be lifed.		
╞			· · · · ·	· -6
	(g)	Proposed maximum de	sign heat input:	× 10 ⁶ BTU/hr.
7.	Pro	jected operating sched	ule:	
Но	ours/l	Day 24	Days/Week 7	Weeks/Year 52

8.	Projected amount of pollutants that would be emitted from this affected source if no control devices were used: INCLUDED IN HOT OIL HEATER EMSSIONS (C4T-B-1600)			
@	°F and psia			
a.	NO _X	lb/hr	grains/ACF	
b.	SO ₂	lb/hr	grains/ACF	
c.	со	lb/hr	grains/ACF	
d.	PM ₁₀	lb/hr	grains/ACF	
e.	Hydrocarbons	lb/hr	grains/ACF	
f.	VOCs	lb/hr	grains/ACF	
g.	Pb	lb/hr	grains/ACF	
h.	Specify other(s)			
		lb/hr	grains/ACF	

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
REPORTING	TESTING
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
PROPOSED TO BE MONITORED IN ORDER TO DEMON PROCESS EQUIPMENT OPERATION/AIR POLLUTION	
MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	OPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIF
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to
Not Applicable	

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): C4B-F-1420

1.	Name or type and model of proposed affected source: CSS-12 Preheater Surge BIn
2.	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3.	Name(s) and maximum amount of proposed process material(s) charged per hour: Polyester Pellets - 25,000 lb/hr
	Name(s) and maximum amount of proposed material(s) produced per hour: olyester Pellets - 25,000 lb/hr
5.	Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
N	ot Applicable

^{*} The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	Cor	mbustion Data (if applic	able): Not Applicable	
	(a)	Type and amount in ap	propriate units of fuel(s) to be but	rned:
	(1)	<u></u>		
	(D)	and ash: Not Applicable	oposed fuel(s), excluding coal, in e	cluding maximum percent sulfur
F	(c)	Theoretical combustion	air requirement (ACF/unit of fuel):
		@	°F and	psia.
				F
	(d)	Percent excess air:		
	(e)	Type and BTU/hr of bu	rners and all other firing equipme	nt planned to be used:
	(f)	If coal is proposed as a coal as it will be fired:	source of fuel, identify supplier a	nd seams and give sizing of the
		coal as it will be lifed.		
╞			· · · · ·	· -6
	(g)	Proposed maximum de	sign heat input:	× 10 ⁶ BTU/hr.
7.	Pro	jected operating sched	ule:	
Но	ours/l	Day 24	Days/Week 7	Weeks/Year 52

8.	Projected amount of pollutants that would be emitted from this affected source if no control devices were used: INCLUDED IN HOT OIL HEATER EMSSIONS (C4T-B-1600)			
@	°F and psia			
a.	NO _X	lb/hr	grains/ACF	
b.	SO ₂	lb/hr	grains/ACF	
c.	со	lb/hr	grains/ACF	
d.	PM ₁₀	lb/hr	grains/ACF	
e.	Hydrocarbons	lb/hr	grains/ACF	
f.	VOCs	lb/hr	grains/ACF	
g.	Pb	lb/hr	grains/ACF	
h.	Specify other(s)			
		lb/hr	grains/ACF	

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
REPORTING	TESTING
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
	I IE PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROF MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRO RECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIF
	ance procedures required by Manufacturer to
maintain warranty Not Applicable	

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): C4C-R-1060

1.	Name or type and model of proposed affected source: CSS-12 1 st Reactor
2.	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3.	Name(s) and maximum amount of proposed process material(s) charged per hour: Polyester Pellets - 25,000 lb/hr
	Name(s) and maximum amount of proposed material(s) produced per hour: lyester Pellets - 25,000 lb/hr
5.	Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
No	t Applicable

6.	Cor	mbustion Data (if applic	able): Not Applicable	
	(a)	Type and amount in ap	propriate units of fuel(s) to be but	rned:
	(1)	<u></u>		
	(D)	and ash: Not Applicable	oposed fuel(s), excluding coal, in e	cluding maximum percent sulfur
F	(c)	Theoretical combustion	air requirement (ACF/unit of fuel):
		@	°F and	psia.
				F
	(d)	Percent excess air:		
	(e)	Type and BTU/hr of bu	rners and all other firing equipme	nt planned to be used:
	(f)	If coal is proposed as a coal as it will be fired:	source of fuel, identify supplier a	nd seams and give sizing of the
		coal as it will be lifed.		
╞			· · · · ·	· -6
	(g)	Proposed maximum de	sign heat input:	× 10 ⁶ BTU/hr.
7.	Pro	jected operating sched	ule:	
Но	ours/l	Day 24	Days/Week 7	Weeks/Year 52

8.	Projected amount of pollutants that would be emitted from this affected source if no control devices were used: INCLUDED IN HOT OIL HEATER EMSSIONS (C4T-B-1600)			
@	°F and psia			
a.	NO _X	lb/hr	grains/ACF	
b.	SO ₂	lb/hr	grains/ACF	
c.	со	lb/hr	grains/ACF	
d.	PM ₁₀	lb/hr	grains/ACF	
e.	Hydrocarbons	lb/hr	grains/ACF	
f.	VOCs	lb/hr	grains/ACF	
g.	Pb	lb/hr	grains/ACF	
h.	Specify other(s)			
		lb/hr	grains/ACF	

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
REPORTING	TESTING
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
	I IE PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROF MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRO RECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIF
	ance procedures required by Manufacturer to
maintain warranty Not Applicable	

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): C4A-E-3240 / C4A-B-3010

1.	Name or type and model of proposed affected source: CSS-12 Crystallizer
	CSS-12 Crystallizer Furnace
2.	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3.	Name(s) and maximum amount of proposed process material(s) charged per hour: Polyester Pellets - 25,000 lb/hr
	Air – 1527 SCFM
4.	Name(s) and maximum amount of proposed material(s) produced per hour: Polyester Pellets – 25,000 lb/hr
5.	Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
No	ot Applicable
I	

6.	Combustion Data (if application	able):	
	(a) Type and amount in ap	propriate units of fuel(s) to be bui	rned: Natural Gas
	(b) Chemical analysis of pr and ash:	oposed fuel(s), excluding coal, in	cluding maximum percent sulfur
┢	(c) Theoretical combustion	air requirement (ACF/unit of fuel):
	@	°F and	psia.
			pola.
	(d) Percent excess air:		
		rners and all other firing equipme	nt planned to be used:
	1 natural gas burner		
		source of fuel, identify supplier a	nd seams and give sizing of the
	coal as it will be fired: Not Applicable		
<u> </u>			
	(g) Proposed maximum de	sign heat input:	3.04 × 10 ⁶ BTU/hr.
7.	Projected operating schedu	lle:	
Но	ours/Day 24	Days/Week 7	Weeks/Year 52

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:		
@	200	°F and 14.9	psia
a.	NO _X	0.31 lb/hr	grains/ACF
b.	SO ₂	0.01 lb/hr	grains/ACF
c.	со	0.07 lb/hr	grains/ACF
d.	PM ₁₀	0.60 lb/hr	grains/ACF
e.	Hydrocarbons	lb/hr	grains/ACF
f.	VOCs	0.37 lb/hr	grains/ACF
g.	Pb	lb/hr	grains/ACF
h.	Specify other(s)		
	Ethylene Glycol	0.42 lb/hr	grains/ACF
	Acetaldehyde	0.08 lb/hr	grains/ACF
	Carbon Dioxide	448 lb/hr	grains/ACF
	Methane Nitrous Oxide	0.01 lb/hr <0.01 lb/hr	grains/ACF

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
REPORTING	TESTING
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
	I IE PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROF MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRO RECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIF
	ance procedures required by Manufacturer to
maintain warranty Not Applicable	

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): C4B-E-2250 / C4B-B-2020

1.	Name or type and model of proposed affected source:
	CSS-12 Preheater
	CSS-12 Preheater Furnace
_	
2.	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3.	Name(s) and maximum amount of proposed process material(s) charged per hour:
	Polyester Pellets - 25,000 lb/hr
	Air – 1527 SCFM
4.	Name(s) and maximum amount of proposed material(s) produced per hour:
Po	olyester Pellets - 25,000 lb/hr
5.	Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
No	ot Applicable
L	

6.	Combustion Data (if appl	cable):	
	(a) Type and amount in a	ppropriate units of fuel(s) to be bu	rned: Natural Gas
	(b) Chemical analysis of and ash:	proposed fuel(s), excluding coal, in	cluding maximum percent sulfur
	(c) Theoretical combustion	on air requirement (ACF/unit of fue	l):
	@	°F and	psia.
	0		Poidi
	(d) Percent excess air:		
	(e) Type and BTU/hr of b	urners and all other firing equipme	nt planned to be used:
		a source of fuel, identify supplier a	nd seams and give sizing of the
	coal as it will be fired:		
┝			-
	(g) Proposed maximum of	lesign heat input:	0.97× 10 ⁶ BTU/hr.
7.	Projected operating sche	dule:	
Но	burs/Day 24	Days/Week 7	Weeks/Year 52

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:		
@		°F and	psia
a.	NO _X	0.08 lb/hr	grains/ACF
b.	SO ₂	0.01 lb/hr	grains/ACF
c.	со	0.02 lb/hr	grains/ACF
d.	PM ₁₀	0.66 lb/hr	grains/ACF
e.	Hydrocarbons	lb/hr	grains/ACF
f.	VOCs	0.32 lb/hr	grains/ACF
g.	Pb	lb/hr	grains/ACF
h.	Specify other(s)		
	Ethylene Glycol	0.11 lb/hr	grains/ACF
	Acetaldehyde	0.18 lb/hr	grains/ACF
	Carbon Dioxide	236 lb/hr	grains/ACF
	Methane Nitrous Oxide	<0.01 <0.01 lb/hr	grains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
REPORTING	TESTING
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
	I IE PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROF MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE
	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIF
	nance procedures required by Manufacturer to
maintain warranty Not Applicable	

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): C4A-E-7240 / C4A-B-7010

1.	Name or type and model of proposed affected source:
	CSS-13 Crystallizer
	CSS-13 Crystallizer Furnace
2.	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3.	Name(s) and maximum amount of proposed process material(s) charged per hour:
	Polyester Pellets - 25,000 lb/hr
	Air – 1527 scfm
4. Pc	Name(s) and maximum amount of proposed material(s) produced per hour: olyester Pellets - 25,000 lb/hr
5	Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
5.	Give chemical reactions, il applicable, that will be involved in the generation of all polititants.
Nc	ot Applicable

6.	Combustion Data (if application	able):	
	(a) Type and amount in ap	propriate units of fuel(s) to be but	rned:
	<i>/</i> / <i>/ / / / / / / / /</i>		
	(b) Chemical analysis of pr and ash:	oposed fuel(s), excluding coal, in	cluding maximum percent sulfur
	(c) Theoretical combustion	air requirement (ACF/unit of fuel):
	@	°F and	psia.
			pold.
	(d) Percent excess air:		
	(e) Type and BTU/hr of bu	rners and all other firing equipme	nt planned to be used:
		source of fuel, identify supplier a	nd seams and give sizing of the
	coal as it will be fired:		
	(g) Proposed maximum de	sign heat input:	3.04× 10 ⁶ BTU/hr.
7.	Projected operating schedu	ıle:	
Hc	ours/Day 24	Days/Week 7	Weeks/Year 52

8.	Projected amount of pollur devices were used:	tants that would be emitted from	m this affected source if no control
@	140	°F and 14.9	psia
a.	NO _X	0.13 lb/hr	grains/ACF
b.	SO ₂	0.01 lb/hr	grains/ACF
c.	СО	0.03 lb/hr	grains/ACF
d.	PM ₁₀	3.04 lb/hr	grains/ACF
e.	Hydrocarbons	lb/hr	grains/ACF
f.	VOCs	0.51 lb/hr	grains/ACF
g.	Pb	lb/hr	grains/ACF
h.	Specify other(s)		
	Ethylene Glycol	0.42 lb/hr	grains/ACF
	Acetaldehyde	0.08 lb/hr	grains/ACF
	Carbon Dioxide	448 lb/hr	grains/ACF
	Methane Nitrous Oxide	0.01 lb/hr <0.01 lb/hr	grains/ACF

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
REPORTING	TESTING
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
PROPOSED TO BE MONITORED IN ORDER TO DEMON PROCESS EQUIPMENT OPERATION/AIR POLLUTION	IE PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE. POSED RECORDKEEPING THAT WILL ACCOMPANY THE
MONITORING.	OSED RECORDREEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRO RECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE
	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIF
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to
Not Applicable	

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): C4B-E-6250 / C4B-B-6020

1.	Name or type and model of proposed affected source:
	CSS-13 Preheater
	CSS-13 Preheater Furnace
2.	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3.	Name(s) and maximum amount of proposed process material(s) charged per hour:
	Polyester Pellets - 25,000 lb/hr
	Air - 1527 scfm
4.	
	blyester Pellets - 25,000 lb/hr
F	Cive examinate repetience if applicable, that will be involved in the concretion of size substants.
5.	Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
No	ot Applicable
1	
۱ ـــــ	

6.	Combustion D	ata (if applica	able):	
	(a) Type and a	amount in ap	propriate units of fuel(s) to be bu	rned: Natural Gas
	(b) Chemical a and ash:	analysis of pr	oposed fuel(s), excluding coal, in	cluding maximum percent sulfur
	(c) Theoretica	I combustion	air requirement (ACF/unit of fue	l):
		@	°F and	psia.
		e		poid.
	(d) Percent ex	cess air:		
	(e) Type and I	BTU/hr of bu	rners and all other firing equipme	nt planned to be used:
	(f) If coal is pr	roposed as a	source of fuel, identify supplier a	nd seams and give sizing of the
	coal as it v	vill be fired:		
	(g) Proposed	maximum de	sign heat input:	1.6 × 10 ⁶ BTU/hr.
7.	Projected oper	rating schedu	ıle:	
Ho	ours/Day 24		Days/Week 7	Weeks/Year 52

8.	 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 		
@	200	°F and 14.9) psia
a.	NO _X	0.12 lb/hr	grains/ACF
b.	SO ₂	0.01 lb/hr	grains/ACF
c.	СО	0.03 lb/hr	grains/ACF
d.	PM ₁₀	0.66 lb/hr	grains/ACF
e.	Hydrocarbons	lb/hr	grains/ACF
f.	VOCs	0.32 lb/hr	grains/ACF
g.	Pb	lb/hr	grains/ACF
h.	Specify other(s)	1	
	Ethylene Glycol	0.11 lb/hr	grains/ACF
	Acetaldehyde	0.18 lb/hr	grains/ACF
	Carbon Dioxide	236 lb/hr	grains/ACF
	Methane Nitrous Oxide	<0.01 lb/hr <0.01 lb/hr	grains/ACF

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
REPORTING	TESTING
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
	E PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROF MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	OPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
	nance procedures required by Manufacturer to
maintain warranty	
Not Applicable	

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): C4B-F-5420

	Name or type and model of proposed affected source: CSS-13 Preheater Surge Bin
	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
	Name(s) and maximum amount of proposed process material(s) charged per hour: Polyester Pellets - 25,000 lb/hr
	Name(s) and maximum amount of proposed material(s) produced per hour: yester Pellets - 25,000 lb/hr
5. (Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
Not	Applicable

6.	Combustion Data (if applicable): Not Applicable			
	(a) Type and amount in appropriate units of fuel(s) to be burned:			
	(1)	<u></u>		
	(D)	and ash: Not Applicable	oposed fuel(s), excluding coal, in e	cluding maximum percent sulfur
F	(c)	Theoretical combustion	air requirement (ACF/unit of fuel):
		@	°F and	psia.
				F
	(d)	Percent excess air:		
	(e)	Type and BTU/hr of bu	rners and all other firing equipme	nt planned to be used:
	(f)	If coal is proposed as a coal as it will be fired:	source of fuel, identify supplier a	nd seams and give sizing of the
		coal as it will be lifed.		
╞			· · · · ·	· -6
	(g)	Proposed maximum de	sign heat input:	× 10 ⁶ BTU/hr.
7.	Pro	jected operating sched	ule:	
Но	ours/l	Day 24	Days/Week 7	Weeks/Year 52

8.	Projected amount of pollutants that would be emitted from this affected source if no control devices were used: INCLUDED IN HOT OIL HEATER EMSSIONS (C4T-B-1600)			
@				
a.	NO _X	lb/hr	grains/ACF	
b.	SO ₂	lb/hr	grains/ACF	
c.	со	lb/hr	grains/ACF	
d.	PM ₁₀	lb/hr	grains/ACF	
e.	Hydrocarbons	lb/hr	grains/ACF	
f.	VOCs	lb/hr	grains/ACF	
g.	Pb	lb/hr	grains/ACF	
h.	Specify other(s)			
		lb/hr	grains/ACF	

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
REPORTING	TESTING
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
PROPOSED TO BE MONITORED IN ORDER TO DEMON	IE PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS
MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to
Not Applicable	

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): C4C-R-5060

1.	Name or type and model of proposed affected source: CSS-13 1 st Reactor
2.	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3.	Name(s) and maximum amount of proposed process material(s) charged per hour: Polyester Pellets - 25,000 lb/hr
	Name(s) and maximum amount of proposed material(s) produced per hour: lyester Pellets - 25,000 lb/hr
5.	Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
No	t Applicable

6.	Combustion Data (if applicable): Not Applicable			
	(a) Type and amount in appropriate units of fuel(s) to be burned:			
	(1)	<u></u>		
	(D)	and ash: Not Applicable	oposed fuel(s), excluding coal, in e	cluding maximum percent sulfur
F	(c)	Theoretical combustion	air requirement (ACF/unit of fuel):
		@	°F and	psia.
				F
	(d)	Percent excess air:		
	(e)	Type and BTU/hr of bu	rners and all other firing equipme	nt planned to be used:
	(f)	If coal is proposed as a coal as it will be fired:	source of fuel, identify supplier a	nd seams and give sizing of the
		coal as it will be lifed.		
╞			· · · · ·	· -6
	(g)	Proposed maximum de	sign heat input:	× 10 ⁶ BTU/hr.
7.	Pro	jected operating sched	ule:	
Но	ours/l	Day 24	Days/Week 7	Weeks/Year 52

8.	Projected amount of pollutants that would be emitted from this affected source if no control devices were used: INCLUDED IN HOT OIL HEATER EMSSIONS (C4T-B-1600)			
@				
a.	NO _X	lb/hr	grains/ACF	
b.	SO ₂	lb/hr	grains/ACF	
c.	со	lb/hr	grains/ACF	
d.	PM ₁₀	lb/hr	grains/ACF	
e.	Hydrocarbons	lb/hr	grains/ACF	
f.	VOCs	lb/hr	grains/ACF	
g.	Pb	lb/hr	grains/ACF	
h.	Specify other(s)			
		lb/hr	grains/ACF	

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
REPORTING	TESTING
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
	IE PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROF MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE
	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
	nance procedures required by Manufacturer to
maintain warranty	
Not Applicable	

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): C4C-R-7070

1.	Name or type and model of proposed affected source: CSS-13 2 nd Reactor
2.	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3.	Name(s) and maximum amount of proposed process material(s) charged per hour: Polyester Pellets - 25,000 lb/hr
	Name(s) and maximum amount of proposed material(s) produced per hour: lyester Pellets - 25,000 lb/hr
5.	Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
No	t Applicable

6.	Cor	mbustion Data (if applic	able): Not Applicable	
	(a)	Type and amount in ap	propriate units of fuel(s) to be but	rned:
	(1)	<u></u>		
	(D)	and ash: Not Applicable	oposed fuel(s), excluding coal, in e	cluding maximum percent sulfur
F	(c)	Theoretical combustion	air requirement (ACF/unit of fuel):
		@	°F and	psia.
				F
	(d)	Percent excess air:		
	(e) Type and BTU/hr of burners and all other firing equipment planned to be used:			
	(f)	If coal is proposed as a coal as it will be fired:	source of fuel, identify supplier a	nd seams and give sizing of the
		coal as it will be lifed.		
╞			· · · · ·	· -6
	(g)	Proposed maximum de	sign heat input:	× 10 ⁶ BTU/hr.
7.	Pro	jected operating sched	ule:	
Но	ours/l	Day 24	Days/Week 7	Weeks/Year 52

8.	Projected amount of pollutants that would be emitted from this affected source if no control devices were used: INCLUDED IN HOT OIL HEATER EMSSIONS (C4T-B-1600)			
@				
a.	NO _X	lb/hr	grains/ACF	
b.	SO ₂	lb/hr	grains/ACF	
c.	со	lb/hr	grains/ACF	
d.	PM ₁₀	lb/hr	grains/ACF	
e.	Hydrocarbons	lb/hr	grains/ACF	
f.	VOCs	lb/hr	grains/ACF	
g.	Pb	lb/hr	grains/ACF	
h.	Specify other(s)			
		lb/hr	grains/ACF	

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
REPORTING	TESTING
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
	IE PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROF MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE
	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
	nance procedures required by Manufacturer to
maintain warranty	
Not Applicable	

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): L26-M-6010

	Name or type and model of proposed affected source: Warehouse West Silo
1	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
	Name(s) and maximum amount of proposed process material(s) charged per hour: Polyester Pellets - 25,000 lb/hr
	Name(s) and maximum amount of proposed material(s) produced per hour: yester Pellets - 25,000 lb/hr
	Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
	Applicable

6.	Cor	mbustion Data (if applic	able): Not Applicable	
	(a)	Type and amount in ap	propriate units of fuel(s) to be but	rned:
	(1)	<u></u>		
	(D)	and ash: Not Applicable	oposed fuel(s), excluding coal, in e	cluding maximum percent sulfur
F	(c)	Theoretical combustion	air requirement (ACF/unit of fuel):
		@	°F and	psia.
				F
	(d)	Percent excess air:		
	(e) Type and BTU/hr of burners and all other firing equipment planned to be used:			
	(f)	If coal is proposed as a coal as it will be fired:	source of fuel, identify supplier a	nd seams and give sizing of the
		coal as it will be lifed.		
╞			· · · · ·	· -6
	(g)	Proposed maximum de	sign heat input:	× 10 ⁶ BTU/hr.
7.	Pro	jected operating sched	ule:	
Но	ours/l	Day 24	Days/Week 7	Weeks/Year 52

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:				
@		°F and	psia		
a.	NO _X	lb/hr	grains/ACF		
b.	SO ₂	lb/hr	grains/ACF		
c.	СО	lb/hr	grains/ACF		
d.	PM ₁₀	0.08 lb/hr	grains/ACF		
e.	Hydrocarbons	lb/hr	grains/ACF		
f.	VOCs	lb/hr	grains/ACF		
g.	Pb	lb/hr	grains/ACF		
h.	Specify other(s)	I			
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
REPORTING	TESTING
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
PROPOSED TO BE MONITORED IN ORDER TO DEMON PROCESS EQUIPMENT OPERATION/AIR POLLUTION	
RECORDKEEPING. PLEASE DESCRIBE THE PROP MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
RECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIF
	nance procedures required by Manufacturer to
maintain warranty Not Applicable	

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): S8A-F-3240 / S8A-B-3010

1.	
	CSS-8 Crystallizer CSS-8 Crystallizer Furnace
2.	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be
۷.	made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3.	Name(s) and maximum amount of proposed process material(s) charged per hour: Polyester Pellets - 18,000 lb/hr
	Air – 1527 SCFM
4.	Name(s) and maximum amount of proposed material(s) produced per hour: Polyester Pellets – 18,000 lb/hr
_	
5.	Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
No	ot Applicable

6.	Combustion Data (if application	able):	
	(a) Type and amount in ap	propriate units of fuel(s) to be bui	rned: Natural Gas
	<u> </u>		
	(b) Chemical analysis of pr and ash:	oposed fuel(s), excluding coal, in	cluding maximum percent sulfur
	(c) Theoretical combustion	air requirement (ACF/unit of fuel):
	@	°F and	psia.
			pola
	(d) Percent excess air:		
	(e) Type and BTU/hr of burners and all other firing equipment planned to be used:		
	1 natural gas burner		
		source of fuel, identify supplier a	nd seams and give sizing of the
	coal as it will be fired: Not Applicable		
	(g) Proposed maximum de	sign heat input:	2.8 × 10 ⁶ BTU/hr.
7.	Projected operating schedu	ıle:	
Но	ours/Day 24	Days/Week 7	Weeks/Year 52

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:		
@	200	°F and 14.9	psia
a.	NO _X	0.29 lb/hr	grains/ACF
b.	SO ₂	0.01 lb/hr	grains/ACF
c.	СО	0.06 lb/hr	grains/ACF
d.	PM ₁₀	9.12 lb/hr	grains/ACF
e.	Hydrocarbons	lb/hr	grains/ACF
f.	VOCs	0.11 lb/hr	grains/ACF
g.	Pb	lb/hr	grains/ACF
h.	Specify other(s)		
	Ethylene Glycol	0.04 lb/hr	grains/ACF
	Carbon Dioxide	413 lb/hr	grains/ACF
	Methane	0.01 lb/hr	grains/ACF
	Nitrous Oxide	<0.01 lb/hr	grains/ACF

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
REPORTING	TESTING
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
	IE PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROF MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to
Not Applicable	

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): S8B-F-2250/ S8B-B-2020

1.	Name or type and model of proposed affected source:
	CSS-8 Preheater
	CSS-8 Preheater Furnace
2.	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3.	Name(s) and maximum amount of proposed process material(s) charged per hour:
	Polyester Pellets - 18,000 lb/hr
	Air – 1527 SCFM
4. Po	Name(s) and maximum amount of proposed material(s) produced per hour: blyester Pellets - 18,000 lb/hr
5	Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
5.	Give chemical reactions, il applicable, that will be involved in the generation of all politiants.
No	ot Applicable
	The identification number which appears here must correspond to the sir pollution control

6.	Combustion Data (if applicable):			
	(a) Type and	amount in ap	propriate units of fuel(s) to be bu	rned: Natural Gas
	(b) Chemical and ash:	analysis of pr	oposed fuel(s), excluding coal, in	cluding maximum percent sulfur
	(c) Theoretica	al combustion	air requirement (ACF/unit of fuel):
		@	°F and	psia.
		0		pola
	(d) Percent ex	xcess air:		
	(e) Type and	BTU/hr of bu	rners and all other firing equipme	nt planned to be used:
			source of fuel, identify supplier a	nd seams and give sizing of the
	coal as it v	will be fired:		
<u> </u>				
	(g) Proposed	maximum de	sign heat input	1.2× 10 ⁶ BTU/hr.
7.	Projected ope	erating schedu	lle:	
Но	ours/Day 24		Days/Week 7	Weeks/Year 52

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:				
@		°F and	psia		
a.	NO _X	0.13 lb/hr	grains/ACF		
b.	SO ₂	0.01 lb/hr	grains/ACF		
c.	СО	0.02 lb/hr	grains/ACF		
d.	PM ₁₀	4.53 lb/hr	grains/ACF		
e.	Hydrocarbons	lb/hr	grains/ACF		
f.	VOCs	0.13 lb/hr	grains/ACF		
g.	Pb	lb/hr	grains/ACF		
h.	Specify other(s)				
	Ethylene Glycol	0.03 lb/hr	grains/ACF		
	Acetaldehyde	0.04 lb/hr	grains/ACF		
	Carbon Dioxide	177 lb/hr	grains/ACF		
	Methane Nitrous Oxide	<0.01 <0.01 lb/hr	grains/ACF		

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate complianc with the proposed operating parameters. Please propose testing in order to demonstrat compliance with the proposed emissions limits. MONITORING 				
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping			
REPORTING	TESTING			
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping			
	I IE PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.			
RECORDKEEPING. PLEASE DESCRIBE THE PROF MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE			
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE			
	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR			
	nance procedures required by Manufacturer to			
maintain warranty				
Not Applicable				

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): C3A-E-7240/C3A-B-7010

1.	
	CSS-10 Crystallizer CSS-10 Crystallizer Furnace
2.	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3.	Name(s) and maximum amount of proposed process material(s) charged per hour: Polyester Pellets - 18,000 lb/hr
	Air – 1527 SCFM
4.	Name(s) and maximum amount of proposed material(s) produced per hour: Polyester Pellets – 18,000 lb/hr
5.	Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
No	t Applicable

6.	Combustion Data (if applicable):		
	(a) Type and amount in ap	propriate units of fuel(s) to be but	rned: Natural Gas
	<i>и</i>		
	(b) Chemical analysis of pr and ash:	oposed fuel(s), excluding coal, in	cluding maximum percent sulfur
┢	(c) Theoretical combustion	air requirement (ACF/unit of fuel):
	@	°F and	psia.
			pola
	(d) Percent excess air:		
		rners and all other firing equipme	nt planned to be used:
	1 natural gas burner		
		source of fuel, identify supplier a	nd seams and give sizing of the
	coal as it will be fired: Not Applicable		
<u> </u>			
	(g) Proposed maximum de	sign heat input:	3.04 × 10 ⁶ BTU/hr.
7.	Projected operating schedu	ule:	
Но	ours/Day 24	Days/Week 7	Weeks/Year 52

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:			
@	200	°F and 14.9	psia	
a.	NO _X	0.08 lb/hr	grains/ACF	
b.	SO ₂	0.01 lb/hr	grains/ACF	
c.	СО	0.02 lb/hr	grains/ACF	
d.	PM ₁₀	4.05 lb/hr	grains/ACF	
e.	Hydrocarbons	lb/hr	grains/ACF	
f.	VOCs	0.37 lb/hr	grains/ACF	
g.	Pb	lb/hr	grains/ACF	
h.	Specify other(s)			
	Ethylene Glycol	0.30 lb/hr	grains/ACF	
	Acetaldehyde	0.06 lb/hr	grains/ACF	
	Carbon Dioxide	448 lb/hr	grains/ACF	
	Methane Nitrous Oxide	0.01 lb/hr <0.01 lb/hr	grains/ACF	

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. MONITORING RECORDKEEPING 				
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping			
REPORTING	TESTING			
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping			
PROPOSED TO BE MONITORED IN ORDER TO DEMON PROCESS EQUIPMENT OPERATION/AIR POLLUTION				
MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE			
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE			
	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIF			
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to			
Not Applicable				

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): C3B-F-6250 / C3B-B-6020

1.	Name or type and model of proposed affected source:
	CSS-10 Preheater CSS-10 Preheater Furnace
	CSS-10 Flellealer Fulliace
2.	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3.	Name(s) and maximum amount of proposed process material(s) charged per hour:
	Polyester Pellets - 18,000 lb/hr
	Air – 1527 SCFM
4.	Name(s) and maximum amount of proposed material(s) produced per hour: blyester Pellets - 18,000 lb/hr
5	Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
0.	
No	ot Applicable

6.	Combustion Data (if applicable):		
	(a) Type and amount in a	ppropriate units of fuel(s) to be bu	rned: Natural Gas
	(b) Chemical analysis of p and ash:	proposed fuel(s), excluding coal, in	cluding maximum percent sulfur
	(c) Theoretical combustio	n air requirement (ACF/unit of fue	l):
	@	°F and	psia.
			poid.
	(d) Percent excess air:		
	(e) Type and BTU/hr of b	urners and all other firing equipme	nt planned to be used:
	(f) If coal is proposed as	a source of fuel, identify supplier a	nd seams and give sizing of the
	coal as it will be fired:		
	(g) Proposed maximum d	esign heat input:	1.6× 10 ⁶ BTU/hr.
7.	Projected operating sched	lule:	
Но	ours/Day 24	Days/Week 7	Weeks/Year 52

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:				
@		°F and	psia		
a.	NO _X	0.08 lb/hr	grains/ACF		
b.	SO ₂	0.01 lb/hr	grains/ACF		
c.	со	0.03 lb/hr	grains/ACF		
d.	PM ₁₀	0.49 lb/hr	grains/ACF		
e.	Hydrocarbons	lb/hr	grains/ACF		
f.	VOCs	0.24 lb/hr	grains/ACF		
g.	Pb	lb/hr	grains/ACF		
h.	Specify other(s)	_			
	Ethylene Glycol	0.08 lb/hr	grains/ACF		
	Acetaldehyde	0.13 lb/hr	grains/ACF		
	Carbon Dioxide	236 lb/hr	grains/ACF		
	Methane Nitrous Oxide	<0.01 <0.01 lb/hr	grains/ACF		

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate complianc with the proposed operating parameters. Please propose testing in order to demonstrat compliance with the proposed emissions limits. MONITORING 			
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping		
REPORTING	TESTING		
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping		
	IE PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.		
RECORDKEEPING. PLEASE DESCRIBE THE PROF MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE		
	DPOSED FREQUENCY OF REPORTING OF THE		
	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIF		
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to		
Not Applicable			

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): C3A-E-3240/C3A-B-3010

1.	Name or type and model of proposed affected source:
	CSS-11 Crystallizer
	CSS-11 Crystallizer Furnace
2.	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all
	features of the affected source which may affect the production of air pollutants.
3.	
	-
	Air – 1527 SCFM
4.	
	Polyester Pellets – 18,000 lb/hr
5.	Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
No	ot Applicable
L	

6.	Combustion Data (if applicable):		
	(a) Type and amount in ap	propriate units of fuel(s) to be bui	rned: Natural Gas
	(1) 01 1 1 1 1 1		
	(b) Chemical analysis of pr and ash:	oposed fuel(s), excluding coal, in	cluding maximum percent sulfur
╞	(c) Theoretical combustion	air requirement (ACF/unit of fuel):
	@	°F and	psia.
			pola.
	(d) Percent excess air:		
	(e) Type and BTU/hr of burners and all other firing equipment planned to be used:		
	1 natural gas burner		
		source of fuel, identify supplier a	nd seams and give sizing of the
	coal as it will be fired: Not Applicable		
<u> </u>			
	(g) Proposed maximum de	sign heat input:	3.04 × 10 ⁶ BTU/hr.
7.	Projected operating schedu	lle:	
Hours/Day 24 Days/Week 7 Weeks/Year 52		Weeks/Year 52	

8.	 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 		
@	200	°F and 14.9	psia
a.	NO _x	0.15 lb/hr	grains/ACF
b.	SO ₂	0.01 lb/hr	grains/ACF
c.	СО	0.03 lb/hr	grains/ACF
d.	PM ₁₀	11.46 lb/hr	grains/ACF
e.	Hydrocarbons	lb/hr	grains/ACF
f.	VOCs	0.37 lb/hr	grains/ACF
g.	Pb	lb/hr	grains/ACF
h.	Specify other(s)		
	Ethylene Glycol	0.30 lb/hr	grains/ACF
	Acetaldehyde	0.06 lb/hr	grains/ACF
	Carbon Dioxide	448 lb/hr	grains/ACF
	Methane Nitrous Oxide	0.01 lb/hr <0.01 lb/hr	grains/ACF

Page L 71 of L86

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
REPORTING	TESTING
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
PROPOSED TO BE MONITORED IN ORDER TO DEMON PROCESS EQUIPMENT OPERATION/AIR POLLUTION RECORDKEEPING. PLEASE DESCRIBE THE PROF	IE PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE. POSED RECORDKEEPING THAT WILL ACCOMPANY THE
MONITORING.	
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIF
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to
Not Applicable	

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): C3B-E-2250 C3B-B-2020

1.	Name or type and model of proposed affected source:
	CSS-11 Preheater
	CSS-11 Preheater Furnace
2.	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3.	Name(s) and maximum amount of proposed process material(s) charged per hour:
	Polyester Pellets - 18,000 lb/hr
	Air – 1527 SCFM
L	
	Name(s) and maximum amount of proposed material(s) produced per hour:
	olyester Pellets - 18,000 lb/hr
5.	Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
N	ot Applicable
1	
I	

^{*} The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	Combustion Data (if applicable):			
	(a) ⁻	Type and amount in ap	propriate units of fuel(s) to be bui	rned: Natural Gas
	(1)	<u></u>		
		onemical analysis of pr and ash:	oposed fuel(s), excluding coal, inc	cluding maximum percent sulfur
	(c)	Theoretical combustion	air requirement (ACF/unit of fuel):
		@	°F and	psia.
				pola
	(d) I	Percent excess air:		
	(e) Type and BTU/hr of burners and all other firing equipment planned to be used:			
	(f) I	If coal is proposed as a	source of fuel, identify supplier a	nd seams and give sizing of the
	(coal as it will be fired:		
	(g) I	Proposed maximum de	sign heat input:	1.6 × 10 ⁶ BTU/hr.
7.	Proj	ected operating schedu	ıle:	
Hours/Day 24 Days/Week 7 Weeks/Year 52		Weeks/Year 52		

8.	 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 		
@		°F and	psia
a.	NO _X	0.17 lb/hr	grains/ACF
b.	SO ₂	0.01 lb/hr	grains/ACF
c.	СО	0.14 lb/hr	grains/ACF
d.	PM ₁₀	0.95 lb/hr	grains/ACF
e.	Hydrocarbons	lb/hr	grains/ACF
f.	VOCs	0.23 lb/hr	grains/ACF
g.	Pb	lb/hr	grains/ACF
h.	Specify other(s)		
	Ethylene Glycol	0.08 lb/hr	grains/ACF
	Acetaldehyde	0.13 lb/hr	grains/ACF
	Carbon Dioxide	200 lb/hr	grains/ACF
	Methane Nitrous Oxide	<0.01 <0.01 lb/hr	grains/ACF

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
REPORTING	TESTING
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
	IE PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROF MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
	DPOSED FREQUENCY OF REPORTING OF THE
	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIF
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to
Not Applicable	

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): C4T-B-1600

1.	Name or type and model of proposed affected source: Hot Oil Heater
2.	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3.	Name(s) and maximum amount of proposed process material(s) charged per hour:
Pro	ocess waste gases
2. NA	Name(s) and maximum amount of proposed material(s) produced per hour:
5.	Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
No	t Applicable
-14	The identification number which appears here must correspond to the air pollution control

6.	Combustion Data (if application	able):	
	(a) Type and amount in ap	propriate units of fuel(s) to be bui	rned: Natural Gas
	(1) 0		
	(b) Chemical analysis of pr and ash:	oposed fuel(s), excluding coal, in	cluding maximum percent sulfur
┢	(c) Theoretical combustion	air requirement (ACF/unit of fuel):
	@	°F and	
	<u>u</u>	r anu	psia.
	(d) Percent excess air:		
	(e) Type and BTU/hr of burners and all other firing equipment planned to be used: 53.1		
	MMBtu/hr		
	(f) If coal is proposed as a	source of fuel, identify supplier a	nd seams and give sizing of the
	coal as it will be fired:		
	(g) Proposed maximum de	sign heat input:	53.1× 10 ⁶ BTU/hr.
7.	Projected operating schedu	ıle:	
Hours/Day 24 Days/Week 7 Weeks/Year 52		Weeks/Year 52	

8.	 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 		
@		°F and	psia
a.	NO _X	3.20 lb/hr	grains/ACF
b.	SO ₂	0.06 lb/hr	grains/ACF
c.	со	1.90 lb/hr	grains/ACF
d.	PM ₁₀	13 lb/hr	grains/ACF
e.	Hydrocarbons	lb/hr	grains/ACF
f.	VOCs	201.36 lb/hr	grains/ACF
g.	Pb	lb/hr	grains/ACF
h.	Specify other(s)		
	Ethylene Glycol	3.55 lb/hr	grains/ACF
	Acetaldehyde	29.6 lb/hr	grains/ACF
	Carbon Dioxide	6641 lb/hr	grains/ACF
	Methane Nitrous Oxide	0.10 0.01 lb/hr	grains/ACF

8.	 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 		
@		°F and	psia
a.	NO _X	lb/hr	grains/ACF
b.	SO ₂	lb/hr	grains/ACF
c.	СО	lb/hr	grains/ACF
d.	PM ₁₀	lb/hr	grains/ACF
e.	Hydrocarbons	lb/hr	grains/ACF
f.	VOCs	lb/hr	grains/ACF
g.	Pb	lb/hr	grains/ACF
h.	Specify other(s)		
	1, 4 Dioxane	0.59 lb/hr	grains/ACF
	Benzene	0.08 lb/hr	grains/ACF
	Toluene	0.74 lb/hr	grains/ACF
	Ethyl benzene Naphthalene	0.04 lb/hr <0.01	grains/ACF

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
REPORTING	TESTING
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
PROPOSED TO BE MONITORED IN ORDER TO DEMON PROCESS EQUIPMENT OPERATION/AIR POLLUTION RECORDKEEPING. PLEASE DESCRIBE THE PROF	IE PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE. POSED RECORDKEEPING THAT WILL ACCOMPANY THE
MONITORING.	
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIF
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to
Not Applicable	

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): C3T-B-1600

1.	Name or type and model of proposed affected source: Hot Oil Heater
2.	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3.	Name(s) and maximum amount of proposed process material(s) charged per hour:
Pro	ocess waste gases
3. NA	Name(s) and maximum amount of proposed material(s) produced per hour:
_	
5.	Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
No	t Applicable

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	Combustion Data (if applicable):				
	(a) Type and amount in ap	propriate units of fuel(s) to be bui	rned: Natural Gas		
	(1) 0				
	(b) Chemical analysis of pr and ash:	oposed fuel(s), excluding coal, in	cluding maximum percent sulfur		
┢	(c) Theoretical combustion	air requirement (ACF/unit of fuel):		
	@	°F and			
	<u>u</u>	r anu	psia.		
	(d) Percent excess air:				
	(e) Type and BTU/hr of bu	rners and all other firing equipme	nt planned to be used: 53.1		
	MMBtu/hr				
	(f) If coal is proposed as a	source of fuel, identify supplier a	nd seams and give sizing of the		
	coal as it will be fired:				
	(g) Proposed maximum de	sign heat input:	53.1× 10 ⁶ BTU/hr.		
7.	Projected operating schedu	ıle:			
Но	Hours/Day 24 Days/Week 7 Weeks/Year 52				

8.	 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 				
@		°F and	psia		
a.	NO _X	3.19 lb/hr	grains/ACF		
b.	SO ₂	0.05 lb/hr	grains/ACF		
c.	СО	1.86 lb/hr	grains/ACF		
d.	PM ₁₀	11 lb/hr	grains/ACF		
e.	Hydrocarbons	lb/hr	grains/ACF		
f.	VOCs	660.0 lb/hr	grains/ACF		
g.	Pb	lb/hr	grains/ACF		
h.	Specify other(s)	_			
	Ethylene Glycol	3.50 lb/hr	grains/ACF		
	Acetaldehyde	520 lb/hr	grains/ACF		
	Carbon Dioxide	6641 lb/hr	grains/ACF		
	Methane Nitrous Oxide	0.10 0.01 lb/hr	grains/ACF		

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

8.	 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 				
@		°F and	psia		
a.	NO _X	lb/hr	grains/ACF		
b.	SO ₂	lb/hr	grains/ACF		
c.	СО	lb/hr	grains/ACF		
d.	PM ₁₀	lb/hr	grains/ACF		
e.	Hydrocarbons	lb/hr	grains/ACF		
f.	VOCs	lb/hr	grains/ACF		
g.	Pb	lb/hr	grains/ACF		
h.	Specify other(s)				
	1, 4 Dioxane	5.00 lb/hr	grains/ACF		
	Benzene	0.08 lb/hr	grains/ACF		
	Toluene	0.74 lb/hr	grains/ACF		
	Ethyl benzene Naphthalene	0.04 lb/hr <0.01	grains/ACF		

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
REPORTING	TESTING
See Attachment O – Monitoring and Recordkeeping	See Attachment O – Monitoring and Recordkeeping
	I IE PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROP MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORD KEEPING.	OPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to

Not Applicable

ATTACHMENT M – AIR POLLUTION CONTROL DEVICE SHEETS

Control Device ID No. (must match Emission Units Table): C4A-M-0340

Equipment Information and Filter Characteristics

1.	Manufacturer: Mikropul	2. Total number of compartments: 1
	Model No. 95-10-40 TRB	3. Number of compartment online for normal operation: 1
4.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state l	m with duct arrangement and size of duct, air volume, nood face velocity and hood collection efficiency.
5.	Baghouse Configuration: Open Pressure	Closed Pressure
	(check one)	inced Fabric
	Other, Specify	
6.	Filter Fabric Bag Material:	7. Bag Dimension:
	Polyester Polypropylene	Diameter 4.5 in.
	Acrylics Ceramics	Length 10 ft.
	Cotton Weight oz./sq.yd	8. Total cloth area: 1790 ft ²
	Teflon Thickness in	9. Number of bags: 152
	Others, specify	10. Operating air to cloth ratio: 7.81 ft/min
11.	Baghouse Operation: Continuous	Automatic Intermittent
	☐ Mechanical Shaker ☐ Sonic Cleaning ☐ Pneumatic Shaker ☐ Reverse Air Flow ☐ Bag Collapse ☑ Pulse Jet ☐ Manual Cleaning ☐ Reverse Jet	☐Reverse Air Jet ☐Other:
13.	Cleaning initiated by: ⊠ Timer □ Expected pressure drop range in. of water	Frequency if timer actuated Other
14.	Operation Hours: Max. per day: 24	15. Collection efficiency: Rating: 99 %
	Max. per yr: 8760	Guaranteed minimum: 99 %
	Gas Stream C	Characteristics
16.	Gas flow rate into the collector: 13,990 ACFM	at 405 °F and 14.7 PSIA
	ACFM: Design: PSIA Maximum:	PSIA Average Expected: PSIA
17.	Water Vapor Content of Effluent Stream:	lb. Water/lb. Dry Air
18.	Gas Stream Temperature: °F	19. Fan Requirements: hp
		OR ft ³ /min
20.	Stabilized static pressure loss across baghouse. Pre	ssure Drop: High 6 in. H ₂ O
		Low 6 in H ₂ O
21.	Particulate Loading: Inlet: 0.013	grain/scf Outlet: $1.4 \mathrm{x} 10^{-4}$ grain/scf

22. Type of Pollutant(s) to be collected (if particulate give specific type): Polyester fines							
23. Is there any SO_3 in the emission s	stream?	⊠No []Ye	es SO	3 cont	ent:	ppmv
24. Emission rate of pollutant (specify) into and o	ut of collector			desigr		
Pollutant		lb/hr	IN		aaf	O Ib/hr	UT grains/acf
				grains/			grains/acf 8.3x10 ⁻⁵
PM/PM10		5.44		0.045)	0.01	8.3X10
25. Complete the table:	Particle S	Size Distribut to Collect		at Inlet	Fra	ction Efficienc	y of Collector
Particulate Size Range (microns)	Weig	ht % for Size	Rai	nge		Weight % for S	ize Range
0 – 2	τ	Jnknown					
2 – 4						95+%	
4 - 6						99.9%	
6 - 8							
8 – 10							
10 – 12							
12 – 16							
16 – 20							
20 – 30							
30 - 40							
40 – 50							
50 – 60							
60 – 70							
70 – 80							
80 – 90							
90 – 100							
>100							

26.	How is filter monitored for indications of deterioration (e.g., broken bags)?
	Continuous Opacity
	Pressure Drop
	Alarms-Audible to Process Operator
	Visual opacity readings, Frequency:
07	Other, specify:
27.	Describe any recording device and frequency of log entries:
	Pressure drop reading is check once per month.
28.	Describe any filter seeding being performed:
	None
29.	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas
	reheating, gas humidification):
	None
30.	Describe the collection material disposal system:
	Through a rotary valve feed to a drum. Material is recycled back into the process.
1	
1	
1	
1	
1	
31.	Have you included Baghouse Control Device in the Emissions Points Data Summary Sheet? Yes

Please propose m	g parameters. Please propose	and Testing porting in order to demonstrate compliance with the testing in order to demonstrate compliance with the RECORDKEEPING: See Attachment O
MONITORING: RECORDKEEPING:	monitored in order to demons equipment or air control device. Please describe the proposed red	ocess parameters and ranges that are proposed to be strate compliance with the operation of this process cordkeeping that will accompany the monitoring.
REPORTING: TESTING:	pollution control device. Please describe any proposed pollution control device.	emissions testing for this process equipment on air emissions testing for this process equipment on air
99.9%	aranteed Capture Efficiency for ea	
99%	aranteed Control Efficiency for eac	
35. Describe all operati None	ing ranges and maintenance proce	dures required by Manufacturer to maintain warranty.

Control Device ID No. (must match Emission Units Table): C4D-M-0520

Equipment Information and Filter Characteristics

1.	Manufacturer: Flex-Kleen	2. Total number of compartments: 1
	Model No. 966	3. Number of compartment online for normal operation: 1
4.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state l	m with duct arrangement and size of duct, air volume, nood face velocity and hood collection efficiency.
5.	Baghouse Configuration: Open Pressure	Closed Pressure
	(check one)	inced Fabric
	Other, Specify	
6.	Filter Fabric Bag Material:	7. Bag Dimension:
	☐ Noniex Hyon ☐ Woon ➢ Polyester ☐ Polypropylene	Diameter 4.5 in.
	Acrylics Ceramics	Length 10 ft.
	☐ Fiber Glass ☐ Cotton Weight oz./sq.yd	8. Total cloth area: 2724 ft ²
	Teflon Thickness in	9. Number of bags: 310
	Others, specify	10. Operating air to cloth ratio: 8.0 ft/min
11.	Baghouse Operation: Continuous	Automatic Intermittent
	Method used to clean bags: Mechanical Shaker Sonic Cleaning Pneumatic Shaker Reverse Air Flow Bag Collapse Pulse Jet Manual Cleaning Reverse Jet	Reverse Air Jet Other:
13.	Cleaning initiated by: ☐ Timer ☐ Expected pressure drop range in. of water	Frequency if timer actuated Other
14.	Operation Hours: Max. per day: 24 Max. per yr: 8760	15. Collection efficiency: Rating: 99 % Guaranteed minimum: 99 %
		characteristics
16	Gas flow rate into the collector: 23,298 ACFM	
10.	ACFM: Design: PSIA Maximum:	PSIA Average Expected: PSIA
17.	Water Vapor Content of Effluent Stream:	lb. Water/lb. Dry Air
	Gas Stream Temperature: °F	19. Fan Requirements: hp
10.		OR ft ³ /min
20.	Stabilized static pressure loss across baghouse. Pre	
		Low 6 in. H ₂ O
21.	Particulate Loading: Inlet: 0.03	grain/scf Outlet: 2.8x10 ⁻⁴ grain/scf

22. Type of Pollutant(s) to be collected (if particulate give specific type): Polyester fines						
23. Is there any SO_3 in the emission s	stream?	⊠No □	Yes SC	D₃ cont	ent:	ppmv
24. Emission rate of pollutant (specify) into and o	ut of collector a		desigr		
Pollutant		lb/hr	IN grains	lact	O Ib/hr	UT grains/act
PM/PM10		4.17	0.02		0.04	grains/acf 2.0x10 ⁻⁴
		4.17	0.02	2	0.04	2.0X10
25. Complete the table:	Particle S	Size Distribution to Collecto		Fra	ction Efficienc	y of Collector
Particulate Size Range (microns)	Weig	ht % for Size F	Range		Weight % for S	Size Range
0 – 2	τ	Jnknown				
2 – 4					95+%	
4 - 6					99.9%	
6 – 8						
8 – 10						
10 – 12						
12 – 16						
16 – 20						
20 – 30						
30 - 40						
40 – 50						
50 – 60						
60 – 70						
70 – 80						
80 – 90						
90 – 100						
>100						

26.	How is filter monitored for indications of deterioration (e.g., broken bags)?
	Pressure Drop
	Alarms-Audible to Process Operator
	 Visual opacity readings, Frequency: Other, specify:
27	Describe any recording device and frequency of log entries:
	Pressure drop reading is check once per month.
	Tressure drop reading is check once per month.
28.	Describe any filter seeding being performed:
	None
	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
	None
	None
30.	Describe the collection material disposal system:
	Through a rotary valve feed to a drum. Material is recycled back into the process.
31.	Have you included ${\it Baghouse \ Control \ Device}$ in the Emissions Points Data Summary Sheet? Yes

Please propose m	g parameters. Please propose	and Testing porting in order to demonstrate compliance with the testing in order to demonstrate compliance with the RECORDKEEPING: See Attachment O TESTING: See Attachment O
MONITORING:	monitored in order to demonse equipment or air control device.	ocess parameters and ranges that are proposed to be strate compliance with the operation of this process
RECORDKEEPING: REPORTING:	Please describe any proposed pollution control device.	cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air
TESTING:	pollution control device.	emissions testing for this process equipment on air
99.9%	aranteed Capture Efficiency for eac	
99%	aranteed Control Efficiency for eac	
35. Describe all operat	ing ranges and maintenance proce	dures required by Manufacturer to maintain warranty.

Attachment M Air Pollution Control Device Sheet (OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): C4B-M-1430

Equipment Information

1.	Manufacturer: NA Model No.	 Control Device Nam Type: 95 ft2 woven 	ne: CSS-12 Filter fiberglass cartridge filter				
3.	. Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.						
4.	On a separate sheet(s) supply all data and calculation	ns used in selecting or de	signing this collection device.				
5.	Provide a scale diagram of the control device showing	g internal construction.					
6.	Submit a schematic and diagram with dimensions and	d flow rates.					
7. 99.	 Guaranteed minimum collection efficiency for each pollutant collected: 99.9 						
8.	8. Attached efficiency curve and/or other efficiency information.						
9.	Design inlet volume: SCFM	10. Capacity:					
 12. Attach any additional data including auxiliary equipment and operation details to thoroughly evaluate the control equipment. 13. Description of method of handling the collected material(s) for reuse of disposal. Recycled back into process 							
	Gas Stream C	haracteristics					
14.	Are halogenated organics present? Are particulates present? Are metals present?	□ Yes ⊠ No □ Yes ⊠ No □ Yes ⊠ No					
15.	Inlet Emission stream parameters:	Maximum	Typical				
	Pressure (mmHg):						
	Heat Content (BTU/scf):						
	Oxygen Content (%):						
	Moisture Content (%):						
	Relative Humidity (%):						

16. Type of pollutant(s) controlled: □ SO _x □ Odor □ Particulate (type): □ Other: Nitrogen							
17. Inlet gas velocity:	•	ft/sec		specific gravity:			
			20. Gas stream temperature: Inlet: °F Outlet: °F				
21. Gas flow rate: Design Maximum: Average Expected:	ACFM ACFM	22. Particulat	e Grain Loadin Inlet: Outlet:	g in grains/scf:			
23. Emission rate of eac		• •				1	
Pollutant	Pollutant IN Pollutant Ib/hr grains/		Emission Capture Efficiency %	OUT P lb/hr	ollutant grains/acf	Control Efficiency %	
A Nitrogen	0.95	0.008	99.9%	0.01	8.3 x10 ⁻⁵	99%	
В							
С							
D							
E							
24. Dimensions of stack	: NA vents t	ю С4Т-В-1600 Не	eight ft.	Diam	neter	ft.	
25. Supply a curve showing proposed collection efficiency versus gas volume from 25 to 130 percent of design rating of collector.							
	Par	ticulate Distribut	tion : Not App	licable			
26. Complete the table:		Particle Size Dis to C	stribution at In Collector	llet Fractio	n Efficiency of	Collector	
Particulate Size Range	e (microns)	Weight % fo	r Size Range	Wei	ght % for Size	Range	
0 – 2							
2 – 4							
4 - 6							
6 - 8							
8 - 10							
10 - 12							
12 - 16							
16 – 20							

20 - 30	
30 - 40	
40 – 50	
50 - 60	
60 - 70	
70 - 80	
80 - 90	
90 – 100	
>100	

27. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification): NA					
28. Describe the collect	ction material disposal system: Filt	ers are landfilled.			
29. Have you included	Other Collectores Control Devic	ce in the Emissions Points Data Summary Sheet?			
30. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.					
MONITORING:		RECORDKEEPING:			
See Attachment O		See Attachment O			
REPORTING:		TESTING:			
See Attachment O		See Attachment O			
MONITORING: RECORDKEEPING:	monitored in order to demons equipment or air control device.	rocess parameters and ranges that are proposed to be strate compliance with the operation of this process cordkeeping that will accompany the monitoring.			
REPORTING:	Please describe any proposed	emissions testing for this process equipment on air			
TESTING:	pollution control device. TESTING: Please describe any proposed emissions testing for this process equipment on a pollution control device.				
31. Manufacturer's Guaranteed Control Efficiency for each air pollutant. 99%					
32. Manufacturer's Guaranteed Control Efficiency for each air pollutant. 99%					
33. Describe all opera NA	ating ranges and maintenance proc	cedures required by Manufacturer to maintain warranty.			

Attachment M Air Pollution Control Device Sheet (OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): C4T-B-1600

Equipment Information

1.	Manufacturer: Born Inc. Model No. H-149-85	2.	Control Device Nam Type: Hot Oil Heat	ne: CP4 Hot Oil Heater er			
3.	. Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.						
4.	On a separate sheet(s) supply all data and calculation	ns u	sed in selecting or de	signing this collection device.			
5.	Provide a scale diagram of the control device showing	g int	ernal construction.				
6.	Submit a schematic and diagram with dimensions an	d flo	w rates.				
7. 99.	 Guaranteed minimum collection efficiency for each pollutant collected: 99.9 						
8.	8. Attached efficiency curve and/or other efficiency information.						
9.	. Design inlet volume: SCFM 10. Capacity:						
12.	 11. Indicate the liquid flow rate and describe equipment provided to measure pressure drop and flow rate, if any. 12. Attach any additional data including auxiliary equipment and operation details to thoroughly evaluate the control equipment. 13. Description of method of handling the collected material(s) for reuse of disposal. No materials collected. 						
	Gas Stream (Char	acteristics				
14.	14. Are halogenated organics present? □ Yes No Are particulates present? □ Yes No Are metals present? □ Yes No						
15.	Inlet Emission stream parameters:	Ν	/ laximum	Typical			
	Pressure (mmHg):						
	Heat Content (BTU/scf):						
	Oxygen Content (%):						
	Moisture Content (%):						
	Relative Humidity (%):						

16. Type of pollutant(s) controlled: □ SO _x □ Odor □ Particulate (type): □ Other VOCs and HAPs						
17. Inlet gas velocity:		ft/sec	18. Pollutant	specific gravity:		
19. Gas flow into the collector: NA @ 400°F and 15.7 PSIA			20. Gas stream temperature: Inlet: Outlet:			°F °F
21. Gas flow rate: Design Maximum: Average Expected:		te Grain Loading Inlet: Outlet:	g in grains/scf:			
23. Emission rate of each pollutant (specify) into and out of collector:						
Pollutant		Pollutant	Emission		ollutant	Control
	lb/hr	grains/acf	Capture Efficiency %	lb/hr	grains/acf	Efficiency %
A VOCs	201.36		99.9%	0.40	<u> </u>	99.8%
B Ethylene Glycol	3.55		99.9%	0.01		99.8%
C Acetaldehyde	29.6		99.9%	0.06		99.8%
D 1,4 Dioxane	0.59		99.9%	<0.01		99.8%
E Other HAPs(only 288 hr/ yr)	0.86		99.9%	<0.01		99.8%
24. Dimensions of stack	k: Height	100 ft.	Diameter	4 ft.		<u> </u>
25. Supply a curve showing proposed collection efficiency versus gas volume from 25 to 130 percent of design rating of collector.						
	Par	rticulate Distribut	tion: Not Appl	licable		
26. Complete the table:		Particle Size Dis to C	stribution at In Collector	let Fraction	n Efficiency of	Collector
Particulate Size Rang	e (microns)	Weight % for	r Size Range	Weig	ght % for Size	Range
0 - 2		N	IΔ		NΔ	

weight % for Size Range	weight % for Size Range
NA	NA

27. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification): NA					
28. Describe the collect	ction material disposal system: NA				
29. Have you included	Other Collectores Control Devic	e in the Emissions Points Data Summary Sheet?			
30. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.					
MONITORING:		RECORDKEEPING:			
See Attachment O		See Attachment O			
REPORTING:		TESTING:			
See Attachment O		See Attachment O			
MONITORING: RECORDKEEPING:	monitored in order to demonse equipment or air control device.	ocess parameters and ranges that are proposed to be strate compliance with the operation of this process cordkeeping that will accompany the monitoring.			
REPORTING:	Please describe any proposed	emissions testing for this process equipment on air			
TESTING:	pollution control device. TESTING: Please describe any proposed emissions testing for this process equipment on a pollution control device.				
31. Manufacturer's Guaranteed Control Efficiency for each air pollutant. 99.8%					
32. Manufacturer's Guaranteed Control Efficiency for each air pollutant. 99.8%					
33. Describe all opera NA	ting ranges and maintenance prod	cedures required by Manufacturer to maintain warranty.			

Control Device ID No. (must match Emission Units Table): C4A-M-3350

Equipment Information and Filter Characteristics	Equipment	Information	and	Filter	Characteristics
--	-----------	-------------	-----	--------	-----------------

4	Manufacturer Flow Klean	2. Total number of compartments: 1				
1.	Manufacturer: Flex-Kleen					
	Model No. 120WXTC34M276	3. Number of compartment online for normal operation: 1				
4.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state I	m with duct arrangement and size of duct, air volume, nood face velocity and hood collection efficiency.				
5.	Baghouse Configuration: Open Pressure	Closed Pressure Closed Suction				
	(check one)	inced Fabric				
	Other, Specify					
6.	Filter Fabric Bag Material:	7. Bag Dimension:				
	Nomex nylon Wool	Diameter 4.5 in.				
	☐ Polyester ☐ Polypropylene ☐ Acrylics ☐ Ceramics	Length 10 ft.				
	Fiber Glass	8. Total cloth area: 3251 ft ²				
	Cotton Weight oz./sq.yd	9. Number of bags: 314				
	☐ Teflon Thickness in ☐ Others, specify					
		10. Operating air to cloth ratio: 7.8 ft/min				
11.	Baghouse Operation: Continuous	Automatic Intermittent				
	 Mechanical Shaker Pneumatic Shaker Bag Collapse Manual Cleaning Sonic Cleaning Reverse Air Flow Pulse Jet Reverse Jet 	☐Reverse Air Jet ☐Other:				
13.	Cleaning initiated by: ⊠ Timer □ Expected pressure drop range in. of water	Frequency if timer actuated Other				
14.	Operation Hours: Max. per day: 24	15. Collection efficiency: Rating: 99 %				
	Max. per yr: 8760	Guaranteed minimum: 99 %				
	Gas Stream C	characteristics				
16.	Gas flow rate into the collector: 29,593 ACFM	at 305 °F and 14.45 PSIA				
	ACFM: Design: PSIA Maximum:	PSIA Average Expected: PSIA				
17.	Water Vapor Content of Effluent Stream:	lb. Water/lb. Dry Air				
18	Gas Stream Temperature: °F	19. Fan Requirements: hp				
	· · · · · · · · · · · · · · · · · · ·	OR ft ³ /min				
20.	Stabilized static pressure loss across baghouse. Pre					
		Low 6 in H ₂ O				
21.	Particulate Loading: Inlet: 0.0055	grain/scf Outlet: 5.8×10^{-5} grain/scf				

22. Type of Pollutant(s) to be collected (if particulate give specific type): Polyester fines							
23. Is there any SO_3 in the emission s	stream?	⊠No []Ye	es SO	3 cont	ent:	ppmv
24. Emission rate of pollutant (specify) into and o	ut of collector			desigr		
Pollutant		lb/hr	11		aaf	O Ib/hr	UT grains/act
Pollutant				grains/			grains/acf 3.9x10 ⁻⁵
PM/PM10		0.95		0.004	+	0.01	3.9X10
25. Complete the table:	Particle S	Size Distribution to Collec		at Inlet	Fraction Efficiency of Collector		
Particulate Size Range (microns)	Weig	ht % for Size	Ra	nge		Weight % for S	ize Range
0 – 2	τ	Jnknown					
2 – 4						95+%	
4 - 6						99.9%	
6 - 8							
8 – 10							
10 – 12							
12 – 16							
16 – 20							
20 – 30							
30 – 40							
40 – 50							
50 – 60							
60 – 70							
70 – 80							
80 – 90							
90 – 100							
>100							

31.	Have you included Baghouse Control Device in the Emissions Points Data Summary Sheet? Yes
	Through a rotary valve feed to a drum. Material is recycled back into the process.
30.	Describe the collection material disposal system:
	None
	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
	None
28.	Describe any filter seeding being performed:
	Pressure drop reading is check once per month.
	Describe any recording device and frequency of log entries:
	 Visual opacity readings, Frequency: Other, specify:
	 Pressure Drop Alarms-Audible to Process Operator
20.	Continuous Opacity
26.	How is filter monitored for indications of deterioration (e.g., broken bags)?

Please propose m	g parameters. Please propose	and Testing porting in order to demonstrate compliance with the testing in order to demonstrate compliance with the RECORDKEEPING: See Attachment O
MONITORING: RECORDKEEPING:	monitored in order to demons equipment or air control device.	ocess parameters and ranges that are proposed to be trate compliance with the operation of this process cordkeeping that will accompany the monitoring.
REPORTING:	Please describe any proposed pollution control device.	emissions testing for this process equipment on air
TESTING:	pollution control device.	emissions testing for this process equipment on air
33. Manufacturer's Gua 99.9%	aranteed Capture Efficiency for eac	ch air pollutant.
99%	aranteed Control Efficiency for eac	
35. Describe all operati None	ing ranges and maintenance proce	dures required by Manufacturer to maintain warranty.

Control Device ID No. (must match Emission Units Table): C4B-M-2420

Equipment Information and Filter Characteristics	Equipment	Information	and Filter	Characteristics
---	-----------	-------------	------------	-----------------

-					
1.	Manufacturer: Flex-Kleen	2. Total number of compartments: 1			
	Model No. 12010XTC180M152 AZRZRIIG	3. Number of compartment online for normal operation: 1			
4.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state l	m with duct arrangement and size of duct, air volume, nood face velocity and hood collection efficiency.			
5.	Baghouse Configuration: Open Pressure	Closed Pressure			
	(check one)	inced Fabric			
	Other, Specify				
6.	Filter Fabric Bag Material:	7. Bag Dimension:			
	⊠ Polyester □ Polypropylene	Diameter 4.5 in.			
		Length 10 ft.			
	☐ Fiber Glass ☐ Cotton Weight oz./sq.yd	8. Total cloth area: 1790 ft ²			
	Teflon Thickness in	9. Number of bags: 152			
	Others, specify	10. Operating air to cloth ratio: 7.81 ft/min			
11.	Baghouse Operation: Continuous	Automatic Intermittent			
12.	Method used to clean bags: Mechanical Shaker Sonic Cleaning Pneumatic Shaker Reverse Air Flow Bag Collapse Pulse Jet Manual Cleaning Reverse Jet	☐Reverse Air Jet ☐Other:			
13.	Cleaning initiated by: ☐ Timer ☐ Expected pressure drop range in. of water	Frequency if timer actuated Other			
14.	Operation Hours: Max. per day: 24 Max. per yr: 8760	15. Collection efficiency:Rating:99%Guaranteed minimum:99%			
	Gas Stream C	haracteristics			
16.	Gas flow rate into the collector: 13,990 ACFM	at 405 °F and 14.7 PSIA			
	ACFM: Design: PSIA Maximum:	PSIA Average Expected: PSIA			
17.	Water Vapor Content of Effluent Stream:	lb. Water/lb. Dry Air			
18.	Gas Stream Temperature: °F	19. Fan Requirements: hp			
		OR ft ³ /min			
20.	Stabilized static pressure loss across baghouse. Pre				
		Low 6 in. H ₂ O			
21.	Particulate Loading: Inlet: 0.013	grain/scf Outlet: 1.4x10 ⁻⁴ grain/scf			

22. Type of Pollutant(s) to be collected (if particulate give specific type): Polyester fines							
23. Is there any SO_3 in the emission s	stream?	⊠No []Ye	es SO	3 cont	ent:	ppmv
24. Emission rate of pollutant (specify) into and o	ut of collector			desigr		
Dellatent			IN				UT
Pollutant		lb/hr	_	grains/		lb/hr	grains/acf
PM/PM10		0.95		0.008	3	0.01	8.3x10 ⁻⁵
25. Complete the table:	Particle S	Size Distribut to Collect		at Inlet	Fraction Efficiency of Collector		
Particulate Size Range (microns)	Weig	ht % for Size	Ra	nge		Weight % for S	Size Range
0 – 2	τ	Jnknown					
2 – 4						95+%	
4 – 6						99.9%	
6 – 8							
8 – 10							
10 – 12							
12 – 16							
16 – 20							
20 – 30							
30 – 40							
40 – 50							
50 – 60							
60 – 70							
70 – 80							
80 – 90							
90 – 100							
>100							

26	. How is filter monitored for indications of deterioration (e.g., broken bags)?
	Continuous Opacity
	Pressure Drop
	Alarms-Audible to Process Operator
	Visual opacity readings, Frequency:
07	Other, specify:
21	Describe any recording device and frequency of log entries:
	Pressure drop reading is check once per month.
28	Describe any filter seeding being performed:
	None
29	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas
	reheating, gas humidification):
	None
20	Describe the collection material disposal system:
30	Through a rotary valve feed to a drum. Material is recycled back into the process.
	Through a rotary valve reed to a druni. Material is recycled back into the process.
1	
1	
1	
1	
31	. Have you included <i>Baghouse Control Device</i> in the Emissions Points Data Summary Sheet? Yes
1	

Please propose m	g parameters. Please propose	and Testing porting in order to demonstrate compliance with the testing in order to demonstrate compliance with the RECORDKEEPING: See Attachment O
MONITORING:		ocess parameters and ranges that are proposed to be strate compliance with the operation of this process
RECORDKEEPING: REPORTING:	Please describe the proposed red	cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air
TESTING:		emissions testing for this process equipment on air
99.9%	aranteed Capture Efficiency for ea	
99%	aranteed Control Efficiency for eac	
35. Describe all operat	ing ranges and maintenance proce	dures required by Manufacturer to maintain warranty.

Control Device ID No. (must match Emission Units Table): C4A-M-7350

Equipment Information and Filter Characteristics
--

1.	Manufacturer: Flex-Kleen	2. Total number of compartments: 1
	Model No. 120WXTC34M276	3. Number of compartment online for normal operation: 1
4.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state I	m with duct arrangement and size of duct, air volume, nood face velocity and hood collection efficiency.
5.	Baghouse Configuration: Open Pressure (check one) Electrostatically Enha Other, Specify	Closed Pressure Closed Suction
6.	Filter Fabric Bag Material: Nomex nylon Wool Polyester Polypropylene Acrylics Ceramics Fiber Glass oz./sq.yd Cotton Weight oz./sq.yd Teflon Thickness in Others, specify Image: Contemport Image: Contemport	 7. Bag Dimension: Diameter 4.5 in. Length 10 ft. 8. Total cloth area: 3251 ft² 9. Number of bags: 314 10. Operating air to cloth ratio: 7.8 ft/min
11.	Baghouse Operation: Continuous	Automatic Intermittent
	Method used to clean bags: Mechanical Shaker Sonic Cleaning Pneumatic Shaker Reverse Air Flow Bag Collapse SPulse Jet Manual Cleaning Reverse Jet	☐Reverse Air Jet ☐Other:
13.	Cleaning initiated by: Timer Expected pressure drop range in. of water	Frequency if timer actuated Other
14.	Operation Hours: Max. per day: 24 Max. per yr: 8760	15. Collection efficiency:Rating:99%Guaranteed minimum:99%
	Gas Stream C	characteristics
	Gas flow rate into the collector:29,593ACFMACFM:Design:PSIAMaximum:Water Vapor Content of Effluent Stream:	at 305 °F and 14.45 PSIA PSIA Average Expected: PSIA Ib. Water/Ib. Dry Air
18.	Gas Stream Temperature: °F	19. Fan Requirements: hp OR ft ³ /min
20.	Stabilized static pressure loss across baghouse. Pre	$\begin{array}{cccc} \text{ssure Drop:} & \text{High} & 6 & \text{in. H}_2\text{O} \\ & \text{Low} & 6 & \text{in. H}_2\text{O} \end{array}$
21.	Particulate Loading: Inlet: 0.0055	grain/scf Outlet: 5.8x10 ⁻⁵ grain/scf

22. Type of Pollutant(s) to be collected (if particulate give specific type): Polyester fines							
23. Is there any SO_3 in the emission s	stream?	⊠No []Ye	es SO	3 cont	ent:	ppmv
24. Emission rate of pollutant (specify) into and o	ut of collector			desigr		
Pollutant		lb/hr	11		aaf	O Ib/hr	UT grains/act
				grains/			grains/acf 3.9x10 ⁻⁵
PM/PM10		0.95		0.004	+	0.01	3.9X10
25. Complete the table:	Particle S	Size Distribution to Collec		at Inlet	Fra	ction Efficienc	y of Collector
Particulate Size Range (microns)	Weig	ht % for Size	Ra	nge		Weight % for S	ize Range
0 – 2	τ	Jnknown					
2 – 4						95+%	
4 - 6						99.9%	
6 - 8							
8 – 10							
10 – 12							
12 – 16							
16 – 20							
20 – 30							
30 – 40							
40 – 50							
50 – 60							
60 – 70							
70 – 80							
80 – 90							
90 – 100							
>100							

31.	Have you included Baghouse Control Device in the Emissions Points Data Summary Sheet? Yes
	Through a rotary valve feed to a drum. Material is recycled back into the process.
30.	Describe the collection material disposal system:
	None
	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
	None
28.	Describe any filter seeding being performed:
	Pressure drop reading is check once per month.
	Describe any recording device and frequency of log entries:
	 Visual opacity readings, Frequency: Other, specify:
	 Pressure Drop Alarms-Audible to Process Operator
20.	Continuous Opacity
26.	How is filter monitored for indications of deterioration (e.g., broken bags)?

Please propose m	g parameters. Please propose	and Testing porting in order to demonstrate compliance with the testing in order to demonstrate compliance with the RECORDKEEPING: See Attachment O
MONITORING:		ocess parameters and ranges that are proposed to be strate compliance with the operation of this process
RECORDKEEPING: REPORTING:	Please describe the proposed red	cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air
TESTING:		emissions testing for this process equipment on air
99.9%	aranteed Capture Efficiency for ea	
99%	aranteed Control Efficiency for eac	
35. Describe all operat	ing ranges and maintenance proce	dures required by Manufacturer to maintain warranty.

Control Device ID No. (must match Emission Units Table): C3B-M-6420

Equipment Information and Filter Characteristics	Equipment	Information	and Filter	Characteristics
---	-----------	-------------	------------	-----------------

1.	Manufacturer: Flex-Kleen	2. Total number of compartments: 1			
	Model No. 12010XTC180M152 AZRZRIIG	3. Number of compartment online for normal operation: 1			
4.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state	m with duct arrangement and size of duct, air volume, nood face velocity and hood collection efficiency.			
5.	Baghouse Configuration: Open Pressure	Closed Pressure Closed Suction			
	(check one)	nced Fabric			
	Other, Specify				
6.	Filter Fabric Bag Material:	7. Bag Dimension:			
	Polyester Polypropylene	Diameter 4.5 in.			
	Acrylics Ceramics	Length10ft.8. Total cloth area:1790ft²			
	Cotton Weight oz./sq.yd				
	Teflon Thickness in	9. Number of bags: 152			
	Others, specify	10. Operating air to cloth ratio: 7.81 ft/min			
11.	Baghouse Operation: Continuous	Automatic Intermittent			
12.	12. Method used to clean bags: Mechanical Shaker Sonic Cleaning Pneumatic Shaker Reverse Air Flow Bag Collapse Pulse Jet Manual Cleaning Reverse Jet				
13.	Cleaning initiated by: ☐ Timer ☐ Expected pressure drop range in. of water	Frequency if timer actuated			
14.	Operation Hours: Max. per day: 24 Max. per yr: 8760	15. Collection efficiency:Rating:99%Guaranteed minimum:99%			
Gas Stream Characteristics					
16.	Gas flow rate into the collector: 13,990 ACFM	at 405 °F and 14.7 PSIA			
	ACFM: Design: PSIA Maximum:	PSIA Average Expected: PSIA			
17.	17. Water Vapor Content of Effluent Stream: Ib. Water/Ib. Dry Air				
18.	Gas Stream Temperature: °F	19. Fan Requirements: hp			
		OR ft ³ /min			
20.	Stabilized static pressure loss across baghouse. Pre	ssure Drop: High 6 in. H ₂ O			
		Low 6 in. H ₂ O			
21.	Particulate Loading: Inlet: 0.013	grain/scf Outlet: $1.4 x 10^{-4}$ grain/scf			

22. Type of Pollutant(s) to be collected (if particulate give specific type): Polyester fines							
23. Is there any SO_3 in the emission s	stream?	⊠No []Ye	es SO	3 cont	ent:	ppmv
24. Emission rate of pollutant (specify	24. Emission rate of pollutant (specify) into and out of collector at maximum design operating conditions:						
Dellutent		lb/hr	11		aaf	OUT	
Pollutant						lb/hr	grains/acf 8.3x10 ⁻⁵
PM/PM10		0.95		0.008	5	0.01	8.3X10
25. Complete the table: Particle		Size Distribution at Inlet to Collector			Fraction Efficiency of Collector		
Particulate Size Range (microns)	Weight % for Size Range		nge	Weight % for Size Range			
0 – 2	τ	Jnknown					
2 – 4						95+%	
4 - 6						99.9%	
6 - 8							
8 – 10							
10 – 12							
12 – 16							
16 – 20							
20 – 30							
30 – 40							
40 – 50							
50 – 60							
60 – 70							
70 – 80							
80 – 90							
90 – 100							
>100							

Continuous Opacity Pressure Drop Alarms-Audible to Process Operator Otisual opacity readings, Frequency: Other, specify: 27. Describe any recording device and frequency of log entries: Pressure drop reading is check once per month. 28. Describe any filter seeding being performed:
 Alarms-Audible to Process Operator Visual opacity readings, Frequency: Other, specify: 27. Describe any recording device and frequency of log entries: Pressure drop reading is check once per month.
 Visual opacity readings, Frequency: Other, specify: 27. Describe any recording device and frequency of log entries: Pressure drop reading is check once per month.
 Other, specify: 27. Describe any recording device and frequency of log entries: Pressure drop reading is check once per month.
27. Describe any recording device and frequency of log entries: Pressure drop reading is check once per month.
Pressure drop reading is check once per month.
28. Describe any filter seeding being performed:
28. Describe any filter seeding being performed:
28. Describe any filter seeding being performed:
28. Describe any filter seeding being performed:
28. Describe any filter seeding being performed:
28. Describe any filter seeding being performed:
28. Describe any filter seeding being performed:
28. Describe any filter seeding being performed:
28. Describe any filter seeding being performed:
28. Describe any filter seeding being performed:
None
29. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas
reheating, gas humidification):
None
Tone
30. Describe the collection material disposal system:
Through a rotary valve feed to a drum. Material is recycled back into the process.
31. Have you included Baghouse Control Device in the Emissions Points Data Summary Sheet? Yes

Please propose m	g parameters. Please propose	and Testing porting in order to demonstrate compliance with the testing in order to demonstrate compliance with the RECORDKEEPING: See Attachment O	
MONITORING: RECORDKEEPING:	Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment or air control device. Please describe the proposed recordkeeping that will accompany the monitoring.		
REPORTING:	Please describe any proposed emissions testing for this process equipment on air pollution control device.		
TESTING:	pollution control device.	emissions testing for this process equipment on air	
33. Manufacturer's Gua 99.9%	aranteed Capture Efficiency for eac	ch air pollutant.	
99%	aranteed Control Efficiency for eac		
35. Describe all operati None	ing ranges and maintenance proce	dures required by Manufacturer to maintain warranty.	

Attachment M Air Pollution Control Device Sheet (OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): C4B-M-5430

Equipment Information

1.	Manufacturer: NA Model No.			ne: CSS-13 Nitrogen Filter n fiberglass cartridge filter			
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state h						
4.	On a separate sheet(s) supply all data and calculations used in selecting or designing this collection device.						
5.	Provide a scale diagram of the control device showing internal construction.						
6.	Submit a schematic and diagram with dimensions and	l flow ra	tes.				
7. 99.	 Guaranteed minimum collection efficiency for each pollutant collected: 99.9 						
8.	8. Attached efficiency curve and/or other efficiency information.						
9.	Design inlet volume: SCFM 10. Capacity:						
13.	 12. Attach any additional data including auxiliary equipment and operation details to thoroughly evaluate the control equipment. 13. Description of method of handling the collected material(s) for reuse of disposal. Recycled back into process 						
	Gas Stream C	haracte	ristics				
14.	Are halogenated organics present? Are particulates present? Are metals present?	☐ Yes ☐ Yes ☐Yes	⊠ No ⊠ No ⊠No				
15.	Inlet Emission stream parameters:	Maxi	mum	Typical			
	Pressure (mmHg):						
	Heat Content (BTU/scf):						
	Oxygen Content (%):						
	Moisture Content (%):						
	Relative Humidity (%):						

16.	Type of pollutant(s) (□ SO _x	☐ Odor ⊠ Other				
17.	Inlet gas velocity:	ft/sec	18. Pollutant	specific gravity:				
19.	Gas flow into the col NA @ 550°F and	20. Gas stream temperature: Inlet: Outlet:			°F °F			
21.	Gas flow rate: Design Maximum: Average Expected:		ACFM ACFM	22. Particulat	22. Particulate Grain Loading in grains/scf: Inlet: Outlet:			
23.	Emission rate of eac	h pollutant (spe	cify) into and out	of collector:				
	Pollutant	IN Po	ollutant	Emission				
		lb/hr	grains/acf	Capture Efficiency %	lb/hr	grains/acf	Efficiency %	
	A Nitrogen	0.95	0.008	99.9%	0.01	8.3 x10 ⁻⁵	99%	
	В							
	С							
	D							
	E							
24.	Dimensions of stack	NA vents to	C4T-B-1600 H	eight	ft. D	iameter	ft.	
25.	Supply a curve show rating of collector.	wing proposed o	collection efficien	cy versus gas	volume from 2	5 to 130 perce	nt of design	
			Particulate	Distribution				

26. Complete the table:	Particle Size Distribution at Inlet to Collector	Fraction Efficiency of Collector
Particulate Size Range (microns)	Weight % for Size Range	Weight % for Size Range
0-2	Unknown	
2-4		95+%
4-6		99.9%
6 - 8		
8 - 10		
10 – 12		
12 – 16		
16 – 20		
20 - 30		
30 - 40		
40 - 50		
50 - 60		
60 - 70		
70 - 80		
80 - 90		
90 - 100		
>100		

27. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification): NA					
28. Describe the collection material disposal system: Filters are landfilled.					
29. Have you included	Other Collectores Control Devic	ce in the Emissions Points Data Summary Sheet?			
30. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.					
MONITORING:		RECORDKEEPING:			
See Attachment O		See Attachment O			
REPORTING:		TESTING:			
See Attachment O		See Attachment O			
MONITORING: RECORDKEEPING:	monitored in order to demons equipment or air control device.	rocess parameters and ranges that are proposed to be strate compliance with the operation of this process cordkeeping that will accompany the monitoring.			
REPORTING:		emissions testing for this process equipment on air			
TESTING:		emissions testing for this process equipment on air			
31. Manufacturer's Guaranteed Control Efficiency for each air pollutant. 99%					
32. Manufacturer's Guaranteed Control Efficiency for each air pollutant. 99%					
33. Describe all opera NA	ating ranges and maintenance proc	cedures required by Manufacturer to maintain warranty.			

Attachment M Air Pollution Control Device Sheet (OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): C4C-M-7700

Equipment Information

1.	Manufacturer: NA Model No.	2.	Control Device Nam Type: 33.5 ft2 wove	ne: CSS-13 Filter en fiberglass cartridge filter			
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state h						
4.	. On a separate sheet(s) supply all data and calculations used in selecting or designing this collection device.						
5.	Provide a scale diagram of the control device showing internal construction.						
6.	Submit a schematic and diagram with dimensions and	d flov	w rates.				
7. 99.	 Guaranteed minimum collection efficiency for each pollutant collected: 99.9 						
8.	8. Attached efficiency curve and/or other efficiency information.						
9.	. Design inlet volume: SCFM 10. Capacity:						
12.	 11. Indicate the liquid flow rate and describe equipment provided to measure pressure drop and flow rate, if any. 12. Attach any additional data including auxiliary equipment and operation details to thoroughly evaluate the control equipment. 13. Description of method of handling the collected material(s) for reuse of disposal. Recycled back into process 						
	Gas Stream C	hara	acteristics				
14.	Are halogenated organics present? Are particulates present? Are metals present?		∕es ⊠ No ∕es ⊠ No es ⊠No				
15.	Inlet Emission stream parameters:	N	laximum	Typical			
	Pressure (mmHg):						
	Heat Content (BTU/scf):						
	Oxygen Content (%):						
	Moisture Content (%):						
	Relative Humidity (%):						

16.	Type of pollutant(s) o			☐ Odor	gen				
17.	Inlet gas velocity:		ft/sec	18. Pollutant specific gravity:					
19.	Gas flow into the col NA @ 550°F and			20. Gas stream temperature: Inlet: °F Outlet: °F					
21.	Gas flow rate: Design Maximum: Average Expected:		ACFM ACFM	22. Particulate	e Grain Loading Inlet: Outlet:	g in grains/scf:			
23.	Emission rate of eac	h pollutant (sp	ecify) into and out	of collector:			1		
	Pollutant	IN F Ib/hr	Pollutant grains/acf	Emission Capture Efficiency %	OUT Po Ib/hr	ollutant grains/acf	Control Efficiency %		
	A Nitrogen	0.95	0.008	99.9%	0.01	8.3 x10 ⁻⁵	99%		
	В								
	С								
	D								
	E								
24.	Dimensions of stack	NA vents	to C4T-B-1600	Height	ft.	Diameter	ft.		
25.	Supply a curve show rating of collector.	wing proposed	collection efficien	cy versus gas	volume from 2	5 to 130 perce	nt of design		
		Pa	rticulate Distribut	tion: Not Appl	icable				
26.	Complete the table:		Particle Size Dis to C	tribution at In	let Fraction	n Efficiency of	Collector		
Pa	articulate Size Range	e (microns)	Weight % fo	r Size Range	Wei	ght % for Size	Range		
	0 – 2		N	IA	-				
	2 – 4								
	4 – 6								
	6 – 8								
	8 – 10								
	10 – 12								
	12 – 16								
16 – 20									
	20 – 30								
30 – 40									
	40 – 50								
	50 - 60								
	60 – 70								
	70 – 80								

80 - 90 90 - 100 >100

27. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification): NA					
28. Describe the collection material disposal system: Filters are landfilled.					
29. Have you included Other Collectores Control Device	e in the Emissions Points Data Summary Sheet?				
30. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.					
MONITORING:	RECORDKEEPING:				
See Attachment O	See Attachment O				
REPORTING:	TESTING:				
See Attachment O	See Attachment O				
monitored in order to demons equipment or air control device. RECORDKEEPING: Please describe the proposed red	ocess parameters and ranges that are proposed to be strate compliance with the operation of this process cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air				
pollution control device.	emissions testing for this process equipment on air				
31. Manufacturer's Guaranteed Control Efficiency for each air pollutant. 99%					
32. Manufacturer's Guaranteed Control Efficiency for each air pollutant. 99%					
33. Describe all operating ranges and maintenance prod NA	cedures required by Manufacturer to maintain warranty.				

Attachment M Air Pollution Control Device Sheet (OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): C4C-M-5470

Equipment Information

1.	Manufacturer: NA Model No.	2.	Control Device Nam Type: Filter	ne: CSS-13 Filter			
3.	Provide diagram(s) of unit describing capture syst capacity, horsepower of movers. If applicable, state						
4.	. On a separate sheet(s) supply all data and calculations used in selecting or designing this collection device.						
5.	Provide a scale diagram of the control device showing internal construction.						
6.	Submit a schematic and diagram with dimensions a	nd flov	w rates.				
7. 99.	 Guaranteed minimum collection efficiency for each pollutant collected: 99.9 						
8.	8. Attached efficiency curve and/or other efficiency information.						
9.	D. Design inlet volume: SCFM 10. Capacity:						
 12. Attach any additional data including auxiliary equipment and operation details to thoroughly evaluate the control equipment. 13. Description of method of handling the collected material(s) for reuse of disposal. Recycled back into process 							
	Gas Stream	Chara	acteristics				
14.	Are halogenated organics present? Are particulates present? Are metals present?	Ľ١	∕es ⊠ No ∕es ⊠ No es ⊠No				
15.	Inlet Emission stream parameters:	N	laximum	Typical			
	Pressure (mmHg):						
	Heat Content (BTU/scf):						
	Oxygen Content (%):						
	Moisture Content (%):						
	Relative Humidity (%):						

16.	Type of pollutant(s) o			☐ Odor	gen			
17.	Inlet gas velocity:		ft/sec		specific gravity:			
19.	19. Gas flow into the collector: NA @ 550°F and 10 PSIG			20. Gas stream temperature: Inlet: °F Outlet: °F				
21.	Gas flow rate: Design Maximum: Average Expected:		ACFM ACFM	22. Particulate	e Grain Loading Inlet: Outlet:	g in grains/scf:		
23.	Emission rate of eac		• /	of collector:			1	
	Pollutant	IN F Ib/hr	ollutant grains/acf	Emission Capture Efficiency %	OUT Po lb/hr	ollutant grains/acf	Control Efficiency %	
	A Nitrogen	0.95	0.008	99.9%	0.01	8.3 x10 ⁻⁵	99%	
	В							
	С							
	D							
	E							
24.	Dimensions of stack	: NA vents	to C4T-B-1600	Height	ft.	Diameter	ft.	
25.	Supply a curve show rating of collector.	wing proposed	collection efficien	cy versus gas	volume from 2	5 to 130 perce	nt of design	
		Pa	rticulate Distribut	tion: Not Appl	icable			
26.	Complete the table:		Particle Size Dis to C	tribution at In ollector	let Fraction	n Efficiency of	Collector	
Pa	rticulate Size Range	e (microns)	Weight % for	r Size Range	Weig	ght % for Size	Range	
	0-2			NA NA			Ŭ	
	2 – 4							
	4 - 6							
	6 - 8							
	8 – 10							
	10 – 12							
	12 – 16							
	16 – 20							
	20 – 30							
30 - 40								
	40 – 50							
	50 - 60							
	60 - 70							
	70 – 80					-		

80 - 90 90 - 100 >100

27. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification): NA					
28. Describe the collection material disposal system: Filters are landfilled.					
29. Have you included Other Collectores Control Device	e in the Emissions Points Data Summary Sheet?				
30. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.					
MONITORING:	RECORDKEEPING:				
See Attachment O	See Attachment O				
REPORTING:	TESTING:				
See Attachment O	See Attachment O				
monitored in order to demons equipment or air control device. RECORDKEEPING: Please describe the proposed red	ocess parameters and ranges that are proposed to be strate compliance with the operation of this process cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air				
pollution control device.	emissions testing for this process equipment on air				
31. Manufacturer's Guaranteed Control Efficiency for each air pollutant. 99%					
32. Manufacturer's Guaranteed Control Efficiency for each air pollutant. 99%					
33. Describe all operating ranges and maintenance prod NA	cedures required by Manufacturer to maintain warranty.				

Control Device ID No. (must match Emission Units Table): L26-M-6010

Equipment Information and Filter Characteristics

1.	Manufacturer: Flex-Kleen	2. Total number of compartments: 1				
	Model No.	3. Number of compartment online for normal operation: 1				
4.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state h	tem with duct arrangement and size of duct, air volume, a hood face velocity and hood collection efficiency.				
5.	Baghouse Configuration: Open Pressure (check one) Electrostatically Enha Other, Specify	Closed Pressure Closed Suction				
6.	Filter Fabric Bag Material: Nomex nylon Wool Polyester Polypropylene Acrylics Ceramics Fiber Glass	 7. Bag Dimension: Diameter 4.5 in. Length 8 ft. 8. Total cloth area: 100 ft² 				
	Cotton Weight oz./sq.yd	9. Number of bags: 9				
	☐ Teflon Thickness in ☐ Others, specify	10. Operating air to cloth ratio: 7.0 ft/min				
11	Baghouse Operation: Continuous					
12.	12. Method used to clean bags: Mechanical Shaker Sonic Cleaning Pneumatic Shaker Reverse Air Flow Bag Collapse Pulse Jet Manual Cleaning Reverse Jet					
13.	Cleaning initiated by: ⊠ Timer □ Expected pressure drop range in. of water	Frequency if timer actuated Other				
14.	Operation Hours: Max. per day: 24 Max. per yr: 8760	15. Collection efficiency:Rating:99%Guaranteed minimum:99%				
	Gas Stream C	haracteristics				
16.	Gas flow rate into the collector: 700 ACFM	at 150 °F and 14.9 PSIA				
	ACFM: Design: PSIA Maximum:	PSIA Average Expected: PSIA				
17.	Water Vapor Content of Effluent Stream:	lb. Water/lb. Dry Air				
18.	Gas Stream Temperature: °F	19. Fan Requirements: hp OR ft ³ /min				
20.	Stabilized static pressure loss across baghouse. Pre	ssure Drop: High 6 in. H ₂ O Low 6 in. H ₂ O				
21.	Particulate Loading: Inlet: 0.11	grain/scf Outlet: 8.2×10^{-4} grain/scf				

22. Type of Pollutant(s) to be collected (if particulate give specific type): Polyester fines							
23. Is there any SO_3 in the emission s	stream?	⊠No []Yes	s SO	3 cont	ent:	ppmv
24. Emission rate of pollutant (specify) into and		ut of collector		aximum	desigr		
Dellutent		lle /le r	IN	aroinal	f		UT
Pollutant		lb/hr		grains/a		lb/hr	grains/acf
PM/PM10		1.39		0.11		0.01	8.2x10 ⁻⁴
25. Complete the table:	Particle S	Size Distribut to Collect		t Inlet	Fra	ction Efficienc	y of Collector
Particulate Size Range (microns)	Weig	ht % for Size	Ran	ge		Weight % for S	ize Range
0 – 2	τ	Jnknown					
2 – 4						95+%	
4 – 6						99.9%	
6 – 8							
8 – 10							
10 – 12							
12 – 16							
16 – 20							
20 – 30							
30 - 40							
40 – 50							
50 - 60							
60 – 70							
70 – 80							
80 - 90							
90 – 100							
>100							

26.	How is filter monitored for indications of deterioration (e.g., broken bags)?
	Continuous Opacity
	Pressure Drop
	Alarms-Audible to Process Operator
	Visual opacity readings, Frequency:
	Other, specify:
27.	Describe any recording device and frequency of log entries:
	Pressure drop reading is check once per month.
28.	Describe any filter seeding being performed:
	None
29	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas
20.	reheating, gas humidification):
	None
30.	Describe the collection material disposal system:
	Through a rotary valve feed to a drum. Material is recycled back into the process.
1	
1	
L	
31.	Have you included Baghouse Control Device in the Emissions Points Data Summary Sheet? Yes
L	

Please propose m	g parameters. Please propose	and Testing porting in order to demonstrate compliance with the testing in order to demonstrate compliance with the RECORDKEEPING: See Attachment O
MONITORING:		ocess parameters and ranges that are proposed to be strate compliance with the operation of this process
RECORDKEEPING: REPORTING:	Please describe the proposed red	cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air
TESTING:		emissions testing for this process equipment on air
99.9%	aranteed Capture Efficiency for ea	
99%	aranteed Control Efficiency for eac	
35. Describe all operat	ing ranges and maintenance proce	dures required by Manufacturer to maintain warranty.

Control Device ID No. (must match Emission Units Table): S8A-M-3360

Equipment Information and Filter Characteristics

1.	Manufacturer: Flex-Kleen	2. Total number of compartments: 1
	Model No. 120WXTC34M276	3. Number of compartment online for normal operation: 1
4.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state h	m with duct arrangement and size of duct, air volume, nood face velocity and hood collection efficiency.
5.	Baghouse Configuration: Open Pressure	Closed Pressure Closed Suction
	(check one)	nced Fabric
	Other, Specify	
6.	Filter Fabric Bag Material:	7. Bag Dimension:
	⊠ Polyester □ Polypropylene	Diameter 4.5 in.
	Acrylics Ceramics	Length 10 ft.
	Cotton Weight oz./sq.yd	8. Total cloth area: 3251 ft ²
	Teflon Thickness in	9. Number of bags: 314
	☐ Others, specify	10. Operating air to cloth ratio: 7.8 ft/min
11.	Baghouse Operation: Continuous	Automatic Intermittent
	☐ Mechanical Shaker ☐ Sonic Cleaning ☐ Pneumatic Shaker ☐ Reverse Air Flow ☐ Bag Collapse ☑ Pulse Jet ☐ Manual Cleaning ☐ Reverse Jet	☐Reverse Air Jet ☐Other:
13.	Cleaning initiated by: ⊠ Timer □ Expected pressure drop range in. of water	Frequency if timer actuated Other
14.	Operation Hours: Max. per day: 24 Max. per yr: 8760	15. Collection efficiency:Rating:99%Guaranteed minimum:99%
L	Gas Stream C	haracteristics
16.	Gas flow rate into the collector: 29,593 ACFM	at 305 °F and 14.45 PSIA
	ACFM: Design: PSIA Maximum:	PSIA Average Expected: PSIA
17.	Water Vapor Content of Effluent Stream:	lb. Water/lb. Dry Air
18.	Gas Stream Temperature: °F	19. Fan Requirements: hp
		OR ft ³ /min
20.	Stabilized static pressure loss across baghouse. Pre	ssure Drop: High 6 in. H ₂ O
		Low 6 in. H ₂ O
21.	Particulate Loading: Inlet: 0.0055	grain/scf Outlet: 5.8x10 ⁻⁵ grain/scf

22. Type of Pollutant(s) to be collected (if particulate give specific type): Polyester fines							
23. Is there any SO_3 in the emission s	stream?	⊠No []Ye	es SO	3 cont	ent:	ppmv
24. Emission rate of pollutant (specify) into and o	ut of collector			desigr		
Pollutant		lb/hr	11		OUT acf lb/hr gr		
				grains/acf			grains/acf 3.9x10 ⁻⁵
PM/PM10		0.95		0.004	+	0.01	3.9X10
25. Complete the table:	Particle S	Size Distribution to Collec		at Inlet	Fraction Efficiency of Collector		
Particulate Size Range (microns)	Weig	ht % for Size	Ra	nge		Weight % for S	ize Range
0 – 2	τ	Jnknown					
2 – 4						95+%	
4 - 6						99.9%	
6 - 8							
8 – 10							
10 – 12							
12 – 16							
16 – 20							
20 – 30							
30 – 40							
40 – 50							
50 – 60							
60 – 70							
70 – 80							
80 – 90							
90 – 100							
>100							

26	. How is filter monitored for indications of deterioration (e.g., broken bags)?
	Continuous Opacity
	Pressure Drop
	Alarms-Audible to Process Operator
	Visual opacity readings, Frequency:
07	Other, specify:
21	Describe any recording device and frequency of log entries:
	Pressure drop reading is check once per month.
28	Describe any filter seeding being performed:
	None
29	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas
	reheating, gas humidification):
	None
20	Describe the collection material disposal system:
30	Through a rotary valve feed to a drum. Material is recycled back into the process.
	Through a rotary valve reed to a druni. Material is recycled back into the process.
1	
1	
1	
1	
31	. Have you included <i>Baghouse Control Device</i> in the Emissions Points Data Summary Sheet? Yes
1	

Please propose m	g parameters. Please propose	and Testing porting in order to demonstrate compliance with the testing in order to demonstrate compliance with the RECORDKEEPING: See Attachment O
MONITORING:		ocess parameters and ranges that are proposed to be strate compliance with the operation of this process
RECORDKEEPING: REPORTING:	Please describe the proposed red	cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air
TESTING:		emissions testing for this process equipment on air
99.9%	aranteed Capture Efficiency for ea	
99%	aranteed Control Efficiency for eac	
35. Describe all operat	ing ranges and maintenance proce	dures required by Manufacturer to maintain warranty.

Control Device ID No. (must match Emission Units Table): S8B-M-2420

Equipment Information and Filter Characteristics

1. Manufacturer: Flex-Kleen	2. Total number of compartments: 1
Model No. 12010XTC180M152 AZRZRIIG	3. Number of compartment online for normal operation: 1
4. Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state	m with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.
5. Baghouse Configuration: Open Pressure (check one) Electrostatically Enha	
 6. Filter Fabric Bag Material: Nomex nylon	 7. Bag Dimension: Diameter 4.5 in. Length 10 ft. 8. Total cloth area: 1790 ft² 9. Number of bags: 152 10. Operating air to cloth ratio: 7.81 ft/min
11. Baghouse Operation: Continuous	Automatic Intermittent
12. Method used to clean bags: ☐ Mechanical Shaker ☐ Sonic Cleaning ☐ Pneumatic Shaker ☐ Reverse Air Flow ☐ Bag Collapse ☑ Pulse Jet ☐ Manual Cleaning ☐ Reverse Jet	☐Reverse Air Jet ☐Other:
 13. Cleaning initiated by: □ Timer □ Expected pressure drop range in. of water 	Frequency if timer actuated Other
14. Operation Hours:Max. per day:24Max. per yr:8760	15. Collection efficiency:Rating:99%Guaranteed minimum:99%
Gas Stream (Characteristics
16. Gas flow rate into the collector:13,990ACFMACFM:Design:PSIAMaximum:	at 405 °F and 14.7 PSIA PSIA Average Expected: PSIA
17. Water Vapor Content of Effluent Stream:	lb. Water/lb. Dry Air
18. Gas Stream Temperature: °F	19. Fan Requirements: hp OR ft ³ /min
20. Stabilized static pressure loss across baghouse. Pre	$\begin{array}{llllllllllllllllllllllllllllllllllll$
21. Particulate Loading: Inlet: 0.013	grain/scf Outlet: $1.4 \mathrm{x10}^{-4}$ grain/scf

22. Type of Pollutant(s) to be collected (if particulate give specific type): Polyester fines							
23. Is there any SO_3 in the emission s	stream?	⊠No []Ye	es SO	3 cont	ent:	ppmv
24. Emission rate of pollutant (specify) into and o	ut of collecto			desigr		
Pollutant		lb/hr	11		OUT		
				grains/acf		lb/hr	grains/acf 8.3x10 ⁻⁵
PM/PM10		0.95 0.00		0.008	5	0.01	8.3X10
25. Complete the table:	Particle S	Size Distribu to Collec		at Inlet	Fraction Efficiency of Collector		
Particulate Size Range (microns)	Weig	ht % for Size	Ra	nge		Weight % for S	ize Range
0 – 2	τ	Jnknown					
2 – 4						95+%	
4 - 6						99.9%	
6 - 8							
8 – 10							
10 – 12							
12 – 16							
16 – 20							
20 – 30							
30 - 40							
40 – 50							
50 – 60							
60 – 70							
70 – 80							
80 – 90							
90 – 100							
>100							

26.	How is filter monitored for indications of deterioration (e.g., broken bags)?
	Continuous Opacity
	Pressure Drop
	Alarms-Audible to Process Operator
	Visual opacity readings, Frequency:
	Other, specify:
27.	Describe any recording device and frequency of log entries:
	Pressure drop reading is check once per month.
28.	Describe any filter seeding being performed:
	None
29	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas
20.	reheating, gas humidification):
	None
30.	Describe the collection material disposal system:
	Through a rotary valve feed to a drum. Material is recycled back into the process.
1	
1	
L	
31.	Have you included Baghouse Control Device in the Emissions Points Data Summary Sheet? Yes
L	

Please propose m	g parameters. Please propose	and Testing porting in order to demonstrate compliance with the testing in order to demonstrate compliance with the RECORDKEEPING: See Attachment O
MONITORING:		ocess parameters and ranges that are proposed to be strate compliance with the operation of this process
RECORDKEEPING: REPORTING:	Please describe the proposed red	cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air
TESTING:		emissions testing for this process equipment on air
99.9%	aranteed Capture Efficiency for ea	
99%	aranteed Control Efficiency for eac	
35. Describe all operat	ing ranges and maintenance proce	dures required by Manufacturer to maintain warranty.

Control Device ID No. (must match Emission Units Table): C3A-M-7350

1.	Manufacturer: Flex-Kleen	2. Total number of compartments: 1			
	Model No. 120WXTC34M276	3. Number of compartment online for normal operation: 1			
4.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state I	m with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.			
5.	Baghouse Configuration: Open Pressure	Closed Pressure Closed Suction			
	(check one)	inced Fabric			
	Other, Specify				
6.	Filter Fabric Bag Material:	7. Bag Dimension:			
	Polyester Polypropylene	Diameter 4.5 in.			
	Acrylics Ceramics	Length 10 ft.			
	Cotton Weight oz./sq.yd	8. Total cloth area: 3251 ft ²			
	Teflon Thickness in	9. Number of bags: 314			
	Others, specify	10. Operating air to cloth ratio: 7.8 ft/min			
11.	Baghouse Operation: Continuous	Automatic Intermittent			
	Method used to clean bags: Mechanical Shaker Sonic Cleaning Pneumatic Shaker Reverse Air Flow Bag Collapse Pulse Jet Manual Cleaning Reverse Jet	☐Reverse Air Jet ☐Other:			
13.	Cleaning initiated by: ☐ Timer ☐ Expected pressure drop range in. of water	Frequency if timer actuated Other			
14.	Operation Hours: Max. per day: 24	15. Collection efficiency: Rating: 99 %			
	Max. per yr: 8760	Guaranteed minimum: 99 %			
		Characteristics			
16.	Gas flow rate into the collector: 29,593 ACFM				
	ACFM: Design: PSIA Maximum:	PSIA Average Expected: PSIA			
17.	Water Vapor Content of Effluent Stream:	lb. Water/lb. Dry Air			
18.	Gas Stream Temperature: °F	19. Fan Requirements: hp			
┣—		OR ft ³ /min			
20.	Stabilized static pressure loss across baghouse. Pre				
		Low 6 in. H ₂ O			
21.	Particulate Loading: Inlet: 0.0055	grain/scf Outlet: 5.8×10^{-5} grain/scf			

22. Type of Pollutant(s) to be collecte Polyester fines	d (if particul	ate give spec	ific 1	type):			
23. Is there any SO_3 in the emission s	stream?	⊠No []Ye	es SO	3 cont	ent:	ppmv
24. Emission rate of pollutant (specify) into and o	ut of collector			desigr		
Pollutant		lb/hr	11		aaf	O Ib/hr	UT grains/act
				grains/			grains/acf 3.9x10 ⁻⁵
PM/PM10		0.95		0.004	+	0.01	3.9X10
25. Complete the table:	Particle S	Size Distribution to Collec		at Inlet	Fra	ction Efficienc	y of Collector
Particulate Size Range (microns)	Weig	ht % for Size	Ra	nge		Weight % for S	ize Range
0 – 2	τ	Jnknown					
2 – 4						95+%	
4 - 6						99.9%	
6 - 8							
8 – 10							
10 – 12							
12 – 16							
16 – 20							
20 – 30							
30 – 40							
40 – 50							
50 – 60							
60 – 70							
70 – 80							
80 – 90							
90 – 100							
>100							

31.	Have you included Baghouse Control Device in the Emissions Points Data Summary Sheet? Yes
	Through a rotary valve feed to a drum. Material is recycled back into the process.
30.	Describe the collection material disposal system:
	None
	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
	None
28.	Describe any filter seeding being performed:
	Pressure drop reading is check once per month.
	Describe any recording device and frequency of log entries:
	 Visual opacity readings, Frequency: Other, specify:
	 Pressure Drop Alarms-Audible to Process Operator
20.	Continuous Opacity
26.	How is filter monitored for indications of deterioration (e.g., broken bags)?

Please propose m	g parameters. Please propose	and Testing porting in order to demonstrate compliance with the testing in order to demonstrate compliance with the RECORDKEEPING: See Attachment O				
MONITORING:		ocess parameters and ranges that are proposed to be strate compliance with the operation of this process				
RECORDKEEPING: REPORTING:	Please describe the proposed recordkeeping that will accompany the monitoring. Please describe any proposed emissions testing for this process equipment on air pollution control device.					
TESTING:		emissions testing for this process equipment on air				
99.9%	aranteed Capture Efficiency for ea					
99%	aranteed Control Efficiency for eac					
35. Describe all operat	ing ranges and maintenance proce	dures required by Manufacturer to maintain warranty.				

Control Device ID No. (must match Emission Units Table): C4B-M-6420

Equipment Information and Filter Characteristics	Equipment	Information	and Filter	Characteristics
---	-----------	-------------	------------	-----------------

-		
1.	Manufacturer: Flex-Kleen	2. Total number of compartments: 1
	Model No. 12010XTC180M152 AZRZRIIG	3. Number of compartment online for normal operation: 1
4.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state l	m with duct arrangement and size of duct, air volume, nood face velocity and hood collection efficiency.
5.	Baghouse Configuration: Open Pressure	Closed Pressure
	(check one)	inced Fabric
	Other, Specify	
6.	Filter Fabric Bag Material:	7. Bag Dimension:
	⊠ Polyester □ Polypropylene	Diameter 4.5 in.
		Length 10 ft.
	☐ Fiber Glass ☐ Cotton Weight oz./sq.yd	8. Total cloth area: 1790 ft ²
	Teflon Thickness in	9. Number of bags: 152
	Others, specify	10. Operating air to cloth ratio: 7.81 ft/min
11.	Baghouse Operation: Continuous	Automatic Intermittent
12.	Method used to clean bags: Mechanical Shaker Sonic Cleaning Pneumatic Shaker Reverse Air Flow Bag Collapse Pulse Jet Manual Cleaning Reverse Jet	☐Reverse Air Jet ☐Other:
13.	Cleaning initiated by: ☐ Timer ☐ Expected pressure drop range in. of water	Frequency if timer actuated Other
14.	Operation Hours: Max. per day: 24 Max. per yr: 8760	15. Collection efficiency:Rating:99%Guaranteed minimum:99%
	Gas Stream C	haracteristics
16.	Gas flow rate into the collector: 13,990 ACFM	at 405 °F and 14.7 PSIA
	ACFM: Design: PSIA Maximum:	PSIA Average Expected: PSIA
17.	Water Vapor Content of Effluent Stream:	lb. Water/lb. Dry Air
18.	Gas Stream Temperature: °F	19. Fan Requirements: hp
		OR ft ³ /min
20.	Stabilized static pressure loss across baghouse. Pre	
		Low 6 in. H ₂ O
21.	Particulate Loading: Inlet: 0.013	grain/scf Outlet: 1.4x10 ⁻⁴ grain/scf

22. Type of Pollutant(s) to be collecte Polyester fines	d (if particul	ate give spec	cific 1	type):			
23. Is there any SO_3 in the emission s	stream?	⊠No []Ye	es SO	3 cont	ent:	ppmv
24. Emission rate of pollutant (specify) into and o	ut of collecto			desigr		
Pollutant		lb/hr	11		aaf	O Ib/hr	UT grains/acf
				grains/			grains/acf 8.3x10 ⁻⁵
PM/PM10		0.95		0.008	5	0.01	8.3X10
25. Complete the table:	Particle S	Size Distribu to Collec		at Inlet	Fra	ction Efficienc	y of Collector
Particulate Size Range (microns)	Weig	ht % for Size	Ra	nge		Weight % for S	ize Range
0 – 2	τ	Jnknown					
2 – 4						95+%	
4 - 6						99.9%	
6 - 8							
8 – 10							
10 – 12							
12 – 16							
16 – 20							
20 – 30							
30 - 40							
40 – 50							
50 – 60							
60 – 70							
70 – 80							
80 – 90							
90 – 100							
>100							

26.	How is filter monitored for indications of deterioration (e.g., broken bags)?
	Continuous Opacity
	Pressure Drop
	Alarms-Audible to Process Operator
	Visual opacity readings, Frequency:
	Other, specify:
27.	Describe any recording device and frequency of log entries:
	Pressure drop reading is check once per month.
28.	Describe any filter seeding being performed:
	None
29	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas
20.	reheating, gas humidification):
	None
20	Describe the collection material dispassed systems
30.	Describe the collection material disposal system:
	Through a rotary valve feed to a drum. Material is recycled back into the process.
1	
31.	Have you included Baghouse Control Device in the Emissions Points Data Summary Sheet? Yes

Please propose m	g parameters. Please propose	and Testing porting in order to demonstrate compliance with the testing in order to demonstrate compliance with the RECORDKEEPING: See Attachment O				
MONITORING:		ocess parameters and ranges that are proposed to be strate compliance with the operation of this process				
RECORDKEEPING: REPORTING:	Please describe the proposed recordkeeping that will accompany the monitoring. Please describe any proposed emissions testing for this process equipment on air pollution control device.					
TESTING:		emissions testing for this process equipment on air				
99.9%	aranteed Capture Efficiency for ea					
99%	aranteed Control Efficiency for eac					
35. Describe all operat	ing ranges and maintenance proce	dures required by Manufacturer to maintain warranty.				

Control Device ID No. (must match Emission Units Table): C3A-M-3350

Equipment Info	rmation and Filter	r Characteristics
----------------	--------------------	-------------------

1.	Manufacturer: Flex-Kleen	2. Total number of compartments: 1
	Model No. 120WXTC34M276	3. Number of compartment online for normal operation: 1
4.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state l	m with duct arrangement and size of duct, air volume, nood face velocity and hood collection efficiency.
5.	Baghouse Configuration: Open Pressure	Closed Pressure
	(check one)	inced Fabric
	Other, Specify	
6.	Filter Fabric Bag Material:	7. Bag Dimension:
	⊠Polyester □Polypropylene	Diameter 4.5 in.
	Acrylics Ceramics	Length 10 ft.
	☐ Fiber Glass ☐ Cotton Weight oz./sq.yd	8. Total cloth area: 3251 ft ²
	Teflon Thickness in	9. Number of bags: 314
	Others, specify	10. Operating air to cloth ratio: 7.8 ft/min
11.	Baghouse Operation: Continuous	Automatic Intermittent
	Method used to clean bags: Mechanical Shaker Sonic Cleaning Pneumatic Shaker Reverse Air Flow Bag Collapse Pulse Jet Manual Cleaning Reverse Jet	☐Reverse Air Jet ☐Other:
13.	Cleaning initiated by: ☐ Timer ☐ Expected pressure drop range in. of water	Frequency if timer actuated Other
14.	Operation Hours: Max. per day: 24 Max. per yr: 8760	15. Collection efficiency:Rating:99%Guaranteed minimum:99%
	Gas Stream C	Characteristics
16.	Gas flow rate into the collector: 29,593 ACFM	at 305 °F and 14.45 PSIA
	ACFM: Design: PSIA Maximum:	PSIA Average Expected: PSIA
17.	Water Vapor Content of Effluent Stream:	lb. Water/lb. Dry Air
18.	Gas Stream Temperature: °F	19. Fan Requirements: hp
		OR ft ³ /min
20.	Stabilized static pressure loss across baghouse. Pre	
	-	Low 6 in. H ₂ O
21.	Particulate Loading: Inlet: 0.0055	grain/scf Outlet: 5.8x10 ⁻⁵ grain/scf

22. Type of Pollutant(s) to be collecte Polyester fines	d (if particul	ate give spec	ific 1	type):			
23. Is there any SO_3 in the emission s	stream?	⊠No []Ye	es SO	3 cont	ent:	ppmv
24. Emission rate of pollutant (specify) into and o	ut of collector			desigr		
Pollutant		lb/hr	11		aaf	O Ib/hr	UT grains/act
				grains/			grains/acf 3.9x10 ⁻⁵
PM/PM10		0.95		0.004	+	0.01	3.9X10
25. Complete the table:	Particle S	Size Distribution to Collec		at Inlet	Fra	ction Efficienc	y of Collector
Particulate Size Range (microns)	Weig	ht % for Size	Ra	nge		Weight % for S	ize Range
0 – 2	τ	Jnknown					
2 – 4						95+%	
4 - 6						99.9%	
6 - 8							
8 – 10							
10 – 12							
12 – 16							
16 – 20							
20 – 30							
30 – 40							
40 – 50							
50 – 60							
60 – 70							
70 – 80							
80 – 90							
90 – 100							
>100							

31.	Have you included Baghouse Control Device in the Emissions Points Data Summary Sheet? Yes
	Through a rotary valve feed to a drum. Material is recycled back into the process.
30.	Describe the collection material disposal system:
	None
	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
	None
28.	Describe any filter seeding being performed:
	Pressure drop reading is check once per month.
	Describe any recording device and frequency of log entries:
	 Visual opacity readings, Frequency: Other, specify:
	 Pressure Drop Alarms-Audible to Process Operator
20.	Continuous Opacity
26.	How is filter monitored for indications of deterioration (e.g., broken bags)?

Please propose m	g parameters. Please propose	and Testing porting in order to demonstrate compliance with the testing in order to demonstrate compliance with the RECORDKEEPING: See Attachment O TESTING: See Attachment O		
MONITORING:		ocess parameters and ranges that are proposed to be strate compliance with the operation of this process		
RECORDKEEPING: REPORTING:	Please describe the proposed recordkeeping that will accompany the monitoring. Please describe any proposed emissions testing for this process equipment on air pollution control device.			
TESTING:		emissions testing for this process equipment on air		
99.9%	aranteed Capture Efficiency for ea			
99%	aranteed Control Efficiency for eac			
35. Describe all operati None	ing ranges and maintenance proce	dures required by Manufacturer to maintain warranty.		

Control Device ID No. (must match Emission Units Table): C3B-M-2420

Equipment Information and Filter Characteristics	Equipment	Information	and Filter	Characteristics
---	-----------	-------------	------------	-----------------

1.	Manufacturer: Flex-Kleen	2. Total number of compartments: 1
	Model No. 12010XTC180M152 AZRZRIIG	3. Number of compartment online for normal operation: 1
4.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state	m with duct arrangement and size of duct, air volume, nood face velocity and hood collection efficiency.
5.	Baghouse Configuration: Open Pressure	Closed Pressure Closed Suction
	(check one)	nced Fabric
	Other, Specify	
6.	Filter Fabric Bag Material:	7. Bag Dimension:
	Polyester Polypropylene	Diameter 4.5 in.
	Acrylics Ceramics	Length10ft.8. Total cloth area:1790ft²
	Cotton Weight oz./sq.yd	
	Teflon Thickness in	9. Number of bags: 152
	Others, specify	10. Operating air to cloth ratio: 7.81 ft/min
11.	Baghouse Operation: Continuous	Automatic Intermittent
	Method used to clean bags: Mechanical Shaker Sonic Cleaning Pneumatic Shaker Reverse Air Flow Bag Collapse Pulse Jet Manual Cleaning Reverse Jet	☐Reverse Air Jet ☐Other:
13.	Cleaning initiated by: ☐ Timer ☐ Expected pressure drop range in. of water	Frequency if timer actuated
14.	Operation Hours: Max. per day: 24 Max. per yr: 8760	15. Collection efficiency:Rating:99%Guaranteed minimum:99%
	Gas Stream C	haracteristics
16.	Gas flow rate into the collector: 13,990 ACFM	at 405 °F and 14.7 PSIA
	ACFM: Design: PSIA Maximum:	PSIA Average Expected: PSIA
17.	Water Vapor Content of Effluent Stream:	lb. Water/lb. Dry Air
18.	Gas Stream Temperature: °F	19. Fan Requirements: hp
		OR ft ³ /min
20.	Stabilized static pressure loss across baghouse. Pre	ssure Drop: High 6 in. H ₂ O
		Low 6 in. H ₂ O
21.	Particulate Loading: Inlet: 0.013	grain/scf Outlet: $1.4 x 10^{-4}$ grain/scf

22. Type of Pollutant(s) to be collected (if particulate give specific type): Polyester fines							
23. Is there any SO_3 in the emission s	stream?	⊠No []Ye	es SO	3 cont	ent:	ppmv
24. Emission rate of pollutant (specify) into and o	ut of collecto			desigr		
Pollutant		lb/hr	11		aaf	O Ib/hr	UT grains/acf
				grains/			grains/acf 8.3x10 ⁻⁵
PM/PM10		0.95		0.008	5	0.01	8.3X10
25. Complete the table:	Particle S	Particle Size Distribution at Inlet to Collector			Fraction Efficiency of Collector		
Particulate Size Range (microns)	Weig	ht % for Size	Ra	nge	Weight % for Size Range		
0 – 2	τ	Jnknown					
2 – 4						95+%	
4 - 6						99.9%	
6 - 8							
8 – 10							
10 – 12							
12 – 16							
16 – 20							
20 – 30							
30 – 40							
40 – 50							
50 – 60							
60 – 70							
70 – 80							
80 – 90							
90 – 100							
>100							

31.	Have you included Baghouse Control Device in the Emissions Points Data Summary Sheet? Yes
	Through a rotary valve feed to a drum. Material is recycled back into the process.
30.	Describe the collection material disposal system:
	None
	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
	None
28.	Describe any filter seeding being performed:
	Pressure drop reading is check once per month.
	Describe any recording device and frequency of log entries:
	 Visual opacity readings, Frequency: Other, specify:
	 Pressure Drop Alarms-Audible to Process Operator
20.	Continuous Opacity
26.	How is filter monitored for indications of deterioration (e.g., broken bags)?

Please propose m	g parameters. Please propose	and Testing porting in order to demonstrate compliance with the testing in order to demonstrate compliance with the RECORDKEEPING: See Attachment O
MONITORING:		ocess parameters and ranges that are proposed to be strate compliance with the operation of this process
RECORDKEEPING: REPORTING:	Please describe the proposed red	cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air
TESTING:		emissions testing for this process equipment on air
99.9%	aranteed Capture Efficiency for ea	
99%	aranteed Control Efficiency for eac	
35. Describe all operat	ing ranges and maintenance proce	dures required by Manufacturer to maintain warranty.

ATTACHMENT N – SUPPORTING CALCULATIONS

				HAP Er	nissions							Criteria I	Pollutants				
		EG		AA		1,4-Dioxan	е	VOC		PM/PM10		со		NOx		SO2	
Group	Unit	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CP3	CP3 Born Heater	0.01	0.02	1.04	1.50	0.01	0.010	1.32	2.77	0.11	0.470	1.86	8.14	3.19	14.00	0.05	0.23
CP4	CP4 Born Heater	0.01	0.02	0.05	0.19	0.00	0.001	0.34	1.45	0.11	0.470	1.90	8.14	3.20	14.00	0.06	0.23
CSS7	CSS7 Process Equipment	0.38	0.14	0.14	0.56			0.05	2.37	0.05	0.140	0.05	0.18	0.23	0.91	0.01	0.01
CSS8	CSS8 Process Equipment	0.07	0.28	0.04	0.19			0.17	0.73	0.11	0.490	0.06	0.28	0.32	1.30	0.02	0.020
CSS10	CSS10 Process Equipment	0.38	1.60	0.19	0.80			0.04	2.54	0.04	0.054	0.04	0.19	0.13	0.88	0.00	0.006
CSS11	CSS11 Process Equipment	0.38	1.60	0.19	0.80			0.07	2.54	0.07	0.040	0.04	0.16	0.19	0.83	0.01	0.014
CSS12	CSS12 Process Equipment	0.54	2.32	0.20	0.85			0.18	3.47	0.18	0.189	0.04	0.20	0.20	0.00	0.01	0.00
CSS13	CSS13 Process Equipment	0.38	1.60	0.19	0.83			0.04	2.63	0.04	0.073	0.05	0.22	0.20	0.88	0.00	0.006
Warehouse	Warehouse									0.00	0.000						
	Totals:	2.14	7.58	2.04	5.72	0.011	0.011	2.21	18.50	0.71	1.93	4.04	17.51	7.66	32.80	0.16	0.52

				Greenho	use Gas		
		CO2		Methane		N2O	
Group	Unit	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CP3	CP3 Born Heater	6,641	29,088	0.10	0.43	0.010	0.04
CP4	CP4 Born Heater	6,641	29,088	0.10	0.43	0.010	0.04
CSS7	CSS7 Process Equipment	425	1,860	0.01	0.03	0.001	0.003
CSS8	CSS8 Process Equipment	461	2,021	0.01	0.03	0.001	0.003
CSS10	CSS10 Process Equipment	592	2,594	0.01	0.04	0.001	0.004
CSS11	CSS11 Process Equipment	586	2,568	0.01	0.04	0.001	0.004
CSS12	CSS12 Process Equipment	591	2,590	0.01	0.04	0.001	0.004
CSS13	CSS13 Process Equipment	585	2,564	0.01	0.04	0.001	0.004
Warehouse	Warehouse						
	Totals:	16,523	72,373	0.25	1.08	0.02	0.11

				HAP Em	issions							Criteria Po	llutants				
		E	G	A	A	1,4-Di	oxane	VC	C	PM/	PM10	0	:0	NC	Эx	S	02
Group	Unit	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CP3	CP3 Born Heater	0.01	0.02	1.04	1.50	0.001	0.001	1.32	2.77	0.11	0.47	1.86	8.14	3.19	14.00	0.05	0.23
CP4	CP4 Born Heater	0.01	0.02	0.06	0.23	0.001	0.001	0.40	1.72	0.13	0.557	1.90	8.14	3.20	14.00	0.06	0.23
	CSS7 Process Equipment	0.00	0.00	0.00	0.00			0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.00
CSS8	CSS8 Process Equipment	0.07	0.28	0.04	0.19			0.24	1.04	0.14	0.624	0.08	0.36	0.41	1.66	0.03	0.025
CSS10	CSS10 Process Equipment	0.38	1.60	0.19	0.80			0.61	2.60	0.05	0.062	0.05	0.23	0.16	1.02	0.00	0.007
	CSS11 Process Equipment	0.38	1.60	0.19	0.80			0.61	2.60	0.12	0.066	0.04	0.18	0.22	0.94	0.01	0.017
CSS12	CSS12 Process Equipment	0.75	3.22	0.27	1.18			1.11	4.82	0.18	0.292	0.09	0.35	0.39	1.66	0.03	0.026
CSS13	CSS13 Process Equipment	0.53	2.22	0.26	1.15			0.83	3.63	0.07	0.113	0.06	0.28	0.25	1.09	0.00	0.007
Warehouse	Warehouse									0.00	0.004						
	Totals:	2.12	8.97	2.05	5.85	0.002	0.002	5.13	19.18	0.79	2.19	4.09	17.68	7.82	34.37	0.18	0.54

Summary - After

		Greenhouse Gas									
		C	02	Meth	ane	N2	20				
Group	Unit	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy				
CP3	CP3 Born Heater	6,641	29,088	0.10	0.43	0.010	0.04				
CP4	CP4 Born Heater	6,641	29,088	0.10	0.43	0.010	0.04				
CSS7	CSS7 Process Equipment	0	0.00	0.00	0.00	0.00	0.00				
CSS8	CSS8 Process Equipment	590	2,583	0.01	0.04	0.001	0.004				
CSS10	CSS10 Process Equipment	684	2,997	0.01	0.04	0.001	0.004				
CSS11	CSS11 Process Equipment	684	2,997	0.01	0.04	0.001	0.004				
CSS12	CSS12 Process Equipment	684	2,997	0.01	0.04	0.001	0.004				
CSS13	CSS13 Process Equipment	684	2,997	0.01	0.04	0.001	0.004				
Warehouse	Warehouse										
	Totals:	16,608	72,745	0.25	1.09	0.02	0.11				

				HAP Em	issions							Criteria Pol	llutants				
		E	G	A	A	1,4-Di	oxane	VC	C	PM/P	M10	C	:0	NC)x	SO	2
Group	Unit	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CP3	CP3 Born Heater	0.00	0.00	0.00	0.00	-0.009	-0.009	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
CP4	CP4 Born Heater	0.00	0.00	0.01	0.04	0.000	0.000	0.06	0.27	0.02	0.09	0.00	0.00	0.00	0.00	0.00	0
CSS7	CSS7 Process Equipment	-0.38	-0.14	-0.14	-0.56	0.000	0.000	-0.05	-2.37	-0.05	-0.14	-0.05	-0.18	-0.23	-0.91	-0.01	-0.01
CSS8	CSS8 Process Equipment	0.00	0.000	0.00	0.00	0.000	0.000	0.07	0.31	0.03	0.13	0.02	0.08	0.09	0.36	0.01	0.01
CSS10	CSS10 Process Equipment	0.00	0.000	0.00	0.00	0.000	0.000	0.57	0.06	0.00	0.01	0.01	0.04	0.03	0.14	0.00	0.00
CSS11	CSS11 Process Equipment	0.00	0.000	0.00	0.00	0.000	0.000	0.54	0.06	0.05	0.03	0.00	0.02	0.03	0.11	0.00	0.00
CSS12	CSS12 Process Equipment	0.21	0.902	0.08	0.33	0.000	0.000	0.93	1.35	0.00	0.10	0.05	0.15	0.19	1.66	0.02	0.03
CSS13	CSS13 Process Equipment	0.15	0.622	0.07	0.32	0.000	0.000	0.80	1.00	0.04	0.04	0.01	0.06	0.05	0.21	0.00	0.00
Warehouse	Warehouse	0.00	0.000	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Totals:	-0.02	1.39	0.02	0.13	-0.01	-0.01	2.92	0.68	0.08	0.26	0.04	0.17	0.16	1.57	0.02	0.03

Summary - Difference

		Greenhouse Gas									
		С	02	Meth	hane	N2	0				
Group	Unit	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy				
CP3	CP3 Born Heater	0	0	0.00	0.00	0.00	0.000				
CP4	CP4 Born Heater	0	0	0.00	0.00	0.00	0.000				
CSS7	CSS7 Process Equipment	-425	-1,860	-0.01	-0.03	0.00	-0.003				
CSS8	CSS8 Process Equipment	128	562	0.00	0.01	0.00	0.001				
CSS10	CSS10 Process Equipment	92	402	0.00	0.01	0.00	0.001				
CSS11	CSS11 Process Equipment	98	428	0.00	0.01	0.00	0.001				
CSS12	CSS12 Process Equipment	93	407	0.00	0.01	0.00	0.001				
CSS13	CSS13 Process Equipment	99	433	0.00	0.01	0.00	0.001				
Warehouse	Warehouse	0	0	0.00	0.00	0.00	0.000				
	Totals:	85	372	0.00	0.01	0.00	0.001				

Production (lb/month)									
				PTE					
Month	CP 3	CP 4	CSS 7	CSS 8	CSS 9	CSS 10	CSS 11	CSS 12	CSS 13
January	52,080,000	29,760,000	9,672,000	13,392,000	31,248,000	13,392,000	13,392,000	13,392,000	13,392,000
February	47,040,000	26,880,000	8,736,000	12,096,000	28,224,000	12,096,000	12,096,000	12,096,000	12,096,000
March	52,080,000	29,760,000	9,672,000	13,392,000	31,248,000	13,392,000	13,392,000	13,392,000	13,392,000
April	50,400,000	28,800,000	9,360,000	12,960,000	30,240,000	12,960,000	12,960,000	12,960,000	12,960,000
May	52,080,000	29,760,000	9,672,000	13,392,000	31,248,000	13,392,000	13,392,000	13,392,000	13,392,000
June	50,400,000	28,800,000	9,360,000	12,960,000	30,240,000	12,960,000	12,960,000	12,960,000	12,960,000
July	52,080,000	29,760,000	9,672,000	13,392,000	31,248,000	13,392,000	13,392,000	13,392,000	13,392,000
August	52,080,000	29,760,000	9,672,000	13,392,000	31,248,000	13,392,000	13,392,000	13,392,000	13,392,000
September	50,400,000	28,800,000	9,360,000	12,960,000	30,240,000	12,960,000	12,960,000	12,960,000	12,960,000
October	52,080,000	29,760,000	9,672,000	13,392,000	31,248,000	13,392,000	13,392,000	13,392,000	13,392,000
November	50,400,000	28,800,000	9,360,000	12,960,000	30,240,000	12,960,000	12,960,000	12,960,000	12,960,000
December	52,080,000	28,800,000	9,672,000	13,392,000	31,248,000	13,392,000	13,392,000	13,392,000	13,392,000
Total (ppy)	613,200,000	349,440,000	113,880,000	157,680,000	367,920,000	157,680,000	157,680,000	157,680,000	157,680,000
Total (tpy)	306,600	157,680	56,940	78,840	183,960	78,840	78,840	78,840	78,840
Avg. (pph)	70,000	39,890	13,000	18,000	42,000	18,000	18,000	18,000	18,000
Permit Limit (pph)	70,000	40,000	13,000	18,000	42,000	18,000	18,000	18,000	18,000
Permit Limit (tpy)	306,600	157,680	56,940	78,840	183,960	78,840	78,840	78,840	78,840
Total CP and CSS									
Unit (ppy)	2,232,840,000								

Page N7 of N 46

Month	CP-3	CP-4	CSS-7	CSS 8	CSS 9	CSS 10	CSS 11	CSS 12	CSS 13
January	744	744	744	744	744	744	744	744	744
February	672	672	672	672	672	672	672	672	672
March	744	744	744	744	744	744	744	744	744
April	720	720	720	720	720	720	720	720	720
May	744	744	744	744	744	744	744	744	744
June	720	720	720	720	720	720	720	720	720
July	744	744	744	744	744	744	744	744	744
August	744	744	744	744	744	744	744	744	744
September	720	720	720	720	720	720	720	720	720
October	744	744	744	744	744	744	744	744	744
November	720	720	720	720	720	720	720	720	720
December	744	744	744	744	744	744	744	744	744
Total	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760

Production (lb/month)									
				PTE					
Month	CP 3	CP 4	CSS 7	CSS 8	CSS 9	CSS 10	CSS 11	CSS 12	CSS 13
January	52,080,000	29,760,000	0	13,392,000	31,248,000	13,392,000	13,392,000	18,600,000	18,600,000
February	47,040,000	26,880,000	0	12,096,000	28,224,000	12,096,000	12,096,000	16,800,000	16,800,000
March	52,080,000	29,760,000	0	13,392,000	31,248,000	13,392,000	13,392,000	18,600,000	18,600,000
April	50,400,000	28,800,000	0	12,960,000	30,240,000	12,960,000	12,960,000	18,000,000	18,000,000
May	52,080,000	29,760,000	0	13,392,000	31,248,000	13,392,000	13,392,000	18,600,000	18,600,000
June	50,400,000	28,800,000	0	12,960,000	30,240,000	12,960,000	12,960,000	18,000,000	18,000,000
July	52,080,000	29,760,000	0	13,392,000	31,248,000	13,392,000	13,392,000	18,600,000	18,600,000
August	52,080,000	29,760,000	0	13,392,000	31,248,000	13,392,000	13,392,000	18,600,000	18,600,000
September	50,400,000	28,800,000	0	12,960,000	30,240,000	12,960,000	12,960,000	18,000,000	18,000,000
October	52,080,000	29,760,000	0	13,392,000	31,248,000	13,392,000	13,392,000	18,600,000	18,600,000
November	50,400,000	28,800,000	0	12,960,000	30,240,000	12,960,000	12,960,000	18,000,000	18,000,000
December	52,080,000	28,800,000	0	13,392,000	31,248,000	13,392,000	13,392,000	18,600,000	18,600,000
Total (ppy)	613,200,000	349,440,000	0	157,680,000	367,920,000	157,680,000	157,680,000	219,000,000	219,000,000
Total (tpy)	306,600	157,680	0	78,840	183,960	78,840	78,840	109,500	109,500
Avg. (pph)	70,000	39,890	0	18,000	42,000	18,000	18,000	25,000	25,000
Dormit Limit (pph)	70.000	40,000	12,000	18,000	42,000	19.000	18,000	18.000	18.000
Permit Limit (pph)	70,000	40,000	13,000	18,000	42,000	18,000	18,000	18,000	18,000
Permit Limit (tpy)	306,600	157,680	56,940	78,840	183,960	78,840	78,840	78,840	78,840
Total CP and CSS Unit (ppy)	2,241,600,000								

Operating	Hours
-----------	-------

Month	CP-3	CP-4	CSS-7	CSS 8	CSS 9	CSS 10	CSS 11	CSS 12	CSS 13
January	744	744	744	744	744	744	744	744	744
February	672	672	672	672	672	672	672	672	672
March	744	744	744	744	744	744	744	744	744
April	720	720	720	720	720	720	720	720	720
May	744	744	744	744	744	744	744	744	744
June	720	720	720	720	720	720	720	720	720
July	744	744	744	744	744	744	744	744	744
August	744	744	744	744	744	744	744	744	744
September	720	720	720	720	720	720	720	720	720
October	744	744	744	744	744	744	744	744	744
November	720	720	720	720	720	720	720	720	720
December	744	744	744	744	744	744	744	744	744
Total	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760

NG Usage - before

Natural Gas Usage PTE

NG Heat Conter	nt	960 Btu/scf								
		Btu Rating	NG Usage (mmscf) Annual							
Production	Unit Description	(mmBtu/hr)	Annual							
Production	CP-2 Born Heater	24	219.000							
	CP-2 Born Heater	53.1	411.000							
	CP-3 Born Heater	53.1	411.000							
	CP-4 Born Heater	53.1	411.000							
	CSS 7									
	Crystallizer Heater	1.4	12.775							
	Preheater Heater	1.48	13.505							
	CSS 8									
	Crystallizer Heater	2.15	19.619							
	Preheater Heater	0.98	8.943							
	CSS 10									
	Crystallizer Heater	3.04	27.740							
	Preheater Heater	0.977	8.915							
	CSS 11									
	Crystallizer Heater	3	27.375							
	Preheater Heater	0.977	8.915							
	CSS 12									
	Crystallizer Heater	3.04	27.740							
	Preheater Heaters	0.97	8.851							
	CSS 13									
	Crystallizer Heater	3	27.375							
	Preheater Heaters	0.97	8.851							

NG Usage - after

Natural Gas Usage PTE

NG Heat Conter	nt	960 Btu/scf									
		Ptu Doting	NG Usage (mmscf)								
	Unit Description	Btu Rating (mmBtu/hr)	Annual								
Production											
	CP-2 Born Heater	24	219.000								
	CP-3 Born Heater	53.1	411.000								
	CP-4 Born Heater	53.1	411.000								
	CSS 7										
	Crystallizer Heater	0	0.000								
	Preheater Heater	0	0.000								
	CSS 8										
	Crystallizer Heater	2.8	25.550								
	Preheater Heater	1.2	10.950								
	CSS 10										
	Crystallizer Heater	3.04	27.740								
	Preheater Heater	1.6	14.600								
	CSS 11										
	Crystallizer Heater	3.04	27.740								
	Preheater Heater	1.6	14.600								
	CSS 12										
	Crystallizer Heater	3.04	27.740								
	Preheater Heaters	1.6	14.600								
	CSS 13										
	Crystallizer Heater	3.04	27.740								
	Preheater Heaters	1.6	14.600								

CSS7 - Before

Process Emissions

PTE

Permitted Production Rate	56,940	(tpy)
Actual Production Rate	56,940	(tpy)
Production Ratio	1.00	

					Permitte	ed Emissio	n Rates											
Emission	Emission	Emisison	Control		EG		AA VOC			PM/PM10		со		NOx		SO2		
Point ID	Unit ID	Unit Name	Device ID	Control Type	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
	C2A-E-5240/																	
	C2A-B-5010																	
	C2B-B-7020/	Crystallizer and Heater																
7P-2609	C2B-E-5250	Preheater and Heater	C2A-M-5350	Baghouse	0.26	1.10	0.13	0.54	0.42	1.80	0.01	0.04	0.05	0.18	0.23	0.91	0.01	0.01
7P-2601	C2A-F-5410	Crystallizer Surge Bin	C2A-M-2601	Baghouse							0.01	0.01						
7P-0520	C2D-E-5280	Product Cooler	C2D-M-0520	Baghouse	0.12	0.46	0.01	0.02	0.14	0.57	0.03	0.09						
				Totals:	0.38	1.56	0.14	0.56	0.56	2.37	0.05	0.14	0.05	0.18	0.23	0.91	0.01	0.01
					Actual E	mission R	ates											
Emission	Emission	Emisison	Control		EG		AA		VOC		PM/PM10)	CO		NOx		SO2	
Point ID	Unit ID	Unit Name	Device ID	Control Type	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
	C2A-E-5240/																	
	C2A-B-5010																	
	C2B-B-7020/	Crystallizer and Heater																
7P-2609	C2B-E-5250	Preheater and Heater	C2A-M-5350	Baghouse	0.26	1.10	0.13	0.54	0.42	1.80	0.01	0.04	0.05	0.18	0.23	0.91	0.01	0.01
7P-2601	C2A-F-5410	Crystallizer Surge Bin	C2A-M-2601	Baghouse							0.01	0.01						
7P-0520	C2D-E-5280	Product Cooler	C2D-M-0520	Baghouse	0.12	0.46	0.01	0.02	0.14	0.57	0.03	0.09						
	•			Totals:	0.38	1.56	0.14	0.56	0.56	2.37	0.05	0.14	0.05	0.18	0.23	0.91	0.01	0.01

CSS-7 Operating Hours 8,760 (hr/yr)

Emission Factors

	Greenhouse Gases (based on 40 CFR 98 Subpart C factors)									
	CO2	N2O (UC)								
Factor (kg/ MMBtu)	66.88	1.00E-03	1.00E-04							

				Total Gas	Greenhouse Gas Emissions								
Emission	Emission	Emisison	Control Usage			CO2			Methane			N2O	
Point ID	Unit ID	Unit Name	Device ID	(mmscf/yr)	pph	рру	tpy	pph	рру	tpy	pph	рру	tpy
	C2A-E-5240/												
	C2A-B-5010												
	C2B-B-7020/	Crystallizer and Heater											
7P-2609	C2B-E-5250	Preheater and Heater	NA	26.28	425	3,719,826	1,860	0.01	55.62	0.03	0.00	5.56	0.00
		Totals:	425	3719826	1860	0.01	55.62	0.028	0.001	5.562	0.003		

CSS7 - After

Process Emissions

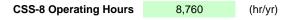
PTE

Permitted Production Rate	56,940	(tpy)
Actual Production Rate	0	(tpy)
Production Ratio	0.00	

					Permitte													
Emission	Emission	Emisison	Control		E	G	A	AA VOC		PM/PM10		СО		NOx		SO2		
Point ID	Unit ID	Unit Name	Device ID	Control Type	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
	C2A-E-5240/																	
	C2A-B-5010																	
	C2B-B-7020/	Crystallizer and Heater																
7P-2609	C2B-E-5250	Preheater and Heater	C2A-M-5350	Baghouse	0.26	1.10	0.13	0.54	0.42	1.80	0.01	0.04	0.05	0.18	0.23	0.91	0.01	0.01
7P-2601	C2A-F-5410	Crystallizer Surge Bin	C2A-M-2601	Baghouse							0.01	0.01						
7P-0520	C2D-E-5280	Product Cooler	C2D-M-0520	Baghouse	0.12	0.46	0.01	0.02	0.14	0.57	0.03	0.09						
				Totals:	0.38	1.56	0.14	0.56	0.56	2.37	0.05	0.14	0.05	0.18	0.23	0.91	0.01	0.01
										Ac	tual Emis	sion Rat	es					
Emission	Emission	Emisison	Control		E	G	A	A	V	00	PM/	PM10	C	:0	N	Ox	SC)2
Point ID	Unit ID	Unit Name	Device ID	Control Type	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
	C2A-E-5240/																	
	C2A-B-5010																	
	C2B-B-7020/	Crystallizer and Heater																
7P-2609	C2B-E-5250	Preheater and Heater	C2A-M-5350	Baghouse	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7P-2601	C2A-F-5410	Crystallizer Surge Bin	C2A-M-2601	Baghouse							0.00	0.00						
7P-0520	C2D-E-5280	Product Cooler	C2D-M-0520	Baghouse	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00						
•		*	•	Totals:	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

CSS-7 Operating Hours 0 (hr/yr)

Emission Factors


	Greenhouse Gases (based on 40 CFR 98 Subpart C factors)										
	CO2	Methane	N2O (UC)								
Factor (kg/ MMBtu)	66.88	1.00E-03	1.00E-04								

				Total Gas	Greenhouse Gas Emissions								
Emission	Emission	Emisison	Control	Usage		CO2		Methane			N2O		
Point ID	Unit ID	Unit Name	Device ID	(mmscf/yr)	pph	рру	tpy	pph	рру	tpy	pph	рру	tpy
	C2A-E-5240/												
	C2A-B-5010												
	C2B-B-7020/	Crystallizer and Heater											
7P-2609	C2B-E-5250	Preheater and Heater	NA	0	0	0	0	0.00	0.00	0.00	0.00	0.00	0.00
				Totals:	0	0	0	0.00	0.00	0.000	0.000	0.000	0.000

CSS8 - Before

				Actual	F	Permitted
Permitted Production Rate	78,840	(tpy)	Crystallizer	19.619 (mmscf/yr)	Crystallizer	19.619 (mmscf/yr)
Actual Production Rate	78,840	(tpy)	Preheater	8.943 (mmscf/yr)	Preheater	8.943 (mmscf/yr)
Production Ratio	1.00					

					Permitte	d Emissior	Rates											
Emission	Emission	Emisison	Control		EG		AA		Total VOC	2	PM/PM10)	СО		NOx		SO2	
Point ID	Unit ID	Unit Name	Device ID	Control Type	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
8E-08	L37-F-7050	Boxing Silo	L37-M-7130	Dust Collector							0.01	0.01						
8E-03	S8A-E-3240/ S8A-	CSS-8 Crystallizer CSS-8 Crystallizer Furnace	S8A-M-3350	Dust Collector	0.04	0.16			0.09	0.38	0.07	0.31	0.05	0.19	0.22	0.90	0.01	0.01
8E-04	S8B-E-2250/ S8B-	CSS-8 Preheater CSS-8 Preheater Furnace	S8BM-2420	Dust Collector	0.03	0.12	0.04	0.19	0.08	0.35	0.04	0.18	0.02	0.09	0.10	0.40	0.01	0.01
				Totals:	0.07	0.28	0.04	0.19	0.17	0.73	0.11	0.49	0.07	0.28	0.32	1.30	0.02	0.02
					Actual E	mission Ra	ites											
Emission	Emission	Emisison	Control		EG		AA		Total VOC)	PM/PM10)	CO		NOx		SO2	
Point ID	Unit ID	Unit Name	Device ID	Control Type	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
8E-08	L37-F-7050	Boxing Silo	L37-M-7130	Dust Collector							0.01	0.01						
8E-03	S8A-E-3240/ S8A-	CSS-8 Crystallizer CSS-8 Crystallizer Furnace	S8A-M-3350	Dust Collector	0.04	0.16			0.09	0.38	0.07	0.31	0.04	0.19	0.22	0.90	0.01	0.01
8E-04	S8B-E-2250/ S8B- B-2020	CSS-8 Preheater CSS-8 Preheater Furnace	S8B-M-2420	Dust Collector	0.03	0.12	0.04	0.19	0.08	0.35	0.04	0.18	0.02	0.09	0.10	0.40	0.01	0.01
				Totals:	0.07	0.28	0.04	0.19	0.17	0.73	0.11	0.49	0.06	0.28	0.32	1.30	0.02	0.02

	Greenhouse Gas	ses (based on 40 CFR 9 factors)	98 Subpart C							
	CO2 Methane									
Factor (kg/ MMBtu)	66.88	1.00E-03	1.00E-04							

				Total Gas	Greenhouse Gas Emissions								
Emission	Emission	Emisison	Control	Usage		CO2			Methane			N2O	
Point ID	Unit ID	Unit Name	Device ID	(mmscf/yr)	pph	рру	tpy	pph	рру	tpy	pph	рру	tpy
		CSS-8 Crystallizer											
	S8A-E-3240/ S8A-	CSS-8 Crystallizer											
8E-03	B-3010	Furnace	NA	19.61875	317	2,776,954	1,388	0.005	41.52	0.02	0.000	4.15	0.002
	S8B-E-2250/ S8B-	CSS-8 Preheater											
8E-04	B-2020	Furnace	NA	8.9425	144	1,265,774	633	0.002	18.93	0.01	0.000	1.89	0.001
				Totals:	461	4042728	2021	0.007	60.45	0.03	0.0007	6.045	0.003

CSS8 - After

			Pe	rmitted		
Permitted Production Ra	78,840	(tpy)	Crystallizer	25.550 (mmscf/yr)	Crystallizer	19.619 (mmscf/yr)
Actual Production Rate	78,840	(tpy)	Preheater	10.950 (mmscf/yr)	Preheater	8.943 (mmscf/yr)
Production Ratio	1.00					

					Permitted	Emission Rat	es											
Emission	Emission	Emisison	Control	Control	EG		AA		Total VOC		PM/PM10		CO		NOx		SO2	
Point ID	Unit ID	Unit Name	Device ID	Туре	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
8E-03	S8A-E-3240/ S8A-B-3010	CSS-8 Crystallizer CSS-8 Crystallizer Furnace	S8A-M-3350	Dust Collector	0.04	0.16			0.09	0.38	0.07	0.31	0.05	0.19	0.22	0.90	0.01	0.01
8E-04	S8B-E-2250/ S8B-B-2020	CSS-8 Preheater CSS-8 Preheater Furnace	S8BM-2420	Dust Collector	0.03	0.12	0.04	0.19	0.08	0.35	0.04	0.18	0.02	0.09	0.10	0.40	0.01	0.01
				Totals:	0.07	0.28	0.04	0.19	0.17	0.73	0.11	0.49	0.07	0.28	0.32	1.30	0.02	0.02
					Actual En	nission Rates												
Emission	Emission	Emisison	Control	Control	EG		AA		Total VOC		PM/PM10		CO		NOx		SO2	
Point ID	Unit ID	Unit Name	Device ID	Туре	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
8E-03	S8A-E-3240/ S8A-B-3010	CSS-8 Crystallizer CSS-8 Crystallizer Furnace	S8A-M-3350	Dust Collector	0.04	0.16			0.11	0.45	0.09	0.40	0.06	0.25	0.29	1.17	0.01	0.01
8E-04	S8B-E-2250/ S8B-B-2020	CSS-8 Preheater CSS-8 Preheater Furnace	S8B-M-2420	Dust Collector	0.03	0.12	0.04	0.19	0.13	0.59	0.05	0.22	0.02	0.11	0.12	0.49	0.01	0.01
				Totals:	0.07	0.28	0.04	0.19	0.24	1.04	0.14	0.62	0.08	0.36	0.41	1.66	0.03	0.03

Greenhouse Gss Emissions

CSS-8 Op	erating Hour	8,760	(hr/yr)	
	Greenhouse Ga	ases (based on 40 CFR	98 Subpart C fa	actors)
	CO2	Methane	N2O (UC)	
Factor (kg/ MMBtu)	66.88	1.00E-03	1.00E-04	

				Total Gas Greenhouse Gas Emissions									
Emission	Emission	Emisison	Control	Usage		CO2			Methane			N2O	
Point ID	Unit ID	Unit Name	Device ID	(mmscf/yr)	pph	рру	tpy	pph	рру	tpy	pph	рру	tpy
		CSS-8 Crystallizer CSS-8 Crystallizer											
8E-03	S8A-B-3010	Furnace	NA	25.55	413	3,616,498	1,808	0.01	54.07	0.03	0.001	5.41	0.003
8E-04		CSS-8 Preheater CSS-8 Preheater Furnace	NA	10.05	477	1 540 000	775	0.00	02.47	0.01	0.000	2.32	0.001
8E-04	30D-D-2020	Fulfiace	INA	10.95	177	1,549,928	115	0.00	23.17	0.01	0.000	2.32	0.001
				Totals:	590	5,166,425	2583	0.01	77.25	0.04	0.001	7.72	0.004

CSS10 - Before

						Proces	ss Emiss PTE	sions										
Permitted Pro Actual Produc Production Ra	ction Rate	78,840 78,840 1.00	(tpy) (tpy)		Crystalliz Preheate		Actual 27.740 8.915						Crystalli: Preheate		Perm	27.375	(mmscf/ (mmscf/	
Emission	Emission	Emisison	Control		Permitted EG	Emission Rate			VOC		PM/PM10		CO		NOx		SO2	
Point ID	Unit ID	Unit Name Crystallizer	Device ID	Control Type	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy

	C3A-E-7240	Crystallizer																
10P-7350	C3A-B-7010	Crystallizer Furnace	C3A-M-7350	Baghouse	0.30	1.25	0.06	0.23	0.37	1.53	0.04	0.04	0.02	0.13	0.08	0.65	0.00	0.00
	C3B-E-6250	Preheater																
10P-6420	C3B-B-6020	Preheater Furnace	C3B-M-6420	Baghouse	0.08	0.35	0.13	0.57	0.23	1.01	0.00	0.01	0.02	0.06	0.05	0.22	0.00	0.00
				Totals:	0.38	1.60	0.19	0.80	0.60	2.54	0.04	0.05	0.04	0.19	0.13	0.87	0.00	0.01
					Actual Em	ission Rates												
	I _ · ·				F0		AA		VOC		PM/PM10		CO		NOx		SO2	
Emission	Emission	Emisison	Control		EG		AA		VUC				60		NUX		302	
Emission Point ID	Emission Unit ID	Emisison Unit Name	Control Device ID	Control Type	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
						tpy		tpy										tpy
	Unit ID	Unit Name				tpy 1.25		tpy 0.23										tpy 0.00
Point ID	Unit ID C3A-E-7240	Unit Name Crystallizer	Device ID	Control Type	pph		pph		pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	
Point ID	Unit ID C3A-E-7240 C3A-B-7010	Unit Name Crystallizer Crystallizer Furnace	Device ID	Control Type	pph		pph		pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	

Greenhouse Gas Emissions

CSS-10 Opera	ating Hours	8,760	(hr/yr)	
	Greenhouse Gas	es (based on 40 CFR 98 S	Subpart C facto	ors)
	CO2	Methane	N2O (UC)	
Factor (kg/ MMBtu)	66.88	1.00E-03	1.00E-04	

				Total Gas	Greenhouse Gas Emissions								
Emission	Emission	Emisison	Control	Usage	CO2				Methane			N2O	
Point ID	Unit ID	Unit Name	Device ID	(mmscf/yr)	pph	рру	tpy	pph	рру	tpy	pph	рру	tpy
	C3A-E-7240	Crystallizer											
10P-7350	C3A-B-7010	Crystallizer Furnace	NA	27.74	448	3,926,483	1,963	0.01	58.71	0.03	0.001	5.87	0.003
	C3B-E-6250	Preheater											
10P-6420	C3B-B-6020	Preheater Furnace	NA	8.915125	144	1,261,899	631	0.00	18.87	0.01	0.000	1.89	0.001
		Totals:	592	5188383	2594	0.01	78	0.04	0.001	7.76	0.004		

CSS10 - After

			م	Actual	Permitte	ed
Permitted Production Rate	78,840	(tpy)	Crystallizer	27.740 (mmscf/yr)	Crystallizer 2	27.375 (mmscf/yr)
Actual Production Rate	78,840	(tpy)	Preheater	14.600 (mmscf/yr)	Preheater	8.915 (mmscf/yr)
Production Ratio	1.00					

					Permitted I	Emission Rates												
Emission	Emission	Emisison	Control		EG		AA		VOC		PM/PM10		со		NOx		SO2	
Point ID	Unit ID	Unit Name	Device ID	Control Type	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
	C3A-E-7240	Crystallizer																
10P-7350	C3A-B-7010	Crystallizer Furnace	C3A-M-7350	Baghouse	0.30	1.25	0.06	0.23	0.37	1.53	0.04	0.04	0.02	0.13	0.08	0.65	0.00	0.00
	C3B-E-6250	Preheater																
10P-6420	C3B-B-6020	Preheater Furnace	C3B-M-6420	Baghouse	0.08	0.35	0.13	0.57	0.23	1.01	0.00	0.01	0.02	0.06	0.05	0.22	0.00	0.00
				Totals:	0.38	1.60	0.19	0.80	0.60	2.54	0.04	0.05	0.04	0.19	0.13	0.87	0.00	0.01
					Actual Emi	ission Rates												
Emission	Emission	Emisison	Control		EG		AA		VOC		PM/PM10		CO		NOx		SO2	
Point ID	Unit ID	Unit Name	Device ID	Control Type	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
	C3A-E-7240	Crystallizer																
10P-7350	C3A-B-7010	Crystallizer Furnace	C3A-M-7350	Baghouse	0.30	1.25	0.06	0.23	0.37	1.53	0.04	0.04	0.02	0.13	0.08	0.66	0.00	0.00
	C3B-E-6250	Preheater																
10P-6420	C3B-B-6020	Preheater Furnace	C3B-M-6420	Baghouse	0.08	0.35	0.13	0.57	0.24	1.07	0.00	0.02	0.03	0.10	0.08	0.36	0.00	0.00
	-	•	•	Totals:	0.38	1.60	0.19	0.80	0.61	2.60	0.05	0.06	0.05	0.23	0.16	1.02	0.00	0.01

CSS10 - After

Greenhouse Gas Emissions

CSS-10 O	perating Hours	8,760	(hr/yr)	
	Greenhouse Gas	es (based on 40 CFR 98 Sເ	ubpart C factor	s)
	CO2	Methane	N2O (UC)	
Factor (kg/ MMBtu)	66.88	1.00E-03	1.00E-04	

				Total Gas	al Gas Greenhouse Gas Emissions								
Emission	Emission	Emisison	Control	Usage	CO2				Methane	•	N2O		
Point ID	Unit ID	Unit Name	Device ID	(mmscf/yr)					рру	tpy	pph	рру	tpy
	C3A-E-7240	Crystallizer											
10P-7350	C3A-B-7010	Crystallizer Furnace	NA	27.74	448	3,926,483	1,963	0.01	58.71	0.03	0.001	5.87	0.003
	C3B-E-6250	Preheater											
10P-6420	C3B-B-6020	Preheater Furnace	NA	14.6	236	2,066,570	1,033	0.00	30.90	0.02	0.000	3.09	0.002
				Totals:	684	5993053	2997	0.01	90	0.04	0.001	8.96	0.004

CSS11 - Before

			Actual			Permitted		
Permitted Production Rate	78,840	(tpy)	Crystallizer	27.375 (m	nmscf/yr)	Crystallizer	27.740	(mmscf/yr)
Actual Production Rate	78,840	(tpy)	Preheater	8.915 (m	nmscf/yr)	Preheater	8.915	(mmscf/yr)
Production Ratio	1.00							

					Permittee	d Emission Ra	ites											
Emission	Emission	Emisison	Control		EG		AA		VOC		PM/PM10		со		NOx		SO2	
Point ID	Unit ID	Unit Name	Device ID	Control Type	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
	C3A-E-3240	CSS-11 Crystallizer																
11P-3350	C3A-B-3010	CSS-11 Crystallizer furnace	C3A-M-3350	Baghouse	0.30	1.25	0.06	0.23	0.37	1.53	0.07	0.03	0.03	0.13	0.15	0.65	0.01	0.01
	C3B-E-2250	CSS-11 Preheater																
11P-2420	C3B-B-2020	CSS-11 Preheater Furnace	C3B-M-2420	Baghouse	0.08	0.35	0.13	0.57	0.23	1.01	0.00	0.01	0.01	0.03	0.04	0.18	0.00	0.00
				Totals:	0.38	1.60	0.19	0.80	0.60	2.54	0.07	0.04	0.04	0.16	0.19	0.83	0.01	0.01
					Actual Er	nission Rates												
Emission	Emission	Emisison	Control		EG		AA		VOC		PM/PM10		CO		NOx		SO2	
Point ID	Unit ID	Unit Name	Device ID	Control Type	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
	C3A-E-3240	CSS-11 Crystallizer																
11P-3350	C3A-B-3010	CSS-11 Crystallizer furnace	C3A-M-3350	Baghouse	0.30	1.25	0.06	0.23	0.37	1.53	0.07	0.03	0.03	0.13	0.15	0.65	0.01	0.01
	C3B-E-2250	CSS-11 Preheater																
11P-2420	C3B-B-2020	CSS-11 Preheater Furnace	C3B-M-2420	Baghouse	0.08	0.35	0.13	0.57	0.23	1.01	0.00	0.01	0.01	0.03	0.04	0.18	0.00	0.00
•		*	•	Totals:	0.38	1.60	0.19	0.80	0.60	2.54	0.07	0.04	0.04	0.16	0.19	0.83	0.01	0.01

Greenhouse Gas Emissions

CSS-11 Op	perating Hours	8,760	(hr/yr)	
	Greenhouse Gases	s (based on 40 CFR 98 Subpart	t C factors)	
	CO2	Methane	N2O (UC)	
Factor (kg/ MMBtu)	66.88	1.00E-03	1.00E-04	

				Total Gas				Greenh	ouse Gas E	missions			
Emission				Usage		CO2			Methane			N2O	
Point ID	Unit ID	Unit Name	Device ID	(mmscf/yr)	pph ppy tpy			pph	рру	tpy	pph	рру	tpy
	C3A-E-3240	CSS-11 Crystallizer											
11P-3350	C3A-B-3010	CSS-11 Crystallizer furnace	NA	27.375	442	3,874,819	1,937	0.01	57.94	0.03	0.001	5.79	0.003
	C3B-E-2250	CSS-11 Preheater											
11P-2420	C3B-B-2020	CSS-11 Preheater Furnace	NA	8.915125	144	1,261,899	631	0.00	18.87	0.01	0.000	1.89	0.001
		*	-	Totals:	586	5136718	2568	0.01	77	0.04	0.001	7.68	0.004

CSS11 - After

			Actual			Permitted		
Permitted Production Rate	78,840	(tpy)	Crystallizer	27.740	(mmscf/yr)	Crystallizer	27.740	(mmscf/yr)
Actual Production Rate	78,840	(tpy)	Preheater	14.600	(mmscf/yr)	Preheater	8.915	(mmscf/yr)
Production Ratio	1.00							

					Permitte	d Emissio	n Rates											
Emission	Emission	Emisison	Control		EG		AA		VOC		PM/PM10)	со		NOx		SO2	
Point ID	Unit ID	Unit Name	Device ID	Control Type	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
	C3A-E-3240	CSS-11 Crystallizer																
11P-3350	C3A-B-3010	CSS-11 Crystallizer furnace	C3A-M-3350	Baghouse	0.30	1.25	0.06	0.23	0.37	1.53	0.07	0.03	0.03	0.13	0.15	0.65	0.01	0.01
	C3B-E-2250	CSS-11 Preheater																
11P-2420	C3B-B-2020	CSS-11 Preheater Furnace	C3B-M-2420	Baghouse	0.08	0.35	0.13	0.57	0.23	1.01	0.00	0.01	0.01	0.03	0.04	0.18	0.00	0.00
				Totals:	0.38	1.60	0.19	0.80	0.60	2.54	0.07	0.04	0.04	0.16	0.19	0.83	0.01	0.01
					Actual E	mission Ra	ates											
Emission	Emission	Emisison	Control		EG		AA		VOC		PM/PM10)	CO		NOx		SO2	
Point ID	Unit ID	Unit Name	Device ID	Control Type	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
	C3A-E-3240	CSS-11 Crystallizer																
11P-3350	C3A-B-3010	CSS-11 Crystallizer furnace	C3A-M-3350	Baghouse	0.30	1.25	0.06	0.23	0.37	1.53	0.11	0.05	0.03	0.13	0.15	0.65	0.01	0.01
	C3B-E-2250	CSS-11 Preheater																
11P-2420	C3B-B-2020	CSS-11 Preheater Furnace	C3B-M-2420	Baghouse	0.08	0.35	0.13	0.57	0.24	1.07	0.00	0.02	0.01	0.05	0.07	0.29	0.00	0.01
				Totals:	0.38	1.60	0.19	0.80	0.61	2.60	0.12	0.07	0.04	0.18	0.22	0.94	0.01	0.02

Greenhouse Gas Emissions

CSS-11 Op	perating Hours	8,760	(hr/yr)	
	Greenhouse Gase	es (based on 40 CFR 98 Subpart	C factors)	
	CO2	Methane	N2O (UC)	
Factor (kg/ MMBtu)	66.88	1.00E-03	1.00E-04	

				Total Gas									
Emission	Emission	Emisison	Control	Usage	· · · · · · · · · · · · · · · · · · ·				Methane		N2O		
Point ID	Unit ID	Unit Name	Device ID	(mmscf/yr)	pph	рру	tpy	pph	рру	tpy	pph	рру	tpy
	C3A-E-3240	CSS-11 Crystallizer											
11P-3350	C3A-B-3010	CSS-11 Crystallizer furnace	NA	27.74	448	3,926,483	1,963	0.01	58.71	0.03	0.001	5.87	0.003
		CSS-11 Preheater											
11P-2420	C3B-B-2020	CSS-11 Preheater Furnace	NA	14.6	236	2,066,570	1,033	0.00	30.90	0.02	0.000	3.09	0.002
				Totals:	684	5993053	2997	0.01	89.61	0.04	0.001	8.96	0.004

CSS12 - Before

			Actual		Permitted	
Permitted Production Rate	78,840	(tpy)	Crystallizer	##### (mmscf/yr)	Crystallizer	27.740 (mmscf/yr)
Actual Production Rate	78,840	(tpy)	Preheater	8.851 (mmscf/yr)	Preheater	8.851 (mmscf/yr)
Production Ratio	1.00					

					Permitted	Emission F	Rates											
Emission	Emission	Emisison	Control		EG		AA		voc		PM/PM1	0	со		NOx		SO2	
Point ID	Unit ID	Unit Name	Device ID	Control Type	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
4P-0340	C4A-F-0410 C4A-F-0411	West CSS-12/13 Crystallizer Blend Silo East CSS-12/13 Crystallizer Blend Silo	C4A-M-0340	Dust Collector							0.03	0.01						
12P-2420	C4B-E-2250	Preheater Preheater Furnace	C4B-M-2420	Baghouse	0.08	0.35	0.13	0.57	0.23	1.01	0.00	0.02	0.02	0.09	0.07	0.31	0.00	0.00
12P-3350	C4A-E-3240	Crystallizer Crystallizer Furnace	C4A-M-3350	Baghouse	0.30	1.31	0.06	0.26	0.37	1.62	0.01	0.03	0.02	0.09	0.13	0.57	0.00	0.00
12P-0520	C4D-E-1280 C4D-E-5280	CSS-12 Product Cooler CSS-13 Product Cooler	C4D-M-0520	Baghouse	0.16	0.66	0.01	0.02	0.20	0.84	0.03	0.11						
12P-1130	L1C-F-1110 L1C-F-1090	Product Storage Silo 21 Product Storage Silo 22	L1C-M-1130	Baghouse							0.00	0.00						
12P-0390	L4C-F-0210	Salvage Silo	L1C-M-0390	Baghouse							0.10	0.00						
12P-1590	C4E-F-1440	Verification Bin	C4E-M-1590	Baghouse							0.00	0.01						
12P-2390	C4A-F-2460	Crystallizer Surge Bin	C4A-M-2390	Baghouse							0.00	0.01						
12P-1140	L1C-M-1140	Fines Elutriator Silos 21 & 22	NA	NA							0.00	0.00						
	Totals					2.32	0.20	0.85	0.80	3.47	0.18	0.19	0.04	0.18	0.20	0.88	0.00	0.01

					Actual Emission Rates													
Emission	Emission	Emisison	Control		EG		AA		VOC		PM/PM1)	CO		NOx		SO2	
Point ID	Unit ID	Unit Name	Device ID	Control Type	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
		West CSS-12/13 Crystallizer																
		Blend Silo																
	C4A-F-0410	East CSS-12/13 Crystallizer																
4P-0340	C4A-F-0411	Blend Silo	C4A-M-0340	Dust Collector							0.03	0.01						
		Preheater																
12P-2420	C4B-E-2250	Preheater Furnace	C4B-M-2420	Baghouse	0.08	0.35	0.13	0.57	0.23	1.01	0.00	0.02	0.02	0.09	0.07	0.31	0.00	0.00
		Crystallizer																
12P-3350	C4A-E-3240	Crystallizer Furnace	C4A-M-3350	Baghouse	0.30	1.31	0.06	0.26	0.37	1.62	0.01	0.03	0.02	0.09	0.13	0.57	0.00	0.00
	C4D-E-1280	CSS-12 Product Cooler																
12P-0520	C4D-E-5280	CSS-13 Product Cooler	C4D-M-0520	Baghouse	0.16	0.66	0.01	0.02	0.20	0.84	0.03	0.11						
	L1C-F-1110	Product Storage Silo 21		-														
12P-1130	L1C-F-1090	Product Storage Silo 22	L1C-M-1130	Baghouse							0.00	0.00						
12P-0390	L4C-F-0210	Salvage Silo	L1C-M-0390	Baghouse							0.10	0.00						
12P-1590	C4E-F-1440	Verification Bin	C4E-M-1590	Baghouse							0.00	0.01						
12P-2390	C4A-F-2460	Crystallizer Surge Bin	C4A-M-2390	Baghouse							0.00	0.01						
12P-1140	L1C-M-1140	Fines Elutriator Silos 21 & 22	NA	NA							0.00	0.00						
	-	-	•	Totals:	0.54	2.32	0.20	0.85	0.80	3.47	0.18	0.19	0.04	0.18	0.20	0.88	0.00	0.01

Greenhouse Gas Emissions

CSS-12 Op	perating Hours	8,760	(hr/yr)	
	Greenhouse Gase	es (based on 40 CFR 98 Subpa	rt C factors)	
	CO2	Methane	N2O (UC)	
Factor (kg/ MMBtu)	66.88	1.00E-03	1.00E-04	

				Total Gas	Greenhouse Gas Emissions												
Emission	Emission	Emisison	Control	Usage	CO2				Methane	•							
Point ID	Unit ID	Unit Name	Device ID	(mmscf/yr)	pph	рру	tpy	pph	рру	tpy	pph	рру	tpy				
		Crystallizer															
12P-3350	C4A-E-3240	Crystallizer Furnace	NA	27.74	448	3,926,483	1,963	0.01	58.71	0.03	0.001	5.87	0.003				
		Preheater															
12P-2420	C4B-E-2250	Preheater Furnace	NA	8.85125	143	1,252,858	626	0.00	18.73	0.01	0.000	1.87	0.001				
				Totals:	591	5179341	2590	0.01	77	0.04	0.001	7.74	0.004				

CSS12 - After

Process Emissions

PTE

			Actual		Permitted	
Permitted Production Rate	78,840	(tpy)	Crystallizer	27.740 (mmscf/yr)	Crystallizer	27.740 (mmscf/yr)
Actual Production Rate	109,500	(tpy)	Preheater	14.600 (mmscf/yr)	Preheater	8.851 (mmscf/yr)
Production Ratio	1.39					

					Permitted Emission Rates													
Emission	Emission	Emisison	Control	Control	EG		AA		VOC		PM/PM10		со		NOx		SO2	
Point ID	Unit ID	Unit Name	Device ID	Туре	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
		West CSS-12/13 Crystallizer Blend Silo																
4P-0340	C4A-F-0410 C4A-F-0411	East CSS-12/13 Crystallizer Blend Silo	C4A-M-0340	Dust Collector							0.03	0.01						
12P-2420	C4B-E-2250 C4B-B-2020	Preheater Preheater Furnace	C4B-M-2420	Baghouse	0.08	0.35	0.13	0.57	0.23	1.01	0.00	0.02	0.02	0.09	0.08	0.34	0.010	0.01
12P-3350	C4A-E-3240 C4A-B-3010	Crystallizer Crystallizer Furnace	C4A-M-3350	Baghouse	0.30	1.31	0.06	0.26	0.37	1.62	0.01	0.03	0.04	0.16	0.19	0.80	0.010	0.01
12P-0520	C4D-E-1280 C4D-E-5280	CSS-12 Product Cooler CSS-13 Product Cooler	C4D-M-0520	Baghouse	0.16	0.66	0.01	0.02	0.20	0.84	0.03	0.11						
12P-1130	L1C-F-1110 L1C-F-1090	Product Storage Silo 21 Product Storage Silo 22	L1C-M-1130	Baghouse							0.01	0.01						
12P-0390	L4C-F-0210	Salvage Silo	L1C-M-0390	Baghouse							0.01	0.01						
12P-1590	C4E-F-1440	Verification Bin	C4E-M-1590	Baghouse							0.01	0.01			1			
12P-2390	C4A-F-2460	Crystallizer Surge Bin	C4A-M-2390	Baghouse							0.01	0.01			1			
12P-1140	L1C-M-1140	Fines Elutriator Silos 21 & 22	NA	NA							0.01	0.01			1			
				Totals:	0.54	2.32	0.20	0.85	0.80	3.47	0.12	0.21	0.06	0.25	0.27	1.14	0.02	0.02

					Actual E	mission Rat	es											
Emission	Emission	Emisison	Control	Control	EG		AA		VOC		PM/PM10		CO		NOx		SO2	
Point ID	Unit ID	Unit Name	Device ID	Туре	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
4P-0340	C4A-F-0410 C4A-F-0411	West CSS-12/13 Crystallizer Blend Silo East CSS-12/13 Crystallizer Blend Silo	C4A-M-0340	Dust Collecto							0.05	0.02						
12P-2420	C4B-E-2250 C4B-B-2020	Preheater Preheater Furnace	C4B-M-2420	Baghouse	0.11	0.49	0.18	0.79	0.32	1.43	0.01	0.03	0.02	0.09	0.08	0.34	0.01	0.01
12P-3350	C4A-E-3240 C4A-B-3010	Crystallizer Crystallizer Furnace	C4A-M-3350	Baghouse	0.42	1.82	0.08	0.36	0.51	2.23	0.01	0.03	0.07	0.26	0.31	1.32	0.02	0.02
12P-0520	C4D-E-1280 C4D-E-5280	CSS-12 Product Cooler CSS-13 Product Cooler	C4D-M-0520	Baghouse	0.22	0.92	0.01	0.03	0.28	1.17	0.04	0.15						
12P-1130	L1C-F-1110 L1C-F-1090	Product Storage Silo 21 Product Storage Silo 22	L1C-M-1130	Baghouse							0.01	0.01						
12P-0390	L4C-F-0210	Salvage Silo	L1C-M-0390	Baghouse							0.01	0.01						
12P-1590	C4E-F-1440	Verification Bin	C4E-M-1590	Baghouse							0.01	0.007						
12P-2390	C4A-F-2460	Crystallizer Surge Bin	C4A-M-2390	Baghouse							0.01	0.01						
12P-1140	L1C-M-1140	Fines Elutriator Silos 21 & 22	NA	NA							0.01	0.01						
				Totals:	0.75	3.22	0.27	1.18	1.11	4.82	0.18	0.29	0.09	0.35	0.39	1.66	0.03	0.03

Greenhouse Gas Emissions

CSS-12 Oper	rating Hours	8,760	(hr/yr)	
	Greenhouse Gase	es (based on 40 CFR 98 Subpar	rt C factors)	
			N2O	
	CO2	Methane	(UC)	
Factor (kg/				
MMBtu)	66.88	1.00E-03	1.00E-04	

				Total Gas				Greenhouse Gas Emissions									
Emission	Emission	Emisison	Control	Usage		CO2			Methane			N2O					
Point ID	Unit ID	Unit Name	Device ID	(mmscf/yr)	pph	рру	tpy	pph	рру	tpy	pph	рру	tpy				
12P-3350	C4A-E-3240 C4A-B-3010	Crystallizer Crystallizer Furnace	NA	27.74	448	3,926,483	1,963	0.01	58.71	0.03	0.001	5.87	0.003				
12P-2420	C4B-E-2250 C4B-B-2020	Preheater Preheater Furnace	NA	14.6	236	2,066,570	1,033	0.00	30.90	0.02	0.000	3.09	0.002				
				Totals:	684	5993053	2997	0.01	90	0.04	0.001	8.96	0.004				

CSS13 - Before

						Proc	ess Em PTE		;									
							Actual								Per	mitted		
Permitted Pro	duction Rate	78,840	(tpy)		Crystalliz	zer		(mmscf/	vr)				Crystall	izer			(mmscf/	vr)
Actual Produc	tion Rate	78,840	(tpy)		Preheater 8.851 (mmscf/yr)								Preheat				(mmscf/	
Production Ra	atio	1.00						、 .	, ,								、 .	,
					Ensure	Pemitted	Rates are	Current										
					Permitted	Emission R	ates											
Emission	Emission	Emisison	Control	Control	EG		AA		VOC		PM/PM10		со		NOx		SO2	
Point ID	Unit ID	Unit Name	Device ID	Туре	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
	C4A-E-7240	Crystallizer																
13P-7350	C4A-B-7010	Crystallizer Furnace	C4A-M-7350	Baghouse	0.30	1.25	0.06	0.26	0.37	1.62	0.01	0.03	0.03	0.13	0.13	0.57	0.00	0.00
12P-6390	C4A-F-6460	Crystallizer Surge Bin	C4A-M-6390	Baghouse							0.00	0.01						
100 1170		Fines Elutriator Silos 23																
13P-1170	L1D-M-1130	& 24	NA	NA							0.01	0.00						
	L1D-F-1110	Product Storage Silo 23																
13P-1130	L1D-F-1120	Product Storage Silo 24	L1D-M-1130	Baghouse							0.00	0.00						
13P-5590	C4E-F-5440	Verification Bin	C4E-M-5590	Baghouse							0.01	0.01						
	C4B-E-6250	Preheater																
12P-6420	C4B-B-6020	Preheater Furnace	C4B-M-6420	Baghouse	0.08	0.35	0.13	0.57	0.23	1.01	0.00	0.02	0.02	0.09	0.07	0.31	0.00	0.00
				Totals:	0.38	1.60	0.19	0.83	0.60	2.63	0.04	0.07	0.05	0.22	0.20	0.88	0.00	0.01
						ission Rate											•	
Emission	Emission	Emisison	Control	Control	EG		AA		VOC		PM/PM10	1	СО		NOx		SO2	
Point ID	Unit ID	Unit Name	Device ID	Туре	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
120 7250	C4A-E-7240 C4A-B-7010	Crystallizer Crystallizer Furnace	C44 M 7250	Baghouse	0.20	1.25	0.06	0.26	0.27	1.62	0.01	0.02	0.02	0.12	0.12	0.57	0.00	0.00
13P-7350 12P-6390	C4A-B-7010 C4A-F-6460	Crystallizer Furnace Crystallizer Surge Bin	C4A-M-7350 C4A-M-6390	Baghouse Baghouse	0.30	1.25	0.06	0.26	0.37	1.62	0.01	0.03	0.03	0.13	0.13	0.57	0.00	0.00
121-0330	04/1-0400	Fines Elutriator Silos 23	0-+/101-03-90	Daynouse							0.00	0.01						
13P-1170	L1D-M-1130	& 24	NA	NA							0.01	0.00						
	L1D-F-1110	Product Storage Silo 23																
13P-1130	L1D-F-1120	Product Storage Silo 24	L1D-M-1130	Baghouse							0.00	0.00						
13P-5590	C4E-F-5440	Verification Bin	C4E-M-5590	Baghouse							0.01	0.01						
12P-6420	C4B-E-6250 C4B-B-6020	Preheater Preheater Furnace	C4B-M-6420	Baghouse	0.08	0.35	0.13	0.57	0.23	1.01	0.00	0.02	0.02	0.09	0.07	0.31	0.00	0.00
125-0420	040-0-0020	I TENEdler Fullidue	04D-IVI-0420	Bagnouse Totals:	0.08	0.35 1.60	0.13	0.57	0.23	2.63	0.00	0.02	0.02	0.09	0.07	0.31	0.00	0.00
				10.013.	0.00		0.10	0.00	0.00	2.00	0.04	0.01	0.00	0.22	0.20	0.00	0.00	0.01

Greenhouse Gas Emissions

CSS-13 Opera	ating Hours	8,760	(hr/yr)	
	Greenhouse Gas	ses (based on 40 CFR 98	Subpart C fac	tors)
	CO2	Methane	N2O (UC)	
Factor (kg/ MMBtu)	66.88	1.00E-03	1.00E-04	
,		T.00E-03		40 (lb/lbm) / 200

TPY GHG =Factor (kg/MMBtu)x fuel (MMscf/yr)xHeat value(Btu/scf)x2.2046 (lb/kg) / 2000

				Total Gas				Greenhous	e Gas Emi	ssions			
Emission	Emission	Emisison	Control	Usage		CO2			Methane			N2O	
Point ID	Unit ID	Unit Name	Device ID	(mmscf/yr)	pph	рру	tpy	pph	рру	tpy	pph	рру	tpy
	C4A-E-7240	Crystallizer											
13P-7350	C4A-B-7010	Crystallizer Furnace	NA	27.375	442	3,874,819	1,937	0.01	57.94	0.03	0.001	5.79	0.003
		Preheater											
12P-6420	C4B-E-6250	Preheater Furnace	NA	8.85125	143	1,252,858	626	0.00	18.73	0.01	0.000	1.87	0.001
				Totals:	585	5127677	2564	0.01	76.67	0.04	0.001	7.67	0.004

CSS13 - After

Process	Emissions

PTE

Permitted Prod Actual Produc Production Ra	tion Rate	78,840 109,500 1.39	(tpy) (tpy)		Crystalliz Preheate			(mmscf/ (mmscf/					Crystall Preheat		Ρ		(mmscf/yr (mmscf/yr	
					Ensure I	Pemitted	Rates are	e Curren	t									
						Emission R			-									
					EG		AA		voc		PM/PM10		со		NOx		SO2	
Emission Point ID	Emission Unit ID	Emisison Unit Name	Control Device ID	Control Type		tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
	C4A-E-7240	Crystallizer																
13P-7350	C4A-B-7010	Crystallizer Furnace	C4A-M-7350	Baghouse	0.30	1.25	0.06	0.26	0.37	1.62	0.01	0.03	0.03	0.13	0.13	0.57	0.00	0.00
12P-6390	C4A-F-6460	Crystallizer Surge Bin	C4A-M-6390	Baghouse							0.00	0.01						
		Fines Elutriator Silos 23 &																
13P-1170	L1D-M-1130	24	NA	NA							0.01	0.00						
13P-2080	C4E-M-2080	Fines Elutriator	NA	NA							0.01	0.00						
13P-1130 13P-5590 12P-6420	L1D-F-1110 L1D-F-1120 C4E-F-5440 C4B-E-6250 C4B-B-6020	Product Storage Silo 23 Product Storage Silo 24 Verification Bin Preheater Preheater Furnace	L1D-M-1130 C4E-M-5590 C4B-M-6420	Baghouse Baghouse Baghouse Totals:	0.08	0.35	0.13	0.57	0.23	1.01	0.010 0.010 0.004 0.05	0.01 0.01 0.02 0.09	0.02	0.09	0.07	0.31	0.00	0.00
					Actual Em	ission Rates	5											
Emission	Emission	Emisison	Control		EG		AA		VOC		PM/PM10		CO		NOx		SO2	
Point ID	Unit ID	Unit Name	Device ID	Control Type	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
	C4A-E-7240	Crystallizer																
13P-7350	C4A-B-7010	Crystallizer Furnace	C4A-M-7350	Baghouse	0.42	1.74	0.08	0.36	0.51	2.21	0.01	0.03	0.03	0.13	0.13	0.58	0.00	0.00
12P-6390	C4A-F-6460	Crystallizer Surge Bin	C4A-M-6390	Baghouse							0.003	0.01						
13P-1170	L1D-M-1130	Fines Elutriator Silos 23 & 24	NA	NA							0.01	0.01						
13P-2080	C4E-M-2080	Fines Elutriator	NA	NA							0.01	0.01						
13P-1130	L1D-F-1110 L1D-F-1120	Product Storage Silo 23 Product Storage Silo 24	L1D-M-1130	Baghouse							0.0139	0.01						
13P-5590	C4E-F-5440	Verification Bin	C4E-M-5590	Baghouse							0.014	0.01						
12P-6420	C4B-E-6250 C4B-B-6020	Preheater Preheater Furnace	C4B-M-6420	Baghouse	0.11	0.49	0.18	0.79	0.32	1.43	0.01	0.03	0.03	0.15	0.12	0.51	0.00	0.00
		÷		Totals:	0.53	2.22	0.26	1.15	0.83	3.63	0.07	0.11	0.06	0.28	0.25	1.09	0.00	0.01

Greenhouse Gas Emissions

CSS-13 Opera	ating Hours	8,760	(hr/yr)	
	Greenhouse Gas	ses (based on 40 CFR 98	Subpart C fact	tors)
			N2O	
	CO2	Methane	(UC)	
Factor (kg/				
MMBtu)	66.88	1.00E-03	1.00E-04	

TPY GHG =Factor (kg/MMBtu)x fuel (MMscf/yr)xHeat value(Btu/scf)x2.2046 (lb/kg) / 2000

				Total Gas	Greenhouse Gas Emissions								
Emission	Emission	Emisison	Control	Usage		CO2			Methane			N2O	
Point ID	Unit ID	Unit Name	Device ID	(mmscf/yr)	pph	рру	tpy	pph	рру	tpy	pph	рру	tpy
	C4A-E-7240	Crystallizer											
13P-7350	C4A-B-7010	Crystallizer Furnace	NA	27.74	448	3,926,483	1,963	0.01	58.71	0.03	0.00	5.87	0.003
		Preheater											
12P-6420	C4B-E-6250	Preheater Furnace	NA	14.6	236	2,066,570	1,033	0.00	30.90	0.02	0.00	3.09	0.002
				Totals:	684	5993053	2997	0.01	90	0.04	0.001	8.96	0.004

Process Heater Emissions

PTE

Α	ctual		F	Permitted			
CP2 Born NG Usage	278.000	(mmscf/yr)	CP2 Born NG Usage	278	(mmscf/yr)	CP3 Production Ratio	1.00
CP3 Born NG Usage	411.000	(mmscf/yr)	CP3 Born NG Usage	411	(mmscf/yr)	CP4 Production Ratio	1.00
CP3 Bono NG Usage	210.000	(mmscf/yr)	CP3 Bono NG Usage	210	(mmscf/yr)	CSS8 Production Ratio	1.00
CP4 Born NG Usage	411.000	(mmscf/yr)	CP4 Born NG Usage	411	(mmscf/yr)		

				Permitted	Permitted Emission Rates														
Emission	Emission	Emisison	Control	EG		AA		1,4-Dioxa	ne	VOC		PM/PM10		со		NOx		SO2	
Point ID	Unit ID	Unit Name	Device ID	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
3P-1600	C3T-B-1600	CP3 Born Heater	NA	0.01	0.02	1.04	1.50	0.01	0.01	1.32	2.77	0.11	0.47	1.86	8.14	3.19	14.00	0.05	0.23
4P-1600	C4T-B-1600	CP4 Born Heater	NA	0.01	0.02	0.05	0.19	0.001	0.001	0.34	1.45	0.11	0.47	1.90	8.14	3.20	14.00	0.06	0.23
				Actual Em	ission Rates	5													
	Emission	Emission	Emisison	EG		AA		1,4-Dioxa	ne	VOC		PM/PM10		CO		NOx		SO2	
Unit	Point ID	Unit ID	Unit Name	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
CP3	3P-1600	C3T-B-1600	Hot Oil Heater	0.01	0.02	1.04	1.50	0.010	0.010	1.32	2.77	0.11	0.47	1.86	8.14	3.19	14.00	0.05	0.23
CP4	4P-1600	C4T-B-1600	Hot Oil Heater	0.01	0.02	0.05	0.19	0.001	0.001	0.34	1.45	0.11	0.47	1.90	8.14	3.20	14.00	0.06	0.23

Greenhouse Gas Emissions

CSS8 Operating Hours	8,760	(hr/yr)
CP3 Operating Hours	8,760	(hr/yr)
CP3 Bono Operating Hour	8,760	(hr/yr)
CP4 Operating Hours	8,760	(hr/yr)

Emission Factors

	Greenhou	se Gases (based o factors		bpart C
	CO2	Methane	N2O (UC)	
Factor (kg/ MMBtu)	66.88	1.00E-03	1.00E-04	

TPY GHG =Factor (kg/MMBtu)x fuel (MMscf/yr)xHeat value(Btu/scf)x2.2046 (lb/kg) / 2000

				Total Gas			Gr	eenhouse	Gas Emi	ssions			
				Usage		CO2			Methane)		N2O	
Emission	Emission	Emisison	Control	(mmscf/y									
Point ID	Unit ID	Unit Name	Device ID	r)	pph	рру	tpy	pph	рру	tpy	pph	рру	tpy
3P-1600	C3T-B-1600	CP3 Born Heater	NA	411	6,641	58,175,366	29,088	0.10	869.85	0.43	0.01	86.98	0.04
4P-1600	C4T-B-1600	CP4 Born Heater	NA	411	6,641	58,175,366	29,088	0.10	869.85	0.43	0.01	86.98	0.04

Process Heater Emissions

PTE

Actual							
CP2 Born NG Usage	278.000	(mmscf/yr)	CP2 Born NG Usage	278	(mmscf/yr)	CP3 Production Ratio	1.00
CP3 Born NG Usage	411.000	(mmscf/yr)	CP3 Born NG Usage	411	(mmscf/yr)	CP4 CSS-12 CSS-13 Prod	1.18
CP3 Bono NG Usage	210.000	(mmscf/yr)	CP3 Bono NG Usage	210	(mmscf/yr)	CSS8 Production Ratio	1.00
CP4 Born NG Usage	411.000	(mmscf/yr)	CP4 Born NG Usage	411	(mmscf/yr)		

Ensure Pemitted Rates are Current

				Permitted E	mission R	ates													
Emission	Emission	Emisison	Control	EG		AA		1,4-Diox	ane	VOC		PM/PM10	l.	со		NOx		SO2	
Point ID	Unit ID	Unit Name	Device ID	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
3P-1600	C3T-B-1600	CP3 Born Heater	NA	0.01	0.02	1.04	1.50	0.01	0.01	1.32	2.77	0.11	0.47	1.86	8.14	3.19	14.00	0.05	0.23
4P-1600	C4T-B-1600	CP4 Born Heater	NA	0.006	0.02	0.05	0.19	0.001	0.001	0.34	1.45	0.11	0.47	1.90	8.14	3.20	14.00	0.06	0.23
				Actual Emis	tual Emission Rates														
	Emission	Emission	Emisison	EG		AA		1,4-Diox	ane	VOC		PM/PM10	1	CO		NOx		SO2	
Unit	Point ID	Unit ID	Unit Name	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
CP3	3P-1600	C3T-B-1600	Hot Oil Heater	0.01	0.02	1.04	1.50	0.001	0.001	1.32	2.77	0.11	0.47	1.86	8.14	3.19	14.00	0.05	0.23
CP4	4P-1600	C4T-B-1600	Hot Oil Heater	0.01	0.02	0.06	0.23	0.001	0.001	0.40	1.72	0.13	0.56	1.90	8.14	3.20	14.00	0.06	0.23

Greenhouse Gas Emissions

CSS8 Operating Hours	8,760	(hr/yr)
CP3 Operating Hours	8,760	(hr/yr)
CP3 Bono Operating Hour	8,760	(hr/yr)
CP4 Operating Hours	8,760	(hr/yr)

Emission Factors

	Greenho	Greenhouse Gases (based on 40 CFR 98 Subpart C factors)								
	CO2	02 Methane (UC)								
Factor (kg/ MMBtu)	66.88	1.00E-03	1.00E-04							

TPY GHG =Factor (kg/MMBtu)x fuel (MMscf/yr)xHeat value(Btu/scf)x2.2046 (lb/kg) / 2000

					Greenhouse Gas Emissions								
				Total Gas		CO2			Methane			N2O	
Emission	Emission	Emisison	Control	Usage	nnh	nnv	tou	nnh	nnv	tov	nnh	nnv	tov
Point ID	Unit ID	Unit Name	Device ID	(mmscf/yr)	pph	рру	tpy	pph	рру	tpy	pph	рру	tpy
3P-1600	C3T-B-1600	CP3 Born Heater	NA	411	6,641	58,175,366	29,088	0.10	869.85	0.43	0.01	86.98	0.04
4P-1600	C4T-B-1600	CP4 Born Heater	NA	411	6,641	58,175,366	29,088	0.10	869.85	0.43	0.01	86.98	0.04

Warehouse Emissions								
PTE								
Warehouse Operating Hours:	8760	(hr)						

					Permitted Emission Rates		
Emission	Emission	Emisison	Control	Control	PM/PM10		
Point ID	Unit ID	Unit Name	Device ID	Туре	pph	рру	tpy
WF-6010	L26-F-6010	Warehouse West Silo	NA	NA	0.0799	700.00	0.3500
				Totals:	0.08	700.00	0.350000

Warehouse Emissions								
PTE								
Warehouse Operating Hours:	8760	(hr)						

					Permitted Emission Rates		
Emission	Emission	Emisison	Control	Control	PM/PM10		
Point ID	Unit ID	Unit Name	Device ID	Туре	pph	рру	tpy
WF-6010	L26-F-6010	Warehouse West Silo	L26-M-6010	Baghouse	0.0008	7.00	0.0035
				Totals:	0.00	7.00	0.003500

M&G Polymers Permit Determina				rember 2015 n RP change			
-	Oil Storage Tank based on Dow 2/2 enerated per year	/2010 lette	r	1770	00 gallons		
% HAPs in lights Benzene Toluene Ethyl Benzene Naphthalene Other VOC	VP (1 1.30% 31.60% 6.10% 13.30% 47.70%	nm Hg) N 100 36.7 10 1 <1	Aolecular V 78 92 106 128 300	Weight			
Total lbs Dowtherm RP in tank: 17,700 gal x 8.34 lb/gal x 1.03 152,047 lbs							
Total lights in tan 152,047 lbs x 0.0 Benzene Toluene Ethyl Benzene Naphthalene Other VOC		.3% 1.6% .1% 3.3%	3,906	lbs/yr lbs/yr lbs/yr lbs/yr		e Dowtherm F	RP)
	every 2 months for 1 hr/day x 6 events			28	88 hr/yr		
2 cfm will be used 2 ft3/min x 60 mir				345	60 ft3/yr		
Emission Estimat Benzene Toluene Ethyl Benzene Naphthalene Other VOC	te: (All lights accur =161 lbs/yr x 1 1 =3,906 lbs/yr x 1 =754 lbs/yr x 1 1 =1,644 lbs/yr x 1 =5,896 lbs/yr x 1	bm/78 lb/ll 1bm/92 lb bm/106 lb/ 1bm/128	bm b/lbm lb/lbm lb/lbm	42 7 12	2.1 lbm/yr 2.5 lbm/yr 7.1 lbm/yr 2.8 lbm/yr 9.7 lbm/yr 1.1	x 1/84.1 x 1/84.1 x 1/84.1 x 1/84.1 x 1/84.1 x 1/84.1	mole fraction liq 0.025 0.505 0.085 0.153 0.234

Benzene	=0.025*(100 mm Hg/760 mm Hg) * 34,560 ft ³ /yr =	112 ft ³ /yr
Toluene	=0.505*(36.7 mm Hg/760 mm Hg) *34,560 ft ³ /yr =	842 ft ³ /yr
Ethyl Benzene	=0.085*(106 mm Hg/760 mm Hg) * 34,560 ft ³ /yr =	38 ft ³ /yr
Naphthalene	=0.153*(128 mm Hg/760 mm Hg) * 34,560 ft ³ /yr =	7 ft ³ /yr
Other VOC	=0.234*(1 mm Hg/760 mm Hg) * 34,560 ft ³ /yr =	11 ft ³ /yr

Uncontrolled Emissions

Benzene	=112 ft ³ /yr x lbm/359 ft ³ x 78 lb/lbm x 1 yr/288 hr	0.08 lb/hr	0.01 TPY
Toluene	=842 ft ³ /yr x lbm/359 ft ³ x 92 lb/lbm x 1 yr/288 hr	0.75 lb/hr	0.11 TPY
Ethyl Benzene	=38 ft ³ /yr x lbm/359 ft ³ x 106 lb/lbm x 1 yr/288 hr	0.04 lb/hr	0.01 TPY
Naphthalene	=7 ft ³ /yr x lbm/359 ft ³ x 128 lb/lbm x 1 yr/288 hr	0.01 lb/hr	0.001 TPY
Other VOC	=11 ft ³ /yr x lbm/359 ft ³ x 300 lb/lbm x 1 yr/288 hr	0.03 lb/hr	0.004 TPY

Controlled Emissi	ons	lb/hr	TPY
Benzene	=0.08 lb/hr x (1-0.998)	0.0002 =0.0002 lb/hr x 288 hr/yr x 1 ton/2000 lb	2E-05
Toluene	=0.75 lb/hr x (1-0.998)	0.0015 =0.0015 lb/hr x 288 hr/yr x 1 ton/2000 lb	2E-04
Ethyl Benzene	=0.04 lb/hr x (1-0.998)	0.00008 =0.00008 lb/hr x 288 hr/yr x 1 ton/2000 lb	1E-05
Naphthalene	=0.01 lb/hr x (1-0.998)	0.00002 =0.00008 lb/hr x 288 hr/yr x 1 ton/2000 lb	2E-06
Other VOC	=0.03 lb/hr x (1-0.998)	0.00006 =0.00006 lb/hr x 288 hr/yr x 1 ton/2000 lb	9E-06

ATTACHMENT O – MONITORING / RECORDKEEPING / REPORTING / TESTING PLANS

ATTACHMENT O – MONITORING / RECORDKEEPING / REPORTING / TESTING PLANS

M&G Polymers is request no changes to the current Monitoring / Recordkeeping / Reporting and Testing requirements found in R13-1650R.

ATTACHMENT P – PUBLIC NOTICE

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that M&G Polymers, USA, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Class II Administrative Update, for a PET manufacturing facility located on State Route 2, in Apple Grove, in Mason County, West Virginia. The latitude and longitude coordinates are: 38.662696,-82.173526

The applicant estimates the increases/decreases of the following Regulated Air Pollutants will be: Ethylene Glycol 1.39 TPY, Acetaldehyde 0.13 TPY, 1,4 Dioxane -0.01 TPY, Volatile Organic Compounds 0.68 TPY, PM/PM10 0.26 TPY, Carbon Monoxide 0.16 TPY, NOx 1.57 TPY, and Sulfur Dioxide 0.03 TPY.

Startup of operation is planned to begin on or about the 26 day of May, 2016. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated this the 13 day of April, 2016.

By: M&G Polymers, USA, LLC Richard Maack Site Manager State Route 2 Apple Grove WV 25502-008

ATTACHMENT R – AUTHORITY OF CORPORATION

LIMITED DELEGATION OF AUTHORITY ENVIRONMENTAL, HEALTH AND SAFETY MATTERS

I hereby certify that I am the duly elected and qualified Vice President, Finance of M & G Polymers USA, LLC, a Delaware limited liability company (the "LLC"), and hereby further certify that:

As Vice President, Finance of M & G Polymers USA, LLC, I hereby authorize the site manager, Richard Maack or his duly appointed successor, or the QA / Environmental Manager, Scott Whitwer or his duly appointed successor, to execute on behalf of the LLC any notices, applications, forms, reports, manifests or similar documents required to be submitted to a governmental authority pursuant to: (A) any federal, state or local statutes, laws, ordinances, rules or regulations relating or pertaining to: (i) the protection of the environment; (ii) the protection of human beings from exposure to regulated substances; (iii) pollution or pollution control; (iv) employee safety in the workplace; or (v) the presence, use, generation, collection, distribution, labeling, storage, treatment, transportation or disposal of regulated substances (hereinafter "Environmental, Health and Safety Laws"); (B) the terms or conditions of any permit, license or other authorization required pursuant to applicable Environmental, Health and Safety Laws for the operation of the Apple Grove plant (hereinafter "Environmental Permits"); or (C) at the order or direction of such governmental authority pursuant to Environmental, Health and Safety Laws.

As Vice President, Finance of M & G Polymers USA, LLC, I hereby authorize the Site Manager, Richard Maack or his duly appointed successor, or the QA / Environmental Manager, Scott Whitwer or his duly appointed successor, to execute on behalf of the LLC documents which pursuant to applicable Environmental, Health and Safety Laws the Apple Grove Plant is required to maintain in its files.

As Vice President, Finance of M & G Polymers USA, LLC, I hereby authorize the Site Manager, Richard Maack or his duly appointed successor, to delegate the authority granted herein to execute any written instrument or document described herein to the extent that Richard Maack or his duly appointed successor, in the exercise of the duties of Site Manager, reasonably deems necessary for compliance with Environmental, Health and Safety Laws, Environmental Permits or the orders or directives of governmental authorities issued pursuant to applicable Environmental, Health and Safety Laws.

tchill AAI. Bv: 人

Diane É. Mitchell Vice President, Finance of M & G Polymers USA, LLC April 15, 2015

ATTACHMENT S – TITLE V PERMIT REVISION INFORMATION

Attachment S

Title V Permit	Revision	Information
-----------------------	----------	-------------

1. New Applicable Requirements Summary	
Mark all applicable requirements associated with the chang	es involved with this permit revision:
SIP	☐ FIP
Minor source NSR (45CSR13)	D PSD (45CSR14)
NESHAP (45CSR15)	Nonattainment NSR (45CSR19)
Section 111 NSPS (Subpart(s))	Section 112(d) MACT standards (Subpart(s))
Section 112(g) Case-by-case MACT	112(r) RMP
Section 112(i) Early reduction of HAP	Consumer/commercial prod. reqts., section 183(e)
Section 129 Standards/Reqts.	Stratospheric ozone (Title VI)
Tank vessel reqt., section 183(f)	Emissions cap 45CSR§30-2.6.1
NAAQS, increments or visibility (temp. sources)	45CSR27 State enforceable only rule
45CSR4 State enforceable only rule	Acid Rain (Title IV, 45CSR33)
Emissions Trading and Banking (45CSR28)	Compliance Assurance Monitoring (40CFR64) ⁽¹⁾
NO _x Budget Trading Program Non-EGUs (45CSR1)	NO _x Budget Trading Program EGUs (45CSR26)
⁽¹⁾ If this box is checked, please include Compliance Assu Specific Emission Unit (PSEU) (See Attachment H to Title explain why Compliance Assurance Monitoring is not ap	V Application). If this box is not checked, please

2. Non Applicability Determinations

List all requirements, which the source has determined not applicable to this permit revision and for which a permit shield is requested. The listing shall also include the rule citation and a rationale for the determination.

- SIP/FIP not specifically a list facility under either plan.
- NESHAP (45CSR15) No NESHAP standards apply.
- Section 111 NSPS No NSPS standards apply.
- Section 112(g) Case-by-case MACT revision is not subject to a case-by-case MACT.
- Section 129 Facility does not own a solid waste incinerator.
- Section 183(f) Facility does not own or operate any tank vessels per section 183(f) and is located in an ozone attainment area.
- NAAQs Facility is a permanent source and a contemporary source
- 45CSR4 No imposed requirements per 45CSR4
- 45CSR28 No emissions are banked or traded per this regulation
- 45CSR1 Boilers maximum heat input are less than section 4's 250mmBTU/hr applicability.
- 45CSR14 Facility has no PSD permits and revision will not trigger thresholds.
- 45CSR19 = Revision does not trigger thresholds. Area is listed as attainment.
- Section 112(d) MACT standards Revision is not subject to any additional promulgated MACT standard.
- 112(r) RMP Does not affect facility RMP
- Section 183(e) Facility does not produce a 183(e) list consumer or commercial product
- Stratospheric ozone (Title VI) Revision does not involve any regulated pollutant.
- Emission Cap 45CFR section 30-2.6.1 facility has no emission cap agreement per section 2.6.1
- 45CSR27 Facility does not emit TAPS
- 45CSR33 Facility is not subject to the Acid Rain provisions listed in section 1.5
- 45CFR64 Monitoring requirements have already been established.
- 45CSR26 Boilers are not defines as DGS's.
- Section 112(i) Early HAP reduction Facility did not utilize the early reduction program.

Permit Shield Requested (not applicable to Minor Modifications)

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

3. Suggested Title V Draft Permit Language

Are there any changes involved with this Title V Permit revision outside of the scope of the NSR Permit revision? \Box Yes \boxtimes No If Yes, describe the changes below.

Also, please provide **Suggested Title V Draft Permit language** for the proposed Title V Permit revision (including all applicable requirements associated with the permit revision and any associated monitoring /recordkeeping/ reporting requirements), OR attach a marked up pages of current Title V Permit. Please include appropriate citations (Permit or Consent Order number, condition number and/or rule citation (e.g. 45CSR§7-4.1)) for those requirements being added / revised.

4. Active NSR Permits/Permit Determinations/Consent Orders Associated With This Permit Revision

Permit or Consent Order Number	Date of Issuance	Permit/Consent Order Condition Number
R13-1650F	12/10/2013	NA
	/ /	

5. Inactive NSR Permits/Obsolete F	Permit or Consent Orders Co	onditions Associated With This Revision
Permit or Consent Order Number	Date of Issuance	Permit/Consent Order Condition Number
NA	MM/DD/YYYY	
	/ /	

Pollutant	Change in Potential Emissions (+ or -), TPY
Ethylene Glycol	+1.39
Acetaldehyde	+0.13
1,4 Dioxane	-0.01
VOCs	+0.68
PM/PM10	+0.26
СО	+0.16
NOx	+1.57
SO2	+0.03

Note		
11016	This certification must be signed	t by a responsible official. Applications without a signe
	certification will be returned as	incomplete. The criteria for allowing the use of Mind
	Modification Procedures are as fol	lows:
	i. Proposed changes do not violate	any applicable requirements
		lve significant changes to existing monitoring, reporting, o
	recordkeeping requirements in th	e nermit.
	iii. Proposed changes do not requ	ire or change a case-by-case determination of an emissio
	limitation or other standard, o	r a source-specific determination for temporary sources of
	ambient air quality impacts, or a	visibility increment analysis;
	iv. Proposed changes do not seek to	establish or change a permit term or condition for which the
	is no underlying applicable requi	irement and which permit or condition has been used to avoi
	an applicable requirement to wh	nich the source would otherwise be subject (synthetic minor
	Such terms and conditions include	de, but are not limited to a federally enforceable emissions ca
	used to avoid classification as a	modification under any provision of Title I or any alternativ
	emissions limit approved pursua	ant to regulations promulgated under § 112(j)(5) of the Clea
	Air Act;	
	v. Proposed changes do not involve 45CSR14 and 45CSR19;	e preconstruction review under Title I of the Clean Air Act of
		ired under any rule of the Director to be processed as
	Toposed changes are not requ	incu under any fulle of the Diffector to be processed as
proce perm proce the S	significant modification; withstanding subparagraph 45CSR§30-6.5. redures may be used for permit modifica nits, emissions trading, and other similar a redures are explicitly provided for in rules o	a.1.A. (items i through vi above), minor permit modificatio tions involving the use of economic incentives, marketabl approaches, to the extent that such minor permit modificatio of the Director which are approved by the U.S. EPA as a part of
proce perm proce the S opera	significant modification; withstanding subparagraph 45CSR§30-6.5. redures may be used for permit modifica nits, emissions trading, and other similar a redures are explicitly provided for in rules of State Implementation Plan under the Clean for rating permit issued under 45CSR30.	a.1.A. (items i through vi above), minor permit modification ations involving the use of economic incentives, marketable approaches, to the extent that such minor permit modification of the Director which are approved by the U.S. EPA as a part of Air Act, or which may be otherwise provided for in the Title of approaches are approved by the U.S. EPA as a part of a provided for in the Title of the criteria for us
proc perm proc the S opera Purs of M pern	significant modification; withstanding subparagraph 45CSR§30-6.5. redures may be used for permit modifica nits, emissions trading, and other similar a redures are explicitly provided for in rules o State Implementation Plan under the Clean rating permit issued under 45CSR30. suant to 45CSR§30-6.5.a.2.C., the propose linor permit modification procedures as nit modification procedures are hereby r	a.1.A. (items i through vi above), minor permit modification ations involving the use of economic incentives, marketabl approaches, to the extent that such minor permit modification of the Director which are approved by the U.S. EPA as a part of Air Act, or which may be otherwise provided for in the Title v sed modification contained herein meets the criteria for us
proc perm proc the S opera Purs of M pern	significant modification; withstanding subparagraph 45CSR§30-6.5. redures may be used for permit modifica nits, emissions trading, and other similar a redures are explicitly provided for in rules o State Implementation Plan under the Clean rating permit issued under 45CSR30. suant to 45CSR§30-6.5.a.2.C., the propose linor permit modification procedures as nit modification procedures are hereby r	a.1.A. (items i through vi above), minor permit modification approaches, to the extent that such minor permit modification of the Director which are approved by the U.S. EPA as a part of Air Act, or which may be otherwise provided for in the Title V sed modification contained herein meets the criteria for us set forth in Section 45CSR\$30-6.5.a.1.A. The use of Mino
proce perm proce the S opera Purs of M	significant modification; withstanding subparagraph 45CSR§30-6.5. redures may be used for permit modifica nits, emissions trading, and other similar a redures are explicitly provided for in rules o State Implementation Plan under the Clean rating permit issued under 45CSR30. suant to 45CSR§30-6.5.a.2.C., the propose linor permit modification procedures as nit modification procedures are hereby r	a.1.A. (items i through vi above), minor permit modification ations involving the use of economic incentives, marketable approaches, to the extent that such minor permit modification of the Director which are approved by the U.S. EPA as a part of Air Act, or which may be otherwise provided for in the Title V sed modification contained herein meets the criteria for us set forth in Section 45CSR§30-6.5.a.1.A. The use of Mino equested for processing of this application.
proc perm proc the S oper. Purs of M pern Signed)	significant modification; withstanding subparagraph 45CSR§30-6.5. redures may be used for permit modifica nits, emissions trading, and other similar a redures are explicitly provided for in rules o State Implementation Plan under the Clean rating permit issued under 45CSR30.	a.1.A. (items i through vi above), minor permit modification ations involving the use of economic incentives, marketable approaches, to the extent that such minor permit modification of the Director which are approved by the U.S. EPA as a part of Air Act, or which may be otherwise provided for in the Title v sed modification contained herein meets the criteria for us set forth in Section 45CSR§30-6.5.a.1.A. The use of Mino equested for processing of this application.
proc perm proc the S oper Purs of M pern Signed)	significant modification; withstanding subparagraph 45CSR§30-6.5. redures may be used for permit modifica nits, emissions trading, and other similar a redures are explicitly provided for in rules o State Implementation Plan under the Clean rating permit issued under 45CSR30. suant to 45CSR§30-6.5.a.2.C., the propose linor permit modification procedures as nit modification procedures are hereby r	a.1.A. (items i through vi above), minor permit modification tions involving the use of economic incentives, marketable approaches, to the extent that such minor permit modification of the Director which are approved by the U.S. EPA as a part of Air Act, or which may be otherwise provided for in the Title view sed modification contained herein meets the criteria for us set forth in Section 45CSR§30-6.5.a.1.A. The use of Minone equested for processing of this application. Date:
proc perm proc the S oper Purs of M pern Signed)	significant modification; withstanding subparagraph 45CSR§30-6.5. redures may be used for permit modifica nits, emissions trading, and other similar a edures are explicitly provided for in rules o State Implementation Plan under the Clean ating permit issued under 45CSR30. suant to 45CSR§30-6.5.a.2.C., the propose linor permit modification procedures as nit modification procedures are hereby r (Please use blue inkologication):	a.1.A. (items i through vi above), minor permit modification ations involving the use of economic incentives, marketable approaches, to the extent that such minor permit modification of the Director which are approved by the U.S. EPA as a part of Air Act, or which may be otherwise provided for in the Title sed modification contained herein meets the criteria for us set forth in Section 45CSR§30-6.5.a.1.A. The use of Mino equested for processing of this application.
proc perm proc the S opera Purs of M pern Signed)	significant modification; withstanding subparagraph 45CSR§30-6.5. redures may be used for permit modifica nits, emissions trading, and other similar a redures are explicitly provided for in rules of State Implementation Plan under the Clean rating permit issued under 45CSR30. suant to 45CSR§30-6.5.a.2.C., the propose linor permit modification procedures as nit modification procedures are hereby r (Please use blue intervention): Scott Whitwer	a.1.A. (items i through vi above), minor permit modification ations involving the use of economic incentives, marketable approaches, to the extent that such minor permit modification of the Director which are approved by the U.S. EPA as a part of Air Act, or which may be otherwise provided for in the Title sed modification contained herein meets the criteria for us set forth in Section 45CSR§30-6.5.a.1.A. The use of Mino equested for processing of this application. Date: Date: Date: <u>QHSE Manager</u>
proc perm proc the S opera Purs of M pern Signed)	significant modification; withstanding subparagraph 45CSR§30-6.5. redures may be used for permit modifica nits, emissions trading, and other similar a edures are explicitly provided for in rules o State Implementation Plan under the Clean ating permit issued under 45CSR30. suant to 45CSR§30-6.5.a.2.C., the propose linor permit modification procedures as nit modification procedures are hereby r (Please use blue inkologication):	a.1.A. (items i through vi above), minor permit modification ations involving the use of economic incentives, marketable approaches, to the extent that such minor permit modification of the Director which are approved by the U.S. EPA as a part of Air Act, or which may be otherwise provided for in the Title sed modification contained herein meets the criteria for us set forth in Section 45CSR§30-6.5.a.1.A. The use of Mino equested for processing of this application. Date: Date: Date: <u>QHSE Manager</u>
Purs opern Purs of M pern Signed)	significant modification; withstanding subparagraph 45CSR§30-6.5. redures may be used for permit modifica nits, emissions trading, and other similar a redures are explicitly provided for in rules of State Implementation Plan under the Clean rating permit issued under 45CSR30. suant to 45CSR§30-6.5.a.2.C., the propose linor permit modification procedures as nit modification procedures are hereby r (Please use blue interview): Scott Whitwer	a.1.A. (items i through vi above), minor permit modification tions involving the use of economic incentives, marketable approaches, to the extent that such minor permit modification of the Director which are approved by the U.S. EPA as a part of Air Act, or which may be otherwise provided for in the Title of sed modification contained herein meets the criteria for us set forth in Section 45CSR§30-6.5.a.1.A. The use of Minor equested for processing of this application. Date: Date: Date: QHSE Manager pplicable):
prociperm proci the S opera Purs of M pern Signed) Jamed (significant modification; withstanding subparagraph 45CSR§30-6.5. redures may be used for permit modifica nits, emissions trading, and other similar a redures are explicitly provided for in rules of State Implementation Plan under the Clean of stating permit issued under 45CSR30. suant to 45CSR§30-6.5.a.2.C., the propose linor permit modification procedures as nit modification procedures are hereby r (typed): Scott Whitwer ease check if the following included (if application)	a.1.A. (items i through vi above), minor permit modification tions involving the use of economic incentives, marketable approaches, to the extent that such minor permit modification of the Director which are approved by the U.S. EPA as a part of Air Act, or which may be otherwise provided for in the Title of sed modification contained herein meets the criteria for use set forth in Section 45CSR§30-6.5.a.1.A. The use of Minor equested for processing of this application. Date: Date: Date: QHSE Manager pplicable):

		(С) Sr-1000	30-1600												3P-7260		3P-5010	3P-4620	3P-1900	3P-1730	3P-0650	3P-0200	3P-7210	3P-5210	3P-3210	3P-1210	3P-1120	3P-9	3P-8	3P-2580	3P-2570			3P-7020			3P-2100		3P-1032	21012	-1017 1/01-192	312-1070	<u>sst-dr</u>	3P-3190	3P-3130		Emission Point ID	() Jurrent Permit:
				Hot Oil Heater	C3T-B-1600												None	SenortBact	C3S-M-5010	None	None	None	None	L4A-M-0200 Baghouse	None	None	None	None	None	None	None	None	None				Seal Pot	C3L-F-7020			None	TAOTAC	None	None	None	None	Baghouse	C45-M-3130	Control Device	nit:
C34-F-8290	C34-F-2290	C33-F-2260	C31-F-1220	C34-F-3280	C33-F-5010	C33-F-2250	C32-E-1050	C31-E-1020	C3H-F-4010	C3H-F-3010	C3L-F-5040	C3L-F-4210	C3L-F-4100	C3L-F-4211	C3L-F-3160	C3L-F-2201	C31-F-7260		C3S-F-5010	C3T-F-4620	C3T-F-1900	C3U-F-1730	C3T-F-0650	L4A-F-0200	C38-E-7210	C38-E-5210	C38-E-3210	C38-E-1210	C3L-F-1120	UTG-F-3010	UTG-F-3020	C3L-F-2580	C3L-F-2570	C3L-F-9010	C3L-F-8010	C3L-F-7010	C3L-F-6510	C3L-F-6010		C3L-F-3150	C3L-F-3140	C3L-F-3180	C3L-F-1071	C3L-F-1070	D-155	C3L-F-3190	C4S-F-3010		Emission Unit ID	
CP3 R/4B Condensate Tank	CP3 R/4A Condensate Tank	CP3 R/3 Condensate Tank	CP3 R/1 & R/2 Condensate Tank	CP3 R/4A System	CP3 R/3 Bis System	CP3 R/3 System	CP3 R/2 System	CP3 R/1 System	CP3 Slury Feed Tank	CP3 Slurry Mix Tank	CP3/CP4 Stabilizer Make-Up Tank	CP3/CP4 Stabilizer Make-Up Tank	CP3/CP4 Stabilizer Surge Tank	CP3/CP4 Stabilizer Make-Up Tank	CP3 Stabilizer Charge Tank	CP3 Colorant Charge Tank	CP3 Colorant Make-1/n Tank		Master Recycle Silo	CP3 Condensed Dowthernn Receiver	CP3 Refrigerant Surge Tank	CP3 R/3 TEG Bath	CP3 Condensate Holding Tank	CP3 Off Spec Silo	CP3 Pellet Dryers	CP3 Pellet Dryers	CP3 Pellet Dryers	CP3 Pellet Dryers	CP3/CP4 Recupic EG Dump Tank	CP3 EG Storage Tank	CP3 EG Storage Tank	CP3 Catalyst Slurry Tank	CP3 Catalyst Slurry Tank	CP3/CP4 Toner Charge Tank	CP3/CP4 Toner Make-Up Tank	CP3/CP4 Catalyst Feed Tank	CP3 Catalyst Mix Tank	CP3 Catalyst Mix Tank		CP3 R/2 EG Charge Tank	CP3 R/1 EG Charge Tank	CP3 R/1 Recupic EG Charge Tank	CP3 Recupic EC Tank	CP3 Recupic EG Tank	CP3 CP4 MACT Tenk	CP3 DEG Charge Tank	CP3 Recycle Surge Bin	CP3	Emission Unit Description	
744 gpm)	459 gpm	679 gpm	7,383 pph	1,700 pph	2,970 Gallons	2,517 Gallons	2,970 Gallons	2,970 Gallons	1,319 ft ³	607 ft ³	486 Gallons	400 Gallons	516 Gallons	400 Gallons	275 Gallons	400 Gallons	17,700 Gallons		4,000 ft ³	116 Gallons	955 Gallons	8" x 30" t/t	58 ft ³	8" x 32' s/s	12,500 pph	12,500 pph	12,500 pph	12,500 pph	5,000 Gallons	675,000 Gallons	675,000 Gallons	516 Gallons	516 Gallons	277 A ³	277 R ³	455 ft ³	455 ft ³	455 ft ³		275 Gallons	1,730 Gallons	1,730 Gallons	12,700 Gallons	12,700 Gallons	10,000 Gallons	275 Gallons	1,170 ft ³	1997	Design Capacity	
2007	1994	1994	1994	1994	2001	1994	1994	1994	2001	2001	1994	1994	1994	1994	1994	1994	1994	1004	1974/	1994	1994	1994	1994	1994	2007	1994	1994	1994	1994	1966	1966	1994	1994	2001	2001	2001	2009	2001		1994	1994	1994	1994	1004	1060	1994	1994		Year Installed	View Testallad

added detail to capacity	added detail to capacity	added detail to capacity	no changes	wrong ID, corrected other info	wrong ID, corrected other info	no changes	corrected to reflect what is reality	corrected to reflect what is reality	wrong ID	wrong ID	no changes	no changes	no changes	no changes	correct emission ID	correct emission ID	no changes	binvent, not baghouse	no changes	no changes	no changes	no changes	corrected capacity, description	correction to capacity	correction to capacity	correction to capacity	correction to capacity	no changes	change to description and size	doesn't exist - delete chance to description and size	no changes doesn't evict - delete	no changes	corrected description	Never existed - delete	change to description	missing from current permit	no changes	no changes	change to description	no changes	no changes	no changes	In CP4 - doesn't need to be here.	and capacity data	Correct control device, emission unit. Descrip	
				C3T-B-1600													None	C3S-M-5010 Bin Vent	None	None	None	None	L4A-M-0200 Bin Vent	None	None	None	None	None	None	None			C3L-F-7020 Seal Pot			C3S-M-2100 Binvent		None		None	None	None	C4T-B-1600	None None	C35-M-3120	
C34-F-8290	C34-F-2290	C33-F-2260	C31-F-1220	C34-F-5020	C33-F-6010	C33-F-2250	C32-E-1050/1051	C31-E- 1020/1020A/1021	C3H-F-3010	C3H-F-1020	C3L-F-5040	C3L-F-4210	C31-E-4211	C3L-F-3160	C3L-F-2201	C3L-F-2200	C3T-F-7260	C3S-F-5010	C3T-F-4620	C3T-F-190	C3U-F-1730	C3T-F-0650	L4A-F-0200	C38-E-7210	C38-E-5210	C38-E-3210	C38-E-1210	C3L-F-1120	UTG-F-3010	UTG-F-3020	C3L-F-9010	C3L-F-8010	C3L-F-7010		C3L-F-6010	C3H-F-2010	C3L-F-3150	C3L-F-3140	C3L-F-3180	C3L-F-1072	C3L-F-1071	C3L-F-1070	C4V-F-1010	C31-E-3190	C3S-F-3080	
CP4 R4B Condensate Tank	CP3 R4A Condensate Tank	CP3 R/3 Condensate Tank	CP3 R/1 & R/2 Condensate Tank	CP3 R4A/B System	CP3 R/3 Bis Condensate Tank	CP3 R/3 System	CP3 R/2 System	CP3 R/1 System	CP3 Slurry Feed Tank	CP3 Slurry Mix Tank	CP3/CP4 Stabilizer Surge Tank	CP3/CP4 Stabilizer Make-up Tank	CP3/CP4 Stabilizer Make-up Tank	CP3 Stabilizer Charge Tank	CP3 Colorant Charge Tank	CP3 Colorant Make-up	CP3 Hot Oil Storage Tank	Master Recycle Silo	CP3 Condensed Dowtherm Receiver	CP3 Refrigeration Surge Tank	CP3 R/3 TEG Bath	CP3 Exhaust Gas Condensate Hold Tank	CP3 Melt Off Spec Silo	CP3 Pellet Dryer	CP3 Pellet Dryer	CP3 Pellet Dryer	CP3 Pellet Dryer	CP3/CP4 Recupic EG Dump Tank	CP3 EG #2 Storage Tank	CP3 EG #1 Storage Tank	CP3/CP4 Toner Charge Tank	CP3/CP4 Toner Make-up Tank	CP3/CP4 Catalyst Charge Tank		CP3 Catalyst makeup Tank	IPA Storage Bin Silo	CP3 R/2 EG Charge Tank	CP3 R/1 EG Charge Tank	CP3 additive Make-up Tank	CP3 Recupic Tank	CP3 Recupic Tank	<u>-</u>	CP3/CP4 MACT Tank	CP3 DEG Charge Tank	North Recycle Silo	
744 gpm/897 Gallons	459 gpm/897 Gallons	679 gpm/897 Gallons	7383 pph	1700 pph	1660 Gallons	2517 Gallons	2970 Gallons	2970 Gallons	1319 Ft ³	607 Ft ³	486 Gallons	400 Gallons	400 Gallons	275 Gallons	400 Gallons	400 Gallons	17.700 Gallons	4000 Ft ² Silo 315 Ft ² Bin Vent	116 Gallons	955 Gallons	8"X30" t/t	58 ft ³	1740 ft ² - Tank 106 Ft ² Bin Vent	20,000 pph	20,000 pph	20,000 pph	20,000 pph	5,000 Gallons	648,699 Gallons	648 699 Gallons	277 ft ³	277 ft ³	455 ft ³		455 ft ³	530 ft ² -Silo 66 Ft ² Bin Vent	275 Gallons	1,730 Gallons	1,730 Gallons	12,700 Gallons	12,700 Gallons	12,700 Gallons	10.000 Gallons	1/9 Ft Bin Vent	2154 ft ³ - Tank	
2007	1994	1994	1994	1994	2001	1994	1994	1994	2001	2001	1994	1994	1994	1994	1994	1994	1994	1974/20 10	1994	1994	1994	1994	1994	2007	1994	1994	1994	1994	1966	1966	2001	2001	2001	2001	2001	2001	1994	1994	1994	1994	1994	1994	2001	1001	2004	

In 2015/16 Application:

Deleted from current App Missing from previous permits, added here Moved from one unit to a different one

Attachment E:

C3H-F-4020	C3T-F-0600	C34-F-9280
Seal Pot	Knock Out Pot	CP3 R/4B System
5.6 pph	N/A	7,502 pph
1994	1994	2007

delete - actually part of C34-F-5020 (in current permit as C34-F-3280) no changes no changes missing from current permit AND current application.

missing from previous permits

missing from previous permits

added - see next columns added - see next columns added - see next columns

1996	275 Gallons	CP4 Additive Charge Tank	C3L-F-5990
1994	275 Gallons	CP3 R2 Catalyst Tank	C3L-F-3170
1994	6000 Gallons	CP3 RP Lites tank	C3T-F-2670
1994	5.6 pph	Seal Pot	C3H-F-4020
1994	N/A	Knock Out Pot	C3T-F-0600

Page S6 of S \S

no changes	correct capacity	Control device: C4Q-M-5300 - corrected	no changes correct emission ID	no changes	correct emission ID correct emission ID corrected description	Delete - in CP3 as C3L-F-2200 missing from previous permits	no changes no changes	no changes	correct emission ID, etc	ct what is	missing from previous permits	the change to control device descrip.	no changes	corrected emission ID	change to control device descrip.	change to control device descrip.	change to control device descrip.	corrected description	no changes	no changes	5	move to CSS12		no changes	no changes	no changes	no changes	rected ID and	corrected ID and description	corrected emission ID	emission	no changes	correct control device #, description, capacities	corrected capacity	moved to CSS10	only change: binvent not baghouse
None	C4Q-M-0001/ C40 Baghouse	C4Q-M-5300 Ba					Hot Oil Hea	C4T-B-160							C4Q-M-4160 HEP	C4Q-M-4190 HEF	C4Q-M-4140 (glc & C4Q-M-4220 HE	None	None	None			None	None	None	None	None	None	None	None	None	None	C4S-M-313 Bin vent	C4S-M-2100 Ba		C4S-M-10 Bin vent

_	N/A	CP4 Box/Bag Loader	C4Q-F-5330	æ
	0.75 M ³	CP4 Feed Bin	C4Q-F-5010	4Q-M-0001/ C4Q-F-0001 Baghouse
	830 ft ³	CP4 Feed Hopper System	C4Q-F-5000	C4Q-M-5300 Baghouse
	16,725 Gallons	CP4 Hot Oil Storage Tank	C4T-F-7640	
	N/A	Knock Out Pot	C4T-F-0600	
	1,319 Ft ³	CP4 Slurry Mix Feed Tank	C4H-F-3010	
	2,800 pph	CP4 Bico Extruder Vent	C4Q-A-1297	
	6,000 Gallons	Dowtherm Lights Tank	C4T-F-8670	
	533 Gallons	Make-Up Tank	C3L-F-5980	
	935 gallons	CP4 R/4 Hot well Tank	C44-F-3300	
	1,660 Gallons	CP4 R/4 Condensate Tank	C44-F-2290	
	1,660 Gallons	CP4 R/3 Condensate Tank	C43-F-2260	Hot Oil Heater
	90 Gallons	CP4 R/1 & R/2 Separator	C41-E-3220	C4T-B-1600
	140 Gallons	CP4 R/4 System	C44-F-9280	
	120 Gallons	CP4 R/3 Flash Tank	C43-F-3250	
	2,970 Gallons	CP4 R/2 System	C42-E-2050/2060	
	2,970 Gallons	CP4 R/1 System	C41-E-3020/3021	
	1100 Gallons	CP4 EG Vaporizer Knockout Tank	CP4-F-0510	
	830 Gallons	CP4 R2 Catalyst Charge Tank	C4L-F-3170	
	275 Gallons	CP4 Catalyst Charge Tank	C4L-F-2120	
	275 Gallons	CP4 Stabilizer Charge Tank	C4L-F-3160	
	10,000 Gallons	CP3/CP4 MACT Tank	C4V-F-1010	
	0.75 M ³	CP4 Feed Hopper System	C4Q-F-3290	34Q-M-4160 HEPA Filter
	0.75 M ³	CP4 Feed Hopper System	C4Q-F-2290	AQ-M-4190 HEPA Filter
	0.75 M ³	CP4 Feed Hopper System	C4Q-F-1290	C4Q-M-4140 (glovebox) C4Q-M-4220 HEPA Filter
	4,760 pph	CP4 Extruder MCU	C4Q-A-1296	None
	32"X60" t/t	CP4 R4 TEG Bath	C4U-F-1710	None
	318 ft ²	CP4 Peller Filter Receiver	L24-M-4120	None

C4S-M-1040 Bin vent	C4S-F-1020	CP4 TPA Surge Silo	198 Ft ³	1996
S-M-2100 Baghouse	C4S-F-2050	CP4 IPA Surge Silo	1100 Ft ³ 66 Ft ²	1996
C4S-M-3130 Bin vent	C4S-F-3080	South Recycle Silo	1170 Ft ³ - Tank 235 Ft ² Bin Vent	1993
None	C4L-F-3190	CP4 DEG Charge Tank	275 Gallons	1996
None	C4L-F-1070	CP4 Recupic EG Tank	12,700 Gallons	1996
None	C4L-F-1071	CP4 Recupic EG Tank	12,700 Gallons	1996
None	C4L-F-1072	CP4 Recupic EG Tank	12,700 Gallons	1996
None	C4Y-F-1800	#3 CP4 EG Storage Tank	675,000 Gallons	1996
None	C44-F-0430	CP4 EG Vaporizer Feed Tank	275 Gallons	1996
None	C4L-F-3140	CP4 R/1 EG Charge Tank	1,742 Gallons	1996
	C4L-F-3180	CP4 R/1 Recupic EG Charge Tank	1,742 Gallons	1996
None	C4R-F-1900	CP4 Refrigerant Surge Tank	955 Gallons	1996
None	C4T-F-4620	CP4 Condensed Dowtherm Receiver	125 Gallons	1996
None	C48+E+1210	CP4 Pellet Dryer	13,000 pph	1996
None	C48-E-3210	CP4 Pellet Dryer	13,000 pph	1996
None	C48-E-5210	CP4 Pellet Dryer	13,000 pph	1996
None	C48-E-5210	CP4 Pellet Dryer	13,000 pph	

Page S7 of S1S

deleted	1988	1,958 ft ³	CSS-7 R/6 Reactor	C2C-R-5060	Hot Oil Heater	
deleted	1988	1,200 acfm	CSS-7 Surge Bin Filter	C2B-M-5040	C2T-B-9001	1002-47
deleted	1988	943 ft ³	CSS-7 Preheater Surge Bin	C2B-F-5420	M-2603 Baghouse	20 0001
Delete - already in CSS8	1988	17,700 Gallons	CSS-7/CSS-8 Hot Oil Storage Tank	L14-F-9001	None	7P-9002
Delete - already in CSS8	1994	116 Gallons	CSS-7/CSS-8 T-66 Dump Tank	L14-F-2660	None	7P-2660
Move to CSS8	1990	150 A ²	CSS-7 Fines Elutriator	L14-U-4030	None	7P-0430
Move to CSS8	1987	4,000 ft ³	CSS-7 Product Storage Silo	L14-F-4080	L14-M-4080 Baghouse	7P-4227B
Move to CSS8	1987	4,000 ft ³	CSS-7 Product Storage Silo	L14-F-4070	L14-M-4070 Baghouse	7P-4227A
Move to WH	1987	85 ft ²	CSS-7 Off-Spec Silo B	L22-F-2040	L22-M-2120 Baghouse	7P-1510
Move to WH	1988	4,000 ft ³	CSS-7 Off-Spec Silo A	L21-F-1020	L21-M-1050 Baghouse	7EC-15
Move to WH	1988	85 ft ²	CSS-7 Box & Bagging Blender	L36-F-6040	L36-M-0607 Baghouse	7P-0607
deleted	1988	14,156 acfin	CSS-7 Product Cooler	C2D-E-5280	C2D-M-0520 Baghouse	7P-0520
deleted	1988	9,000 pph/ 1.48 MMBTU/hr	CSS-7 Preheater and Heater	C2B-B-7020/ C2B-E-5250		
deleted	1988	9,000 pph/ 1.4 MMBTU/hr	CSS-7 Crystallizer and Heater	C2A-E-5240/ C2A-B-5010	C2A-M-5350 Baghouse	
deleted	1988	3,500 ft ³	CSS-7 Crystallizer Surge Bin	C2A-F-5410	C2A-M-2601 Baghouse	7 P- 2601
			C.SS-7			

 \bigcirc

Page S δ of S S

		2P-900 I		719-9002	7P-2660	7P-0430	8EP-208	8P-1050	8P-1030	8ECS4	7P-4227B	7P-4227A	8P-4127B	8P-4127A	8EP-204B	8EP-204A	8E - 12	8E - 09	8E - 09	<mark>8E</mark> - 08	None	8E - 06	8E - 06	8E - 05	8E - 04	8E - 03	8E - 02	8E - 1340	
		Hot Oil Heater	C2T-B-9001	N/A	N/A	None	None	None	None	L11-M-1010 Baghouse	L14-M-4080 Binvent	L14-M-4070 Binvent	L13-M-3060 Baghouse	L13-M-3050 Baghouse	L12-M-2040 Baghouse	L12-M-2030 Baghouse	None	None	None	L37-M-7130 Baghouse	None	S8A-M-1590 Baghouse	S8A-M-1590	S&D-M-1520 Baghouse	S8B-M-2420 Baghouse	S&A-M-3350 Baghouse	S8A-M-2390 Baghouse		
F-5001	C2T-F-2670	S8C-R-1060/ S8C-R-3070	S8A-E-1420	L14-F-9001	L14-F-2660	L14-U-4030	L12-M-4030	L13-U-3030	L11-U-1030	L11-F-1010	L14-F-4080	L14-F-4070	L13-F-3060	L13-F-3050	L12-F-2040	L12-F-2030	L13-M-3020	L37-M-7150	L37-P-7130	L37-F-7050	S8E-F-1450	S8E-F-1440	S8A-M-1610	S8D-E-1280	S8B-E-2250/ S8B-B-2020	S8A-E-3240/ S8A-B-3010	S8A-F-2430		
T-66 Tank	T-66 Lites Tank	CSS-8 Reactor	CSS-8 Preheater Surge Bin	Hot Oil Storage	T-66 Dump Tank	CSS-7 Fines Elutriator	CSS-8 Fines Elutriator	CSS-8 Fines Elutriator	CSS-8 Fines Elutriator	CSS-8/CSS-9 Salvage Silo	CSS-7 Product Storage Silo	CSS-7 Product Storage Silo	CSS-8 Product Silo	CSS-8 Product Silo	CSS-8 Product Silo	CSS-8 Product Silo	CSS-8 Pellet Filter Receiver	CSS-8 Fines Elutriator	CSS-8 Storage Air Classifier	CSS-8 Boxing Silo	CSS-8 Product Dense Phase Tank	CSS-8 Verification Bin	CSS-8 Refeed Cyclone	CSS-8 Product Cooler	CSS-8 Preheater and Heater	CSS-8 Crystallizer and Heater	CSS-8 Crystallizer Surge Bin		CSS-8
NA NA	6,400 Gallons	2,404 A*	930 ft ³	17,700 Gallons	116 Gallons	150 ft ²	150 A ²	150 ft ²	150 ft ²	4,000 ft ³	4,000 ft ³	4,000 ft ³	4,000 ft ³	4,000ft ³	85 ft ²	85ft ²	25,500 acfm	700 acfm	55 lb/R ³	1,200 ft ³	50 A ³	18,000 pph	1,000 ft ³	18,000 pph	27.7 ft ² / 0.98 MMBtu/hr	68.4 ft ² / 2.15 MMBtu/hr	1,244 ft ³		
1976	1994	1661	1991	1991	1988	1990	1991	1991	1991	1977	1987	1987	1987	1987	1987	1987	1661	1661	1661	1991	1988	1991	1661	1661	1991	1661	1991		

Not in previous permits control device S8A-M-1340
--

correct description, capacity, control device

correct description, capacity

delete delete no changes correct capacity

delete

delete

S8A-M-1590 Baghouse S8A-M-33<mark>6</mark>0 Baghouse S&D-M-1520 Baghouse S88-M-2420 Baghouse S8A-M-2390 baghouse S8A-M-1340 Bin vent S8A-F-3240/ S8A-B-3010 S8B-F-2250/ S8B-B-2020 S8D-E-1280 S8A-F-2430 S8E-F-1440 S8A F 1410 ß

move to West silo in WH, given new number

delete

correct emission ID, etc.	correct emission ID	no changes		no changes	correct emission ID	correct emission ID	correct emission ID	Moved from CSS7 - corrected control device	correct emission and control unit IDs to reflect actual configuration	correct emission and control unit IDs to reflect actual configuration	correct emission and control unit IDs to reflect actual configuration	correct ID, capacities	Moved from CSS7 - corrected control device	Moved from CSS7 - corrected control device	correct ID, capacities	correct ID, capacities	correct ID, capacities	correct ID, capacities
			Hot Oil Heater	COT 0 0001		N/A	N/A	L14-M-4030 Baghouse	L12-M-2050	L13-M-3110	L11-U-1030	L11-M-1010 Binvent	L14-M-4080 Bin vent	L14-M-4070 Bin vent	L13-M-3060 Binvent	L13-M-3050 Binvent	L12-M-2040 Binvent	L12-M-2030 Binvent
C1T-F-5001	C1T-F-5660	C2T-F-2670	S8C-R-3070	S8C-R-1060	S88-F-1420	C2T-F-7640	C2T-F-2260	L14-U-4040 L14-U-4050	L12-P-2050	L13-P-3100	L11-U-1040	L11-F-1010	L14-F-4080	L14-F-4070	L13-F-3060	L13-F-3050	L12-F-2040	L12-F-2030
T-66 Tank	Knockout Pot	T-66 Lites Tank	CSS8 Reactor 2	CSS-8 CSS Reactor 1	CSS-8 Preheater Surge Bin	Hot Oil Storage	T-66 Dump Tank	Silo 7/8 Fines Elutriator	CSS-8 Fines Elutriator Silo 3&4	CSS-8 Fines Elutriator Silo 5&6	CSS-8 Fines Elutriator Silo 2	CSS-8/CSS-9 Salvage Silo 2	CSS - 7- Product Storage Silo 7	CSS-7-Product Storage Silo 8	CSS-8 Product Storage Silo 5	CSS-8 Product Storage Silo 6	CSS-8 Product Storage Silo 3	CSS-8 Product Storage Silo 4
17,500 Gallons	55 Gallons	6,400 Gallons		2.404 ft ³ EA	930 ft ³	17,700 Gallons	116 Gallons	85 ft ²	641 ft ³	4500 ACFM Cyclone	85 ft ²	4000 Ft ³ Silo 84 ft ² Bin Vent	4000 Ft ³ Silo 85 ft ² Bin Vent	4000 Ft ³ Silo 85 ft ² Bin Vent	4000 Ft ³ Silo 84 ft ² Bin Vent	4000 Ft ³ Silo 84 ft ² Bin Vent	4000 Ft ³ Silo 84 ft ² Bin Vent	4000 Ft ³ Silo 84 ft ² Bin Vent
1976	1976	1994	1994	1991	1991	1988	1988	1990	1991	1991	1991	1987	1987	1987	1987	1987	1987	1987

Pages 9 of s 15

CSS-8 Verification Bin	CSS -8 Product Cooler	CSS-8 Preheater CSS-8 Preheater Furnace	CSS-8 Crystallizer CSS-8 Crystallizer Furnace	SS-8 Crystallizer Surge Bin	Crystallizer Blend feed silo
1000 ft ³	22.75 ft2 954 Ft2 Dust Collector	27.7 ft ² / 1.2MMBtu/hr 1178 FT ² Dust Collector	68.4 ft ² /2. <mark>8</mark> MMBtu/hr 2121 FT ² Dust Collector	1,244 ft³ Silo 106 ft ² Dust Collector	3500 Ft ³ Blender Silo 424 ft2 Bin Vent
1991	1991	1991	1991	1991	1991

9P-1030	9P-2030	9P-1010	9P-1030	9ECS5	9E - 11	9E - 10		9P-6110	9P-2701B	9P-2701A	1605-d6	9P-1701B	9P-1701A	9P-7040	
			None	L15-M-1020 Baghouse	None	Baghouse	L17-M-7230	None	L15-M-2701B Baghouse	L15-M-2701A Baghouse	None	L15-M-1701B Baghouse	L15-M-1701A Baghouse		
			L15-U-1030	L15-F-1020	L17-M-7240	L17-F-7140	L17-F-7130	L15-U-6110	L15-F-2701B	L15-F-2701A	L15-U-5090	L15-F-1701B	L15-F-1701A		
			CSS-9 Fines Elutriator	CSS-9 Salvage Silo	CSS-9 Fines Elutriator	CSS-9 Product Silo	CSS-9 Product Silo	CSS-9 Fines Elutriator	CSS-9 Product Silo	CSS-9 Product Silo	CSS-9 Fines Elutriator	CSS-9 Verification Bin	CSS-9 Verification Bin		CSS-9
			150 ft ²	4,000 ft ³	700 acfm	4,000 ft ³	4.000 ft ³	150 ft ²	4,000 ft ³	4,000 ft ³	150 ft ²	920 ft ³	920 ft ³		
			1991	1977	1991	1991	1991	1991	1988	1988	1661	1988	1988		

		222
Not in annual parmits for some reason	UPUL N DECU	0T0/-4-670
	CT2-IA1-1040	C29-F-7020
Correct control desires amireion ID ato	L15-M-5140	115-5-5100
	Binvent	
Connect operational distance on the state	L15-M-5130	ו זב ב בטסט
	Binvent	LT1-L-0000
deleted - never existed		
Correct control device, emission ID, etc	L16-M-6170 Binvent	L16-F-6120
Correct control device, emission JD, etc	L16-M-6160 Binvent	L16-F-6110
correct emission and control unit IDs to reflect actual configuration	L16-M-6130	L16-P-6120
correct description, capacity	L17-M-7230	L17-F-7130
correct description, capacity	Baghouse	L17-F-7140
as a second and another west The to reflect		

2002	דסלט ור ממזר כמווברנסו	CSS-9 Fines Elutriator Silo 16	L18-P-1040	L18-M-1030
2002		CSS-9 Fines Elutriator Silo 15	L18-P-2040	L18-M-2030
2002	343ft ² Dust Collector	CSS-9 Product Silo 16	L18-F-1010	Baghouse
2002	8000 Ft ³ silos /	CSS-9 Product Silo 15	L18-F-2010	L18-M-1010
1991	4500 ACFM Cyclone	CSS-9 Fines Elutriator Silo 13&14	LI7- P -7010	L17-M-7190

Ì	

Correct control devi deleted - never exis Correct control dev

correct emission and control unit IDs to reflect actual configuration correct description, capacity correct description, capacity correct emission and control unit IDs to reflect actual configuration

deleted - removed on last Reg 13

Г

deleted - removed on last Reg 13

Not in previous permits for some reason

Not in previous permits for some reason Not in previous permits for some reason

Not in previous permits for some reason

CSS-9 Verification Bin Silo 9 CSS-9 Verification Bin Silo 10 CSS-9 Product Silo Silo 11 CSS-9 Product Silo Silo 12 CSS 9 Fines Elutriator Silo 11&12	4000 Ft ³ 4000 Ft ³	1000
CSS-9 ACS South Silo	276 ft ² Dust Collector	2002
Coo-9 ACo south silo	276 It Dust Collector	2002
CSS-9 Verification Bin Silo 9	4000 Ft ³	1988
		Ī
CSS-9 Verification Bin Silo 10	4000 Ft	1988
CSS-9 Product Silo Silo 11	4000 ft ²	1000
CSS-9 Product Silo Silo 12		1300
CSS 9 Fines Elutriator Silo 11&12	4000 ft ²	1988
	4000 ft ² 4500 ACFM Cyclone	1988 1991
CSS-9 Product Silo Silo 14	4000 ft ² 4500 ACFM Cyclone	1988 1991 1991
CSS-9 Product Silo Silo 14 CSS-9 Product Silo Silo 13	4000 ft ² 4500 ACFM Cyclone 4000 Ft ³ Silo	1988 1991 1991 1991 1991

11P-6340			3P-1600	10P-1140	10P-1100	10P-1050	10P-1590	10P-2420		10 P- 0520	OCT IOT	102-1130	10P-3350	10P-2390	10P-1340	
C3A-M-6340		C3T-B-1600 Hot Oil Heater	C3B-M-1430 Baghouse C3T-B-1600 Hot Oil Heater	None	None	L3A-M-1050 Baghouse	C3E-M-1590 Baghouse	C3B-M-2420 Baghouse		C3D-M-0520	Baghouse	L1A-M-1130	C3A-M-3350 Baghouse	C3A-M-2390 Baghouse	C3A-M-1340 Baghouse	
C3A-F-5410		C3C-R-1060	C3B-F-1420	L1A-M-1140	L3A-M-1070	L3A-F-1030	C3E-F-1440	C3B-E-2250	C3D-E-5280	C3D-E-1280	L1A-F-1100	L1A-F-1090	C3A-E-3240	C3A-F-2460	('3A-F-1410	
CSS-11 Crystallizer Blending Silo	CSS-11	CSS-10 R/6 Reactors & Heater	CSS-10 Preheater Surge Bin	CSS-10 Fines Elutriator	CSS-10 Fines Elutriator	CSS-10/CSS-11 Box & Bagging Blender	CSS-10 Verification Bin	CSS-10 Preheater and Heater	CSS-11 Product Cooler	щ	CSS-10 Product Silo	CSS-10 Product Silo	CSS-10 Crystallizer and Heater	CSS-10 Crystallizer Surge Bin	CSS-10 Crystallizer Blending Silo	CSS-10
3,500 A ³		2,404 A ³	785 ft ³	150 A ²	150 ft ²	1,200 R ³	1,450 Ĥ ¹	27.7 ft ² / 0.977 MMBTU/hr	27.7 R ²	9,000 pph	4,000 ft ³	4,000 ft ³	93.5 ft ² / 3.04 MMBTU/hr	1,570 ft ³	3,500 ft ³	
1994		1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	

	3P-1600	11P-2170		11P-1160	11P-1080	11P-1090	1 IP-5590	11P-6420	11P-7350	11P-6390	11P-6340	
C3T-B-1600 Hot Oil Heater	C3B-M-5430 Baghouse C3T-B-1600 Hot Oil Heater	None	Baghouse	LIB-M-1160	None	L3B-M-2060 Baghouse	C3E-M-5590 Baghouse	C3B-M-6420 Baghouse	C3A-M-7350 Baghouse	C3A-M-6390 Baghouse	C3A-M-6340 Baghouse	
C3C-R-5060	C3B-F-5420	L1B-M-2170	L1B-F-2160	L1B-F-2115	L3B-M-2080	L3B-F-2040	C3E-F-5440	C3B-E-6250	C3A-E-7240	C3A-F-5460	C3A-F-5410	
CSS-11 R/6 Reactors & Heater	CSS-11 Preheater Surge Bin	CSS-11 Fines Elutriator	CSS-11 Product Silo	CSS-11 Product Silo	CSS-11 Fines Elutriator	CSS-11 Box and Bagging Blender	CSS-11 Verification Bin	CSS-11 Preheater and Heater	CSS-11 Crystallizer and Heater	CSS-11 Crystallizer Surge Bin	CSS-11 Crystallizer Blending Silo	CSS-11
2,404 ft ³	785 ft ³	150 A ²	4,000 ft ³	4,000 ft ³	150 R ²	1,200 A ³	1,450 ft ³	27.7 ft ² / 0.977 MMBTU/hr	93,5 ft ² / 3 MMBTU/hr	1,244 ft ³	3,500 A ³	
1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	

CSS10 and 11 are all mixed up in current permit - see next page for those corrections and explanations

CSS10 and 11 are all mixed up in current permit - see next page for those corrections and explanations

ъ	
age	
ŝ	
<u>°</u>	
S	
S	

										ļ
C4T-B-1600 Hot Oil Heater	C4T-B-1600 Hot Oil Heater	C4B-M-5430 Baghouse	None	Baghouse	L1C-M-1130	None	C4E-M-5590 Baghous e	C4B-M-6420 Baghouse	C4A-M-7350 Baghouse	C4A-M-6390 Baghouse
C4C-R-5060 C4C-E-6320	E-7070	C4B-F-5420	L1D-M-1130	L1D-F-1120	L1D-F-1110	C4E-M-2080	C4E-F-5440	C4B-E-6250	C4A-E-7240	C4A-F-6460
CSS-13 Reactor & Reheater	CSS-13 Reactor	CSS-13 Preheater Surge Bin	CSS-13 Fines Elutriator	CSS-13 Product Storage	CSS-13 Product Storage	CSS-13 Fines Elutriator	CSS-13 Verification Bin	CSS-13 Preheater & Heater	CSS-13 Crystallizer & Heater	CSS-13 Crystallizer Surge Bin
1,958 ft ³	2,110 ft ³	1,390 A ³	150 ft ²	4,000 ft ³	4,000 ft ³	150 ft ²	1,450 A ¹	43 ft ² / 0.97 MMBTU/hr	93.5 ft ² / 3MMBTU/h r	1,570 A ³
1996	1996	9661	1996	9661	1996	1996	1996	1996	1996	1996
Reheater removed, add existing control device			correct emission and control unit IDs to reflect actual configuration	correct capacity / ID	correct capacity / ID	Doesn [*] t exist - delete	correct capacity	add fumace ID for accuracy, correct capacities	add furnace ID for accuracy, correct capacities	correct capacity
C4C-M-5470 Filter C4T-B-1600 Hot Oil Heater	C4C-M-7700 Filter C4T-B-1600 Hot Oil Heater	C4B-M-5430 Filter C4T-B-1600 Hot Oil Heater	L1D-M-2030 Baghouse	Baghouse	L1C-M-1130		C4E-M-5590	C4B-M-6420 Baghouse	C4A-M-7350 Baghouse	C4A-M-6390 Baghouse
C4C-R-5060 C4C E - 6329	C4C-R-7070	C4B-F-5420	L1D-P-2040	L1D-F-1120	L1D-F-1110		C4E-F-5440	C4B-E-6250 C4B-B-6020	C4A-E-7240 C4A-B-7010	C4A-F-6460
CSS-13 1st Reactor & Reheater	CSS-13 2nd Reactor	CSS-13 Preheater Surge Bin	CSS-13 Fines Elutriator Silo 23&4	CSS-13 Product Silo 24	CSS-13 Product Silo 23		CSS-13 Verification Bin	CSS-13 Preheater CSS-13 Preheater Furnace	CSS-13 Crystallizer CSS-13 Crystallizer Furnace	CSS-13 Crystallizer Surge Bin
1,958 ft3	2,110 ft3	1390 ft3 Silo Cartridge Filter 650 SCFM @ 2 microns and 99% eff.	378 Ft2 Dust Collector	320 Ft ² Dust Collector	4000 ft ³ silos		1,450 ft ³ 236 Ft ² Dust Collector	43 ft ² / <mark>1.6</mark> MMBtu/hr 1790 Dust Collector	93.5 ft ² / 3.04 MMBtu/hr/ 3699 ft ² Dust Collector	1,100 ft ³ 339 FT ² Dust Collector
		2								

13P-1170

13P-1130

13P-5590

3P-2080

12P-6420

4P-1600

13P-7350

13P-6390

CSS-13

He C	4P-1600 Ho		12P-2080	12P-2060	12P-0390	12P-1140	12P-1130 L	12P-1590 C	12P-0520 C	12P-2420	12P-3350 C	12P-2390 C	4P-0340	
C4T-B-1600 Hot Oil Heater	Hot Oil Heater	C4B-M-1430 Baghouse C4T-B-1600	None	L3B-M-2060 Baghouse	L4C-M-0390 Baghouse	None	L1C-M-1130 Baghouse	C4E-M-1590 Baghouse	C4D-M-0520 Baghouse	C4B-M-2420 Baghouse	C4A-M-3350 Baghouse	C4A-M-2390 Baghouse	-	
C4C-R-1060 C4C-E-2320		C4B-F-1420 C4C-R-3070	L3B-M-2080	L3B-F-2040	L4C-F-0210	L1C-M-1140	L1C-F-1090 L1C-F-1110	C4E-F-1440	C4D-E-1280 C4D-E-5280	C4B-E-2250	C4A-E-3240	C4A-F-2460	-	
CSS-12 Reactor & Reheater	CSS-12 Reactor	CSS-12 Preheater Surge Bin	CSS-12 Fines Elutriator	CSS-12/CSS-13 Boxing & Bagging Blender	CSS-12/CSS-13 Salvage Silo	CSS-12 Fines Elutriator	CSS-12 Product Silo CSS-12 Product Silo	CSS-12 Verification Bin	CSS-12 Product Cooler CSS-13 Product Cooler	CSS-12 Prcheater and Heater	CSS-12 Crystallizer & Heater	CSS-12 Crystallizer Surge Bin		CSS-12
1,958 Ĥ ¹	2,110 ft ³	785 ft ²	150 ft ²	1,200 ft ²	1,500 A 2	150 A ²	4,000 ft ³ 4,000 ft ³	1,450 ft ³	42.6 ft ² 42.6 ft ²	43 A ² /	93.5 A ² /	1,570 ft ³		
9661	1996	1996	1996	1996	1996	9661	1996 1996	1996	1996 1996	1996	1996	1996		

noved from CP4C4A-M0300 BagbouseC4A-F0410Vet CSS-12 1A Crystallizer Blend Slo300 m²1994noved from CP4BagbouseC4A-F0410Eant CSS-12 1A Crystallizer Blend Slo4,000 m²2014ormet capacityC4A-M-3300C4A-F2460CSS-12 Crystallizer Sloge Bin330 m²2014ad funace ID for accuracy, correct capacitiesC4A-M-3300C4A-F2460CSS-12 Crystallizer Surge Bin339 m² bast Collector1,100 m²199ad funace ID for accuracy, correct capacitiesC4A-M-3300C4A-F3240CSS-12 Crystallizer Surge Bin39 m² bast Collector199ad funace ID for accuracy, correct capacitiesC4A-M-3300C4A-F3240CSS-12 Crystallizer Funace395 m² bast Collector199correct capacity, correct capacitiesC4D-M0520C4D-F1280CSS-12 Product Cooler43 m² to 16 Moleu/n199correct capacity, control deviceC4D-M0520C4D-F1280CSS-12 Product Cooler45 m² bast Collector199correct capacity, control deviceC4D-M0520C4D-F1280CSS-12 Product Cooler145 m² bast Collector199correct capacity, control deviceC4D-M0520C4D-F1280CSS-12 Product Cooler145 m² bast Collector199correct capacityL1C-M-1130L1C-F1100CSS-12 Product Slo 21200 m² blost Collector199correct capacityL1C-M-1300L1C-F2040CSS-12 Froduct Slo 21200 m² blost Collector199correct capacityL1C-M-1300L1C-F2040CSS-12 Froduct Slo 21200 m² blost Collector1						
BigDouseCLAL-44111East CSS-1211 Crystallizer Blend Silo4,000 ftC4A-M.2390C4A-F.2460CSS-12 Crystallizer Surge Bin339 Fr ¹ Dust CollectorBaghouseC4A-M.3350C4A-F.2460CSS-12 Crystallizer Surge Bin339 Fr ¹ Dust CollectorC4A-M.3350C4A-F.2460CSS-12 Crystallizer Surge Bin339 Fr ¹ Dust CollectorBaghouseC4A-F.220CSS-12 Crystallizer Furnace304 MMBtu/hr/BaghouseC4B-F.220CSS-12 Freheater304 MMBtu/hr/BaghouseC4B-F.220CSS-12 Freheater Furnace309 Fr ¹ Dust CollectorBaghouseC4D-F.2280CSS-13 Freduct Cooler292 Fr ¹ Dust CollectorC4B-M.1300C4E-F.1400CSS-13 Freduct Cooler292 Fr ¹ Dust CollectorBaghouseC4E-F.1100CSS-12 Freduct Silo 214000 fr ² silosL1C-F.2040L1C-F-1000CSS-12 Freduct Silo 21320 Fr ¹ Dust CollectorBaghouseL1C-F-2040CSS-13 Freduct Silo 218 Z2378 Fr ² Dust CollectorBaghouseL1C-F-2040CSS-13 Salvage Silo1,500 ft ³ BaghouseL1C-F-2040CSS-13 Salvage Silo1,5	moved from CP4	C4A-M-0340	C4A-F-0410	West CSS-12/13 Crystallizer Blend Silo	3,500 A ³	1994
Cr4A.M-2390Cr4A-F-2460Cr3S-12 Crystallizer Surge Bin1,00 ft² 339 FT² Dust CollectorBaghouseCr4A-M-3350Cr4A-E-3240Cr3S-12 Crystallizer339 FT² Dust CollectorCraB-M-2420Cr4A-E-3240Cr3S-12 Crystallizer Furnace93.5 ft² 30.4 MMBtu/hr/cruracy, correct capacitiesCr4B-M-2420Cr4A-E-3240Cr3S-12 Crystallizer FurnaceBaghouseCr4A-M-350Cr4A-E-3260Cr3S-12 Crystallizer Furnace30.9 ft² Dust CollectorCruracy, correct capacitiesCr4B-M-2620Cr4B-E-2250Cr3S-12 Preheater Furnace30.9 ft² Dust CollectorBaghouseCr4D-E-1280Cr3S-12 Preheater Furnace1.90 ft² Dust Collector43.ft²/ CoolectorCraB-M-1590Cr4E-F-1280Cr3S-12 Preheater Furnace1.90 ft² Dust CollectorBaghouseCr4D-E-5280Cr3S-13 Product Cooler2.922 ft² Dust CollectorCr1C-M-1300L1C-F-1090Cr3S-12 Product Silo 212.00 ft² SilosBaghouseL1C-F-1110Cr3S-12 Product Silo 21320 Ft² Dust CollectorBaghouseL1C-F-0240Cr3S-12 Fines Elutriator Silo 218.22378 ft² Dust CollectorBaghouseL4C-M-0390L1C-F-0210Cr3S-12 Fines Elutriator Silo 218.22378 ft² Dust CollectorBaghouseL4C-M-0390L4C-F-0210Cr3S-12 Fines Elutriator Silo 218.22378 ft² Dust CollectorBaghouseL4C-M-0390L4C-F-0210Cr3S-12 Fines Elutriator Silo 218.22378 ft² Dust CollectorBaghouseL4C-F-0210Cr3S-12 Fines Elutriator Silo 218.22378 ft² Dust CollectorBag	moved from CP4	Baghouse	C4A-F-0411	East CSS-12/13 Crystallizer Blend Silo	4,000 A ³	2013
Curacy, correct capacitiesC4A-M-3350C4A-E-3240CSS-12 Crystallizer93.5 ft²/BaghouseC4B-M-2420C4B-E-3250CSS-12 Crystallizer Furnace3.04 MMBtu/hr/BaghouseC4B-M-2420C4B-E-2250CSS-12 Preheater3.09 ft² Dust CollectorC4B-M-0520C4D-E-1280CSS-12 Preheater Furnace1.16 MMBtu/hrBaghouseC4D-E-1280CSS-12 Preheater Furnace1.790 Ft² Dust CollectorBaghouseC4D-E-5280CSS-12 Product Cooler1.200 Ft² Dust CollectorC4E-M-1590C4E-F-1440CSS-12 Verification Bin2.36 Ft² Dust CollectorBaghouseL1C-F-1090CSS-12 Product Silo 211.450 Ht³C4D-M-0230L1C-F-1110CSS-12 Product Silo 212.30 Ft² Dust CollectorBaghouseL1C-F-2040CSS-12 Fines Elutriator Silo 21& 320 Ft² Dust CollectorBaghouseL1C-F-0210CSS-12 Fines Elutriator Silo 21& 320 Ft² Dust CollectorBaghouseL1C-F-0210CSS-12 Fines Elutriator Silo 21& 320 Ft² Dust CollectorBaghouseL1C-F-0210CSS-12 Salvage Silo1,500 ft³	COTTECT CAPACITY	C4A-M-2390 Baghouse	C4A-F-2460	CSS-12 Crystallizer Surge Bin	1,100 ft ³ 339 FT ² Dust Collector	1996
Curacy, correct capacitiesC4B-M. 2420C4B-E-2250CSS-12 Preheater43 ft²/ L6 MMBtu/hrBaghouseC4D-M.0520C4B-B-2020CSS-12 Preheater Fumace1.6 MMBtu/hrBaghouseC4D-M.0520C4D-E-1280CSS-12 Preduct Cooler1.790 Ft² Dust CollectorC4E-M-1590C4E-F-1440CSS-12 Verification Bin2922 Ft² Dust CollectorBaghouseL1C-M-1130L1C-F-1090CSS-12 Verification Bin236 Ft² Dust CollectorBaghouseL1C-F-1110CSS-12 Product Silo 214000 ft³ silosBaghouseL1C-P 2040CSS-12 Froduct Silo 21320 Ft² Dust CollectorBaghouseL4C-F-0210CSS-12 Fines Elutriator Silo 21&22378 Ft² Dust CollectorBaghouseL4C-F-0210CSS-12/CSS-13 Salvage Silo1,500 ft³	add fumace ID for accuracy, correct capacities	C4A-M-3350 Baghouse	C4A-E-3240 C4A-B-3010	CSS-12 Crystallizer CSS-12 Crystallizer Furnace	93.5 ft ² / 3.04 MMBtu/hr/ 3699 ft ² Dust Collector	1996
C4D-M-0520C4D-E-1280CSS -12 Product Cooler46.6 ft² CoolersBaghouseC4D-E-5280CSS -13 Product Cooler2922 Ft² Dust CollectorC4E-M-1590C4E-F-1440CSS-13 Product Cooler2922 Ft² Dust CollectorL1C-M-1130L1C-F-1090CSS-12 Verification Bin236 Ft² Dust CollectorBaghouseL1C-F-1100CSS-12 Product Silo 214000 ft³ silosBaghouseL1C-F-1110CSS-12 Product Silo 22320 Ft² Dust CollectorBaghouseL1C-F-2040CSS-12 Fines Elutriator Silo 21&22378 Ft² Dust CollectorBaghouseL4C-F-0210CSS-12/CSS-13 Salvage Silo1,500 ft³	add furnace ID for accuracy, correct capacities	C4B-M-2420 Baghouse	C4B-E-2250 C4B-B-2020	CSS-12 Preheater CSS-12 Preheater Furnace	43 ft ² / <mark>1.6</mark> MMBtu/hr 1790 Ft ² Dust Collector	1996
coldeviceC4E-M-1590 BaghouseC4E-F-1440CSS-12 Verification Bin CSS-12 Product Silo 211,450 ft³ 236 Ft² Dust Collectorcontrol unit IDs to reflectL1C-M-2030 BaghouseL1C-F-1100 L1C-F-2040CSS-12 Product Silo 21 CSS-12 Product Silo 22320 Ft² Dust CollectorBaghouseL1C-P-2040 L4C-M-0390L1C-P-2040CSS-12 Fines Elutriator Silo 21&22 SSS-12 Fines Elutriator Silo 21&22378 Ft² Dust CollectorBaghouseL4C-F-0210CSS-12/CSS-13 Salvage Silo1,500 ft³	correct capacity	C4D-M-0520 Baghouse	C4D-E-1280 C4D-E-5280	CSS -12 Product Cooler CSS -13 Product Cooler	46.6 ft ² Coolers 2922 Ft ² Dust Collector	1996 1996
L1C-M-1130L1C-F-1090CSS-12 Product Silo 214000 ft³ silosBaghouseL1C-F-1110CSS-12 Product Silo 22320 Ft² Dust CollectorBaghouseL1C-P-2040CSS-12 Fines Elutriator Silo 21&22378 Ft² Dust CollectorL4C-M-0390L4C-F-0210CSS-12/CSS-13 Salvage Silo1,500 ft³	correct capacity, control device	C4E-M-1590 Baghouse	C4E-F-1440	CSS-12 Verification Bin	1,450 ft³ 236 Ft ² Dust Collector	1996
control unit IDs to reflect L1C-M-2030 L1C-P-2040 CSS-12 Fines Elutriator Silo 21&22 378 Ft ² Dust Collector Baghouse L4C-M-0390 L4C-F-0210 CSS-12/CSS-13 Salvage Silo 1,500 ft ³	correct capacity	L1C-M-1130 Baghouse	L1C-F-1090 L1C-F-1110	CSS-12 Product Silo 21 CSS-12 Product Silo 22	4000 ft ³ silos 320 Ft ² Dust Collector	1996 1996
L4C-M-0390 Baghouse L4C-F-0210 CSS-12/CSS-13 Salvage Silo	correct emission and control unit IDs to reflect actual configuration	L1C-M-2030 Baghouse	L1C-P-2040	CSS-12 Fines Elutriator Silo 21&22	378 Ft ² Dust Collector	1996
delete - never existed delete - never existed	no changes	L4C-M-0390 Baghouse	L4C-F-0210	CSS-12/CSS-13 Salvage Silo	1,500 ft ³	
delete - never existed	delete - never existed					
	delete - never existed					

CSS-12 1st Reactor & Reheater	CSS-12 2nd Reactor	CSS-12 Preheater Surge Bin
1,958 ft3	2,110 ft3	785 ft3 Silo Cartridge Filter 650 SCFM @ 2 microns and 99% eff.
1996	1996	1996

add existing control devices, correct capacities

C4B-M-1430/1431 Filter C4T-B-1600 Hot Oil Heater

C4B-F-1420

reheaters removed, add existing control devices

C4B-M-3700/3701 Filter C4T-B-1600 Hot Oil Heater C4C-M-4070/4071 C4T-B-1600 Hot Oil Heater

C4C-R-1060 C4C-E- 2320 C4C-R-3070

add existing control device

2009	0.26 MMBtu/hr	Utility Space Heater	UGS-B-4004	None	U-B-4004
2009	0.26 MMBtu/hr	Utility Space Heater	UGS-B-4003	None	U-B-4003
2009	0.26 MMBtu/hr	CP-2 A/C Room Space Heater	UGS-B-4002	None	U-B-4002
2009	0.26 MMBtu/hr	CP-2 A/C Room Space Heater	UGS-B-4001	None	U-B-4001
2009	0.26 MMBtu/hr	Utility Space Heater	UGS-B-1007	None	U-B-1007
2009	0.26 MMBtu/hr	Utility Space Heater	UGS-B-1006	None	U-B-1006
2009	0.26 MMBtu/hr	Utility Space Heater	UGS-B-1005	None	U-B-1005
2009	0.26 MMBtu/hr	Utility Space Heater	UGS-B-1004	None	U-B-1004
2009	0.26 MMBtu/hr	D-155 Space Heater	UGS-B-1060	None	U-B-1060
2009	0.26 MMBtu/hr	D-155 Space Heater	UGS-B-1050	None	U-B-1050
2009	1.6 MMBtu/hr	CP-2 Ops Center Hot Water Boiler	UGS-B-4011	None	U-B-4011
2009	1.6 MMBtu/hr	CP-2 Ops Center Hot Water Boiler	UGS-B-4010	None	U-B-4010
2009	0.9 MMBtu/hr	Front Office Hot Water Boiler	UGS-B-3011	None	U-B-3011
2009	0.9 MMBtu/hr	Front Office Hot Water Boiler	UGS-B-3010	None	U-B-3010
2010	14.2 MMBtu/hr	WWTP Portable Boiler	UGS-B-2010	None	U-B-2010
		Boilers and Heaters			
2007	23.0 MMBtu/hr	Hot Oil Heater	C3T-F-1700	None	3P-1700
1988	24 MMBtu/hr	Hot Oil Heater	C2T-B-9001	None	2P-9001
1996	53.1 MMBtu/hr	Hot Oil Heater	C4T-B-1600	None	4P-1600
1994	53.1 MMBtu/hr	Hot Oil Heater	C3T-B-1600	None	3P-1600
		Hot Oil Heaters			

no changes Delete - comfort heater Delete - comfort heater

				Warehouse		
	WF-6010	MWB-F-1080 Baghouse	L26-F-6010	Warehouse - West Silo	750 ft ³	1959
	D56	None	MW11717	Warehouse Railcar Unloading System	NA	1976
	4P-1010					
	4P-1060					
~	7P-0607	L36-M-0607 Baghouse	L36-F-6040	CSS-7 Box & Bagging Blender	85 ft ²	1988
	10P-1050	L3A-M-1050 Baghouse	L3A-F-1030	CSS-10/CSS-11 Box & Bagging Blender	1,200 ft ³	1994
	10P-1100	None	L3A-M-1070	CSS-10 Fines Elutriator	150 ft ²	1994
	11P-1090	L3B-M-2060 Baghouse	L3B-F-2040	CSS-11 Box and Bagging Blender	1,200 A ³	1994
	11P-1080	None	L3B-M-2080	CSS-11 Fines Elutriator	150 ft ²	1994

005	dit 057	Emergency Electrical Generator	DGM-U-1010	None	DOM-1-1010
961	235 hp	Diesel Generator	U3F-G-171	None	U3F-G-171
195	235 հք	Diesel Generator	P-66	None	P-66
		Generators			

7P-1510

L21-M-1050 Baghouse L22-M-2120 Baghouse

L22-F-2040

CSS-7 Off-Spec Silo B

85 A²

1987

L21-F-1020

CSS-7 Off-Spec Silo A

4,000 A³

1988

7EC-15

2005	250 HP	Emergency Electrical Generator	DGM-U-1010	None	no changes
1976	235 HP	#2 Diesel Fire Pump	U3F-G-1710	None	correct emission ID, description
1959	235 HP	#1 Diesel Fire Pump	Р 66 UTE-G-1020A	None	correct emission ID, description
1987	4000 Ft ² Silo 315 Ft ² Bin Vent	CSS-7 Off-Spec Silo B	L22-F-2040	L22-M-2120 Binvent	Moved from CSS7
1988	4000 Ft ² Silo 315 Ft ² Bin Vent	CSS-7 Off-Spec Silo A	L21-F-1020	L21-M-1050 Binvent	Moved from CSS7
1994	150 Ft ² 150 Ft ^A 2 Dust collector	Box/Bag 11 Fines Elutriator	P-2350	L38-M-2080 Baghouse	Moved from CSS11, corrections
1994	1200 ft3 Silo 85 Ft2 Bin Vent	Box/Bag 11	L3B-F-2040	L3B-M-2060 Binvent	Moved from CSS11
1994	150 Ft ² xxx Dust collector	Box/Bag 10 Fines Elutriator	P-1310	L3A-M-1070 Baghouse	Moved from CSS10, corrections
1994	1200 ft3 Silo 150 Ft2 Bin Vent	Box/Bag 10	L3A-F-1030	L3A-M-1050 Binvent	Moved from CSS10
1988	1500 Ft ³ Surge Bin 85 ft ² Bin Vent	Box/Bag 7	L36-F-6040	L36-M-6060 Binvent	Moved from CSS7 - 6060 not 0660 on control device
1996	396 Ft2 Dust Collector	8ox & Bag 4 Fines Elutriator	L37-P-1060	L31-M-1060 Baghouse	Not in permit for some reason
1986	1500 Ft ³ Silo 85Ft2 Bin Vent	Box & Bag 4	L31-F-1010	L31-M-1010 Bin vent	Not in permit for some reason
1976	NA	Warehouse Railcar Unloading system	MS11717	None	no change
1959/2015	750 ft ³ 236 Ft ² Dust Collector	Warehouse - West Silo	L26-F-6010	L26-M-6010 Baghouse	control device correction, capacity correction

#1 Diesel Fire Pump	235 HP	1959
#2 Diesel Fire Pump	235 HP	1976
Emergency Electrical Generator	250 HP	2005

		Cl s lothol 2						
118-1160 L18-M-2160	110_1160		1994	$4,000 \text{ ft}^3$	CSS-11 Product Silo	L1B-F-2115	LIB-M-1160	110-1160
		move to WH	1994	150 ft ²	CSS-11 Fines Elutriator	L3B-M-2080	None	11P-1080
		move to WH	1994	1,200 ft ³	CSS-11 Box and Bagging Blender	L3B-F-2040	L3B-M-2060 Baghouse	11P-1090
C3E-M-1590 Baghouse	11P-1590	correct capacity, desription	1994	1,450 ft ³	CSS-11 Verification Bin	C3E-F-5440	C3E-M-5590 Baghouse	11P-5590
Baghouse	112-2420	capacities, info	1774	0.977 MMBTU/hr		C202-12-02-20	Baghouse	
C3B-M-2420		add furnace ID for accuracy, Correct	1004	27.7 ft ² /	CCC 11 Prohestor and Usatar	C3B-E-6050	C3B-M-6420	11P-6420
Baghouse	115-3330	capacities, info	1007	3 MMBTU/hr			Baghouse	
C3A-M-3350	110 2250	add furnace ID for accuracy. Correct	1004	93.5 ft ² /	CSS-11 Crystallizer and Heater	C3A-E-7240	C3A-M-7350	11P-7350
C3A-M-2390 Bin Vent	11P-2390	correct emission ID, info	1994	1,244 ft ³	CSS-11 Crystallizer Surge Bin	C3A-F-5460	C3A-M-6390 Baghouse	11P-6390
C3A-M-1340 Baghouse	11P-1340	correct capacity, desription	1994	3,500 ft ³	CSS-11 Crystallizer Blending Silo	C3A-F-5410	C3A-M-6340 Baghouse	11P-6340
					C\$\$-11			
		_						

4P-11	moved from CP4 - correct IDs and other info						
	No heater, add control devices that always existed	1994	2,404 ft ³	CSS-10 R/6 Reactors & Heater	C3C-R-1060	C3T-B-1600 Hot Oil Heater	
3P-16	соттесt control unit ID, minor issues	1994	785 ft ³	CSS-10 Preheater Surge Bin	C3B-F-1420	C3B-M-1430 Baghouse C3T-B-1600 Hot Oil Heater	3P-1600
10P-1:	correct emission and control unit IDs to reflect actual configuration	1994	150 ft ²	CSS-10 Fines Elutriator	L1A-M-1140	None	10P-1140
	move to Warehouse	1994	150 ft ²	CSS-10 Fines Elutriator	L3A-M-1070	None	10P-1100
	move to Warehouse	1994	1,200 ft ³	CSS-10/CSS-11 Box & Bagging Blender	L3A-F-1030	L3A-M-1050 Baghouse	10P-1050
10P-5	correct IDs, etc.	1994	1,450 ft ³	CSS-10 Verification Bin	C3E-F-1440	C3E-M-1590 Baghouse	10P-1590
10P-6	add furnace ID for accuracy. Correct capacities, info	1994	27.7 ft ² /	CSS-10 Preheater and Heater	C3B-E-2250	C3B-M-2420 Baghouse	10P-2420
7-11		1994	27.7 ft ²	CSS-11 Product Cooler	C3D-E-5280	Baghouse	
110-0	correct IDs to be with proper unit, update capacities	1994	9,000 pph	CSS-10 Product Cooler	C3D-E-1280	C3D-M-0520	10P-0520
10P-1	clarify description, capacities	1994 1994	4,000 ft ³ 4,000 ft ³	CSS-10 Product Silo CSS-10 Product Silo	L1A-F-1090 L1A-F-1100	LIA-M-1130 Baghouse	10P-1130
10P-7	add furnace ID for accuracy. Correct capacities, info	1994	93.5 ft ² /	CSS-10 Crystallizer and Heater	C3A-E-3240	C3A-M-3350 Baghouse	10P-3350
10P-6	correct emission ID, info	1994	1,570 ft ³	CSS-10 Crystallizer Surge Bin	C3A-F-2460	C3A-M-2390 Baghouse	10P-2390
10P-6	correct capacity, desription	1994	3,500 ft ³	CSS-10 Crystallizer Blending Silo	C3A-F-1410	C3A-M-1340 Baghouse	10P-1340
	CSS10/11 In Application:			CSS-10		^o ermit:	CSS10/11

CSS10/11 In Application:

				CSS10		
_	10P-6340	C3A-M-6340 Baghouse	C3A-F-5410	CSS-10 Crystallizer Blend Silo	3,500 ft ³ Silo 424 ft ²	1994
	10P-6390	C3A-M-6390 Bin Vent	C3A-F-6460	CSS-10 Crystallizer Surge Silo	1,570 ft ² 106 ft ³ Bin Vent	1994
Correct	10P-7350	C3A-M-7350 Baghouse	C3A-E-7240 C3A-B-7010	CSS-10 Crystallizer CSS-10 Crystallizer furnace	93.5 ft ² / 3.04 MMBtu/hr/ 2121 ft ² Dust Collector	1994
	10P-1130	L1A-M-1130	L1A-F-1090	CSS-10 Product Silo 17	4,000 ft ³ Silos	1994
		Bin Vent	L1A-F-1100	CSS-10 Product Silo 18	235 ft ² Bin Vent	1994
mit,	11P-0520	C3D-M-0520	C3D-E-1280	CSS-11 Product Cooler	9000 pph 2120 FT ² Baghouse	1994
		Baghouse	C3D-E-5280	CSS-10 Product Cooler	27.7 ft ²	1994
orrect	10P-6420	C3B-M-6420 Baghouse	C3B-E-6250 C3B-B-6020	CSS-10 Preheater CSS-10 Preheater Furnace	27.75 ft ² / <mark>1.6</mark> MMBtu/hr 1178 ft ² Dust Collector	1994
	10P-5590	C3E-M-5590 Baghouse	C3E-F-5440	CSS-10 Verification Bin	1450 ft ³ Silo 235 Ft ² Dust Collector	1994

	mit ID, minor issues	
3P-160		

0P-1140	0P-1140 L1A-M-1030 L1A-P-1040	L1A-P-1040	CSS-10 Fines Elutriator Silo 17&18	4500 ACFM Cyclone	1994
3P-1600	C3B-M- 5 430 Filter C3T-B-1600 Hot Oil Heater	C3B-F-5420	CSS-10 Preheater Surge Bin	785 ft3 Silo Cartridge Filter 650 SCFM @ 2 microns and 99% eff.	1994
	C3C-M-5470 Filter C3T-B-1600	C3C-R-5060	CSS-10 CSS Reactor & Heater	2404 ft ³	1994
IP-1101	L4C-M-0220 Binvent	L4C-F-0200	8100 Silo	4000 Ft3 315 Ft2 Bin Vent	1976 / 2011

L1B-F-2110

1994	235 Ft ² Dust Collector	CSS-11 Verification Bin	C3E-F-1440	
	1450 ft ³ Silo			Ŭ
1994	27.75 ft ² / <mark>1.6</mark> MMBtu/hr 1178 ft ² Dust Collector	CSS-11 Preheater CSS-11 Preheater Furnace	C3B-E-2250 C3B-B-2020)
1994	93.5 ft ² / 3.04 MMBtu/hr/ 2121 ft ² Dust Collector	CSS-11 Crystallizer CSS-11 Crystallizer furnace	C3A-E-3240 C3A-B-3010	<u> </u>
1994	1,570 ft ^{2 S} ilo 106 ft ³ Bin Vent	CSS-11 Crystallizer Surge Silo	C3A-F-2460	Ŭ
1994	3,500 ft ³ Silo 424 ft ²	CSS-11 Crystallizer Blend Silo	C3A-F-1410	
		CSS11		

	3P-1600	11P-2170	
C3T-B-1600 Hot Oil Heater	C3B-M-5430 Baghouse C3T-B-1600 Hot Oil Heater	None	Baghouse
C3C-R-5060	C3B-F-5420	L1B-M-2170	L1B-F-2160
CSS-11 R/6 Reactors & Heater	CSS-11 Preheater Surge Bin	CSS-11 Fines Elutriator	CSS-11 Product Silo
2,404 ft ³	785 ft ³	150 ft ²	4,000 ft ³
1994	1994	1994	1994
No heater, add control devices that always existed	correct IDs, etc	correct emission and control unit IDs to reflect actual configuration	
	3P-1600	11P-2170	AATT. ITT
C3C-M- 1470/1471 Filters C3T-B-1600 Hot Oil Heater	C3B-M- 1430/1431 Filter C3T-B-1600 Hot Oil Heater	L1B-M-2030	Bin Vent
C3C-R-1060	C3B-F-1420	L18- P -20 5 0	L1B-F-2120
.060	20	50	20
1060 CSS-11 CSS Reactor-& Heater	20 CSS-11 Preheater Surge Bin	50 CSS-11 Fines Elutriator 19&20	20 CSS-11 Product Silo 20

Page SIS of S