March 19, 2015

Bev McKeone NSR Permitting Supervisor WVDEP, Division of Air Quality 601 – 57th Street, SE Charleston, West Virginia 25304

Re: 45CSR13 Permit Application Camden 17, Well Pad Facility, Camden, West Virginia

Dear Ms. McKeone:

SLR International Corporation (SLR) has prepared the attached Rule 13 Application on behalf of CNX Gas Company, LLC (CNX Gas) for their Camden 17 well pad located near Camden, Lewis County, West Virginia.

CNX Gas plans to operate two nonconventional wells at the Camden 17 well pad along with associated equipment that includes the following:

(4) produced water storage vessels,

(2) condensate storage vessels,

(1) VDU Combustor 9.1 MMBtu/hr,

(2) GPU Units 1 mmBtu/hr, and

truck loading operations.

CNX Gas is proposing to monitor the gas rates sent to the VDU control device along with the gas quality of the stream in (Btu/scf). This additional monitoring and recordkeeping measure of the waste gas burn rate (mmBtu/hr) will assure the source's minor source status is maintained.

March 19, 2015 Page 2

If any additional information is needed, please don't hesitate contacting me by telephone at (304) 545-8563 or by e-mail at jhanshaw@slrconsulting.com.

Sincerely, SLR International Corporation

ansha ess

/Jesse Hanshaw, P.E. Principal Engineer

JH:lev

Attachment:Rule 13 Permit ApplicationccDavid Morris, CNX Gas LLC

global environmental solutions

CNX Gas Company, LLC Camden 17 Well Pad Camden, West Virginia Rule 13 Permit Application SLR Ref: 116.00894.00030

Camden 17 Well Pad Rule 13 Permit Application

Prepared for:

CNX Gas Company, LLC PO Box 1248 Jane Lew, WV 26378

This document has been prepared by SLR International Corporation. The material and data in this permit application were prepared under the supervision and direction of the undersigned.

Ethen Securday

Ethan Saturday, E.I. Staff Engineer

esse ons

Jesse Hanshaw, P.E. Principal Engineer

CONTENTS

ATTACHMENTS

APPLICATION FC ATTACHMENT A ATTACHMENT B ATTACHMENT C ATTACHMENT D ATTACHMENT E ATTACHMENT F ATTACHMENT G ATTACHMENT H ATTACHMENT I	DR PERMIT BUSINESS CERTIFICATE
ATTACHMENT B	
ATTACHMENT C	
ATTACHMENT D	REGULATORY DISCUSSION
ATTACHMENT E	
ATTACHMENT J	
ATTACHMENT K	FUGITIVE EMISSIONS DATA SHEET
ATTACHMENT L	EMISSION UNIT DATA SHEET AIR POLLUTION CONTROL DEVICE
ATTACHMENT M	
ATTACHMENT N	
ATTACHMENT P	PUBLIC NOTICE
ATTACHMENT Q	NOT APPLICABLE (SEE NOTE)
ATTACHMENT R	NOT APPLICABLE (SEE NOTE)
ATTACHMENT S	NOT APPLICABLE (SEE NOTE)
ATTACHMENT T	PERMIT APPLICATION FEE

Notes:

ATTACHMENT Q - No information contained within this application is claimed confidential ATTACHMENT R - No delegation of authority ATTACHMENT S - Not a Title V Permit Revision

APPLICATION FOR PERMIT

Rule 13 Permit Application

Camden 17 Well Pad, New Facility Camden, West Virginia

> CNX Gas Company, LLC PO Box 1248 Jane Lew, West Virginia

Y TI (NOWN): PLEASE CHECK N □ ADMINISTRA Y □ SIGNIFICANT FACT IF ANY BOX ABC	APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL) PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY): ADMINISTRATIVE AMENDMENT IMINOR MODIFICATION SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION			
FOR TITLE V FACILITIES ONLY: Please refer to "Title V Revision Guidance" in order to determine your Title V Revision options (Appendix A, "Title V Permit Revision Flowchart") and ability to operate with the changes requested in this Permit Application.				
ction I. General				
ary of State's Office):	2. Federal Employer ID No. <i>(FEIN):</i> 550738862			
	4. The applicant is the:			
	OWNER OPERATOR BOTH			
5A. Applicant's mailing address:5B. Facility's present physical address:1000 Consol Energy Drive185 Kemper Run RoadCanonsburg, PA 15317Camden, WV 26338				
 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? XES NO If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 				
e the name of parent corpo	pration:			
or otherwise have control	of the proposed site? XES INO			
site.				
е.	· · ·			
 9. Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary classification System (NAICS) code for the facility: 212111 				
11A. DAQ Plant ID No. (for existing facilities only): 11B. List all current 45CSR13 and 45CSR30 (Title V) permit numbers associated with this process (for existing facilities only): 041-00067 PD15-004				
	Y TI (NOWN): PLEASE CHECK N			

12A.

 For Modifications, Administrative Updates or Temporary permits at an existing facility, please provide directions to the present location of the facility from the nearest state road; 				
 For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment B. 				
From the intersection of US-119/US-33 and county route 9 in Camden, WV, take County Route 9 north for 2.4 miles, slight left on Kemper Run road for 0.2 miles, turn left on access road for 0.2 miles then stay left to top of hill to well pad location.				
12B. New site address (if applicable):	12C. Nearest city or town:	12D. County:		
N/A	Camden	Lewis		
12.E. UTM Northing (KM): 4325.666	12F. UTM Easting (KM): 535.738	12G. UTM Zone: 17N		
 Briefly describe the proposed change(s) at the facilit This permit application covers the construction of a we destruction unit, and 6 – 210 BBL storage vessels 		oment: 2 GPU units, 1 vapor		
 14A. Provide the date of anticipated installation or change If this is an After-The-Fact permit application, provided in the second second		14B. Date of anticipated Start-Up if a permit is granted:		
change did happen:	and a second secon	05/22/2015		
14C. Provide a Schedule of the planned Installation of/ Change to and Start-Up of each of the units proposed in this permit application as Attachment C (if more than one unit is involved).				
15. Provide maximum projected Operating Schedule of activity/activities outlined in this application: Hours Per Day 24 Days Per Week 7 Weeks Per Year 52				
16. Is demolition or physical renovation at an existing facility involved? YES NO				
17. Risk Management Plans. If this facility is subject to 112(r) of the 1990 CAAA, or will become subject due to proposed				
changes (for applicability help see www.epa.gov/ceppo), submit your Risk Management Plan (RMP) to U. S. EPA Region III.				
18. Regulatory Discussion. List all Federal and State air pollution control regulations that you believe are applicable to the				
proposed process (if known). A list of possible applicable requirements is also included in Attachment S of this application				
(Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance (<i>if known</i>). Provide this				
information as Attachment D.				
Section II. Additional attachments and supporting documents.				
19. Include a check payable to WVDEP – Division of Air	Quality with the appropriate applicatior	fee (per 45CSR22 and		
45CSR13).				
20. Include a Table of Contents as the first page of you				
21. Provide a Plot Plan , e.g. scaled map(s) and/or sketo source(s) is or is to be located as Attachment E (Re		rty on which the stationary		
 Indicate the location of the nearest occupied structure 	e (e.g. church, school, business, residen	ce).		
22. Provide a Detailed Process Flow Diagram(s) show device as Attachment F.	ving each proposed or modified emission	ns unit, emission point and control		
23. Provide a Process Description as Attachment G.				
 Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable). 				
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.				

I

24. Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.					
 For chemical processes, provide a MSDS for each compound emitted to the air. 					
25. Fill out the Emission Units Table and provide it as Attachment I.					
26. Fill out the Emission Points Data Summary Sheet (Table 1 and Table 2) and provide it as Attachment J.					
27. Fill out the Fugitive Emissions Data	Summary Sheet and provide it	as Attachment K.			
28. Check all applicable Emissions Unit	Data Sheets listed below:				
Bulk Liquid Transfer Operations					
Chemical Processes Hot Mix Asphalt Plant Solid Materials Sizing, Handling and Storage					
Concrete Batch Plant	Incinerator	Facilities			
Grey Iron and Steel Foundry	🛛 Indirect Heat Exchanger	🖾 Storage Tanks			
General Emission Unit, specify:					
· · · · · _ · · · · · · · · · · ·					
Fill out and provide the Emissions Unit D					
29. Check all applicable Air Pollution Co					
Absorption Systems	Baghouse	Flare			
Adsorption Systems	Condenser	Mechanical Collector			
	Electrostatic Precipita				
Other Collectors, specify Vapor Destruction	ction Unit - Enclosed Compustor				
Fill out and provide the Air Pollution Con	trol Device Sheet(s) as Attach	ment M			
30. Provide all Supporting Emissions Calculations as Attachment N , or attach the calculations directly to the forms listed in Items 28 through 31.					
31. Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O.					
Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.					
32. Public Notice. At the time that the application is submitted, place a Class I Legal Advertisement in a newspaper of general					
circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>					
Advertisement for details). Please submit the Affidavit of Publication as Attachment P immediately upon receipt.					
33. Business Confidentiality Claims. D	33. Business Confidentiality Claims. Does this application include confidential information (per 45CSR31)?				
	NO NO				
segment claimed confidential, includin Notice – Claims of Confidentiality"	ng the criteria under 45CSR§31-4 guidance found in the General I				
See	ction III. Certification o	of Information			
34. Authority/Delegation of Authority. Check applicable Authority Form bel	Only required when someone ot ow:	her than the responsible official signs the application.			
Authority of Corporation or Other Busin	ess Entity	Authority of Partnership			
Authority of Governmental Agency		Authority of Limited Partnership			
Submit completed and signed Authority Form as Attachment R.					
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.					

35A. Certification of Information. To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE 7. Muhael		DATE: <u>3-18-15</u> (Please use blue ink)
35B. Printed name of signee: Mike Onifer		35C. Title:
[] wie keinder ingen	La Sechebre Toronte	Senior Vice President, Gas Operations
35D. E-mail: craigneal@consolenergy.com	36E. Phone: 724-485-4000	36F. FAX
36A. Printed name of contact person (if different	nt from above): Jesse Hanshaw	36B. Title: Principal Engineer, SLR
36C. E-mail: jhanshaw@slrconsulting.com	36D. Phone: 304-545-8563	36E. FAX: 681-205-8969

 Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table Attachment J: Emission Points Data Summary Sheet 	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information Application Fee
---	---

FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:

Forward 1 copy of the application to the Title V Permitting Group and:

☐ For Title V Administrative Amendments:

NSR permit writer should notify Title V permit writer of draft permit,

For Title V Minor Modifications:

Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,

NSR permit writer should notify Title V permit writer of draft permit.

□ For Title V Significant Modifications processed in parallel with NSR Permit revision:

- □ NSR permit writer should notify a Title V permit writer of draft permit,
- Public notice should reference both 45CSR13 and Title V permits,
- EPA has 45 day review period of a draft permit.

ATTACHMENT A

BUSINESS CERTIFICATE

Rule 13 Permit Application

Camden 17 Well Pad, New Facility Camden, West Virginia

> CNX Gas Company, LLC PO Box 1248 Jane Lew, West Virginia

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

CNX GAS COMPANY LLC

was duly authorized under the laws of this state to transact business in West Virginia as a foreign limited liability company on June 29, 2001.

The company is filed as a term company, for the term ending June 29, 2026.

I further certify that the company's most recent annual report, as required by West Virginia Code §31B-2-211, has been filed with our office and that a certificate of cancellation has not been filed.

i(

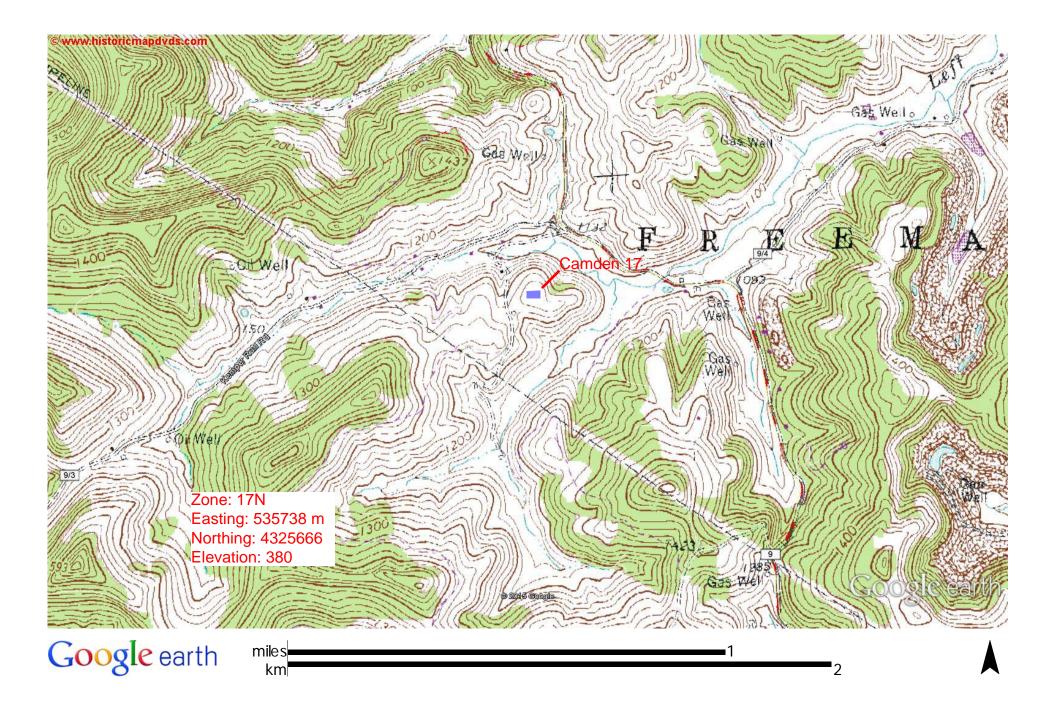
CERTIFICATE OF AUTHORIZATION

Given under my hand and the Great Seal of the State of West Virginia on this day of October 28, 2011

Waterie E Jermienie

Secretary of State


ATTACHMENT B


MAP

Rule 13 Permit Application

Camden 17 Well Pad, New Facility Camden, West Virginia

> CNX Gas Company, LLC PO Box 1248 Jane Lew, West Virginia

ATTACHMENT C

INSTALLATION AND START-UP

Rule 13 Permit Application

Camden 17 Well Pad, New Facility Camden, West Virginia

> CNX Gas Company, LLC PO Box 1248 Jane Lew, West Virginia

INSTALLATION AND STARTUP SCHEDULE

CNX Gas Company, LLC is preparing this facility for an anticipated initial startup date of May 22, 2015.

ATTACHMENT D

REGULATORY DISCUSSION

Rule 13 Permit Application

Camden 17 Well Pad, New Facility Camden, West Virginia

> CNX Gas Company, LLC PO Box 1248 Jane Lew, West Virginia

APPLICABLE REGULATIONS

This facility is subject to the following applicable rules and regulations:

Federal and State:

45 CSR 2 – Particulate Matter Standards from Combustion of Fuel in Indirect Heat Exchangers

The indirect heat exchangers consisting of the GPU heaters are subject to the visible emission standard of §45-2-3 as follows:

3.1. No person shall cause, suffer, allow or permit emission of smoke and/or particulate matter into the open air from any fuel burning unit which is greater than ten (10) percent opacity based on a six minute block average.

However, in accordance with the exemptions defined with §45-2-11 these sources have limited requirements as follows:

11.1. Any fuel burning unit(s) having a heat input under ten (10) million B.T.U.'s per hour will be exempt from sections 4, 5, 6, 8 and 9. However, failure to attain acceptable air quality in parts of some urban areas may require the mandatory control of these sources at a later date.

Therefore, the heat exchangers at this site are exempt from the weight emission standards of section 4 and the control of fugitive particulate matter standards of section 5. The additionally exempt sections of this rule, section 6, 8, and 9 pertain to registration, testing, monitoring, recordkeeping and reporting as well as startup, shutdown and malfunctions.

45 CSR 6 - Open Burning Prohibited

This state rule is geared towards reducing particulate matter emissions from the combustion of refuse and is specific to burning solid waste such as trash, but also includes combustion of waste gas in flares. The rule sets PM limits and establishes a 20% visible emission limit, both of which shouldn't be any problem for the gas fired flare to meet.

The weight rate of waste gas going to the VDU flare is estimated by ProMax simulation to be 24.27 lb/hr or 0.0121 tph. Therefore, the corresponding Rule 6 PM limit would be 0.066 lb/hr. [E(lb/hr) = 5.43×0.0121]

When using emission factors for flare combustion devices presented in AP-42 Chapter 13 it specifies that gas combustion sources should not have PM emissions and therefore no factor is given.

45 CSR 10 - Emission of Sulfur Oxides

The well pad facility evaluated within this application utilizes fuel burning units, but they are all less than the exemption threshold of 10 MMBtu/hr as stated in 45CSR§10-10.1 as follows:

10.1 Any fuel burning units having a design heat input under ten (10) million BTU's per hour will be exempt from section 3 and sections 6 through 8. However, failure to attain acceptable air quality in parts of some urban areas may require the mandatory control of these sources at a later date.

40 CFR 60 Subpart OOOO - Gas Wells NSPS

The Gas wells located on the Camden 17 pad will have completed their flow back process by the time the surface equipment is permitted. Therefore they were required to follow the standards of flowback dictated within §60.5375 (a)(3) and (4) for wells that are hydraulically fractured and commence flowback after August 23, 2011.

40 CFR 61 - This facility is subject to the asbestos inspection and notification requirements related to construction activities containing asbestos.

45 CSR 4 - No Objectionable Odors

45 CSR 11 - Standby Plans for Emergency Episodes.

45 CSR 13 - Permits for Construction, Modification, Relocation, and Operation of Stationary Source of Air Pollutants

The company has applied for a Rule 13 since the facility has plans to operate a flare.

WV Code § 22-5-4 (a) (14)

The Secretary can request any pertinent information such as annual emission inventory reporting. This station is required to submit an annual air emission inventory.

45 CSR 17 - Fugitive Particulate Emissions

NON-APPLICABILITY DETERMINATIONS

The following requirements have been determined "not applicable" due to the following:

45 CSR 27 - To Prevent and Control the Emissions of Toxic Air Pollutants

This rule is not applicable because natural gas is included as a petroleum product and contains less than 5% benzene by weight. 45CSR § 27-2.4 exempts equipment "used in the production and distribution of petroleum products providing that such equipment does not produce or contact materials containing more than 5% benzene by weight."

45 CSR 30 – Requirements for Operating Permits – Title V of the Clean Air Act

This facility does not meet the emission threshold to trigger a 45 CSR 30 Title V Operating Permit nor is it subject to any Federal Standards that trigger the need for a Title V Permit.

40 CFR 60 Subpart JJJJ – Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

There are no stationary spark ignition internal combustion engines on site.

40 CFR 60 Subpart OOOO - Storage Vessel NSPS

The storage vessels have been demonstrated to have PTEs < 6tpy with the use of permitted vapor destruction unit control device. Therefore, the storage vessels at this site are not considered affected sources under this regulation.

40 CFR 60 Subpart OOOO - Pneumatic Control Valve NSPS

The site was evaluated and found to contain only intermittent venting pneumatic control valves rated at less than 6 scf/hr. Therefore the site is not proposing to install or operate any affected continuous bleed pneumatic devices defined by this NSPS for control valves.

40 CFR 63 Subpart ZZZZ – NESHAP for Stationary Reciprocating Internal Combustion Engines

There are no stationary reciprocating internal combustion engines on site.

40 CFR 63 Subpart HH - National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities

There are no plans of installing a TEG dehydration unit at this site.

40 CFR 63 HHH - National Emission Standards for Hazardous Air Pollutants from Natural Gas Transmission and Storage Facilities

This subpart is related to Natural Gas Transmission Facilities which are major sources of HAPs. This federal regulation is not applicable since this facility is neither a transmission facility nor is it a major source of HAPs.

40 CFR 60 Subpart KKK - Natural Gas Processing Plant NSPS

This subpart is not applicable because this station is not a processing site engaged in extracting natural gas liquids by fractionation from natural gas.

Natural gas processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both.

40 CFR 60 Subpart K, Ka, Kb - Storage Vessel NSPS

The six produced water and condensate storage tanks are exempt under 60.110b(d) (4) in accordance with the following: Vessels with a design capacity less than or equal to 1,589.874 m³ (approx 420,000 gallons) used for petroleum or condensate stored, processed, or treated prior to custody transfer.

40 CFR 63 Subpart DDDDD - Boilers & Process Heaters Located at Major Sources of HAPs

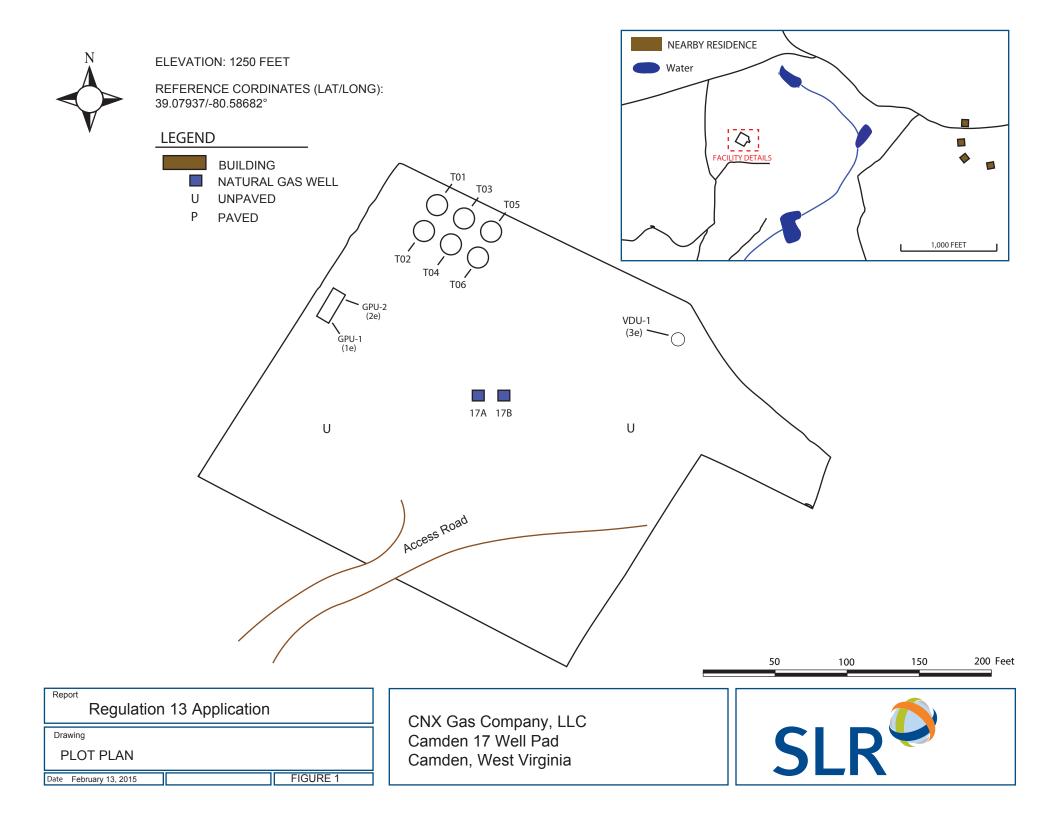
This subpart is not applicable because this facility is not a major source of HAPs.

40 CFR 63 Subpart JJJJJJ - Boilers & Process Heaters Located at Area Sources of HAPs

This subpart is not applicable because the process heaters at this facility use natural gas fuel, which is exempt from regulation under this area source GACT standard.

40 CFR 82 Subpart F - Ozone Depleting Substances

The purpose of this subpart is to reduce emissions of class I and class II refrigerants and their substitutes. The facility does not utilize class I and class II refrigerants and their substitutes.

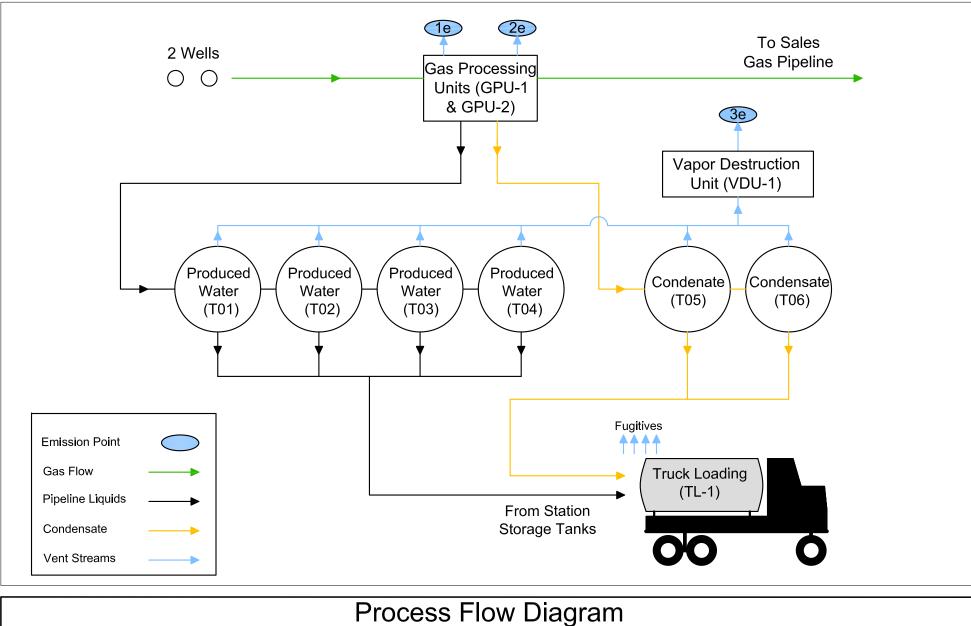

ATTACHMENT E

PLOT PLAN

Rule 13 Permit Application

Camden 17 Well Pad, New Facility Camden, West Virginia

> CNX Gas Company, LLC PO Box 1248 Jane Lew, West Virginia


ATTACHMENT F

PROCESS FLOW DIAGRAM

Rule 13 Permit Application

Camden 17 Well Pad, New Facility Camden, West Virginia

> CNX Gas Company, LLC PO Box 1248 Jane Lew, West Virginia

CNX Gas LLC Camden 17

Camden, West Virginia

ATTACHMENT G

PROCESS DESCRIPTION

Rule 13 Permit Application

Camden 17 Well Pad, New Facility Camden, West Virginia

> CNX Gas Company, LLC PO Box 1248 Jane Lew, West Virginia

CNX Gas Company, LLC is applying for coverage under 45CSR13, Regulation 13, for the construction and operation of an enclosed combustion device at the Camden 17 well pad. The Camden 17 site would like to have the coverage and benefit of utilizing combustion control for its storage vessels. This will allow the site to handle additional condensate flow if present during the latter stages of production at reduced reservoir pressures.

DESCRIPTION OF PROCESS

Natural gas, condensate and produced water will be collected from two nonconventional Marcellus horizontal wells located onsite. The gas and liquids mixture will flow through one of two 1.0 mmBtu/hr gas processing units (GPU-1 & GPU-2), which are both housed as one package skid unit.

In the GPU, the well stream is divided into sales gas, produced water, and condensate. The gas will leave the GPUs and go directly into the sales gas line. The produced water removed is routed to one of four 210 barrel (bbl) produced water storage tanks (T01-T04). The condensate will flow to one of two 210 bbl condensate storage tanks (T05-T06).

The emissions from each of the storage vessels will be routed to a closed vent system directed to the vapor destruction unit (VDU-1). VDU combustor emissions for NO_x , CO, and SO_2 were estimated based on 8760 hours per year operating at maximum rated capacity. The VOC emissions were estimated as 2% of the uncontrolled VOCs predicted using the Promax simulation calculations for storage vessel emissions. The close vent system will be operated in accordance with §60.5411(c) to assure all emissions are routed to the control device and the VDU will continuously monitor pilot light availability.

The contents of the produced water storage vessels are hauled away by 100 bbl trucks (TL-1) at an expected maximum turnover rate of 600 bbl per day from the four tanks. The condensate tank contents are hauled away by 200 bbl trucks at an expected maximum turnover rate of 100 bbl per day between the two tanks. The combined emissions generated by truck loading events for produced water and condensate were evaluated on an uncontrolled basis and found to be relatively minimal at 6.77 tpy VOCs.

AGGREGATION DISCUSSION

CNX Gas has reviewed CONE midstream plans to potentially locate a salt desiccant dryer system on the Camden 17 well site. Although all indications are that this unit will not create any additional emission sources at the site, the unit was conservatively evaluated for aggregation purposes. The only possible emission source associated with the unit would be a liquid knock out stream, which CNX Gas has agreed to route this liquid stream to their condensate storage vessel. These liquids were accounted for within the condensate tank throughputs.

ATTACHMENT H

SAFETY DATA SHEETS (SDS)

Rule 13 Permit Application

Camden 17 Well Pad, New Facility Camden, West Virginia

> CNX Gas Company, LLC PO Box 1248 Jane Lew, West Virginia

Natural Gas Condensate, Sweet or Sour

1. PRODUCT AND COMPANY IDENTIFICATION

Product Name Synonyms	se Condensate (Sweet or Sour), Field Gasoline (Sweet or Sour), Natural Gas t or Sour), Natural Gas Condensate C2-C8	
Chemical Family Intended Use	Petroleum Hydrocarbon Feedstock	
MARPOL Annex I Category	Naphthas and Condensates	
Supplier	J.P. Morgan Ventures Energy Corp. 383 Madison Avenue, 10th Floor New York, NY 10017	JP Morgan Commodities Canada Corp. Suite 600, Vintage Towers II, 326 11 th Avenue SW Calgary, Alberta T2R 0C5
24 Hour Emergency Numbers	Chemtrec: 800-424-9300 JP Morgan Technical Information: 212-8 California Poison Control: 800-356-3219	

2. HAZARDS IDENTIFICATION

GHS Classification

H224	Flammable liquid – Category 1
H304	May be fatal if swallowed and enters airways – Category 1
H319	Eye damage/irritation – Category 2
H335	May cause respiratory irritation – Category 3
H336	Specific target organ toxicity (single exposure) – Category 3
H350	Carcinogenicity – Category 1B
H411 Hazardous to the aquatic environment, chronic toxicity – Category 2	
Hazards Not Oth	erwise Classified

May contain or release poisonous hydrogen sulfide gas

Label Elements

Signal Words Danger

- **GHS Hazard Statements**
- Extremely flammable liquid and vapor H224
- H350 May cause cancer
- May be fatal if swallowed and enters airways H304
- Causes serious eye irritation H319
- May cause drowsiness or dizziness H336
- H315 Causes skin irritation
- H331 Toxic if inhaled
- H411 Toxic to aquatic life with long lasting effects
- **GHS Precautionary Statements**
- Obtain special instructions before use P201
- Do not handle until all safety precautions have been read and understood P202
- Keep away from heat/sparks/open flames/hot surfaces no smoking P210
- Keep container tightly closed P233
- Ground/bond container and receiving equipment P240

2. HAZARDS IDENTIFICATION

P241	Use explosion-proof electrical/ventilating/lighting equipment
P242	Use only non-sparking tools
P243	Take precautionary measures against static discharge
P261	Avoid breathing dust/fume/gas/mist/vapours/spray
P264	Wash thoroughly after handling
P271	Use only outdoors or in a well-ventilated area
P273	Avoid release to the environment
P280	Wear protective gloves / protective clothing / eye protection / face protection
P361, P352,	IF ON SKIN OR HAIR: Remove/take off immediately all contaminated clothing. Wash
P362	with plenty of soap and water. Take off contaminated clothing and wash before reuse.
P305,P351,P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing
P313	If eye irritation persists, get medical advice/attention
P301,P310	IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician
P331	Do NOT induce vomiting
P304,P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing
P312	Call a POISON CENTER or doctor/physician if you feel unwell
P370,P378	In case of fire: Use dry chemical, carbon dioxide, or foam for extinction
P391	Collect spillage
P405	Store locked up
P403,P233, P235	Store in a well-ventilated place. Keep container tightly closed, Keep cool
P501	Dispose of contents/container to approved facility

3. COMPOSITION / INFORMATION ON INGREDIENTS

Components	CAS Registration No.	Concentration (%)
Natural Gas Condensate C2-C8	68919-39-1	100
Benzene	71-43-2	0.1 - 5
n-Butane	106-97-8	5 - 15
Cyclohexane	110-82-7	< 1 - 5
Ethyl Benzene	100-41-4	< 1 - 3
n-Heptane	142-82-5	10 - 20
n-Hexane	110-54-3	2 - 50
Hexane (all isomers)	mixture	2 - 50
Hydrogen Sulfide	7783-06-4	< 0.1 - 20
Methylcyclohexane	108-87-2	5 - 10
n-Nonane	111-84-2	5 - 15
n-Octane	111-65-9	10 - 20
n-Pentane	109-66-0	5 - 20
n-Propane	74-98-6	<1 - 8
Toluene	108-88-3	< 1 - 15
1,2,4 Trimethyl Benzene	95-63-6	< 1 – 4
Xylene, all isomers	1330-20-7	< 1 – 12

4. FIRST AID MEASURES

Inhalation (Breathing)Move the exposed person to fresh air. If not breathing, clear airways and give artificial respiration. If breathing is difficult, humidified oxygen should be administered by qualified personnel. Seek medical attention if breathing difficulties continue.

4. FIRST AID MEASURES

- Eye Contact Flush eyes with water for at least 15 minutes. Hold eyelids apart to ensure complete irrigation of the eye. Remove contact lenses, if worn, after initial flushing. Do not use eye ointment. Seek medical attention.
- Skin Contact Remove contaminated shoes and clothing, and flush affected areas with large amounts of water. If skin surface is damaged, apply a clean dressing and seek medical attention. If skin surface is not damaged, clean affected area thoroughly with mild soap and water. Seek medical attention if tissue appears damaged or if pain or irritation persists. Launder or discard contaminated clothing.
- Ingestion Aspiration hazard. Do not induce vomiting or give anything by mouth because the (Swallowing) material can enter the lungs and cause severe lung damage. If spontaneous vomiting is about to occur, place victim's head below knees. If victim is drowsy or unconscious, place on the left side with head down. Do not leave victim unattended and observe closely for adequacy of breathing. Seek medical attention
- Most Important Acute: Headache, drowsiness, dizziness, loss of coordination, disorientation and Symptoms and fatique Effects

Delayed: Dry skin and possible irritation with repeated or prolonged exposure

Potential Acute Inhalation: Breathing high concentrations may be harmful. Mist or vapor can irritate **Health Effects** the throat and lungs. Breathing this material may cause central nervous system depression with symptoms including nausea, headache, dizziness, fatigue, drowsiness or unconsciousness. This material may contain or liberate hydrogen sulfide, a poisonous gas with the smell of rotten eggs. Hydrogen sulfide and other hazardous vapors may evolve and collect in the headspace of storage tanks or other enclosed vessels. The smell disappears rapidly because of olfactory fatigue so odor may not be a reliable indicator of exposure. Effects of overexposure include irritation of the eyes, nose, throat and respiratory tract, blurred vision, photophobia (light sensitivity) and pulmonary edema (fluid accumulation in lungs). Severe exposures can result in nausea, vomiting, muscle weakness or convulsions, respiratory failure and death. Eye Contact: This product can cause eye irritation from short-term contact with liquid, mists or vapors. Symptoms include stinging, watering, redness and swelling. Effects may be more serious with repeated or prolonged contact. Hydrogen sulfide vapors may cause moderate to severe eye irritation and photophobia (light sensitivity). **Skin Contact:** This product is a skin irritant. Contact may cause redness, itching, burning and skin damage. **Ingestion:** Ingestion may result in nausea, vomiting, diarrhea and restlessness. Aspiration (inadvertent suction) of liquid into the lungs must be avoided as even small quantities in the lungs can produce chemical pneumonitis, pulmonary edema or

Potential Chronic effects of overexposure are similar to acute effects including central nervous Chronic Health system (CNS) effects and CNS depression. Effects may also include irritation of the Effects digestive tract, irritation of the respiratory tract, nausea, vomiting and skin dermatitis.

hemorrhage and even death.

Notes to This material may contain or liberate hydrogen sulfide. In high doses, hydrogen sulfide Physician may produce pulmonary edema and respiratory depression or paralysis. The first priority in treatment should be providing adequate ventilation and administering 100% oxygen. If unresponsive to supportive care, nitrites (amyl nitrite by inhalation or sodium nitrite by I.V.) may be an effective antidote, if delivered within the first few minutes of exposure. For adults, the dose is 10 ml of a 3NaNO₂ solution (0.5 gm NaNO₂ in 15 ml water) IV over 2 to 4 minutes. The dosage should be adjusted in children or in the

4. FIRST AID MEASURES

presence of anemia and methemoglobin levels, arterial blood gases, and electrolyties should be monitored.

Epinephrine and other sympathomimetic drugs may initiate cardiac arrhythmias in persons exposed to high concentrations of hydrocarbon solvents (e.g., in enclosed spaces or with deliberate abuse). The use of other drugs with less arrhythmogenic potential should be considered. If sympathomimetic drugs are administered, observe for the development of cardiac arrhythmias.

Ingestion of this product or subsequent vomiting may result in aspiration of light hydrocarbon liquid, which may cause pneumonitis. Inhalation overexposure can produce toxic effects, monitor for respiratory distress. If cough or breathing difficulties develop, evaluate for upper respiratory tract inflammation, bronchitis and pneumonitis.

Skin contact may aggravate an existing dermatitis. High pressure injection injuries may cause necrosis of underlying tissue regardless of superficial appearance.

Federal regulations (29 CFR 1910.1028) specify medical surveillance programs for certain exposures to benzene above the action level or PEL (specified in Section (i)(1)(i) of the Standard). In addition, employees exposed in an emergency situation shall, as described in Section (i)(4)(i), provide a urine sample at the end of the shift for measurement of urine phenol.

5. FIRE FIGHTING MEASURES

Flammability Classification	OSHA Classification (29 CFR 1910.1200): Flammable Liquid NFPA Class-1B Flammable Liquid NFPA Ratings: Health: 3, Flammability: 4, Reactivity: 0
Flash Point	< -46°C, < -50°F (ASTM D-56)
Flammable Limits	Lower Limit: < 1% Upper Limit: 10%
Autoignition Temperature	232°C, 450°F
Combustion Products	Highly dependent on combustion conditions. Fume, smoke, carbon monoxide, carbon dioxide, sulfur and nitrogen oxides, aldehydes and unburned hydrocarbons.
Fire and Explosion Hazards	This material is extremely flammable and can be ignited by heat, sparks, flames or other sources of ignition (e.g., static electricity, pilot lights, mechanical/electrical equipment and electronic devices such as cell phones, computers, calculators and pagers which have not been certified as intrinsically safe). Vapors are heavier than air and can accumulate in low areas. May create vapor/air explosion hazard indoors, in confined spaces, outdoors or in sewers. Vapors may travel considerable distances to a remote source of ignition where they can ignite, flash back or explode. Product can accumulate a static charge that may cause a fire or explosion. A product container, if not properly cooled, can rupture in the heat of a fire.
Extinguishing Media	Dry chemical, carbon dioxide or foam is recommended. Water spray is recommended to cool or protect exposed materials or structures. Carbon dioxide can displace oxygen. Use caution when applying carbon dioxide in confined spaces. Water may be

5. FIRE FIGHTING MEASURES

ineffective for extinguishment, unless used under favorable conditions by experienced fire fighters.

Fire Fighting Use water spray to cool fire-exposed containers and to protect personnel. Isolate immediate hazard area and keep unauthorized personnel out. Water spray may be useful in minimizing or dispersing vapors and to protect personnel. Cool equipment exposed to fire with water. Avoid spreading burning liquid with water used for cooling. For fires beyond the incipient stage, emergency responders in the immediate hazard area should wear protective clothing. When the potential chemical hazard is unknown, in enclosed or confined spaces, or when explicitly required by regulations, a self-contained breathing apparatus should be worn. Wear other appropriate protective equipment as conditions warrant.

6. ACCIDENTAL RELEASE MEASURES

- **Personal Precautions** Extremely Flammable. Spillage of liquid product will create a fire hazard and may form an explosive atmosphere. Keep all sources of ignition and hot metal surfaces away from spill/release. The use of explosion-proof electrical equipment is recommended. Product may contain or release poisonous hydrogen sulfide gas. If the presence of dangerous amounts of H₂S around the spilled product is suspected, additional or special actions may be warranted including access restrictions and the use of protective equipment. Stay upwind and away from spill/release. Isolate immediate hazard area and keep unauthorized personnel out. Wear appropriate protective equipment as conditions warrant per Exposure Controls/Personal Protection guidelines.
- **Environmental Precautions** Stop the leak if it can be done without risk. Prevent spilled material from entering waterways, sewers, basements or confined areas. Contain release to prevent further contamination of soils, surface water or groundwater. Clean up spill as soon as possible using appropriate techniques such as applying non-combustible absorbent materials or pumping. All equipment used when handling the product must be grounded. A vapor suppressing foam may be used to reduce vapors. Use clean nonsparking tools to collect absorbed material. Where feasible and appropriate, remove contaminated soil.
- Methods for Containment and Clean Up Methods for Containment and Clean Up Methods for Containment and Later recovery or disposal of spilled material. Absorb spill with inert material such as sand or vermiculite and place in suitable container for disposal. If spilled on water, remove with appropriate equipment like skimmers, booms or absorbents. In case of soil contamination, remove contaminated soil for remediation or disposal in accordance with applicable regulations.
- **Reporting** Report spills/releases as required, to appropriate local, state and federal authorities. US Coast Guard and Environmental Protection Agency regulations require immediate reporting of spills/release that could reach any waterway including intermittent dry creeks. Report spill/release to the National Response Center at (800) 424-8802. In case of accident or road spill, notify Chemtrec at (800) 424-9300.

7. HANDLING AND STORAGE

Precautions for Safe Handling Extremely flammable. May vaporize easily at ambient temperatures. The vapor is heavier than air and may create an explosive mixture of vapor and air. Beware of accumulation in confined spaces and low lying areas.

7. HANDLING AND STORAGE

Use non-sparking tools and explosion-proof equipment. Open container slowly to relieve any pressure. Bond and ground all equipment when transferring from one vessel to another. Can accumulate static charge by flow or agitation. Can be ignited by static discharge. Explosion-proof electrical equipment is recommended and may be required by fire codes.

Warning! Use of this material in spaces without adequate ventilation may result in the generation of hazardous levels of combustion products and/or inadequate oxygen levels for breathing. Odor is an inadequate warning for hazardous conditions.

To prevent and minimize fire or explosion risk from static accumulation and discharge, effectively bond and/or ground product transfer system. Do not use electronic devices (such as cellular phones, computers, calculators, pagers, etc.) in or around any fueling operation or storage area unless the devices are certified as intrinsically safe. Electrical equipment and fittings should comply with local fire codes.

Precautions for Safe Storage Use and store this material in cool, dry, well-ventilated areas away from heat, direct sunlight, hot metal surfaces and all sources of ignition. Post area warnings: 'No Smoking or Open Flame'. Keep away from incompatible material. Outdoor or detached storage of portable containers is preferred. Indoor storage should meet OSHA standards and appropriate fire codes.

In a tank, barge or other closed container, the vapor space above materials containing hydrogen sulfide may result in concentrations of H_2S immediately dangerous to life or health. Check atmosphere for oxygen content, H_2S and flammability prior to entry.

Portable containers should never be filled while they are in or on a motor vehicle or marine craft. Static electricity may ignite vapors when filling non-grounded containers or vehicles on trailers. To avoid static buildup, do not use a nozzle lock open device. Use only approved containers. Keep containers tightly closed. Place the container on the ground before filling. Keep the nozzle in contact with the container during filling.

Empty containers retain liquid and vapor residues and can be dangerous. Do NOT pressurize, cut, weld, braze, solder, drill, grind or expose containers to heat, flame, sparks, static electricity or other sources of ignition; they may explode and cause injury or death. Do not attempt to refill or clean containers since residue is difficult to remove. Empty drums should be completely drained, properly closed and returned to the supplier or a qualified drum reconditioner. All containers should be disposed of in an environmentally safe manner in accordance with government regulations.

Component	ACGIH Exposure Limits	OSHA Exposure Limits	NIOSH Exposure Limits
Natural Gas Condensate	300 ppm TWA 500 ppm STEL (as gasoline)	300 ppm TWA 500 ppm STEL (as petroleum distillate (naphtha))	450 ppm TWA 1100 ppm IDLH (as petroleum distillate (naphtha))
Benzene	0.5 ppm TWA 2.5 ppm STEL Skin	1 ppm TWA 5 ppm STEL Skin	0.5 ppm TWA 1 ppm STEL Skin 500 ppm IDLH
n-Butane	800 ppm TWA		800 ppm TWA

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

J.P. Morgan Ventures Energy Corp. JP Morgan Commodities Canada Corp.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Component	ACGIH Exposure Limits	OSHA Exposure Limits	NIOSH Exposure Limits
Cyclohexane	100 ppm TWA	300 ppm TWA	300 ppm TWA
			1300 ppm IDLH
Ethyl Benzene	100 ppm TWA 125 ppm STEL	100 ppm TWA 125 ppm STEL	100 ppm TWA
			125 ppm STEL
			800 ppm IDLH
n-Heptane	400 ppm TWA 500 ppm STEL	500 ppm TWA	85 ppm TWA
			440 ppm Ceiling
			750 ppm IDLH
n-Hexane	50 ppm TWA Skin	500 ppm TWA	50 ppm TWA
			1100 ppm IDLH
Hexane (all	500 ppm TWA		100 ppm TWA
isomers)	1000 ppm STEL		510 ppm IDLH Ceiling
Hydrogen Sulfide	10 ppm TWA	20 ppm Ceiling	10 ppm Ceiling
	15 ppm STEL	50 ppm Peak	100 ppm IDLH
Methylcyclohexane	400 ppm TWA	500 ppm TWA	400 ppm TWA
			1200 ppm IDLH
n-Nonane	200 ppm TWA		200 ppm TWA
n-Octane	300 ppm TWA	500 ppm TWA	75 ppm TWA
			385 ppm Ceiling
			1000 ppm IDLH
n-Pentane	600 ppm TWA	1000 ppm TWA	120 ppm TWA
			610 ppm Ceiling
			1500 ppm IDLH
n-Propane	2500 ppm TWA	1000 ppm TWA	1000 ppm TWA
			2100 ppm IDLH
Toluene	50 ppm TWA Skin	200 ppm TWA	100 ppm TWA
		300 ppm Ceiling	150 ppm STEL
		500 ppm Peak-10 min	500 ppm IDLH
1,2,4 Trimethyl Benzene	25 ppm TWA	25 ppm TWA	25 ppm TWA
Xylene, all isomers	100 ppm TWA	100 ppm TWA	900 ppm IDLH
	150 ppm STEL	150 ppm STEL	
Note: State, local or other or similar professional for fu	agencies or advisory groups may	have established more stringent limi	ts. Consult an industrial hygienist

ACGIH - American Conference of Government Industrial Hygienists, OSHA - Occupational Safety and Health Administration, NIOSH - National Institute for Industrial Safety and Health, TWA - Time Weighted Average (8 hour average for ACGIH and OSHA, 10 hour average for NIOSH), STEL - 15 Minute Short Term Exposure Level, Skin - indicates potential for cutaneous absorption of liquid or vapor through the eyes or mucous membranes, Ceiling - Ceiling Level, Peak - Acceptable peak over the ceiling concentration for a specified number of minutes, IDLH - Immediately Dangerous to Life and Health

Personal Protective Equipment

- **General Considerations** Considerations Constructions Construc
- Engineering Use process enclosures, local exhaust ventilation or other engineering controls to maintain airborne levels below the recommended exposure limits. An emergency eye wash station and safety shower should be located near the work station.

Natural Gas Condensate, Sweet or Sour

J.P. Morgan Ventures Energy Corp. JP Morgan Commodities Canada Corp.

Personal Protective Equipment

- Personal
Protective
EquipmentIf engineering controls or work practices are not adequate to prevent exposure to
harmful levels of this material, personal protective equipment (PPE) is recommended. A
hazard assessment of the work should be conducted by a qualified professional to
determine what PPE is required.
 - **Respiratory Protection** A respiratory protection program that meets or exceeds OSHA 29 CFR 1910.134 and ANSI Z.88.2 should be followed whenever workplace conditions warrant the use of a respirator. When airborne concentrations are expected to exceed the established exposure limits given in Section 8, use a NIOSH approved air purifying respirator equipped with organic vapor cartridges/canisters. Use a full-face positive-pressure supplied air respirator in circumstances where air-purifying respirators may not provide adequate protection or where there may be the potential for airborne exposure above the exposure limits. If exposure concentration is unknown, IDLH conditions exist or there is a potential for exposure to hydrogen sulfide above exposure limits, use a NIOSH approved self contained breathing apparatus (SCBA) or equivalent operated in a pressure demand or other positive pressure mode.
 - Eye protection that meets or exceeds ANSI Z.87.1 is recommended if there is a potential for liquid contact to the eyes. Safety glasses equipped with side shields are recommended as minimum protection in industrial settings. Chemical goggles should be worn during transfer operations or when there is a likelihood of misting, splashing or spraying of this material. A face shield may be necessary depending on conditions of use.
 - Skin and
Body
ProtectionAvoid skin contact. Wear long-sleeved fire-retardant garments while working with
flammable and combustible liquids. Additional chemical-resistant protective gear may
be required if splashing or spraying conditions exist. This may include an apron, arm
covers, impervious gloves, boots and additional facial protection.
 - Hand Protection Avoid skin contact. Use impervious gloves (e.g., PVC, neoprene, nitrile rubber). Check with glove suppliers to confirm the breakthrough performance of gloves. PVC and neoprene may be suitable for incidental contact. Nitrile rubber should be used for longer term protection when prolonged or frequent contact may occur. Gloves should be worn on clean hands and hands should be washed after removing gloves. Also wash hands with plenty of mild soap and water before eating, drinking, smoking, using toilet facilities or leaving work.
- Special Considerations Workplace monitoring plans should consider the possibility that heavy metals such as mercury may concentrate in process vessels and equipment presenting the possibility of exposure during sampling and maintenance operations. Mercury and other heavy metals may be present in trace quantities in crude oil, raw natural gas and condensates. Storage and processing of these materials can result in these metals, including elemental mercury, accumulating in enclosed vessels and piping, typically at the low point of the processing equipment. Mercury may also concentrate in sludges, sands, scales, waxes and filter media.

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance	Clear to dark brown liquid	Physical Form	Liquid
Odor	Strong hydrocarbon, sulfurous odor possible	Odor Threshold	Not established
рН	Neutral	Vapor Pressure	5 - 15 psi (Reid)
Vapor Density	>1 (air = 1)	Boiling Point/Range	-20-1000°F/-17-538°C

9. PHYSICAL AND CHEMICAL PROPERTIES

Percent Volatile	>50%	Partition Coefficient	Not established
Specific Gravity	0.6 - 0.8 @ 60°F	Density	6.3 lb/gal @ 60°F
Molecular Weight	Not determined	Evaporation Rate	Not established
Flash Point	<100°F/<38°C	Test Method	ASTM D-56
Explosive Limits	< 1% LEL, 10% UEL	Autoignition Temperature	450°F/232°C
Solubility in Water	Slightly soluble in water		

10. STABILITY AND REACTIVITY

Stability	Stable under normal anticipated storage and handling temperatures and pressures. Extremely flammable liquid and vapor. Vapor can cause flash fire.
Conditions to Avoid	Avoid high temperatures and all possible sources of ignition. Prevent vapor accumulation.
Incompatibility (Materials to Avoid)	Avoid contact with strong oxidizing agents such as strong acids, alkalies, chlorine and other halogens, dichromates or permanganates, which can cause fire or explosion.
Hazardous Decomposition Products	Hazardous decomposition products are not expected to form curing normal storage. The use of hydrocarbon fuel in an area without adequate ventilation may result in hazardous levels of combustion products (e.g., oxides of carbon, sulfur and nitrogen, benzene and other hydrocarbons) and/or dangerously low oxygen levels.
Hazardous Polymerization	Not known to occur

11. TOXICOLOGICAL INFORMATION

Overview This product is a clear to dark brown liquid with a strong hydrocarbon odor. It may also have a sulfurous or rotten egg odor. Hydrogen sulfide, an extremely flammable and very toxic gas is expected to be present. This product is a volatile and extremely flammable liquid that may cause flash fires. Keep away from heat, sparks and flames and other sources of ignition. This product contains benzene, which may cause cancer or be toxic to blood forming organs. It contains material that has caused cancer based on animal data. Never siphon this product by mouth. If swallowed, this product may be aspirated into the lungs and cause lung damage or death.

This material may contain benzene and ethyl benzene at concentrations above 0.1%. Benzene is considered to be a known human carcinogen by OSHA, IARC and NTP. IARC has ethyl benzene, gasoline and gasoline engine exhaust as possibly carcinogenic to humans (Group 2B) based on laboratory animal studiesal studies.

Toxicological Information of the Material.

Acute Toxicity Dermal: Low Toxicity: LD50 > 2000 mg/kg (rabbit) Causes mild skin irritation. Repeated exposure may cause skin dryness or cracking that can lead to dermatitis.

Inhalation: Hydrogen Sulfide is Extremely Toxic: LC100 = 600 ppm(v), 30 min (man)

11. TOXICOLOGICAL INFORMATION

	 Product expected to have low degree of toxicity by inhalation: LC 50 > 5.2 mg/l (vapor) Effect of overexposure may include irritation of the digestive tract, irritation of the respiratory tract, nausea, vomiting, diarrhea and signs of central nervous system depression (e.g., headache, drowsiness, dizziness, loss of coordination, disorientation and fatigue). Continued inhalation may result in unconsciousness and/or death. Ingestion: Product expected to have low degree of toxicity by ingestion: Oral LD50 > 5 g/kg (rat), > 10 g/kg (mice) Aspiration into the lungs when swallowed or vomited may cause chemical
	pneumonitis which can be fatal.
Eye Damage / Irritation	Causes serious eye irritation.
Sensitization	Skin: Not expected to be a skin sensitizer Respiratory: Not expected to be a respiratory sensitizer
Specific Target Organ Toxicity	Single Exposure: High concentrations may cause irritation of the skin, eyes, digestive tract, irritation of the respiratory tract, nausea, vomiting, diarrhea and signs of central nervous system depression (e.g., headache, drowsiness, dizziness, loss of coordination, disorientation and fatigue). Continued inhalation may result in unconsciousness and/or death.
	Repeated Exposure: Two year inhalation studies of wholly vaporized unleaded gasoline and 90 day studies of various petroleum naphthas did not produce significant target organ toxicity in laboratory animals. Nephropathy in male rates, characterized by the accumulation of alpha-2-uglobulin in epithelial cells of the proximal tubules was observed, however follow up studies suggest that these changes are unique to the male rat.
Conditions Aggravated by Overexposure	Disorders of the organs or organ systems that may be aggravated by significant exposure to this material or its components include the skin, respiratory system, liver, kidneys, CNS, cardiovascular system and blood-forming system.
Carcinogenicity	May cause cancer based on component information.
	Two year inhalation studies of vaporized unleaded gasoline produced an increased incidence of kidney tumors in male rats and liver tumors in female mice. Repeated skin application of various petroleum naphthas in mice for two years resulted in an increased incidence of skin tumors but only in the presence of severe skin irritation. Follow up mechanistic studies suggest that the occurrence of these tumors may be the consequence of promotional process and not relevant to human risk assessment. Epidemiology data collected from a study of more than 18,000 petroleum marketing and distribution workers showed no increased risk of leukemia, multiple myeloma or kidney cancer from gasoline exposure.
	Unleaded gasoline has been identified as a possible carcinogen by the International Agency for Research on Cancer.
Germ Cell Mutagenicity	Inadequate information available, not expected to be mutagenic.

11. TOXICOLOGICAL INFORMATION

Reproductive and Developmental Toxicity	Not expected to cause reproductive or developmental toxicity. No evidence of developmental toxicity was found in pregnant laboratory animals (rats and mice) exposed to high vapor concentrations of unleaded gasoline and petroleum naphthas via inhalation. A two generation reproductive toxicity study of vapor recovery gasoline did not adversely affect reproductive function or offspring survival and development.
--	---

Additional Information Hydrogen Sulfide (H₂S). This material may contain or liberate H₂S, a poisonous gas with the smell of rotten eggs. Odor is not a reliable indicator of exposure because olfactory fatigue causes the smell to disappear. H₂S has a broad range of effects depending on the airborne concentration and length of exposure: 10 ppm: eye and respiratory tract irritation

100 ppm: coughing, headache, dizziness, nausea, eye irritation, loss of sense of smell in minutes

200 ppm: potential for pulmonary edema after 20 minutes

500 ppm: loss of consciousness after short exposures, potential for respiratory arrest

1000 ppm: Immediate loss of consciousness may lead rapidely to death, prompt cardiopulmonary resuscitation may be required.

Toxicological Information of Components

Benzene 71-43-2

Acute Data:

Dermal LD50 > 9400 mg/kg (Rabbit), (Guinea Pig)

LC50 = 9980 ppm (Mouse); 10000 ppm/7hr (Rat)

Oral LD50 = 4700 mg/kg (Mouse); 930 mg/kg (Rat); 5700 mg/kg (Mammal)

Carcinogenicity: Benzene is an animal carcinogen and is known to produce acute myelogenous leukemia (a form of cancer) in humans. Benzene has been identified as a human carcinogen by NTP, IARC and OSHA.

Target Organs: Prolonged or repeated exposures to benzene vapors has been linked to bone marrow toxicity which can result in blood disorders such as leukopenia, thrombocytopenia, and aplastic anemia. All of these diseases can be fatal.

Developmental: Exposure to benzene during pregnancy demonstrated limited evidence of developmental toxicity in laboratory animals. The effects seen include decreased body eight and increased skeletal variations in rodents. Alterations in hematopoeisis have been observed in the fetuses and offspring of pregnant mice.

Mutagenicity: Benzene exposure has resulted in chromosomal aberrations in human lymphocytes and animal bone marrow cells, and DNA damage in mammalian cells in vitro

Cyclohexane 110-82-7

Acute Toxicity:

Dermal LD50 => 2 g/kg (Rabbit) LC50 > 4,044 ppm (4-hr, Rat) Oral LD50 > 2 g/kg (Rat)

Target Organs: Cyclohexane can cause eye, skin and mucous membrane irritation, CNS depressant and narcosis at elevated concentrations. In experimental animals exposed to lethal concentrations by inhalation or oral route, generalized vascular damage and degenerative changes in the heart, lungs, liver, kidneys and brain were identified.

Developmental: Cyclohexane has been the focus of substantial testing in laboratory animals. Cyclohexane was not found to be genotoxic in several tests including unscheduled DNA synthesis, bacterial and mammalian cell mutation assays, and in vivo chromosomal aberration. An increase in chromosomal aberrations in bone marrow cells of rats exposed to cyclohexane was reported in the 1980's. However, a careful reevaluation of slides from this study by the laboratory which conducted the study indicates these findings were in error, and that no significant chromosomal effects were

Natural Gas Condensate, Sweet or Sour

11. TOXICOLOGICAL INFORMATION

observed in animals exposed to cyclohexane. Findings indicate long-term exposure to cyclohexane does not promote dermal tumorigenesis.

Ethyl Benzene 100-41-4

Acute Toxicity:

Dermal LD50 = 17800 mg/kg (Rabbit) LC50 = 4000 ppm/4 hr; 13367 ppm (Rat) Oral LD50 = 3500 mg/kg (Rat)

Carcinogenicity: Rats and mice exposed to 0, 75, 250, or 750 ppm ethyl benzene in a two year inhalation study demonstrated limited evidence of kidney, liver, and lung cancer. Ethyl benzene has been listed as a possible human carcinogen by IARC. Ethyl benzene has not been listed as a carcinogen by NTP or OSHA.

Target Organs: In rats and mice exposed to 0, 75, 250, or 750 ppm ethyl benzene in a two year inhalation study there was mild damage to the kidney (tubular hyperplasia), liver (eosinophilio foci,hypertrophy, necrosis), thyroid (hyperplasia) and pituitary (hyperplasia).

n-Hexane 110-54-3

Acute Toxicity:

Dermal LD50 = >2,000 mg/kg (Rabbit) LC50 > 3,367 ppm (4 hr, Rat) Oral LD50 > 5,000 mg/kg (Rat)

Target Organs: Excessive exposure to n-hexane can result in peripheral neuropathies. The initial symptoms are symmetrical sensory numbness and paresthesias of distal portions of the extremities. Motor weakness is typically observed in muscles of the toes and fingers but may also involve muscles of the arms, thighs and forearms. The onset of these symptoms may be delayed for several months to a year after the beginning of exposure. The neurotoxic properties of n-hexane are potentiated by exposure to methyl ethyl ketone and methyl isobutyl ketone. Prolonged exposure to high concentrations of n-hexane (>1,000 ppm) has resulted in decreased sperm count and degenerative changes in the testes of rats but not those of mice.

Hydrogen Sulfide 7783-06-4

Acute Toxicity:

Dermal - No data

LCLo= 600 ppm, 30 min (Human)

Hydrogen sulfide concentrations will vary significantly depending on the source and sulfur content of the product. Sweet natural gas condensate (<0.5% sulfur) may contain toxicologically significant levels of hydrogen sulfide in the vapor spaces of bulk storage tanks and transport compartments. Concentrations of H₂S as low as 10 ppm over an 8 hour workshift may cause eye or throat irritation. Prolonged breathing of 50-100 ppm H₂S vapors can produce significant eye and respiratory irritation. Sour condensates commonly contain extremely high concentrations of H₂S (500-70.000 ppm) in the vapor spaces of bulk storage vessels. Exposure to 250-600 ppm for 15-30 minutes can produce headache, dizziness, nervousness, staggering gait, nausea and pulmonary edema or bronchial pneumonia. Concentrations >1,000 ppm will cause immediate unconsciousness and death through respiratory paralysis. Rats and mice exposed to 80 ppm H₂S, 6 hrs/day, 5 days/week for 10 weeks, did not produce any toxicity except for irritation of nasal passages. H₂S did not affect reproduction and development (birth defects or neurotoxicity) in rats exposed to concentrations of 75-80 ppm or 150 ppm H_2S , respectively. Over the years a number of acute cases of H_2S poisonings have been reported. Complete and rapid recovery is the general rule. However, if the exposure was sufficiently intense and sustained causing cerebral hypoxia (lack of oxygen to the brain), neurologic effects such as amnesia, intention tremors or brain damage are possible.

Toluene 108-88-3

Acute Toxicity: Dermal LD50 = 14 g/kg (Rabbit)

11. TOXICOLOGICAL INFORMATION

LC50 = 8,000 ppm (4-hr, Rat)

Oral LD50 = 2.5 - 7.9 g/kg (Rat)

Target Organs: Epidemiology studies suggest that chronic occupational overexposure to toluene may damage color vision. Subchronic and chronic inhalation studies with toluene produced kidney and liver damage, hearing loss and central nervous system (brain) damage in laboratory animals. Intentional misuse by deliberate inhalation of high concentrations of toluene has been shown to cause liver, kidney, and central nervous system damage, including hearing loss and visual disturbances. **Developmental:** Exposure to toluene during pregnancy has demonstrated limited evidence of developmental toxicity in laboratory animals. The effects seen include decreased fetal body weight and increased skeletal variations in both inhalation and oral studies.

1,2,4 Trimethyl Benzene 95-63-6

Acute Toxicity:

Dermal LD50 = No data available LC50 = 18 gm/m³/4hr (Rat) Oral LD50 = 3-6 g/kg (Rat)

Xylenes 1330-20-7

Acute Toxicity: Dermal LD50 >3.16 ml/kg (Rabbit) LC50= 5000 ppm/4 hr. (Rat) Oral LD50 = 4300 mg/kg (Rat)

Target Organs: A six week inhalation study with xylene produced hearing loss in rats. **Developmental:** Both mixed xylenes and the individual isomers produced limited evidence of developmental toxicity in laboratory animals. Inhalation and oral administration of xylene resulted in decreased fetal weight, increased incidences of delayed ossification, skeletal variations and resorptions.

12. ECOLOGICAL INFORMATION

Toxicity

This material is expected to be toxic to aquatic organisms with the potential to cause long term adverse effects in the aquatic environment. Acute aquatic toxicity studies on samples of gasoline and naphtha streams show acute toxicity values greater than 1 mg/l and mostly in the range of 1 to 100 mg/l. These tests were carried out on water accommodated fractions in closed systems to prevent evaporative loss. Results are consistent with the predicted aquatic toxicity of these substances based on their hydrocarbon composition.

Classification H411, Chronic Category 2

96 hours LC50: 8.3 mg/l (Cyprinodon variegatus)
96 hours LC50: 1.8 mg/l (Mysidopsis bahia)
48 hours LC50: 3.0 mg/l (Daphnia magna)
96 hours LC50: 2.7 mg/l (Oncorhynchus mykiss)

Coating action of oil can kill birds, plankton, aquatic life, algae and fish.

Persistence and Degradability This material is not readily biodegradable. Most of the nonvolatile constituents are inherently biodegradable. Some of the highest molecular weight components are persistent in water. The individual hydrocarbon components of this material are differentially soluble in water with aromatic hydrocarbons tending to be more water soluble than aliphatic hydrocarbons. If spilled, the lighter components will generally

12. ECOLOGICAL INFORMATION

evaporate but depending on local environmental conditions (temperature, wind, soil type, mixing or wave action in water, etc), photo-oxidation and biodegradation, the remainder may become dispersed in the water column or absorbed to soil or sediment. Because of their differential solubility, the occurrence of hydrocarbons in groundwater will be at different proportions than the parent material. Under anaerobic conditions, such as in anoxic sediments, rates of biodegradation are negligible.

Persistence per IOPC Fund Definition	Non-Persistent
Bioaccumulative Potential	Contains components with the potential to bioaccumulate. The octanol water coefficient values measured for the hydrocarbon components of this material range from 3 to greater than 6, and therefore would be considered as having the potential to bioaccumulate.
Mobility	 Air: Contains volatile components. Lighter components will volatilize in the air. In air, the volatile hydrocarbons undergo photodegradation by reaction with hydroxyl radicals with half lives varying from 0.5 days for n-dodecane to 6.5 days for benzene. Water: Spreads on a film on the surface of water. Significant proportion of spill will remain after one day. Lower molecular weight aromatic hydrocarbons and some polar compounds have low but significant water solubility. Some higher molecular weight compounds are removed by emulsification and these also slowly biodegrade while others adsorb to sediment and sink. Heavier fractions agglomerate to form tars, some of which sink. Soil: Some constituents may be mobile and contaminate groundwater.
Other Adverse	Films form on water and may affect avygen transfer and demage organisms

Other Adverse Films form on water and may affect oxygen transfer and damage organisms. Effects

13. DISPOSAL CONSIDERATIONS

Recover or recycle if possible. It is the responsibility of the generator to determine the toxicity and physical properties of the material generated so as to properly classify the waste and ensure disposal methods comply with applicable regulations.

This material, if discarded as produced, is not a RCRA "listed" hazardous waste. However, it should be fully characterized for ignitability (D001), reactivity (D003) and benzene (D018) prior to disposal (40 CFR 261). Use which results in chemical or physical change or contamination may subject it to regulation as a hazardous waste. Along with properly characterizing all waste materials, consult state and local regulations regarding the proper disposal of this material.

Do not dispose of tank water bottoms by draining onto the ground. This will result in soil and groundwater contamination. Waste arising from spillage or tank cleaning should be disposed of in accordance with applicable regulations.

Container contents should be completely used and containers should be emptied prior to discard. Container rinsate could be considered a RCRA hazardous waste and must be disposed of with care and in full compliance with federal, state and local regulations. Larger empty containers, such as drums, should be returned to the distributor or to a qualified drum reconditioner. To assure proper disposal of smaller empty containers, consult with state and local regulations and disposal authorities. Natural Gas Condensate, Sweet or Sour

14. TRANSPORTATION INFORMATION

United States Department of Transportation (US DOT) Transportation of Dangerous Goods (TDG) Canada	 Shipping Description: Petroleum Distillates, n.o.s., 3, UN1268, I or II Shipping Name: Petroleum Distillates, n.o.s (contains natural gas condensate) Hazard Class and Division: 3 ID Number: UN1268 Packing Group: I or II Label: Flammable Liquid Placard: Flammable Reportable Quantity: None established for this material Emergency Response Guide: 128
International Maritime Dangerous Goods Code (IMDG)	 Shipping Description: Petroleum Distillates, n.o.s., 3, UN1268, I or II Shipping Name: Petroleum Distillates, n.o.s (contains natural gas condensate) Hazard Class and Division: 3 UN Number: 1268 Label: Flammable Liquid EMS Guide: F-E, S-E Not a DOT Marine Pollutant per 49 CFR 71.8
European Agreements Concerning the International Carriage by Rail (RID) and by Road (ADR)	 Shipping Name: Petroleum Distillates, n.o.s (contains natural gas condensate) Hazard Class: 3 Packing Group: I or II Label: Flammable Liquid Danger Number: 33 UN Number: 1268
International Civil Aviation Organization / International Air Transport Association (ICAO/IATA)	Shipping Name: Petroleum Distillates, n.o.s (contains natural gas condensate) or Natural Gasoline UN/ID Number: UN1268 Hazard Class/Division: 3 Packing Group: I or II Labels: Flammable Emergency Response Guide: 3H

15. REGULATORY INFORMATION

United States Federal Regulatory Information

EPA TSCA Inventory	This product and/or its components are listed on the Toxic Substances Control
	Act (TSCA) Inventory

EPA SARA 302/304 Emergency Planning and Notification	This material contains the following chemicals subject to reporting under the Superfund Amendments and Reauthorization Act of 1986 (SARA): Material contains hydrogen sulfide, considered an extremely hazardous substance. TPQ– 500 lb, EPCRA RQ – 100 lb
EPA SARA 311/312 (Title III Hazard Categories)	Acute Health: Yes Chronic Health: Yes Fire Hazard: Yes Pressure Hazard: No Reactive Hazard: No

15. REGULATORY INFORMATION

EPA SARA Toxic	Component	CAS Number	Concentration	RQ
Chemical Notification	Benzene	71-43-2	< 5 %	10 lb
and Release	Cyclohexane	110-82-7	< 5 %	1000 lb
Reporting (40 CFR 372) and CERCLA	Ethyl Benzene	100-41-4	< 3 %	1000 lb
Reportable Quantities	n-Hexane	110-54-3	< 50 %	5000 lb
(40 CFR 302.4)	Toluene	108-88-3	< 15 %	1000 lb
,	1,2,4 Trimethyl Benzene	95-63-6	< 4 %	not listed
	Xylene, all isomers	1330-20-7	< 12 %	100 lb
	CERCLA Section 101(14) hazardous constituents of substances. The petroleu	petroleum, from th	ne definition of haza	
EPA CWA and OPA	This product is classified as an oil under Section 311 of the Clean Water Act (CWA) and Oil Pollution Act of 1990 (OPA), subject to spill reporting requirements.			
Canadian Regulatory Inforr DSL/NDSL Inventory	rmation This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations (CPR) and the SDS contains all the information required by the Regulations			
Workplace Hazardous Materials Information System (WHMIS) Hazard Class	B2 - Flammable Liquid D1A – Material Causing Immediate and Serious Toxic Effects - Very Toxic Material D2A: Material Causing Other Toxic Effects Very Toxic D2B - Material Causing Other Toxic Effects - Toxic Material			
European Union Regulator Labeling	ory Information Product is dangerous as defined by the European Union Dangerous Substances / Preparations Directives Contains: Low Boiling Point Naphtha			
Symbol	F+ Extremely FlammableT ToxicN Dangerous for the Environment			
Risk Phrases	R12-45-38-65-67-51/53 Extremely flammable. May cause cancer. Irritating to skin. Harmful: may cause lung damage if swallowed. Vapors may cause drowsiness and dizziness. Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.			
Safety Phrases	S16-53-45-2-23-24-29-43-62 Keep away from sources of ignition – No smoking. Avoid exposure – obtain special instructions before use. In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible). Keep out of reach of children. Do not breathe vapor. Avoid contact with skin. Do not empty into drains. In case of fire use foam/dry powder/CO ₂ . If swallowed, do not induce vomiting: seek medical advice immediately and show this container or label.			

15. REGULATORY INFORMATION

California Proposition 65

This product may contain detectable quantities of the following chemicals, known to the State of California to cause cancer, birth defects, or other reproductive harm and which may be subject to the warning requirements of California Proposition 65. Chemicals known to the State of California to cause cancer, birth defects or other reproductive harm are created by the combustion of this product. **Carcinogens:** Benzene, Ethyl Benzene

Developmental Toxicity: Benzene, Toluene **Male Reproductive Toxicity:** Benzene

Carcinogen Identification by International Agency for Research on Cancer

Group 1	Carcinogenic to	Benzene
	Humans	
Group 2A	Probably Carcinogenic	
	to Humans	
Group 2B	Possibly Carcinogenic to Humans	Ethyl Benzene, Gasoline, Gasoline Engine Exhaust
Group 3	Not Classifiable	Toluene, Xylenes

16. OTHER INFORMATION

Prepared By

J.P. Morgan Ventures Energy Corp. 383 Madison Avenue, 10th Floor New York, NY 10017 JP Morgan Commodities Canada Corp. Suite 600, Vintage Towers II, 326 11th Avenue SW Calgary, Alberta T2R 0C5

The information presented in this Material Safety Data Sheet is based on data believed to be accurate as of the date this Material Safety Data Sheet was prepared. HOWEVER, NO WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY OTHER WARRANTY IS EXPRESSED OR IS TO BE IMPLIED REGARDING THE ACCURACY OR COMPLETENESS OF THE INFORMATION PROVIDED ABOVE, THE RESULTS TO BE OBTAINED FROM THE USE OF THIS INFORMATION OR THE PRODUCT, THE SAFETY OF THIS PRODUCT, OR THE HAZARDS RELATED TO ITS USE. No responsibility is assumed for any damage or injury resulting from abnormal use or from any failure to adhere to recommended practices. The information provided above, and the product, are furnished on the condition that the person receiving them shall make their own determination as to the suitability of the product for their particular purpose and on the condition that they assume the risk of their use. In addition, no authorization is given nor implied to practice any patented invention without a license.

Product Name: Processed Natural Gas Product Code: None Page 1 of 8

1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

Product Name: Processed Natural Gas Product Code: None Synonyms: Dry Gas Generic Name: Natural Gas Chemical Family: Paraffin hydrocarbon

Responsible Party: Unocal Corporation Union Oil Company of California 14141 Southwest Freeway Sugar Land, Texas 77478

For further information contact MSDS Coordinator 8am - 4pm Central Time, Mon - Fri: 281-287-5310

EMERGENCY OVERVIEW

24 Hour Emergency Telephone Numbers:

For Chemical Emergencies: Spill, Leak, Fire or Accident Call CHEMTREC North America: (800)424-9300 Others: (703)527-3887(collect)

For Health Emergencies: California Poison Control System (800)356-3129

Health Hazards: Use with adequate ventilation.

Physical Hazards: Flammable gas. Can cause flash fire. Gas displaces oxygen available for breathing. Keep away from heat, sparks, flames, or other sources of ignition (e.g., static electricity, pilot lights, mechanical/electrical equipment). Do not enter storage areas or confined space unless adequately ventilated.

- < Physical Form: Gas
- < Appearance: Colorless
- < Odor: Odorless in the absence of H2S or mercaptans

NFPA HAZARD CLASS: Health: 1 (Slight) Flammability: 4 (Extreme) Reactivity: 0 (Least)

Issue Date: 03/18/03 Revised Sections: 1, 3

Status: Final Revised

UNOCAL	
Processed Natural Gas	
None	Page 2 of 8
	Processed Natural Gas

2. COMPOSITION/INFORMATION ON INGREDIENTS

HAZARDOUS COMPONENTS	% Weight	EXPO	SURE GUIDE	LINE
		Limits	Agency	Туре
Methane CAS# 74-82-8	98	1000 ppm	MSHA	TWA
Carbon Dioxide CAS# 124-38-9	0-5		ACGIH OSHA	
Nitrogen CAS# 7727-37-9	0-5	1000 ppm	MSHA	TWA
Ethane CAS# 74-84-0	1	1000 ppm	MSHA	TWA

Note: State, local or other agencies or advisory groups may have established more stringent limits. Consult an industrial hygienist or similar professional, or your local agencies, for further information.

3. HAZARDS IDENTIFICATION

POTENTIAL HEALTH EFFECTS:

Eye: Not expected to be an eye irritant.

Skin: Skin contact is unlikely. Skin absorption is unlikely.

- Inhalation (Breathing): Asphyxiant. High concentrations in confined spaces may limit oxygen available for breathing.
- Ingestion (Swallowing): This material is a gas under normal
 atmospheric conditions and ingestion is unlikely.
- Signs and Symptoms: Light hydrocarbon gases are simple asphyxiants which, at high enough concentrations, can reduce the amount of oxygen available for breathing. Symptoms of overexposure can include shortness of breath, drowsiness, headaches, confusion,

Issue Date: 03/18/03	Status: Final Revised
Revised Sections: 1, 3	

Page 3 of 8

decreased coordination, visual disturbances and vomiting, and are reversible if exposure is stopped. Continued exposure can lead to hypoxia (inadequate oxygen), cyanosis (bluish discoloration of the skin), numbness of the extremities, unconsciousness and death. High concentrations of carbon dioxide can increase heart rate and blood pressure.

Cancer: No data available.

Target Organs: No data available.

Developmental: Limited data - See Other Comments, below.

Other Comments: High concentrations may reduce the amount of oxygen available for breathing, especially in confined spaces. Hypoxia (inadequate oxygen) and respiratory acidosis (increased carbon dioxide in blood), during pregnancy may have adverse effects on the developing fetus. Exposure during pregnancy to high concentrations of carbon monoxide, which is produced during the combustion of hydrocarbon gases, can also cause harm to the developing fetus.

Pre-Existing Medical Conditions: None known.

4. FIRST AID MEASURES

Eye: If irritation or redness develops, move victim away from exposure and into fresh air. Flush eyes with clean water. If symptoms persist, seek medical attention.

Skin: First aid is not normally required. However, it is good practice to wash any chemical from the skin.

Inhalation (Breathing): If respiratory symptoms develop, move victim away from source of exposure and into fresh air. If symptoms persist, seek medical attention. If victim is not breathing, immediately begin artificial respiration. If breathing difficulties develop, oxygen should be administered by qualified personnel. Seek immediate medical attention.

Issue Date: 03/18/03	Status: Final Revi	sed
Revised Sections: 1, 3		

UNOCAL	
ONOCAL	

Product Nam	ne: Process	sed Natural G	as
Product Cod	le: None		

Page 4 of 8

5. FIRE FIGHTING MEASURES

Flammable Properties: Flash Point: Not applicable (gas) OSHA Flammability Class: Flammable gas LEL / UEL: No data Autoignition Temperature: 800-1000°F

- Unusual Fire & Explosion Hazards: This material is flammable and may be ignited by heat, sparks, flames, or other sources of ignition (e.g., static electricity, pilot lights, or mechanical/electrical equipment). Vapors may travel considerable distances to a source of ignition where they can ignite, flashback, or explode. May create vapor/air explosion hazard indoors, outdoors, or in sewers. If container is not properly cooled, it can rupture in the heat of a fire. Closed containers exposed t extreme heat can rupture due to pressure buildup.
- **Extinguishing Media:** Dry chemical or carbon dioxide is recommended. Carbon dioxide can displace oxygen. Use caution when applying carbon dioxide in confined spaces.
- Fire Fighting Instructions: For fires beyond the incipient stage, emergency responders in the immediate hazard area should wear When the potential chemical hazard is unknown, in bunker gear. enclosed or confined spaces, or when explicitly required by DOT, a self-contained breathing apparatus should be worn. In addition, wear other appropriate protective equipment as conditions warrant (see Section 8). Isolate immediate hazard area, keep unauthorized personnel out. Stop spill/release if it can be done with minimal risk. If this cannot be done, allow fire to burn. Move undamaged containers from immediate hazard area if it can be done with minimal risk. Stay away from ends of container. Water spray may be useful in minimizing or dispersing vapors. Cool equipment exposed to fire with water, if it can be done with minimal risk.

6. ACCIDENTAL RELEASE MEASURES

Flammable. Keep all sources of ignition and hot metal surfaces away from spill/release. The use of explosion-proof equipment is recommended. Stay upwind and away from spill/release. Notify persons down wind of spill/release, isolate immediate hazard area and keep unauthorized personnel out. Stop spill/release if it can be done with

Issue Date: 03/18/03 Revised Sections: 1, 3 Status: Final Revised

UNOCAL				
rocessed Natural Gas			-	
one	Page	5	of	8
	rocessed Natural Gas	rocessed Natural Gas	rocessed Natural Gas	rocessed Natural Gas

minimal risk. Wear appropriate protective equipment including respiratory protection as conditions warrant (see Section 8). Notify fire authorities and appropriate federal, state, and local agencies. Water spray may be useful in minimizing or dispersing vapors (see Section 5).

7. HANDLING AND STORAGE

- Handling: The use of explosion-proof equipment is recommended and may be required (see appropriate fire codes). Do not enter confined spaces such as tanks or pits without following proper entry procedures such as ASTM D-4276 and 29CFR 1910.146. The use of appropriate respiratory protection is advised when concentrations exceed any established exposure limits (see Section 2 and 8). Use good personal hygiene practice.
- Storage: Keep container(s) tightly closed. Use and store this
 material in cool, dry, well-ventilated areas away from heat,
 direct sunlight, hot metal surfaces, and all sources of ignition.
 Post area "No Smoking or Open Flame." Store only in approved
 containers. Keep away from any incompatible material (see
 Section 10). Protect container(s) against physical damage.
 Outdoor or detached storage is preferred.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Engineering controls: If current ventilation practices are not adequate to maintain airborne concentrations below the established exposure limits (see Section 2), additional ventilation or exhaust systems may be required. Where explosive mixtures may be present, electrical systems safe for such locations must be used (see appropriate electrical codes).

Personal Protective Equipment (PPE):

- Respiratory: Wear a positive pressure air supplied respirator in oxygen deficient environments (oxygen content <19.5%). A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements must be followed whenever workplace conditions warrant a respirator's use.
- Skin: Not required based on the hazards of the material. However, it is considered good practice to wear gloves when handling chemicals.

Issue Date: 03/18/03	Status: Final Revised
Revised Sections: 1, 3	

	UNOCAL	
Product Name:	Processed Natural Gas	
Product Code:	None	Page 6 of 8

Eye/Face: While contact with this material is not expected to cause irritation, the use of approved eye protection to safeguard against potential eye contact is considered good practice.

Other Protective Equipment: A source of clean water should be available in the work area for flushing eyes and skin. Impervious clothing should be worn as needed. Self-contained respirators should be available for non-routine and emergency situations.

9. PHYSICAL AND CHEMICAL PROPERTIES

Note: Unless otherwise stated, values are determined at 20°C (68°F) and 760 mm Hg (1 atm).

Flash Point: Not applicable (gas)
Flammable/Explosive Limits (%): No data
Autoignition Temperature: 800-1000°F
Appearance: Colorless
Physical State: Gas
Odor: Odorless in the absence of H2S or mercaptans
Vapor Pressure (mm Hg): No data
Vapor Density (air=1): <1
Boiling Point: -259°F
Freezing/Melting Point: No data
Solubility in Water: Slight
Specific Gravity: 0.30+ (Air=1)
Percent Volatile: 100 vol.%
Evaporation Rate (nBuAc=1): N/A (Gas)</pre>

10. STABILITY AND REACTIVITY

Chemical Stability: Stable under normal conditions of storage and
handling.
Conditions To Avoid: Avoid all possible sources of ignition (see
Sections 5 & 7).
Incompatible Materials, Anoid contest with
Incompatible Materials: Avoid contact with strong oxidizing agents.
Hazardous Decomposition Products: Combustion can yield carbon dioxide
i i i i i i i i i i i i i i i i i i i
and carbon monoxide.
Issue Date: 03/18/03 Status: Final Revised
Revised Sections: 1, 3

UNOCAL

Product 1	Name:	Processed	Natural	Gas
Product (Code:	None		

Page 7 of 8

Hazardous Polymerization: Will not occur.

11. TOXICOLOGICAL INFORMATION

No definitive information available on carcinogenicity, mutagenicity, target organs or developmental toxicity.

12. DISPOSAL CONSIDERATIONS

This material, if discarded as produced, would be a RCRA "characteristic" hazardous waste due to the characteristic(s) of ignitability (D001). If the material is spilled to soil or water, characteristic testing of the contaminated materials is recommended. Further, this material is subject to the land disposal restriction in 40 CFR 268.40 and may require treatment prior to disposal to meet specific standards. Consult state and local regulations to determine whether they are more stringent than the federal requirements.

Container contents should be completely used and containers should be emptied prior to discard. Container rinsate could be considered a RCRA hazardous waste and must be disposed of with care and in full compliance with federal, state and local regulations. Larger empty containers, such as drums, should be returned to the distributor or to a drum reconditioner. To assure proper disposal of smaller empty containers, consult with state and local regulations and disposal authorities.

13. TRANSPORT INFORMATION

DOT Proper Shipping Name / Technical Name: Hydrocarbon Gas, Liquified N.O.S. (Methane) Hazard Class or Division: 2.1 ID #: UN1965

14. REGULATORY INFORMATION

This material contains the following chemicals subject to the reporting requirements of **SARA 313** and 40 CFR 372:

--None--Warning: This material contains the following chemicals which are known to the State of California to cause cancer, birth defects or

Issue Da		03/18	3/03		
Revised	Sect:	ions:	1,	3	

Status: Final Revised

UNOCAL

Product Name:	Processed Natural Gas	
Product Code:	None	Page 8 of 8

other reproductive harm, and are subject to the requirements of **California Proposition 65** (CA Health & Safety Code Section 25249.5):

--None Known--

This material has not been identified as a carcinogen by NTP, IARC, or OSHA.

EPA (CERCLA) Reportable Quantity: -- None--

15. DOCUMENTARY INFORMATION

Issue Date: 03/18/03 Previous Issue Date: 11/29/99 Product Code: None Previous Product Code: None

16. DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES

The information in this document is believed to be correct as of the date issued. HOWEVER, NO WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY OTHER WARRANTY IS EXPRESSED OR IS TO BE IMPLIED REGARDING THE ACCURACY OR COMPLETENESS OF THIS INFORMATION, THE RESULTS TO BE OBTAINED FROM THE USE OF THIS INFORMATION OR THE PRODUCT, THE SAFETY OF THIS PRODUCT, OR THE HAZARDS RELATED TO ITS USE. This information and product are furnished on the condition that the person receiving them shall make his own determination as to the suitability of the product for his particular purpose and on the condition that he assume the risk of his use thereof.

Issue Date: 03/18/03 Revised Sections: 1, 3

Status: Final Revised

ATTACHMENT I

EMISSION UNITS TABLE

Rule 13 Permit Application

Camden 17 Well Pad, New Facility Camden, West Virginia

> CNX Gas Company, LLC PO Box 1248 Jane Lew, West Virginia

> > March 2015

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
GPU-1	1e	Gas Processing unit	2015	1.0 MMBtu/hr	New	None
GPU-2	2e	Gas Processing unit	2015	1.0 MMBtu/hr	New	None
VDU-1	3e	Vapor Destruction Unit	2015	9.1 MMBtu/hr	New	APCD
TL-1	Fugitives	Truck Loading	2015	255,500 BBL/yr	New	None
T01-T04	3e	Produced Water Tanks	2015	210 BBL each	New	VDU-1
T05-T06	3e	Condensate Tanks	2015	210 BBL each	New	VDU-1

¹ For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation. ³ New, modification, removal ⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

ATTACHMENT J

EMISSION POINTS DATA SUMMARY SHEET

Rule 13 Permit Application

Camden 17 Well Pad, New Facility Camden, West Virginia

> CNX Gas Company, LLC PO Box 1248 Jane Lew, West Virginia

> > March 2015

Attachment J EMISSION POINTS DATA SUMMARY SHEET

						Та	able 1:	Emissions D	Data										
Emission Point ID No. (Must match Emission Units	Emission Point Type ¹	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Vent Time for Emission Unit (chemical processes only)		for Emission Unit (chemical processes		hission Pollutants - hit Chemical mical Name/CAS ³		Iutants - Potential nemical Uncontrolled ne/CAS ³ Emissions ⁴		Potential Potential Uncontrolled Controlled		ential rolled	Emission Form or Phase (At exit conditions,	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
Table-& Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Solid, Liquid or Gas/Vapor)						
1e	Vertical Stack	GPU-1	Gas Processing Unit	NA	NA	NA	NA	PM SO2 NO _x CO VOC CO ₂ e	$\begin{array}{c} 0.01 \\ 0.01 \\ 0.10 \\ 0.09 \\ 0.01 \\ 117.01 \end{array}$	0.04 0.01 0.43 0.37 0.03 512.22	$\begin{array}{c} 0.01 \\ 0.01 \\ 0.10 \\ 0.09 \\ 0.01 \\ 117.01 \end{array}$	0.04 0.01 0.43 0.37 0.03 512.22	Gas/ Vapor	EE	Can Supply Upon Request				
2e	Vertical Stack	GPU-2	Gas Processing Unit	NA	NA	NA	NA	PM SO2 NO _x CO VOC CO ₂ e	0.01 0.01 0.10 0.09 0.01 117.01	0.04 0.01 0.43 0.37 0.03 512.22	0.01 0.01 0.10 0.09 0.01 117.01	0.04 0.01 0.43 0.37 0.03 512.22	Gas/ Vapor	EE	Can Supply Upon Request				
3e	Vertical Stack	VDU-1 with pilot-1	Vapor Destruction Unit	NA	NA	NA	NA	CO NOx VOC SO2 CO ₂ e	3.38 0.63 1.28 0.18 1030.78	14.79 2.72 5.60 0.75 4646.21	3.38 0.63 1.95 0.18 1030.78	14.79 2.72 8.51 0.75 4646.21	Gas/ Vapor	EE	Can Supply Upon Request				
3e	Vertical Stack	T01-T04	Produced Water Tanks	VDU-1	Vapor Destruc tion Unit	NA	NA	VOC	0.76	3.32	0.02	0.07	Gas/ Vapor	EE	Can Supply Upon Request				
3e	Vertical Stack	T05-T06	Condensate Tanks	VDU-1	Vapor Destruc tion Unit	NA	NA	VOC	96.37	422.08	1.93	8.45	Gas/ Vapor	EE	Can Supply Upon Request				
Fugitives	Loading Fugitives	TL-1	Truck Loading	VDU-1	NA	NA	NA	VOC	1.55	6.77	1.55	6.77	Gas/ Vapor	EE	Can Supply Upon Request				
Fugitives	Fugitives	NA	Piping Fugitive	NA	NA	NA	NA	VOC CO2e	0.01 5.11	0.01 22.37	0.01 5.11	0.01 22.37	Gas/ Vapor	EE	Can Supply Upon Request				

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

4 Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr. then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

5 Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch). 6

Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

7 Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment J **EMISSION POINTS DATA SUMMARY SHEET**

			Table 2: Rele	ease Parame	eter Data				
Emission	Inner		Exit Gas		Emission Point El	evation (ft)	UTM Coordinates (km)		
Point ID No. (Must match Emission Units Table)	Diameter (ft.)	Temp. (°F)	Volumetric Flow ¹ (acfm) <i>at operating conditions</i>	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting	
1e	1.0	500	353.67	7.50	1250	12	4325.666	535.738	
2e	1.0	500	353.67	7.50	1250	12	4325.666	535.738	
3e	3	1650	1,604.76	3.78	1250	25	4325.666	535.738	
<u>Oisse at an anti-</u>									

¹ Give at operating conditions. Include inerts. ² Release height of emissions above ground level.

ATTACHMENT K

FUGITIVE EMISSIONS DATA SHEET

Rule 13 Permit Application

Camden 17 Well Pad, New Facility Camden, West Virginia

> CNX Gas Company, LLC PO Box 1248 Jane Lew, West Virginia

> > March 2015

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	□ Yes
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	□ Yes
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	Yes 🗌 No
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	Yes 🗌 No
	If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	□ Yes
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions nmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹	Maximum Uncontrolled	Potential Emissions ²	Maximum P Controlled Em	Est. Method	
	Chemical Name/CAS	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads		-	-	-	-	EE
Unpaved Haul Roads		-	-	-	-	EE
Storage Pile Emissions		-	-	-	-	EE
Loading/Unloading Operations	VOC	0.41	1.77	0.41	1.77	EE
Wastewater Treatment Evaporation & Operations		-	-	-	-	EE
Equipment Leaks	VOC CO2e	0.01 5.11	0.01 22.38	0.01 5.11	0.01 22.38	EE
General Clean-up VOC Emissions		-	-	-	-	EE
Other		-	-	-	-	EE

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
 ³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

ATTACHMENT L

EMISSION UNIT DATA SHEET

Rule 13 Permit Application

Camden 17 Well Pad, New Facility Camden, West Virginia

> CNX Gas Company, LLC PO Box 1248 Jane Lew, West Virginia

> > March 2015

NATURAL GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification, or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

Please provide the API number(s)) for each NG well at this facility:
Camden 17 - A	047-041-05685
Camden 17 - B	047-041-05686

Note: This is the same API well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API (American Petroleum Institute) number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

 $047 = State \ code$. The state code for WV is 047.

001 = County Code. County codes are odd numbers, beginning with 001 (Barbour) and continuing to 109 (Wyoming). 00001= Well number. Each well will have a unique well number.

STORAGE VESSEL EMISSION UNIT DATA SHEET

Provide the following information for each new or modified bulk liquid storage tank.

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name					
Camden 17 Well Pad	Produced Water Tank					
3. Emission Unit ID number	4. Emission Point ID number					
T01 - T04	VDU-1					
5. Date Installed or Modified (for existing tanks)	6. Type of change:					
2015	\boxtimes New construction \square New stored material \square Other					
7A. Description of Tank Modification (if applicable) NA						
7B. Will more than one material be stored in this tank? If so, a separate form must be completed for each material.						
🗌 Yes 🛛 No						
7C. Provide any limitations on source operation affecting emissions. (production variation, etc.)						
None						

II. TANK INFORMATION (required)

8. Design Capacity (specify barrels or gallons). Use the interna	l cross-sectional area multiplied by internal height.				
210 BBI					
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.) 15				
10A. Maximum Liquid Height (ft.) 15	10B. Average Liquid Height (ft.) 7.5				
11A. Maximum Vapor Space Height (ft.) 15	11B. Average Vapor Space Height (ft.) 7.5				
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume. 210 BBL				
13A. Maximum annual throughput (gal/yr) 5,518,800 per tank	13B. Maximum daily throughput (gal/day) 15,120 per tank				
14. Number of tank turnovers per year 626 per tank	15. Maximum tank fill rate (gal/min) 50 per tank				
16. Tank fill method 🛛 Submerged 🗌 Splash	Bottom Loading				
17. Is the tank system a variable vapor space system? Yes	🖾 No				
If yes, (A) What is the volume expansion capacity of the system (gal)?					
(B) What are the number of transfers into the system per year?					
18. Type of tank (check all that apply):					
\boxtimes Fixed Roof $_x$ vertical $_h$ horizontal $_x$ flat	roof cone roof dome roof other (describe)				
 External Floating Roof pontoon roof dout Domed External (or Covered) Floating Roof Internal Floating Roof vertical column support Variable Vapor Space lifter roof diaphrag Pressurized spherical cylindric Underground Other (describe) 	self-supporting gm				

III. TANK CONSTRUCTION AND OPERATION INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

 \Box Refer to the responses to items 19 – 26 in section VII

IV. SITE INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

 \Box Refer to the responses to items 27 – 33 in section VII

V. LIQUID INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

☐ Refer to the responses to items 34 – 39 in section VII

VI. EMISSIONS AND CONTROL DEVICE DATA (required)

40. Emission Control Dev	vices (chec	k as man	y as apply)	:					
Does Not Apply				Ruptur	e Disc (p	osig)			
\Box Carbon Adsorption ¹			[Inert G	as Blank	et of			
Vent to Vapor Combu	stion Devi	ce ¹ (vapo	r combusto	ors, flares,	thermal	oxidizers)			
Condenser ¹			[Conser	vation V	ent (psig			
\Box Other ¹ (describe)				Vacuum	Setting	Pre	ssure Sett	ing	
				Emerg	ency Rel	ief Valve	(psig)		
¹ Complete appropriate A	ir Pollution	Control	Device She	eet					
41. Expected Emission R	ate (submi	t Test Dat	a or Calcu	lations her	e or else	where in the	he applica	tion). See	Attachment I
Material Name and	Flashin	g Loss	Breathing Loss		Working Loss		Total		Estimation Method ¹
CAS No.								ons Loss	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
See Calculations for									Promax Simulation
details									
uetalis									

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

SECTION VII (required if did not provide TANKS Summary Sheets)

TANK CONSTRUCTION AND OPERATION INFORMATION										
19. Tank Shell Construction:										
Riveted Gunite lined Epox	xy-coated rivets	Other (describe)								
20A. Shell Color:20B. Roof Color:20C. Year Last Painted:										
21. Shell Condition (if metal and unlined):										
No Rust Light Rust Dense Rust Not applicable 22A. Is the tank heated? Yes No 22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank?										
22A. Is the tank heated? Yes No	22C. If yes, how is heat provided to tank?									
23. Operating Pressure Range (psig):										
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome	roof provide radius (ft):	24B. If yes, for cone roof, provide slop (ft/ft):							
Yes No										
25. Complete item 25 for Floating Roof Tanks	Does not apply									
25A. Year Internal Floaters Installed:										
25B. Primary Seal Type (check one): Met	tallic (mechanical) sho	e seal 🛛 🗌 Liquid mo	ounted resilient seal							
🗌 🗌 Vap	por mounted resilient s	seal 🗌 Other (de	scribe):							
25C. Is the Floating Roof equipped with a seco	ndary seal? 🗌 Yes	No								
25D. If yes, how is the secondary seal mounted	? (check one) 🗌 Sho	e 🗌 Rim 🗌 O	ther (describe):							
25E. Is the floating roof equipped with a weather	er shield? 🗌 Yes	No No								
25F. Describe deck fittings:										
26. Complete the following section for Interna	l Floating Roof Tanks	Does not apply	у							
26A. Deck Type: Bolted V	Welded	26B. For bolted decks,	provide deck construction:							
26C. Deck seam. Continuous sheet constructio										
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide										
26D. Deck seam length (ft.): 26E. Area	of deck (ft^2):	26F. For column suppo	**							
		tanks, # of columns:	tanks, diameter of column:							
SITE INFORMATION:										
27. Provide the city and state on which the data	in this section are based									
28. Daily Avg. Ambient Temperature (°F):		_	mum Temperature (°F):							
30. Annual Avg. Minimum Temperature (°F):		31. Avg. Wind Speed	-							
32. Annual Avg. Solar Insulation Factor (BTU/	'ft ² -day):	33. Atmospheric Pressure (psia):								
LIQUID INFORMATION:										
34. Avg. daily temperature range of bulk	34A. Minimum (°F):		34B. Maximum (°F):							
liquid (°F):										

35. Avg. operating pressure range of tank (psig):	35A. Minimum (psig):			35B. Maximur	n (psig):
36A. Minimum liquid surface temperature (°F)	:	36B. (Corresponding va	apor pressure (ps	ia):
37A. Avg. liquid surface temperature (°F):		37B. (Corresponding va	apor pressure (ps	ia):
38A. Maximum liquid surface temperature (°F)):	38B. (Corresponding va	apor pressure (ps	ia):
39. Provide the following for each liquid or gas	s to be stored in the tank.	Add add	litional pages if 1	necessary.	
39A. Material name and composition:					
39B. CAS number:					
39C. Liquid density (lb/gal):					
39D. Liquid molecular weight (lb/lb-mole):					
39E. Vapor molecular weight (lb/lb-mole):					
39F. Maximum true vapor pressure (psia):					
39G. Maxim Reid vapor pressure (psia):					
39H. Months Storage per year. From:					
To:					

STORAGE VESSEL EMISSION UNIT DATA SHEET

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name				
Camden 17 Well Pad	Condensate				
3. Emission Unit ID number	4. Emission Point ID number				
T05 - T06	VDU-1				
5. Date Installed or Modified (for existing tanks)	6. Type of change:				
2015	\square New construction \square New stored material \square Other				
7A. Description of Tank Modification (<i>if applicable</i>) NA					
7B. Will more than one material be stored in this tank? If so, a s	eparate form must be completed for each material.				
☐ Yes					
7C. Provide any limitations on source operation affecting emissions. (Production variation, etc.)					
None					

II. TANK INFORMATION (required)

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.						
210 BBL						
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.) 15					
10A. Maximum Liquid Height (ft.) 15	10B. Average Liquid Height (ft.) 7.5					
11A. Maximum Vapor Space Height (ft.) 15	11B. Average Vapor Space Height (ft.) 7.5					
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume. 210 BBL					
13A. Maximum annual throughput (gal/yr) 76,650 per tank	13B. Maximum daily throughput (gal/day) 210 per tank					
14. Number of tank turnovers per year9 per tank15. Maximum tank fill rate (gal/min)50 per tank						
16. Tank fill method 🛛 Submerged 🗌 Splash 🗌 Bottom Loading						
17. Is the tank system a variable vapor space system? 🗌 Yes 🛛 No						
If yes, (A) What is the volume expansion capacity of the system (gal)?						
(B) What are the number of transfers into the system per y	/ear?					

18. Type of tank (check all that a	pply):
Fixed Roof _x_vertic	lhorizontal _x_flat roofcone roofdome roofother (describe)
External Floating Roof	pontoon roof double deck roof
Domed External (or Covered	Floating Roof
Internal Floating Roof	vertical column support self-supporting
□ Variable Vapor Space	lifter roof diaphragm
Pressurized	spherical cylindrical
Underground	
Other (describe)	

III. TANK CONSTRUCTION AND OPERATION INFORMATION (check which one applies)

\boxtimes	Refer to	enclosed	TANKS	Summary	Sheets
-------------	----------	----------	-------	---------	--------

□ Refer to the responses to items 19 – 26 in section VII

IV. SITE INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets

 \Box Refer to the responses to items 27 – 33 in section VII

V. LIQUID INFORMATION (check which one applies)

Refer to enclosed TANKS Summary Sheets	
□ Refer to the responses to items 34 – 39 in section VII	

VI. EMISSIONS AND CONTROL DEVICE DATA (required)

40. Emission Control Devices (check as many as apply):										
Does Not Apply	Does Not Apply									
Carbon Adsorption ¹ Inert Gas Blanket of										
Vent to Vapor Combustion Device ¹ (vapor combustors, flares, thermal oxidizers)										
\Box Condenser ¹ \Box Conservation Vent (psig										
\Box Other ¹ (describe)	Other ¹ (describe) Vacuum Setting Pressure Setting									
	Emergency Relief Valve (psig)									
¹ Complete appropriate Air	Pollution	n Control	Device Sh	leet						
41. Expected Emission Ra	te (submi	t Test Dat	a or Calcu	ilations he	re or elsev	where in th	e applicat	ion). See .	Attachment I	
Material Name and	Flashi	ng Loss	Breathi	ng Loss	Workin	g Loss	Total		Estimation Method ¹	
CAS No.	Emissions Loss									
lb/hr tpy lb/hr tpy lb/hr tpy lb/hr tpy										
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy				
Condensate:	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy			EE Promax	
Condensate: See Calculations for	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy			EE Promax Simulation	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy				

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

SECTION VII (required if did not provide TANKS Summary Sheets)

TANK CONSTRUCTION AND OPERATION INFORMATION									
19. Tank Shell Construction:									
Riveted Gunite lined Epoxy-coated rivets Other (describe)									
20A. Shell Color:	20A. Shell Color:20B. Roof Color:20C. Year Last Painted:								
21. Shell Condition (if metal and unlined):									
🗌 No Rust 🔲 Light Rust 🗌 Dens	e Rust 🔲 Not applicable								
22A. Is the tank heated? Yes No	22B. If yes, operating temperature:	22C. If yes, how is heat provided to tank?							
23. Operating Pressure Range (psig):									
24. Is the tank a Vertical Fixed Roof Tank?	24A. If yes, for dome roof provide radius (ft):	24B. If yes, for cone roof, provide slop (ft/ft):							

Yes No								
25. Complete item 25 for Floating Roof Tanks Does not apply								
25A. Year Internal Floaters Installed:								
25B. Primary Seal Type (check one):	tallic (mechanical) sho	e seal	Liquid mo	ounted resili	ient seal			
	por mounted resilient s		Other (de					
25C. Is the Floating Roof equipped with a seco		No						
25D. If yes, how is the secondary seal mounted		be	Rim 🗌 O	ther (descri	be):			
25E. Is the floating roof equipped with a weath			 No		,			
25F. Describe deck fittings:								
_								
26. Complete the following section for Interna	l Floating Roof Tanks		Does not apply	у				
26A. Deck Type: Bolted	Welded	26B. I	For bolted decks,	provide decl	k construction:			
26C. Deck seam. Continuous sheet construction	_	_		_				
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide				,	describe)			
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):		For column suppo	orted	26G. For column supported			
		tanks,	# of columns:		tanks, diameter of column:			
SITE INFORMATION:								
27. Provide the city and state on which the data	in this section are based		1.4	T				
28. Daily Avg. Ambient Temperature (°F):			nual Avg. Maxi	-	rature (°F):			
30. Annual Avg. Minimum Temperature (°F):	(2) 4		g. Wind Speed (-				
32. Annual Avg. Solar Insulation Factor (BTU/	'ft²-day):	33. At	mospheric Press	ure (psia):				
LIQUID INFORMATION:								
34. Avg. daily temperature range of bulk	34A. Minimum (°F):			34B. Maxi	imum (°F):			
liquid (°F):								
35. Avg. operating pressure range of tank	35A. Minimum (psig)	:		imum (psig):				
(psig):								
36A. Minimum liquid surface temperature (°F)		26D (Corresponding v	por produire	(ngia):			
37A. Avg. liquid surface temperature (°F):	•		Corresponding va		-			
38A. Maximum liquid surface temperature (°F).			Corresponding va		· ·			
39. Provide the following for each liquid or gas			1 0		(psia).			
39A. Material name and composition:	to be stored in the tank.	Auu auc	intional pages if I	iecessai y.				
39B. CAS number:								
39C. Liquid density (lb/gal):								
39D. Liquid density (lb/gar).								
39E. Vapor molecular weight (lb/lb-mole):								
39F. Maximum true vapor pressure (psia):								
39G. Maxim Reid vapor pressure (psia):								
39H. Months Storage per year. From:								
To:								

NATURAL GAS FIRED FUEL BURNING UNITS EMISSION DATA SHEET

Complete the information on this data for each Gas Producing Unit(s), Heater Treater(s), and in-line heater(s) at the production pad. Reboiler information should be entered on the Glycol Dehydration Emission Unit Data Sheet.

Emission Unit ID # ¹	Emission Point ID# ²	Emission Unit Description (Manufacturer / Model #)	Year Installed/ Modified	Type ³ and Date of Change	Control Device ⁴	Design Heat Input (mmBtu/hr) ⁵	Fuel Heating Value (Btu/scf) ⁶
GPU-1	1e	Cimarron	2015	New	NA	1.0 MMBtu/hr	1020
GPU-2	2e	Cimarron	2015	New	NA	1.0 MMBtu/hr	1020

¹ Enter the appropriate Emission Unit (or <u>Sources</u>) identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the *Glycol Dehydration Unit Data Sheet*.

² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.

³ New, modification, removal

⁴ Complete appropriate air pollution control device sheet for any control device.

⁵ Enter design heat input capacity in mmBtu/hr.

⁶ Enter the fuel heating value in Btu/standard cubic foot.

TANK TRUCK LOADING EMISSION UNIT DATA SHEET

Furnish the following information for each new or modified bulk liquid transfer area or loading rack at the natural gas production pad. This form is to be used for bulk liquid transfer operations to tank trucks.

1. Emission Unit ID: TI		Emission igitives	Point	ID:	Loading	3. Year Installe	ed/ Modified: 2015	
4. Emission Unit Descrip			ature fro	om the	trucks vacu	ium pump		
5. Loading Area Data: A	Adjacent to tanks							
5A. Number of pumps: 1 on truck		5B. Number of liquids loaded: 1			: 1	5C. Maximum number of tank trucks loading at one time: 1		
6. Describe cleaning location, compounds and procedure for tank trucks: NA								
7. Are tank trucks pressure tested for leaks at this or any other location?								
If YES, describe: NA								
8. Projected Maximum Operating Schedule (for rack or transfer point as a whole):								
	Sperating Schedule (insier po	int as a				
Maximum	Jan Mar.	Apr J	lune		July - S	Sept.	Oct Dec.	
hours/day	24	24			24		24	
days/week	7	7			7		7	

Liquid Name	Produced Water	Condensate	
Max. daily throughput (1000 gal/day)	25.2	4.2	
Max. annual throughput (1000 gal/yr)	9,198	1,533	
Loading Method ¹	Sub	Sub	
Max. Fill Rate (gal/min)	-	-	
Average Fill Time (min/loading)	-	-	
Max. Bulk Liquid Temperature (°F)	60.8	60.8	
True Vapor Pressure ²	0.28	12.91	
Cargo Vessel Condition ³	U	U	
Control Equipment or Method ⁴	NA	NA	
Minimum collection efficiency (%)	0	0	
Minimum control efficiency (%)	0	0	

Maximum	Loading (lb/hr)	0.08	1.47					
Emission Rate	Annual (ton/yr)	0.35	6.42					
Estimation Method		EPA	EPA					
	EPA AP-42 emission equations were used							
Ū.	2PA AP-42 emission equations were used	vapor pressures	for each liquid came li	om Promax simulation				
data ¹ BF = Bottom Fill	SP = Splash Fill SUB = Submerged Fill							
2 At maximum bulk	SP = Splasn Fill $SOB = Submerged Fill$							
³ B – Ballasted Vess	C = Cleaned, U = Uncleaned (dedicated service)	$\Omega = other (description)$	rihe)					
4 L ist as many as and	ly (complete and submit appropriate Air Pollution	n Control Device S	heets as Attachment "H").					
CA = Carbon Adsorption Adsorpti		i controi Device 5	neers as machineni 11).					
VB = Dedicated Vap	or Balance (closed system)							
ECD = Enclosed Co	mbustion Device							
F = Flare								
TO = Thermal Oxida								
	ion Factor as stated in AP-42							
MB = Material Bal								
O = other (describe)	ement based upon test data submittal							
0 = other (describe								
10 Proposed Mo	nitoring, Recordkeeping, Reporting, and	Testing						
Please propose m	onitoring, recordkeeping, and reporting in	order to demons	strate compliance with	the proposed operating				
	e propose testing in order to demonstrate con							
parameters. Treas	e propose testing in order to demonstrate con		e proposed emissions m	into.				
MONITORING P	lease list and describe the process parameters	RECORDERE	EPING Please describe th	a proposed recordianing				
	the proposed to be monitored in order to		bany the monitoring.	e proposed recordkeeping				
	iance with the operation of this process	indi wili decomp	ouny me monuoring.					
equipment operation	<i>air pollution control device.</i>							
	*							
The loadout operation	ation will be visual monitored during the	Records will I	be kept of the amount o	f liquids transferred, as				
procedure.			quency of the operation					
		went us the ne	quelley of the operation	•				
REPORTING Plea	se describe the proposed frequency of reporting	TESTING Pl	lease describe any propose	d emissions testing for this				
of the recordkeeping		process equipm	ent/air pollution control de	vice.				
	ds will be performed as required by permit	Testing will b	e performed as required	by permit standards				
standards.								
11. Describe all o	perating ranges and maintenance procedures	required by Mar	nufacturer to maintain w	varranty:				

LEAK SOURCE DATA SHEET

Source Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (days) ³	Estimated Annual Emission Rate (Ib/yr) ⁴
Pumps⁵	light liquid VOC ^{6,7}				
	heavy liquid VOC ⁸				
	Non-VOC ⁹				
Valves ¹⁰	Gas VOC	166	Quarterly	As soon as possible	0.22
	Light Liquid VOC		Quarterly	As soon as possible	
	Heavy Liquid VOC				
	Non-VOC-CO2e	166	Quarterly	As soon as possible	995.33
Safety Relief Valves ¹¹	Gas VOC	7	Quarterly	As soon as possible	0.09
Valves	Non VOC-CO2e	7	Quarterly	As soon as possible	387.43
Open-ended Lines ¹²	VOC	18	Quarterly	As soon as possible	0.22
	Non-VOC-CO2e	18	Quarterly	As soon as possible	968.87
Sampling Connections ¹³	VOC				
	Non-VOC				
Compressor Seals	VOC		Quarterly	As soon as possible	
	Non-VOC		Quarterly	As soon as possible	
Flanges	VOC		Quarterly	As soon as possible	
	Non-VOC		Quarterly	As soon as possible	
Other - Connectors	VOC	766	Quarterly	As soon as possible	9.34
	Non-VOC-CO2e	766	Quarterly	As soon as possible	42,395.9

¹⁻¹³ See notes on the following page.

Notes for Leak Source Data Sheet

1. For VOC sources include components on streams and equipment that contain greater than 10% w/w VOC, including feed streams, reaction/separation facilities, and product/by-product delivery lines. Do not include certain leakless equipment as defined below by category.

2. By monitoring frequency, give the number of sources routinely monitored for leaks, using a portable detection device that measures concentration in ppm. Do not include monitoring by visual or soapbubble leak detection methods. "M/Q(M)/Q/SA/A/O" means the time period between inspections as follows:

Monthly/Quarterly, with Monthly follow-up of repaired leakers/Quarterly/Semi-annual/Annually/Other (specify time period)

If source category is not monitored, a single zero in the space will suffice. For example, if 50 gasservice valves are monitored quarterly, with monthly follow-up of those repaired, 75 are monitored semi-annually, and 50 are checked bimonthly (alternate months), with non checked at any other frequency, you would put in the category "valves, gas service:" 0/50/0/75/0/50 (bimonthly).

3. Give the average number of days, after a leak is discovered, that an attempt will be made to repair the leak.

- Note the method used: MB material balance; EE engineering estimate; EPA emission factors established by EPA (cite document used); O - other method, such as in-house emission factor (specify).
- 5. Do not include in the equipment count sealless pumps (canned motor or diaphragm) or those with enclosed venting to a control device. (Emissions from vented equipment should be included in the estimates given in the Emission Points Data Sheet.)
- 6. Volatile organic compounds (VOC) means the term as defined in 40 CFR \Box 51.100 (s).
- 7. A light liquid is defined as a fluid with vapor pressure equal to or greater than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if 20% w/w or more of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a light liquid.
- 8. A heavy liquid is defined as a fluid with a vapor pressure less than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if less than 20% w/w of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a heavy liquid.
- LIST CO, H₂S, mineral acids, NO, NO₂, SO₃, etc. DO NOT LIST CO₂, H₂, H₂O, N₂, O₂, and Noble Gases.
- 10. Include all process valves whether in-line or on an open-ended line such as sample, drain and purge valves. Do not include safety-relief valves, or leakless valves such as check, diaphragm, and bellows seal valves.
- 11. Do not include a safety-relief valve if there is a rupture disk in place upstream of the valve, or if the valve vents to a control device.
- 12 Open-ended lines include purge, drain and vent lines. Do not include sampling connections, or lines sealed by plugs, caps, blinds or second valves.
- 13. Do not include closed-purge sampling connections.

ATTACHMENT M

AIR POLLUTION CONTROL DEVICE

Rule 13 Permit Application

Camden 17 Well Pad, New Facility Camden, West Virginia

> CNX Gas Company, LLC PO Box 1248 Jane Lew, West Virginia

> > March 2015

AIR POLLUTION CONTROL DEVICE Vapor Combustion Control Device Sheet

Complete this vapor combustion control device sheet for each enclosed combustion device, flare, thermal oxidizer, or completion combustion device that is located at the natural gas production pad for the purpose of thermally destructing waste gas to control emissions of regulated pollutants to the atmosphere.

IMPORTANT: READ THE INSTRUCTIONS ACCOMPANYING THIS FORM BEFORE COMPLETING.								
		General In	nformation					
1. Control Device ID#: VDU-	1		2. Installation Dat	e: 2015		🛛 New		
3. Maximum Rated Total Flow Capacity: 4,125 scfh 99,000 scfd4. Maximum D 9.1 MMBtu/		esign Heat Input: hr	5. Design 2,200	Heat Co BTU/scf				
Control Device Information								
 6. Select the type Elevated Flare 	-		vice being used: 🛛	Enclosed Co				
7. Manufacturer: LEED Fabrication8. Hours of operation per year: 8760Model No.: L30-0018-008. Hours of operation per year: 8760								
9. List the emiss	ion units whos		ontrolled by this vap Point ID#: <u>3e</u>)	oor combustio	n contro	l device:		
10. Emission Unit ID#	Emission So	urce Description:	Emission U	nit ID#	Emissi	on Source Description:		
T01	Produced Wa	ater	T02		Produc	ed Water		
Т03	Produced Wa	ater	T04		Produc	ed Water		
T05	Condensate 7	Tank	T06 Condensate Tank			nsate Tank		
If this vapor combusto	or controls emi	issions from more	than six emission u	nits, please at	tach add	litional pages.		
11. Ass	ist Type		12. Flare Height	13. Tip Diameter		14. Was the design per §60.18?		
Steam - Air - H	Pressure - 🛛] Non -	25 ft	Multi tip Burner		Yes No		
Waste Gas Information								
15. Maximum waste gas flow rate (scfm):		lue of waste gas			Exit Velocity of the ssions stream (ft/s)			
69		(BTU/ft3) .200	1400	ат (г)	enns	<60		
		,200	1100					
19. Provide an attachment with	n the character	istics of the waste	gas stream to be bu	rned.				

Pilot Information								
20. Type/Grade of pilot fuel:	21. Number of pilot lights:	22. Fuel flow rate to pilot flame per pilot (scf/hr):	23. Heat input per pilot (BTU/hr):	24. Will automatic re- ignition be used?				
Fuel Gas	1	50 50,000		🖾 Yes 🗌 No				
25. If automatic re-i	gnition will be used, descri	be the method: Electronic re	e-ignition will be installed	d (additional details				
provided upon reque	-		0					
r · · · · · · · · · · · · · · · · · · ·								
26. Describe the me	thod of controlling flame:	Thermocouple						
	_	_						
27 Is pilot flame e	quipped with a monitor	28. If yes, what type? \boxtimes	Thermocouple Infr	a-Red 🗌 Ultra Violet				
	esence of the flame?							
to detect the pre	sence of the finance.	Camera with monitorin	ag control room \Box Oth	er, describe:				
🖂 Yes	No			er, deseribe.				

29. Pollutant(s) Controlled	30. % Capture Efficiency	31. Manufacturer's Guaranteed Control Efficiency (%)
VOC	99	98
32. Has the control device been tested by the manufa	acturer and certified? No	
33. Describe all operating ranges and maintenance pr	rocedures required by the manufact	turer to maintain warranty: Available
Upon request		
34. Additional Information Attached? XES	S NO	
Please attach a copy of manufacturer's data sheet.		
Please attach a copy of manufacturer's drawing.		
Please attach a copy of the manufacturer's performan	nce testing.	

If any of the requested information is not available, please contact the manufacturer.

<u>INSTRUCTIONS:</u> Vapor Combustion Control Device

This form assumes one vapor combustion control device emissions are being released from the emission point identification number (including the waste gas emissions and pilot emissions). If multiple vapor combustion control devices are being used at the oil and natural gas production facility, a vapor control device sheet must be completed for each device. The same form is being used for all types of vapor combustion control devices.

General Information

- 1. Enter the control device ID#(s) that has been assigned to this control device. A unique control device identification number should identify each control device located at the affected facility.
- 2. Enter the date that the control device was installed at the affected facility. Include the month, day, and year. If this is a new control device that has yet to be installed, check the "NEW" box.
- 3. Enter the maximum rated total flow rate of the vapor combustion device. This includes the flow rate of all materials to be burned including the pilot fuel and the waste gas.
- 4. Enter the maximum rated design heat input capacity of the vapor combustion device in terms of million British thermal units per hour (MMBtu/hr).
- 5. Enter the total design heat content of the pilot in terms of million British thermal units per hour (MMBtu/hr).

Control Device Information

- 6. Indicate the type of vapor combustion device that applies.
- 7. Enter the manufacturer and model number of the control device.
- 8. Enter the hours of operation that the control device is planned to be used. This should be the same basis as the emissions calculations.
- 9. Enter the emission point identification number.
- 10. Enter ALL of the emission units whose emissions will be controlled and then emitted from the control device.
- 11. Select whether the flare is steam-assisted, air-assisted, pressure-assisted, or non-assisted.
- 12. Enter the height of the stack in terms of feet.
- 13. Enter the tip diameter (in feet) of the top of the stack where the emissions are discharged.
- 14. Is the applicant having the combustion device designed per §60.18? Only flares required by an NSPS standard are required to be designed and operated in accordance with §60.18.

Waste Gas Information

The waste gas is the vapor emissions that are being controlled.

- 15. Enter the waste gas flow rate in cubic feet per minute that is being consumed.
- 16. Enter the heat content of the waste gas being combusted in units of BTU per cubic feet.
- 17. Enter the minimum temperature of the emissions stream (°F).
- 18. Enter the velocity in feet per second of the gas as it discharges from the top of the stack.
- 19. Provide the characterization of the waste gas stream that is being controlled. This could be a certificate of analysis of the natural gas from this facility or from a similar facility. This is the basis of the emissions calculations.

Pilot Information

- 20. Enter the type/grade(s) of fuel that will combusted in the combustion flare's pilot (examples: natural gas pipeline quality, propane, etc.).
- 21. How many pilot lights does the device have?
- 22. What is the fuel capacity for each pilot?
- 23. What is the heat input for each pilot?
- 24. Is the system designed with automatic re-ignition?
- 25. Describe the re-ignition method and system.
- 26. Describe the method of controlling the pilot flame.
- 27. Is the pilot flame equipped with a monitoring device?
- 28. What is the monitoring device for the pilot flame?

*continued next page

Control Information

- 29. Enter the types of pollutants that the control equipment controls (i.e., reduces). If numerous pollutants are controlled, indicate the different pollutants controlled in line with their respective control efficiencies.
- 30. What is the % capture efficiency of the collection system to the control device? In other words, what is the percentage of the waste gas stream will be controlled?
- 31. Enter the control efficiency of the control equipment for each pollutant being controlled. The manufacturer typically provides a manufacturer's minimum guarantee control efficiency. Provide the manufacturer's data sheet that documents the minimum guarantee.
- 32. Please answer if the control device had a performance test conducted by the manufacturer and if it is certified.
- 33. Describe the manufacturer's operating and maintenance requirements that the guaranteed control efficiency is based upon.
- 34. Please include any additional information associated with the control device you feel should be submitted with this application. Please attach a copy of the manufacturer's data sheet. Please include the manufacturer's performance testing.

ATTACHMENT N

SUPPORTING EMISSIONS CALCULATIONS

Rule 13 Permit Application

Camden 17 Well Pad, New Facility Camden, West Virginia

> CNX Gas Company, LLC PO Box 1248 Jane Lew, West Virginia

> > March 2015

Table 1. Annual Potential To Emit (PTE) CNX Gas LLC - Camden 17

	Criteria PTE								
Source	РМ	PM10	PM2.5	SO2	NOx	со	VOC	CO2e	
Tanks (ton/yr)	-	-	-	-	-	-	Included in VDU	-	
Truck Loading (ton/yr)	-	-	-	-	-	-	6.764	-	
Vapor Destruction Unit (ton/yr)	-	-		0.748	2.718	14.790	8.508	4646.202	
GPU Heaters	0.065	0.000	0.000	0.005	0.859	0.721	0.047	1024.432	
Fugitives (ton/yr)	-	-	-	-	-	-	0.005	22.374	
Total Emissions (ton/yr)	0.065	0.000	0.000	0.753	3.577	15.511	15.324	5693.008	
Total Emissions (lb/hr)	0.015	0.000	0.000	0.172	0.817	3.541	3.499	1299.773	

Note: The VOC tank emissions are listed as 8.508 tpy under the Vapor Destruction Unit (VDU) source listing, which represents 98% contol of Promax predicted emissions.

HAP PTE									
Source	Benzene	Toluene	Ethylbenzene	Xylene	n-Hexane	Formaldehyde	Total HAPs Listed (tpy)		
Tanks (ton/yr)	-	-	-	-	-	-	0.000		
Truck Loading (ton/yr)	-	-	· -	-	-	-	0.000		
GPU Heaters	0.00002	0.00003	- 1	-	0.01546	0.00064	0.01615		
Total Emissions (ton/yr)	0.000	0.000	0.000	0.000	0.015	0.001	0.016		
Total Emissions (lb/hr)	0.000	0.000	0.000	0.000	0.004	0.000	0.004		

Table 2. Tank EmissionsCNX Gas LLC - Camden 17

Emission Unit	Tank Contents	Control Devices	Tank Throughput (bbls/day)	Flashing and W&B Emissions (lb/hr)(a)	VOC Emissions (ton/yr)	98 %VOC Emissions Reduction (lb/hr)	98 %VOC Emissions Reduction (ton/yr)
T01-T04	Produced Water	None	600.00	0.756	3.312	0.015	0.066
T05-T06	Condensate	None	100.00	96.365	422.079	1.927	8.442
Total				97.121	425.391	1.942	8.508

(a) Emissions are taken from ProMax 3.2. and are the combination of the flash gas analysis and working & breathing analysis of representative inputs from Oxford 1

Notes:

Promax Results Summary (Complete results located in the back of attachment I)

Pollutant	<u>lb/hr</u>
Propane	51.2161
i-Butane	11.5425
n-Butane	20.1692
i-Pentane	5.03045
n-Pentane	4.35537
Hexane	1.52495
Isohexane	0.68402
Neohexane	0.82076
2,2,4-Trimethylpentane	0.00174763
Benzene	0.0375381
Heptane	0.621017
Toluene	0.0432709
Octane	0.247975
Ethylbenzene	0.00201755
o-Xylene	0.00223262
Nonane	0.0412352
Decane	0.0247324
VOCs	96.37

Water Tanks Vented Em	nissions
Pollutant	<u>lb/hr</u>
Propane	0.579367
i-Butane	0.027976
n-Butane	0.0954935
i-Pentane	0.0159928
n-Pentane	0.0138559
Hexane	0.00225351
Isohexane	0.00112636
Neohexane	0.000972163
2,2,4-Trimethylpentane	3.66E-07
Benzene	0.00655641
Heptane	0.00165934
Toluene	0.00906056
Octane	0.000432258
Ethylbenzene	0.000515129
o-Xylene	0.000642703
Nonane	0.000141745
Decane	6.42E-05
VOCs	0.76

Table 3. Gas Processing Unit (GPU) Rates and Emissions
CNX Gas LLC - Camden 17

Pollutant	Emission	Emissions	Emissions	Emissions	Emissions
	Factor	(lbs/hr)	(tons/yr)	x2 (lbs/hr)	x2 (tons/yr)
Criteria Pollutants				4	
PM/PM10/PM2.5	7.6 lb/MMcf (1)	0.007	0.033	0.015	0.065
SO ₂	0.6 lb/MMcf (1)	0.001	0.003	0.001	0.005
NOx	100 lb/MMcf (2)	0.098	0.429	0.196	0.859
СО	84 lb/MMcf (2)	0.082	0.361	0.165	0.721
VOC	5.5 lb/MMcf (1)	0.005	0.024	0.011	0.047
Hazardous Air Pollutants		0			
Arsenic	2.0E-04 lb/MMcf (3)	1.96E-7	8.59E-7	3.92E-7	1.72E-6
Benzene	2.1E-03 lb/MMcf (4)	2.06E-6	9.02E-6	4.12E-6	1.80E-5
Beryllium	1.2E-05 lb/MMcf (3)	1.18E-8	5.15E-8	2.35E-8	1.03E-7
Cadmium	1.1E-03 lb/MMcf (3)	1.08E-6	4.72E-6	2.16E-6	9.45E-6
Chromium	1.4E-03 lb/MMcf (3)	1.37E-6	6.01E-6	2.75E-6	1.20E-5
Cobalt	8.4E-05 lb/MMcf (3)	8.24E-8	3.61E-7	1.65E-7	7.21E-7
Dichlorobenzene	1.2E-03 lb/MMcf (4)	1.18E-6	5.15E-6	2.35E-6	1.03E-5
Formaldehyde	7.5E-02 lb/MMcf (4)	7.35E-5	3.22E-4	1.47E-4	6.44E-4
Hexane	1.8E+00 lb/MMcf (4)	1.76E-3	7.73E-3	3.53E-3	1.55E-2
Lead	5.0E-04 lb/MMcf (3) 3.8E-04 lb/MMcf (3)	4.90E-7 3.73E-7	2.15E-6 1.63E-6	9.80E-7 7.45E-7	4.29E-6 3.26E-6
Manganese		3.73E-7 2.55E-7	1.03E-0 1.12E-6	7.45E-7 5.10E-7	3.26E-6 2.23E-6
Mercury Naphthalene	2.6E-04 lb/MMcf (3) 6.1E-04 lb/MMcf (4)	2.55E-7 5.98E-7	2.62E-6	1.20E-6	2.23E-0 5.24E-6
Nickel	2.1E-03 lb/MMcf (3)	5.96E-7 2.06E-6	2.02E-0 9.02E-6	4.12E-6	5.24E-0 1.80E-5
PAH/POM	1.3E-03 lb/MMcf (4)	1.26E-6	9.02E-0 5.53E-6	4.12E-0 2.53E-6	1.11E-5
Selenium	2.4E-05 lb/MMcf (3)	2.35E-8	1.03E-7	4.71E-8	2.06E-7
Toluene	3.4E-03 lb/MMcf (4)	3.33E-6	1.46E-5	6.67E-6	2.92E-5
Tolucite		0.002-0	1.402-0	0.00E+0	0.00E+0
Total HAP	1.9E+00 Ib/MMCF	1.85E-3	8.11E-3	3.71E-3	1.62E-2
Greenhouse Gas Emissions					
CO ₂	116.89 lb/MMBtu (5)	1.17E+2	5.12E+2	2.34E+2	1.02E+3
CH ₄	2.2E-03 lb/MMBtu (5)	2.20E-3	9.66E-3	4.41E-3	1.93E-2
N ₂ O	0.0 lb/MMBtu (5)	2.20E-4	9.47E-7	4.41E-4	1.89E-6
CO ₂ e ^(b)		117.010	512.216	234.020	1024.432

(7)

Calculations:

(a) Annual emissions (tons/yr) = [Annual Usage (MMBtu/yr or MMCF/yr)]x [Number of Identical Heaters]x

[Emission Factor (lb/MMBtu or lb/MMCF)] / [2,000 lb/ton]

Number of GPUs	2
Fuel Use (MMBtu/hr) =	1
Hours of Operation (hr/yr)=	8760
PTE Fuel Use (MMcf/yr) =	8.6

(b) CO_2 equivalent = [(CO_2 emissions)*(GWP_{CO_2})]+[(CH_4 emissions)*(GWP_{CH_4})]+[(N_2O emissions)*($GWP_{N_{2O}}$)] Global Warming Potential (GWP)

CO2	1	(6)	
CH_4	25	(6)	
N ₂ O	298	(6)	

Notes:

(1) AP-42, Chapter 1.4, Table 1.4-2. Emission Factors For Criteria Pollutants and Greenhouse Gases From Natural Gas Combustion, July 1998.

(2) AP-42, Chapter 1.4, Table 1.4-1. Emission Factors For Nitrogen Oxides (Nox) and Carbon Monoxide(CO) From Natural Gas Combustion, July 1998.

(3) AP-42, Chapter 1.4, Table 1.4-4. Emission Factors For Metals From Natural Gas Combustion, July 1998.
(4) AP-42, Chapter 1.4, Table 1.4-3. Emission Factors for Speciated Organic Compounds from Natural Gas Combustion, July 1998.

(5) Emission factors are from 40 CFR 98, Subpart C, Table C-1 and C-2.

(6) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

(7) MMBtu to MMcf conversion factor is 1020. AP-42, Chapter 1.4

Table 4. Vapor Destruction Unit (VDU-1) Emissions CNX Gas LLC - Camden 17

Pollutant	Emission Factor (Ib/MMBtu)	Volume (scf/hr)	Gas Heat Value (Btu/scf)	(MMBtu/ 1000000Btu)	Emissions (lbs/hr)	Emissions (ton/yr)
CO	0.37	4,125	2,200	(1/1,000,000)	3.36	14.71
NOx	0.07	4,125	2,200	(1/1,000,000)	0.62	2.70
VOC	0.14	4,125	2,200	(1/1,000,000)	1.27	5.56
CO2e	116.89	4.125	2,200	(1/1,000,000)	1,060.78	4,646.20

Example Formula:

nula: emissions $\left(\frac{ton}{yr}\right)$ = emission factor $\left(\frac{lb}{MMBtu}\right)$ × Volume $\left(\frac{scf}{hr}\right)$ × gas heat value $\left(\frac{Btu}{scf}\right)$ × $\frac{MMBtu}{1,000,000 Btu}$ × $\frac{8760 hrs}{1 yr}$ × $\frac{1 ton}{2,000 lbs}$

Emission Factor = AP-42 Table 13.1 emission factor for specific pollutant Volume = 4125 scf/hr Gas Heat Value = 2200 Btu/scf

Pollutant	Volume (scf/hr)	grain H2S/ 100 scf	Mol Fraction	Mol weight (g/mol)	(lb-mol /scf)	Emissions (lbs/hr)	Emissions (ton/yr)
SO2	4,125	15.26	0.0002423	64.00	1/379.4	0.1686	0.7386

Example Formula:

$emissions\left(\frac{ton}{yr}\right) = Volume\left(\frac{scf}{hr}\right) \times mol fraction\left(\frac{H2S}{100 scf} \times 0.00001588\right) \times molec$	ular weight $\times \frac{16 \cdot mol}{scf} \times \frac{8760 \text{ hrs}}{1 \text{ yr}} \times \frac{1 \text{ ton}}{2,000 \text{ lbs}}$
$\frac{1 \text{ grain } H2S}{100 \text{ scf}} = 15.26 \text{ ppm of } H2S$	
H2S conversion taken from supporting Sulfur Measurement Handbook	
grain H2S/100 scf = 15.26	
Volume = 4125 scf/hr	
1 lb mol = 379.4 cubic feet	

For Pilot Light

Pollutant	Emission Factor (lb/MMBtu)	Volume (scf/hr)	Gas Heat Value (Btu/scf)	(MMBtu/ 1000000Btu)	Emissions (lbs/hr)	Emissions (ton/yr)
СО	0.37	50	1,020	(1/1,000,000)	0.0189	0.0827
NOx	0.07	50	1,020	(1/1,000,000)	0.0035	0.0152
VOC	0.14	50	1,020	(1/1,000,000)	0.0071	0.0313

Example Formula:

$\operatorname{emissions}\left(\frac{\operatorname{ton}}{\operatorname{yr}}\right) = \operatorname{emission} \operatorname{factor}\left(\frac{\Gamma}{\operatorname{MM}}\right)$	$\frac{lb}{MBtu}$ × Volume $\left(\frac{scf}{hr}\right)$ × gas heat value	$\left(\frac{Btu}{scf}\right) \times$	MMBtu 1,000,000 Btu ×	$\frac{8760\mathrm{hrs}}{1\mathrm{yr}}$ ×	1 ton 2,000 lbs
--	---	---------------------------------------	--------------------------	---	--------------------

Emission Factor = AP-42 Table 13.1 emission factor for specific pollutant Volume = 50 scf/hr Gas Heat Value = 1020 Btu/scf

Pollutant	Volume (scf/hr)	grain H2S/ 100 scf	Mol Fraction	Mol weight (g/mol)	(lb-mol /scf)	Emissions (lbs/hr)	Emissions (ton/yr)
SO2	50.00	15.26	0.0002423	64.00	1/379.4	0.0020	0.0090

Example Formula:

$$\frac{\text{(ton)}}{\text{emissions}\left(\frac{\text{ton}}{\text{yr}}\right) = \text{Volume}\left(\frac{\text{scf}}{\text{hr}}\right) \times \text{ mol fraction}\left(\frac{\text{H2S}}{100 \text{ scf}} \times 0.00001588\right) \times \text{ molecular weight } \times \frac{\text{lb} \cdot \text{mol}}{\text{scf}} \times \frac{8760 \text{ hrs}}{1 \text{ yr}} \times \frac{1 \text{ ton}}{2,000 \text{ lbs}}$$

 $\frac{1 \text{ grain } H25}{100 \text{ scf}} = 15.26 \text{ ppm of } H25$ H2S conversion taken from supporting Sulfur Measurement Handbook grain H2S/100 scf = 15.26 Volume = 50 scf/hr 1 lb mol = 379.4 cubic feet

VDU and Pilo	ot Combine	d	
Pollutant	lb/hr	ton/yr]
CO	3.377	14.790	
Nox	0.621	2.718	
VOC	1.942	8.508	Note: VOC emissions were taken from 98% reduction of uncontrolled Tank VO
SO2	0.171	0.748	as predicted by Promax

Table 5. Truck Loading (TL) VOC EmissionsCNX Gas LLC - Camden 17

Contents	Volume Transferred	Loading Loss ^(a) (lb VOC/1000gal)	PTE VOC Emissions (lb/hr)	PTE VOC Emissions (ton/yr) ^(b)
Water	9,198,000 gal/yr	0.075	0.079	0.345
Condensate	1,533,000 gal/yr	8.375	1.466	6.419
Total			1.544	6.764

Calculations:

(a) Loading Loss (lbs/1000 gal) = 12.46x[Saturation Factor] x [True Vapor Pressure of Liquid Loaded (psia)] x[Molecular Weight of Vapors(lbs/lb-mole)]/ [Temperature of Bulk Liquid Loaded(°R)]

(b) Annual Emissions(tons/yr) = [Loading Loss (lb VOC/ 1000 gal)]*[Volume Transferred(gal/yr)]/1000/2000

	Water	Condensate	
Saturation factor	0.60	0.60	Note (1)
Condensate Pvap (psia)	0.28	12.91	Note (2)
Molecular Weight (lb/lb-mol)	18.38	45.19	Note (2)
Bulk Liquid Tempurature (F)	60.80	60.80	Note (2)

Notes:

(1) AP-42 Section 5.2

(2) ProMax Oxford 11 - 100 bbls of condensate/day and 600 bbls produced water/day

Table 6. Fugitive Leak Emissions CNX Gas LLC - Camden 17

Fugitive emissions from valves and fittings are calculated using the major equipment default component count approach from 40 CFR Part 98 because site-specific component counts have not been collected.

Pollutant	Emission Factor Total Gas	Losses	Annual emission losses ^(a) (tons/yr)
Valves Pressure Relief Valves	1.30E-05 kg/hr/source 1.20E-04 kg/hr/source	(1) (1)	0.0208 0.0081
Connector	1.20E-04 kg/hr/source	(1)	0.8874
Open-ended Lines	1.20E-04 kg/hr/source	(1)	0.0203
Total			0.9366

Calculations:

(a) Annual emission losses (tons/yr) = [Emission Factor (kg/hr/source)] x [Number of Sources] x [Hours of Operation per Year] x [0.001102 tons/ kg]

8,760

(b) Leak detection survey conducted on 12-29-2012 revealed no leaks at the facility.

Number of Components in Gas Service

Valves=	166	(2)
Pressure Relief Valves=	7	(2)
Connectors=	766	(2)
Open-ended lines	18	(2)

Maximum Hour of Operation =

Compound	Fraction ⁽³⁾	Potential Annual Emissions (tons/yr) ^(b)
C6 +	0.00022	0.0002
Nitrogen	0.01138	0.0107
Methane	0.95532	0.8947
CO2	0.00601	0.0056
Ethane	0.02203	0.0206
Propane	0.0035	0.0033
i Butane	0.00039	0.0004
n Butane	0.0008	0.0007
i Pentane	0.0002	0.0002
n Pentane	0.00015	0.0001
Total VOC Emissions		0.0049
Total CO2e ^(c)		22.37

(b) Potential Annual Emissions (tons/yr) = Annual Emission Losses (TPY) X (compound **Weight** fraction)

(c) CO₂ equivalent = [(CO₂ emissions) x (GWP_{CO2})]+[(CH₄ emissions) x (GWP_{CH4})]+[(N₂O emissions) x (GWP_{N2O})] Global Warming Potential (GWP)

CO ₂	1	(4)
CH₄	25	(4)
N ₂ O	298	(4)

Notes:

(1) Emission factors from Protocol for Equipment Leak Emission Estimates Table 2-3 Marketing

Terminal Average Emission Factors

(2) Default Average Component Counts for Major Onshore Natural Gas Production Equipment from 40 CFR 98,

Subpart W, Table W-1B

(3) Representative Gas Analysis Results from the Dangle Facility

(4) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

		Flowshe Plant Sche		
Client Name:	Consol Energy			Job: Water and Condensate Tank Emissions Estimate
Location:	Camden 17 Natural C	as Production Facility		
Flowsheet:	Flowsheet1			
			Tark loss calculations for "Bales Condensate Loss Condensate Tark W&B Gas Sales Condensate Loss calculations for "Bales Condensate". Tark loss calculations for "Bales Condensate". Tark J Tark J Tark Condensate Loss of the Version Condensate Loss of	Total Emissions+

Page 1 of 1

	11/2013 12.03.27 PM	Process S All S	Streams Report Streams d by Total Phase	unpri IA		Page For	
Client Name:	Consol Energy			Job: Wate Estimate	Job: Water and Condensate Tank Emissions Estimate		
Location: Flowsheet:	Camden 17 Nate Flowsheet1	ural Gas Production Facility					
			nections				
				Condonasta	Condenasta	Color	
		Condensate Loading Emissions	Condensate Tank Flash Gas	Condensate Tank Total Emissions	Condensate Tank W&B Gas	Sales Condensate	
From Block			Condensate Tanks	MIX-101		Condensate Tanks	
To Block			MIX-101		MIX-101		
		Stream	Composition				
Mole Fraction		Condensate Loading Emissions %	Condensate Tank Flash Gas %	Condensate Tank Total Emissions %	Condensate Tank W&B Gas %	Sales Condensate %	
Methane		1.83699	* 44.3793	43.9828	1.83699 *	0.314381	
Ethane Propane		32.0569 34.6227	* 28.0891 * 16.8972	28.1261 17.0624	32.0569 * 34.6227 *	1.81024 5.28298	
i-Butane n-Butane		7.69401	* 2.8724 * 5.00685	2.91733 5.09771	7.69401 * 14.7559 *	2.77646 7.54829	
i-Pentane		3.64357	* 0.99961	1.02425	3.64357 *	4.87712	
n-Pentane Nitrogen		3.38314 0.00018115	* 0.863314 * 0.0736044	0.886799	3.38314 * 0.00018115 *	6.12302 0.000129363	
CO2		0.0371353	* 0.0952473	0.0947057	0.0371353 *	0.00239364	
Oxygen		0.000119885	* 0.0109633	0.0108622	0.000119885 *	3.50837E-05	
Hexane		0.0964724	* 0.261495	0.259957	0.0964724 *	8.38455	
Isohexane Neohexane		0.529476	* 0.11272 * 0.135847	0.116604 0.139914	0.529476 * 0.572244 *	<u>2.37944</u> 1.66867	
2,2,4-Trimethylper	ntane	0.00114279	* 0.000216116	0.000224752	0.00114279 *	0.0232504	
Benzene Heptane		0.00202388 0.494566	* 0.00710704 * 0.0872488	0.00705966 0.091045	0.00202388 * 0.494566 *	0.217836 11.115	
Toluene		0.494366	* 0.00691315	0.00689896	0.00539035 *	0.997754	
Octane		0.207742	* 0.0302362	0.0318906	0.207742 *	16.0441	
Ethylbenzene		0.000557343	* 0.000276555	0.000279172	0.000557343 *	0.166799	
o-Xylene Nonane		0.000726944	* 0.000304999 * 0.00442494	0.000308932	0.000726944 * 0.0364106 *	0.261347 9.65959	
Decane		0.0225256	* 0.00236567	0.00255356	0.0225256 *	20.3452	
Water		7.82247E-06	* 0.0632768	0.0626871	7.82247E-06 *	0.00146101	
		Condensate	Condensate	Condensate	Condensate	Sales	
Molar Flow		Loading Emissions Ibmol/h	Tank Flash Gas Ibmol/h	Tank Total Emissions Ibmol/h	Tank W&B Gas Ibmol/h	Condensate	
Methane		0.000575142	* 2.99285	2.99401	0.00116545 *	0.0314036	
Ethane		0.0100367	* 1.89427	1.91461	0.020338 *	0.180825	
Propane i-Butane		0.01084		1.16148 0.19859	0.0219659 * 0.00488135 *	0.527718 0.277341	
n-Butane		0.00240892	* 0.337652	0.347013	0.00936168 *	0.754	
i-Pentane		0.00114077	* 0.0674117	0.0697233	0.00231161 *	0.487176	
n-Pentane		0.00105923	* 0.0582201	0.0603665	0.00214638 *	0.61163	
Nitrogen CO2		5.67161E-08 1.16267E-05	* 0.00496373 * 0.00642329	0.00496385 0.00644685	1.14928E-07 * 2.35599E-05 *	1.29221E-05 0.000239102	
Oxygen		3.75349E-08	* 0.00073934	0.000739416	7.60594E-08 *	3.50452E-06	
Hexane		3.02046E-05	* 0.0176347	0.0176959	6.12054E-05 *	0.837534	
Isohexane Neohexane		0.000165774 0.000179164		0.00793754 0.0095243	0.000335918 * 0.000363051 *	0.237683 0.166684	
2,2,4-Trimethylper	ntane	3.57798E-07	* 1.45744E-05	1.52994E-05	7.25029E-07 *	0.00232249	
Benzene		6.33657E-07	* 0.000479284	0.000480568	1.28402E-06 *	0.0217597	
Heptane		0.000154844		0.00619765	0.00031377 *	1.11028	
Toluene Octane		1.68767E-06 6.5042E-05	* 0.000466209 * 0.00203907	0.000469629 0.00217087	3.41983E-06 * 0.000131799 *	0.0996658 1.60265	
Ethylbenzene		0.3042E-03		1.90039E-05	3.53598E-07 *	0.0166615	
o-Xylene		2.27599E-07		2.10297E-05	4.61199E-07 *	0.026106	

Page	2	of	2
------	---	----	---

		All S	treams Report Streams by Total Phase			
Client Name:	Consol Energy				r and Condensate T	ank Emissions
Location:	Camden 17 Natu	ral Gas Production Facility		Estimate		
Flowsheet:	Flowsheet1					
Molar Flow		Condensate Loading Emissions Ibmol/h	Condensate Tank Flash Gas Ibmol/h	Condensate Tank Total Emissions Ibmol/h	Condensate Tank W&B Gas Ibmol/h	Sales Condensate Ibmol/h
Nonane		1.13998E-05	* 0.000298409	0.000321509	2.31002E-05 *	0.964898
Decane		7.05255E-06	* 0.000159536	0.000173827	1.4291E-05 *	2.03228
Water		2.44914E-09	* 0.00426726	0.00426726	4.96285E-09 *	0.000145941
		Condensate Loading Emissions	Condensate Tank Flash Gas	Condensate Tank Total Emissions	Condensate Tank W&B Gas	Sales Condensate
Mass Fraction		%	* 04.0540	%	%	%
Methane Ethane		0.652146	* 24.0516 * 28.5333	23.7203 28.4313	0.652146 * 21.3309 *	0.0504605 0.544604
Propane		33.7851	* 25.1711	25.2931	33.7851 *	2.33077
i-Butane		9.89608	* 5.64001	5.70027	9.89608 *	1.61458
n-Butane		18.9792	* 9.83104	9.96057	18.9792 *	4.3895
i-Pentane		5.81734	* 2.43642	2.48429	5.81734 *	3.5206
n-Pentane		5.40154	* 2.10422	2.1509	5.40154 *	4.41997
Nitrogen		0.000112298	* 0.0696567	0.0686721	0.000112298 *	3.62576E-05
CO2		0.0361661 8.48922E-05	* 0.14161 * 0.0118513	0.140117 0.0116847	0.0361661 * 8.48922E-05 *	0.00105398 1.12322E-05
Oxygen Hexane		0.183973	* 0.761272	0.753098	0.183973 *	7.22915
Isohexane		1.00971	* 0.328154	0.337804	1.00971 *	2.05155
Neohexane		1.09127	* 0.395482	0.405333	1.09127 *	1.43873
2,2,4-Trimethylpe	entane	0.00288876	* 0.000833977	0.00086307	0.00288876 *	0.0265724
Benzene		0.0034984	* 0.0187542	0.0185382	0.0034984 *	0.170244
Heptane		1.09665	* 0.295345	0.30669	1.09665 *	11.1432
Toluene Octane		0.0109907	* 0.0215184 * 0.11668	0.0213694 0.122463	0.0109907 * 0.525131 *	0.91979 18.3365
Ethylbenzene		0.0013094	* 0.000991873	0.000996369	0.0013094 *	0.177173
o-Xylene		0.00170785	* 0.00109389	0.00110258	0.00170785 *	0.277602
Nonane		0.103341	* 0.0191723	0.020364	0.103341 *	12.3953
Decane		0.0709241	* 0.0113709	0.0122141	0.0709241 *	28.9624
Water		3.11855E-06	* 0.0385104	0.0379652	3.11855E-06 *	0.000263342
		Condensate Loading Emissions	Condensate Tank Flash Gas	Condensate Tank Total Emissions	Condensate Tank W&B Gas	Sales Condensate
Mass Flow		lb/h	lb/h	lb/h	lb/h	lb/h
Methane		0.0092267	* 48.0126	48.0313	0.0186967 *	0.50379
Ethane		0.301794	* 56.959	57.5706	0.611545 *	5.43724
Propane		0.477998	* 50.2475	51.2161	0.968598 *	23.27
i-Butane n-Butane		0.140012	* <u>11.2588</u> * <u>19.6251</u>	11.5425 20.1692	0.283715 * 0.544121 *	16.1197 43.8242
i-Pentane		0.266521	* 4.86367	5.03045	0.16678 *	35.1491
n-Pentane		0.0764221	* 4.20051	4.35537	0.154859 *	44.1283
Nitrogen		1.58881E-06	* 0.139051	0.139054	3.21951E-06 *	0.000361991
CO2		0.000511685	* 0.282686	0.283723	0.00103686 *	0.0105227
Oxygen		1.20107E-06	* 0.023658	0.0236604	2.43381E-06 *	0.00011214
Hexane		0.00260289	* 1.51968	1.52495	0.0052744 *	72.1748
Isohexane Neohexane		0.0142856	* 0.655072 * 0.789474	0.68402	0.0289479 * 0.0312861 *	20.4824 14.364
2,2,4-Trimethylpe	entane	4.08707E-05	* 0.00166481	0.00174763	8.2819E-05 *	0.265295
Benzene		4.94961E-05	* 0.0374378	0.0375381	0.000100297 *	1.69969
Heptane		0.0155157	* 0.589577	0.621017	0.0314404 *	111.252
Toluene		0.000155499	* 0.0429558	0.0432709	0.000315097 *	9.18305
Octane		0.00742966	* 0.23292	0.247975	0.0150552 *	183.069
Ethylbenzene		1.85256E-05	* 0.00198001	0.00201755	3.75397E-05 *	1.76887
o-Xylene Nonane		2.41631E-05 0.00146208	* 0.00218366 * 0.0382725	0.00223262	4.89632E-05 * 0.00296272 *	2.77154 123.753
NULLALIE		0.00146208	0.0302723	0.0412332	0.00230212	123./33

Decane

Nonane

* User Specified Values ? Extrapolated or Approximate Values

ProMax 3.2.13330.0 Copyright © 2002-2012 BRE Group, Ltd.

0.0382725

0.0226991

0.0412352

0.0247324

0.00146208

0.00100345 *

Licensed to SLR International Corporation and Affiliates

123.753

289.156

0.00296272 *

0.00203335 *

			All St	reams Report treams by Total Phase				
Client Name:	Consol Energ	У	Job: Water and Condensate Tank Emissio					
Location:	Camden 17 N	latural Gas Produc	tion Facility		Estimate			
Flowsheet:	Flowsheet1							
Mass Flow			Condensate Loading Emissions Ib/h	Condensate Tank Flash Gas Ib/h	Condensate Tank Total Emissions Ib/h	Condensate Tank W&B Gas Ib/h	Sales Condensate Ib/h	
Water			4.41219E-08 *	0.0768758	0.0768759	8.94071E-08 *	0.00262917	
Water			4.41213E 00	0.0700730	0.0700735	0.540712.00	0.00202317	
			Stream	Properties				
Property		Units	Condensate Loading Emissions	Condensate Tank Flash Gas	Condensate Tank Total Emissions	Condensate Tank W&B Gas	Sales Condensate	
			LIIISSIUIIS	Gas	LIIISSIOIIS			
Temperature		°E	68 0101 *	0 42583	10 21/2		0 / 2583	
Temperature Pressure		°F	68.9101 * 6.0389	9.42583	10.2142	68.9101 *	9.42583	
Pressure	r	psig	6.0389	0	0	68.9101 * 6.0389	0	
Pressure Mole Fraction Vapo		psig %			0 99.9994	68.9101 *	0	
Pressure Mole Fraction Vapo Mole Fraction Light	Liquid	psig	6.0389 100 *	0 100	0	68.9101 * 6.0389 100 *	0	
Pressure Mole Fraction Vapo Mole Fraction Light Mole Fraction Heav	Liquid	psig % %	6.0389 100 * 0	0 100 0	0 99.9994 0.00063466	68.9101 * 6.0389 100 * 0	0 0 100	
Pressure Mole Fraction Vapo Mole Fraction Light Mole Fraction Heav Molecular Weight	Liquid	psig % % %	6.0389 100 * 0 0	0 100 0 0	0 99.9994 0.00063466 0	68.9101 * 6.0389 100 * 0 0	0 0 100 0	
Pressure Mole Fraction Vapo Mole Fraction Light Mole Fraction Heav Molecular Weight Mass Density	Liquid	psig % % % Ib/lbmol	6.0389 100 * 0 0 45.1889	0 100 0 0 29.601	0 99.9994 0.00063466 0 29.7463	68.9101 * 6.0389 100 * 0 0 45.1889	0 0 100 0 99.9483 44.7461	
Pressure Mole Fraction Vapo Mole Fraction Light Mole Fraction Heav Molecular Weight Mass Density Mass Flow	Liquid y Liquid	psig % % % lb/lbmol lb/ft^3	6.0389 100 * 0 0 45.1889 0.169506	0 100 0 29.601 0.0873792	0 99.9994 0.00063466 0 29.7463 0.0876657	68.9101 * 6.0389 100 * 0 0 45.1889 0.169506	0 0 100 0 99.9483	
Pressure Mole Fraction Vapo Mole Fraction Light Mole Fraction Heav Molecular Weight Mass Density Mass Flow Std Vapor Volumetr	Liquid y Liquid ic Flow	psig % % % lb/lbmol lb/ft^3 lb/h	6.0389 100 * 0 0 45.1889 0.169506 1.41482 *	0 100 0 29.601 0.0873792 199.623	0 99.9994 0.00063466 0 29.7463 0.0876657 202.49	68.9101 * 6.0389 100 * 0 0 45.1889 0.169506 2.86694 *	0 0 100 0 99.9483 44.7461 998.385	
Pressure Mole Fraction Vapo Mole Fraction Light Mole Fraction Heav Molecular Weight Mass Density Mass Flow Std Vapor Volumetr Std Liquid Volumetr	Liquid y Liquid ic Flow	psig % % b/bmol lb/ft^3 lb/h MMSCFD	6.0389 100 * 0 0 45.1889 0.169506 1.41482 * 0.000285151	0 100 0 29.601 0.0873792 199.623 0.06142	0 99.9994 0.00063466 0 29.7463 0.0876657 202.49 0.0619978	68.9101 * 6.0389 100 * 0 0 45.1889 0.169506 2.86694 * 0.00057782	0 0 0 0 99.9483 44.7461 998.385 0.0909763	
Temperature Pressure Mole Fraction Vapo Mole Fraction Light Mole Fraction Heav Mole Fraction Heav Mole Fraction Heav Mass Density Mass Density Mass Flow Std Vapor Volumetr Std Liquid Volumetr Specific Gravity Net Ideal Gas Heati	Liquid y Liquid ic Flow ic Flow	psig % % b/bmol lb/ft^3 lb/h MMSCFD	6.0389 100 * 0 0 0 0 0.169506 1.41482 * 0.000285151 0.00573369	0 100 0 29.601 0.0873792 199.623 0.06142 0.986684	0 99.9994 0.00063466 0 29.7463 0.0876657 202.49 0.0619978	68.9101 * 6.0389 100 * 0 0 45.1889 0.169506 2.86694 * 0.00057782 0.0116186	0 0 0 0 99.9483 44.7461 998.385 0.0909763 2.91504	

			All St	reams Report reams by Total Phase			
Client Name:	Consol Energy				Job: Water Estimate	r and Condensate T	ank Emissions
Location:	Camden 17 Nat	ural Gas Production Facility					
Flowsheet:	Flowsheet1						
				ections			
			Waste Water	Water Loading	Water Tank Flash Gas	Water Tank Total	Water Tank W&B Gas
				Emissions		Emissions	
From Block			Water Tanks		Water Tanks	MIX-100	
To Block					MIX-100		MIX-100
			Stream C	omposition			
			Waste Water	Water	Water Tank	Water Tank	Water Tank
				Loading	Flash Gas	Total	W&B Gas
Mole Fraction			%	Emissions %	%	Emissions %	%
Methane			0.00220051	5.15364 *	82.7942	82.4257	5.15364
Ethane			0.000345765	0.608812 *	10.7375	10.6894	0.608812
Propane			0.00011059	0.0424433 *	2.80333	2.79022	0.0424433
i-Butane			1.36269E-06	0.000186437 *	0.102704	0.102217	0.000186437
n-Butane i-Pentane			9.92736E-06 9.7468E-07	0.000923554 * 3.2802E-05 *	0.350569 0.0472977	0.348909 0.0470733	0.000923554 3.2802E-05
n-Pentane			7.96745E-07	1.96584E-05 *	0.0472977	0.0470733	1.96584E-05
Nitrogen			2.88808E-06	0.00500174 *	0.223194	0.222159	0.00500174
CO2			0.000550085	1.46528 *	0.956764	0.959178	1.46528
Oxygen			1.107E-06	0.00284713 *	0.0410231	0.0408419	0.00284713
Hexane			4.10029E-08	2.06911E-08 *	0.00557987	0.00555338	2.06911E-08
Isohexane Neohexane			2.54538E-08 1.70285E-08	2.4914E-07 * 2.58251E-07 *	0.00278895 0.00240715	0.00277571 0.00239572	2.4914E-07 2.58251E-07
2,2,4-Trimethylpe	ntane		6.53698E-13	1.40242E-12 *	6.84137E-07	6.80889E-07	1.40242E-12
Benzene			7.61306E-05	3.10217E-05 *	0.0179099	0.017825	3.10217E-05
Heptane			3.89427E-08	7.56151E-08 *	0.00353351	0.00351674	7.56151E-08
Toluene			7.37044E-05	1.73706E-05 *	0.0209826	0.0208831	1.73706E-05
Octane Ethylbenzene			4.70596E-09 3.57738E-06	2.6547E-09 * 5.20727E-07 *	0.000807449 0.00103533	0.000803616 0.00103042	2.6547E-09 5.20727E-07
o-Xylene			6.01352E-06	7.28551E-07 *	0.00129174	0.00128561	7.28551E-07
Nonane			2.29574E-09	3.76821E-10 *	0.00023582	0.0002347	3.76821E-10
Decane			5.80667E-10	2.7991E-11 *	9.62896E-05	9.58326E-05	2.7991E-11
Water			99.9966	92.7208 *	1.84576	2.27713	92.7208
			Waste Water	Water	Water Tank	Water Tank	Water Tank
				Loading Emissions	Flash Gas	Total Emissions	W&B Gas
Molar Flow			lbmol/h	Ibmol/h	lbmol/h	Ibmol/h	lbmol/h
Methane			0.010692	0.000221077 *	0.388019	0.388134	0.000115198
Ethane			0.00168002	2.61163E-05 *	0.0503218	0.0503355	1.36086E-05
Propane			0.000537341	1.8207E-06 * 7.99763E-09 *	0.0131379	0.0131389 0.00048133	9.48721E-07
i-Butane n-Butane			6.62113E-06 4.82357E-05	7.99763E-09 * 3.96179E-08 *	0.000481326	0.00048133	4.16737E-09 ³ 2.06439E-08 ³
i-Pentane			4.73583E-06	1.40711E-09 *	0.000221663	0.000221664	7.33213E-10
n-Pentane			3.87127E-06	8.43291E-10 *	0.000192046	0.000192047	4.39418E-10
Nitrogen			1.40328E-05	2.14561E-07 *	0.00104601	0.00104612	1.11802E-07
CO2			0.00267279	6.28564E-05 *	0.00448392	0.00451668	3.27529E-05
Oxygen Hexane			5.37876E-06 1.99227E-07	1.22134E-07 * 8.8759E-13 *	0.000192257 2.61503E-05	0.00019232 2.61503E-05	6.36409E-08 4.62501E-13
instance			1.23676E-07	1.06874E-11 *	1.30705E-05	1.30705E-05	5.56894E-12
Isohexane				1.10782E-11 *	1.12812E-05	1.12812E-05	5.77259E-12
Isohexane Neohexane			8.27389E-08				
Isohexane Neohexane 2,2,4-Trimethylpe	ntane		3.17623E-12	6.01598E-17 *	3.20624E-09	3.20624E-09	3.13478E-17
Isohexane Neohexane 2,2,4-Trimethylpe Benzene	entane		3.17623E-12 0.000369908	6.01598E-17 * 1.33074E-09 *	3.20624E-09 8.39355E-05	8.39362E-05	6.93417E-10
Isohexane Neohexane 2,2,4-Trimethylpe Benzene Heptane	ntane		3.17623E-12 0.000369908 1.89217E-07	6.01598E-17 * 1.33074E-09 * 3.24367E-12 *	3.20624E-09 8.39355E-05 1.656E-05	8.39362E-05 1.656E-05	6.93417E-10 1.6902E-12
Isohexane Neohexane 2,2,4-Trimethylpe Benzene	ntane		3.17623E-12 0.000369908 1.89217E-07 0.000358119	6.01598E-17 * 1.33074E-09 * 3.24367E-12 * 7.45149E-10 *	3.20624E-09 8.39355E-05 1.656E-05 9.8336E-05	8.39362E-05 1.656E-05 9.83364E-05	6.93417E-10 1.6902E-12 3.88279E-10
Isohexane Neohexane 2,2,4-Trimethylpe Benzene Heptane Toluene	ntane		3.17623E-12 0.000369908 1.89217E-07	6.01598E-17 * 1.33074E-09 * 3.24367E-12 *	3.20624E-09 8.39355E-05 1.656E-05	8.39362E-05 1.656E-05	6.93417E-10 1.6902E-12
Isohexane Neohexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane	intane		3.17623E-12 0.000369908 1.89217E-07 0.000358119 2.28656E-08	6.01598E-17 * 1.33074E-09 * 3.24367E-12 * 7.45149E-10 * 1.13879E-13 *	3.20624E-09 8.39355E-05 1.656E-05 9.8336E-05 3.78415E-06	8.39362E-05 1.656E-05 9.83364E-05 3.78415E-06	6.93417E-10 ³ 1.6902E-12 ³ 3.88279E-10 ³ 5.93396E-14 ³

ProMax 3.2.13330.0 Copyright © 2002-2012 BRE Group, Ltd.

			All St	reams Report reams y Total Phase			
Client Name:	Consol Energy				Job: Wa Estimate	ter and Condensate T	ank Emissions
Location:	Camden 17 Nat	ural Gas Product	tion Facility				
Flowsheet:	Flowsheet1						
			Waste Water	Water	Water Tank	Water Tank	Water Tank
				Loading Emissions	Flash Gas	Total Emissions	W&B Gas
Molar Flow			lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
Decane			2.82138E-09	1.20074E-15 *	4.51266E-07	4.51266E-07	6.25674E-16 *
Water			485.87	0.00397746 *	0.00865025	0.0107228	0.00207256 *
Mass Fraction			Waste Water	Water Loading Emissions %	Water Tank Flash Gas %	Water Tank Total Emissions %	Water Tank W&B Gas %
Methane			0.00195951	4.49812 *	70.0783	69.7764	4.49812 *
Ethane			0.000577102	0.995975 *	17.0347	16.9609	0.995975 *
Propane			0.000270684	0.101824 *	6.52202	6.49246	0.101824 *
i-Butane			4.39635E-06	0.00058955 *	0.31495	0.313502	0.00058955 *
n-Butane			3.20279E-05	0.00292045 *	1.07505	<u> </u>	0.00292045 *
i-Pentane n-Pentane			3.9034E-06 3.19081E-06	0.000128758 * 7.71656E-05 *	0.180045	0.179217	0.000128758 ^ 7.71656E-05 *
Nitrogen			4.49083E-06	0.00762312 *	0.329885	0.328401	0.00762312 *
CO2			0.00134378	3.50843 *	2.22159	2.22752	3.50843 *
Oxygen			1.96623E-06	0.00495663 *	0.0692588	0.0689627	0.00495663 *
Hexane			1.96132E-07	9.70092E-08 *	0.02537	0.0252532	9.70092E-08 *
Isohexane			1.21755E-07	1.16808E-06 *	0.0126805	0.0126221	1.16808E-06 *
Neohexane 2,2,4-Trimethylper	atano		8.14537E-08 4.1448E-12	1.21079E-06 * 8.71561E-12 *	0.0109446 4.12316E-06	0.0108942 4.10418E-06	1.21079E-06 * 8.71561E-12 *
Benzene	liane		0.000330087	0.000131834 *	0.0738112	0.073472	0.000131834 *
Heptane			2.16598E-07	4.12221E-07 *	0.0186808	0.0185948	4.12221E-07 *
Toluene			0.000376952	8.70765E-05 *	0.102003	0.101534	8.70765E-05 *
Octane			2.98383E-08	1.64982E-08 *	0.00486634	0.00484394	1.64982E-08 *
Ethylbenzene			2.10814E-05 3.54374E-05	3.00772E-06 * 4.20811E-06 *	0.00579929 0.00723551	0.0057726	3.00772E-06 *
o-Xylene Nonane			1.634374E-05	2.62939E-09 *	0.00723551	0.00720222	4.20811E-06 * 2.62939E-09 *
Decane			4.58594E-09	2.16677E-10 *	0.000722839	0.000719511	2.16677E-10 *
Water			99.995	90.8791 *	1.7544	2.16474	90.8791 *
			Waste Water	Water Loading	Water Tank Flash Gas	Water Tank Total	Water Tank W&B Gas
Mass Flow			lb/h	Emissions Ib/h	lb/h	Emissions Ib/h	lb/h
Methane			0.171526	0.00354662 *	6.22478	6.22663	0.00184805 *
Ethane			0.0505167	0.000785292 *	1.51313	1.51354	0.000409197 *
Propane			0.0236944	8.02848E-05 *	0.579325	0.579367	4.18344E-05 *
i-Butane n-Butane			0.000384835 0.00280356	4.6484E-07 * 2.30268E-06 *	0.0279757 0.0954923	0.027976	2.42217E-07 * 1.19987E-06 *
i-Pentane			0.00280356	2.30268E-06 * 1.01522E-07 *	0.0954923	0.0954935	1.19987E-06 * 5.29004E-08 *
n-Pentane			0.000279307	6.08424E-08 *	0.0138559	0.0138559	3.17035E-08 *
Nitrogen			0.000393106	6.01057E-06 *	0.0293024	0.0293055	3.13196E-06 *
CO2			0.117628	0.00276628 *	0.197335	0.198777	0.00144144 *
Oxygen			0.000172114	3.90813E-06 *	0.00615199	0.00615402	2.03643E-06 *
Hexane Isohexane			1.71685E-05 1.06579E-05	7.64884E-11 * 9.20991E-10 *	0.00225351 0.00112636	0.00225351	3.98562E-11 * 4.79906E-10 *
Neohexane			7.13006E-06	9.5467E-10 *	0.000972163	0.000972163	4.99455E-10 *
2,2,4-Trimethylper	ntane		3.62816E-10	6.87196E-15 *	3.66244E-07	3.66244E-07	3.58081E-15 *
Benzene			0.0288942	1.03947E-07 *	0.00655636	0.00655641	5.41641E-08 *
Heptane			1.89599E-05	3.25022E-10 *	0.00165934	0.00165934	1.69361E-10 *
Toluene			0.0329966	6.86568E-08 *	0.00906052	0.00906056	3.57754E-08 *
Octane Ethylbenzene			2.6119E-06 0.00184536	1.30082E-11 * 2.37148E-09 *	0.000432258 0.000515128	0.000432258	6.77828E-12 * 1.23572E-09 *
o-Xylene			0.00310202	3.31795E-09 *	0.000642702	0.000642703	1.7289E-09 *
Nonane			1.43064E-06	2.07319E-12 *	0.000141745	0.000141745	1.08029E-12 *
Ttername			1.400046 00				11000101 11
Decane Water			4.0143E-07 8753.08	1.70843E-13 * 0.0716551 *	6.42069E-05 0.155837	6.42069E-05 0.193174	8.9022E-14 * 0.0373377 *

ProMax 3.2.13330.0 Copyright © 2002-2012 BRE Group, Ltd.

0.155837 0.193174 0.0373377 Licensed to SLR International Corporation and Affiliates

		All St	reams Report reams y Total Phase				
Client Name: Cons	ol Energy	Job: Water and Condensate Tank Emissions Estimate					
Location: Camo	den 17 Natural Gas Produc	tion Facility					
Flowsheet: Flows	sheet1	,					
		Stream I	Properties				
Property	Units	Waste Water	Water Loading Emissions	Water Tank Flash Gas	Water Tank Total Emissions	Water Tank W&B Gas	
Temperature	°F	61.484	68.9101 *	61.484	60.3386	68.9101	
Pressure	psig	0	-14.3188	0 *	-14.3188	-14.3188	
Mole Fraction Vapor	%	0	100 *	100	100	100 *	
Mole Fraction Light Liquid	%	100	0	0	0	0	
Mole Fraction Heavy Liquid		0	0	0	0	0	
Molecular Weight	lb/lbmol	18.0156	18.3804	18.9534	18.9507	18.3804	
Mass Density	lb/ft^3	62.3497	0.00122261	0.0499679	0.00128097	0.00122261	
Mass Flow	lb/h	8753.51	0.0788466 *	8.88261	8.92369	0.041085	
Std Vapor Volumetric Flow	MMSCFD	4.42527	3.90692E-05	0.00426834	0.00428869	2.0358E-05	
Std Liquid Volumetric Flow	sgpm	17.5	0.00017841	0.0537289	0.0538218	9.2965E-05	
Specific Gravity		0.99969	0.634624	0.654409	0.654315	0.634624	
Net Ideal Gas Heating Valu		0.0349407	57.7437	1010.95	1006.43	57.7437	
Gross Ideal Gas Heating V	alue Btu/ft^3	50.3465	110.582	1118.53	1113.74	110.582	

Remarks

			All St	reams Report reams y Total Phase			
Client Name:	Consol Energy				Job: Water Estimate	and Condensate T	ank Emissions
Location: Flowsheet:	Camden 17 Nat Flowsheet1	ral Gas Production Facility					
			Conn	ections			
			2	5	7	8	17A - Inlet
Frame Dia als				VLVE-102	VLVE-103	VLVE-100	Condensate
From Block To Block			VLVE-101 Water Tanks	Water Tanks	Condensate Tanks	Condensate Tanks	17A Wellhead
					Tanks	Taiks	
				omposition	-		474 1-1-1
			2	5	7	8	17A - Inlet Condensate
Mole Fraction			%	%	%	%	%
Methane Ethano			0.0816072	0.0821347	17.9593	18.1186	6.058
Ethane Propane			0.0111179 0.00272567	0.0105148 0.00284767	12.886 9.65336	12.2117 10.0854	6.04 6.616
i-Butane			9.59783E-05	0.000102139	2.68917	2.86443	2.147
n-Butane			0.00030114	0.000367137	5.62637	6.87541	5.927
i-Pentane			5.3426E-05	4.36858E-05	3.81108	3.11993	3.831
n-Pentane			3.12454E-05	4.40477E-05	3.09345	4.35934	4.687
Nitrogen CO2			0.000245176 0.00261849	0.000206618 0.000993678	0.0334255 0.0718674	0.0282999 0.0272697	0.061
Oxygen			6.82953E-05	2.91137E-05	0.0075243	0.00323186	0.001
Hexane			5.88758E-06	5.22205E-06	5.5587	4.93537	0
Isohexane			2.61229E-06	2.75478E-06	1.40961	1.48792	4.844
Neohexane			2.22364E-06	2.3836E-06	0.998432	1.07144	4.365
2,2,4-Trimethylper	ntane		6.59479E-10	6.60065E-10	0.0139587	0.0139702	0.028
Benzene Heptane			9.08259E-05 3.44798E-06	9.43525E-05 3.4421E-06	0.129572 6.68972	0.134212 6.66295	0.369
Toluene			9.45292E-05	9.35704E-05	0.603725	0.596339	12.900
Octane			8.01697E-07	7.74879E-07	9.83447	9.49441	15.2
Ethylbenzene			4.68842E-06	4.52292E-06	0.102587	0.0985497	0.154
o-Xylene			7.45999E-06	7.166E-06	0.161212	0.154154	0.235
Nonane Decane			2.38265E-07 9.70604E-08	2.25893E-07 9.18263E-08	5.98293 12.6571	5.68426 11.9465	8.354 17.018
Water			9.70604E-08 99.9009	99.9025	0.0264266	0.0263541	0
Water			00.0000	00.0020	0.0204200	0.0200041	0
			2	5	7	8	17A - Inlet Condensate
Molar Flow			lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
Methane			0.116719	0.281992	0.84542	2.17883 1.4685	0.217894
Ethane Propane			0.0159015 0.00389842	0.0361003 0.00977686	0.606596	1.4685	0.217246 0.237964
i-Butane			0.000137274	0.000350674	0.12659	0.344459	0.0772232
			0.000430708	0.00126049	0.264856	0.826796	0.213182
n-Butane			7.6413E-05	0.000149986	0.179403	0.375184	0.137793
i-Pentane						0 504000	0.168582
i-Pentane n-Pentane			4.46891E-05	0.000151228	0.145621	0.524229	
i-Pentane n-Pentane Nitrogen			4.46891E-05 0.000350666	0.000709379	0.00157348	0.00340318	0
i-Pentane n-Pentane Nitrogen CO2			4.46891E-05 0.000350666 0.00374513				
i-Pentane n-Pentane Nitrogen CO2 Oxygen			4.46891E-05 0.000350666 0.00374513 9.768E-05 8.42077E-06	0.000709379 0.00341158 9.99555E-05 1.79288E-05	0.00157348 0.0033831 0.0003542 0.261671	0.00340318 0.00327929 0.000388645 0.593498	0 0.00219404 0 0
i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane			4.46891E-05 0.000350666 0.00374513 9.768E-05 8.42077E-06 3.73625E-06	0.000709379 0.00341158 9.99555E-05 1.79288E-05 9.45796E-06	0.00157348 0.0033831 0.0003542 0.261671 0.0663563	0.00340318 0.00327929 0.000388645 0.593498 0.178928	0 0.00219404 0 0 0.174229
i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane Neohexane			4.46891E-05 0.000350666 0.00374513 9.768E-05 8.42077E-06 3.73625E-06 3.18038E-06	0.000709379 0.00341158 9.99555E-05 1.79288E-05 9.45796E-06 8.18357E-06	0.00157348 0.0033831 0.0003542 0.261671 0.0663563 0.0470003	0.00340318 0.00327929 0.000388645 0.593498 0.178928 0.128845	0 0.00219404 0 0 0.174229 0.157
i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane Neohexane 2,2,4-Trimethylper	ntane		4.46891E-05 0.000350666 0.00374513 9.768E-05 8.42077E-06 3.73625E-06 3.18038E-06 9.43227E-10	0.000709379 0.00341158 9.99555E-05 1.79288E-05 9.45796E-06 8.18357E-06 2.26619E-09	0.00157348 0.0033831 0.261671 0.261671 0.0663563 0.0470003 0.000657096	0.00340318 0.00327929 0.000388645 0.593498 0.178928 0.128845 0.00167997	0 0.00219404 0 0 0.174229 0.157 0.0010071
i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane Neohexane 2,2,4-Trimethylper Benzene	ntane		4.46891E-05 0.000350666 0.00374513 9.768E-05 8.42077E-06 3.73625E-06 3.18038E-06 9.43227E-10 0.000129905	0.000709379 0.00341158 9.99555E-05 1.79288E-05 9.45796E-06 8.18357E-06 2.26619E-09 0.000323939	0.00157348 0.0033831 0.261671 0.261671 0.0663563 0.0470003 0.000657096 0.0060995	0.00340318 0.00327929 0.000388645 0.593498 0.178928 0.128845 0.00167997 0.0161395	0 0.00219404 0 0 0.174229 0.157 0.0010071 0.0132722
i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane Neohexane 2,2,4-Trimethylper Benzene Heptane	ntane		4.46891E-05 0.000350666 0.00374513 9.768E-05 8.42077E-06 3.73625E-06 3.18038E-06 9.43227E-10 0.000129905 4.9315E-06 0.000135201	0.000709379 0.00341158 9.99555E-05 1.79288E-05 9.45796E-06 8.18357E-06 2.26619E-09	0.00157348 0.0033831 0.261671 0.261671 0.0663563 0.0470003 0.000657096	0.00340318 0.00327929 0.000388645 0.593498 0.178928 0.128845 0.00167997	0 0.00219404 0 0 0.174229 0.157 0.0010071
i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane Neohexane 2,2,4-Trimethylper Benzene Heptane Toluene Octane	ntane		4.46891E-05 0.000350666 0.00374513 9.768E-05 8.42077E-06 3.73625E-06 3.18038E-06 9.43227E-10 0.000129905 4.9315E-06 0.000135201 1.14663E-06	0.000709379 0.00341158 9.99555E-05 1.79288E-05 9.45796E-06 8.18357E-06 2.26619E-09 0.000323939 1.18177E-05 0.000321254 2.66038E-06	0.00157348 0.0033831 0.261671 0.261671 0.0663563 0.0470003 0.000657096 0.0060995 0.314913 0.0284198 0.462949	0.00340318 0.00327929 0.000388645 0.593498 0.178928 0.128845 0.00167997 0.0161395 0.801246 0.0717122 1.14174	0 0.00219404 0 0 0.174229 0.157 0.0010071 0.0132722 0.46636 0.0395647 0.546713
i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane Neohexane 2,2,4-Trimethylper Benzene Heptane Toluene Octane Ethylbenzene	ntane		4.46891E-05 0.000350666 0.00374513 9.768E-05 8.42077E-06 3.73625E-06 3.18008E-06 9.43227E-10 0.000129905 4.9315E-06 0.000135201 1.14663E-06 6.70565E-06	0.000709379 0.00341158 9.99555E-05 1.79288E-05 9.45796E-06 8.18357E-06 2.26619E-09 0.000323939 1.18177E-05 0.000321254 2.66038E-06 1.55285E-05	0.00157348 0.0033831 0.261671 0.261671 0.0663563 0.0470003 0.000657096 0.0060995 0.314913 0.0284198 0.462949 0.00482919	0.00340318 0.00327929 0.000388645 0.593498 0.178928 0.128845 0.00167997 0.0161395 0.801246 0.0717122 1.14174 0.011851	0 0.00219404 0 0 0.174229 0.157 0.0010071 0.0132722 0.46636 0.0395647 0.546713 0.00553906
Octane Ethylbenzene o-Xylene	ntane		4.46891E-05 0.000350666 0.00374513 9.768E-05 8.42077E-06 3.73625E-06 3.18038E-06 9.43227E-10 0.00012905 4.9315E-06 0.000135201 1.14663E-06 6.70565E-06 1.06697E-05	0.000709379 0.00341158 9.99555E-05 1.79288E-05 9.45796E-06 8.18357E-06 2.26619E-09 0.000323939 1.18177E-05 0.000321254 2.66038E-06 1.55285E-05 2.46029E-05	0.00157348 0.0033831 0.261671 0.261671 0.0663563 0.0470003 0.000657096 0.0060995 0.314913 0.0284198 0.462949 0.00482919 0.00758893	0.00340318 0.00327929 0.000388645 0.593498 0.178928 0.128845 0.00167997 0.0161395 0.801246 0.0717122 1.14174 0.011851 0.0185376	0 0.00219404 0 0 0.174229 0.157 0.0010071 0.0132722 0.46636 0.0395647 0.546713 0.00553906 0.00845246
i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane Neohexane 2,2,4-Trimethylper Benzene Heptane Toluene Octane Ethylbenzene	ntane		4.46891E-05 0.000350666 0.00374513 9.768E-05 8.42077E-06 3.73625E-06 3.18008E-06 9.43227E-10 0.000129905 4.9315E-06 0.000135201 1.14663E-06 6.70565E-06	0.000709379 0.00341158 9.99555E-05 1.79288E-05 9.45796E-06 8.18357E-06 2.26619E-09 0.000323939 1.18177E-05 0.000321254 2.66038E-06 1.55285E-05	0.00157348 0.0033831 0.261671 0.261671 0.0663563 0.0470003 0.000657096 0.0060995 0.314913 0.0284198 0.462949 0.00482919	0.00340318 0.00327929 0.000388645 0.593498 0.178928 0.128845 0.00167997 0.0161395 0.801246 0.0717122 1.14174 0.011851	0 0.00219404 0 0 0.174229 0.157 0.0010071 0.0132722 0.46636 0.0395647 0.546713 0.00553906

ProMax 3.2.13330.0 Copyright © 2002-2012 BRE Group, Ltd.

			All St	eams Report reams y Total Phase			
Client Name:	Consol Energy				Job: Water Estimate	and Condensate T	ank Emissions
Location:	Camden 17 Nat	ural Gas Producti	on Facility	Lotinate			
Flowsheet:	Flowsheet1		-				
				-	-		474 1 1 4
Mass Fraction			2 %	5 %	7 %	8	17A - Inlet Condensate %
Methane			0.0726644	0.073136	3.98421	4.07577	1.06171
Ethane			0.0185552	0.0175491	5.35819	5.14885	1.9841
Propane			0.00667101	0.00696977	5.88647	6.23594	3.18712
i-Butane			0.000309626	0.00032951	2.16143 4.52222	2.33451	1.36327
n-Butane i-Pentane			0.000213946	0.00118441 0.000174945	3.8024	5.60345 3.15638	3.76344 3.01959
n-Pentane			0.000125123	0.000176395	3.08641	4.41027	3.69429
Nitrogen			0.000381212	0.000321268	0.0129487	0.0111164	0
CO2			0.00639618	0.00242731	0.0437381	0.0168284	0.0293281
Oxygen			0.000121296	5.17088E-05	0.00332952	0.00145011	0
Hexane			2.81606E-05	2.4978E-05	6.62427 1.67983	5.96372	0
Isohexane Neohexane			1.24947E-05 1.06358E-05	1.31766E-05 1.14012E-05	1.67983	<u>1.79795</u> 1.29469	4.56031 4.10937
2,2,4-Trimethylpe	entane		4.18117E-09	4.18499E-09	0.0220497	0.0223764	0.0349414
Benzene			0.000393776	0.000409076	0.139962	0.147002	0.314884
Heptane			1.91762E-05	1.9144E-05	9.2697	9.36176	14.1935
Toluene			0.000483425	0.000478534	0.769239	0.770458	1.10724
Octane			5.08285E-06	4.91295E-06	15.5348	15.2075	18.9682
Ethylbenzene			2.76268E-05	2.66522E-05	0.15061	0.146707	0.178612
o-Xylene Nonane			4.39585E-05 1.69613E-06	4.22271E-05 1.60809E-06	0.23668 10.6113	0.229483	0.272557 11.7051
Decane			7.66503E-07	7.25186E-07	24.9037	23.8345	26.4524
Water			99.8926	99.8966	0.00658359	0.0066574	0
			2	5	7	8	17A - Inlet Condensate
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h
Methane Ethane			1.87247 0.478144	4.52384 1.0855	13.5626 18.2398	34.9538 44.1565	3.49555 6.53239
Propane			0.171903	0.431117	20.0381	53.4794	10.4932
i-Butane			0.00797866	0.0203819	7.35771	20.0207	4.48838
n-Butane			0.0250337	0.0732622	15.394	48.0552	12.3906
i-Pentane			0.00551311	0.0108213	12.9437	27.0691	9.94161
n-Pentane			0.00322426	0.0109109	10.5064	37.8225	12.163
Nitrogen CO2			0.00982334	0.0198721	0.0440784 0.148888	0.0953347	0.0965588
Ozygen			0.164821 0.00312564	0.150142 0.00319846	0.011334	0.14432	0.0965588
Hexane			0.000725663	0.00154502	22.5496	51.1449	0
Isohexane			0.000321973	0.000815043	5.71828	15.4192	15.0142
Neohexane			0.000274071	0.000705222	4.05027	11.1032	13.5295
						0 4 0 4 0	0.11504
2,2,4-Trimethylpe	entane		1.07743E-07	2.58864E-07	0.0750591	0.1919	
2,2,4-Trimethylpe Benzene	entane		0.0101471	0.0253035	0.476443	1.26069	1.03671
2,2,4-Trimethylpe Benzene Heptane	entane		0.0101471 0.000494146	0.0253035 0.00118416	0.476443 31.5549	1.26069 80.2864	1.03671 46.7302
2,2,4-Trimethylpe Benzene Heptane Toluene	entane		0.0101471 0.000494146 0.0124572	0.0253035 0.00118416 0.0295998	0.476443 31.5549 2.61856	1.26069 80.2864 6.60745	1.03671 46.7302 3.64543
2,2,4-Trimethylpe Benzene Heptane Toluene Octane	entane		0.0101471 0.000494146	0.0253035 0.00118416	0.476443 31.5549	1.26069 80.2864	1.03671 46.7302
2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene	entane		0.0101471 0.000494146 0.0124572 0.000130978 0.000711906 0.00113275	0.0253035 0.00118416 0.0295998 0.000303891 0.00164858 0.00261197	0.476443 31.5549 2.61856 52.882 0.512691 0.805678	1.26069 80.2864 6.60745 130.419 1.25816 1.96805	1.03671 46.7302 3.64543 62.4502 0.588055 0.897356
2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane	entane		0.0101471 0.000494146 0.0124572 0.000130978 0.000711906 0.00113275 4.37069E-05	0.0253035 0.00118416 0.0295998 0.000303891 0.00164858 0.00261197 9.94688E-05	0.476443 31.5549 2.61856 52.882 0.512691 0.805678 36.1219	1.26069 80.2864 6.60745 130.419 1.25816 1.96805 87.6695	1.03671 46.7302 3.64543 62.4502 0.588055 0.897356 38.5376
2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	entane		0.0101471 0.000494146 0.0124572 0.000130978 0.000711906 0.00113275 4.37069E-05 1.97518E-05	0.0253035 0.00118416 0.0295998 0.000303891 0.00164858 0.00261197 9.94688E-05 4.48566E-05	0.476443 31.5549 2.61856 52.882 0.512691 0.805678 36.1219 84.7745	1.26069 80.2864 6.60745 130.419 1.25816 1.96805 87.6695 204.405	1.03671 46.7302 3.64543 62.4502 0.588055 0.897356 38.5376 87.0909
2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	entane		0.0101471 0.000494146 0.0124572 0.000130978 0.000711906 0.00113275 4.37069E-05	0.0253035 0.00118416 0.0295998 0.000303891 0.00164858 0.00261197 9.94688E-05	0.476443 31.5549 2.61856 52.882 0.512691 0.805678 36.1219	1.26069 80.2864 6.60745 130.419 1.25816 1.96805 87.6695	1.03671 46.7302 3.64543 62.4502 0.588055 0.897356 38.5376
2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene	entane		0.0101471 0.000494146 0.0124572 0.000130978 0.000711906 0.00113275 4.37069E-05 1.97518E-05 2574.1	0.0253035 0.00118416 0.0295998 0.000303891 0.00164858 0.00261197 9.94688E-05 4.48566E-05	0.476443 31.5549 2.61856 52.882 0.512691 0.805678 36.1219 84.7745 0.0224111	1.26069 80.2864 6.60745 130.419 1.25816 1.96805 87.6695 204.405	1.03671 46.7302 3.64543 62.4502 0.588055 0.897356 38.5376 87.0909 0
2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	entane	Units	0.0101471 0.000494146 0.0124572 0.000130978 0.000711906 0.00113275 4.37069E-05 1.97518E-05 2574.1	0.0253035 0.00118416 0.0295998 0.000303891 0.00164858 0.00261197 9.94688E-05 4.48566E-05 6179.13	0.476443 31.5549 2.61856 52.882 0.512691 0.805678 36.1219 84.7745	1.26069 80.2864 6.60745 130.419 1.25816 1.96805 87.6695 204.405	1.03671 46.7302 3.64543 62.4502 0.588055 0.897356 38.5376 87.0909
2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Property	entane	Units °F	0.0101471 0.000494146 0.0124572 0.000130978 0.000711906 0.00113275 4.37069E-05 1.97518E-05 2574.1 Stream F	0.0253035 0.00118416 0.0295998 0.000303891 0.00164858 0.00261197 9.94688E-05 4.48566E-05 6179.13 Properties	0.476443 31.5549 2.61856 52.882 0.512691 0.805678 36.1219 84.7745 0.0224111	1.26069 80.2864 6.60745 130.419 1.25816 1.96805 87.6695 204.405 0.0570939	1.03671 46.7302 3.64543 62.4502 0.588055 0.897356 38.5376 87.0909 0
2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water			0.0101471 0.000494146 0.0124572 0.000130978 0.000711906 0.00113275 4.37069E-05 1.97518E-05 2574.1 Stream F 2	0.0253035 0.00118416 0.0295998 0.000303891 0.00164858 0.00261197 9.94688E-05 4.48566E-05 6179.13 Properties 5	0.476443 31.5549 2.61856 52.882 0.512691 0.805678 36.1219 84.7745 0.0224111	1.26069 80.2864 6.60745 130.419 1.25816 1.96805 87.6695 204.405 0.0570939 8	1.03671 46.7302 3.64543 62.4502 0.588055 0.897356 38.5376 87.0909 0 17A - Inlet Condensate

ProMax 3.2.13330.0 Copyright © 2002-2012 BRE Group, Ltd.

			Process Strea All Stre Tabulated by T	eams				
Client Name:	Consol Energy	1			Water and Condensate Tank Emissions			
Location:	Comdon 17 Not	hural Cas Draduati			Estimate			
Flowsheet:	Flowsheet1	tural Gas Production	DITFACILITY					
Tiowaneet.	TIOWSHEELT							
			Ctroom Dr.	oportioo				
Stream Properties								
Property		Units	2	5	7	8	17A - Inlet Condensate	
Mole Fraction Light	Liquid	%	99.9029	99.9039	59.7895	59.6643	100	
Mole Fraction Light Mole Fraction Heav		% %	99.9029 0	99.9039 0	59.7895 0	59.6643 0		
							100	
Mole Fraction Heav		%	0	0	0	0	100 0	
Mole Fraction Heav Molecular Weight		% Ib/Ibmol	0 18.0168	0 18.0163	0 72.3134	0 71.3157	100 0 91.5361	
Mole Fraction Heav Molecular Weight Mass Density	/y Liquid	% Ib/Ibmol Ib/ft^3	0 18.0168 27.4264	0 18.0163 27.5886	0 72.3134 0.524416	0 71.3157 0.517364	100 0 91.5361 42.9076	
Mole Fraction Heav Molecular Weight Mass Density Mass Flow	ry Liquid	% Ib/Ibmol Ib/ft^3 Ib/h	0 18.0168 27.4264 2576.87	0 18.0163 27.5886 6185.52	0 72.3134 0.524416 340.409	0 71.3157 0.517364 857.6	100 0 91.5361 42.9076 329.236	
Mole Fraction Heav Molecular Weight Mass Density Mass Flow Std Vapor Volumet	ry Liquid	% Ib/Ibmol Ib/ft^3 Ib/h MMSCFD	0 18.0168 27.4264 2576.87 1.30263	0 18.0163 27.5886 6185.52 3.12691	0 72.3134 0.524416 340.409 0.0428734	0 71.3157 0.517364 857.6 0.109523	100 0 91.5361 42.9076 329.236 0.0327583	
Mole Fraction Heav Molecular Weight Mass Density Mass Flow Std Vapor Volumet Std Liquid Volumet	ric Flow ric Flow	% Ib/Ibmol Ib/ft^3 Ib/h MMSCFD	0 18.0168 27.4264 2576.87 1.30263	0 18.0163 27.5886 6185.52 3.12691	0 72.3134 0.524416 340.409 0.0428734	0 71.3157 0.517364 857.6 0.109523	100 0 91.5361 42.9076 329.236 0.0327583 0.987728	

Olivert News	0		Process Streams Report All Streams Tabulated by Total Phase Job: Water					T	
Client Name:	Consol Energy				-	ob: Water Stimate	r and Condensate Tank Emissions		
Location:		ural Gas Productior	Facility						
Flowsheet:	Flowsheet1								
			Conn	ections					
			17A -	17A -	17 <i>A</i>	-	17A –	17A – Inlet	
			Post-Choke	Pre-Choke	Produ	ced	Condensate	Gas	
From Block			17A Choke Valve	17A Wellhead	17A - 0		17A - GPU		
To Block			17A - GPU	17A Choke Valve	VLVE	101	VLVE-103	17A Wellhead	
			Stream C	omposition					
			17A - Post-Choke	17A - Pre-Choke	17A Produ Wat	ced	17A – Condensate	17A – Inlet Gas	
Mole Fraction			%	%	%		%	%	
Methane			63.4075	63.4075		11170	17.9593	82.7989 *	
Ethane Propane			9.34168 2.34743	9.34168 2.34743		11179 72567	12.886 9.65336	12.1599 * 3.0173 *	
i-Butane			0.309239	0.309239		33E-05	2.68917	0.3879 *	
n-Butane			0.482985	0.482985		30114	5.62637	0.5865 *	
i-Pentane			0.163553	0.163553		26E-05	3.81108	0.1849 *	
n-Pentane Nitrogen			0.106557 0.337762	0.106557 0.337762		54E-05 245176	3.09345 0.0334255	0.104 *	
CO2			0.104825	0.104825		261849	0.0718674	0.1365 *	
Oxygen			0.0470709	0.0470709		53E-05	0.0075243	0.0615 *	
Hexane			0.0928406	0.0928406		58E-06	5.5587	0.1213 *	
Isohexane Neohexane			0.0278606	0.0278606		29E-06 64E-06	1.40961 0.998432	0 *	
2,2,4-Trimethylpenta	ane		0.000161044	0.000161044		79E-10	0.0139587	0 *	
Benzene			0.00212233	0.00212233	9.082	59E-05	0.129572	0 *	
Heptane			0.0745749	0.0745749		98E-06	6.68972	0 *	
Toluene Octane			0.00632673 0.0874239	0.00632673 0.0874239		92E-05 97E-07	0.603725 9.83447	0 *	
Ethylbenzene			0.000885742	0.000885742		12E-07	0.102587	0 *	
o-Xylene			0.00135162	0.00135162	7.4599	99E-06	0.161212	0 *	
Nonane			0.0480486	0.0480486		65E-07	5.98293	0 *	
Decane			0.0978802	0.0978802		04E-08 9.9009	12.6571	0 *	
Water			22.8869	22.8869	9	9.9009	0.0264266	0	
			17A - Post-Choke	17A - Pre-Choke	17A Produ Wat	ced	17A – Condensate	17A – Inlet Gas	
Molar Flow			lbmol/h	lbmol/h	Ibmo		lbmol/h	lbmol/h	
Methane Ethane			396.524 58.419	396.524 58.419	0.1	16719 59015	0.84542 0.606596	396.306 * 58.2017 *	
Propane			14.6799	14.6799	0.003	89842	0.454423	14.4419 *	
i-Butane			1.93386	1.93386		37274	0.12659	1.85663 *	
n-Butane i-Pentane			3.02039 1.02279	3.02039 1.02279		130708 13E-05	0.264856	<u>2.8072</u> * 0.884999 *	
n-Pentane			0.666364	0.666364		91E-05	0.145621	0.497782 *	
Nitrogen			2.11222	2.11222		350666	0.00157348	2.11222 *	
CO2 Oxygen			0.655533 0.294362	0.655533 0.294362		374513 58E-05	0.0033831 0.0003542	0.653339 *	
Hexane			0.294362	0.294362		77E-05	0.261671	0.580586 *	
Isohexane			0.174229	0.174229	3.736	25E-06	0.0663563	0 *	
Neohexane			0.157	0.157		38E-06	0.0470003	0 *	
2,2,4-Trimethylpenta	ane		0.0010071	0.0010071		27E-10	0.000657096	0 *	
Benzene Heptane			0.0132722	0.0132722		29905 15E-06	0.0060995 0.314913	0 *	
Toluene			0.0395647	0.0395647		35201	0.0284198	0 *	
Octane			0.546713	0.546713	1.146	63E-06	0.462949	0 *	
Ethylbenzene			0.00553906	0.00553906	6.705	65E-06	0.00482919	0 *	

* User Specified Values ? Extrapolated or Approximate Values

ProMax 3.2.13330.0 Copyright © 2002-2012 BRE Group, Ltd.

	0	All S	reams Report treams by Total Phase			
Client Name:	Consol Energy			Job: Wate Estimate	r and Condensate T	ank Emissions
Location:	Camden 17 Nat	ural Gas Production Facility		Estimate		
Flowsheet:	Flowsheet1					
			1	T	1	
		17A - Post-Choke	17A - Pre-Choke	17A - Produced Water	17A – Condensate	17A – Inlet Gas
Molar Flow		lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
o-Xylene		0.00845246	0.00845246	1.06697E-05	0.00758893	0
Nonane		0.300476	0.300476	3.40781E-07	0.281641	0
Decane		0.612102	0.612102	1.38822E-07	0.595821	0
Water		143.125	143.125	142.884	0.00124401	0
		474	47.4	474	474	474 Inlat
		17A - Post-Choke	17A - Pre-Choke	17A - Produced Water	17A – Condensate	17A – Inlet Gas
Mass Fraction		%	%	%	%	%
Methane		52.2675	52.2675	0.0726644	3.98421	68.6369
Ethane		14.4333	14.4333	0.0185552	5.35819	18.8935
Propane		5.31874	5.31874	0.00667101	5.88647	6.87506
i-Butane		0.923544	0.923544	0.000309626	2.16143	1.165
n-Butane i-Pentane		<u> </u>	1.44243 0.606329	0.000971477 0.000213946	4.52222 3.8024	1.76146 0.689332
n-Pentane		0.395032	0.395032	0.000125123	3.08641	0.387726
Nitrogen		0.48618	0.48618	0.000381212	0.0129487	0.638796
CO2		0.237046	0.237046	0.00639618	0.0437381	0.310414
Oxygen		0.0773938	0.0773938	0.000121296	0.00332952	0.101688
Hexane		0.411094	0.411094	2.81606E-05	6.62427	0.54014
Isohexane		0.123366	0.123366	1.24947E-05	1.67983	0
Neohexane		0.111167	0.111167	1.06358E-05	1.18982	0
2,2,4-Trimethylpe Benzene	entane	0.000945235 0.00851825	0.000945235 0.00851825	4.18117E-09 0.000393776	0.0220497 0.139962	0
Heptane		0.383963	0.383963	1.91762E-05	9.2697	0
Toluene		0.029953	0.029953	0.000483425	0.769239	0
Octane		0.513127	0.513127	5.08285E-06	15.5348	0
Ethylbenzene		0.0048318	0.0048318	2.76268E-05	0.15061	0
o-Xylene		0.0073732	0.0073732	4.39585E-05	0.23668	0
Nonane		0.316648	0.316648	1.69613E-06	10.6113	0
Decane Water		0.71559 21.1859	0.71559 21.1859	7.66503E-07 99.8926	24.9037 0.00658359	0
Water		21.1033	21.1039	33.0320	0.00030333	0
		17A - Post-Choke	17A - Pre-Choke	17A - Produced Water	17A – Condensate	17A – Inlet Gas
Mass Flow		lb/h	lb/h	lb/h	lb/h	lb/h
Methane		6361.22	6361.22	1.87247	13.5626	6357.72
Ethane		1756.6	1756.6	0.478144	18.2398	1750.07
Propane		647.318	647.318	0.171903	20.0381	636.825
i-Butane n-Butane		<u> </u>	<u>112.4</u> 175.552	0.00797866 0.0250337	7.35771 15.394	107.912 163.161
i-Pentane		73.7932	73.7932	0.0250337	12.9437	63.8516
n-Pentane		48.0773	48.0773	0.00322426	10.5064	35.9144
Nitrogen		59.1706	59.1706	0.00982334	0.0440784	59.1706
CO2		28.8497	28.8497	0.164821	0.148888	28.7531
Oxygen		9.41922	9.41922	0.00312564	0.011334	9.41922
Hexane		50.0322	50.0322	0.000725663	22.5496	50.0322
Isohexane		15.0142	15.0142	0.000321973	5.71828	0
Neohexane 2,2,4-Trimethylpe	entane	<u>13.5295</u> 0.11504	13.5295 0.11504	0.000274071 1.07743E-07	4.05027 0.0750591	0
Benzene		1.03671	1.03671	0.0101471	0.476443	0
Heptane		46.7302	46.7302	0.000494146	31.5549	0
Toluene		3.64543	3.64543	0.0124572	2.61856	0
Octane		62.4502	62.4502	0.000130978	52.882	0
Ethylbenzene		0.588055	0.588055	0.000711906	0.512691	0
o-Xvlene		0.80/356	11 89/356	0.00113275		()

o-Xylene

Nonane

* User Specified Values ? Extrapolated or Approximate Values

ProMax 3.2.13330.0 Copyright © 2002-2012 BRE Group, Ltd.

0.897356

38.5376

0.00113275

4.37069E-05

0.897356

38.5376

Licensed to SLR International Corporation and Affiliates

0

0

0.805678

36.1219

Post-Choke Pre-Choke Produced Water Condensate Mass Flow Ib/h Ib/h Ib/h Ib/h Ib/h Ib/h Decane 87.0909 87.0909 1.97518E-05 84.7745 94.7745 Water 2578.43 2578.43 2574.1 0.0224111 94.7745 Stream Properties Property Units 17A - 17	TA – Inlet Gas Ib/h 0
Location: Camden 17 Natural Gas Production Facility Flowsheet: Flowsheet1 Image: Product of Facility Image: Flowsheet1 Image: Flowsheet1 Image: Product of Facility Image: Flowsheet1 Image: Flowsheet1 <th>Gas Ib/h 0</th>	Gas Ib/h 0
Flowsheet: Flowsheet1 17A - Post-Choke 17A - Pre-Choke 17A - Produced 17A - Condensate 1 Mass Flow Ib/h	Gas Ib/h 0
Post-Choke Pre-Choke Produced Water Condensate Mass Flow Ib/h Ib/h Ib/h Ib/h Ib/h Ib/h Decane 87.0909 87.0909 1.97518E-05 84.7745 94.7745 Water 2578.43 2578.43 2574.1 0.0224111 94.7745 Stream Properties Property Units 17A - 17	Gas Ib/h 0
Post-Choke Pre-Choke Produced Water Condensate Mass Flow Ib/h Ib/h Ib/h Ib/h Ib/h Decane 87.0909 87.0909 1.97518E-05 84.7745 Water 2578.43 2578.43 2574.1 0.0224111 Stream Properties Property Units 17A -	Gas Ib/h 0
Mass Flow Ib/h Ib/h Water Ib/h	lb/h
Decane 87.0909 87.0909 1.97518E-05 84.7745 Water 2578.43 2578.43 2574.1 0.0224111 Stream Properties Property Units 17A -	0
Water 2578.43 2578.43 2574.1 0.0224111 Stream Properties Property Units 17A -	-
Stream Properties Property Units 17A -	0
Property Units 17A - 17A	
Property Units 17A - 17A	
Dest Obstand Des Obstand Des deserts	A – Inlet
Post-Choke Pre-Choke Produced Condensate Water	Gas
Temperature °F 23.7428 79.5841 60 60	80
Pressure psig 600 * 2000 600 600	2000
Mole Fraction Vapor % 75.5492 77.1001 0 0	100
Mole Fraction Light Liquid % 1.54254 22.8999 100 100	0
Mole Fraction Heavy Liquid % 22.9082 0 0 0 0	0
Molecular Weight Ib/Ibmol 19.4616 19.4616 18.0168 72.3134	19.3525
Mass Density Ib/ft^3 3.66351 11.9621 62.3225 40.1051	9.34875
Mass Flow Ib/h 12170.5 12170.5 2576.87 340.409	9262.83
Std Vapor Volumetric Flow MMSCFD 5.69553 5.69553 1.30263 0.0428734	4.35925
Std Liquid Volumetric Flow sgpm 62.5002 5.16229 1.10567	56.358
Specific Gravity 0.999255 0.643029 Net Ideal Gas Heating Value Btu/ft^3 841.941 1.00894 3705.73	0.66819
	1065.03
Gross Ideal Gas Heating Value Btu/ft^3 940.864 940.864 51.3751 4006.15	1176.46

			All St	reams Report reams y Total Phase			
Client Name:	Consol Energy				Job: Wate Estimate	r and Condensate 1	Fank Emissions
Location:		ural Gas Producti	ion Facility				
Flowsheet:	Flowsheet1						
			Conn	ections			
			17A – Inlet	17A – Sales	17B -	17B - Inlet	17B - Inlet
			Water	Gas	Condensate	Condensate	Gas
From Block				17A - GPU	17B - GPU		
To Block			17A Wellhead		VLVE-100	17B - Wellhead	17B - Wellhead
				omposition			
			17A – Inlet Water	17A – Sales Gas	17B - Condensate	17B - Inlet Condensate	17B - Inlet Gas
Mole Fraction			%	%	%	%	%
Methane Ethane			0 *	82.8185 12.1008	18.1186 12.2117	6.058 6.04	83.2926
Propane			0 *	2.97756	12.2117	6.616	3.167
-Butane			0 *	0.378357	2.86443	2.147	0.4174
n-Butane			0 *	0.576833	6.87541	5.927	0.7329
-Pentane			0 *	0.176564	3.11993	3.831	0.1485
n-Pentane			0 *	0.109018	4.35934	4.687	0.1652
Nitrogen			0 *	0.441832	0.0282999	0	0.3716
002			0 *	0.135756	0.0272697	0.061	0.0515
Oxygen			0 *	0.0615357	0.00323186	0	0.0262
Hexane sohexane			0 *	0.0667693 0.0225844	4.93537	0 4.844	0.118
Neohexane			0 *	0.0225844	1.07144	4.844	
2,2,4-Trimethylpen	ntane		0 *	7.32804E-05	0.0139702	0.028	
Benzene	land		0 *	0.00147454	0.134212	0.369	0
Heptane			0 *	0.0317074	6.66295	12.966	0
Toluene			0 *	0.00230509	0.596339	1.1	0
Octane			0 *	0.0175373	9.49441	15.2	0
Ethylbenzene			0 *	0.000147222	0.0985497	0.154	0
o-Xylene Nonane			0 *	0.000178565 0.00394338	0.154154 5.68426	0.235 8.354	0
			-	0.00340871	11.9465	17.018	0
Decane			U "	0.000+0071			0
Decane Water			0 *	0.0501066	0.0263541	0	0
			100 *	0.0501066	0.0263541	0	0
			100 * 17A – Inlet Water	0.0501066 17A – Sales Gas	0.0263541 17B - Condensate	0 17B - Inlet Condensate	17B - Inlet Gas
Water Molar Flow			100 * 17A – Inlet Water Ibmol/h	17A – Sales Gas Ibmol/h	17B - Condensate Ibmol/h	17B - Inlet Condensate Ibmol/h	17B - Inlet Gas Ibmol/h
Water Molar Flow Methane			100 * 17A – Inlet Water Ibmol/h	17A – Sales Gas Ibmol/h 395.562	17B - Condensate Ibmol/h 2.17883	17B - Inlet Condensate Ibmol/h 0.522945	17B - Inlet Gas Ibmol/h 838.823
Water Molar Flow Methane Ethane			100 * 17A – Inlet Water Ibmol/h 0 * 0 *	17A – Sales Gas Ibmol/h 395.562 57.7965	17B - Condensate Ibmol/h 2.17883 1.4685	17B - Inlet Condensate Ibmol/h 0.522945 0.521391	17B - Inlet Gas Ibmol/h 838.823 115.906
Water Molar Flow Methane Ethane Propane			100 * 17A – Inlet Water Ibmol/h 0 * 0 * 0 *	17A – Sales Gas Ibmol/h 395.562 57.7965 14.2215	17B - Condensate Ibmol/h 2.17883 1.4685 1.21281	17B - Inlet Condensate Ibmol/h 0.522945 0.521391 0.571113	17B - Inlet Gas Ibmol/h 838.823 115.906 31.8942
Water Molar Flow Methane Ethane Propane -Butane			100 * 17A – Inlet Water Ibmol/h 0 * 0 *	17A – Sales Gas Ibmol/h 395.562 57.7965 14.2215 1.80713	17B - Condensate Ibmol/h 2.17883 1.4685 1.21281 0.344459	17B - Inlet Condensate Ibmol/h 0.522945 0.521391 0.571113 0.185336	17B - Inlet Gas Ibmol/h 838.823 115.906 31.8942 4.20355
Water Molar Flow Methane Ethane Propane -Butane n-Butane			100 * 17A – Inlet Water Ibmol/h 0 * 0 * 0 * 0 *	17A – Sales Gas Ibmol/h 395.562 57.7965 14.2215	17B - Condensate Ibmol/h 2.17883 1.4685 1.21281	17B - Inlet Condensate Ibmol/h 0.522945 0.521391 0.571113	17B - Inlet Gas Ibmol/h 838.823 115.906 31.8942 4.20355 7.38089
Water Molar Flow Methane Ethane Propane -Butane -Butane -Pentane			100 * 17A – Inlet Water Ibmol/h 0 * 0 * 0 * 0 * 0 *	17A – Sales Gas Ibmol/h 395.562 57.7965 14.2215 1.80713 2.7551 0.843313 0.520698	17B - Condensate Ibmol/h 2.17883 1.4685 1.21281 0.344459 0.826796 0.375184 0.524229	17B - Inlet Condensate Ibmol/h 0.522945 0.521391 0.571113 0.185336 0.511637	17B - Inlet Gas Ibmol/h 838.823 115.906 31.8942 4.20355 7.38089 1.49551 1.6637
Water Molar Flow Methane Ethane Propane -Butane -Pentane n-Pentane Nitrogen			100 * 17A – Inlet Water Ibmol/h 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	17A – Sales Gas Ibmol/h 395.562 57.7965 14.2215 1.80713 2.7551 0.843313 0.520698 2.1103	17B - Condensate Ibmol/h 2.17883 1.4685 1.21281 0.344459 0.826796 0.375184 0.524229 0.00340318	17B - Inlet Condensate Ibmol/h 0.522945 0.521391 0.571113 0.185336 0.511637 0.330704 0.404596 0	17B - Inlet Gas Ibmol/h 838.823 115.906 31.8942 4.20355 7.38089 1.49551 1.6637 3.74231
Water Molar Flow Methane Ethane Propane -Butane -Butane -Pentane n-Pentane Nitrogen CO2			100 * 17A - Inlet Water Ibmol/h 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	17A – Sales Gas Ibmol/h 395.562 57.7965 14.2215 1.80713 2.7551 0.843313 0.520698 2.1103 0.648405	17B - Condensate Ibmol/h 2.17883 1.4685 1.21281 0.344459 0.826796 0.375184 0.524229 0.00340318 0.00327929	17B - Inlet Condensate Ibmol/h 0.522945 0.521391 0.571113 0.185336 0.511637 0.330704 0.404596 0 0.00526571	17B - Inlet Gas Ibmol/h 838.823 115.906 31.8942 4.20355 7.38089 1.49551 1.6637 3.74231 0.518646
Water Molar Flow Methane Ethane Propane -Butane -Butane -Pentane -Pentane -Pentane Nitrogen CO2 Dxygen			100 * 17A - Inlet Water Ibmol/h 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	17A – Sales Gas Ibmol/h 395.562 57.7965 14.2215 1.80713 2.7551 0.843313 0.520698 2.1103 0.648405 0.29391	17B - Condensate Ibmol/h 2.17883 1.4685 1.21281 0.344459 0.826796 0.375184 0.524229 0.00340318 0.00327929 0.000388645	17B - Inlet Condensate Ibmol/h 0.522945 0.521391 0.571113 0.185336 0.511637 0.330704 0.404596 0 0.00526571 0	17B - Inlet Gas Ibmol/h 838.823 115.906 31.8942 4.20355 7.38089 1.49551 1.6637 3.74231 0.518646 0.263855
Water Molar Flow Methane Ethane Propane -Butane -Pentane -Pentane Nitrogen CO2 Oxygen Hexane			100 * 17A - Inlet Water Ibmol/h 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	17A – Sales Gas Ibmol/h 395.562 57.7965 14.2215 1.80713 2.7551 0.843313 0.520698 2.1103 0.648405 0.29391 0.318907	17B - Condensate Ibmol/h 2.17883 1.4685 1.21281 0.344459 0.826796 0.375184 0.524229 0.00340318 0.00327929 0.000388645 0.593498	17B - Inlet Condensate Ibmol/h 0.522945 0.521391 0.571113 0.185336 0.511637 0.330704 0.404596 0 0.00526571 0 0	17B - Inlet Gas Ibmol/h 838.823 115.906 31.8942 4.20355 7.38089 1.49551 1.6637 3.74231 0.518646 0.263855 1.18835
Water Molar Flow Methane Ethane Propane -Butane -Pentane -Pentane Nitrogen CO2 Dxygen Hexane sohexane			100 * 17A - Inlet Water Ibmol/h 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	17A – Sales Gas Ibmol/h 395.562 57.7965 14.2215 1.80713 2.7551 0.843313 0.520698 2.1103 0.648405 0.29391 0.318907 0.107869	17B - Condensate Ibmol/h 2.17883 1.4685 1.21281 0.344459 0.826796 0.375184 0.524229 0.00340318 0.00327929 0.000388645 0.593498 0.178928	17B - Inlet Condensate Ibmol/h 0.522945 0.521391 0.571113 0.185336 0.511637 0.330704 0.404596 0 0.00526571 0 0 0.00526571 0 0	17B - Inlet Gas Ibmol/h 838.823 115.906 31.8942 4.20355 7.38089 1.49551 1.6637 3.74231 0.518646 0.263855 1.18835
Water Molar Flow Methane Ethane Propane -Butane -Butane -Pentane Nentane Nitrogen CO2 Dxygen Hexane sohexane Neohexane	htane		100 * 17A - Inlet Water Ibmol/h 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	17A – Sales Gas Ibmol/h 395.562 57.7965 14.2215 1.80713 2.7551 0.843313 0.520698 2.1103 0.648405 0.29391 0.318907 0.107869 0.109997	17B - Condensate Ibmol/h 2.17883 1.4685 1.21281 0.344459 0.826796 0.375184 0.524229 0.00340318 0.00327929 0.000388645 0.593498 0.178928 0.178928	17B - Inlet Condensate Ibmol/h 0.522945 0.521391 0.571113 0.185336 0.511637 0.330704 0.404596 0 0.00526571 0 0 0.00526571 0 0 0.0418149 0.3768	17B - Inlet Gas Ibmol/h 838.823 115.900 31.8942 4.20355 7.38085 1.49551 1.6637 3.74231 0.518646 0.263855 1.18835 0.263855
Water Molar Flow Methane Ethane Propane -Butane -Butane -Pentane Nentane Nitrogen CO2 Dxygen Hexane sohexane Neohexane 2,2,4-Trimethylpen	ntane		100 * 17A - Inlet Water Ibmol/h 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	17A – Sales Gas Ibmol/h 395.562 57.7965 14.2215 1.80713 2.7551 0.843313 0.520698 2.1103 0.648405 0.29391 0.318907 0.107869	17B - Condensate Ibmol/h 2.17883 1.4685 1.21281 0.344459 0.826796 0.375184 0.524229 0.00340318 0.00327929 0.000388645 0.593498 0.178928	17B - Inlet Condensate Ibmol/h 0.522945 0.521391 0.571113 0.185336 0.511637 0.330704 0.404596 0 0.00526571 0 0 0.00526571 0 0	17B - Inlet Gas Ibmol/h 838.823 115.906 31.8942 4.20355 7.38089 1.49551 1.6637 3.74231 0.518646 0.263855 1.18835 0.2638555 0.2638555 0.2638555 0.26385555 0.26385555 0.2638555555555555555555555555555555555555
Water Molar Flow Methane Ethane Propane -Butane -Butane -Pentane -Pentane Nerogen CO2 Dxygen Hexane sohexane Sohexane Sohexane 2,2,4-Trimethylpen Benzene Heptane	ntane		100 * 17A - Inlet Water Ibmol/h 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	17A - Sales Gas Ibmol/h 395.562 57.7965 14.2215 1.80713 2.7551 0.843313 0.520698 2.1103 0.648405 0.29391 0.318907 0.107869 0.109997 0.000350006 0.00704277 0.151443	17B - Condensate Ibmol/h 2.17883 1.4685 1.21281 0.344459 0.826796 0.375184 0.524229 0.00340318 0.00327929 0.000388645 0.593498 0.178928 0.178928 0.128845 0.00167997 0.0161395 0.801246	17B - Inlet Condensate Ibmol/h 0.522945 0.521391 0.571113 0.185336 0.511637 0.330704 0.404596 0 0.00526571 0 0 0 0.00526571 0 0 0 0 0 0.0418149 0.3768 0.00241705 0.0318532 1.11926	17B - Inlet Gas Ibmol/h 838.823 115.906 31.8942 4.20355 7.38089 1.49551 1.6637 3.74231 0.518646 0.263855 1.18835 0.263855 0.06000000000000000000000000000000000
Water Molar Flow Methane Ethane Propane -Butane -Butane -Pentane -Pentane Nerogen CO2 Dxygen Hexane sohexane Sohexane 2,2,4-Trimethylpen Benzene Heptane Foluene	ntane		100 * 17A - Inlet Water Ibmol/h 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	17A - Sales Gas Ibmol/h 395.562 57.7965 14.2215 1.80713 2.7551 0.843313 0.520698 2.1103 0.648405 0.29391 0.318907 0.107869 0.10997 0.000350006 0.00704277 0.151443 0.0110097	17B - Condensate Ibmol/h 2.17883 1.4685 1.21281 0.344459 0.826796 0.375184 0.524229 0.00340318 0.00327929 0.000388645 0.593498 0.178928 0.128845 0.00167997 0.00161395 0.801246 0.0717122	17B - Inlet Condensate Ibmol/h 0.522945 0.521391 0.571113 0.185336 0.511637 0.330704 0.404596 0 0.00526571 0 0 0.00526571 0 0 0 0.0118149 0.3768 0.00241705 0.0318532 1.11926 0.0949553	17B - Inlet Gas Ibmol/h 838.823 115.906 31.8942 4.20355 7.38089 1.49551 1.6637 3.74231 0.518646 0.263855 1.18835 0.263855 0.06000000000000000000000000000000000
Water Water Molar Flow Methane Ethane Propane -Butane -Pentane -Pentane Neonexane Sohexane Sohexane 2,2,4-Trimethylpen Benzene Heptane Toluene Doctane	ntane		100 * 17A - Inlet Water Ibmol/h 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	17A - Sales Gas Ibmol/h 395.562 57.7965 14.2215 1.80713 2.7551 0.843313 0.520698 2.1103 0.648405 0.29391 0.318907 0.107869 0.109997 0.000350006 0.00704277 0.151443 0.0110097 0.0837625	17B - Condensate Ibmol/h 2.17883 1.4685 1.21281 0.344459 0.826796 0.375184 0.524229 0.00340318 0.00327929 0.000388645 0.593498 0.178928 0.178928 0.128845 0.00167997 0.0161395 0.801246 0.0717122 1.14174	17B - Inlet Condensate Ibmol/h 0.522945 0.521391 0.571113 0.185336 0.511637 0.330704 0.404596 0 0.00526571 0 0 0.00526571 0 0 0.01418149 0.3768 0.00241705 0.0318532 1.11926 0.0949553 1.31211	17B - Inlet Gas Ibmol/h 838.823 115.906 31.8942 4.20355 7.38089 1.49551 1.6637 3.74231 0.518646 0.263855 1.18835 0.263855 0.2600000000000000000000000000000000000
Water Molar Flow Methane Ethane Propane -Butane -Pentane -Pentane Neropen CO2 Dxygen Hexane sohexane Sohexane Neohexane Sohexane Heptane Toluene Dctane Ethylbenzene	ntane		100 * 17A - Inlet Water Ibmol/h 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	17A - Sales Gas Ibmol/h 395.562 57.7965 14.2215 1.80713 2.7551 0.843313 0.520698 2.1103 0.648405 0.29391 0.318907 0.107869 0.109997 0.000350006 0.00704277 0.151443 0.0110097 0.0837625 0.000703169	17B - Condensate Ibmol/h 2.17883 1.4685 1.21281 0.344459 0.826796 0.375184 0.524229 0.00340318 0.00327929 0.00038645 0.593498 0.178928 0.128845 0.00167997 0.0161395 0.801246 0.0717122 1.14174 0.011851	17B - Inlet Condensate Ibmol/h 0.522945 0.521391 0.571113 0.185336 0.511637 0.330704 0.404596 0 0.00526571 0 0 0.00526571 0 0 0.00526571 0 0 0.0132937	17B - Inlet Gas Ibmol/h 838.823 115.906 31.8942 4.20355 7.38085 1.49551 1.6637 3.74231 0.518646 0.263855 1.18835 0.263855 1.18835 0.263855 0.06000000000000000000000000000000000
Water Molar Flow Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane 2,2,4-Trimethylpen Benzene Heptane Toluene Octane Ethylbenzene o-Xylene	ntane		17A - Inlet Water Ibmol/h	17A – Sales Gas Ibmol/h 395.562 57.7965 14.2215 1.80713 2.7551 0.843313 0.520698 2.1103 0.648405 0.29391 0.318907 0.107869 0.109997 0.000350006 0.00704277 0.151443 0.0110097 0.0837625 0.000703169 0.000852869	17B - Condensate Ibmol/h 2.17883 1.4685 1.21281 0.344459 0.826796 0.375184 0.524229 0.00340318 0.00327929 0.000388645 0.593498 0.178928 0.128845 0.00167997 0.0161395 0.801246 0.0717122 1.14174 0.011851 0.00185376	17B - Inlet Condensate Ibmol/h 0.522945 0.521391 0.571113 0.185336 0.511637 0.330704 0.404596 0 0.00526571 0 0 0.00526571 0 0 0.00241705 0.0318532 1.11926 0.0949553 1.31211 0.0132937 0.0202859	17B - Inlet Gas Ibmol/h 838.823 115.906 31.8942 4.20355 7.38089 1.49551 1.6637 3.74231 0.518646 0.263855 1.18835 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
Water Molar Flow Methane Ethane Propane -Butane -Butane -Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane Sohexane Sohexane Benzene Heptane Toluene Octane Ethylbenzene	ntane		100 * 17A - Inlet Water Ibmol/h 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	17A - Sales Gas Ibmol/h 395.562 57.7965 14.2215 1.80713 2.7551 0.843313 0.520698 2.1103 0.648405 0.29391 0.318907 0.107869 0.109997 0.000350006 0.00704277 0.151443 0.0110097 0.0837625 0.000703169	17B - Condensate Ibmol/h 2.17883 1.4685 1.21281 0.344459 0.826796 0.375184 0.524229 0.00340318 0.00327929 0.00038645 0.593498 0.178928 0.128845 0.00167997 0.0161395 0.801246 0.0717122 1.14174 0.011851	17B - Inlet Condensate Ibmol/h 0.522945 0.521391 0.571113 0.185336 0.511637 0.330704 0.404596 0 0.00526571 0 0 0.00526571 0 0 0.00526571 0 0 0.0132937	17B - Inlet Gas Ibmol/h 838.823 115.906 31.8942 4.20355 7.38085 1.49551 1.6637 3.74231 0.518646 0.263855 1.18835 0.263855 1.18835 0.263855 0.06000000000000000000000000000000000

Licensed to SLR International Corporation and Affiliates

Client Name: Consol Energy		eams Report reams y Total Phase			
				and Condensate Ta	ank Emissions
Lagation: Comdan 17 Natural Cap D	reduction Facility		Estimate		
Location: Camden 17 Natural Gas P Flowsheet: Flowsheet1	Toduction Facility				
Mass Fraction	17A – Inlet Water %	17A – Sales Gas %	17B - Condensate %	17B - Inlet Condensate %	17B - Inlet Gas %
Methane	0 *	68.5792	4.07577	1.06171	69.0512 *
Ethane	0 *	18.7814	5.14885	1.9841	17.8836 *
Propane	0 *	6.77718	6.23594	3.18712	7.21668 *
i-Butane	0 *	1.13511	2.33451	1.36327	1.25369 *
n-Butane	0 *	1.73056	5.60345	3.76344	2.20131 *
i-Pentane	0 *	0.657544	3.15638	3.01959	0.553668 *
n-Pentane	0 *	0.405996	4.41027	3.69429	0.615933 *
Nitrogen	0 *	0.638876	0.0111164	0	0.537942 *
CO2	0 *	0.30839	0.0168284	0.0293281	0.117125 *
Oxygen	0 *	0.101638	0.00145011 5.96372	0	0.0433241 *
Hexane Isohexane	0 *	0.296998 0.100458	5.96372	4.56031	0.525484 *
Neohexane	0 *	0.10244	1.29469	4.10937	0 *
2,2,4-Trimethylpentane	0 *	0.000432072	0.0223764	0.0349414	0 *
Benzene	0 *	0.00594521	0.147002	0.314884	0 *
Heptane	0 *	0.163995	9.36176	14.1935	0 *
Toluene	0 *	0.0109628	0.770458	1.10724	0 *
Octane	0 *	0.103403	15.2075	18.9682	0 *
Ethylbenzene	0 *	0.000806767	0.146707	0.178612	0 *
o-Xylene	0 *	0.000978522	0.229483	0.272557	0 *
Nonane	0 *	0.0261058	10.2227	11.7051	0 *
Decane	0 *	0.0250342	23.8345	26.4524	0 *
Water	100 *	0.046594	0.0066574	0	0 *
		474 0-1		1	
	17A – Inlet Water	17A – Sales Gas	17B - Condensate	17B - Inlet Condensate	17B - Inlet Gas
Mass Flow					
Mass Flow Methane	Water	Gas	Condensate	Condensate	Gas
Methane Ethane	Water Ib/h 0 *	Gas Ib/h 6345.78 1737.89	Condensate lb/h 34.9538 44.1565	Condensate Ib/h 8.38932 15.6777	Gas Ib/h 13456.8 * 3485.18 *
Methane Ethane Propane	Water Ib/h 0 0 0 0 0 0	Gas lb/h 6345.78 1737.89 627.108	Condensate Ib/h 34.9538 44.1565 53.4794	Condensate Ib/h 8.38932 15.6777 25.1836	Gas Ib/h 13456.8 * 3485.18 * 1406.39 *
Methane Ethane Propane i-Butane	Water Ib/h 0 0 0 0 0 0 0 0 0 0	Gas Ib/h 6345.78 1737.89 627.108 105.034	Condensate lb/h 34.9538 44.1565 53.4794 20.0207	Condensate lb/h 8.38932 15.6777 25.1836 10.7721	Gas Ib/h 13456.8 * 3485.18 * 1406.39 * 244.32 *
Methane Ethane Propane i-Butane n-Butane	Water Ib/h 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Gas Ib/h 6345.78 1737.89 627.108 105.034 160.132	Condensate lb/h 34.9538 44.1565 53.4794 20.0207 48.0552	Condensate lb/h 8.38932 15.6777 25.1836 10.7721 29.7374	Gas Ib/h 13456.8 * 3485.18 * 1406.39 * 244.32 * 428.993 *
Methane Ethane Propane i-Butane n-Butane i-Pentane	Water Ib/h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Gas Ib/h 6345.78 1737.89 627.108 105.034 160.132 60.844	Condensate lb/h 34.9538 44.1565 53.4794 20.0207 48.0552 27.0691	Condensate Ib/h 8.38932 15.6777 25.1836 10.7721 29.7374 23.8599	Gas Ib/h 13456.8 * 3485.18 * 1406.39 * 244.32 * 428.993 * 107.899 *
Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane	Water Ib/h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Gas Ib/h 6345.78 1737.89 627.108 105.034 160.132 60.844 37.5677	Condensate lb/h 34.9538 44.1565 53.4794 20.0207 48.0552 27.0691 37.8225	Condensate Ib/h 8.38932 15.6777 25.1836 10.7721 29.7374 23.8599 29.1911	Gas Ib/h 13456.8 3485.18 1406.39 244.32 428.993 107.899 120.034
Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen	Water Ib/h 0	Gas Ib/h 6345.78 1737.89 627.108 105.034 160.132 60.844 37.5677 59.1167	Condensate lb/h 34.9538 44.1565 53.4794 20.0207 48.0552 27.0691 37.8225 0.0953347	Condensate Ib/h 8.38932 15.6777 25.1836 10.7721 29.7374 23.8599 29.1911 0	Gas Ib/h 13456.8 3485.18 1406.39 244.32 428.993 107.899 120.034 104.835
Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2	Water Ib/h 0	Gas Ib/h 6345.78 1737.89 627.108 105.034 160.132 60.844 37.5677 59.1167 28.536	Condensate lb/h 34.9538 44.1565 53.4794 20.0207 48.0552 27.0691 37.8225 0.0953347 0.14432	Condensate Ib/h 8.38932 15.6777 25.1836 10.7721 29.7374 23.8599 29.1911 0 0.231741	Gas Ib/h 13456.8 3485.18 1406.39 244.32 428.993 107.899 120.034 104.835 22.8253
Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2 Oxygen	Water Ib/h 0	Gas Ib/h 6345.78 1737.89 627.108 105.034 160.132 60.844 37.5677 59.1167 28.536 9.40476	Condensate lb/h 34.9538 44.1565 53.4794 20.0207 48.0552 27.0691 37.8225 0.0953347 0.14432 0.0124362	Condensate Ib/h 8.38932 15.6777 25.1836 10.7721 29.7374 23.8599 29.1911 0 0.231741 0	Gas Ib/h 13456.8 * 3485.18 * 1406.39 * 244.32 * 428.993 * 107.899 * 120.034 * 104.835 * 22.8253 * 8.44304 *
Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane	Water Ib/h 0	Gas Ib/h 6345.78 1737.89 627.108 105.034 160.132 60.844 37.5677 59.1167 28.536 9.40476 27.4819	Condensate lb/h 34.9538 44.1565 53.4794 20.0207 48.0552 27.0691 37.8225 0.0953347 0.14432 0.0124362 51.1449	Condensate lb/h 8.38932 15.6777 25.1836 10.7721 29.7374 23.8599 29.1911 0 0 0.231741 0 0	Gas Ib/h 13456.8 3485.18 1406.39 244.32 428.993 107.899 120.034 104.835 22.8253 8.44304 102.407
Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane	Water Ib/h 0	Gas Ib/h 6345.78 1737.89 627.108 105.034 160.132 60.844 37.5677 59.1167 28.536 9.40476 27.4819 9.29562	Condensate lb/h 34.9538 44.1565 53.4794 20.0207 48.0552 27.0691 37.8225 0.0953347 0.14432 0.0124362 51.1449 15.4192	Condensate Ib/h 8.38932 15.6777 25.1836 10.7721 29.7374 23.8599 29.1911 0 0.231741 0 0 0 36.0341	Gas Ib/h 13456.8 * 3485.18 * 1406.39 * 244.32 * 428.993 * 107.899 * 120.034 * 104.835 * 22.8253 * 8.44304 * 102.407 * 0 *
Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane Neohexane	Water Ib/h 0	Gas Ib/h 6345.78 1737.89 627.108 105.034 160.132 60.844 37.5677 59.1167 28.536 9.40476 27.4819 9.29562 9.47899	Condensate lb/h 34.9538 44.1565 53.4794 20.0207 48.0552 27.0691 37.8225 0.0953347 0.14432 0.0124362 51.1449 15.4192 11.1032	Condensate Ib/h 8.38932 15.6777 25.1836 10.7721 29.7374 23.8599 29.1911 0 0.231741 0 0 0.231741 0 0 0 36.0341 32.4709	Gas Ib/h 13456.8 * 3485.18 * 1406.39 * 244.32 * 428.993 * 107.899 * 120.034 * 104.835 * 22.8253 * 8.44304 * 102.407 * 0 * 0 *
Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane Neohexane 2,2,4-Trimethylpentane	Water Ib/h 0	Gas Ib/h 6345.78 1737.89 627.108 105.034 160.132 60.844 37.5677 59.1167 28.536 9.40476 27.4819 9.29562 9.47899 0.0399806	Condensate lb/h 34.9538 44.1565 53.4794 20.0207 48.0552 27.0691 37.8225 0.0953347 0.14432 0.0124362 51.1449 15.4192 11.1032 0.1919	Condensate Ib/h 8.38932 15.6777 25.1836 10.7721 29.7374 23.8599 29.1911 0 0.231741 0 0 0 36.0341 32.4709 0.276095	Gas Ib/h 13456.8 * 3485.18 * 1406.39 * 244.32 * 428.993 * 107.899 * 107.899 * 102.034 * 22.8253 * 8.44304 * 102.407 * 0 * 0 * 0 * 0 *
Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane Nechexane 2,2,4-Trimethylpentane Benzene	Water Ib/h 0	Gas Ib/h 6345.78 1737.89 627.108 105.034 160.132 60.844 37.5677 59.1167 28.536 9.40476 27.4819 9.29562 9.47899 0.0399806 0.550124	Condensate lb/h 34.9538 44.1565 53.4794 20.0207 48.0552 27.0691 37.8225 0.0953347 0.14432 0.0124362 51.1449 15.4192 11.1032 0.1919 1.26069	Condensate Ib/h 8.38932 15.6777 25.1836 10.7721 29.7374 23.8599 29.1911 0 0.231741 0 0 0 0 36.0341 32.4709 0.276095 2.48811	Gas Ib/h 13456.8 * 3485.18 * 1406.39 * 244.32 * 428.993 * 107.899 * 107.899 * 100.34 * 22.8253 * 8.44304 * 102.407 * 0 * 0 * 0 * 0 * 0 * 0 *
Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane Isohexane 2,2,4-Trimethylpentane Benzene Heptane	Water Ib/h 0	Gas Ib/h 6345.78 1737.89 627.108 105.034 160.132 60.844 37.5677 59.1167 28.536 9.40476 27.4819 9.29562 9.47899 0.0399806 0.550124 15.1748	Condensate lb/h 34.9538 44.1565 53.4794 20.0207 48.0552 27.0691 37.8225 0.0953347 0.14432 0.0124362 51.1449 15.4192 11.1032 0.1919 1.26069 80.2864	Condensate Ib/h 8.38932 15.6777 25.1836 10.7721 29.7374 23.8599 29.1911 0 0.231741 0 0 0.231741 0 0 0 36.0341 32.4709 0.276095 2.48811 112.152	Gas Ib/h 13456.8 * 3485.18 * 1406.39 * 244.32 * 428.993 * 107.899 * 107.899 * 100.34 * 22.8253 * 8.44304 * 102.407 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0
Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane 2,2,4-Trimethylpentane Benzene Heptane Toluene	Water Ib/h 0	Gas Ib/h 6345.78 1737.89 627.108 105.034 160.132 60.844 37.5677 59.1167 28.536 9.40476 27.4819 9.29562 9.47899 0.0399806 0.550124 15.1748 1.01442	Condensate Ib/h 34.9538 44.1565 53.4794 20.0207 48.0552 27.0691 37.8225 0.0953347 0.14432 0.0124362 51.1449 15.4192 11.1032 0.1919 1.26069 80.2864 6.60745	Condensate Ib/h 8.38932 15.6777 25.1836 10.7721 29.7374 23.8599 29.1911 0 0.231741 0 0 0.231741 0 0 36.0341 32.4709 0.276095 2.48811 112.152 8.74904	Gas Ib/h 13456.8 * 3485.18 * 1406.39 * 244.32 * 428.993 * 107.899 * 107.899 * 102.034 * 22.8253 * 8.44304 * 102.407 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0
Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane	Water Ib/h 0	Gas Ib/h 6345.78 1737.89 627.108 105.034 160.132 60.844 37.5677 59.1167 28.536 9.40476 27.4819 9.29562 9.47899 0.0399806 0.550124 15.1748 1.01442 9.56807	Condensate lb/h 34.9538 44.1565 53.4794 20.0207 48.0552 27.0691 37.8225 0.0953347 0.14432 0.0124362 51.1449 15.4192 11.1032 0.1919 1.26069 80.2864 6.60745 130.419	Condensate Ib/h 8.38932 15.6777 25.1836 10.7721 29.7374 23.8599 29.1911 0 0.231741 0 0 0.231741 0 0 36.0341 32.4709 0.276095 2.48811 112.152 8.74904 149.88	Gas 13456.8 * 3485.18 * 1406.39 * 244.32 * 428.993 * 107.899 * 120.034 * 104.835 * 22.8253 * 102.407 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *
Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene	Water Ib/h 0	Gas Ib/h 6345.78 1737.89 627.108 105.034 160.132 60.844 37.5677 59.1167 28.536 9.40476 27.4819 9.29562 9.47899 0.0399806 0.550124 15.1748 1.01442 9.56807 0.074652	Condensate Ib/h 34.9538 44.1565 53.4794 20.0207 48.0552 27.0691 37.8225 0.0953347 0.14432 0.0124362 51.1449 15.4192 11.1032 0.1919 1.26069 80.2864 6.60745 130.419 1.25816	Condensate Ib/h 8.38932 15.6777 25.1836 10.7721 29.7374 23.8599 29.1911 0 0.231741 0 0 0.231741 0 0 36.0341 32.4709 0.276095 2.48811 112.152 8.74904 149.88 1.41133	Gas 13456.8 * 3485.18 * 1406.39 * 244.32 * 428.993 * 107.899 * 120.034 * 104.835 * 22.8253 * 8.44304 * 102.407 * 0 *
Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane	Water Ib/h 0	Gas Ib/h 6345.78 1737.89 627.108 105.034 160.132 60.844 37.5677 59.1167 28.536 9.40476 27.4819 9.29562 9.47899 0.0399806 0.550124 15.1748 1.01442 9.56807 0.074652 0.0905448	Condensate lb/h 34.9538 44.1565 53.4794 20.0207 48.0552 27.0691 37.8225 0.0953347 0.14432 0.0124362 51.1449 15.4192 11.1032 0.1919 1.26069 80.2864 6.60745 130.419	Condensate Ib/h 8.38932 15.6777 25.1836 10.7721 29.7374 23.8599 29.1911 0 0.231741 0 0 0.231741 0 0 36.0341 32.4709 0.276095 2.48811 112.152 8.74904 149.88	Gas 13456.8 * 3485.18 * 1406.39 * 244.32 * 428.993 * 107.899 * 120.034 * 104.835 * 22.8253 * 102.407 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *
Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane Neohexane 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene	Water Ib/h 0	Gas Ib/h 6345.78 1737.89 627.108 105.034 160.132 60.844 37.5677 59.1167 28.536 9.40476 27.4819 9.29562 9.47899 0.0399806 0.550124 15.1748 1.01442 9.56807 0.074652	Condensate Ib/h 34.9538 44.1565 53.4794 20.0207 48.0552 27.0691 37.8225 0.0953347 0.14432 0.0124362 51.1449 15.4192 11.1032 0.1919 1.26069 80.2864 6.60745 130.419 1.25816 1.96805	Condensate Ib/h 8.38932 15.6777 25.1836 10.7721 29.7374 23.8599 29.1911 0 0.231741 0 0 0.231741 0 0 36.0341 32.4709 0.276095 2.48811 112.152 8.74904 149.88 1.41133 2.15365	Gas 13456.8 * 3485.18 * 1406.39 * 244.32 * 428.993 * 107.899 * 120.034 * 104.835 * 22.8253 * 8.44304 * 102.407 * 0 * <
Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane	Water Ib/h 0	Gas Ib/h 6345.78 1737.89 627.108 105.034 160.132 60.844 37.5677 59.1167 28.536 9.40476 27.4819 9.29562 9.47899 0.0399806 0.550124 15.1748 1.01442 9.56807 0.074652 0.0905448 2.41563	Condensate Ib/h 34.9538 44.1565 53.4794 20.0207 48.0552 27.0691 37.8225 0.0953347 0.14432 0.0124362 51.1449 15.4192 11.1032 0.1919 1.26069 80.2864 6.60745 130.419 1.25816 1.96805 87.6695	Condensate Ib/h 8.38932 15.6777 25.1836 10.7721 29.7374 23.8599 29.1911 0 0 0.231741 0 0 0 36.0341 32.4709 0.276095 2.48811 112.152 8.74904 149.88 1.41133 2.15365 92.4902	Gas Ib/h 13456.8 * 3485.18 * 1406.39 * 244.32 * 428.993 * 107.899 * 120.034 * 104.835 * 22.8253 * 8.44304 * 102.407 * 0 * 0 * 0 0 0 0 * 0 0 0 0 0 * 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	Water Ib/h 0	Gas Ib/h 6345.78 1737.89 627.108 105.034 160.132 60.844 37.5677 59.1167 28.536 9.40476 27.4819 9.29562 9.47899 0.0399806 0.550124 15.1748 1.01442 9.56807 0.074652 0.0905448 2.41563 2.31647	Condensate Ib/h 34.9538 44.1565 53.4794 20.0207 48.0552 27.0691 37.8225 0.0953347 0.14432 0.0124362 51.1449 15.4192 11.1032 0.1919 1.26069 80.2864 6.60745 130.419 1.25816 1.96805 87.6695 204.405	Condensate Ib/h 8.38932 15.6777 25.1836 10.7721 29.7374 23.8599 29.1911 0 0 0.231741 0 0 0 36.0341 32.4709 0.276095 2.48811 112.152 8.74904 149.88 1.41133 2.15365 92.4902 209.018	Gas 13456.8 * 3485.18 * 1406.39 * 244.32 * 428.993 * 107.899 * 107.899 * 104.835 * 22.8253 * 8.44304 * 102.407 * 0 * <

Stream Properties									
Property	Units	17A – Inlet Water	17A – Sales Gas	17B - Condensate	17B - Inlet Condensate	17B - Inlet Gas			
Temperature	°F	80 *	60 *	60	87 *	87 *			
Pressure	psig	2000 *	600	600	1500 *	1500 *			
Mole Fraction Vapor	%	0	100	0	0	100			
Mole Fraction Light Liquid	%	100	0	100	100	0			

		Process Streams Re All Streams Tabulated by Total Phas		
Client Name:	Consol Energy		Job: Water and Estimate	Condensate Tank Emissions
			Esumate	
Location:	Camden 17 Nat	ural Gas Production Facility		
Flowsheet:	Flowsheet1			

Stream Properties									
Property	Units	17A – Inlet Water	17A – Sales Gas	17B - Condensate	17B - Inlet Condensate	17B - Inlet Gas			
Mole Fraction Heavy Liquid	%	0	0	0	0	0			
Molecular Weight	lb/lbmol	18.0153	19.3734	71.3157	91.5361	19.3511			
Mass Density	lb/ft^3	62.2882	2.48986	39.8992	42.4426	6.57835			
Mass Flow	lb/h	2578.43	9253.22	857.6	790.168	19488.1			
Std Vapor Volumetric Flow	MMSCFD	1.30353	4.35003	0.109523	0.0786198	9.17211 *			
Std Liquid Volumetric Flow	sgpm	5.15448 *	56.2323	2.79605	2.37055 *	118.51			
Specific Gravity		0.998704	0.668911	0.639729	0.680508	0.668141			
Net Ideal Gas Heating Value	Btu/ft^3	0	1065.53	3657.43	4658.08	1068.51			
Gross Ideal Gas Heating Value	Btu/ft^3	50.31	1177.01	3954.4	5026.1	1180.28			

Warnings

ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!17A – Sales Gas Warning: The temperature of 60 °F is within 10 °F of hydrate formation. ProMax:ProMax!Project!Flowsheets!Flowsheet1!PStreams!17B - Condensate Warning: The temperature of 60 °F is within 10 °F of hydrate formation.

Remarks

			All S	reams Report treams by Total Phase					
Client Name:	Consol Energy					b: Water	and Condensate	Tank Emissions	
Location:		ural Gas Producti	on Facility						
Flowsheet:	Flowsheet1								
			Conn	ections					
			17B - Inlet	17B -	17B	_	17B - Sales	17B-	
			Water	Pre-Choke	Produc	ed	Gas	Post-Choke	
From Block				17B - Wellhead	17B - G	iPU	17B - GPU	17B Choke Valve	
To Block			17B - Wellhead	17B Choke Valve	VLVE-	102		17B - GPU	
			Stroom C	omposition					
			17B - Inlet	omposition 17B -	17B	-	17B - Sales	17B-	
			Water	Pre-Choke	Produc	ed	Gas	Post-Choke	
Mole Fraction			%	%	%		%	%	
Methane Ethane			0 *	61.7524 8.56579		21347 05148	83.3669 11.4481	61.7524 8.56579	
Etnane Propane			0 *	2.38854	0.010		3.11227	2.38854	
i-Butane			0,	0.322899	0.0001		0.402854	0.322899	
n-Butane			0 *	0.580669	0.0003		0.703732	0.580669	
i-Pentane			0 *	0.134359	4.3685		0.144531	0.134359	
n-Pentane			0 *	0.152168	4.4047		0.153798	0.152168	
Nitrogen CO2			0 *	0.275329	0.0002		0.372383	0.275329	
Oxygen			0 *	0.0385453	0.00099		0.0515233 0.0262354	0.0385453 0.0194123	
Hexane			0,	0.0874296	5.2220		0.0592552	0.0874296	
Isohexane			0 *	0.0307641	2.7547		0.0238292	0.0307641	
Neohexane			0 *	0.027722	2.383		0.0246994	0.027722	
2,2,4-Trimethylpent	ane		0 *	0.000177827	6.6006		7.34242E-05	0.000177827	
Benzene Heptane			0 *	0.00234351	9.4352 3.442	1E-06	0.00153306 0.0316784	0.00234351 0.0823466	
Toluene			0 *	0.00698606	9.3570		0.00228338	0.00698606	
Octane			0,	0.0965347	7.7487		0.0169711	0.0965347	
Ethylbenzene			0 *	0.000978049	4.5229		0.000142174	0.000978049	
o-Xylene			0 *	0.00149248		6E-06	0.000171708	0.00149248	
Nonane Decane			0 *	0.053056	2.2589 9.1826		0.00374421 0.00323016	0.053056	
Water			100 *	25.272		.9025	0.0500709	25.272	
				20.272					
			17B - Inlet Water	17B - Pre-Choke	17B Produc	ced	17B - Sales Gas	17B- Post-Choke	
Molar Flow			lbmol/h	lbmol/h	Wate Ibmol		lbmol/h	lbmol/h	
Methane			0 *	839.346		31992	836.885	839.346	
			0,	116.427		51003	114.923	116.427	
Ethane			•						
Propane			0 *	32.4653	0.009		31.2427	32.4653	
Propane i-Butane			0 *	4.38889	0.0003	50674	4.04408	4.38889	
Propane i-Butane n-Butane			0 *	4.38889 7.89252	0.0003	50674 26049	4.04408 7.06447	4.38889 7.89252	
Propane i-Butane n-Butane i-Pentane				4.38889 7.89252 1.82622	0.0003 0.001 0.0001	50674 26049 49986	4.04408 7.06447 1.45088	4.38889 7.89252 1.82622	
Propane i-Butane n-Butane			0 *	4.38889 7.89252	0.0003	50674 26049 49986 51228	4.04408 7.06447	4.38889 7.89252	
Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2				4.38889 7.89252 1.82622 2.06829 3.74231 0.523912	0.0003 0.001 0.0001 0.0001 0.0007 0.0007	50674 26049 49986 51228 09379 41158	4.04408 7.06447 1.45088 1.54391 3.73819 0.517221	4.38889 7.89252 1.82622 2.06829 3.74231 0.523912	
Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2 Oxygen				4.38889 7.89252 1.82622 2.06829 3.74231 0.523912 0.263855	0.0003 0.001 0.0001 0.0001 0.0007 0.003 9.9955	50674 26049 49986 51228 09379 41158 5E-05	4.04408 7.06447 1.45088 1.54391 3.73819 0.517221 0.263366	4.38889 7.89252 1.82622 2.06829 3.74231 0.523912 0.263855	
Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane				4.38889 7.89252 1.82622 2.06829 3.74231 0.523912 0.263855 1.18835	0.0003 0.001 0.0001 0.0001 0.0007 0.003 9.9955 1.7928	50674 26049 49986 51228 09379 41158 5E-05 8E-05	4.04408 7.06447 1.45088 1.54391 3.73819 0.517221 0.263366 0.594838	4.38889 7.89252 1.82622 2.06829 3.74231 0.523912 0.263855 1.18835	
Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane				4.38889 7.89252 1.82622 2.06829 3.74231 0.523912 0.263855 1.18835 0.418149	0.0003 0.001 0.0001 0.0007 0.003 9.9955 1.7928 9.4579	50674 26049 49986 51228 09379 41158 5E-05 8E-05 6E-06	4.04408 7.06447 1.45088 1.54391 3.73819 0.517221 0.263366 0.594838 0.239211	4.38889 7.89252 1.82622 2.06829 3.74231 0.523912 0.263855 1.18835 0.418149	
Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane Neohexane	ane			4.38889 7.89252 1.82622 2.06829 3.74231 0.523912 0.263855 1.18835 0.418149 0.3768	0.0003 0.001 0.0001 0.0007 0.003 9.9955 1.7928 9.4579 8.1835	50674 26049 49986 51228 09379 41158 5E-05 8E-05 8E-05 6E-06 7E-06	4.04408 7.06447 1.45088 1.54391 3.73819 0.517221 0.263366 0.594838 0.239211 0.247947	4.38889 7.89252 1.82622 2.06829 3.74231 0.523912 0.263855 1.18835 0.418149 0.3768	
Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane	ane			4.38889 7.89252 1.82622 2.06829 3.74231 0.523912 0.263855 1.18835 0.418149	0.0003 0.001 0.0001 0.0007 0.003 9.9955 1.7928 9.4579	50674 26049 49986 51228 09379 41158 5E-05 8E-05 8E-05 6E-06 7E-06 9E-09	4.04408 7.06447 1.45088 1.54391 3.73819 0.517221 0.263366 0.594838 0.239211	4.38889 7.89252 1.82622 2.06829 3.74231 0.523912 0.263855 1.18835 0.418149	
Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane Neohexane 2,2,4-Trimethylpent Benzene Heptane	ane			4.38889 7.89252 1.82622 2.06829 3.74231 0.523912 0.263855 1.18835 0.418149 0.3768 0.00241705 0.0318532 1.11926	0.0003 0.001 0.0001 0.0007 0.003 9.9955 1.7928 9.4579 8.1835 2.2661 0.0003 1.1817	50674 26049 49986 51228 09379 41158 5E-05 8E-05 6E-06 6E-06 7E-06 9E-09 23939 7E-05	4.04408 7.06447 1.45088 1.54391 3.73819 0.517221 0.263366 0.594838 0.239211 0.247947 0.000737075 0.0153898 0.318006	4.38889 7.89252 1.82622 2.06829 3.74231 0.523912 0.263855 1.18835 0.418149 0.3768 0.00241705 0.0318532 1.11926	
Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane Neohexane 2,2,4-Trimethylpent Benzene	ane			4.38889 7.89252 1.82622 2.06829 3.74231 0.523912 0.263855 1.18835 0.418149 0.3768 0.00241705 0.0318532	0.0003 0.001 0.0001 0.0007 0.003 9.9955 1.7928 9.4579 8.1835 2.2661 0.0003	50674 26049 49986 51228 99379 41158 5E-05 8E-05 6E-06 6E-06 9E-09 23939 7E-05 21254	4.04408 7.06447 1.45088 1.54391 3.73819 0.517221 0.263366 0.594838 0.239211 0.247947 0.000737075 0.0153898	4.38889 7.89252 1.82622 2.06829 3.74231 0.523912 0.263855 1.18835 0.418149 0.3768 0.00241705 0.0318532	

ProMax 3.2.13330.0 Copyright © 2002-2012 BRE Group, Ltd.

			All St	eams Report reams y Total Phase				
Client Name:	Consol Energy				Job: Water Estimate	er and Condensate Tank Emissions		
Location: Flowsheet:	Camden 17 Nat Flowsheet1	ural Gas Producti	on Facility					
			17B - Inlet	17B -	17B -	17B - Sales	17B-	
			Water	Pre-Choke	Produced Water	Gas	Post-Choke	
Molar Flow			lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h	
o-Xylene Nonane			0 *	0.0202859 0.721143	2.46029E-05 7.75554E-07	0.0017237 0.0375865	0.0202859 0.721143	
Decane			0 *	1.46905	3.15266E-07	0.0324262	1.46905	
Water			343.5 *	343.5	342.994	0.502641	343.5	
			17B - Inlet Water	17B - Pre-Choke	17B - Produced Water	17B - Sales Gas	17B- Post-Choke	
Mass Fraction			%	%	%	%	%	
Methane			0 *	50.8762	0.073136	69.1212	50.8762	
Ethane			0 *	13.2275	0.0175491	17.791	13.2275	
Propane i-Butane			0 *	<u>5.40902</u> 0.963828	0.00696977 0.00032951	7.09283	5.40902 0.963828	
n-Butane			0 *	1.73325	0.00032951	2.11396	0.963828	
i-Pentane			0 *	0.497834	0.000174945	0.538935	0.497834	
n-Pentane			0 *	0.563825	0.000176395	0.573491	0.563825	
Nitrogen			0 *	0.396103	0.000321268	0.539141	0.396103	
CO2			0 *	0.087118	0.00242731	0.117192	0.087118	
Oxygen Hexane			0 *	0.0319008 0.38693	5.17088E-05 2.4978E-05	0.0433879 0.263911	0.0319008 0.38693	
Isohexane			0 *	0.13615	1.31766E-05	0.10613	0.13615	
Neohexane			0 *	0.122687	1.14012E-05	0.110006	0.122687	
2,2,4-Trimethylper	ntane		0 *	0.00104319	4.18499E-09	0.000433472	0.00104319	
Benzene			0 *	0.00940098	0.000409076	0.00618905	0.00940098	
Heptane Toluene			0 *	0.423752	1.9144E-05 0.000478534	0.164054 0.0108734	0.423752 0.033057	
Octane			0 *	0.566302	4.91295E-06	0.100192	0.566302	
Ethylbenzene			0 *	0.00533251	2.66522E-05	0.000780097	0.00533251	
o-Xylene			0 *	0.00813728	4.22271E-05	0.000942148	0.00813728	
Nonane			0 *	0.349461	1.60809E-06	0.0248189	0.349461	
Decane Water			0 *	0.789746 23.3814	7.25186E-07 99.8966	0.0237531	0.789746 23.3814	
Water			100	20.0014	00.0000	0.0400201	20.0014	
			17B - Inlet Water	17B - Pre-Choke	17B - Produced	17B - Sales Gas	17B- Post-Choke	
Mass Flow			lb/h	lb/h	Water Ib/h	lb/h	lb/h	
Methane			0 *	13465.2	4.52384	13425.7	13465.2	
Ethane			0 *	3500.85	1.0855	3455.61	3500.85	
Propane			0 *	1431.58	0.431117	1377.67	1431.58	
i-Butane n-Butane			0 *	255.092 458.731	0.0203819 0.0732622	235.051 410.602	255.092 458.731	
i-Pentane			0 *	131.759	0.0732622	104.679	131.759	
n-Pentane			0 *	149.225	0.0109109	111.391	149.225	
Nitrogen			0 *	104.835	0.0198721	104.72	104.835	
CO2			0 *	23.0571	0.150142	22.7626	23.0571	
Oxygen Hexane			0 *	8.44304 102.407	0.00319846 0.00154502	8.4274 51.2604	8.44304 102.407	
Isohexane			0 *	36.0341	0.000815043	20.6141	36.0341	
Neohexane			0 *	32.4709	0.000705222	21.3669	32.4709	
2,2,4-Trimethylper	ntane		0 *	0.276095	2.58864E-07	0.0841949	0.276095	
Benzene			0 *	2.48811	0.0253035	1.20212	2.48811	
Heptane Toluene			0 *	<u>112.152</u> 8.74904	0.00118416 0.0295998	31.8649 2.11199	<u>112.152</u> 8.74904	
Octane			0 *	149.88	0.000303891	19.4607	149.88	
Ethylbenzene			0 *	1.41133	0.00164858	0.151521	1.41133	
o-Xylene			0 *	2.15365	0.00261197	0.182997	2.15365	
Nonane			0 *	92.4902	9.94688E-05	4.82066	92.4902	

* User Specified Values ? Extrapolated or Approximate Values

0 * 92.4902 ProMax 3.2.13330.0 Copyright © 2002-2012 BRE Group, Ltd.

				reams y Total Phase			
Client Name:	Consol Energ	У	Job: Water Estimate			r and Condensate Tank Emissions	
Location:		latural Gas Product	tion Facility				
Flowsheet:	Flowsheet1						
					T	T	T
			17B - Inlet	17B -	17B -	17B - Sales	17B-
			Water	Pre-Choke	Produced Water	Gas	Post-Choke
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h
Decane			0 *	209.018	4.48566E-05	4.61366	209.018
Water			6188.24 *	6188.24	6179.13	9.05521	6188.24
			Stream F	Properties			
Property		Units	17B - Inlet	17B -	17B -	17B - Sales	17B-
			Water	Pre-Choke	Produced Water	Gas	Post-Choke
Temperature		°F	87 *	85.9991	60	60 *	50.0411
Pressure		psig	1500 *	1500	600	600	600
Nole Fraction Vapor		%	0	74.203	0	100	73.6715
Mole Fraction Light L		%	100	0.529401	100	0	1.05602
Mole Fraction Heavy	Liquid	%	0	25.2676	0	0	25.2725
Molecular Weight		lb/lbmol	18.0153	19.472	18.0163	19.3488	19.472
Mass Density		Ib/ft^3	62.1859	8.7338	62.3219	2.48672	3.44555
	- Flow	lb/h MMSCFD	6188.24 3.12847	26466.5 12.3792	6185.52 3.12691	<u>19423.4</u> 9.14276	26466.5 12.3792
		sgpm	12.3707 *	133.251	12.3914	118.064	133.251
Std Vapor Volumetrie		auum		100.201	0.999244		100.201
Mass Flow Std Vapor Volumetric Std Liquid Volumetric Specific Gravity	CFIOW	-31-11	0 997063	1			
Std Vapor Volumetrie		Btu/ft^3	0.997063	821.277	1.00912	0.66806	821.277

Condensate Tank Working and Breathing Loss Inputs

orking and Breathing Parameters Results Working and Breathing Report Loading Loss Parameters Loading			
roperty	Value	Units	
Process Stream	Sales Condensate		
Tank Geometry	Vertical Cylinder	▼	
Shell Length		15 ft	
Shell Diameter		10 ft	
Number of Storage Tanks Employed		2	
Location	Charleston, WV		
Annual Net Throughput		96.47 bbl/day	
Include Non-VOC components in calculations?	√		
Maximum fraction fill of tank		90 %	
Average fraction fill of tank		50 %	
Material category	Heavy Crude	•	
Tank Color	Light Grey	•	
Tank Condition	Light Rust	v	
Shell Paint Condition	Good	•	
Operating Pressure		0 psig	
Breather Vent Pressure		0.03 psig	
Breather Vacuum Pressure		-0.03 psig	
Roof Type	Cone	▼	
Radius of domed roof		ft	
Slope of coned roof		0.0625	
Roof Color	Light Grey	•	
Roof Paint Condition	Good	·	
Maximum Average Temperature	65.5	of	
Minimum Average Temperature	44	o l	
Average Absolute Pressure	14.25	psia	
Daily Solar Insolation	1,123	Btu/ft^2/day	
Average Wind Speed	6.3	mi/h	
Underground tank?	<u> </u>		
Floating Roof Type	Pontoon	*	
Tank Construction	Welded		
Primary Seal	Mechanical Shoe		
Secondary Seal type #1	None		
Secondary Seal type #2	None		
Self supported roof?			
Deck Construction	Sheet		
Contruction Type for Continuous Sheet Style Deck	5 feet wide		
Contruction Type for Panel Style Deck	5 x 7.5 feet		
Number of Columns for Floating Roof Tank	0		
Effective Column Diameter	Default		
Construction Type of Internal Floating Roof Tank	Welded		
Calculate loading losses?			
Output loading losses?			
Output flashing losses?			
Output Working/Breathing losses?			

Edit Source ...

Page 2 of 6

Condensate Truck Loading Loss Inputs

lorking and Breathing Parameters Results Working and Breathing Report Loading Loss Parameters Loading Report	Flash Emissions Warnings Value	Units
roperty Cargo Carrier		
Land Based Mode of Operation	Tank Truck or Rail Tank Car Submerged Loading: Dedicated Normal Service	
Land Based Mode of Operation Marine Based Mode of Operation	Submerged Loading: Dedicated Normal Service Submerged Loading: Ships	
Marne Based Mode of Operation Overall Reduction Efficiency	Submerged Loading: Snips	0 %

Condensate True Vapor Pressure and Vapor Molecular Weight

ame: Tank-3 Precision: 4 Execute 😰 🛃		
operties Notes Script		
Shell Paint Condition	Good	-
Tank Condition	Light Rust	
Tank Color	Light Grey	-
Material category	Heavy Crude	÷
Location	Charleston, WV	÷.
Tank Geometry		
Marine Based Mode of Operation	Submerged Loading: Ships	
lope of coned roof	exercise yes conserve on the second sec	25
Underground tank?	·····································	
Iumber of Columns for Floating Roof Tank	0	_
Construction Type of Internal Floating Roof Tank	Velded	-
Self supported roof?		
Dutput loading losses?		
Dutput Vorking/Breathing losses?		-
lutput flashing losses?		-
Vaste Water?		-
ndude Non-VOC components in calculations?		_
lumber of Storage Tanks Employed		
aculate loading losses?	√	<u></u>
Atmospheric Pressure		25 psia
True Vapor Pressure at Average Temperature		91 psia
iverage Liquid Surface Temperature).8 °F
Aaximum Liquid Surface Temperature		91 °F
Total W/B Losses		56 ton/yr
Vorking Losses per Tank		82 ton/yr
itanking Losses per Tank		97 ton/yr
tim Seal Losses per Tank		0 ton/yr
Vithdrawal Loss per Tank		0 ton/yr
oading Losses		97 ton/yr
Deck Fitting Losses per Tank		0 ton/yr
Deck Seam Losses per Tank		0 ton/yr
lashing Losses		57 ton/yr
iquid Mass Component Fractions	0.005586 0.243 1.766 1.451 4.093 3.468 4.392 1.301E-06 0.0002724 6.622E-07 7.314 2.07 1.444 0.02701 0.1722 11.33 0.9356 18.68 0	
/apor Mass Component Fractions	0.6521 21.33 33.79 9.896 18.98 5.817 5.402 0.0001123 0.03617 8.489E-05 0.184 1.01 1.091 0.002889 0.003498 1.097 0.01099 0.5251	
Flashed Mass Component Fractions	2.382 16.21 31.67 10.11 19.8 6.259 5.87 0.001853 0.04166 0.0005604 2.812 1.114 1.186 0.003622 0.06633 1.386 0.09892 0.7031 0.00	
Sas Mole Weight		19 lb/lbmol
Stream Name	Sales Condensate[Flowsheet1]	
rocess Stream	Sales Condensate	
iquid Loading Report	Promax Loading Losses Report Annual Emissions Tank Truck or Rail Tank Car with Submerged Loading: Dedicated Normal Service ¶ Comport	
Norking and Breathing Report	Promax AP-42 Emissions Report ¶Annual Emissions ¶Vertical Cylinder ¶¶Components Working Losses (ton/yr) Breathing	
Flash Emissions	Flashing Emissions Report ¶Annual Emissions ¶Tank flashed at the daily maximum surface temperature (68.91 %) and the atmospheric pressu	
Component Names	Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane 2,2,4-Trimethylpen	tan

Modified : 3/11/2015 10:49:02 AM Unsolved :

Produced Water Tank Working and Breathing Loss Inputs

orking and Breathing Parameters Results Working and Breathing Report Loading Loss Parameters Loadi		
Property	Value	Units
Process Stream	Waste Water	
Tank Geometry	Vertical Cylinder	<u> </u>
Shell Length		15 ft
Shell Diameter		10 ft
Number of Storage Tanks Employed		4
Location	Charleston, WV	<u>▼</u>
Annual Net Throughput		600.1 bbl/day
Include Non-VOC components in calculations?		
Maximum fraction fill of tank		90 %
Average fraction fill of tank		50 %
Material category	Light Organics	▼
Tank Color	Light Grey	•
Tank Condition	Light Rust	v
Shell Paint Condition	Good	•
Operating Pressure		0 psig
Breather Vent Pressure		0.03 psig
Breather Vacuum Pressure		-0.03 psig
Roof Type	Cone	•
Radius of domed roof		ft
Slope of coned roof		0.0625
Roof Color	Light Grey	-
Roof Paint Condition	Good	
Maximum Average Temperature	65,5	of:
Minimum Average Temperature	44	of:
Average Absolute Pressure	14.25	psia
Daily Solar Insolation	1,123	Btu/ft^2/day
Average Wind Speed	6.3	mi/h
Underground tank?	N	
Floating Roof Type	Pontoon	
Tank Construction	Welded	
Primary Seal	Mechanical Shoe	
Secondary Seal type #1	None	
Secondary Seal type #2	None	
Self supported roof?		
Deck Construction	Sheet	v
Contruction Type for Continuous Sheet Style Deck	5 feet wide	
Contruction Type for Panel Style Deck	5 x 7.5 feet	
Number of Columns for Floating Roof Tank	0	
Effective Column Diameter	Default	Y
Construction Type of Internal Floating Roof Tank	Welded	
Calculate loading losses?		
Output loading losses?	v V	
Output flashing losses?		
Output Hashing losses? Output Working/Breathing losses?		

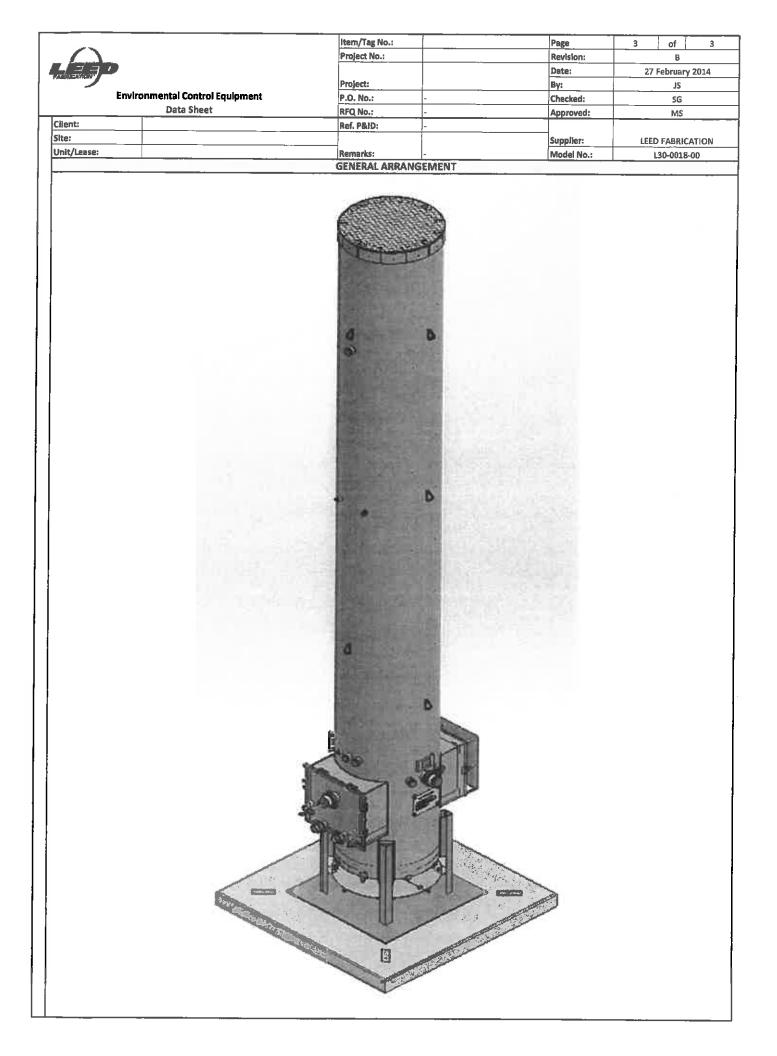
Edit Source ...

Page 5 of 6

Produced Water Truck Loading Loss Inputs

	Report Flash Emissions Warnings	
ty	Value	Units
Carrier	Tank Truck or Rail Tank Car	•
lased Mode of Operation	Submerged Loading: Dedicated Normal Service	• •
Based Mode of Operation	Submerged Loading: Ships	
Reduction Efficiency		0 %
Include don Enhancy		5 N

Edit Source ...


Produced Water True Vapor Pressure and Vapor Molecular Weight

ame: Tank-1 Precision: 4 Execute 🔃 🛃		
operties Notes Script		
Shell Paint Condition	Good	
Tank Condition	Light Rust v	
Fank Color	ught Grey ▼	
Material category	Light Organics V	
ocation	Charleston, WV	
Fank Geometry	Vertical Cylinder	
Arine Based Mode of Operation	Submerged Loading: Ships	
lope of coned roof	0.0625	
Inderground tank?	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
lumber of Columns for Floating Roof Tank	n n n n n n n n n n n n n n n n n n n	
ionstruction Type of Internal Floating Roof Tank	Welded V	
elf supported roof?		
utput loading losses?		
utput Working/Breathing losses?		
utput flashing losses?		
/aste Water?		
nclude Non-VOC components in calculations?		
lumber of Storage Tanks Employed	۲۰. ۸	
aculate loading losses?	<u>ज</u>	
Atmospheric Pressure	in the second seco	
rue Vapor Pressure at Average Temperature	0.2244 pia	
verage Liquid Surface Temperature	60.8 F	
aximum Liquid Surface Temperature	68.9	
otal W/B Losses	0.18 ton/vr	
/orking Losses per Tank	0.0386 ton/w	
tanding Losses per Tank	0.00638 ton/w 0.00638 ton/w	
tantaing cosses per faint	0.00000 001/9/ 0 ton/w	
im Seal Losses per Tank Vithdrawal Loss per Tank	0 cm/yr	
oading Losses	0 001/17 0.3453 ton/w	
edu Fitting Losses per Tank	· Ψγπσ) εετε.υ · Ψγπσ) του	
eck Seam Losses per Tank		
lashing Losses	0 ton/yr	
iquid Mass Component Fractions	0.00196 0.0005771 0.0002707 4.396E-06 3.203E-05 3.903E-06 3.191E-06 4.491E-06 0.001344 1.966E-06 1.961E-07 1.218E-07 8.145E-08 4 4.498 0.996 0.1018 0.0005895 0.00232 0.0001288 7.717E-05 0.007623 3.508 0.004957 9.701E-08 1.168E-06 1.211E-06 8.716E-12 0.00013	
apor Mass Component Fractions		
lashed Mass Component Fractions	96 96	
as Mole Weight	18.33 b/bmol	
Stream Name	Waste Water [Flowaheet1]	
rocess Stream	Waste Water	
iquid Loading Report	Promax Loading Losses Report SAnnual Emissions Trank Truck or Ral Tank Car with Submerged Loading: Dedicated Normal Service S Componen	
Vorking and Breathing Report	Promax AP-42 Emissions Report ¶Annual Emissions §Vertical Cylinder ¶Components Working Losses (ton/yr) Breathing Lo	
Flash Emissions	Flashing Emissions Report ¶Annual Emissions ¶Tank flashed at the daily maximum surface temperature (68.91 °F) and the atmospheric pressure	
Component Names	Methane Ethane Propane i-Butane n-Butane n-Pentane n-Pentane Nitrogen CO2 Oxygen Hexane Isohexane Neohexane 2,2,4-Trimethylpentar	

Modified : 3/11/2015 10:49:02 AM Unsolved :

_				Item/Tag N	lo.:		Pag	8	1 of 3
	Δ			Project No.	:		Revi	ision:	В
4]			8:	27 February 2014
		Enviromental Control Equipment P.O.					By:		JS
	Envir	Enviromental Control Equipment Data Sheet				<u>. </u>	Che	cked:	SG
							Арр	roved:	MS
	Client:			Ref. P&ID:	-				
	Site:						Supp	plier:	LEED FABRICATION
	Unit/Lease:			Remarks:			Mod	lel No.:	L30-0018-00
				G	ENERAL	_			
1	Design Code:					NDE:		L	EED Fabrication Standards
2	Service:					Customer	Specs:		Yes 🗌
3	Description:	Standard Sing	le Stage 36 High	Efficiency Comb					✓ No
				PRO	CESS DATA				
	Gas Composition			mol %	Process Condition	5:			
					Variable		Value	Units	5
4	Methane				Flow Rate	e	Up to 99	Mscf	d
5	Ethane				Pressure		Up to 12	oz/In	2
6	Propane				Temperatu	re		٩F	
7	I-Butane				Molecular W				
3	n-Butane				Process/Waste		√ Gas		Liquid
١	I-Pentane				Detailed Process D				
0	n-Pentane							nal operatin	g rate indicated above.
1	n-Hexane				2. DRE: 98 % oper	-	~		
2	CO2				3. Burner Pressure	urop: Min.	v.10 oz/m2		
9	N2				4				
4	Helium								
5	H ₂ O				4				
5	C7								
7	C8								
8	C9								
9	C10								
	C11+]				
1		TOTA							
- H	Other Components:			PPMV	Available Utilities	2			
2	H2S				Fuel / Pilot (Gas		Vin. 30psig P	Natural Gas /Propane 40-50 SCF
3	Benzene				Instrument	Air	1	NA	
4	Toluene				Power		3	20 V / 60 Hz	t or Solar Power
5	E-Benzene				Steam			A	
ł	Xylene				Purge Gas				
ļ				DESI	GN DATA				
l	Ambient Temperatures:				Nolse Performance	Requireme	nts:		Under 85 dBA
		Low, °F	· ·	-20	Structural Design C	iode:			
ľ	1	High, °F	:	120	Wind Design Code:				ASCE
ľ	Design Conditions:	Pressure/Temperature							
Ŀ	Max. Relative Humidity,	%		90		Pressure/S	peed		100 mph
- F	Elevation (ASL), ft					Category			
- 8-	Area Classification:			s I Div 2	Seismic Design Cod	e.			
ł	Electrical Design Code:								
÷				VEC		Location			
ļ					SPECIFICATION				
- 15	Туре:		Enclosed						
ĺ	Type:	Above Ground	Enclosed		SPECIFICATION Equipment Design:			Mat	erial / Size / Rating / Other
,	Туре:	Above Ground Stack			SPECIFICATION Equipment Design:	Location		Mat	erial / Size / Rating / Other
	Туре:	Above Ground	Enclosed		SPECIFICATION Equipment Design: Burner	Location	s Burner	Mat	erial / Size / Rating / Other 304 SS
		Above Ground Above Ground Stack Portable / Trailer	Enclosed Aultiple Stack		SPECIFICATION Equipment Design: Burner Burner Ti	Location Component	s Burner	Mat	
	Type:	Above Ground Stack Portable / Trailer Steam Steam	Enclosed Aultiple Stack Assist Air		SPECIFICATION Equipment Design: Burner Burner Ti	Location Component	s Burner	Mat	304 SS
		Above Ground Stack r Portable / Trailer Steam /	Enclosed Aultiple Stack		SPECIFICATION Equipment Design: Burner Burner Pilot	Location Component o / Assist Ga: Burner Body Pilot Tip	s Burner	Mat	304 SS
	Smokeless By:	Above Ground Above Ground Stack fr Portable / Trailer Gas Assist fr Steam	Enclosed Aultiple Stack Assist Air		SPECIFICATION Equipment Design: Burner Burner Pilot	Location Component o / Assist Gas Burner Body	s Burner	Mat	304 SS Carbon Stee!
	Smokeless By: Stack:	Above Ground Above Ground Stack fr Portable / Trailer Gas Assist f Self Supporting	Enclosed Aultiple Stack Assist Air Staging	EQUIPMENT	SPECIFICATION Equipment Design: Burner Burner Pilot	Location Component o / Assist Ga: Burner Body Pilot Tip	s Burner	Mat	304 SS Carbon Stee! 304 SS
	Smokeless By: Stack: Flare Burner:	Above Ground Above Ground Stack r Portable / Trailer Steam / Gas Assist Self Supporting Non-Smokeless S S	Enclosed Aultiple Stack Assist Air Staging		SPECIFICATION Equipment Design: Burner Burner Filot	Location Component D / Assist Ga Burner Body Pilot Tip Pilot Line(s) Shell	s Burner	Mat	304 SS Carbon Stee! 304 SS
	Smokeless By: Stack: Flare Burner: Pilot:	Above Ground Above Ground Stack r Portable / Trailer Steam / Gas Assist / s Self Supporting Non-Smokeless / s / Intermittent [Enclosed Aultiple Stack Assist Air Staging Smokeless	EQUIPMENT	SPECIFICATION Equipment Design: Burner Burner Filot	Location Component D / Assist Ga Burner Body Pilot Tip Pilot Line(s)	s Burner	Mat	304 SS Carbon Steel 304 SS Carbon Steel
	Smokeless By: Stack: Flare Burner: Pilot: Pilot Air Inspirator:	Above Ground Above Ground Stack I f Portable / Trailer Steam / Gas Assist Self Supporting Non-Smokeless Self Supporting Intermittent Local	Enclosed Aultiple Stack Assist Air Staging Smokeless Continuous Remote	EQUIPMENT	SPECIFICATION Equipment Design: Burner Burner Filot	Location Component D / Assist Ga Burner Body Pilot Tip Pilot Line(s) Shell	s Burner	Mat	304 SS Carbon Steel 304 SS Carbon Steel Carbon Steel
	Smokeless By: Stack: Flare Burner: Pilot:	Above Ground Above Ground Stack r Portable / Trailer Steam / Gas Assist / s Self Supporting Non-Smokeless / s / Intermittent [Enclosed Aultiple Stack Assist Air Staging Smokeless Continuous Remote	EQUIPMENT	SPECIFICATION Equipment Design: Burner Burner Filot	Location Component o / Assist Ga Burner Body Pilot Tip Pilot Line(s) Shell Piping	s Burner	Mat	304 SS Carbon Steel 304 SS Carbon Steel Carbon Steel Carbon Steel
	Smokeless By: Stack: Flare Burner: Pilot: Pilot Air Inspirator: Pilot Flame Control:	Above Ground Above Ground Stack I f Portable / Trailer Gas Assist I f Gas Assist I f Self Supporting Non-Smokeless I f Intermittent Local No I f	Enclosed Aultiple Stack Assist Air Itaging I Continuous Remote Yes (Thermoc	EQUIPMENT	SPECIFICATION Equipment Design: Burner Burner Filot	Location Component o / Assist Gas Burner Body Pilot Tip Pilot Line(s) Shell Piping Nozzles	s Burner	Mat	304 SS Carbon Steel 304 SS Carbon Steel Carbon Steel Carbon Steel Carbon Steel Carbon Steel
	Smokeless By: Stack: Flare Burner: Pilot: Pilot Air Inspirator:	Above Ground Above Ground Stack I f Portable / Trailer Gas Assist I f Gas Assist I f Self Supporting Non-Smokeless I f Intermittent Local No Flamefront Generator	Enclosed Aultiple Stack Assist Air Staging Smokeless Continuous Remote Yes (Thermoc Inspirating Ig	EQUIPMENT	SPECIFICATION Equipment Design: Burner Burner Pilot Firebox / Stack	Location Component o / Assist Gas Burner Body Pilot Tip Pilot Line(s) Shell Piping Nozzles Flanges		Mat	304 SS Carbon Steel 304 SS Carbon Steel Carbon Steel Carbon Steel Carbon Steel Carbon Steel Carbon Steel
	Smokeless By: Stack: Flare Burner: Pilot: Pilot Air Inspirator: Pilot Flame Control:	Above Ground Above Ground Stack I f Portable / Trailer Steam / Gas Assist Self Supporting Non-Smokeless Self Supporting Intermittent Local No Flamefront Generator Electronic Electronic	Enclosed Aultiple Stack Assist Air Staging Smokeless Continuous Remote Yes (Thermoc Inspirating Igi	EQUIPMENT	SPECIFICATION Equipment Design: Burner Burner Pilot Firebox / Stack	Location Component o / Assist Gas Burner Body Pilot Tip Pilot Line(s) Shell Piping Nozzles Flanges Insulation		Mat	304 SS Carbon Steel 304 SS Carbon Steel Carbon Steel Carbon Steel Carbon Steel Carbon Steel Carbon Steel Blanket
	Smokeless By: Stack: Flare Burner: Pilot: Pilot Air Inspirator: Pilot Flame Control:	Above Ground Above Ground Stack r Portable / Trailer Steam / Gas Assist / s Self Supporting Non-Smokeless / s Intermittent Local No Flamefront Generator Electronic / With Pilot Flame Control	Enclosed Aultiple Stack Assist Air Itaging Emokeless Continuous Remote Yes (Thermoc Inspirating Igi Automatic	EQUIPMENT	SPECIFICATION Equipment Design: Burner Burner Pilot Firebox / Stack In Refr	Location Component o / Assist Ga Burner Body Pilot Tip Pilot Line(s) Shell Piping Nozzles Flanges Insulation Sulation Pins Refractory actory Ancho	ля Ларина Лари	Mat	304 SS Carbon Steel 304 SS Carbon Steel Carbon Steel Carbon Steel Carbon Steel Carbon Steel Carbon Steel Blanket 304 SS
	Smokeless By: Stack: Flare Burner: Pilot: Pilot Air Inspirator: Pilot Flame Control:	Above Ground Above Ground Stack I f Portable / Trailer Steam / Gas Assist Self Supporting Non-Smokeless Self Supporting Intermittent Local No Flamefront Generator Electronic Electronic	Enclosed Aultiple Stack Assist Air Itaging Emokeless Continuous Remote Yes (Thermoc Inspirating Igi Automatic	EQUIPMENT	SPECIFICATION Equipment Design: Burner Burner Pilot Firebox / Stack In Refr	Location Component o / Assist Ga Burner Body Pilot Tip Pilot Line(s) Shell Piping Nozzles Flanges Insulation Pins Refractory	ля Ларина Лари	Mat	304 SS Carbon Steel 304 SS Carbon Steel Carbon Steel Carbon Steel Carbon Steel Carbon Steel Carbon Steel Blanket 304 SS NA
	Smokeless By: Stack: Flare Burner: Pilot: Pilot Air Inspirator: Pilot Flame Control: Pilot Ignition:	Above Ground Above Ground Stack f Portable / Trailer Steam / Gas Assist / Gas Assist / Self Supporting Non-Smokeless / Intermittent Local No Flamefront Generator Electronic / With Pilot Flame Control With Auto Pilot Re-Ignition	Enclosed Aultiple Stack Assist Air Itaging Emokeless Continuous Remote Yes (Thermoc Inspirating Igi Automatic	EQUIPMENT	SPECIFICATION Equipment Design: Burner Burner Pilot Firebox / Stack In Ladde	Location Component o / Assist Ga Burner Body Pilot Tip Pilot Line(s) Shell Piping Nozzles Flanges Insulation Sulation Pins Refractory Actory Ancho	Prs	Mat	304 SS Carbon Steel 304 SS Carbon Steel Carbon Steel Carbon Steel Carbon Steel Carbon Steel Carbon Steel Blanket 304 SS NA NA
	Smokeless By: Stack: Flare Burner: Pilot: Pilot Air Inspirator: Pilot Flame Control:	Above Ground Above Ground Stack r Portable / Trailer Steam / Gas Assist / s Self Supporting Non-Smokeless / s Intermittent Local No Flamefront Generator Electronic / With Pilot Flame Control	Inclosed Aultiple Stack Assist Air Staging Imokeless Continuous Remote Yes (Thermoc Inspirating Ig Automatic	EQUIPMENT	SPECIFICATION Equipment Design: Burner Burner Pilot Firebox / Stack In Refr Ladde Stack Sa	Location Component o / Assist Gas Burner Body Pilot Tip Pilot Line(s) Shell Piping Nozzles Flanges Insulation Pins Refractory actory Anchors rs and Platfo	Prs	Mat	304 SS Carbon Steel 304 SS Carbon Steel Carbon Steel Carbon Steel Carbon Steel Carbon Steel Carbon Steel Blanket 304 SS NA NA NA NA

					lite	em/Tag N	lo.:	1			Page		2		of	3
\cap						oject No.					Revisio	n:			B B	3
LEED									Date:			27 Feb	ruary 20	14		
			Pre	oject:		ļ			By:				JS	-		
Envi	ronmental Control E	quipmer	nt		P.(D. No.:	<u> </u>	-			Checke	d:	SG			
	Data Sheet				RF	Q No.:		-			Approv				MS	
Client:					Re	f. P&ID:		-					1			
Site:											Supplie	·r:	<u> </u>	EED FA	BRICATI	ON
Unit/Lease:						marks:		~			Model	No.:		L30-	0018-00	
						IPMEN	T SPECIF	ICATIO	N							
Flame Detection:	Thermocouple		✓ Ioniz	ation Ro	od		Auxiliar	'y Equipn	nent				_			
General Configuratio	UV Scanner								Valv	es				NA	_	
General conniguratio	n;	an							Blow			ļ		NA		
	10-	Ŷ							Damp		_			NA		
	100	8							let KO / Li			<u> </u>		NA		
										tion Arrest	or			Yes	_	
	120	B					Instrum		& Contro			<u> </u>				
	100	100					—	Solen		t-Off Valve	5	Check	with Sale		vailable	conf
	IN B						 		Flow M					NA		
		15					—	Destru	Calorim					NA		
		82 C - 1					}			s/Transmit	ters		_	NA		
	100	10 m							Thermoco			Check	with Sale		vailable	conf
	100	1						emperati	BMS	nes/Transm	Itters			NA		_
	ALC: NO	1					<u> </u>		CEM			Check	with Sale	_	vailable	conf
		100.00												NA		
		100							Otho	-						
		1							Othe	r				NA		
			2						Othe	r				NA		
			æ						Othe						_	
			à						Othe	.r						
			*		FABRIC	ATION	AND IN:	SPECTIC								
Special requirements		ed 🗸	Concrete		FABRIC	ATION	AND IN:	SPECTIC		.r	Equipment I	Info				
Special requirements	Skid Mounte	ed 🗹	Concrete		FABRIC			SPECTIC			Equipment	info	Weight		ensions	
	Other		Concrete		FABRIC		AND IN:	SPECTIC	<u></u>		Equipment	Info	Weight		insions	
Special requirements Inspection	Other	ndard	Concrete		FABRIC			· · · · · · · ·	<u></u>	ent	Equipment	Info	Weight		ensions	
Inspection	Vendor Star	ndard	Concrete		FABRIC			· · · · · · · ·	ON	ent	Equipment	info	Welght		ensions	
	Other Vendor Star Other. Spec Vendor Star Vendor Star Vendor Star	ndard	Concrete		FABRIC		Burner	В	ON	embly	Equipment	Info				
Inspection	Other Vendor Star Other. Spec Vendor Star MTR	ndard :ffy: ndard			FABRIC		Burner	В	Compor Gurner Ass Stack Asse Pilot Ti	embly P	Equipment	Info		/ Dime		
Inspection	Other Vendor Star Other. Spec Vendor Star MTR Certificate c	ndard ify: ndard of Compile			FABRIC		Burner	B	Compor Jurner Ass Stack Asse Pilot Ti Pilot Un	embly p e(s)	Equipment	info		/ Dime		
Inspection Material Certification	Other Vendor Star Other. Spec Vendor Star MTR Certificate c Other (Spec	ndard :ffy: ndard of Compile :ify):			FABRIC		Burner Stack	B	Compor Stack Asse Pilot Ti Pilot Lin Stack Asse	embly p e(s)	Equipment	info		/ Dime		
Inspection	Other Vendor Star Vendor Star Vendor Star Vendor Star MTR Certificate c Other (Spec Vendor Star Vendor Star Vendor Star	ndard ify: ndard of Compila ify): ndard	ance		FABRIC		Burner	B	Compor Burner Asse Pilot Ti Pilot Lin Stack Asse ent	embly p e(s) mbly	Equipment	info		/ Dime		
Inspection Material Certification	Other Vendor Star Vendor Star Vendor Star Vendor Star MTR Certificate c Other (Spec Vendor Star Radlography	ndard ify: ndard of Complia ify): ndard y. Specify:	ance		FABRIC		Burner Stack	B	Compor Stack Asse Pilot Ti Pilot Un Stack Asse ent Blower	embly p e(s) mbly	Equipment	info		/ Dime		
Inspection Material Certification	Cother Vendor Star Vendor Star Vendor Star MTR Certificate c Other (Spec Vendor Star Radlography Ultrasonic,	ndard ify: ndard of Compila ify): ndard y. Specify: Specify:	ance		FABRIC		Burner Stack	B S Equipmo Inte	Compor Stack Asse Pilot Ti Pilot Lin Stack Asse ent Blower tt KO / Liq	embly embly p e(s) mbly rs uid Seal		info		/ Dime		
Inspection Material Certification	Other Vendor Star Vendor Star Vendor Star Vendor Star MTR Certificate c Other (Spec Vendor Star Radlography Ultrasonic. Liquid Penet	ndard ify: ndard of Compile of Co	ance		FABRIC		Burner Stack	B S Equipmo Inte	Compor Stack Asse Pilot Ti Pilot Lin Stack Asse ent Blowent K KO / Liq / Detonati	embly p e(s) mbly		info		/ Dime		
Inspection Material Certification	Other Vendor Star Vendor Star Vendor Star MTR Certificate c Other (Spec Vendor Star Radlography Uitrasonic, Liquid Penet Magnetic Pai	ndard ify: ndard of Compile afy): ndard y. Specify: specify: trant. rtticles.	ance		FABRIC		Burner Stack Auxillary	B S S S S S S S S S S S S S S S S S S S	Compor Surner Ass Pilot Ti Pilot Lin Stack Asse ent Blower t KO / Liq / Detonati Skid	embly embly p e(s) mbly rs uid Seal on Arresto				/ Dime		
Inspection Material Certification	Cother Vendor Star Vendor Star Vendor Star MTR Certificate c Other (Spec Vendor Star Radlography Ultrasonic. Liquid Penet Magnetic Pau PMI. Specify	ndard ify: ndard of Compile of Co	ance		FABRIC		Burner Stack	B S S S S S S S S S S S S S S S S S S S	Compor Stack Asse Pilot Ti Pilot Lin Stack Asse ent Blower t KO / Liq / Detonati Skid & Controls	embly embly p e(s) mbly rs uid Seal on Arresto				/ Dime		
Inspection Material Certification		ndard ify: ndard of Compila of Co	ance		FABRIC		Burner Stack Auxillary	Equipme Inle Flame /	Compor Stack Asse Pilot Ti Pilot Lin Stack Asse ent Blowent KKO / Liq / Detonati Skid & Controls BMS	embly embly p e(s) mbly rs uid Seal on Arresto				/ Dime		
Inspection Material Certification NDE		ndard ify: ndard of Complia ify): ndard y. Specify: trant. tricles. /: ify: ndard	ance		FABRIC		Burner Stack Auxillary	Equipme Inle Flame /	Compor Stack Asse Pilot Ti Pilot Lin Stack Asse ent Blower t KO / Liq / Detonati Skid & Controls	embly embly p e(s) mbly rs uid Seal on Arresto				/ Dime		
Inspection Material Certification NDE	Other Vendor Star Other. Spec Vendor Star MTR Certificate c Other (Spec Vendor Star Radlography Ultrasonic. Uquid Penet Magnetic Pan PMI. Specify Other. Spec Vendor Stan Other. Specify Other.	ndard ify: ndard of Compile ify): ndard y. Specify: trant. rticles. r: ify: ndard ify:	ance		FABRIC		Burner Stack Auxillary	Equipme Inle Flame /	Compor Stack Asse Pilot Ti Pilot Lin Stack Asse ent Blowent KKO / Liq / Detonati Skid & Controls BMS	embly embly p e(s) mbly rs uid Seal on Arresto				/ Dime		
Inspection Material Certification NDE		ndard ify: ndard of Complia ify): ndard y. Specify: trant. trant. rticles. <i>:</i> ify: idard ify: idard	ance		FABRIC		Burner Stack Auxillary	Equipme Inle Flame /	Compor Stack Asse Pilot Ti Pilot Lin Stack Asse ent Blowent KKO / Liq / Detonati Skid & Controls BMS	embly embly p e(s) mbly rs uid Seal on Arresto				/ Dime		
Inspection Material Certification NDE		ndard ify: ndard of Compila ify): ndard y. Specify: trant. tritcles. /: fy: idard ify: idard ify:	ance		FABRIC		Burner Stack Auxillary	Equipme Inle Flame /	Compor Stack Asse Pilot Ti Pilot Lin Stack Asse ent Blowent KKO / Liq / Detonati Skid & Controls BMS	embly embly p e(s) mbly rs uid Seal on Arresto				/ Dime		
Inspection Material Certification NDE Surface Preparation Paint System	Other Vendor Star Vendor Star Certificate c Other (Spec Vendor Star Radlography Ultrasonic, Ultrasonic, PMI. Specify Other. Specify Other. Specify Vendor Stan Other. Specify Vendor Stan Other. Specify Vendor Stan Other. Specify Other. Spec	ndard ify: indard of Complia ify): ndard y. Specify: trant. trant. ify: idard ify: idard ify: idard	ance		FABRIC		Burner Stack Auxillary	Equipme Inle Flame /	Compor Stack Asse Pilot Ti Pilot Lin Stack Asse ent Blowent KKO / Liq / Detonati Skid & Controls BMS	embly embly p e(s) mbly rs uid Seal on Arresto				/ Dime		
Inspection Material Certification NDE Surface Preparation Paint System		ndard ify: indard of Complia ify): ndard y. Specify: trant. trant. ify: idard ify: idard ify: idard	ance		FABRIC		Burner Stack Auxillary	Equipme Inle Flame /	Compor Stack Asse Pilot Ti Pilot Lin Stack Asse ent Blowent KKO / Liq / Detonati Skid & Controls BMS	embly embly p e(s) mbly rs uid Seal on Arresto				/ Dime		
Inspection Material Certification NDE Surface Preparation Paint System		ndard ify: indard of Complia ify): ndard y. Specify: trant. trant. ify: idard ify: idard ify: idard	ance		FABRIC		Burner Stack Auxillary	Equipme Inle Flame /	Compor Stack Asse Pilot Ti Pilot Lin Stack Asse ent Blowent KKO / Liq / Detonati Skid & Controls BMS	embly embly p e(s) mbly rs uid Seal on Arresto				/ Dime		

Sulfur Concentration Conversion Factors

Galvanic		
1 Grain	= 0.0648 grams	
1cu ft.	= 28.316 liters	= 0.28316m ³
Molecular wt. H ₂ S	= 34.08	
Molecular wt. S	= 32.064	
1 gram mole gas	= 22.414 litres	@0°C & 14.75 PSI @-STP
1 gram mole gas	= 23.718 litres	@60° & 14.73 ST(commonSTP)
1 grain H ₂ S/100 SCF	= 22.88 mg/m ³	
1 grain H͡,S/100 SCF	= 15.05 ppmv H ₂ S	@0°C & 14.75 PSI @ STP
1 grain H͡,S/100 SCF	= 15.26 ppmv H ₂ S	@ 60°F & 14.73 PSI @STP
1 grain Sulf/100 SCF	= 15.99 ppmv/Sulfur	@ 0°C & 14.75 PSI @STP
1 grain Sulf/100 SCF	= 16.92 ppmv/ Sulfur	@ 60°F & 14.73 PSI @ STP
1 grain H ₂ S/100 SCF(Methane)	= 32 ppm wt./wt.	@ 0°C & 14.75 PSI @STP
1 grain $H_2^{S}/100$ SCF(Methane)	= 33.9 ppm wt./wt.	@ 60°F & 14.73 PSI @ STP
Dow Gas Conditioning Fact Bo	ok	
Multiply U.S.	Ву	To Obtain
Grains per Gallon	17.1	Parts per Million by weight
Grains H ₂ S per 100 SCF	0.001588	Mole percent H ₂ S
Grains H ₂ S per 100 SCF	1588 X 10 -8	Mole Fraction

Conversion Factors Commonly used by pipeline transmission companies for H₂S in Natural Gas

ppm to mg/m₃ mg/m₃ to grains/100SCF ppm to grains/100 SCF grains/100 SCF to mg/m³ mg/m³ to ppm grains/100SCF to ppm

Grains H_S per 100 SCF

Mole Percent H₂S

multiply by 1.4331 multiply by 0.0437 multiply by 0.0626285 multiply by 22.88277 multiply by 0.69778 multiply by 15.967

Specification for Sulfur Levels

ppm (w/v)

Grains H₂S per 100 SCF

Tariff Limits - H₂S

TCPL	23mg/m ³ OR 1 grain/100 SCF/100 SCF OR 16 ppm
NOVA	23mg/m ³ OR 1 grain/100 SCF/100 SCF OR 16 ppm
TRANS GAS	6mg/m ³ OR .26grain/100 SCF OR 4.2 ppm

15


615

Tariff Limits - Total SulfurTCPL460 mg/m³ OR 20.1 grains or 321 ppmNOVA115 mg/m³ OR 5.03 grains OR 80 ppmTRANS GAS23mg/m³ OR 1.00 grains OR 16 ppmTotal Sulfur Limits by Environment CanadaGasoline360 ppm,Recommended interim measure as of January 1,2005Canadian Environment Limits by Environment Act

Gasoline360 ppm,
30 ppm by 2005Recommended interim measure as of January 1, 1997
Canadian Environmental Protection Act, Registration SOR/97-110Diesel0.05 wt%

Total Sulfur Limits by United States Environmental Protection Agency Code of Federal Regulations, Title 40, Part 79, Section 79.55 Methane Base Fuel Specification 16 ppmv Propane Base Fuel Specification 123 ppmw

Methanol Base Fuel Properties	40 ppmw
Ethanol Base Fuel Properties	40 ppmw
Gasoline Base Fuel Properties	339 ppmw
Diesel Base Fuel Properties	0.05 wt%

Galvanic Applied Sciences Inc. Sulfur Measurement Handbook

ATTACHMENT O

MONITORING/RECORDKEEPING/REPORTING/ TESTING PLANS

Rule 13 Permit Application

Camden 17 Well Pad, New Facility Camden, West Virginia

> CNX Gas Company, LLC PO Box 1248 Jane Lew, West Virginia

Monitoring

The company will at a minimum monitor hours of operation, visual emissions, site production throughputs, and planned and unplanned maintenance of permitted equipment comprising the facility.

Recordkeeping

The company will retain records for five (5) years, two (2) years on site, certified by a company official at such time that the DAQ may request said records.

The company will keep records of the items monitored, such as station throughput, hours of operation, planned maintenance activities, unplanned maintenance activities, and complaints regarding the facility.

Reporting

The company will report any control equipment malfunctions, emission limit or opacity deviations.

Testing

Visual Emission (VE) testing will be conducted periodically.

ATTACHMENT P

PUBLIC NOTICE

Rule 13 Permit Application

Camden 17 Well Pad, New Facility Camden, West Virginia

> CNX Gas Company, LLC PO Box 1248 Jane Lew, West Virginia

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that CNX Gas Company, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Regulation 13 construction permit for a well pad facility located at the Camden 17 site, off Kemper Run Road near Camden, Lewis County, WV. The site' latitude and longitude coordinates are: 39.07937 and -80.58682.

The applicant estimates the site will have a maximum potential to discharge of the following Regulated Air Pollutants:

Pollutant	Tons/yr
NOx	3.58
СО	15.52
VOC	15.33
SO ₂	0.76
PM ₁₀	0.07
PM _{2.5}	0.07
CO ₂ e	5693.0
Benzene	<0.01
Toluene	<0.01
Ethylbenzene	<0.01
Xylenes	<0.01
n-Hexane	0.02
Formaldehyde	<0.01
Total HAPs	0.02

Startup of operation is planned to begin on or about the 1st day of May, 2015. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours.

Dated this the <u>th</u> Day of March, 2015.

By: CNX Gas Company, LLC David Morris Air Quality Manager-env 1000 Consol Energy Drive Canonsburg, PA 15317

ATTACHMENT Q

NOT APPLICABLE (SEE NOTE)

Note: No information contained within this application is claimed confidential.

Rule 13 Permit Application

Camden 17 Well Pad, New Facility Camden, West Virginia

> CNX Gas Company, LLC PO Box 1248 Jane Lew, West Virginia

ATTACHMENT R

NOT APPLICABLE (SEE NOTE)

Note: No delegation of authority.

Rule 13 Permit Application

Camden 17 Well Pad, New Facility Camden, West Virginia

> CNX Gas Company, LLC PO Box 1248 Jane Lew, West Virginia

ATTACHMENT S

NOT APPLICABLE (SEE NOTE)

Note: Not a Title V Permit Revision.

Rule 13 Permit Application

Camden 17 Well Pad, New Facility Camden, West Virginia

> CNX Gas Company, LLC PO Box 1248 Jane Lew, West Virginia

ATTACHMENT T

PERMIT APPLICATION FEE

Rule 13 Permit Application

Camden 17 Well Pad, New Facility Camden, West Virginia

> CNX Gas Company, LLC PO Box 1248 Jane Lew, West Virginia