

west virginia department of environmental protection

Appendix D: Modeling

Promoting a healthy environment.

[This page intentionally left blank.]

Modeling Analysis Report

[This page intentionally left blank.]

AIR QUALITY MODELING REPORT

1-Hour SO₂ Nonattainment SIP

Mountain State Carbon, LLC Follansbee, WV

Prepared By:

TRINITY CONSULTANTS

4500 Brooktree Road Suite 103 Wexford, Pennsylvania 15090 (724) 935-2611 www.trinityconsultants.com

November 2015

Environmental solutions delivered uncommonly well

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY	1-1
2. FACILITY BACKGROUND	2-1
2.1. Process Description	2-1
2.2. Modeled Emission Sources	
3. SO ₂ MODELING EMISSIONS INVENTORY	3-1
3.1. Modeled On-Site Emission Sources	
3.1.1. Point Sources	3-1
3.1.2. COG Flare	3-1
3.1.3. Characterization of Coke Battery Fugitive Emissions	
3.1.4. MSC Emissions during Desulfurization Plant Outage	
3.2. Ohio EPA Emissions Sources	
4 DISPERSION MODELING METHODOLOGY	4-1
4.1. Dispersion Model Selection	
4.2. Coordinate System	
4.3. Meteorological Data	
4.3.1. Surface Data Observations and Processing	
4.3.2. Upper Air Data Observations and Processing	
4.3.3. Surface Characteristics	
4.3.4. AERMET Stage 3 Processing	
4.4. Receptor Grid	4-6
4.5. Elevated Terrain	4-8
4.6. Modeled Source Types and Stack Parameters	4-9
4.6.1. MSC Source Inventory	
4.6.2. Regional Inventory Sources	
4.7. Building Downwash	
4.8. GEP Stack Height analysis	
4.9. Ambient Background Concentration	
5. ATTAINMENT MODELING DEMONSTRATION RESULTS	5-1
5.1. Modeling With Desulfurization Plant Outages and Increased I	Flare5-1
5.2. Discussion of Results	5-1
5.3. Compliance Demonstration Summary	5-3
APPENDIX A: SO ₂ MODELING EMISSION SOURCE INVENTORY	
APPENDIX B: BLP SUPPORTING DOCUMENTATION	

APPENDIX C: AMBIENT BACKGROUND CONCENTRATION DOCUMENTATION

APPENDIX D: MODELING FILES ON CD

Mountain State Carbon, LLC \mid SO_2 Air Quality Modeling Report Trinity Consultants

i

On June 22, 2010, the United State Environmental Protection Agency (U.S. EPA) published in the Federal Register (FR) a new National Ambient Air Quality Standard (NAAQS) for 1-hour average sulfur dioxide (SO₂). The new standard, 75 parts per billion (ppb), is based on the three-year average of the annual 99th percentile of 1-hour daily maximum concentrations.¹ This new short-term SO₂ NAAQS became effective on August 23, 2010.

Mountain State Carbon, LLC (MSC) owns and operates a metallurgical coke production facility in Follansbee, WV (Follansbee Plant). The Follansbee Plant is located in the Cross Creek tax district of Brooke County and is regulated by the West Virginia Department of Environmental Protection (WVDEP). On August 5, 2013, the United State Environmental Protection Agency (U.S. EPA) published the initial nonattainment area designations for the 1-hour average National Ambient Air Quality Standards (NAAQS).² The Cross Creek tax district was included in the nonattainment designation for the Steubenville, OH-WV nonattainment area.

WVDEP, as a regulatory agency with a SO₂ nonattainment area, is required to satisfy the requirements contained in Sections 172, 191 and 192 of the Clean Air Act. In short, WVDEP must submit a State Implementation Plan (SIP) that contains an attainment demonstration showing that the nonattainment area will attain the NAAQS by no later than October 4, 2018. The attainment demonstration includes, in part, an air quality modeling analysis that demonstrates that the SIP emission limits are appropriate for achieving the NAAQS. This report outlines the attainment demonstration modeling analyses conducted by MSC in support of WVDEP's SIP.

The remainder of this report is organized as follows:

- Section 2 Facility Background
- Section 3 SO₂ Modeling Emissions Inventory
- Section 4 Dispersion Modeling Methodology
- Section 5 Attainment Modeling Demonstration Results
- Appendix A SO₂ Modeling Emission Source Inventory (Detailed)
- Appendix B BLP Supporting Documentation
- Appendix C Ambient Background Concentration Documentation (Excerpt from Ohio EPA SIP)
- Appendix D Modeling Files on CD

¹ 75 FR 35520

² 78 FR 47191

Mountain State Carbon, LLC | SO₂ Air Quality Modeling Report Trinity Consultants

MSC owns and operates a metallurgical coke production facility in Follansbee, WV Follansbee Plant. Operations at the Follansbee Plant include four (4) by-product recovery coke production batteries, four (4) boilers fired with coke oven gas (COG) generated in the batteries, an excess COG flare, and other miscellaneous combustion sources. These and other emission units at the Follansbee Plant are permitted under Title V operating permit R30-00900002-2010 issued by the WVDEP on January 5, 2010. Being situated in the Steubenville, OH-WV 1-hour SO₂ nonattainment area, the Follansbee Plant is to be included in the dispersion modeling compliance demonstration as part of the SO₂ SIP submittal to U.S. EPA.

2.1. PROCESS DESCRIPTION

Metallurgical coke is produced by the destructive distillation of coal in coke ovens. Prepared coal is heated in an oxygen-free atmosphere ("coked") until the volatile components in the coal are removed as raw Coke Oven Gas (COG). The material remaining is a carbon mass called coke. Metallurgical coke produced at Mountain State Carbon (MSC) may be used in blast furnaces or foundry operations to reduce iron ore to iron.

The volatile components evolved from the coal at MSC are processed in the byproducts plant to produce crude coal tar, sulfuric acid, ammonium sulfate, light oil, and fuel coke oven gas. Crude coal tar is removed from the gas first due to the addition of flushing liquor used to cool the gas as it enters the collection main and secondly in the final cooler. The combined crude coal tar and flushing liquor enter the tar decanters where they are gravity separated. The tar is transferred to off-site processors, while the flushing liquor is transferred to the batteries for reuse.

With the majority of tar removed, the COG is conveyed to the H2S scrubber for desulfurization, where hydrogen sulfide is successively oxidized to produce sulfur dioxide, then sulfur trioxide, which is combined with water to produce sulfuric acid. The majority of sulfuric acid is then sprayed into the COG in the "Saturator" to remove ammonia and produce ammonium sulfate crystalline product (sold as fertilizer). Any excess sulfuric acid is either held for use during desulfurization outages, or sold as a separate product.

After sulfur and ammonia removal, the COG then enters the Final Cooler, which allows further cooling and naphthalene removal (using tar returned to the tar decanters). COG then enters the light oil process, where the light organic components are scrubbed from the COG using wash oil to produce light oil. The resulting cleaned COG is then considered 'fuel gas' and combusted either at the batteries or plant boilers. COG not needed for combustion is combusted at the excess COG flare.

2.2. MODELED EMISSION SOURCES

In communications with WVDEP, it is MSC's understanding that the SIP submittal modeling assessment will only take into consideration those SO₂ emitting sources located at the Follansbee Plant and at nearby operations located in Ohio, the latter being addressed specifically in Ohio Environmental Protection Agency's (Ohio EPA's) SIP submittal. A process description of the Follansbee Plant, including a process flow diagram, was discussed above. Each of the MSC SO₂ sources included in the modeling analysis are listed in Table A-1 along with their corresponding Title V and modeling identification codes. The same sources are further detailed along with their corresponding source parameters (e.g. temperature, stack height, stack diameter, exit velocity) in Tables A-2 and A-3. In addition, each of these sources are annotated in Figure 2 below; depicting the location of each source within the Follansbee Plant. Each battery shown in the figure consists of several fugitive emission sources (volume sources) as well as a combustion stack (point source). In addition to the MSC sources, the modeling analysis also includes a regional inventory of SO₂ emitting facilities, which are further discussed in Section 3 of this report.

Figure 2: Facility Map with Annotated Emission Sources

Zone 17, NAD 83 Datum

As previously mentioned, MSC currently operates coke oven batteries, boilers, an excess COG flare, and other miscellaneous combustion units, each of which is involved in the emission of SO₂. These emission units require the use of point, fugitive, and flare emission sources within the dispersion model in order to best represent the SO₂ dispersion within the atmosphere. Modeled emission rates are based on a combination of U.S. EPA AP-42 emission factors, engineering estimates and existing Title V permit limits. MSC controls emissions of SO₂ from the Follansbee Plant using a pre-combustion desulfurization system that reduces sulfur concentrations in the coke oven gas prior to combustion. Ammonia liquor produced at the Follansbee Plant absorbs hydrogen sulfide (H₂S) from the coke oven gas, and MSC uses a steam deacifier to extract the sulfurous compounds for the purposes of manufacturing sulfuric acid and fertilizer. The majority of by-product coke production facilities do not have desulfurization systems implemented to control SO₂.³

The following subsections describe the existing MSC sources, and regional sources considered in the SIP air quality modeling.

3.1. MODELED ON-SITE EMISSION SOURCES

Characterization of each source of emissions is necessary for the dispersion modeling to be performed. The AERMOD Model allows for emission sources to be represented as point, area, or volume sources where stacks are generally characterized as point sources and fugitive emissions as an area or volume source depending on the specifics of the release in terms of areal coverage, inside or outside a building, vertical extent, etc. The following subsections describe the source characterization and exhaust parameters associated with the categories of applicable emission sources at MSC. A list of all modeled emission sources at MSC is presented in Table A-1 of Appendix A along with the corresponding source designations (identification names) used in the modeling files. The basis for modeled emissions at the Follansbee Plant is outlined in Tables A-9 through A-12 of Appendix A.

3.1.1. Point Sources

Stacks and vents are modeled in the context of the AERMOD Model as point sources. Point sources can either be oriented vertically and unobstructed (V), oriented vertically and equipped with caps (C), or oriented horizontally (H). For point sources with unobstructed vertical releases, actual stack parameters (i.e., height, diameter, exhaust gas temperature, and gas exit velocity) are most appropriate to use in the dispersion modeling analyses because they best represent the characterization of the source. Except as outlined in Section 3.1.2, all point sources modeled for MSC are unobstructed vertical releases. Table A-2 of Appendix A provide the stack parameters for all MSC point sources.

3.1.2. COG Flare

One of the emissions sources at MSC is an excess COG flare. Representing a flare in an air dispersion model is different than representing a typical point source because combustion processes actually occur at the flare tip releasing heat which significantly alters all stack exhaust parameters required as inputs to the model. Neither WVDEP nor the *Guideline* describe a methodology for characterizing flares in PSD air quality analysis.⁴ Flare

³ AIST 2015 Cokemaking Byproducts Roundup – Iron & Steel Technology – March 2014 – AIST.org.

⁴ EPA's *Guideline on Air Quality Models*, 40 CFR Part 51, Appendix W (Revised, November 9, 2005)

modeling guidance from other state environmental agencies and within other models was reviewed to determine the most representative methodology for the current modeling.^{5,6} Overall, the emissions and characteristics of a flare can be modeled as a pseudo-point source with the modeled values of stack height, exit temperature, and exit diameter adjusted to account for the unique buoyancy flux occurring at the flare tip.

The temperature and exhaust velocity of the flare were assumed to be 1,273K (1,832°F) and 20 m/s (3,937 fpm), respectively. Using these constant parameters and the heat input for the flare, the following procedure was used to calculate the modeled stack height and diameter for the flare. As shown in the equations below, the primary factor in adjusting the stack parameters for a flare is the heat released in MMBtu/hr.

1) Compute the adjustment to stack height ($H_{eff.}$) as a function of total heat release (Q_T) in MMBtu/hr:

 $H_{eff.} = H_{stack, actual} + 0.00456(Q_T)^{0.478}$

- 2) Assume temperature of 1,273°K (1,832°F);
- 3) Assume exit velocity of 20 m/s (3,937 fpm);
- 4) Calculate the sensible/Net Heat Available (Q_H) for plume rise enhancement by multiplying the total heat release (Q_T) by 0.45 to account for radiative loss:

 $Q_{\rm H} = 0.45(Q_{\rm T})$

5) Determine the effective stack diameter (D_{eff}) based on the net heat release:

 $D_{eff.} = 9.88 \times 10^{-4} (Q_H)^{0.5}$

As shown in Table A-7 of Appendix A, modeled flare stack parameters were calculated in accordance with this methodology. Table A-2 of Appendix A includes derived and assumed stack parameters to characterize this flare under the 24 million cubic feet per day (MMscf/day) COG scenario.

3.1.3. Characterization of Coke Battery Fugitive Emissions

The treatment of the fugitive emissions associated with the batteries poses another unique consideration for this modeling analysis. Specifically, the fugitive emissions originate at points all along each battery and as such the most appropriate characterization in the AERMOD model is a volume source. However volume source parameterization does not directly account for the thermal, buoyant momentum associated with hot releases such as the battery fugitive emissions. As such, the Buoyant Line and Point Source (BLP) dispersion model was used in this modeling analysis to provide more reasonable release parameters for input to AERMOD for the coke battery sources. The BLP dispersion model was developed by Environmental Research and Technology Inc.

3-2

⁵ Engineering Guide #69, Air Dispersion Modeling Guidance. Ohio EPA, Division of Air Pollution Control, Air Quality Modeling and Planning Section. Revised July 22, 2014.

⁶ Screening Procedures for Estimating the Air Quality Impact of Stationary Sources, Revised, EPA-454/R-92-019, U.S. Environmental Protection Agency, Research Triangle Park, NC. October 1992.

(ERT) to address the unique transport, including the unique plume rise, and diffusion of emissions from buoyant line sources (e.g., coke battery). BLP is a preferred/recommended model for representing buoyant line sources per the *Guideline*.⁷ BLP can simulate dispersion from line sources either using a single day of user supplied meteorological data or a full year of data prepared using the preprocessing utilities PCRAMMET or MPRM.

3.1.3.1. BLP Processing

Modeling line sources in BLP requires the user to input the following parameters to assist in calculating dispersion: the average length, width and height of the building containing the line source, the line source width, the average separation between buildings containing the sources, and the average buoyancy parameter (which is a function of building length, line source width, exit velocity, and ambient and exit temperatures). In addition to these fixed parameters, the user must also specify the location (beginning and ending coordinates), the release height, the emission rate, and the base elevation of each line source modeled. BLP input parameters used in the current analysis were consistent with those used for Batteries 1, 2, 3, and 8 at the Mountain State Carbon facility in the March 2007 PM₁₀ SIP Modeling Report and specifically, Appendix A of the Modeling report which is included as Appendix B to this report.⁸ As was the case in the 2007 SIP modeling analysis, the default BLP code was modified to generate an output file containing information on hourly plume rise for each battery for use in developing input parameters to AERMOD.

One update made to the previous SIP modeling analysis was to use more recent meteorological data in BLP, with a time period consistent with that used in the current AERMOD analysis (2007 through 2009). Meteorological data gathered at a site-specific tower (the same data set used in AERMET to generate inputs for AERMOD) were supplemented by hourly surface data collected at the Pittsburgh National Weather Service (NWS) station for use in the Meteorological Processor for Regulatory Models (MPRM) utility.⁹ Daily mixing height data were generated for input to MPRM using EPA's Mixing Height Program with NWS surface and upper air data gathered at Pittsburgh.

To ensure that a complete set of hourly plume rise values was available for use in AERMOD, a second set of meteorological data were generated using Pittsburgh surface and upper air data as input to PCRAMMET. These meteorological data were then used as input to BLP, using all other inputs identical to those used in the BLP runs using site-specific data. Plume rise values from these NWS meteorological data runs were then substituted into the final plume rise data set for hours with the missing site-specific meteorological data.

3.1.3.2. Volume Source Characterization

Hourly plume rise values output by BLP were used to generate an HOUREMIS file for input to AERMOD. Fugitive emissions from Batteries 1, 2, and 3 were represented in AERMOD as five volume sources, each, situated in series along each battery roof vent. The hourly-varying release height for each volume source representing Batteries 1, 2, and 3 was calculated by adding 7 meters to the battery-specific plume rise output by BLP for each hour. This value is derived based on the height of the coal side car shed for Batteries 1, 2 and 3. The initial vertical dimension of each volume source was calculated by dividing the release height by 2.15, treating each volume source as an elevated source adjacent to a building (i.e., the coke battery structures). The initial lateral dimension of each Battery 1, 2, and 3 volume source was set at 5.33 meters, the distance between each volume source divided by 2.15.

⁷ EPA's *Guideline on Air Quality Models*, 40 CFR Part 51, Appendix W (Revised, November 9, 2005)

⁸ BLP inputs are provided in Tables A-8 to A-11 of Appendix A to this report.

⁹ MPRM was used rather than PCRAMMET because MPRM has the ability to process non-airport meteorological data, such as that available in this case, while PCRAMMET does not.

Battery 8 fugitive emissions were represented in AERMOD as seven volume sources situated in series along the Battery 8 roof vent. The hourly-varying release height for each volume source representing the Battery was calculated by adding 13.72 meters, the approximate height of the Battery 8 structure, to the battery-specific plume rise output by BLP for each hour. The initial vertical dimension of each volume source was calculated by dividing the release height by 2.15, treating each volume source as an elevated source adjacent to a building (i.e., the coke battery structures). The initial lateral dimension of each Battery 8 volume source was 6.84 meters, the approximate distance between each volume source divided by 2.15.

The base parameters utilized for all Battery fugitive emissions, prior to consideration of additional plume rise from BLP, are listed in Table A-3 of Appendix A.

3.1.4. MSC Emissions during Desulfurization Plant Outage

The MSC desulfurization plant requires routine planned maintenance in order to continue normal operation throughout the remainder of the year. Maintenance is accomplished by shutting down the desulfurization plant operations for a period of 10 days on average throughout a planned outage timeframe. During this period, the desulfurization plant will be unable to control the SO₂ emissions from MSC emission units.

Due to the unavailability of the desulfurization plant, emissions during the outage period will be different from those during normal operation in the modeling analysis, however the emission calculation methodology is identical save for the control device reduction efficiency. To account for these temporally changing emissions during planned outages, hourly emission files were generated and utilized in the modeling analysis. The modeled desulfurization plant outages are addressed further in Section 5.1.¹⁰

3.2. OHIO EPA EMISSIONS SOURCES

Regional sources of SO₂ included in the modeling analysis were identified by the Ohio EPA. The only sources deemed necessary for inclusion in the analysis were those present at the Mingo Junction Energy Center, the former Wheeling Pittsburgh Mingo Junction Steel Plant ("Mingo Junction Steel Works"), and the American Electric Power (AEP) Cardinal Power Plant. These three sources fall under Ohio EPA facility identification numbers 0641090234, 0641090010, and 0641050002 respectively. The Mingo Junction Steel Works and Mingo Junction Energy Center sources are situated approximately one mile south-southwest of MSC on the opposite side of the Ohio River. The Cardinal Power Plant is located approximately six and a half miles south-southwest of MSC, also on the opposite side of the Ohio River.

The Mingo Junction Energy Center consists of four boilers permitted to burn desulfurized COG in addition to natural gas and clean blast furnace gas. The source of blast furnace gas has since been removed and it is MSC's intent to no longer provide desulfurized COG to the boilers. As such, the only remaining, potentially viable fuel for these boilers is natural gas. Thereby, the Mingo Junction Energy Center has been included in the model with emissions associated with this fuel option (0.5 pound per hour per boiler in accordance with Ohio EPA's planned SIP). Any significant SO₂ emissions associated with this site in the future will require the appropriate Ohio EPA pre-construction permitting. Note that the Mingo Junction Energy Center is situated within the Mingo Junction Steel Works property boundary.

The Mingo Junction Steel Works consists of the following emissions units:

¹⁰ Per *Appendix W Section 8.1.2(a.) footnote (a)*, "Malfunctions which may result in excess emissions are not considered to be a normal operating condition." As such, planned outages (as opposed to unplanned outages) of the desulfurization plant are the only outages included in this modeling analysis.

- One (1) electric arc furnace (EAF);
- One (1) ladle metallurgy furnace (LMF); and
- Three (3) reheat furnaces.

Ohio EPA's SIP submittal included a compliance modeling demonstration that maintained the EAF and LMF at existing permit limits. However, the reheat furnaces are required to switch to natural gas.

AEP's Cardinal Power Plant was shown by Ohio EPA to have a negligible model predicted impact in the northern portions of the nonattainment area at times when the model predicted the largest concentrations resulting from the sources in the north (i.e., MSC and the Mingo Junction sources). Nonetheless, this analysis conservatively included Cardinal Power Plant emissions, as quantified by Ohio EPA in their SIP submittal.

These sources along with their stack parameters are further detailed in Table A-4. The stack parameters utilized for Mingo Junction Energy Center and Mingo Junction Steel Works in the analysis were provided by Ohio EPA and are reflective of those included in their SIP submittal.

This section of the modeling report describes the procedures and data resources utilized in the air quality modeling analyses performed to demonstrate attainment of the SO_2 NAAQS. In general, the air dispersion modeling analyses were conducted in accordance with applicable EPA guidance documents, including the following:

- > EPA's Guideline on Air Quality Models, 40 CFR Part 51, Appendix W (Revised, November 9, 2005)
- > EPA 's AERMOD Implementation Guide (Revised, March 19, 2009)¹¹
- > EPA's Addendum to the User's Guide for the AMS/EPA Regulatory Model AERMOD (Revised May 2014)¹²
- > EPA's Technical Support Document, Area Designations For the 2010 SO₂ Primary National Ambient Air Quality Standard
- Ohio EPA, Division of Air Pollution Control. Ohio's 2010 Revised Sulfur Dioxide National Ambient Air Quality Standard Recommended Designations and Nonattainment Boundaries (June 1, 2011)
- > Ohio EPA's State of Ohio Nonattainment Area State Implementation Plan and Demonstration of Attainment for 1-Hour SO2 Nonattainment Areas (April 3, 2015).

4.1. DISPERSION MODEL SELECTION

Dispersion models predict pollutant concentrations downwind of a source by simulating the evolution of the pollutant plume over time and space given data inputs that include the quantity of emissions and the initial exhaust release conditions (e.g., velocity, flow rate, and temperature). In collaboration with both WVDEP and Ohio EPA, MSC selected the EPA-recommended AERMOD Model (Version 14134). AERMOD is a refined, steady-state (both emissions and meteorology over a one hour time step), multiple source, dispersion model that was promulgated by U.S. EPA in December 2005 as the preferred model to use for industrial sources in this type of air quality analysis.¹³ Following procedures outlined in the *Guideline on Air Quality Models*, the AERMOD modeling was performed using the regulatory default options in all cases.

In coordination with the use of AERMOD, the BLP model, which is the preferred/recommended model for representing buoyant line sources, was utilized to assist with the characterization of coke battery fugitive emissions included in the hourly emissions files. This approach, which is described more fully in Section 3.1.3, is consistent with historic modeling of the Mountain State Carbon facility such as that performed in support of 2007 PM₁₀ SIP modeling and current SO₂ SIP modeling efforts conducted by Ohio EPA for the nonattainment area. Specifically, BLP was executed to inform AERMOD of the release height parameters for the volume sources modeled to represent the coke battery fugitives. This is necessary since AERMOD's volume source parameterization does not directly account for the thermal, buoyant momentum associated with hot releases such as the coke battery fugitive emissions. EPA has recognized this need through the inclusion of the buoyant

¹¹ EPA, OAQPS AERMOD Implementation Workgroup, *AERMOD Implementation Guide*, March 19, 2009, available at http://www.epa.gov/scram001/7thconf/aermod/aermod_implmtn_guide_19March2009.pdf

¹² Addendum to the User's Guide for the AMS/EPA Regulatory Model – AERMOD, EPA-454/B-03-001, EPA, OAQPS, Research Triangle Park, NC, May 2014.

¹³ 40 CFR 51, Appendix W-Guideline on Air Quality Models, Appendix A.1- AMS/EPA Regulatory Model (AERMOD).

line source type as a "Beta" test option in AERMOD. The hybrid approach used in this modeling analysis achieves the same goal through the use of preferred models.

4.2. COORDINATE SYSTEM

In all modeling analyses conducted for the MSC facility, the locations of emission sources, structures, and receptors, are represented in the Universal Transverse Mercator (UTM) coordinate system. The UTM grid divides the world into coordinates that are measured in north meters (measured from the equator) and east meters (measured from the central meridian of a particular zone, which is set at 500 km). The datum for this modeling analysis is based on North American Datum 1983 (NAD 83). UTM coordinates for this analysis all reside within UTM Zone 17 which serves as the reference point for all MSC data as well as all regional receptors and sources.

4.3. METEOROLOGICAL DATA

To perform the transport and dispersion modeling analysis in AERMOD, the procurement and pre-processing of meteorological data is required. The AERMET program (Version 14134) is the companion program to AERMOD that generates both a surface file and vertical profile file of meteorological observations and turbulence parameters pertinent to the use of AERMOD. AERMET meteorological data are refined for a particular analysis based on the choice of micrometeorological parameters that are linked to the land use and land cover (LULC) around the particular meteorological site. By incorporating measured surface and upper air station National Weather Service (NWS) observation data to AERMET, a complete set of model-ready meteorological data is created.

AERMET processing is performed in a 3-stage system. The first stage reads and performs quality assurance/quality control (QA/QC) on the raw NWS surface and upper air data files. The second stage synchronizes the observation times and merges the surface and upper air files together. The third stage incorporates user-specified micrometeorological parameters (albedo, Bowen Ratio, and surface roughness) with the observed meteorological data and computes specific atmospheric variables for use in the AERMOD Model. These variables are used to characterize the state of the atmosphere and its related turbulence and transport characteristics and includes wind speed, wind direction, convective velocity, friction velocity, Monin-Obukhov Length, convective and mechanical mixing heights, etc. Meteorological input files for this modeling analysis were developed by using the most current version of the AERMET program (Version 14134) following the procedures described below. The location of the meteorological data stations utilized in this modeling analysis, as outlined below, are shown in Figure 3.

Figure 3: Meteorological Data Stations Utilized in Modeling Analysis

4.3.1. Surface Data Observations and Processing

On-site measurements from a tower and SODAR located near MSC's Follansbee, WV facility formed the basis for the surface data processing and were provided by Mountain State Carbon. The tower collects temperature, wind and solar radiation measurements at levels ranging from 2 meters (m) to 50 m above ground level. As discussed in the AERMET User's Guide Addendum, AERMET preferentially utilizes the on-site measurements wherever available. If all of the on-site measurements are missing for a given hour, AERMET then looks for surface observations from a user-specified NWS/FAA surface station location; Pittsburgh, PA (WBAN ID: 94823) in this case. Per the guidance, surface stations with 1-minute ASOS wind data are preferred for this process to alleviate numerous calm and/or variable wind observations present in the routine hourly observations. In the absence of on-site wind data for a given hour, the routine processed ASOS hourly observations from the surface station are then utilized. If such filling is not performed, then AERMOD will not compute a concentration for the hours with missing wind observations.

To complete the surface data processing, the formatted on-site tower data file along with the 1-minute ASOS data and hourly surface data from Pittsburgh, PA were utilized. The 1-minute ASOS data from Pittsburgh were then processed through AERMINUTE. In order for AERMINUTE to interpret observations from ice-free wind sensors, an installation date of July 28, 2009 was included in the AERMINUTE processing.

Once the AERMINUTE processing was completed, the Stage 1 AERMET processing was performed for the on-site and hourly surface data observations. Stage 2 processing was then completed to assimilate the 1-minute ASOS data and merge all of the records together.

4.3.2. Upper Air Data Observations and Processing

Upper air radiosonde data from the same data period (1/1/2007-12/31/2009) taken from the Pittsburgh, PA radiosonde site were input during the Stage 1 AERMET processing and then the merge step in Stage 2 of AERMET. No upper-air sounding information was missing such that observations were filled during the meteorological data processing efforts.

4.3.3. Surface Characteristics

Stage 3 processing in AERMET requires the user to input surface characteristics (albedo, Bowen ratio, and surface roughness) which are a function of land use and precipitation. The AERSURFACE program currently uses gridded land use data from the 1992 version of the National Land cover Database (NLCD92) in order to determine appropriate land use characteristics for area surrounding the surface station location(s). In cases where on-site tower observations are used, AERSURFACE is run for the tower location. As previously discussed, where all the on-site observations are missing for a given hour, the NWS surface data were substituted in the processing. As such, AERSURFACE was run for that station location, so that the appropriate land use characteristics were paired with the correct surface observation. Table 4-1 presents the data periods in 2007 that were missing from the Follansbee tower observations, requiring the substitution of Pittsburgh, PA surface observations were all complete. As such, data substitution using Pittsburgh, PA surface observations occurred infrequently (approximately 0.6% over the three year period), thus limiting the ultimate effect of this substitution on the modeling analysis.

Beginning of Period			Eı	nd of Perio	od	Number
Month	Day	Hour	Month	Day	Hour	of Hours
3	8	4	3	8	24	21
4	3	24	4	4	5	6
4	6	14	4	6	21	8
4	27	3	4	27	18	16
6	19	3	6	19	12	10
11	10	3	11	14	9	103
					Total:	164

TABLE 4-1.	MISSING METEOROL	OGICAL DATA	PERIODS IN 2007
	PHODING PHEIDOROD		

The U.S. EPA default settings in the AERSURFACE data processing were used to generate surface characteristics for both the Follansbee tower location (40.338N, 80.599W) and Pittsburgh surface station (40.485N, 80.214W) to input in Stage 3 of the AERMET processing. Those settings pertain to both the seasonal distribution of land use data as well as the wind direction sectors over which land use categories are evaluated. The default settings for standard seasonal distributions as outlined in EPA's *AERSURFACE User's Guide*, for the seasons to correspond to their calendar months and for the wind sectors to consist of 12, 30 degree arcs were utilized. Since the river valley does not experience continuous snow depths for extended periods of time (e.g., more than a month), the

"Winter with continuous snow on ground" setting was not utilized. These setting selections are very reasonable for a mid-latitude location such as Follansbee, WV.

In order to estimate the Bowen ratio, actual monthly precipitation totals from the Steubenville, OH observation site (GHCND: USC00338025), which is very near to and representative of the Follansbee, WV area, were utilized. Those actual monthly precipitation totals were then compared to their 30 year climatological normals in order to determine if a given month was relatively dry, average or wet from a precipitation standpoint. AERSURFACE was run 3 separate times to generate land use characteristics for each moisture condition so that the combined AERMOD-ready file would contain the appropriate Bowen ratios for each data month. Information relative to the Bowen Ratio assignment is included with the modeling files and is summarized below in Table 4-2.

Month	2007	2008	2009
January	Average	Average	Average
February	Average	Wet	Dry
March	Wet	Average	Dry
April	Average	Average	Dry
Мау	Average	Average	Dry
June	Average	Average	Dry
July	Average	Average	Average
August	Average	Dry	Average
September	Average	Average	Dry
October	Average	Average	Average
November	Average	Average	Dry
December	Average	Average	Average

TABLE 4-2. MOISTURE DERIVED BOWEN RATIO CONDITIONS

4.3.4. AERMET Stage 3 Processing

For this modeling analysis, the Stage 3 AERMET processing was performed in order to generate the AERMODready files to be used in the model. Stage 3 was run 3 times, using Bowen ratio values corresponding to dry, average and wet surface conditions. The appropriate monthly Bowen ratio values from each of the 3 AERMOD surface (.sfc) files were then extracted to create a single .sfc file for the 1/1/2007 through 12/31/2009 data period with accurate monthly Bowen ratio values throughout.

4.4. RECEPTOR GRID

For the SIP air dispersion modeling analyses, ground-level concentrations were calculated from the fence line out to approximately 12 km for the 1-hr SO₂ analysis using a series of nested receptor grids. These receptors were developed in coordination with Ohio EPA and are identical to those utilized by the Ohio EPA to evaluate SO_2 impacts in the prescribed area. The following nested grids were used to determine the extent of significance:

- **Fence Line Grid:** "Fence line" grid consisting of evenly-spaced receptors 25 meters apart placed along the main property boundary of each facility,
- **Fine Cartesian Grid:** A "fine" grid containing 50-meter spaced receptors extending approximately 1 km from the fence lines of the MSC, Mingo Junction, and AEP facilities,
- Medium Cartesian Grid: A "medium" grid containing 100-meter spaced receptors extending from 1 km to 2.5 km from the facility fence lines, exclusive of receptors on the fine grid, and
- Coarse Cartesian Grid: A "coarse grid" containing 250-meter spaced receptors extending from 2.5 km to 5 km from facility fence lines, exclusive of receptors on the fine and medium grids.
- Very Coarse Cartesian Grid: A "very coarse grid" containing 500-meter spaced receptors extending from 5 km up to 12 km from facility fence lines, exclusive of receptors on the fine, medium, and coarse grids.

This grid generally matched the defined nonattainment area and was sufficiently large to ensure that the impacts from all sources were captured. Additionally, the receptor grid was of an appropriate density to evaluate the spatial extents of the SO₂ impacts generated by the American Electric Power (AEP) Cardinal Power Plant. Due to the limited extent of impacts from AEP as shown in Ohio EPA's SIP April 2015 SIP submittal, it became evident that the inclusion of the AEP sources within the modeling analysis was not necessary. Nonetheless, AEP sources have been included in this analysis as a conservative measure.

The only receptors excluded from the analysis were those which would have been present on property owned by the involved companies to which public access is restricted because it is fenced or access is otherwise restricted, and thus, was not to be considered "ambient air." For example, there is a single Norfolk-Southern railroad line which is considered within MSC property for purposes of modeling. This length of rail is bounded by private property and natural boundaries (e.g. steep slopes) to the north and south, and MSC property on the east and west. The limited length of this line is close to MSC's main gate, which is occupied by security personnel continuously (24 hours a day, 7 days a week and 365 days per year). In addition, mounted cameras are used by security to continuously observe the railroad track area both to the north and south of the crossing, allowing security personnel to identify trespassers along the rail. It is MSC policy to immediately confront trespassers and escort them away from MSC property. In addition, there is a bridge near MSC that is in fact owned by MSC and access is restricted. As such, it does not meet the definition of ambient air and was excluded from the analysis.

Figure 4 depicts the receptor grid utilized in the modeling. Figure 5 shows the grid in the area immediately surrounding the Follansbee Plant.

Figure 4: Receptor Grid Utilized in Modeling Analysis

Figure 5: Receptor Grid Utilized in Modeling Analysis (Zoomed In)

4.5. ELEVATED TERRAIN

Due to the nature of the terrain surrounding the MSC facility (e.g., river valley considerations) and following the general guidance of the *Guideline on Air Quality Models*, terrain elevations were considered in the modeling analysis. The elevations of receptors, buildings, and sources were included to refine the modeled impacts between the sources at one elevation and receptor locations at various other elevations at the fence line and beyond. This was accomplished through the use of the AERMOD terrain preprocessor called AERMAP (Version 11103), which can generate base elevations above mean sea level for each source, building and receptor. For this analysis, AERMAP was not used for the vast majority of source and building base elevations as a common base elevation equivalent to the MSC final grade level was used for any MSC-related model objects. For all receptors, AERMAP was used to calculate the base elevation of each and an effective hill height scale that determines the magnitude of each source plume-elevated terrain feature interaction. AERMOD used both the receptor elevation and the hill height scale to calculate the effect of terrain on each source plume for each time step in the model.

Regional source base elevations which were required in the modeling analysis were also derived from AERMAP analysis as provided by Ohio EPA. Base elevations for select sources and buildings, terrain elevations for receptors, and other regional source base elevations input to the model was interpolated from 1/3 arc second

resolution (approximately 10 meter spacing between data points) National Elevation Dataset (NED) data obtained from the U.S. Geological Survey (USGS).¹⁴

4.6. MODELED SOURCE TYPES AND STACK PARAMETERS

4.6.1. MSC Source Inventory

A list of all sources at MSC included in the dispersion modeling analysis is included in Table A-1 along with the corresponding cross-referenced source names used in the modeling files. Appendix A also provides a complete inventory of emission rates and source parameters for new and existing emission sources modeled in the SIP modeling analyses. All sources of SO₂ included in this analysis are treated as either point sources with unobstructed vertical releases, pseud-point sources or volume sources as previously indicated in Sections 2. For point sources, the actual stack parameters including location, height, inside stack diameter, exhaust gas temperature, and gas exit velocity were used in the modeling analyses as summarized in Table A-2. While volume source parameters including release height, initial lateral dimension, and initial vertical dimension are summarized in Table A-3.

4.6.2. Regional Inventory Sources

Dispersion modeling for the SO_2 air quality impacts was also required to include the impacts of regional sources of SO_2 emissions. These regional source parameters and emission rates are summarized in Tables A-4 and A-6, respectively.

4.7. BUILDING DOWNWASH

The stacks and flare at MSC may be subject to building downwash effects. These effects are caused by air flow over and around buildings and structures disrupting the free flow movement of the wind. The result of this phenomenon is increased turbulence near buildings and structures. These downwash affects are addressed through the implementation of the Plume Rise Model Enhancements (PRIME) program in AERMOD, this being the regulatory AERMOD version. Direction-specific building downwash dimensions (height and width of each influencing building or structure) were determined by the Building Profile Input Program, PRIME version (BPIPPRM), version 04274¹⁵ and used in the AERMOD Model. BPIPPRM is designed to incorporate the concepts and procedures expressed in the GEP Technical Support document and the Building Downwash Guidance document,¹⁶ while incorporating the PRIME enhancements to improve prediction of ambient impacts in building cavities (very near the buildings) and wake regions (farther from the buildings).

The building inventory utilized in the modeling analysis was developed by first reviewing existing MSC building parameters against aerial imagery. This review resulted in the adjustment of coordinates for a number of MSC buildings as well as the addition of recently erected buildings and multi-tier structures. Following this review, updated building information for MSC was relayed to the Ohio EPA and WVDEP. Building inventory information for the Mingo Junction facilities was provided by the Ohio EPA and also incorporated into the modeling analysis.

¹⁴ Multi-Resolution Land Characteristics Consortium (MRLC) online viewer and data retrieval system -<u>http://www.mrlc.gov/viewerjs/</u>

¹⁵ Earth Tech, Inc., Addendum to the ISC3 User's Guide, The PRIME Plume Rise and Building Downwash Model, November 1997, http://www.epa.gov/scram001/7thconf/iscprime/useguide.pdf.

¹⁶ EPA, Office of Air Quality Planning and Standards, Guidelines for Determination of Good Engineering Practice Stack Height (Technical Support Document for the Stack Height Regulations) (Revised), Research Triangle Park, North Carolina, EPA 450/4-80-023R, June 1985.

4.8. GEP STACK HEIGHT ANALYSIS

EPA promulgated stack height regulations that restrict the use of stack heights in excess of "Good Engineering Practice" (GEP) in air dispersion modeling analyses¹⁷. Under these regulations, that portion of a stack in excess of the GEP is generally not creditable when modeling to determine source impacts. This essentially prevents the use of excessively tall stacks to reduce ground-level pollutant concentrations. The minimum stack height which enable a stack to not be subject to the effects of building and structure downwash, called the GEP stack height, is defined by the following regulation formula:

 $H_{GEP} = H + 1.5L$

where:

HGEP= minimum GEP stack height,H= structure height, andL= lesser dimension of the structure (height or projected width).

The application of this equation and its results within the context of each building and stack is limited to stacks located within 5L downwind of a structure, 2L upwind, and 0.5L on the sides of a structure. The differentiation of the applicable distance is dependent on the direction of the wind at each hourly step in the modeling analysis. For each hourly wind direction, the determination of the influence zone of each structure must be determined and then the determination made as to whether a stack is in the influence zone of that structure. Stacks located at distances greater than the 0.5L, 2L, or 5L influence zone are not subject to the wake effects of the structure for that hour although subsequent hours and related wind directions could result in applicable downwash effects. The wind direction-specific downwash dimensions (for 36, 10-degree wind directions) and the dominant downwash structures used in this analysis are determined using the BPIPPRM (Version 04274, BPIP-Prime) program¹⁸. Using the building coordinates and dimensions for all on-site structures, a GEP analysis of all existing and proposed MSC stacks in relation to each building for each of the 36 wind directions was performed to evaluate which building height and dimensions have the greatest influence in terms of building downwash (enhanced dispersion) on each source's emissions. Building downwash input and output files are provided on the modeling file CD described in in Appendix D.

There are two stacks at MSC with a stack height greater than 65 meters: Battery 3 combustion stack and Battery 8 combustion stack. Battery 8 combustion stack is 76.2 meters tall, however it is less than the EPA GEP formula height, 85 meters, as determined by the BPIPBRM (Version 04274, BPIP-Prime) program. Therefore, Battery 8 combustion stack is compliant with GEP requirements. Battery 3 combustion stack also exceeds 65 meters height, however, as noted in MSC's Title V operating permit, the stack was in existence before December 31, 1970 and as such is not restricted to GEP stack height for the purposes of this attainment demonstration. As such, all MSC sources in the model comply with GEP.

GEP regulations were also considered for sources other than MSC (i.e., Ohio-based sources). All nearby stacks at the Mingo Junction property meet the definition of GEP. For AEP Cardinal Power Plant, the stack heights for Units 1 and 2 are consistent with those used by Ohio EPA in their SIP demonstration. Ohio EPA employed an alternative approach that involved representing Unit 3 as a volume source. Accordingly, a stack height value falling within the range of the release height values in Ohio EPA's analysis was included.

¹⁷ Stack Height Regulation; Final Rule. 40 CFR Part 51, FR Vol. 50, No. 130, July 8, 1985, pp 27891-27907.

¹⁸ User's Guide to the Building Profile Input Program, EPA-454/R-93-038, U.S. Environmental Protection Agency, Research Triangle Park, NC, Revised April 21, 2004.

4.9. AMBIENT BACKGROUND CONCENTRATION

The SIP modeling analysis incorporated a background concentration of 8.1 ppb SO₂ (approximately 21.17 µg/m³)¹⁹ into the AERMOD results contained in this report. Given the cooperative, multi-state nature of the nonattainment area, this ambient background concentration utilized in the modeling demonstration is consistent with those derived by Ohio EPA. This concentration was determined after consideration of design values from the SO₂ monitors nearest the MSC facility (e.g. 618 Logan Street in Steubenville, OH and Mahan Lane in Follansbee, WV).²⁰ The Ohio EPA further describes the background selection process in their SIP Appendix E modeling protocol, an excerpt of which is included as Appendix C to this report.²¹ Note that the Ohio EPA SIP submittal effectively concludes that AEP's Cardinal Plant contributions are incorporated into the background for the areas surrounding Mingo Junction and MSC. Nonetheless, this modeling analysis conservatively considers AEP's Cardinal Plant as a separate modeled source.

¹⁹ Ohio EPA's Information for 2010 SO2 Attainment Demonstration Appendix K, Dispersion Modeling and Weight-of-Evidence Analysis for Steubenville, OH-WV, 2010 SO2 NAAQS Nonattainment Area (April 3, 2015).

²⁰ Ohio EPA's State of Ohio Nonattainment Area State Implementation Plan Appendix A, Nonattainment Area AQS SO2 Monitoring Data Retrievals.

²¹ Ohio EPA's State of Ohio Nonattainment Area State Implementation Plan Appendix E, Modeling Protocol: Dispersion Modeling to Demonstrate Attainment of the 2010 SO2 NAAQS.

This section summarizes the results of the attainment modeling demonstration. The modeling was conducted using the methodology outlined in Section 4 and includes the sources outlined in Section 3. The results are based on a future compliance considering normal operations with desulfurization plant outages and increased COG flowrate to excess COG flare.

5.1. MODELING WITH DESULFURIZATION PLANT OUTAGES AND INCREASED FLARE

As discussed in Section 3.1.4, there are periods of time during each year when the plant's primary control system, the desulfurization plant, is non-operable. To address these desulfurization plant outages, MSC performed an analysis of the three modeled years which included emissions from both normal operations and outage periods. The modeling analysis considered two (2) ten day outage periods for each modeled year; one during April and one during November; and in doing so contemplates that the outage events occur during meteorologically desirable periods to ensure that ground level concentrations are minimized.

In addition to analysis of emissions during normal plant operations and desulfurization plant outages, MSC also included consideration that MSC has operational plans such that the excess COG flare will operate with a flowrate of 24 MMCF/day COG. The excess COG flare flowrate is currently limited at 7.1 MMCF/day in the facility's Title V permit. While MSC will evaluate and apply for the appropriate permit(s) at such time it desires to pursue a 24 MMCF/day operational limitation, this modeling analysis demonstrates compliance with the 1-hour SO₂ NAAQS for the purposes of the future compliance SIP modeling demonstration. The determination of flare parameters utilized in this analysis are listed in Table A-7 of Appendix A.

5.2. DISCUSSION OF RESULTS

As described above, this modeling analysis addresses both the normal operations of the facility and the limited duration planned maintenance outage periods required to maintain SO₂ emission reduction equipment in suitable operating condition. For the 1-hr SO₂ NAAQS, the modeling constraint is related to time periods of planned maintenance outages which implies that normal operating modes result in compliance with this NAAQS by even greater compliance margins. The results from this analysis are displayed in Table 5-1. As shown in the table, the model predicts concentrations below the NAAQS when considering this scenario.

Source Group	Years	Maximum Model Output including background	UTM East	UTM North	NAAQS Standard
Total	2007 -2009	195.9	532115.0	4468809.0	196.2
MSC	2007 -2009	193.0	532115.0	4468809.0	196.2
Ohio Sources	2007 -2009	133.2	530897.0	4457677.0	196.2

Table 5-1. 1-Hour Average SO₂ Modeling Results

Figure 6 provides a contour map of the high 4th-high (H4H) max daily 1-hour model output concentrations for the "Total" source group.

Mountain State Carbon, LLC \mid SO_2 Air Quality Modeling Report Trinity Consultants

As shown in Figure 6, the maximum impacts associated with the modeling scenario are proximally located to the ambient air monitoring network (specifically the Logan Street monitor). This indicates the existing monitors are in ideal locations to provide an accurate means of monitoring NAAQS compliance for the nonattainment area.

5.3. COMPLIANCE DEMONSTRATION SUMMARY

As outlined in Sections 5.1 of this report, the modeling analyses completed by MSC for the 1-hour SO_2 nonattainment SIP demonstrate compliance with the 1-hour SO_2 NAAQS. Furthermore, the modeling analysis demonstrates that the existing ambient monitoring network is ideally situated to monitor compliance moving forward.

Table A-1. List of MSC Sources for SIP Modeling Analysis

Emission Model IDThe VE mission Point ID#Emission Unit DescriptionEmission Point DescriptionMSCC0GFLP024-1Stack 14Excess Oven Coke Oven Gas (COG) Flare Underfre Stack for Battery # 1Battery 12 Combustion StackMSCBATT1P002-4Stack 01Underfre Stack for Battery # 1Battery 12 Combustion StackMSCBATT2P002-4Stack 03Underfre Stack for Battery # 1Battery 12 Combustion StackMSCBATT3P004-4Stack 04Underfre Stack for Battery # 8Battery 8 Combustion StackMSCBATT8P004-5Stack 06Battery 14 Stack 07 Battery # 8Battery 8 Combustion StackMSCBATT8P004-4Stack 06Battery 14 Stack 07 Battery # 8Battery 8 Scrubber StackMSCBATT8P004-5Stack 06Battery 14 Stack 07 Battery # 8MSC Battery 8 Scrubber StackMSCB710P018COG Boilers # 6, 7, 9, 10MSC Battery 8 Scrubber Stack 1MSCACIDSC15Stack 15Sulfuric Acid Plant Tail Gas StackAcid Plant Tail Gas StackMSCPA1Stack 15Sulfuric Acid Plant Tail Gas StackBattery 12-3 Pushing Bachouse Stack 1MSCPA2MSCPA3Battery 12-3 Pushing Bachouse Stack 1Battery 12-3 Pushing Bachouse Stack 1MSCPA3Stack 05Battery 14, 41, 42, and #3 Pushing Bachouse Stack 10Battery 12-3 Pushing Bachouse Stack 10MSCPA3Stacks 05Battery 14, 41, 41, 41, 41, 41, 41, 41, 41, 41,		2010 Title V			
Model IDUnit ID#Point ID#Emission Unit DescriptionEmission Point DescriptionMSCC00FLP024-1Stack 14Excess Oven Cole Oven Gas (COC) PlaneExcess COC Flare StackMSCBATT1P001-4Stack 02Underfire Stack for Battery # 1Battery 1 Combustion StackMSCBATT2P002-4Stack 02Underfire Stack for Battery # 3Battery 2 Combustion StackMSCBATT3P003-4Stack 03Underfire Stack for Battery # 3Battery 2 Combustion StackMSCBATT3P003-4Stack 04Underfire Stack for Battery # 3Battery 4 Sombustion StackMSCBATT3P004-5Stack 06Battery # 6 Point DescriptionMSC Battery 8 Scrubber StackMSCBATC9P017Cort of device)MSC Boilers # 6, 7, 9, 10MSC Boilers 6-7.9-10 Merged StackMSCACD5F017Stack 15Sulf unic Acid Plant Tail Gas StackAcid Plant Tail Gas StackMSCP81Stack 15Sulf unic Acid Plant Tail Gas StackAcid Plant Tail Gas StackMSCP82MSCP83Battery 1-2.3 Pushing Baghouse Stack 1MSCP84Stack 05Battery 1-2.3 Pushing Baghouse Stack 2MSCP81Stack 05Battery 1-2.3 Pushing Baghouse Stack 11MSCP81Stack 05Battery 1-2.3 Pushing Baghouse Stack 11MSCP81Battery 1-2.3 Pushing Baghouse Stack 11MSCP810Battery 1-2.3 Pushing Baghouse Stack 13MSCP811Battery 1-2.3 Pushing Baghouse Stack 13MSCP812Battery 1-2.3 Pushing Baghouse Stack 13MSCP813Battery 1-2.3 Pushing Baghouse Stack 13<		Emission	Title V Emission		
MSCCOGFL P024-1 Stack 14 Excess Oven Coke Oven Gas (COG) Flare Excess COG Flare Stack MSCBATT1 P001-4 Stack 01 Underfire Stack for Battery # 1 Battery 1 Combustion Stack MSCBATT3 P002-4 Stack 03 Underfire Stack for Battery # 2 Battery 2 Combustion Stack MSCBATT3 P002-4 Stack 03 Underfire Stack for Battery # 8 Battery 8 Combustion Stack MSCBATT3 P004-4 Stack 04 Underfire Stack for Battery # 8 Battery 8 Combustion Stack MSCBATT3 P004-4 Stack 06 Battery 7 Burshing Venturin Scrubber (control device) MSC Battery 8 Scrubber Stack P017 P018 Stack 11 COG Boilers # 6, 7, 9, 10 MSC Battery 8 Scrubber Stack MSCP81 Stack 15 Stack 15 Sulfuric Acid Plant Tail Gas Stack Acid Plant Tail Gas Stack MSCP81 MSCP81 Stack 15 Stack 05 Battery 1-2-3 Pushing Baghouse Stack 1 MSCP81 MSCP81 Stack 05 Battery 1-2-3 Pushing Baghouse Stack 1 MSCP81 MSCP81 Battery 1-2-3 Pushing Baghouse Stack 1 MSCP810 Battery 1-2-3 Pushing Baghous	Model ID	Unit ID#	Point ID#	Emission Unit Description	Emission Point Description
MSCRATT1 P001-4 Stack 01 Underfire Stack for Battery # 1 Battery 1 Combustion Stack MSCRATT3 P003-4 Stack 02 Underfire Stack for Battery # 3 Battery 2 Combustion Stack MSCRATT3 P004-5 Stack 03 Underfire Stack for Battery # 3 Battery 2 Combustion Stack MSCRATT8 P004-5 Stack 04 Underfire Stack for Battery # 3 Battery 2 Combustion Stack MSCRATT8 P004-5 Stack 06 Battery # Pushing Venturi Scrubber MSC Battery # Scrubber Stack P017 P018 Cold Boilers # 6, 7, 9, 10 MSC Boilers 6-7-9-10 Merged Stack MSCACIDS C15 Stack 15 Sulfuric Acid Plant Tail Gas Stack MSCP81 Stack 15 Sulfuric Acid Plant Tail Gas Stack Acid Plant Tail Gas Stack MSCP82 MSCP83 Battery 1-2.3 Pushing Baghouse Stack 1 Battery 1-2.3 Pushing Baghouse Stack 1 MSCP84 MSCP84 Battery 1-2.3 Pushing Baghouse Stack 3 Battery 1-2.3 Pushing Baghouse Stack 3 MSCP86 C01 Stack 05 Battery 1-2.3 Pushing Baghouse Stack 4 Battery 1-2.3 Pushing Baghouse Stack 3 MSCP81 MSCP81 Battery 1-2.3 Pushing Baghouse Stack 3 Battery 1-2.3 Pushing Baghouse Stack 3 MSCP81 MSCP81 Battery 1-2.3 Pushing Baghouse Stack 10 Battery 1-2.3 Pushing Baghouse Stack 10 <td>MSCCOGFL</td> <td>P024-1</td> <td>Stack 14</td> <td>Excess Oven Coke Oven Gas (COG) Flare</td> <td>Excess COG Flare Stack</td>	MSCCOGFL	P024-1	Stack 14	Excess Oven Coke Oven Gas (COG) Flare	Excess COG Flare Stack
MSCRATT2 P002-4 Stack 02 Underfire Stack for Battery # 2 Battery 2 Combustion Stack MSCBATT8 P004-4 Stack 03 Underfire Stack for Battery # 8 Battery 2 Combustion Stack MSCBATT8 P004-5 Battery 4 B Pushing Venturi Scrubber MSC Battery # 2 Battery 2 Combustion Stack MSCBATT2 P004-5 Battery 4 B Pushing Venturi Scrubber MSC Battery # 2 Battery 2 Combustion Stack MSCBATT2 P017 Stack 06 (control device) MSC Battery 4 Scrubber Stack P018 Stack 11 COG Boilers # 6, 7, 9, 10 MSC Boilers 6 -7.9-10 Merged Stack MSCPA10 Stack 15 Sulfuric Acid Plant Tail Gas Stack Acid Plant Tail Gas Stack MSCPB1 Stack 15 Sulfuric Acid Plant Tail Gas Stack Acid Plant Tail Gas Stack MSCPB2 MSCPB3 Battery 1-2.3 Pushing Baghouse Stack 1 Battery 1-2.3 Pushing Baghouse Stack 2 MSCPB4 Battery 1-2.3 Pushing Baghouse Stack 3 Battery 1-2.3 Pushing Baghouse Stack 1 MSCPB6 MSCPB6 Battery 1-2.3 Pushing Baghouse Stack 11 MSCPB10 Stacks 05 Battery 1.4, and #3 Pushing Battery 1-2.3 Pushing Baghouse Stack 11 MSCPB11 MSCPB12 Battery 1-2.3 Pushing Baghouse Stack 11 Battery 1-2.3 Pushing Baghouse Stack 11 MSCPB12 Battery 1-2.3 Pushing Bagh	MSCBATT1	P001-4	Stack 01	Underfire Stack for Battery # 1	Battery 1 Combustion Stack
MISCBATTS P003-4 Stack 03 Underfire Stack for Battery # 3 Battery 3 Combustion Stack MISCBATTS P004-5 Battery 4 S Dushing Venturi Scrubber MSC Battery 8 Combustion Stack MSCBATTS P004-5 Battery 4 S Dushing Venturi Scrubber MSC Battery 8 Scrubber Stack MSCBATTS P004-5 Battery 4 S Dushing Venturi Scrubber MSC Battery 8 Scrubber Stack P017 P017 Stack 11 COG Boilers # 6, 7, 9, 10 MSC Boilers 6-7-9-10 Merged Stack SS Stack 11 COG Boilers # 6, 7, 9, 10 MSC Boilers 6-7-9-10 Merged Stack MSCACIDS P021-19 Stack 15 Sulfuric Acid Plant Tail Gas Stack MSCP81 Stack 15 Sulfuric Acid Plant Tail Gas Stack MSCP82 MSCP84 Battery 1-2-3 Pushing Baghouse Stack 1 MSCP86 C01 Stacks 05 Batteries #1, #2, and #3 Pushing MSCP81 Battery 1-2-3 Pushing Baghouse Stack 5 Battery 1-2-3 Pushing Baghouse Stack 5 MSCP810 Battery 1-2-3 Pushing Baghouse Stack 10 Battery 1-2-3 Pushing Baghouse Stack 12 MSCP811 Battery 1-2-3 Pushing Baghouse Stack 12 Battery 1-2-3 Pushing Baghouse Stack 12 MSCP812 Battery 1-2-3 Pushing Baghouse Stack 14 Battery 1-2-3 Pushing Baghouse Stack 14 MSCP813 MSCP814 Battery 1-2-3 Pushing Baghouse Stack 12	MSCBATT2	P002-4	Stack 02	Underfire Stack for Battery # 2	Battery 2 Combustion Stack
MSCBATTS P004-4 Stack 04 Underfire Stack for Battery # 8 Battery # 8 Battery # 8 MSCBSCRU C02 Stack 06 Battery # 8 Pushing Venturi Scrubber (control device) MSC Battery 8 Scrubber Stack MSC67910 P018 Stack 11 COG Boilers # 6, 7, 9, 10 MSC Boilers 6-7,9-10 Merged Stack MSC67910 St Stack 15 Sulfuric Acid Plant Tail Gas Stack Tail Gas Strubber (control device) Acid Plant Tail Gas Stack MSCP81 MSCP81 Battery 1-2-3 Pushing Baghouse Stack 1 Battery 1-2-3 Pushing Baghouse Stack 3 MSCP83 MSCP86 Battery 1-2-3 Pushing Baghouse Stack 4 Battery 1-2-3 Pushing Baghouse Stack 3 MSCP86 C01 Stacks 05 Battery 1-2,4 Pushing Baghouse Stack 6 Battery 1-2-3 Pushing Baghouse Stack 6 MSCP81 MSCP86 Battery 1-2-3 Pushing Baghouse Stack 7 Battery 1-2-3 Pushing Baghouse Stack 8 MSCP810 Stacks 05 Battery 1-2,4 Pushing Baghouse Stack 8 Battery 1-2-3 Pushing Baghouse Stack 10 MSCP811 MSCP813 Battery 1-2-3 Pushing Baghouse Stack 10 Battery 1-2-3 Pushing Baghouse Stack 11 MSCP812 Battery 1-2-3 Pushing Baghouse Stack 11 Battery 1-2-3 Pushing Baghouse Stack 11 MSCP813 MSCP814 Battery 1-2-3 Pushing Baghouse Stack 11 MSCP814 Battery 1-2-3 Pushing Baghouse Stack 12	MSCBATT3	P003-4	Stack 03	Underfire Stack for Battery # 3	Battery 3 Combustion Stack
MSCBSCRUP004-5 CO2Stack 06Battery # 8 Pushing Venturi Scrubber (control device)MSC Battery 8 Scrubber StackP017 P018 S1Stack 11COG Boilers # 6, 7, 9, 10MSC Boilers 6-7-9-10 Merged StackMSC67910S1Stack 11COG Boilers # 6, 7, 9, 10MSC Boilers 6-7-9-10 Merged StackMSCACIDSP021-19 C15Stack 15Suffuric Acid Plant Tail Gas Stack Tail Gas Scrubber (control device)Battery 1-2-3 Pushing Baghouse Stack 1MSCP81 MSCP83 MSCP86Battery 1-2-3 Pushing Baghouse Stack 3 Battery 1-2-3 Pushing Baghouse Stack 4 	MSCBATT8	P004-4	Stack 04	Underfire Stack for Battery # 8	Battery 8 Combustion Stack
MSCD2ND CO2 Date of the formation of the sector of the se	MSC8SCBU	P004-5	Stack 06	Battery # 8 Pushing Venturi Scrubber	MSC Battery & Scrubber Stack
P017 MSC67910P018 S1Stack 11COG Boilers # 6, 7, 9, 10MSC Boilers 6-7-9-10 Merged StackMSC67910S1Stack 15Sulfuric Acid Plant Tail Gas Stack Tail Gas StackAcid Plant Tail Gas StackMSCACIDSC15Stack 15Sulfuric Acid Plant Tail Gas Stack Tail Gas StackAcid Plant Tail Gas StackMSCP81 MSCP83 MSCP83 MSCP86Battery 1-2:3 Pushing Baghouse Stack 1 Battery 1-2:3 Pushing Baghouse Stack 3 Battery 1-2:3 Pushing Baghouse Stack 3 Battery 1-2:3 Pushing Baghouse Stack 5 Battery 1-2:3 Pushing Baghouse Stack 5 Battery 1-2:3 Pushing Baghouse Stack 6MSCP85 MSCP86 MSCP810Stacks 05Battery 1-2:4 Pushing Baghouse Stack 5 Battery 1-2:3 Pushing Baghouse Stack 6 Battery 1-2:3 Pushing Baghouse Stack 7 Battery 1-2:3 Pushing Baghouse Stack 8 Battery 1-2:3 Pushing Baghouse Stack 8 Battery 1-2:3 Pushing Baghouse Stack 10 Battery 1-2:3 Pushing Baghouse Stack 11 Battery 1-2:3 Pushing Baghouse Stack 12 Battery 1-2:3 Pushing Baghouse Stack 11 Battery 1-2:3 Pushing Baghouse Stack 11 Battery 1-2:3 Pushing Baghouse Stack 11 Battery 1-2:3 Pushing Baghouse Stack 12 Battery 1-2:3 Pushing Baghouse Stack 13 Battery 1-2:3 Pushing Baghouse Stack 14 Battery 1-2:3 Pushing B	Wiscoscillo	C02	Stack 00	(control device)	Wise Battery o Scrubber Stack
MSC67910P018 S1Stack 11COG Boilers # 6, 7, 9, 10MSC Boilers 6-7-9-10 Merged StackMSCACIDSP021-19 C15Stack 15Sulfuric Acid Plant Tail Gas Stack Tail Gas Scrubber (control device)Acid Plant Tail Gas Stack 1MSCP81 MSCP83 MSCP83 MSCP84 MSCP85 MSCP86 MSCP87Battery 1-23 Pushing Baghouse Stack 2 Battery 1-23 Pushing Baghouse Stack 3 Battery 1-23 Pushing Baghouse Stack 4 Battery 1-23 Pushing Baghouse Stack 4 Battery 1-23 Pushing Baghouse Stack 5 Battery 1-23 Pushing Baghouse Stack 5 Battery 1-23 Pushing Baghouse Stack 6 Battery 1-23 Pushing Baghouse Stack 7 Battery 1-23 Pushing Baghouse Stack 6 Battery 1-23 Pushing Baghouse Stack 7 Battery 1-23 Pushing Baghouse Stack 7 Battery 1-23 Pushing Baghouse Stack 7MSCP80 MSCP81 MSCP81Stacks 05Batteries #1, #2, and #3 Pushing Baghouse (control device)Battery 1-23 Pushing Baghouse Stack 7 Battery 1-23 Pushing Baghouse Stack 8 Battery 1-23 Pushing Baghouse Stack 10 Battery 1-23 Pushing Baghouse Stack 11 Battery 1-23 Pushing Baghouse Stack 11 Battery 1-23 Pushing Baghouse Stack 12 Battery 1-23 Pushing Baghouse Stack 12 Battery 1-23 Pushing Baghouse Stack 13 Battery 1-23 Pushing Baghouse Stack 14MSCB1FU MSCB1FU MSCB1FUBattery 1 Fugitive Emissions Battery 1 Fugitive Source 1 Battery 2 Fugitive Source 1 Battery 2 Fugitive Source 2 Battery 2 Fugitive Source 2 Battery 2 Fugitive Source 2 Battery 2 Fugitive Source 3 Battery 2 Fugitive Source 2 Battery 3 Fugitive Source 2MSCB1FU MSCB1FUBattery 1 Fugitive Source 1 Battery 2		P017			
Index of FLD Stack 15 Sulfuric Acid Plant Tail Gas Stack Acid Plant Tail Gas Stack MSCACIDS P021-19 Stack 15 Sulfuric Acid Plant Tail Gas Stack Acid Plant Tail Gas Stack MSCPB1 MSCPB2 Battery 1-2-3 Pushing Baghouse Stack 1 Battery 1-2-3 Pushing Baghouse Stack 2 MSCPB3 Battery 1-2-3 Pushing Baghouse Stack 3 Battery 1-2-3 Pushing Baghouse Stack 3 MSCPB4 Battery 1-2-3 Pushing Baghouse Stack 3 MSCPB5 Battery 1-2-3 Pushing Baghouse Stack 4 MSCPB6 Battery 1-2-3 Pushing Baghouse Stack 5 MSCPB7 P001-5 MSCPB9 Battery 1-2-3 Pushing Baghouse Stack 6 MSCPB10 Battery 1-2-3 Pushing Baghouse Stack 7 MSCPB11 Battery 1-2-3 Pushing Baghouse Stack 8 MSCPB12 Battery 1-2-3 Pushing Baghouse Stack 10 MSCPB13 Battery 1-2-3 Pushing Baghouse Stack 11 MSCPB14 Battery 1-2-3 Pushing Baghouse Stack 11 MSCB17U Battery 1-2-3 Pushing Baghouse Stack 11 MSCB17U Battery 1-2-3 Pushing Baghouse Stack 11 MSCB17U Battery 1-1-2-3 Pushing Baghouse Stack 14 MSCB17U Batte	MSC67910	P018	Stack 11	COG Boilers # 6, 7, 9, 10	MSC Boilers 6-7-9-10 Merged Stack
S5MSCACIDSPD21-19 C15Stack 15Sulfuric Acid Plant Tail Gas Stack Tail Gas Scrubber (control device)Acid Plant Tail Gas Stack 1MSCPB1MSCPB2 MSCPB4Battery 1-2-3 Pushing Baghouse Stack 2Battery 1-2-3 Pushing Baghouse Stack 2MSCPB4Battery 1-2-3 Pushing Baghouse Stack 3Battery 1-2-3 Pushing Baghouse Stack 4MSCPB5Battery 1-2-3 Pushing Baghouse Stack 6Battery 1-2-3 Pushing Baghouse Stack 6MSCPB6C01Stacks 05Batteries #1, #2, and #3 Pushing Baghouse (control device)Battery 1-2-3 Pushing Baghouse Stack 7MSCPB9C01Stacks 05Batteries #1, #2, and #3 Pushing Baghouse (control device)Battery 1-2-3 Pushing Baghouse Stack 7MSCPB10Battery 1-2-3 Pushing Baghouse Stack 9Battery 1-2-3 Pushing Baghouse Stack 9MSCPB11MSCPB12Battery 1-2-3 Pushing Baghouse Stack 11MSCPB13Battery 1-2-3 Pushing Baghouse Stack 11MSCPB14Battery 1-2-3 Pushing Baghouse Stack 12MSCB1F2UBattery 1-2-3 Pushing Baghouse Stack 12MSCB1F3UP001-5MSCB2F3UF13MSCB2F3UBattery 1 Fugitive Source 3MSCB2F3UBattery 1 Fugitive Source 5MSCB3F3UP001-5MSCB3F3UF14MSCB3F3UBattery 2 Fugitive Emissions (pushing and soaking)Battery 2 Fugitive Source 5MSCB3F3UBattery 3 Fugitive Source 5MSCB3F3UBattery 3 Fugitive Source 5MSCB3F3UBattery 3 Fugitive Source 5MSCB3F3UBattery 4 Fugitive Source 5MSCB3F3U<	1013007310	S1	JIGCK II		MSC Doller's 0-7-5-10 Weiged Stack
MSCACIDSP021-19 C15Stack 15Suffuric Acid Plant Tail Gas StackAcid Plant Tail Gas StackMSCPB1 MSCPB2 MSCPB3 MSCPB4C15Battery 1-23 Pushing Baghouse Stack 1 Battery 1-23 Pushing Baghouse Stack 2 Battery 1-23 Pushing Baghouse Stack 3 Battery 1-23 Pushing Baghouse Stack 4 Battery 1-23 Pushing Baghouse Stack 4 Battery 1-23 Pushing Baghouse Stack 5 Battery 1-23 Pushing Baghouse Stack 6 Battery 1-23 Pushing Baghouse Stack 10 Battery 1-23 Pushing Baghouse Stack 10 Battery 1-23 Pushing Baghouse Stack 10 Battery 1-23 Pushing Baghouse Stack 11 Battery 1-23 Pushing Baghouse St		S5			
MSCPB1 MSCPB2CLSTail Gas Scrubber (control device)Batter 11-23 Pushing Baghouse Stack 1MSCPB2 MSCPB3 MSCPB4 MSCPB5Battery 1-23 Pushing Baghouse Stack 2 Battery 1-23 Pushing Baghouse Stack 3 Battery 1-23 Pushing Baghouse Stack 4MSCPB4 MSCPB5 MSCPB6Battery 1-23 Pushing Baghouse Stack 4 Battery 1-23 Pushing Baghouse Stack 6 Battery 1-23 Pushing Baghouse Stack 6 Battery 1-23 Pushing Baghouse Stack 6 Battery 1-23 Pushing Baghouse Stack 7 Battery 1-23 Pushing Baghouse Stack 7MSCPB6 MSCPB1C01Stacks 05Batteries #1, #2, and #3 Pushing Baghouse (control device) Battery 1-23 Pushing Baghouse Stack 7MSCPB10 MSCPB11Battery 1-23 Pushing Baghouse Stack 10 Battery 1-23 Pushing Baghouse Stack 10 Battery 1-23 Pushing Baghouse Stack 10 Battery 1-23 Pushing Baghouse Stack 11 Battery 1-23 Pushing Baghouse Stack 10 Battery 1-23 Pushing Baghouse Stack 11 Battery 1-23 Pushing Baghouse Stack 11 Battery 1-23 Pushing Baghouse Stack 11 Battery 1-23 Pushing Baghouse Stack 12 Battery 1-23 Pushing Baghouse Stack 12 Battery 1-23 Pushing Baghouse Stack 12 Battery 1-23 Pushing Baghouse Stack 14MSCB1F10 MSCB1F20 MSCB2F20 MSCB2F20 MSCB3F20 MSCB3F20 MSCB3F20 MSCB3F20 MSCB3F20 MSCB3F20 MSCB3F20 MSCB3F20 MSCB3F20 MSCB3F20 MSCB3F20 MSCB3F20 MSCB3F20 MSCB3F20 MSCB3F20 MSCB3F20 MSCB3F20 MSCB3F20 MSCB3F20F16 Battery 8 Fugitive Emissions (pushing and soaking)Battery 1-23 Pushing Baghouse 2 Battery 2 Fugitive Source 1 Battery 2 Fugitive Source 1 Battery 2 Fugitive Source 2 Battery 3 Fugitive Source 2MSCB3F20 MSCB3F20 MSCB3F20 MSCB3F20 MSCB3F20 MSCB3F20 MSCB3F20 MSCB3F20 MSCB3F20 MS	MSCACIDS	P021-19	Stack 15	Sulfuric Acid Plant Tail Gas Stack	Acid Plant Tail Gas Stack
MSCPB1Battery 1-2:3 Pushing Baghouse Stack 1MSCPB2Battery 1-2:3 Pushing Baghouse Stack 3MSCPB3Battery 1-2:3 Pushing Baghouse Stack 3MSCPB4Battery 1-2:3 Pushing Baghouse Stack 3MSCPB5Battery 1-2:3 Pushing Baghouse Stack 6MSCPB6Battery 1-2:3 Pushing Baghouse Stack 6MSCPB7P001-5MSCPB8C01MSCPB10Battery 1-2:3 Pushing Baghouse Stack 7MSCPB10Battery 1-2:3 Pushing Baghouse Stack 9MSCPB13Battery 1-2:3 Pushing Baghouse Stack 11MSCPB14Battery 1-2:3 Pushing Baghouse Stack 12MSCPB13Battery 1-2:3 Pushing Baghouse Stack 14MSCPB14Battery 1-2:3 Pushing Baghouse Stack 14MSCPB15UBattery 1-2:3 Pushing Baghouse Stack 12MSCPB14UBattery 1-2:3 Pushing Baghouse Stack 14MSCB1F2UBattery 1-2:3 Pushing Baghouse Stack 14MSCB2F2UBattery 1-2:3 Pushing Baghouse Stack 14MSCB2F2UBattery 1-2:3 Pushing Baghouse Stack 14MSCB3F2UBattery 1-2:3 Pushing Baghouse Stack 14<		C15		Tail Gas Scrubber (control device)	
MSCPB2 MSCPB3 MSCPB4 MSCPB5 MSCPB6 MSCPB7 P001-5 Stacks 05 MSCPB7 MSCPB7 P001-5 MSCPB7 MSCPB7 MSCPB7 P001-5 Stacks 05 Stacks 05 Stacks 05 Batteries #1, #2, and #3 Pushing Bathery 1-2 Pushing Baghouse Stack 4 Battery 1-2 Pushing Baghouse Stack 5 Battery 1-2 Pushing Baghouse Stack 7 Battery 1-2 Pushing Baghouse Stack 7 Battery 1-2 Pushing Baghouse Stack 7 Battery 1-2 Pushing Baghouse Stack 8 Battery 1-2 Pushing Baghouse Stack 10 Battery 1-2 Pushing Baghouse Stack 11 Battery 1-2 Pushing Baghouse Stack 12 Battery 1-2 Pushing Baghouse Stack 11 Battery 1-2 Pushing Baghouse Stack 12 Battery 1-2 Pushing Baghouse Stack 10 Battery 1-2 Pushing Baghouse Stack 11 Battery 1-2 Pushing Baghouse Stack 12 Battery 1-2 Pushing Baghouse	MSCPB1				Battery 1-2-3 Pushing Baghouse Stack 1
MSCPB3 MSCPB4 MSCPB3 MSCPB4 MSCPB5 MSCP67 P001-5 Stacks 05 Batters #1, #2, and #3 Pushing Battery 1-2-3 Pushing Baghouse Stack 5 Battery 1-2-3 Pushing Baghouse Stack 7 MSCPB7 MSCPB7 P001-5 Stacks 05 Batters #1, #2, and #3 Pushing Battery 1-2-3 Pushing Baghouse Stack 7 MSCPB8 C01 MSCPB10 Battery 1-2-3 Pushing Baghouse Stack 7 Battery 1-2-3 Pushing Baghouse Stack 10 Battery 1-2-3 Pushing Baghouse Stack 10 Battery 1-2-3 Pushing Baghouse Stack 11 Battery 1-2-3 Pushing Baghouse Stack 11 Battery 1-2-3 Pushing Baghouse Stack 11 Battery 1-2-3 Pushing Baghouse Stack 12 Battery 1-2-3 Pushing Baghouse Stack 12 Battery 1-2-3 Pushing Baghouse Stack 14 Batte	MSCPB2				Battery 1-2-3 Pushing Baghouse Stack 2
MSCP84Battery 1-2:3 Pushing Baghouse Stack 4MSCP85Battery 1-2:3 Pushing Baghouse Stack 5MSCP86C01MSCP87P001-5MSCP88C01MSCP89Battery 1-2:3 Pushing Baghouse Stack 7MSCP810Battery 1-2:3 Pushing Baghouse Stack 7MSCP811Battery 1-2:3 Pushing Baghouse Stack 11MSCP812Battery 1-2:3 Pushing Baghouse Stack 12MSCP813Battery 1-2:3 Pushing Baghouse Stack 12MSCP814Battery 1-2:3 Pushing Baghouse Stack 13MSCP8150Battery 1-2:3 Pushing Baghouse Stack 14MSCP814Battery 1-2:3 Pushing Baghouse Stack 13MSCP8151Battery 1-2:3 Pushing Baghouse Stack 14MSCB1F10Battery 1-2:3 Pushing Baghouse Stack 13MSCB1F20Battery 1 Fugitive Source 1MSCB1F31P001-5F13Battery 1 Fugitive Emissions (pushing and soaking)Battery 1 Fugitive Source 5Battery 1 Fugitive Source 2MSCB2F10F14MSCB2F30Battery 2 Fugitive Emissions (pushing and soaking)Battery 2 Fugitive Source 1MSCB3F20Battery 2 Fugitive Source 2MSCB3F10Battery 3 Fugitive Source 1MSCB3F20Battery 3 Fugitive Source 1MSCB3F20Battery 3 Fugitive Source 2MSCB3F10Battery 3 Fugitive Source 1MSCB3F20Battery 3 Fugitive Source 2MSCB3F10Battery 3 Fugitive Source 3MSCB3F10Battery 3 Fugitive Source 1MSCB3F20Battery 3 Fugitive Source 5MSCB3F10Battery 8 Fugitive Source 1	MSCPB3				Battery 1-2-3 Pushing Baghouse Stack 3
MSCPB5Battery 1-2-3 Pushing Baghouse Stack 5MSCPB5P001-5MSCPB7P001-5MSCPB8C01MSCPB10Battery 1-2-3 Pushing Baghouse Stack 7MSCPB10Battery 1-2-3 Pushing Baghouse Stack 10MSCPB12Battery 1-2-3 Pushing Baghouse Stack 11MSCPB13Battery 1-2-3 Pushing Baghouse Stack 11MSCPB14Battery 1-2-3 Pushing Baghouse Stack 11MSCPB15Battery 1-2-3 Pushing Baghouse Stack 11MSCPB16Battery 1-2-3 Pushing Baghouse Stack 11MSCPB17Battery 1-2-3 Pushing Baghouse Stack 11MSCPB18Battery 1-2-3 Pushing Baghouse Stack 12MSCPB17UBattery 1-2-3 Pushing Baghouse Stack 13MSCPB17UBattery 1-2-3 Pushing Baghouse Stack 13MSCPB17UBattery 1-2-3 Pushing Baghouse Stack 14MSCB17UBattery 1-2-3 Pushing Baghouse Stack 14MSCB17UBattery 1 Fugitive Source 1MSCB2F1UBattery 1 Fugitive Source 2MSCB2F1UF13MSCB2F1UBattery 2 Fugitive EmissionsMSCB2F1UBattery 2 Fugitive Source 1MSCB3F1UBattery 2 Fugitive Source 1MSCB3F1UBattery 3 Fugitive Source 1MSCB3F2UBattery 3 Fugitive Source 1MSCB3F2UBattery 3 Fugitive Source 2MSCB3F1UBattery 3 Fugitive Source 1<	MSCPB4				Battery 1-2-3 Pushing Baghouse Stack 4
MSCP86Battery 1-2-3Pushing Baghouse Stack 6MSCP87P001-5Stacks 05Batteries #1, #2, and #3 Pushing Battery 1-2-3 Pushing Baghouse Stack 7MSCP80C01Battery 1-2-3Pushing Baghouse Stack 8MSCP810Battery 1-2-3Pushing Baghouse Stack 10MSCP811Battery 1-2-3Pushing Baghouse Stack 11MSCP813Battery 1-2-3Pushing Baghouse Stack 12MSCP814Battery 1-2-3Pushing Baghouse Stack 14MSCP8154Battery 1-2-3Pushing Baghouse Stack 14MSCP814Battery 1-2-3Pushing Baghouse Stack 14MSCB17UMSCB17UBattery 1-2-3Pushing Baghouse Stack 14MSCB17UP001-5F13Battery 1 Fugitive Emissions (pushing and soaking)Battery 1-2-3 Pushing Baghouse Stack 14MSCB2F2UMSCB2F2UBattery 1 Fugitive Source 1Battery 1 Fugitive Source 1MSCB2F3UP001-5F14(pushing and soaking)Battery 2 Fugitive Source 1MSCB3F1UMSCB3F1UBattery 2 Fugitive Source 1Battery 2 Fugitive Source 2MSCB3F1UP001-5F15Battery 3 Fugitive Emissions (pushing and soaking)Battery 3 Fugitive Source 1MSCB3F2UMSCB3F1UBattery 1 Fugitive Source 1Battery 3 Fugitive Source 1MSCB3F1UMSCB3F1UBattery 3 Fugitive Source 1Battery 3 Fugitive Source 1MSCB3F2UMSCB3F1UBattery 3 Fugitive Source 1Battery 3 Fugitive Source 1MSCB3F1UBattery 1 Fugitive Source 5Battery 3 Fugitive Source 2MSCB3F1UBattery 1 F	MSCPB5				Battery 1-2-3 Pushing Baghouse Stack 5
MSCP87P001-5 Stacks 05Batteris #1, #2, and #3 Pushing Baghouse Stack 1Battery 1-2-3 Pushing Baghouse Stack 7MSCP88C01Batteris #1, #2, and #3 Pushing Baghouse (control device)Battery 1-2-3 Pushing Baghouse Stack 8MSCP810Battery 1-2-3 Pushing Baghouse Stack 10Battery 1-2-3 Pushing Baghouse Stack 10MSCPB11Battery 1-2-3 Pushing Baghouse Stack 11Battery 1-2-3 Pushing Baghouse Stack 11MSCPB12Battery 1-2-3 Pushing Baghouse Stack 13Battery 1-2-3 Pushing Baghouse Stack 13MSCPB14Battery 1-2-3 Pushing Baghouse Stack 14Battery 1-2-3 Pushing Baghouse Stack 14MSCB1F2UBattery 1-2-3 Pushing Baghouse Stack 12Battery 1-2-3 Pushing Baghouse Stack 14MSCB1F2UBattery 1-2-3 Pushing Baghouse Stack 14Battery 1-2-3 Pushing Baghouse Stack 14MSCB1F2UBattery 1 Fugitive Emissions (pushing and soaking)Battery 1-2-3 Pushing Baghouse Stack 14MSCB1F3UP001-5F13Battery 2 Fugitive Emissions (pushing and soaking)Battery 2 Fugitive Source 2MSCB2F3UP001-5F14(pushing and soaking)Battery 2 Fugitive Source 3MSCB3F1UBattery 2 Fugitive Emissions (pushing and soaking)Battery 3 Fugitive Source 4MSCB3F2UBattery 3 Fugitive Source 1Battery 3 Fugitive Source 2MSCB3F3UP001-5F15Battery 3 Fugitive Emissions (pushing and soaking)Battery 3 Fugitive Source 2MSCB3F3UP001-5F16Battery 8 Fugitive Emissions (pushing and soaking)Battery 3 Fugitive Source 2MSCB8F3UMSCB8F3UBattery 3 Fugitive	MSCPB6			Batteries #1, #2, and #3 Pushing Baghouse (control device)	Battery 1-2-3 Pushing Baghouse Stack 6
MSCP88C01Stacks OSBaghouse (control device)Battery 1-2-3 Pushing Baghouse Stack 8MSCP80Battery 1-2-3 Pushing Baghouse Stack 9Battery 1-2-3 Pushing Baghouse Stack 9MSCP810Battery 1-2-3 Pushing Baghouse Stack 10MSCP811Battery 1-2-3 Pushing Baghouse Stack 11MSCP813Battery 1-2-3 Pushing Baghouse Stack 12MSCP814Battery 1-2-3 Pushing Baghouse Stack 14MSCB1F1UBattery 1-2-3 Pushing Baghouse Stack 14MSCB1F2UBattery 1-2-3 Pushing Baghouse Stack 14MSCB1F3UP001-5F13Battery 1 Fugitive EmissionsMSCB1F4UBattery 1 Fugitives Source 1MSCB1F3UP001-5F14(pushing and soaking)MSCB2F1UBattery 2 Fugitive EmissionsMSCB2F1UBattery 2 Fugitive Source 3MSCB3F1UP001-5MSCB3F1UBattery 2 Fugitive EmissionsMSCB2F1UBattery 2 Fugitive EmissionsMSCB2F2UBattery 2 Fugitive EmissionsMSCB3F1UBattery 2 Fugitive Source 1MSCB3F1UBattery 3 Fugitive Source 1MSCB3F2UBattery 3 Fugitive Source 1MSCB3F2UBattery 3 Fugitive Source 2MSCB3F3UP001-5F16Battery 8 Fugitive EmissionsMSCB8F5UBattery 8 Fugitive Source 1MSCB8F5U<	MSCPB7	P001-5	Stacks 05		Battery 1-2-3 Pushing Baghouse Stack 7
MSCPB9Battery 1-2-3 Pushing Baghouse Stack 9MSCPB10Battery 1-2-3 Pushing Baghouse Stack 10MSCPB11Battery 1-2-3 Pushing Baghouse Stack 11MSCPB12Battery 1-2-3 Pushing Baghouse Stack 12MSCPB13Battery 1-2-3 Pushing Baghouse Stack 13MSCPB14Battery 1-2-3 Pushing Baghouse Stack 14MSCB1F2UBattery 1-2-3 Pushing Baghouse Stack 14MSCB1F2UBattery 1 Fugitive Source 1MSCB1F3UP001-5MSCB1F4UBattery 1 Fugitive Source 2MSCB1F3UP001-5MSCB2F1UBattery 1 Fugitive Source 3MSCB2F3UBattery 1 Fugitive Source 4MSCB2F3UBattery 2 Fugitive EmissionsMSCB2F3UBattery 2 Fugitive Source 1MSCB2F3UBattery 2 Fugitive Source 1MSCB2F3UF14MSCB3F1UBattery 2 Fugitive Source 1MSCB3F3UP001-5MSCB3F3UF15MSCB3F3UP001-5MSCB3F3UP001-5MSCB3F3UP001-5MSCB3F3UP001-5MSCB3F3UP001-5MSCB3F3UBattery 3 Fugitive Source 1MSCB3F3UBattery 3 Fugitive Source 2MSCB3F3UP001-5MSCB3F3UBattery 3 Fugitive Source 3MSCB3F3UBattery 3 Fugitive Source 4MSCB3F3UBattery 3 Fugitive Source 5MSCB3F3UBattery 4 Fugitive Source 5MSCB3F3UBattery 4 Fugitive Source 5MSCB3F3UBattery 4 Fugitive Source 5MSCB3F3UBattery 8 Fugitive Source 3MSCB3F3UBat	MSCPB8	C01	Stacks 05		Battery 1-2-3 Pushing Baghouse Stack 8
MSCPB10 MSCPB11 MSCPB12 MSCPB13 MSCPB13 MSCPB14 MSCB1F2U MSCB1F3C MS	MSCPB9				Battery 1-2-3 Pushing Baghouse Stack 9
MSCPB11Battery 1-2-3 Pushing Baghouse Stack 11MSCPB12Battery 1-2-3 Pushing Baghouse Stack 12MSCPB13Battery 1-2-3 Pushing Baghouse Stack 13MSCPB14Battery 1-2-3 Pushing Baghouse Stack 14MSCB1F1UBattery 1-2-3 Pushing Baghouse Stack 14MSCB1F2UBattery 1-2-3 Pushing Baghouse Stack 14MSCB1F3UP001-5MSCB1F4UBattery 1 Fugitive Source 1MSCB1F5UBattery 1 Fugitive Source 3MSCB1F5UBattery 2 Fugitive Source 5MSCB2F1UBattery 2 Fugitive Source 5MSCB2F2UBattery 2 Fugitive Source 4MSCB2F3UP001-5MSCB2F3UP001-5MSCB2F3UP001-5MSCB2F3UP001-5MSCB2F3UP001-5MSCB2F3UP001-5MSCB3F3UF14MSCB3F2UBattery 2 Fugitive Source 1MSCB3F3UBattery 3 Fugitive Source 1MSCB3F3UP001-5MSCB3F3UP001-5MSCB3F3UP001-5MSCB3F3UP001-5MSCB3F3UP001-5MSCB3F3UBattery 3 Fugitive Source 1MSCB3F3UBattery 3 Fugitive Source 2MSCB3F3UBattery 3 Fugitive Source 3MSCB8F3UBattery 3 Fugitive Source 4MSCB8F3UBattery 3 Fugitive Source 3MSCB8F3UBattery 8 Fugitive Source 3MSCB8F3UBattery 8 Fugitive Source 3MSCB8F5UBattery 8 Fugitive Source 4MSCB8F5UBattery 8 Fugitive Source 3MSCB8F5UBattery 8 Fugitive Source 4MSCB8F	MSCPB10				Battery 1-2-3 Pushing Baghouse Stack 10
MSCPB12Battery 1-2-3 Pushing Baghouse Stack 12MSCPB13Battery 1-2-3 Pushing Baghouse Stack 13MSCPB14Battery 1-2-3 Pushing Baghouse Stack 14MSCB1F1UBattery 1-2-3 Pushing Baghouse Stack 14MSCB1F2UBattery 1 Fugitives Source 1MSCB1F3UP001-5MSCB1F4UBattery 1 Fugitive Source 3MSCB1F5UBattery 1 Fugitive Source 5MSCB2F1UBattery 2 Fugitive EmissionsMSCB2F2UBattery 2 Fugitive EmissionsMSCB2F4UP001-5MSCB2F5UF14MSCB3F1UBattery 2 Fugitive Source 5MSCB3F1UF14MSCB3F2UBattery 3 Fugitive Source 5MSCB3F1UBattery 3 Fugitive Source 5MSCB3F2UP001-5MSCB3F2UF15MSCB3F2UBattery 3 Fugitive Source 5MSCB3F2UBattery 3 Fugitive Source 5MSCB3F3UP001-5MSCB3F4UF15MSCB3F3UP001-5MSCB3F3UP001-5MSCB3F3UP001-5MSCB3F4UBattery 3 Fugitive Source 4MSCB3F5UBattery 3 Fugitive Source 4MSCB3F5UBattery 3 Fugitive Source 4MSCB8F1UBattery 4 Fugitive Source 4MSCB8F2UBattery 4 Fugitive Source 4MSCB8F3UP004-5MSCB8F3UBattery 8 Fugitive Source 4MSCB8F5UBattery 8 Fugitive Source 6MSCB8F5UBattery 8 Fugitive Source 7MSCB8F7UBattery 8 Fugitive Source 7	MSCPB11				Battery 1-2-3 Pushing Baghouse Stack 11
MSCPB13Battery 1-2-3 Pushing Baghouse Stack 13MSCPB14Battery 1-2-3 Pushing Baghouse Stack 14MSCB1F1UBattery 1-2-3 Pushing Baghouse Stack 14MSCB1F2UBattery 1 Fugitives Source 1MSCB1F3UP001-5MSCB1F4UF13MSCB1F5UBattery 1 Fugitives Source 3MSCB1F5UBattery 1 Fugitives Source 4MSCB2F1UBattery 2 Fugitive EmissionsMSCB2F2UBattery 2 Fugitive EmissionsMSCB2F4UP001-5MSCB2F5UF14MSCB3F5UBattery 2 Fugitive Source 1MSCB3F1UBattery 2 Fugitive EmissionsMSCB3F2UBattery 3 Fugitive Source 1MSCB3F2UBattery 3 Fugitive EmissionsMSCB3F3UP001-5MSCB3F4UF15MSCB3F4UBattery 3 Fugitive EmissionsMSCB3F4UBattery 3 Fugitive EmissionsMSCB3F4UBattery 3 Fugitive Source 1MSCB3F5UBattery 3 Fugitive Source 2MSCB3F4UP001-5MSCB3F4UBattery 3 Fugitive EmissionsMSCB3F5UBattery 3 Fugitive Source 3MSCB3F4UBattery 3 Fugitive Source 4MSCB8F1UBattery 4 Fugitive Source 5MSCB8F1UBattery 4 Fugitive Source 2MSCB8F5UBattery 4 Fugitive Source 3MSCB8F6UBattery 8 Fugitive Source 4MSCB8F7UBattery 5 F16MSCB8F7UBattery 6 F16MSCB8F7UBattery 7 Fugitive Source 6MSCB8F7UBattery 7 Fugitive Source 6MSCB8F7UBattery 6 F16MSCB8F7U<	MSCPB12				Battery 1-2-3 Pushing Baghouse Stack 12
MSCPB14Battery 1-2-3 Pushing Baghouse Stack 14MSCB1F1UBattery 1 Fugitives Source 1MSCB1F3UP001-5F13Battery 1 Fugitive Emissions (pushing and soaking)Battery 1 Fugitives Source 2MSCB1F5UBattery 1 Fugitives Source 3Battery 1 Fugitives Source 4MSCB1F5UBattery 1 Fugitives Source 5Battery 1 Fugitives Source 4MSCB2F1UBattery 2 Fugitive EmissionsBattery 2 Fugitive Source 1MSCB2F2UBattery 2 Fugitive EmissionsBattery 2 Fugitive Source 2MSCB2F3UP001-5F14(pushing and soaking)Battery 2 Fugitive Source 4MSCB3F2UBattery 2 Fugitive EmissionsBattery 2 Fugitive Source 5Battery 2 Fugitive Source 1MSCB3F1UF14(pushing and soaking)Battery 3 Fugitive Source 1MSCB3F2UP001-5F15Battery 3 Fugitive Emissions (pushing and soaking)Battery 3 Fugitive Source 1MSCB3F2UMSCB3F3UP001-5F15Battery 3 Fugitive Emissions (pushing and soaking)Battery 3 Fugitive Source 2MSCB3F3UP001-5F15Battery 3 Fugitive Emissions (pushing and soaking)Battery 3 Fugitive Source 1MSCB3F5UMSCB8F1UBattery 4 Fugitive Source 1Battery 4 Fugitive Source 2MSCB8F2UBattery 8 Fugitive Emissions (pushing and soaking)Battery 8 Fugitive Source 3MSCB3F5UBattery 8 Fugitive Emissions (pushing and soaking)Battery 8 Fugitive Source 4MSCB8F2UBattery 8 Fugitive Emissions (pushing and soaking)Battery 8 Fugitive Source 5MSCB8F5UBatte	MSCPB13				Battery 1-2-3 Pushing Baghouse Stack 13
MSCB1F1UBattery 1Fugitives Source 1MSCB1F2UP001-5F13Battery 1Fugitive Emissions (pushing and soaking)Battery 1Fugitives Source 2MSCB1F4UBattery 1Fugitives Source 3Battery 1Fugitives Source 4MSCB1F5UBattery 2Fugitives Source 5Battery 2MSCB2F1UBattery 2Fugitive EmissionsBattery 2Fugitive Source 1MSCB2F2UBattery 2F14(pushing and soaking)Battery 2Fugitive Source 2MSCB2F5UBattery 2F14(pushing and soaking)Battery 2Fugitive Source 1MSCB3F1UMSCB3F2UBattery 3F15Battery 3Fugitive Source 1MSCB3F2UMSCB3F3UP001-5F15Battery 3Fugitive Source 2MSCB3F3UP001-5F15Battery 3Fugitive Emissions (pushing and soaking)Battery 3Fugitive Source 2MSCB3F3UP001-5F15Battery 3Fugitive Emissions (pushing and soaking)Battery 3Fugitive Source 2MSCB3F3UP001-5F16Battery 8Fugitive Emissions (pushing and soaking)Battery 3Fugitive Source 2MSCB8F1UMSCB8F2UBattery 4Fugitive Source 1Battery 4Fugitive Source 2MSCB8F1UP004-5F16Battery 8Fugitive Emissions (pushing and soaking)Battery 8Fugitive Source 4MSCB8F2UMSCB8F2UBattery 8Fugitive Source 6Battery 8Fugitive Source 6MSCB8F1UF16Battery 8 <t< td=""><td>MSCPB14</td><td></td><td></td><td></td><td>Battery 1-2-3 Pushing Baghouse Stack 14</td></t<>	MSCPB14				Battery 1-2-3 Pushing Baghouse Stack 14
MSCB1F2U MSCB1F3UP001-5F13Battery 1 Fugitive Emissions (pushing and soaking)Battery 1 Fugitives Source 2 Battery 1 Fugitives Source 3 Battery 1 Fugitives Source 4 Battery 1 Fugitives Source 4 Battery 1 Fugitives Source 4 Battery 1 Fugitives Source 5MSCB1F5UBattery 1 Fugitive Source 4 Battery 2 Fugitive Source 1Battery 1 Fugitives Source 4 Battery 2 Fugitive Source 1MSCB2F1U MSCB2F3UP001-5F14Battery 2 Fugitive Emissions (pushing and soaking)Battery 2 Fugitive Source 3 Battery 2 Fugitive Source 4 Battery 2 Fugitive Source 4MSCB2F5UP001-5F14(pushing and soaking)Battery 2 Fugitive Source 4 Battery 2 Fugitive Source 4MSCB3F1U MSCB3F3UP001-5F15Battery 3 Fugitive Emissions (pushing and soaking)Battery 3 Fugitive Source 2MSCB3F3U MSCB3F4UP001-5F15Battery 3 Fugitive Emissions (pushing and soaking)Battery 3 Fugitive Source 4 Battery 3 Fugitive Source 2MSCB3F3U MSCB3F3UP001-5F16Battery 8 Fugitive Emissions (pushing and soaking)Battery 3 Fugitive Source 2MSCB8F3U MSCB8F3UP004-5F16Battery 8 Fugitive Emissions (pushing and soaking)Battery 8 Fugitive Source 2MSCB8F4U MSCB8F5UP004-5F16Battery 8 Fugitive Emissions (pushing and soaking)Battery 8 Fugitive Source 2MSCB8F6U MSCB8F7UP004-5F16Battery 8 Fugitive Emissions (pushing and soaking)Battery 8 Fugitive Source 4MSCB8F7UBattery 7 Fugitive Source 6Battery 8 Fugitive Source 6	MSCB1F1U				Battery 1 Fugitives Source 1
MSCB1F3UP001-5F13Battery 1 Fugitive EmissionsBattery 1 Fugitives Source 3MSCB1F4UBattery 1 Fugitives Source 4Battery 1 Fugitives Source 4Battery 1 Fugitives Source 4MSCB1F5UBattery 2 Fugitive Source 5Battery 2 Fugitive Source 5MSCB2F2UBattery 2 Fugitive EmissionsBattery 2 Fugitive Source 2MSCB2F3UP001-5F14(pushing and soaking)Battery 2 Fugitive Source 4MSCB2F5UBattery 2 Fugitive EmissionsBattery 2 Fugitive Source 5MSCB3F1UBattery 2 Fugitive Source 5Battery 2 Fugitive Source 1MSCB3F2UBattery 3 Fugitive Source 1Battery 3 Fugitive Source 1MSCB3F3UP001-5F15Battery 3 Fugitive Emissions (pushing and soaking)Battery 3 Fugitive Source 2MSCB3F5UBattery 3 Fugitive Source 5Battery 3 Fugitive Source 5Battery 3 Fugitive Source 1MSCB8F1UBattery 3 Fugitive Source 5Battery 3 Fugitive Source 5MSCB8F1UBattery 4 Fugitive Source 5Battery 8 Fugitive Source 1MSCB8F3UBattery 8 Fugitive Source 5Battery 8 Fugitive Source 1MSCB8F3UBattery 8 Fugitive Source 1Battery 8 Fugitive Source 2MSCB8F3UBattery 8 Fugitive Source 3Battery 8 Fugitive Source 3MSCB8F5UBattery 8 Fugitive Source 5Battery 8 Fugitive Source 4MSCB8F5UBattery 8 Fugitive Source 5Battery 8 Fugitive Source 5MSCB8F7UBattery 8 Fugitive Source 5Battery 8 Fugitive Source 5MSCB8F7UBattery 8 Fugitive Source 5Battery 8 Fugitive Source 5	MSCB1F2U			Pattony 1 Eugitiva Emissions	Battery 1 Fugitives Source 2
MSCB1F4U(pushing and soaking)Battery 1 Fugitives Source 4MSCB1F5UBattery 1 Fugitives Source 5MSCB2F1UBattery 2 Fugitive Source 1MSCB2F2UBattery 2 Fugitive EmissionsMSCB2F3UP001-5MSCB2F4UF14MSCB2F5UBattery 2 Fugitive Source 3MSCB3F1UBattery 2 Fugitive Source 5MSCB3F2UBattery 3 Fugitive Source 1MSCB3F3UP001-5MSCB3F3UP001-5MSCB3F4UF15MSCB3F3UP001-5MSCB3F4UBattery 3 Fugitive Source 1MSCB3F5UBattery 3 Fugitive Source 3MSCB3F5UBattery 3 Fugitive Source 5MSCB8F1UBattery 3 Fugitive Source 5MSCB8F1UBattery 4 Fugitive Source 5MSCB8F1UBattery 8 Fugitive Source 1MSCB8F5UBattery 8 Fugitive EmissionsMSCB8F5UBattery 8 Fugitive Source 2MSCB8F5UBattery 8 Fugitive Source 3MSCB8F5UBattery 8 Fugitive Source 3MSCB8F5UBattery 8 Fugitive Source 3MSCB8F5UBattery 8 Fugitive Source 3MSCB8F5UBattery 8 Fugitive Source 5MSCB8F6UBattery 8 Fugitive Source 5MSCB8F7UBattery 8 Fugitive Source 5MSCB8F7UBattery 8 Fugitive Source 5MSCB8F7UBattery 8 Fugitive Source 5MSCB8F7UBattery 8 Fugitive Source 6MSCB8F7UBattery 8 Fugitive Source 7	MSCB1F3U	P001-5	F13	Battery I Fugitive Emissions	Battery 1 Fugitives Source 3
MSCB1F5UBattery 1 Fugitives Source 5MSCB2F1UBattery 2 Fugitive Source 1MSCB2F2UBattery 2 Fugitive EmissionsMSCB2F3UP001-5MSCB2F4UF14MSCB2F5UBattery 2 Fugitive Source 4MSCB3F1UBattery 2 Fugitive Source 5MSCB3F2UBattery 3 Fugitive EmissionsMSCB3F2UBattery 3 Fugitive Source 1MSCB3F3UP001-5MSCB3F3UP001-5MSCB3F4UF15MSCB3F4UBattery 3 Fugitive Source 2MSCB3F5UBattery 3 Fugitive Source 4MSCB3F5UBattery 3 Fugitive Source 5MSCB8F1UBattery 3 Fugitive Source 5MSCB8F1UBattery 3 Fugitive Source 5MSCB8F1UBattery 8 Fugitive Source 1MSCB8F2UBattery 8 Fugitive Source 2MSCB8F3UP004-5MSCB8F3UBattery 8 Fugitive Source 3MSCB8F5UBattery 8 Fugitive Source 4MSCB8F5UBattery 8 Fugitive Source 5MSCB8F4UP004-5MSCB8F5UBattery 8 Fugitive Source 3MSCB8F5UBattery 8 Fugitive Source 4MSCB8F5UBattery 8 Fugitive Source 5MSCB8F5UBattery 8 Fugitive Source 5MSCB8F6UBattery 8 Fugitive Source 5MSCB8F7UBattery 8 Fugitive Source 5MSCB8F7UBattery 8 Fugitive Source 6MSCB8F7UBattery 8 Fugitive Source 7	MSCB1F4U			(pushing and soaking)	Battery 1 Fugitives Source 4
MSCB2F1UBattery 2 Fugitive Source 1MSCB2F2UMSCB2F3UP001-5F14Battery 2 Fugitive Emissions (pushing and soaking)Battery 2 Fugitive Source 2MSCB2F4UF14(pushing and soaking)Battery 2 Fugitive Source 3MSCB2F5UBattery 2 Fugitive Source 5Battery 2 Fugitive Source 5MSCB3F1UBattery 3 Fugitive Emissions (pushing and soaking)Battery 3 Fugitive Source 1MSCB3F3UP001-5F15Battery 3 Fugitive Emissions (pushing and soaking)Battery 3 Fugitive Source 2MSCB3F4UP001-5F15Battery 3 Fugitive Emissions (pushing and soaking)Battery 3 Fugitive Source 2MSCB3F5UBattery 3 Fugitive Source 5Battery 3 Fugitive Source 5Battery 3 Fugitive Source 5MSCB8F1UBattery 3 Fugitive Source 5Battery 8 Fugitive Source 5Battery 8 Fugitive Source 1MSCB8F2UBattery 8 Fugitive Source 5Battery 8 Fugitive Source 2Battery 8 Fugitive Source 2MSCB8F2UBattery 8 Fugitive Source 5Battery 8 Fugitive Source 2Battery 8 Fugitive Source 2MSCB8F2UBattery 8 Fugitive Source 1Battery 8 Fugitive Source 2Battery 8 Fugitive Source 2MSCB8F3UP004-5F16Battery 8 Fugitive Emissions (pushing and soaking)Battery 8 Fugitive Source 3MSCB8F5UBattery 7 F16Battery 8 Fugitive Source 5Battery 8 Fugitive Source 5MSCB8F5UBattery 8 Fugitive Source 5Battery 8 Fugitive Source 5MSCB8F6UBattery 8 Fugitive Source 5Battery 8 Fugitive Source 6MSCB8F7UBattery 8 Fug	MSCB1F5U				Battery 1 Fugitives Source 5
MSCB2F2U MSCB2F3UP001-5F14Battery 2 Fugitive Emissions (pushing and soaking)Battery 2 Fugitive Source 2MSCB2F4UF14(pushing and soaking)Battery 2 Fugitive Source 3MSCB2F5UBattery 2 Fugitive Source 5Battery 2 Fugitive Source 5MSCB3F1U MSCB3F2UBattery 3 Fugitive Emissions (pushing and soaking)Battery 3 Fugitive Source 1MSCB3F2U MSCB3F3UP001-5F15Battery 3 Fugitive Emissions (pushing and soaking)Battery 3 Fugitive Source 2MSCB3F5UBattery 3 Fugitive Emissions (pushing and soaking)Battery 3 Fugitive Source 2MSCB8F1U MSCB8F3UBattery 3 Fugitive Source 5Battery 8 Fugitive Source 1MSCB8F3U MSCB8F3UP004-5F16Battery 8 Fugitive Emissions (pushing and soaking)Battery 8 Fugitive Source 2MSCB8F5U MSCB8F5UBattery 8 Fugitive Source 1Battery 8 Fugitive Source 2MSCB8F3U MSCB8F5UP004-5F16Battery 8 Fugitive Emissions (pushing and soaking)Battery 8 Fugitive Source 3MSCB8F5U MSCB8F5UBattery 8 Fugitive Source 5Battery 8 Fugitive Source 6Battery 8 Fugitive Source 5MSCB8F6U MSCB8F7UBattery 8 Fugitive Source 5Battery 8 Fugitive Source 5Battery 8 Fugitive Source 5	MSCB2F1U				Battery 2 Fugitive Source 1
MSCB2F3UP001-5F14Battery 2 Fugitive EmissionsBattery 2 Fugitive Source 3MSCB2F4UF14(pushing and soaking)Battery 2 Fugitive Source 4MSCB2F5UBattery 2 Fugitive Source 5Battery 2 Fugitive Source 5MSCB3F1UBattery 3 Fugitive Source 1Battery 3 Fugitive Source 1MSCB3F2UBattery 3 Fugitive Emissions (pushing and soaking)Battery 3 Fugitive Source 2MSCB3F3UP001-5F15Battery 3 Fugitive Emissions (pushing and soaking)Battery 3 Fugitive Source 3MSCB3F5UBattery 3 Fugitive Source 5Battery 3 Fugitive Source 5Battery 8 Fugitive Source 1MSCB8F1UBattery 8 Fugitive Emissions (pushing and soaking)Battery 8 Fugitive Source 1MSCB8F2UBattery 8 Fugitive Source 1Battery 8 Fugitive Source 2MSCB8F3UP004-5F16Battery 8 Fugitive Emissions (pushing and soaking)Battery 8 Fugitive Source 3MSCB8F5UBattery 8 Fugitive Source 5Battery 8 Fugitive Source 6Battery 8 Fugitive Source 7	MSCB2F2U			Detter 2 Freitige Freierige	Battery 2 Fugitive Source 2
MSCB2F4UF14(pushing and soaking)Battery 2 Fugitive Source 4MSCB2F5UBattery 2 Fugitive Source 5Battery 2 Fugitive Source 5MSCB3F1UBattery 3 Fugitive Source 1Battery 3 Fugitive Source 2MSCB3F2UBattery 3 Fugitive Emissions (pushing and soaking)Battery 3 Fugitive Source 2MSCB3F4UMSCB3F5UBattery 3 Fugitive Source 4MSCB3F5UBattery 3 Fugitive Source 5MSCB8F1UBattery 8 Fugitive Source 1MSCB8F2UBattery 8 Fugitive Emissions (pushing and soaking)MSCB8F3UBattery 8 Fugitive Source 2MSCB8F3UBattery 8 Fugitive Source 2MSCB8F5UBattery 8 Fugitive Emissions (pushing and soaking)MSCB8F5UBattery 8 Fugitive Emissions (pushing and soaking)MSCB8F5UBattery 8 Fugitive Source 4MSCB8F6UBattery 8 Fugitive Source 5MSCB8F7UBattery 8 Fugitive Source 5	MSCB2F3U	P001-5		Battery 2 Fugitive Emissions	Battery 2 Fugitive Source 3
MSCB2F5UBattery 2 Fugitive Source 5MSCB3F1UBattery 3 Fugitive Source 1MSCB3F2UBattery 3 Fugitive Source 1MSCB3F3UP001-5F15MSCB3F4UBattery 3 Fugitive Emissions (pushing and soaking)Battery 3 Fugitive Source 2MSCB3F5UBattery 3 Fugitive Source 5MSCB8F1UBattery 3 Fugitive Source 1MSCB8F2UBattery 8 Fugitive Emissions (pushing and soaking)Battery 8 Fugitive Source 1MSCB8F2UBattery 8 Fugitive Emissions (pushing and soaking)Battery 8 Fugitive Source 2MSCB8F3UBattery 8 Fugitive Emissions (pushing and soaking)Battery 8 Fugitive Source 2MSCB8F5UBattery 8 Fugitive Emissions (pushing and soaking)Battery 8 Fugitive Source 4MSCB8F6UBattery 8 Fugitive Source 5Battery 8 Fugitive Source 5MSCB8F6UBattery 8 Fugitive Source 6Battery 8 Fugitive Source 7	MSCB2F4U		F14	(pushing and soaking)	Battery 2 Fugitive Source 4
MSCB3F1UBattery 3 Fugitive Source 1MSCB3F2UBattery 3 Fugitive EmissionsBattery 3 Fugitive Source 2MSCB3F3UP001-5F15Battery 3 Fugitive Emissions (pushing and soaking)Battery 3 Fugitive Source 2MSCB3F4UBattery 3 Fugitive Source 3Battery 3 Fugitive Source 4MSCB3F5UBattery 3 Fugitive Source 5Battery 3 Fugitive Source 5MSCB8F1UBattery 8 Fugitive EmissionsBattery 8 Fugitive Source 1MSCB8F2UBattery 8 Fugitive EmissionsBattery 8 Fugitive Source 2MSCB8F3UBattery 8 Fugitive EmissionsBattery 8 Fugitive Source 4MSCB8F5UBattery 8 Fugitive EmissionsBattery 8 Fugitive Source 5MSCB8F6UMSCB8F6UBattery 8 Fugitive Source 5MSCB8F7UBattery 8 Fugitive Source 6	MSCB2F5U				Battery 2 Fugitive Source 5
MSCB3F2UBattery 3 Fugitive Emissions (pushing and soaking)Battery 3 Fugitive Source 2 Battery 3 Fugitive Source 3 Battery 3 Fugitive Source 4 Battery 3 Fugitive Source 5MSCB3F5UBattery 3 Fugitive Source 5MSCB3F1UBattery 3 Fugitive Source 5MSCB8F1UBattery 8 Fugitive Source 2MSCB8F2UBattery 8 Fugitive Emissions Battery 8 Fugitive Source 2MSCB8F3UBattery 8 Fugitive Emissions (pushing and soaking)MSCB8F5UBattery 8 Fugitive Emissions Battery 8 Fugitive Source 3MSCB8F5UBattery 8 Fugitive Emissions (pushing and soaking)MSCB8F6UBattery 8 Fugitive Source 5MSCB8F7UBattery 8 Fugitive Source 6	MSCB3F1U				Battery 3 Fugitive Source 1
MSCB3F3UP001-5F15Battery 3 Fugitive EmissionsBattery 3 Fugitive Source 3MSCB3F4U(pushing and soaking)Battery 3 Fugitive Source 4MSCB3F5UBattery 3 Fugitive Source 5MSCB8F1UBattery 8 Fugitive Source 1MSCB8F2UBattery 8 Fugitive Source 2MSCB8F3UBattery 8 Fugitive EmissionsMSCB8F4UP004-5MSCB8F5UBattery 8 Fugitive EmissionsMSCB8F5UBattery 8 Fugitive Source 4MSCB8F5UBattery 8 Fugitive Source 5MSCB8F6UBattery 8 Fugitive Source 5MSCB8F7UBattery 8 Fugitive Source 6	MSCB3F2U				Battery 3 Fugitive Source 2
MSCB3F4U (pushing and soaking) Battery 3 Fugitive Source 4 MSCB3F5U Battery 3 Fugitive Source 5 MSCB8F1U Battery 8 Fugitive Source 1 MSCB8F2U Battery 8 Fugitive Source 2 MSCB8F3U Battery 8 Fugitive Emissions MSCB8F4U P004-5 MSCB8F5U Battery 8 Fugitive Emissions MSCB8F5U Battery 8 Fugitive Source 4 MSCB8F6U Battery 8 Fugitive Source 5 MSCB8F7U Battery 8 Fugitive Source 6	MSCB3F3U	P001-5	F15	Battery 3 Fugitive Emissions	Battery 3 Fugitive Source 3
MSCB3F5U Battery 3 Fugitive Source 5 MSCB8F1U Battery 8 Fugitive Source 1 MSCB8F2U Battery 8 Fugitive Source 2 MSCB8F3U Battery 8 Fugitive Emissions MSCB8F4U P004-5 MSCB8F5U Battery 8 Fugitive Emissions MSCB8F5U Battery 8 Fugitive Source 4 MSCB8F6U Battery 8 Fugitive Source 5 MSCB8F7U Battery 8 Fugitive Source 6	MSCB3F4U			(pushing and soaking)	Battery 3 Fugitive Source 4
MSCB8F1U Battery 8 Fugitive Source 1 MSCB8F2U Battery 8 Fugitive Source 2 MSCB8F3U Battery 8 Fugitive Emissions MSCB8F4U P004-5 MSCB8F5U Battery 8 Fugitive Emissions MSCB8F5U Battery 8 Fugitive Source 4 MSCB8F6U Battery 8 Fugitive Source 5 MSCB8F7U Battery 8 Fugitive Source 6	MSCB3F5U				Battery 3 Fugitive Source 5
MSCB8F2U Battery 8 Fugitive Source 2 MSCB8F3U Battery 8 Fugitive Emissions MSCB8F4U P004-5 F16 (pushing and soaking) MSCB8F5U Battery 8 Fugitive Source 4 MSCB8F6U Battery 8 Fugitive Source 5 MSCB8F7U Battery 8 Fugitive Source 6	MSCB8F1U				Battery 8 Fugitive Source 1
MSCB8F3U Battery 8 Fugitive Emissions Battery 8 Fugitive Source 3 MSCB8F4U P004-5 F16 (pushing and soaking) Battery 8 Fugitive Source 4 MSCB8F5U Battery 8 Fugitive Source 5 Battery 8 Fugitive Source 5 MSCB8F6U Battery 8 Fugitive Source 6 MSCB8F7U Battery 8 Fugitive Source 7	MSCB8F2U				Battery 8 Fugitive Source 2
MSCB8F4U P004-5 F16 Battery & Fugitive Emissions Battery & Fugitive Source 4 MSCB8F5U Battery & Fugitive Source 5 Battery & Fugitive Source 5 MSCB8F6U Battery & Fugitive Source 6 MSCB8F7U Battery & Fugitive Source 7	MSCB8F3U				Battery 8 Fugitive Source 3
MSCB8F5U (pushing and soaking) Battery 8 Fugitive Source 5 MSCB8F6U Battery 8 Fugitive Source 6 MSCB8F7U Battery 8 Fugitive Source 7	MSCB8F4U	P004-5	F16	Battery & Fugitive Emissions	Battery 8 Fugitive Source 4
MSCB8F6U Battery 8 Fugitive Source 6 MSCB8F7U Battery 8 Fugitive Source 7	MSCB8F5U			(pushing and soaking)	Battery 8 Fugitive Source 5
MSCB8F7U Battery 8 Fugitive Source 7	MSCB8F6U				Battery 8 Fugitive Source 6
	MSCB8F7U				Battery 8 Fugitive Source 7

Model Stack ID	Description	UTM East ¹ (m)	UTM North ¹ (m)	Elevation ² (m)	Stack Height (m)	Stack Temperature (K)	Exit Velocity (m/s)	Stack Diameter (m)
MSCCOGFL	Excess COG Flare	533,257.0	4,466,415.0	205.43	63.93	1273.00	20.00	3.88
MSCBATT1	Battery 1 Combustion Stack	533,290.0	4,466,132.0	205.43	60.96	583.15	5.06	2.28
MSCBATT2	Battery 2 Combustion Stack	533,293.0	4,466,127.0	205.43	60.96	583.15	5.06	2.28
MSCBATT3	Battery 3 Combustion Stack	533,381.0	4,465,988.0	205.43	68.58	588.71	5.00	2.44
MSCBATT8	Battery 8 Combustion Stack	533,648.0	4,465,651.0	205.43	76.20	422.04	8.32	3.76
MSC8SCRU	MSC Battery 8 Scrubber Stack	533,640.7	4,465,537.0	205.43	18.29	318.20	13.41	2.28
MSC67910	MSC Boilers 6-7-9-10 Merged Stack	533,526.0	4,465,952.0	205.43	53.34	483.87	15.35	2.74
MSCACIDS	Acid Plant Tail Gas Stack	533,439.0	4,466,089.0	205.43	21.34	299.82	10.45	0.51
MSCPB1	Battery 1-2-3 Pushing Baghouse Stack 1	533,246.5	4,466,076.0	205.43	17.07	332.59	23.20	0.70
MSCPB2	Battery 1-2-3 Pushing Baghouse Stack 2	533,245.1	4,466,078.0	205.43	17.07	332.59	23.20	0.70
MSCPB3	Battery 1-2-3 Pushing Baghouse Stack 3	533,243.8	4,466,081.0	205.43	17.07	332.59	23.20	0.70
MSCPB4	Battery 1-2-3 Pushing Baghouse Stack 4	533,242.0	4,466,084.0	205.43	17.07	332.59	23.20	0.70
MSCPB5	Battery 1-2-3 Pushing Baghouse Stack 5	533,240.6	4,466,086.0	205.43	17.07	332.59	23.20	0.70
MSCPB6	Battery 1-2-3 Pushing Baghouse Stack 6	533,239.2	4,466,088.0	205.43	17.07	332.59	23.20	0.70
MSCPB7	Battery 1-2-3 Pushing Baghouse Stack 7	533,237.8	4,466,091.0	205.43	17.07	332.59	23.20	0.70
MSCPB8	Battery 1-2-3 Pushing Baghouse Stack 8	533,250.3	4,466,078.0	205.43	17.07	332.59	23.20	0.70
MSCPB9	Battery 1-2-3 Pushing Baghouse Stack 9	533,248.9	4,466,081.0	205.43	17.07	332.59	23.20	0.70
MSCPB10	Battery 1-2-3 Pushing Baghouse Stack 10	533,247.5	4,466,083.0	205.43	17.07	332.59	23.20	0.70
MSCPB11	Battery 1-2-3 Pushing Baghouse Stack 11	533,245.8	4,466,086.0	205.43	17.07	332.59	23.20	0.70
MSCPB12	Battery 1-2-3 Pushing Baghouse Stack 12	533,244.3	4,466,088.0	205.43	17.07	332.59	23.20	0.70
MSCPB13	Battery 1-2-3 Pushing Baghouse Stack 13	533,242.9	4,466,090.0	205.43	17.07	332.59	23.20	0.70
MSCPB14	Battery 1-2-3 Pushing Baghouse Stack 14	533,241.5	4,466,093.0	205.43	17.07	332.59	23.20	0.70

Table A-2. List of Stack Parameters for MSC Point Sources

¹ Coordinates are in the UTM NAD83 Zone 17 coordinate system.
 ² Elevation of the plant grade.

Model Stack ID	Description	UTM East ¹ (m)	UTM North ¹ (m)	Elevation ² (m)	Release Height ³ (m)	Initial Lateral Dimension (m)	Initial Vertical Dimension ³ (m)
MSCB1F1U	Battery 1 Fugitives Source 1	533,275.7	4,466,191.0	205.43	7.00	5.33	3.26
MSCB1F2U	Battery 1 Fugitives Source 2	533,281.3	4,466,182.0	205.43	7.00	5.33	3.26
MSCB1F3U	Battery 1 Fugitives Source 3	533,286.8	4,466,172.5	205.43	7.00	5.33	3.26
MSCB1F4U	Battery 1 Fugitives Source 4	533,292.4	4,466,163.0	205.43	7.00	5.33	3.26
MSCB1F5U	Battery 1 Fugitives Source 5	533,297.9	4,466,153.5	205.43	7.00	5.33	3.26
MSCB2F1U	Battery 2 Fugitive Source 1	533,318.2	4,466,120.0	205.43	7.00	5.33	3.26
MSCB2F2U	Battery 2 Fugitive Source 2	533,324.0	4,466,110.0	205.43	7.00	5.33	3.26
MSCB2F3U	Battery 2 Fugitive Source 3	533,329.9	4,466,100.5	205.43	7.00	5.33	3.26
MSCB2F4U	Battery 2 Fugitive Source 4	533,335.8	4,466,090.5	205.43	7.00	5.33	3.26
MSCB2F5U	Battery 2 Fugitive Source 5	533,341.6	4,466,080.5	205.43	7.00	5.33	3.26
MSCB3F1U	Battery 3 Fugitive Source 1	533 <i>,</i> 358.9	4,466,051.5	205.43	7.00	5.33	3.26
MSCB3F2U	Battery 3 Fugitive Source 2	533,364.7	4,466,041.5	205.43	7.00	5.33	3.26
MSCB3F3U	Battery 3 Fugitive Source 3	533,370.6	4,466,032.0	205.43	7.00	5.33	3.26
MSCB3F4U	Battery 3 Fugitive Source 4	533,376.4	4,466,022.0	205.43	7.00	5.33	3.26
MSCB3F5U	Battery 3 Fugitive Source 5	533,382.3	4,466,012.0	205.43	7.00	5.33	3.26
MSCB8F1U	Battery 8 Fugitive Source 1	533 <i>,</i> 588.4	4,465,668.5	205.43	13.72	6.84	6.38
MSCB8F2U	Battery 8 Fugitive Source 2	533,596.1	4,465,656.0	205.43	13.72	6.84	6.38
MSCB8F3U	Battery 8 Fugitive Source 3	533,603.7	4,465,643.0	205.43	13.72	6.84	6.38
MSCB8F4U	Battery 8 Fugitive Source 4	533,611.3	4,465,630.5	205.43	13.72	6.84	6.38
MSCB8F5U	Battery 8 Fugitive Source 5	533 <i>,</i> 618.9	4,465,618.0	205.43	13.72	6.84	6.38
MSCB8F6U	Battery 8 Fugitive Source 6	533,626.5	4,465,605.5	205.43	13.72	6.84	6.38
MSCB8F7U	Battery 8 Fugitive Source 7	533,634.1	4,465,593.0	205.43	13.72	6.84	6.38

Table A-3. List of Modeled Parameters for MSC Volume Sources

¹ Coordinates are in the UTM NAD83 Zone 17 coordinate system.
 ² Elevation of the plant grade.

³ Release height and initial vertical dimension vary for each source on an hourly basis per BLP model plume rise. Values shown are reflective of values without any additional BLP consideration.

Table A-4. List of Stack Parameters for Regional Inventory Point Sources¹

Model Stack ID	Description	UTM East (m)	UTM North (m)	Elevation (m)	Stack Height (m)	Stack Temperature (K)	Exit Velocity (m/s)	Stack Diameter (m)
MJERGCT1	Mingo Junction Energy Center Unit 1	533,615.0	4,463,399.0	203.94	42.67	449.82	6.06	3.05
MJERGCT2	Mingo Junction Energy Center Unit 2	533,611.0	4,463,404.0	203.92	42.67	449.82	6.06	3.05
MJERGCT3	Mingo Junction Energy Center Unit 3	533,608.0	4,463,409.0	203.90	42.67	449.82	6.06	3.05
MJERGCT4	Mingo Junction Energy Center Unit 4	533,605.0	4,463,414.0	203.88	42.67	449.82	6.06	3.05
AEPCARD1	AEP Cardinal Plant Unit 1	530,035.8	4,455,909.0	204.66	304.80	327.59	15.21	8.86
AEPCARD2	AEP Cardinal Plant Unit 2	530,041.8	4,455,900.0	204.56	304.80	327.59	15.21	8.86
AEPCARD3	AEP Cardinal Plant Unit 3	529,131.6	4,454,598.0	201.78	274.32	435.90	29.20	7.32
MJSTRPM2	Mingo Junction Steel Works Reheat Furnace 2	533,410.4	4,462,652.0	204.09	57.00	783.20	3.93	3.96
MJSTRPM3	Mingo Junction Steel Works Reheat Furnace 3	533,415.6	4,462,672.0	203.95	57.00	783.20	3.93	3.96
MJSTRPM4	Mingo Junction Steel Works Reheat Furnace 4	533,421.5	4,462,690.0	203.81	57.00	783.20	3.93	3.96
MJEAFBAG	Mingo Junction Steel Works EAF Baghouse	533,711.6	4,462,675.0	203.44	42.67	408.06	13.59	6.10
MJLMFBH	Mingo Junction Steel Works LMF Baghouse	533,575.2	4,462,881.0	203.74	22.86	399.82	5.35	3.35

¹ All data provided by Ohio Environmental Protection Agency.

		Emissions During Desulfurization Plant Operation		Emissions During Desulfurization Plant Outage
Model ID	Emission Point Description	(lb/hr)	Basis	(lb/hr) ¹
MSCCOGFL	Excess COG Flare	139.8	Engineering Estimate (See Table A-10).	241.5
MSCBATT1	Battery 1 Combustion Stack	22.9	Engineering Estimate (See Table A-9)	76.8
MSCBATT2	Battery 2 Combustion Stack	22.9	Engineering Estimate (See Table A-9)	76.8
MSCBATT3	Battery 3 Combustion Stack	25.7	Engineering Estimate (See Table A-9)	76.8
MSCBATT8	Battery 8 Combustion Stack	122.1	Engineering Estimate (See Table A-9)	360.6
MSC8SCRU	MSC Battery 8 Scrubber Stack	15.7	2010 Title V Permit Limit, Condition 4.1.33	9.8
MSC67910	MSC Boilers 6-7-9-10 Merged Stack	90.0	Engineering Estimate (See Table A-12)	344.8
MSCACIDS	Acid Plant Tail Gas Stack	6.0	Engineering Estimate	0.0
MSCPB1	Battery 1-2-3 Pushing Baghouse Stack 1	0.7		0.3
MSCPB2	Battery 1-2-3 Pushing Baghouse Stack 2	0.7		0.3
MSCPB3	Battery 1-2-3 Pushing Baghouse Stack 3	0.7		0.3
MSCPB4	Battery 1-2-3 Pushing Baghouse Stack 4	0.7		0.3
MSCPB5	Battery 1-2-3 Pushing Baghouse Stack 5	0.7		0.3
MSCPB6	Battery 1-2-3 Pushing Baghouse Stack 6	0.7	2010 Title V Permit	0.3
MSCPB7		0.7	Limit. Condition 4.1.32	0.3
MSCPB8	Battery 1-2-3 Pushing Baghouse Stack 8	0.7	(aggregate of all stacks)	0.3
MSCPB9	Battery 1-2-3 Pushing Baghouse Stack 9	0.7	(-888)	0.3
MSCPB10	Battery 1-2-3 Pushing Baghouse Stack 10	0.7		0.3
MSCPB11	Battery 1-2-3 Pushing Baghouse Stack 11	0.7		0.3
MSCPB12	Battery 1-2-3 Pushing Baghouse Stack 12	0.7	-	0.3
MSCPB13	Battery 1-2-3 Pushing Baghouse Stack 13	0.7	-	0.3
MSCPB14	Battery 1-2-3 Pushing Baghouse Stack 14	0.7		0.3
MSCB1F1U	Battery 1 Fugitives Source 1	0.7	-	0.2
MSCB1F2U	Battery 1 Fugitives Source 2	0.7	Engineering Estimate	0.2
MSCB1F3U	Battery 1 Fugitives Source 3	0.7	(See Table A-11)	0.2
MSCB1F4U	Battery 1 Fugitives Source 4	0.7		0.2
MSCB1F5U	Battery 1 Fugitives Source 5	0.7		0.2
MSCB2F1U	Battery 2 Fugitive Source 1	0.7		0.2
MSCB2F2U	Battery 2 Fugitive Source 2	0.7	Engineering Estimate	0.2
MSCB2F3U	Battery 2 Fugitive Source 3	0.7	(See Table A-11)	0.2
MISCB2F4U	Battery 2 Fugitive Source 4	0.7		0.2
MISCB2F5U	Battery 2 Fugitive Source 5	0.7		0.2
MISCB3F1U	Battery 3 Fugitive Source 1	0.7		0.2
MSCB3F2U	Battery 3 Fugitive Source 2	0.7	Engineering Estimate	0.2
MISCB3F3U	Battery 3 Fugitive Source 3	0.7	(See Table A-11)	0.2
	Battony 2 Eugitive Source 4	0.7		0.2
MSCD9E111	Battery & Fugitive Source 1	22		1.2
MSCDOFIU	Battery & Fugitive Source 2	2.3	-	1.3
MSCDOFZU	Battery & Fugitive Source 2	2.3	-	1.3
MSCDOFSU	Battery & Fugitive Source A	2.3	Engineering Estimate	1.3
	Battery & Fugitive Source 5	2.3	(See Table A-11)	1.3
MSCDOEGU	Battery & Fugitive Source 6	2.3	-	1.3
MSCB8F7U	Battery 8 Fugitive Source 7	2.3		1.3
				2.5

Table A-5. SO₂ Modeled Emission Rates for MSC Sources

¹ Emissions during desulfurization plant outage periods reflect current operational practices and are based on engineering estimates and an approximate production rate of 63 ovens per day on Battery 8 and 72 ovens per day combined for Battery 1, 2, 3.
Model ID	Emission Point Description	Emissions Rate (lb/hr)
MJERGCT1	Mingo Junction Energy Center Unit 1	0.5
MJERGCT2	Mingo Junction Energy Center Unit 2	0.5
MJERGCT3	Mingo Junction Energy Center Unit 3	0.5
MJERGCT4	Mingo Junction Energy Center Unit 4	0.5
AEPCARD1	AEP Cardinal Plant Unit 1	2621.0
AEPCARD2	AEP Cardinal Plant Unit 2	2121.7
AEPCARD3	AEP Cardinal Plant Unit 3	1259.9
MJSTRPM2	Mingo Junction Steel Works Reheat Furnace 2	1.0
MJSTRPM3	Mingo Junction Steel Works Reheat Furnace 3	1.0
MJSTRPM4	Mingo Junction Steel Works Reheat Furnace 4	1.0
MJEAFBAG	Mingo Junction Steel Works EAF Baghouse	105.0
MJLMFBH	Mingo Junction Steel Works LMF Baghouse	14.1

Table A-6. SO₂ Modeled Emission Rates for Regional Sources

Parameters	Units	Excess COG Flare
COG Flowrate at Flare	MMCF/day	24
Average COG Heat Content	Btu/scf	489
Heat Input	MMBtu/day	11,736.0
Heat Input	cal/s	3.42E+07
Modeled Calculated Equivalent Diameter	m	3.88
Actual Physical Stack Height	m	45.72
Modeled Calculated Flare Height	m	63.93
Modeled Exit Temperature	К	1,273
Modeled Exit Velocity	m/s	20.00

Table A-7 Modeled Flare Stack Parameters - Increased Flowrate Scenario¹

¹ Following the U.S. EPA's *AERSCREEN User's Guide* (Equations 1 and 2) and Ohio *EPA's Engineering Guide 69 (Page 14)*, MSC has calculated the equivalent flare height and diameter based on the actual flare height and the maximum heat input rate for the excess COG flare. The stack temperature and exit velocity are based on the recommendations in Section 2.5 of the *AERSCREEN User's Guide*.

Effective Height (H_{eff}) = $H_{s} + 4.56*10^{-3}*HR^{0.478}$

Effective Diameter (D_{eff}): $D_{eff} = 9.88 \times 10^{-4} \times [HR^{*}(1-HL)]$

HL = radiation heat loss (0.55)

Table A-8 Basis of Emissions Estimates - MSC Battery Combustion Sta

Source during Desulfurization Plant Operation	Heat Input (MMBtu/hr)	Fuel Consumption (COG scf/hr)	SO ₂ Emission Rate (Ib/hr)
Battery 1 Combustion Stack	80	163599	22.9
Battery 2 Combustion Stack	80	163599	22.9
Battery 3 Combustion Stack	90	184049	25.7
Battery 8 Combustion Stack	427	873211	122.1

489

Btu/scf

1. COG Heat Content [average per 2010 Title V permit conditions 5.1.16(1), 5.1.17(1) and 5.1.18(1)]

2. Sulfur content in COG during desulfurization plant operation	52	gr/100 dscf
3. Molecular Weight of SO ₂	64	
4. Molecular Weight of H ₂ S	34	

5. Throughputs are based on estimated design capacities and engineering estimates.

Table A-9	Basis of Emissions	Estimates - MS	C Excess COG Flare
-----------	---------------------------	----------------	--------------------

Operation (b/hr)
Flare - Increased Capacity 24.0	139.8

1. COG Heat Content [average per 2010 Title V permit conditions 5.1.16(1), 5.1.17(1) and 5.1.18(1)]

2. Sulfur content in COG during desulfurization plant operation	52	gr/100 dscf
3. Molecular Weight of SO ₂	64	
4. Molecular Weight of H ₂ S	34	

Btu/scf

489

Source during Desulfurization Plant Operation	Charge (tons coal/hr)	Emission Factor (lbs SO ₂ /ton coal)	SO ₂ Emission Rate (lb/hr)
Battery 1 Fugitives	31.6	0.1039	3.28
Battery 2 Fugitives	31.6	0.1039	3.28
Battery 3 Fugitives	34.0	0.1039	3.53
Battery 8 Fugitives	152.6	0.1039	15.86

Table A-10 Basis of Emissions Estimates - MSC Battery Fugitives

1. Emission factors are based on U.S. EPA AP-42. The AP-42 factors for the ovens are the same, regardless of oven type/size.

Total factor:	0.1039	lb/ton coal charged
Soaking fugitives (AP-42 Table 12.2-18):	0.099	lb/ton coal charged
scrubber/baghouse):	0.0049	lb/ton coal charged
Pushing fugitives (uncontrolled, AP-42 Table 12.2-9): Pushing fugitives (controlled, assuming 95% capture for	0.098	lb/ton coal charged

2. Throughputs are based on estimated design capacities and engineering estimates.

Source during Desulfurization Plant Operation	Throughput	Units	SO ₂ Emission Rate (Ib/hr)
Boilers 6-7-9-10 Merged Stack	15.5	MMSCF/day	90.0
 Sulfur content in COG during desulfurizatio Molecular Weight of SO₂ Molecular Weight of H₂S 	52 64 34	gr/100 dscf	

Table A-11 Basis of Emissions Estimates - Other MSC Sources

APPENDIX B: BLP SUPPORTING DOCUMENTATION

Appendix A to 2007 $\ensuremath{\text{PM}_{10}}$ SIP Modeling Report

Mountain State Carbon, LLC \mid SO2 Air Quality Modeling Report Trinity Consultants

APPENDIX A

BLP PLUME RISE FOR THE BLAST FURNACE CASTHOUSE, BASIC OXYGEN FURNACE ROOF MONITOR AND COKE BATTERIES

1.0 INTRODUCTION

Vertical rise of a heated fugitive emission is a function of the temperature difference of the emission and ambient, the exhaust velocity and configuration of the source. The buoyancy parameter used within the Buoyant Line and Point Source (BLP) Dispersion Model is represented by the following equation:

$$F' = \frac{g L W_{m} w (T_{s} - T_{a})}{T_{s}}$$
 Equation 1

where

F' is the average line source buoyancy parameter (m^4/s^3) g is the acceleration of gravity (9.81 m/s²) L is the line source length (m) W_m is the line source width (m) w is the exit velocity (m/s) T_s is the exit temperature (°K) T_a is the ambient temperature (°K)¹

The BLP model was developed to represent fugitive emissions from elevated line sources. A BOF Roof Monitor (RM), Blast Furnace Casthouse and Coke Battery are long line sources that have heated fugitives releases and are well suited for application for BLP.

This report presents results of testing at the BF #5 Casthouse and BOF RM at Mingo Junction and Battery #8 at Follansbee to develop the independent variables for input to Equation 1.

¹ Defined as Equation 2-47 in "Buoyant Line and Point Source (BLP) Dispersion Model User's Guide," PB81-164642, July 1980.

2.0 MONITORING PROTOCOL

2.1 BF ROOF MONITOR

Field tests were run at Blast Furnace No. 3 from December 29, 1993 through January 4, 1994. A single thermocouple and wind speed sensor were placed in the roof monitor of Blast Furnace No. 3. Temperature data were adequate from this test, but the wind sensor and recorder were not well matched electronically. Revised testing included the installation of a ducted velocity sensor and thermocouple at four locations in the roof monitor of Blast Furnace No. 5 as shown in Figure A-1. Output signals from the sensors were read every 15 seconds and recorded. The test was run for approximately one week. A video camera was directed toward the south side of the casthouse for the duration of the study.

2.2 BOF ROOF MONITOR

Field tests were run at the BOF from March 22 through March 25, 1994. A single thermocouple was placed in the roof monitor above the vessel and was recorded continuously during the test period. A hot-wire anemometer was used during a portion of the study with its output logged manually. Revised testing used an expanded version of that procedure by placing a total of seven thermocouples/ducted anemometers in the roof monitor. Results were recorded continuously every 15 seconds and referenced to the BOF clock to understand how plant operations influenced the exhaust temperature and speed.

The seven sensors were spaced to measure the influence of a single vessel. Location of the sensors is shown in Figure A-2. A video camera was directed toward the east roof monitor for the duration of the study. The sensors were spaced at 9.2 meter intervals.

APPENDIX A, Page A-4

2.3 COKE BATTERIES

Initial testing at the batteries in Follansbee was done using colored smoke recorded against a contrasting background. Results from that effort showed significant plume rise but interpretation of the video tape was difficult. Since the ducted wind sensors had worked so well at the BOF RM and the BF RM, we decided to use the ducted wind sensors to measure the vertical wind speed above Battery No. 8 and to also measure air temperature. Sensors were located at four sites shown in Figure A-3 at the coke oven gas (COG) cross-over pipes. The wind sensor was pointed toward the top of the battery. This orientation exposed the sensor bearings to moisture during rainfall events. We removed the sensors during the midnight to 8:00 a.m. period to protect them from rain and reinstalled at 8:00 a.m. the next morning.

An end view of the sensor locations is shown in Figure A-4. Sensors were located approximately 8.5 meters above the top of the battery. Significantly higher vertical velocities were noted when the sensors were located out between the standpipes and doors. However, we could not leave the sensors there because the heat from the standpipes would destroy the velocity sensor.

3.0 RESULTS

3.1 BLAST FURNACE #5

Testing was initiated on August 17, 1995 with sensors on only the south side of the casthouse. Testing was suspended until sensors were available to install in the north side of the casthouse. During that interim period, the blast furnace personnel removed the runner cover to do maintenance work. Temperatures in the casthouse roof monitor were such that the plastic shrouds on the velocity meters were melted as was the insulation on the sensor cables. Damaged equipment was replaced and testing began on September 2 and terminated on September 8.

Data were recorded every 15 seconds and processed for hourly averages. The hourly average data are presented in Table A-1. Missing data are designated as -1. Gaps in the data occurred due to computer failure. Two computers were damaged by the magnetic fields in the control room before the problem was identified.

Meteorological data from the West Virginia DEP tower are also listed in Table A-1 and forms the base temperatures against which the four sensors are compared. A summary of the data in Table A-1 is listed below:

		<u>Diff (F°)</u>	Speed (FPM)
Site	1	40.19	313.60
Site	2	43.73	322.62
Site	3	40.36	341.74
Site	4	38.17	322.60
	Mean	40.61	325.14

The 115 hours of testing resulted in a mean temperature difference of 40.61 F° and a mean exhaust speed of 325.14 feet per minute.

Ohio EPA reviewed earlier calculations of plume rise. Ohio EPA wanted plume rise (F') calculated for each pair of temperature

HOURLY SUMMARY OF BLAST FURNACE NO. 5 CASTHOUSE PLUME RISE RESULTS

		<u>Folla</u>	ansbee	30 m	sit	e 1	Sit	e 2	Sit	e 3	Sit	e 4	
<u>Date</u>	Hr	tion (Deg)	Speed (MPH)	Temp (°F)	Diff (F°)	Speed (FPM)	Diff (F°)	Speed (FPM)	Diff (F°)	Speed (FPM)	Diff (F°)	Speed (FPM)	F' (m ⁴ /s ³)
Date 09/02/95 09/02/95 09/02/95 09/02/95 09/02/95 09/02/95 09/02/95 09/03/95 09/03/95 09/03/95 09/03/95 09/03/95 09/03/95 09/03/95 09/03/95 09/03/95 09/03/95 09/03/95 09/03/95 09/03/95 09/03/95 09/03/95 09/03/95 09/03/95 09/03/95 09/03/95	Hr 1678901234567901123456790111234567901	tion (Deg) 339.7 336.2 333.9 64.2 113.2 130.6 124.1 134.5 137.4 131.2 134.0 116.4 104.1 128.1 154.5 162.3 2013.3 267.9 277.8 279.2 278.3 290.0 147.4	Speed (MPH) 8.7 8.152.3.15 3.6181092131932825671057 8.52.56.181057 8.52.56.181057 8.52.56.7 8.55.57 8.	Temp 74.68 73.429 69.600 57.601 53.429 53.401 53.401 52.31 50.862 51.307 50.862 51.307 79.431 50.862 51.307 79.431 79.431 79.431 79.431 79.431 79.931 79.931 79.931 79.931 79.432 777.4469 464 67	$\begin{array}{c} D1^{\text{F}\circ}\\ (F^{\circ})\\ 279.99.14\\ 439.9.1\\ 449.17\\ 449.37\\ 439.37\\ 439.37\\ 439.37\\ 7.98\\ 377.9\\ 377.9\\ 377.9\\ 377.9\\ 377.9\\ 377.9\\ 377.9\\ 377.9\\ 300.3\\ 115\\ 442.1\\ 577.9\\ 377.9\\ 377.9\\ 300.3\\ 115\\ 377.9\\ 300.3\\ 115\\ 377.9\\ 300.3\\ 115\\ 377.9\\ 300.3\\ 300.3\\ 115\\ 300.3\\ 30$	Speed (FPM) 290 340 349 311 317 322 306 340 300 356 294 327 287 352 286 272 287 352 286 272 299 219 219 219 219 310 327 340 327 340 327 340 327	$\begin{array}{c} \text{Dir}\\ \text{Sigma}\\ \text$	Speed (FPM) 240 333 368 336 340 329 359 314 307 359 314 304 329 359 314 304 327 351 285 362 267 251 267 257 239 240 213 247 310 329 358 343 58 343 58 343	Dir (F°) 31.32 40.29 45.29 45.29 45.29 45.29 45.29 45.21 40.21 40.21 40.21 40.21 40.23 41.29 37.77 38.31 47.19 38.99 41.29 38.99 41.29 38.99 41.29 38.22 39.21 40.21 20.21 40.21 40.21 40.22 30.21 40.22 40 40 40.22 40 40 40 40 40 40 40 40 40 40 40	Speed (FPM) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	D1FF 30.4 37.1 42.4 37.1 42.4 38.7 438.7 38.6 36.3 38.6 37.1 438.7 438.7 41.9 38.6 37.1 38.6 37.5 38.6 37.5 38.6 37.5 38.6 37.5 38.6 37.5 38.6 37.5 38.7 38.7 37.5 38.7 38.7 37.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.8 37.3 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7	Speed (FPM) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	(m ⁴ /s ³) 17.7 29.6 31.0 32.4 30.9 33.8 29.0 35.1 27.9 37.1 26.5 31.7 31.0 26.1 37.6 25.5 16.1 17.2 19.7 13.7 12.0 11.6 16.4 19.1 25.9 28.0 31.6 25.2 36.2 36.2 37.6 25.9 28.0 31.6 25.9 28.0 31.6 25.9 28.0 31.6 25.9 28.0 31.6 25.9 28.0 31.6 25.9 28.0 31.6 25.9 28.0 31.6 25.9 28.0 31.6 25.9 28.0 31.7 27.9 37.1 26.5 31.7 31.0 26.1 37.6 25.5 16.1 17.2 19.7 12.6 31.7 31.0 26.1 37.6 25.5 31.7 31.0 26.5 31.7 31.0 26.1 37.6 25.5 25.9 28.0 31.6 25.9 28.0 31.6 25.9 28.0 31.6 25.9 28.0 31.6 25.9 28.0 31.6 25.9 28.0 31.6 25.9 28.0 31.6 25.9 28.0 31.6 25.9 28.0 31.6 25.9 28.0 31.6 25.9 28.0 31.6 25.9 28.0 31.6 25.9 28.0 31.6 25.9 28.0 31.6 28.0 31.6 25.9 28.0 31.6 25.9 28.0 31.6 25.9 28.0 31.6 25.2 28.0 31.6 25.9 28.0 31.6 25.9 28.0 31.6 25.2 26.5 27.9 28.0 31.6 25.2 28.0 31.6 25.2 28.0 31.6 25.2 25.9 28.0 31.6 25.2 27.9 28.0 31.6 25.2 26.5 27.9 28.0 31.6 25.2 26.5 27.6 27.6 27.9 28.0 31.6 27.2 28.0 31.6 27.2 28.0 31.6 27.2 28.0 31.6 27.2 28.0 31.6 32.2 36.0 31.6 32.2 36.0 31.6 32.2 36.0 31.6 32.2 36.0 31.6 32.2 36.0 31.6 32.2 36.0 31.6 32.2 36.0 31.6 32.2 36.0 31.6 32.2 36.0 31.6 32.2 36.0 31.6 32.2 36.0 31.6 32.2 36.0 31.6 32.2 36.0 31.6 32.2 36.0 31.6 37.7 37.7 37.7 37.7 37.7
09/03/95 09/03/95 09/03/95 09/04/95 09/04/95 09/04/95 09/04/95 09/04/95 09/04/95	21 22 23 0 1 2 3 4 5 6	147.4 135.0 141.0 142.6 132.9 143.7 150.2 134.5 127.0 138.0	3.9 3.3 4.0 3.8 3.6 3.8 4.2 3.8 3.7 3.9	67.99 65.36 62.69 60.91 61.33 60.96 59.90 58.25 57.19 57.39	44.5 44.5 45.9 51.8 46.2 50.7 50.8 51.0 52.9 52.0	370 321 405 434 426 413 440 423 442 423	46.0 44.2 50.0 56.3 49.1 56.7 52.8 53.3 55.2 54.1	385 332 424 449 450 448 468 449 464 435	43.2 40.2 48.7 53.8 47.0 55.3 51.0 53.0 53.9 52.7	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1	41.3 40.1 46.3 50.8 45.9 50.7 50.8 50.3 52.7 50.3	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	36.0 30.3 43.2 51.0 45.2 49.8 50.9 49.5 53.1 49.1
09/04/95 09/04/95 09/04/95 09/04/95 09/04/95 09/04/95 09/04/95 09/04/95 09/04/95 09/04/95 09/04/95 09/04/95 09/04/95 09/04/95 09/05/95 09/05/95 09/05/95 09/05/95 09/05/95	10 11 12 14 15 16 17 18 9 20 22 23 0 12 34 56 7	$\begin{array}{c} 318.6\\ 357.3\\ 3.8\\ 351.4\\ 341.9\\ 338.5\\ 352.9\\ 346.1\\ 354.8\\ 12.0\\ 4.9\\ 11.9\\ 46.6\\ 97.6\\ 955.8\\ 100.8\\ 24.0\\ 23.1\\ 12.2\\ 19.5\\ 5.8\end{array}$	8.706807835666250530994882 17.8876543.233.9994882	75.28 77.05 78.95 80.92 80.19 80.47 78.79 73.57 62.24 60.58 57.82 53.55 52.48 50.23 50.23 50.23 50.57 54.77	50.70822952131706288395024 402.295213170628395024 43349.13170628395024 4009.520000000000000000000000000000000000	328 362 2771 386 383 390 321 348 323 3290 311 2714 306 327 3380 327 3380 327 3380 327 3380 327	45.9780706326981085878619 44430706326981085878619	355 3892 3685 3892 3685 3993 3598 3598 3598 3593 3598 3593 33568 33568 33568 33568 33568 33568 333568 333568 333568 349	43.1 33.3 49.5 38.3 49.5 33.9 42.3 37.6 50.6 40.4 43.0 37.6 50.6 40.4 43.0 44.0 9 40.4 42.7 41.7 36.5	352 394 3366 413 417 388 313 3200 386 3341 353 3266 3341 3566 328 329 349 349 349 349 349	40.4 39.05.7 345.8 42.0 38.0 442.3 38.0 445.5 38.0 40.5 38.0 40.5 38.0 40.5 38.0 38.0 40.5 38.0 38.0 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	33.4 35.6 27.4 40.1 36.8 36.7 23.4 26.6 42.2 30.0 29.9 32.0 34.3 29.4 32.2 33.4 32.2 32.3 43.2

TABLE A-1 (Continued)

		_Folla	<u>ansbee</u>	<u>30 m</u>									
		Direc	-		<u>Sit</u>	<u>e 1</u>	Sit	<u>:e 2</u>	Sit	<u>e 3</u>	<u>Sit</u>	<u>e 4</u>	
		tion	Speed	Temp	Diff	Speed	Diff	Speed	Diff	Speed	Diff	Speed	F'
Date	Hr	(Deg)	(MPH)	(°FĪ	(F°)	(FPM)	(F°)	(FPM)	(F°)	(FPM)	(F°)	(FPM)	(m^{4}/s^{3})
			·										
09/05/95	8	289.0	3.0	61.48	45.7	389	43.7	407	42.8	384	41.5	-1	37.7
09/06/95	11	220.6	4.8	83.86	33.1	214	34.1	193	29.0	328	26.0	-1	16.2
09/06/95	12	166 4	6 0	86 14	23.7	170	27.5	194	27.1	321	22.0	- 3	12.5
09/06/95	12	142 2	5.3	86 57	24 1	148	30 5	150	30.0	269	23.0	- 7	11.1
09/06/95	14	121 6	5.5	87 30	29.2	162	32.5	178	30.1	291	24 3	-1	13.2
09/06/95	10	121.0	2.5	88 00	25.2	222	36 0	229	36 5	377	33 1	_1	20.8
09/06/95	10	233.2	0.0	00.00	20.2	224	20.0	106	21 2	257	20.5	- 1	17 0
09/06/95	10	241.1	5.9	80.00	29.0	214	34.3	170	36.9	266	29.0	-1	24 2
09/06/95	17	242.6	5.0	84.85	36.8	203	40.1	2//	20.2	200	30.1	-1	24.2
09/06/95	18	97.2	3.0	75.92	39.8	339	44.8	354	42.7	357	40.1	-1	31.6
09/06/95	19	146.0	4.1	70.07	37.5	298	39.4	314	38.8	322	37.6	-1	26.2
09/06/95	20	139.9	4.4	67.46	43.8	307	44.1	324	42.0	331	41 2	-1	30.0
09/06/95	22	136.8	3.8	61.94	43.2	288	44.4	299).I	31	3,		28.0
09/06/95	23	134.3	4.2	61.04	36.7	250	38.4	261	4. د.	30	3		22.1
09/07/95	0	132.5	3.8	60.17	43.3	281	44.0	297	39.6	329	. 3	۰.	27.7
09/07/95	1	144.6	4.4	59.38	35.9	264	35.4	284	34.1	311	9. د ک	-1	22.4
09/07/95	2	138.4	4.7	58.22	40.8	285	43.1	285	39.9	308	37.8	-1	26.4
09/07/95	3	143.2	4.6	57.61	39.1	270	39.4	281	35.9	290	35.2	-1	23.5
09/07/95	4	148.7	5.2	58.39	39.3	293	37.2	315	36.2	321	35.7	-1	25.8
09/07/95	5	148.2	5.5	58.24	40.7	317	41.9	335	38.2	329	37.1	-1	28.9
09/07/95	Ē	156.2	5.1	58.98	38.6	340	40.4	377	39.5	348	37.8	-1	31.0
09/07/05	ž	167 5	5 0	62 63	50.9	361	47.8	403	49.4	372	48.9	-1	40.6
09/07/95		172 0	9.4	70 65	33 9	296	37 A	301	46 5	442	42.3	-1	30.3
09/07/95	~	170 3	10.1	75 26	14 1	103	14 9	210	28.4	411	26 5	-1	13 1
09/07/95	10	170.5	10.0	73.20	19.1	164	17.0	173	20.4	297	22.5	388	10 4
09/07/95	10	1/6.9	8.9	11.92	10.4	104	15.0	100	24.4	307	22.0	200	12 0
09/07/95	11	197.1	8.5	80.40	13.8	182	15.3	180	24.0	300	23.7	304	16.0
09/07/95	12	235.8	7.2	82.56	23.0	260	20.2	240	27.7	340	25.0	330	17.2
09/07/95	13	267.7	8.4	82.44	22.1	284	28.4	439	21.1	341	20.0	343	11.2
09/07/95	14	242.8	6.8	81.91	65.1	429	70.3	435	74.0	459	00.2	4/6	63.3
09/07/95	15	220.6	7.0	80.48	39.9	265	45.6	272	43.1	359	40.8	365	28.5
09/07/95	16	228.6	6.3	79.47	42.5	295	45.4	308	44.2	373	43.1	370	31.5
09/07/95	17	286.6	6.1	77.03	33.0	340	49.2	332	39.6	359	32.1	365	29.1
09/07/95	18	21.3	3.5	73.99	37.5	320	46.5	295	38.4	332	33.4	332	27.1
09/07/95	19	77.3	3.0	70.63	39.6	352	45.9	358	40.3	347	37.8	349	31.4
09/07/95	20	104.7	3.0	69.35	34.7	202	38.5	283	32.6	305	32.0	310	22.5
09/07/95	21	145.7	3.6	67.95	43.6	346	48.0	353	40.5	352	37.3	358	32.6
09/07/95	22	52.8	4.2	65.63	40.0	279	43.4	282	37.4	309	34.7	311	25.3
09/07/95	23	35.2	3.3	64.44	37.2	293	39.8	309	35.5	325	34.2	319	25.4
09/08/95	0	31.6	4.1	63.01	43.5	332	47.1	345	41.4	346	39.1	345	32.2
09/08/95	1	14.7	4.3	62.38	38.1	300	41.0	316	36.5	324	34.8	317	26.3
09/08/95	2	2.6	5.4	62.45	42.2	326	48.3	335	43.1	320	39.6	323	31.1
09/08/95	3	356.2	3.9	62.45	46.2	370	50.5	401	45.5	395	45.0	382	39.7
09/08/95	4	351 2	4 5	62.69	47.6	395	53.8	411	48.8	389	46.7	397	42.7
09/08/95	Ē	359 9	3 7	63 01	42 2	344	47.0	345	42.7	284	40.0	315	30.5
09/08/95	5	345 5	4 8	62 94	34 7	311	38.8	305	35.9	259	33.9	288	23.2
09/08/95	ž	223.3.	2.9	64 72	39.2	331	43 1	337	40.8	307	37.4	312	28.5
09/08/95		1 5	5.0	66 61	20 1	343	30 6	375	39 6	372	37 9	340	30.8
00/00/20	8	2.2	5.5	68 67	40 1	222	45 6	334	40 1	321	35 9	307	28.4
03/08/95	10	1. د ٦ ٨	4.4 2 E	70 10	40.1	322	44 7	741	41 1	315	36.6	311	28 6
09/08/95	11	4.0	5.5	70.40	40.0	345	47 7	320	45 0	354	42 0	343	34 1
09/08/95	11	349.5	0.3	71.31	40,4	340	20.1	217	35.0	201	21 0	304	23.1
09/08/95	12	354.5	د.د	13.45	35./	202	33.0	211	33.0	201	20.0	203	23.4
09/08/95	13	280.1	4.1	/6.55	35.5	307	35.8	323	34.2	277	21 0	302	23.U 22.2
09/08/95	14	316.1	4.6	17.72	34.7	313	33.0	240	34.± 27 1	3 <u>43</u> 225	20 4	272	43.3 22 1
09/08/95	15	340.8	4.3	/8.42	35.5	3 ∠ 0	34.9	332	2.15	345	30.4	343	23.1
09/08/95	16	0.5	6.5	76.24	31.4	301	32.6	318	د. ۲ د	294	30.3	2/8	20.5
09/08/95	17	4.0	6.3	73.65	28.1	280	30.2	277	31.1	250	29.0	249	17.3

difference and velocity data and those values averaged rather than using mean temperature difference and mean velocity as input to the equation. This suggested procedure was followed using a source length of 25 meters and source height of 1 meter for each matched pair of data. Results are listed in the last column of Table A-1.

The F' determined from the September 2 through September 8, 1995 testing reported in Table A-1 was $28.96 \text{ m}^4/\text{s}^3$ and compares favorably to the F' of $31.20 \text{ m}^4/\text{s}^3$ measured at the No. 3 casthouse over the period December 29, 1993 through January 5, 1994. The BLP input files are presented as Table A-2 for BF No. 1 and Table A-3 for BF No. 5.

3.2 BOF ROOF MONITOR

Testing was initiated on August 17 and concluded on August 28. Data were recorded every 15 seconds and processed for hourly averages. The hourly average data are presented in Table A-4. Meteorological data from the West Virginia DEP tower are also listed in Table A-4 and form the base temperature against which the seven sensors are compared. A summary of the data in Table A-4 is listed below:

		<u>D</u> :	<u>iff (F°)</u>	<u>Speed (FPM)</u>
	Site 1		23.0	542.4
	Site 2		24.1	579.1
	Site 3		21.7	513.2
	Site 4		17.6	518.5
	Site 5		16.4	456.4
	Site 6		23.5	385.4
	Site 7		17.7	305.1
Mean	for East	Side	20.6	521.9
Mean	for West	Side	20.6	345.3

BLP INPUT FILE FOR BLAST FURNACE NO. 1

WPSC BF #1 Cast House Roof Monitor emissions at 1 g/s &GEN NLINES=1 NREC=10LPART=.TRUE. LCOMPR=.TRUE. LINPUT=.TRUE. LUTMS=.TRUE. LTRANS=.FALSE. 1 &RISE L=25.0 HB=14.9 WB=9.0WM=1.0 DX=100. FPRIME=29.0 1 **&METIN** LMETIN=.FALSE. IDSURF=94823 IYSURF=89 IDUPER=94823 IYUPER=89 ZMEAS=30.0 IDELS=1 IRU=1 IDAYS=365*1,0 7 &CALC / &OUTPUT IPCL=1,0,0,0,0,0,0,0,0,0,1 / 196. 533000. 4466500. 4466000. 196. 533000. 533000. 4466750. 196. 529000. 4472000. 335. 201. 532750. 4467000. 201. 532750. 4466750. 533000. 4466250. 196. 533000. 4465750. 196. 532750. 4465500. 216. 532500. 4465750. 280. 14.9 1.00 201.2 532677.0 4466224.0 532702.0 4466224.0

BLP INPUT FILE FOR BLAST FURNACE NO. 5

WPSC BF #5 Cast House Roof Monitor emissions at 1 g/s &GEN NLINES=1 NREC=10 LPART=.TRUE. LCOMPR=.TRUE. LINPUT=.TRUE. LUTMS=.TRUE. LTRANS=.FALSE. 1 &RISE L=25.0 HB=12.2 WB=9.0WM=1.0DX=100. FPRIME=29.0 / **&METIN** LMETIN=.FALSE. IDSURF=94823 IYSURF=89 IDUPER=94823 IYUPER=89 ZMEAS=30.0 IDELS=1IRU=1 IDAYS=365*1,0 / &CALC / &OUTPUT IPCL=1,0,0,0,0,0,0,0,0,0,1 7 196. 533000. 4466500. 533000. 4466000. 196. 196. 533000. 4466750. 529000. 4472000. 335. 532750. 4467000. 201. 532750. 4466750. 201. 533000. 4466250. 196. 533000. 4465750. 196. 216. 532750. 4465500. 280. 532500. 4465750. 12.2 1.00 204.2 533615.0 4463076.0 533640.0 4463076.0

HOURLY SUMMARY OF BASIC OXYGEN FURNACE ROOF MONITOR PLUME RISE RESULTS

	Vest RM	47.0	53.6	58.2	0.69	61.3	6.59	84.3	66.4	102.0	0.66	2.11	0.00	000	88.3	85.2	84.4	87.9	38.4	40.7	29.5	20.0	65.3	88.6	131.6	0 · v v ·	# C	- 70T	107.9	0.601	126.0	129.0	126.2	114.5	101	0 U 1 U 1 U 1 U 1 U 1 U 1 U	9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4	69.3	88.5	84.2	84.6	86.2	109.8	5.22T	121.0
	<u>F' (m</u> East RM	155.4	169.0	168.5	166.4	168.1	158.0	139.0	132.9	132.0	126.8		7-211	6	97.8	86.9	76.1	72.4	89.5	97.9	91.9	105.8	93.8	101.4	46.8	N		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	135.1	141.8	172.3	186.7	187.7	166.9	0. 1 1 1		1.26	89.57	72.2	72.0	70.2	95.1	121.4	8.87T	131.5
م د	Speed (FPM)	212	209	184	232	226	221	209	171	259	243		0 C 7 C	101	289	345	359	362	180	173	162	166	279	555	462			107	268	288	269	273	259	254	240	4 U 7 4 M	222	370	463	364	365	334	323	977 977 977	357
t i s		ମ ଅ	11.2	15.0	19.2	19.2	18.0	18.1	17.3	19.1	17.5	₩. ₩.		11.2	13.7	13.0	12.2	12.7	10.9	12.0	8	14.2	13.6	16.1	16.7			13.0	1,11	18.1	20.9	20.2	20.9	18.8		40	10	7.6	9.1	9.2	9.S	11.4	13.2	14. 12.	15.4
y a	Speed (FPM)	367	286	259	297	305	329	324	286	157	351		5 7 5 5 7 7 5	604 7	383	455	452	450	260	240	271	243	290	349	595			5 7 7 7 7 7 7 7	382	359	368	366	377	374	9 L C	200	462	428	506	470	441	435	436	440 707	449
U	LE CIEL	12.1	16.0	18.1	23.4	24.2	25.0	21.6	19.1	23.8	21.8	21.2	4.07 4.00 4.00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	19.2	13.7	14.1	14.9	11.3	13.1	8.7	17.2	15.8	17.1	16.9	1 0 F	0 C	- 0 0 C	24.4	23.9	28.6	30.3	28.6	26.5	2.92	7.07	17.0	14.3	14.1	16.0	17.4	17.4	24.4	20.02	23.5
ب م	Speed (FPM)	535	543	493	461	457	442	435	441	426	434	4 T 7	9 T T		403	421	417	402	455	418	488	450	423	372	234	7 N 1 N	1 1 1 1 1 1	4 / 5	4.4	422	429	444	444	428	424	1004	356	348	348	414	372	437	462	434	440
U	Diff	15.0	17.1	16.2	16.7	17.2	15.3	14.5	14.0	14.8	14.2	7.7	4. 61 0. 4	14	13.6	13.0	10.3	9.6	9.6	11.4	10.5	12.4	13.5	16.3	11.5	0.01 1.01		0.1 1.7	14.6	14.4	16.3	17.1	16.9	15.9	15.8 8.7	0.01	12.1	6.1	10.9	7.0	7.0	10.3	10.8	5.0 1 1 1	12.6
4	Speed (FPM)	596	290	546	506	498	499	50 4	511	485	495	8	904 7 7 3	360	430	446	447	434	524	485	556	510	464	664	280	0 L 1 L 2	0 C	222	498	481	485	508	515	496	10 10 10 10 10 10 10 10 10 10 10 10 10 1	0 0 0 4 1	400	391	392	469	416	479	518	4 Q F	495
ŭ	Diff (F)	14.6	17.7	17.5	17.5	17.9	16.8	16.6	15.7	16.7	15.4	1.5.4 4.6	14.C	6.6	13.4	12.5	10.3	9.8	10.0	11.7	11.0	13.0	13.4	16.3	6.11 6.1			1 9 1 9 1 7 9 1	10.01	15.8	17.2	18.6	18.9	17.8		C. 41	121	6.1	10.3	8.8	8.4	10.6	5.11 5.11	11.4 11.4	14.1
~ 4	Speed (FPM)	620	600	575	546	529	523	203	518	4.7.4		4 4 4	-10 -10 #17	348	423	407	420	414	538	506	268	510	441	389	228			200	497	490	513	518	523	200	484	474	182	391	382	460	422	471	517	443	493
Ű		13.7	16.8	18.6	20.7	22.5	21.2	17.8	10	1.' 1		1.01	4 U 7 U		14.3	13.0	11.1	10.9	11.3	13.2	10.2	13.6	13.6	16.3	11.		- C - C - T		1.1	19.1	22.0	23.3	23.5	51.5		- u - u - v	- -		12.4	10.0	10.3	11.9	50,0		16.1
4 0	Speed (FPM)	716	629	651	617	00 i 10 i 10 i	601	575	593	242	552	0 0 1 0	110	580 70	467	440	491	476	611	582	629	576	482	415	266	00 00 00 00	0 1	4 W 0 C 0 V	222	553	602	592	592	261		0 # C	416	426	387	499	. 468	516	200 200 200 200	000	238
5	E E	18.0	19.0	21.3	22,9	23.9	23.6	20.1	19.1	20.3	19.0		ο. - α - Γ	- 9	15.6	13.6	12.3	12.9	12.8	14.3	10.4	15.1	14.5	17.3	11.5	- - - - - - -		5 - 0 - 7 - 0 -	- 6 - 6 - 1	21.8	26.2	27.2	27.6	24.6	47	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11.	13.7	14,0	12.8	14.1	15.4	E. 61	1.12	21.4
- a	Speed (FPM)	602	556	562	530	507	510	478	487	460	467		404	1648	407	1 396	415	1416	516	491	525	476	384	332	315	107	1 1 1 0 7 1 7	44.4	474	1 490	544	2 567	9 566	221	7 U U U U		1 402	348	379	2 457	1 427	455	222		1921
τ I		19.1	50.2	1 20.6	20.5	20	61	11	191	9	91				1	12.	20.5	9. 9. 0.	10.1	212.	107		21 21	17							1 22	24.	2	222			22		ີ ຊີ ເ	1	י. בן ס	9 16.	12.00		52 52
s 30 m	Temp	82.43	0.67	77.33	75.34	73.3	72.21	11.9	72.51	1.1.1	272	ñ .	6 a	20	73.8	78.0	82.5	87.10	88.4	87.7	66	83.2	88 88	85.3	82.9		10	0 0 0 0 0 0	8.9	67.0	65.6	64.7	63.7	63.7	30		77.4	83.7	86.9	89.2	90.3	90.7	92.5	2.2	90.2
anspec	(MPH)	8.2	9.0	4.0	4.3	4.6	3.0	80 77		8 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				* m	4.0	0.0	3,1	14.4	9.9 8	2.2	6.7		0 · · ·	ری ارج	- 4 - 4	0 0 0 0 0 0	°. ₽ C	- a v r	200		3.3	5.3	1 2.5			9 C 4 C 9 C		19 19	2 7.3	7 8.3	1 7.8	. e. 8	0.	ສະມ ດີ ດີ	5 . 4 5 . 4
Fol.	Deg)	348.6	9 337.E	р. С. С.	L 6.1	9.9 9	44.4	34.0	112.0	20 20 20	ເຼັນ ເອັນ ອີນ			100	359.	36.3	0 83.4	1 171.1	2 238.3	3 276.(1 320.	350.0	-1	7 24.			*		105		1 31.5	25.1	. <u>6</u>	4 67.	22			9 124.(0 131.	1 166.	2 182.	3 194 ·	190.1		- 98 - 196
	H	35 15	11	35 2(95 2.	95 2.	95	92	ហ	95	ن م		0 U	ן ער ער	5	ີ ເຄ	95 1(95 1.	95 1.	95 1.	95 1.	95	95 J.	95 95	95 1 - 1 - 1 2 - 1 - 1		N 0 0 L	0 U 0 V 0 V	10	ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ เ เ เ เ เ	95	95	95	ភ្នំ	n r		יי היי מי	о С С С С С С	95 1	95 L.	95 1.	95 1.	95	2 2 1 1	950 1 - 1 - 1 2 - 1 - 1 - 1 - 1 2 -
	Date	9/17/80	08/17/5	08/17/5	08/11/5	08/17/5	08/17/5	08/18/	08/18/	08/18/	08/18/2	781/80	101/00/	04/18/	08/18/5	08/18/	08/18/5	08/18/	08/18/	08/18/	08/18/	08/18/	08/18/	08/18/	08/18/	/8T/80	/8T/80	/2T/20	08/18/	08/19/	08/19/	08/19/	08/19/	08/19/	08/19/	/ GT/ GO	01/01/00	08/19/	08/19/	08/19/	08/19/	08/19/	08/19/	/6T/80	08/19/

TABLE A-4 (Continued)

	/s ⁾) West RM	163.7	171.1	185.1	7-661	178.6	181.4	183.3	179.8	170.2	157.4	149.8	129.8	131.8	140.3	111.9	102.4	114.6	114.9		7.00 1.00	0 0 0 0 0	110.9	101.6	103.8	92.3	87.8	88.7	79.8	105.2	95.8	86.8	97.9	C . 1	3 C 	0.76	73.6	54.4	24.1	24.8	28.7	1.14	40.7	45.2	46.9
	F' (m ¹ East RM	168.1	174.2	232.2	2720 9	222.2	231.4	221.7	224.5	228.4	207.6	210.2	195.1	178.2	173.7	172.5	142.9	130.8	140.1	#`u ∩u #`r	0.02T	0.401	178.3	167.6	166.4	163.5	164.5	173.6	187.2	204.3	213.1	213.3	223.7	193.2	L/2/1	152.2	134.9	157.1	109.0	0.99	125.9	175.0	184.1	197.4	228.7
г (4	FER Speed	4 411	8 408	5 386	0 44 0 0 416	0 387	.7 388	4 408	4 389	.1 366	-384 5775 777	.7 369	.2 371	.5 425	.2 455	.1 383	.4 347	104 Z.	.6 388	440 V.	0070 r	000 C	592 6	0 277	.3 310	.3 271	.0 257	.8 274	.2 211	.8 279	2 208	.4 203	.2 210	.4 209	8/7 8.	. 1 283	.8 284	.8 185	.1 167	.4 258	.0 273 5 219	010 010	.2 179	.4 117	.7 99 .7 151
Ū		12	12	24.	и 1 1 1	200	23	23.	23	52	0.0	, et	16	14.	14	14 14	ц.	7	ц.	1:	12	- - -	5	18	17	17	16	15	11		6	18	20	1	1		12	12	ס	۰ ف	ວັນ	n c	19	13	14
	Speed (FPM)	490	512	503	1005	494	488	490	482	467	465 473	465	466	513	531	455	458	5 T 8	513	4 4 4 7 7 7	0000	9 2 C 7 2 C	361	351	372	365	339	363	308	68 C	337	313	335	327	4/5	388	342	287	200	281	294 264	4 8 4 4 8 1	281	252	250 278
	Diff (F°)	25.5	25.8	28.6	4. 87 4. 18 7. 14	28.2	28.5	27.9	28.5	29.2	26.0	25.2	22.7	21.0	22.0	20.0	19.2	7.81 7.61	5. 6T	7. 0 7. 0	0. L 0. L	4.00	25.6	23.0	21.0	19.0	20.9	19.0	21.3	21.6	24.8	23.6	24.7	23.5	21.2	21.0	17.0	16.5	7.5	5.2	4-п 8-с	4.0	12.3	17.7	19.2
u	speed (FPM)	450	462	513	4 7 4 4 8 6	475	479	474	490	497	469 471	498	478	489	482	508	495	4/4	479	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4400	4 7 7 1 0 1 0	466	424	459	454	449	471	474	507	485	474	474	441	448	458	426	479	470	476	556 733	0 4 C	588	549	535 467
	Diff :	18.9	20.7	22.7	24.0	22.4	22.5	22.0	21.5	20.2	19.8 19.8	19.2	16.0	14.4	14.1	14.2	12.8			0 0 7 7		13.8	18.0	16.8	17.0	16.6	14.7	16.2	15.5	17.9 17.9	16.8	16.8	17.8	14.0	1.01	13.1	12.1	13.8	9.2	9.5	12.6 14.8	0. FT	15.8	18.2	21.0
•	r FPM)	499	200	586	000 848	529	530	525	549	550	0 T 1	558	543	540	532	575	554	120	440	# C	200	45.9	516	485	521	522	520	554	554	580	569	564	564	541	220	512	482	557	551	547	636 71 E	100	670	620	599 538
4 1 1	iff S (F°)	6	0.1	б 0	4 7 1 7	10	3.2	2.7	1.2			i U U	6.9	4.7	2.0	4.4	~ ~			1 1 1		1 00		0.0	7.4	1.4	L6.3	L6.5	- 2	00	. 8	18.7	1.0	0.0	2 0 0 0		14.5	15.5	10.5	1.1	<u> </u>	. c	12.2	L8.4	21.7
	ja gegi	89	0.0	200	- m - m	181	93 2	03	22	0.0	14 77	12	24 1	13	61	22	50			*	0 4 0 4		29		24	12	50	39	48		150	75	64	ക			65	40	81 3	81		ν α 1 τ	100	45 1	25
		4	- 1	4. 9.0	0 4 0 4	2 2 2	0.	ي ۳.	2	0,0	ο ο α	5	-1	.1 5	ы 10	4	~	- - -		* * n :	* ¥	- 4	14	ю 0	5	.15	05	5	ທີ່ ວ່	ທີ່ຍ ຄຸກ	ក្រ	5	ы. В	ທ ດາດ 	N U N U	* 4	4	.5		۰ د	9 C	• •		0.1 6	2.4
		20	55	50	200	50	29	26	26	26	40	33	23	21	55	19	~ \ 	ο (9 F	4 C N 7	 -		10	59	0	19	21	19	53		10	52	27	50	7 0	10	10	20	53	7	32	1	12	19	262
c c	Spee (FPM)	541	536	607	ע ע ע ע ע ע	555	544	562	575	600	5 5 7 7 7 7 7 7 7 7 7 7 7	593	587	590	586	621	569	201	5/2 7	1 I 1 I 1 I 1 I	100	10 10 10	180	575	583	575	579	607	618	645	640	650	648	643	0 0 0 0 0 0 0	540	522	611	660	660	760	4 U 8	802	728	718 643
ŭ	Diff (F°)	24.2	24.7	29.5	2 	30.4	32.8	31.0	30.7	31.5	24.6	28.6	28.0	26.0	25.1	24.5	21.7			4 7 7 7 7 7 7 7	200	100	24.7	24.2	23.2	22.3	23.5	23.0	24.9	25.8	27.0	26.4	27.5	25.9	20.0	24.2	21.7	21.7	13.3	10.5	12.1	10.01	18.8	21.7	26.2 29.6
-	Speed (FPM)	458	436	511	4 7 7 0 0 0	571	573	546	575	605	ר איר איר איר איר איר איר איר איר איר איר איר איר איר	602	614	611	608	622	579	ດ ດີ ດີ	2 L	0 th 0 th 0 th	2010	200	655	540	544	547	546	576	600	623	638 638	646	640	626	0 / 0 7 / 0	520	524	571	596	589	644 721	763	718	654	643 587
+	Diff (F°)	27.5	26.1	31.2	30.6 34 4	31.0	32.2	31.7	29.7	30.4	30.8 27.8	26.9	27.4	26.9	25.0	23.5	18.6	4.1		1.4	0.07	191	100	23.0	21.5	22.8	23.7	23.8	24.8	26.4	27.0	27.4	28.0	25.5	20.2	21.12	19.8	19.5	13.9	13.0	12.6 15.6	10	19.3	21.4	25.2
ш о	emp °F)	4.09	9.08	4.22	6.53 0.53	9.70	8.25	7.07	6.99	6.51 6.51	7.8.7 7.4	7.35	2.09	7.59	1.45	4.60	7.34		200		00.1	1 8 1	1.33	6.75	4.12	2.02	2.62	2.28	1.32	0.63	8.45	7.81	7.34	8.94		8.43	12.30	13.84	16.94	17.69	4 T. 0	1 2 4	7.45	12.88	7.25
sbee 3	APH) (HI	5.1 8	1.5		 	. 4. 6	2.9 6	3.2 6	9.6	9 V N I N	. 4 . v . v		4.4 7	5.1 7	. 5 . 9		4 4				. a		0.0	. 8. 6	3.3	3.4 7	4.0.7	4.4 7	0.4	5. 5. 6.		2.8	2.9 6	9. 9.	4 0 - 1 C		9.9	4.5	6.3	2.6	0,0 0,0	, o	10	8.5	6 9 9 9
ollan:		6.6	0	40				1.8	പ്പ	ہ ہ ה	20		3.6	0.9	0 0	- - -	9.						10	19	8.1	9.9	с. ^г	ຍ 0	0	5	20	1.2	4.0	9 9 01 0	Ч- Л с	1.0	8.4	9.7	6.2	2.4	- 	 	3.4	7.1	۰. م. م
Ĕ.	문 문 년 년	8	61	12	10	10	0 11	1 12	5 7 7	61: m	4 U 1 - 1 -	11	7 12	8 19	918	L0 19	1 20	515		81 F	1 1 2	9 F 6	81	, 6 6	20 12	21 12	22 12	23 14	012	П; нс	4 00 4 7 7	4 10	с С	י י י	2 7 7 7	0 0 1 4 m	10 34	11	12 26	13 28	Ц4 1 28 28	20 20 20 20	17 29	L8 32	19 34 20 35
	H B	/95 1	/95 1	/95 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	/95	/95	/95	/95	/95	79/ 70/ 70/	/95	/95	/95	/95	/ 95	/95	200/	- 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 1 2	יו סיק ער אין	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	. L . C . C . C	195	/95	/95 2	/95 2	/95 2	/95	26/	50/	/95	/95	/95	ע מיי מיי	56/	/95	/95	/95	/95	/95 /95	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/95	/95	. / 62 / 62
	Dat	08/19	08/19	08/19	91/80	08/19	08/20	08/20	08/20	08/20	08/20	08/20	08/20	08/20	08/20	08/20	08/20	08/20	08/20	02/20		08/20	08/20	08/20	08/20	08/20	08/20	08/20	08/21	08/21	08/21	08/21	08/21	08/21	12/20	08/21	08/21	08/21	08/21	08/21	08/21	08/21	08/21	08/21	08/21

TABLE A-4 (Continued)

	<u>/s')</u> West_RM	127.2	108.3	110.6	97.6	0. # 9 H	117.0	10.4	56.6	133.4	130.3	127.1	119.4	129.4	131.5	0.621	106.901	111.6	113.0	99'66	0.011 1.011	1.044	68.0	29.1	41.0	31.8	37.9	55.0	69.3 46.3	39.5	68.7	148.5	158.8	2.002	217.4	202.4	188.0	169.0	156.3	151.8 133.0
	F' (m' East RM	223.1 213.9	182.3	208.3	222.7	# · 0 # 7	111.7	5 02 L	193.5	198.D	210.9	220.8	211.2	213.5	211.0	4 . 7 A F	191 191	172.7	176.4	161.8	143.5	7.42T	79.6	109.7	110.6	158.8 158.3	1.991	209.4	186.8 216 0	229.7	201.8	161.6	202.5	2255 1	247.4	235.2	234.2	204.7	182.6	138.1 122.5
5	Speed (FPM)	191 161	266	255	209 265		368	121	119	247	242	8/2	239	299	284	9 F C C	281	292	280	247	262	544 252	290	158	184	155 775	194	188	199 195	126	220	06E	373	474 454	411	371	382	393	412	438 437
6it.	Diff (F°)	26.4 22.3	18.5	18.2	19.6	0.04	13.8 13.8	19.7	20.6	24.8	22.5		20.1	18.9	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		9 9 1 1	16.3	16.4	11 12 14		1910	101	7.9	11.2		9	5.0	ວ ເ ສ. ເ	10.9	15.6	21.8	23,6	25. 74	26.8	25.7	23.8	22.9	19.7	16.2 14.6
u a	Speed (FPM)	346 292	0.45 0.65	348 88	318	100	467	200	193	345	369	3 / 4 2 7 4	360	386	162	200	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	369	381	356	202	1954	364	238	265	212	368	425	406	252	258	359	380	404	478	457	449 100	424	454	477
1 T	Diff (F°)	33.5 27.7	25.5	27.3	26.2	+. 67	22.0	21.2	26.1	33.0	31.3	ν. 1. 4. α	29.4	27.8	28.6	20.07	1 1 1 1 1 1 1	25.1	25.5	25.0	24.5	207 79	15.4	10.6	12.0	0 C	10.8	15.1	20.9	15.2	20.5	28.3	29.4	2.10	34.1	34.9	32.1	28.2	25.0	25.1 21.7
u a	Speed (FPM)	418 432	450	479	450		472	4 707	468	463	471	407 407	456	458	465	407	4 7 7 7 7 7 7 7	461	482	454	437	436 474	426	442	452	454 101	582	606	598	527	458	400	429	404	455	446	460	415	422	388 398 88
÷	Diff (F°)	22.1 19.3	16.3	16.5	18.1	1.12	10.4	12.11	14.1	18.7	18.2	16.74	16.1	16.8	16.6	0.41	12.1	12.7	13.6	12.7	17.1	Τ.Ζ.Τ Π		8.9	6. 8.0	4 C	12.3	12.7	13.3	16.1	16.0	17.4	21.3	20. 20. 20. 20. 20. 20. 20. 20. 20. 20.	25.0	24.1	22.0	19.4	16.9	13.5 13.3
4	Speed (FPM)	483 509	539	546	527		514	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	563	523	527	ມ ມູນ ບູນ	526	531	536		100	519	542	509	440	47.4 47.7	461	525	534	549 603	680	682	639 703	626	557	459	477	478	508	498	1913	491	493	453 453
ŭ	Diff.	24.2 21.0	18.5	18.3	19.7	0.99	11.0	17.5	16.3	19.8	19.7	ο. 4 α	18.3	18.6	18.0	70.7 10.7	19.61	15.1	14.9	14.0	14.0	Т7.4 В.2Т	. 4	10.1	10.8	11.5 74.5	16.8	17.2	16.5	19.6	20.8	21.3	24.8	2.14 2.10 2.0	25.7	24.6	23.1	24.2	19.7	13.5 13.5
۲ •	Speed (FPM)	520 562	541	557	552	000	499	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0000	510	225	2 4 2 4 2 4 2 4	547	525	547	-1 c 7 1 7 1	0 8 0 8 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 8 0 0 8 0 0 8 0 0 8 0 0 8 00 8 0 8 0 000 8 000000	208	538	517	4 97	449	448	545	ម មូល ខ្លួន	2 A A 2 A A 2 A A	117	712	643	649	558	443	442	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	47.4	4,7 5,7 5,0	2005	474	482	440
Ű	E.	29.4 26.8	21.5	24.6	10 10 10 10 10 10 10 10 10 10 10 10 10 1	0.01	14.6		25.4	27.5	28.8		27.5	26.9	26.8	1.02	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	22.8	23.0	22.6	1.6	2.11	11.3	14.2	14.9	0.61	18	18.5	1 - 1 1 - 1	23.4	25.0	26.6	N 0 0	200	32.3	29.8	000	28.5	25.2	21.0 18.5
۰ م	Speed (FPM)	598 654	624	638	637		577	202	697	592	606	א רי א רי ע ע	642	616	617		# 0 0 # 1 0	885	609	597	8 C C C	202	499	630	628	146	817	613	117	272	638	459	44 L	104	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 C C C C C C C C C C C C C C C C C C C	0/0 74	548	554	502 493
ũ	Diff.	31.9 28.8	25.0	27.6	29.7	0.70	18.2	12.00	25.5	30.5	30.5	2 0 0 0 0 0 0	28.6	29,0	28.7	4 9 7 9 7 7 0	5 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	40	23.3	22.6	27.72	1.02	10.0	16.8	16.6 16.6	9 - 0 - 1 - 1	19.	21.0	21.4	о 10 10 10 10	25,5	26.0	000	 	34.9	33.65	21.4	27.8	25.6	19.72
-	Speed (FPM)	550 576	564	504 614	602	÷	525	0 4 0 4 0 4 0 4 0	638	539	573	604 606	605	600	608	292	ה ס ה ה ה ה	594	606	581	535	112	1460	564	1 560	0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	745	731	635	703	595	414	495		1 550	550	1 578 /	543	553	471 453
ۍ ۱		29.0	22.5	50.05	9.85		14.2	1 <u>-</u>	200	23.3	25.4			29.7	27.2				3 22.2	50.5				14.	21 21 21	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 22.4	3 24.5	5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 26.	5 26.6	52 52	17 17 17 17 17 17 17 17 17 17 17 17 17 1			8 8 8	אר ייי ייי	28.0	0 25.5	4 23 6 20.
ъ <u>30</u> п	Temp.	66.00 64.02	63.75	62.45	60.85		83.79	40 C	82.56	75.25	67.9	9 9 9 9 9 9	61.1(60.II	58.9	5 A A	5 0 5 0 6 0	1.00	57.8	57.8	60.2	91.0	80.71	64.25	6, 98	87.6	5.5	82.6	4.08	75.2	74.4	70.4	66.1	2 0 2 0 0 0 0 0	50	8. 8.	9 0 10 16 10 16	57.5	62.1	66.6 71.7
ansber	NPH)	4 2.5 2.5	0, 0, 0,	າຍ * ຕ	2 N N	# #	5.3	9 F	. U . U . U		. w			0 4.3	4 4 1 1 2		а 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	94 94	44.4	1 4.8		4 4 4 4 7 4	9 0 8 9 0 8 9 0 8	5 5.1	8 7 7 7	9 C C	101	8 10.7	0 0 0	10	4 8.8	0.8	 		, 	е. 4.	0 4 0 7 7 7	2 5.4	3 5.6	7 6.5 0 5.8
Fol	r tio	10 10 10 10	3 133	1 124.0	22		4 233	. 442 V	7 234.	8 63.	9 110.	142. 142.	128.12	3 137.	0 135.	137.	. 40 20 20 20	4 129.	5 111.	6 108.	7 115.	8 143. 0 150	- 1981 O	1 255.	2 236.	3 266.	5 322.	6 347.	348.	9 347.	0 357.	т т	2 343.	, 11, 1 , 12, 1	 	2 16.	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6353.	7 11.	8 20. 9 27.
	e H	/95 2 /95 2	1/95 2	7 7 6 2 6	795	06/1	1/95 1	1 25/3 /95 1	1 62 1	3/95 1	3/95 1	3/95 2 / 05 2	4 26/1	3/95 2	1/95	4/95	עא/ קרא (1	195	1/95	1/95	t/95	1/95	1/95 1	1/95 1	1/95 1	1/95 I	1 95 1	1/95 1	4/95 1	1 20/1	1/95 2	4/95 2	1,95 2	1/45 Z	26/5	5/95	ע אין ער ע גין אין אין אין אין אין אין אין אין אין א	5/95	5/95	5/95 5/95
	Dat	08/21 08/21	08/21	08/22	08/22	77/20	08/23	52/80 52/80	08/23	08/23	08/23	08/22	08/23	08/23	08/24	08/24	57/80	08/24	08/24	08/24	08/24	08/24	08/24	08/24	08/24	08/24	08/24	08/24	08/24	08/24	08/24	08/24	08/24	12/80	08/25	08/25	12/80	08/25	08/25	08/2

TABLE A-4 (Continued)

<u>/8³)</u>	NCEL AN	117.4	7.70T	91.5	83.5	113.1	92.3	88.4	151.5	0.1451	160.0	141.8	157.4	154.8	156.7	159.6	141.4	140.0	·	123.5	133.8	144.9	168.2	163.9	168.1	177.9	159.5) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1.00T	111.4	121.8	117.3	136.6	131.3	110.7	106.4	8.00 8.00	+.001	86.8	103.7	102.4	171.5	203.0	215.4	213.4
	THE KW	119.8	5.45 5.45	0.26	65.0	91.8	109.6	130.4	169.6	6 COC	254.4	255.3	260.6	246.9	252.4	232.1	227.4	2.11FZ		I.I.I.I	109.0	164.9	21.8.3	242.1	273.7	292.8	283.3	216.4	2.960	214.2	219.4	200.4	195.9	190.4	166.3	155.4	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2		130.9	152.7	171.9	235.2	243.3	266.8	264.8
speed	I MA I	390	د / ح 2 / 2	335	375	378	313	317	339	000 010 100	293	276	302	299	298	306	281	278	100	364	366	310	322	361	288	310	283	455 970	266	228	246	255	335	381	387	375	375	200	606	339	364	2 A C	377	390	406
Diff :		14.0	9.5T	14.0	11.9	16.1	15.3	17.8	24.6	* C	24.8	23.3	24.5	23.9	23.3	23.0	22.3	4.22	C.12	16.6	18.7	23.8	25.2	22.6	26.3	26.6	25.1	2.22	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20.2	20.5	19.3	18.2	16.9	13.6	14.6	14.0	0 0 1 4 1	14.9	17.8	19.9	78 J	28.9	29.0	28.1
e 6 Speed	LEFM)	442	416	347	377	386	293	228	356	7 4 7 4 7 4	388	371	402	400	413	418	390	387	0	448	449	401	435	445	411	433	417	4 U T	366	339	359	350	423	438	434	400	200	415 715	303	299	243	289	429	447	444
Diff		21.5	10 14 4. c	20.1	16.3	21.8	23.7	23.7	н. Ч.	- 0 - 0 - 0 - 0	1 0 1 0 1 0	31.1	30.9	30.9	31.2	31.4	29.5	29.92	0.62	22.8	23.7	28.6	31.5	32.3	34.5	33.7	32.1	20.7	0 U 0 U 0 U	28.5	29.4	28.6	26.6	23.3	20.5	20.5	C	20.0 20.0	21.9	24.5	23.8	24	35.3	36.6	35.8
speed	(WA I	403	446 900	360	352	395	404	426	403	674 70	4 93	476	493	479	502	494	504	492	-1 0 17	419	387	434	507	200	528	542	544 444	0 T C U C U	46.2	459	479	455 755	4 8 7 8 7	480	462	437	774	408 408	419	421	459	441 425	472	472	459
Sit Diff		12.8	10.4 9.0		9.2	11.6	12.7	14.3	20.6	ν.α α Γ	22.0	20.9	22.9	20.6	20.5	20.3	20.9	19.6	1.01	14.9	16.2	21.6	23.4	23.6	24.3	25.1	23.5	22.0	#. 00 7 0 0	18.6	19.5	18.5	18.1	17.2	15.4	15.9	15.8	2.01 2.01	12.9	14.8	16.7	26.6	26.1	27.2	25.4
Speed	111221	453	5 4 5 7 4 5 7 4 5	416	391	441	459	483	4554	1 C P Y	1993	571	592	591	609	683 183	579	182	000	454	432	481	564 49	567	503 903	628	0.00	າ ເ ກີ ທີ່ ທີ່	1 W 2 W 1 W	222	544	225	0 1 1 0 0 0 0	541	525	493	797	1 7 7 7 7 7	477	479	519	4 4 7 7 4 8 0	513	521	521
Sit Diff		13.2		12.0	6.9	11.7	13.4	15.3	21.2	ο. α	23.0	22.3	24.2	23.0	22.8	22.1	21.5	21.3	20.02	14.7	16.6	22.0	23.7	24.9	25.4	25.8	24.3	27.0 27.0	0.1C	20.3	20.4	19.8	18.6	18.1	16.5	17.3	1 0 T		15.8	19.7	23.1	30.1	27.2	28.3	27.2
Speed	16441	446	/ 6 2 / 6 2	416	377	420	447	469	466	00# ₽₽⊒	104	585	579	568	579	569	566	576	000	466	433	472	554	550	590	608	613		100	261	567	ማ በ ማ በ	0 40 0 40 0 40	523	480	451	4 7 9 9 9 9	7 C F	4 1 1 1 1 1 1	444	478	453 449	505	510	511
Sit Diff		17.8	1. 1. 1.	16.3	11.6	15.3	17.0	19.9	25.0	100	28.62	29.92	27.8	27.1	26.5	25.9	25.2	25.4	24.0	15.3	16.5	22.5	24.6	27.3	28.6	30.0	28.8	2.05	10	27.5	27.3	25.8	23.1	22.5	21.7	22.3	4.12 7.12	5. 4 C C	21.0	24.6	25.1	29.8 3.3.8	30.3	34.1	34.0
Speed	163.45	502	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 7 2 7	464	429	477	503	521	077 777	0 4 0 7 0 4	505	673	647	643	655	634	637	649	670	520	465	526	619	613	659	686	699	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# C C U U	637	638	610	909 913	298	551	515	4 1 0 1 0	4 0 4 4 1 4	508	511	523	502	557	573	580
Diff	-	19.6	4.9T	17.5	12.7	16.3	19.1	20.8	26.5	9 F 7 0 7 0	* · · · ·	32.2	32.5	31,4	31,0	28,9	28.4	9 6 7 8 7 8	ŕ	17.9	18.9	24.6	27.7	31.2	33.2	33.8	8 		- 0	27.9	27.6	26.3	9 17 9 17 9 17 9 17	25,8	24.6	24.4		1 1 1 1 1	20.9	24.4	24.1	20. 70. 70. 70. 70. 70. 70. 70. 70. 70. 7	33.6	35.9	35.8
Speed	1112.21	471	 	412	374	402	424	446	454	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		618	615	613	636	600	68 60 10	615	0	432	366	430	538	573	629	655	654	658 673	200	586	592	567	0 m 0 m	593	556	531	1/1	101 101 101	180 170 170	499	495 00	482 515	544	552	571
Diff		19.2	5 5 0	15.7	10.5	13.3	15.7	18.1	9.62 6.62	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100	30.2	30.5	29.6	29.8	26.5	25.2	26.92	5.02	15.1	15.6	21.7	25.0	29.6	31.7	5.0	32.1	200	4 U 4 C	25.2	25.5	24.3	24.0	10, 5C	24.6	23.0	20		19.4	22.0	23.7	27.8	31.8	36.1	37.0
30 m Temp	4	75.24	19.34	81.69	84.04	84.22	83.77	61,80	73.85	67 44	60.04	58.61	57.05	56.82	56.50	55.27	54.80	54.27	77.80	77.68	86.48	79.26	72.83	69.04	65.51	63.59	63.47	61.19	C/ . 13	60.78	59.97	59.45	20 47 7 9 7	71.44	79.08	84.77	88.63	100.70	92.24	90.98	87.93	80.73 71 43	68.51	67.59	67.65
an <u>sbee</u> Speed	(HAR)	7.2	، م	8	, r-	8.3	5.5	6.9	0,0 0,0	0 0 0 7	, n , n	10	2.2	2.1	2.1	2.2	2.5	9 • 1 •	4.7	4.5	4.7	5.1	2.6	0 ~	1.4	ы. 1	m (N C	9 U 9 U	ງ ເງ ເງ	2.6	00 0 01 0 01 0	10		с. С	9.9 12	9.0	9 U 10 F	5	8.4	9.9 8	4. C 4. C	, о , и	5.1	4.5
Fold Direc	wear	27.1	4.74	1 0	21.2	13.0	5.4	16.4	600	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0	14.5	16.5	66.2	80.5	45.8	94.1	75.0	7.601	67.4	31.6	26.3	82.4	117.4	72.3	93.0	124.9	2.27	* C	18.1	35.2	40.0	# ⊂ ∧ 4	355.3	348.7	1358.1	17.8	* 000 .	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	359.7	4.0	212.0	. 9	4.2	352.8
:	표	10	45	12	14	15	16	5	8	25	35	10	53	0		10	т т	4" L	v	16	5	18	5	50	57	57	53	0 F	-	n 10	4	ن س س	0 F	• 00	5	10	1; 1;	1 - - -		16	5	30 0 -1 - -	18	5	22
	Date	08/25/95	08/25/95	26/22/00	08/25/95	08/25/95	08/25/95	08/25/95	08/25/95	36/57/80	10/10/00	08/25/95	08/25/95	08/26/95	08/26/95	08/26/95	08/26/95	08/26/95	08/26/2	08/26/95	08/26/95	08/26/95	08/26/95	08/26/95	08/26/95	08/26/95	08/26/95	08/27/9	18/17/80	08/27/95	08/27/9	08/27/9	16/17/80	08/27/95	08/27/95	08/27/9	08/27/9	F/17/80	16/2/80	08/27/9	08/27/9	08/27/9	08/27/9	08/27/9	08/27/9

\sim
g
Q
7
L L
فد
- 72
2
<u>ہ</u>
2
ተ
4-
A-4
A-4
E A-4
LE A-4
SLE A-4
ABLE A-4
TABLE A-4

		(/g ³) West RM		203.1	184.S	179.5	165.9	169.4	158.2	165.7	154.1	143.1	158.1	132.5	124.5	6.99
		F' (m East RM		230.8	202.6	204.2	222.7	235.7	208.6	215.8	209.3	197.7	204.0	208.0	159.3	162.2
	e 7	Speed (FPM)		432	392	408	353	359	365	376	375	380	431	404	425	334
	Sit	Diff (F°)		25.6	25.5	23.8	23.5	23.7	22.1	22.6	20.8	19.0	18.2	17.2	14.3	13.0
	te 6	Speed (FPM)		439	408	417	420	425	415	439	427	420	479	421	475	428
	S	Diff (F°)		33.4	32.7	31.0	30.4	30.4	28.5	28.1	27.0	25.7	25.5	23.4	20.8	20.5
	te 5	Speed (FPM)		444	429	442	466	494	474	487	473	459	497	454	483	491
	SIS	Diff (F°)		23.2	23.2	21.6	22.5	23.3	21.3	21.6	20.9	18.5	18.0	18.5	14.0	12.2
	te 4	Speed (FPM)		485	467	492	507	535	501	523	521	510	541	529	522	549
	, Si	Diff (F°)		24.6	24.5	22.9	24.1	23.7	21.8	22.1	21.4	19.1	10.4	20.4	14.2	12.7
	te J	Speed (FPM)		487	457	483	479	512	490	509	509	495	521	484	491	540
	S	Diff (F°)	ļ	32.6	30.4	28.2	29.7	28.4	26.1	25.7	25.0	23.7	24.0	27.8	20.6	19.4
	te 2	Speed (FPM)		547	512	539	546	577	559	581	573	549	593	562	568	620
	SL	Diff (F°)		32.8	30.3	29.0	30.8	30.6	28.0	28.1	27.9	27.2	27.8	30.2	23.6	23.5
	te.1	Speed (FPM)		523	477	522	5 5 2 2 2	574	543	560	561	544	594	594	571	636
1	S1.	Diff (F°)		33.6	27.6	27.7	29.9	31.1	29.5	28.9	28.4	26.3	28.9	29.5	23.8	23.8
30 m		Temp		66.97	65.81	66.52	65.18	63.46	63.11	62.85	63.05	67.19	71.15	75.55	80.45	85.05
ansbee		Speed (MPH)		4.8	ນ. 4	ۍ ه	4,9	4.6	4.7	4.6	а.5 С	4.0	3.6	5.1	3.6	4.7
Foll	Direc	tion (Dec)		352.9	343.8	358.3	354.4	349.0	354.5	12.7	7.2	350.6	*.0	339.2	12.0	213.6
		Ηr		33	0			m 	4	ш, 10	œ		ω 	5	H	11
		Date		08/27/95	08/28/95	08/28/95	08/28/95	08/28/95	08/28/95	08/28/95	08/28/95	08/28/95	08/28/95	08/28/95	08/28/95	08/28/9

Preliminary testing results from August 2 through August 10, 1995 show that the operational status of any single vessel does not have a dramatic effect on the temperature difference and exhaust velocity from the roof monitor. As long as one of the two vessels is operational, we expect that the mean values listed above are representative of BOF operations. Accordingly, the above results can be used for both Vessel A and Vessel B in calculating the F' for BLP.

As noted by Ohio EPA for the blast furnace, two changes were suggested for the BOF RM, specifically:

- recalculate plume rise as the average of plume rise calculated from matched pairs of temperature rise and velocity; and
- use only the separation distance between sensors and not roof opening dimensions to determine maximum active roof length for plume rise.

Ohio EPA suggested that the maximum roof length should be 72 meters because the text of the earlier report indicated "sensors were spaced at approximately 9 meter intervals," which has been clarified in this version to be 9.2 meter spacing. A total roof length of 73.5 meters results from the 9.2 meter spacing.

Plume rise was recalculated for each match pair of temperature difference and velocity. Results are presented in the last two columns of Table A-4 for a source length of 73.5 meters and a source height of 2.4 meters. The East RM had a plume rise of 167.9 m^4/s^3 . The West RM had a plume rise of 110.9 m^4/s^3 . The BLP manual recommends averaging the two values. Therefore, the F' will be:

$$F' = (167.9 + 110.9)/2 = 139.4 m^4/s^3$$

The BLP input file for the BOF RM is presented in Table A-5. The F' of 139.4 m^4/s^3 developed from the August 1995 testing is larger than the 114.0 m^4/s^3 developed from the limited testing conducted in March 1994.

3.3 BATTERIES

Testing was initiated on August 31 and concluded on September 7. Data were recorded every 15 seconds and processed for hourly averages. The hourly average data are presented in Table A-6. Meteorological data from the West Virginia DEP tower are also listed in Table A-6 and form the base temperature against which the four sensors are compared. A summary of the data in Table A-6 is listed below:

		<u>Diff (F°)</u>	<u>Speed (FPM)</u>
Site	1	23.87	210.1
Site	2	22.43	148.6
Site	3	31.40	210.4
Site	4	28.55	189.9
	Mean	26.56	189.8

The 112 hours of testing resulted in a mean temperature difference of 26.56 F° and a mean exhaust speed of 189.8 feet per minute. Since the sensors were located above the battery and inside the highest temperature and velocity area (near doors and standpipes), the entire width of the battery is considered in the plume rise equation in the initial submittal of results to the agencies. Ohio EPA required that the width of the battery considered for plume rise be limited to that distance separating the sensors or 9.8 meters. Plume rise was calculated for Battery 8 using a source length of 103 meters and a source width of 9.8 meters for each matched pair of data. Results are listed in Table A-6. Average plume rise for Battery 8 was 449.7 m^4/s^3 by this method.

No testing was done for Batteries 1, 2 or 3. No COG cross-over pipes exist for the other batteries. Results from Battery 8 were

BLP INPUT FILE FOR BASIC OXYGEN FURNACE ROOF MONITOR

```
WPSC BOF Roof Monitor emissions at 1 g/s
&GEN
NLINES=1
NREC=10
LPART=.TRUE.
LCOMPR=.TRUE.
LINPUT=.TRUE.,
LUTMS=.TRUE.
LTRANS=.FALSE.
/
&RISE
L=73.5
HB=51.2
WB=90.0
WM=2.5
DX=100.
FPRIME=139.4
/
&METIN
LMETIN=.FALSE.
IDSURF=94823
IYSURF=89
IDUPER=94823
IYUPER=89
ZMEAS=30.0
IDELS=1
IRU=1
IDAYS=365*1,0
/
&CALC
&OUTPUT
IPCL=1,0,0,0,0,0,0,0,0,0,1
/
   533000.
            4466500.
                           196.
   533000.
            4466000.
                           196.
   533000.
            4466750.
                           196.
   529000.
            4472000.
                           335.
   532750.
            4467000.
                           201.
   532750.
            4466750.
                           201.
   533000.
            4466250.
                           196.
                           196.
   533000.
            4465750.
            4465500.
                           216.
   532750.
   532500.
            4465750.
                           280.
                      533672.0 4462667.0
  533643.0 4462578.0
                                                51.2
                                                           1.00
                                                                     204.2
```

HOURLY SUMMARY OF BATTERY NO. 8 PLUME RISE RESULTS

		Folla	ansbee	<u>30 m</u>	Q { +	a 1	ci+	a 2	Sit	e 3	Sit	e 4	
Date	Hr	tion (Deg)	Speed (MPH)	Temp (°F)	$\frac{510}{(F^{\circ})}$	Speed (FPM)	Diff (F [°])	Speed (FPM)	Diff (F°)	Speed (FPM)	Diff (F°)	Speed (FPM)	F' (m ⁴ /s ³)
08/31/95 08/31/95 08/31/95 08/31/95 08/31/95	18 19 20 21 22	215.8 217.3 250.8 300.7 1.5	8.0 7.9 7.5 5.2 3.0	86.31 84.26 82.90 79.96 74.92	14.2 26.2 21.2 12.3 18.8	258 272 294 252 251	15.7 17.3 21.6 15.5 24.6	109 105 156 142 198	31.5 41.8 46.4 47.0 58.3	257 223 258 209 170	37.9 47.4 51.4 55.1 41.7	172 154 163 132 302	435.3 545.0 666.4 524.6 727.8
09/01/95 09/01/95 09/01/95 09/01/95 09/01/95 09/01/95 09/01/95 09/01/95 09/01/95 09/01/95 09/01/95 09/01/95 09/01/95 09/01/95	8 9 10 11 12 13 14 15 16 17 18 20 21 22 23	356.6 0.7 0.4 352.1 352.2 345.8 340.1 335.6 332.4 346.1 343.9 359.6 359.6 359.6 359.6 359.6 359.6 359.6	$\begin{array}{c} 7.2\\ 8.8\\ 8.1\\ 8.3\\ 9.4\\ 12.0\\ 14.8\\ 12.7\\ 112.7\\ 5.9\\ 5.2\\ 3.1 \end{array}$	68.60 70.55 70.72 71.09 72.32 74.33 74.47 74.11 72.88 70.10 65.07 60.83 57.37 55.56 53.92	19.617.715.723.026.223.517.316.814.417.919.029.731.934.135.636.3	207 167 212 256 238 209 230 223 226 216 214 215 233 301 272	13.6 9.5 8.3 14.3 21.0 23.3 15.0 15.5 16.6 13.8 21.2 20.1 20.4 22.0 37.8 40.9	153 169 178 180 183 241 196 242 217 245 191 214 200 161 291 293	8.5 11.2 30.9 34.7 31.0 33.7 30.3 26.1 17.4 15.4 30.8 46.9 52.8 51.9 51.3	287 367 223 243 193 228 235 307 209 327 261 215 111 106 70	5.2 11.8 23.5 25.3 26.6 29.8 15.3 22.6 34.6 38.3 38.9 39.6 40.6	173 172 159 138 187 175 201 220 285 236 277 174 123 88 93 93	223.9 266.0 325.8 426.0 483.4 526.2 438.5 454.5 338.7 381.5 428.3 564.6 586.6 497.4 736.9 696.2
09/02/95 09/02/95 09/02/95 09/02/95 09/02/95 09/02/95 09/02/95 09/02/95 09/02/95 09/02/95 09/02/95 09/02/95 09/02/95	9 10 11 13 14 15 16 17 18 20 22 23	351.3 15.0 335.3 344.2 334.0 356.1 339.7 336.2 333.9 64.2 113.2 113.2 130.6 124.1 134.5	7.5519407 7.5198.7 8.1852.51 8.1561 3.61	65.59 68.39 70.17 71.80 73.18 74.20 74.69 74.69 74.68 73.42 69.69 61.60 57.60 57.60 56.01 54.43 53.59	21.0 17.4 21.1 17.4 19.7 22.5 24.7 23.6 20.3 17.2 32.2 32.2 32.2 32.4 29.2 28.8 26.4	202 202 220 212 236 245 267 282 211 180 247 206 130 146 100	17.6 14.1 15.9 16.1 16.0 17.9 22.8 23.5 17.5 21.3 27.0 26.1 23.7 24.1 21.0	157 144 154 162 161 155 198 210 133 150 137 93 49 57 26	26.3 27.4 24.6 32.8 36.5 42.4 40.2 42.3 52.2 47.1 37.7 21.7	202 227 289 225 203 217 197 194 185 226 298 343	16.4 23.9 17.3 32.0 33.6 33.7 33.9 38.4 38.1 50.7 46.9 43.4 41.3 38.2 33.7	196 172 248 191 1655 166 191 151 237 290 249 312 391	354.6 353.4 411.2 439.0 454.9 495.1 591.4 607.0 473.3 489.7 750.2 742.0 527.2 602.6 515.7
09/03/95 09/03/95 09/03/95 09/03/95 09/03/95 09/03/95 09/03/95 09/03/95 09/03/95 09/03/95 09/03/95 09/03/95 09/03/95	9 10 11 12 13 14 15 17 18 20 21 22 23	162.1 192.3 213.3 267.9 277.8 279.2 272.8 250.4 268.1 278.3 290.0 48.3 147.4 135.0 141.0	5.9 6.2 7.8 7.6 6.7 10 57 93.2 8 6.7 10 57 93.3 4.0	68.58 78.59 79.43 79.69 79.95 78.34 74.46 72.54 69.40 67.99 65.36 62.69	22.2 21.7 21.8 16.0 14.3 18.6 18.0 18.3 15.9 26.0 32.3 35.3 31.0 28.6 28.5	176 239 281 212 236 266 237 196 240 293 249 193 134 99	24.4 23.7 21.9 20.5 19.7 23.1 25.0 22.8 25.9 30.4 45.7 24.7 23.4 23.7	103 147 150 148 139 138 144 111 145 153 157 268 122 89 81	4.4 126.4 341.7 45.4 45.4 495.4 500.8 496.9 45.6 45.4 45.4 495.6 45.4	186 163 190 169 188 195 192 198 155 147 140 235 214 220 220	6.7 16.3 28.8 39.5 49.0 48.3 51.9 65.2 62.4 48.4 42.7 41.1 39.9	152 152 187 209 200 247 259 205 172 172 159 223 229 235 304	206.2 294.5 446.2 453.1 524.3 628.1 554.9 688.2 747.4 956.6 613.9 528.2 545.5
09/04/95 09/04/95 09/04/95 09/04/95 09/04/95 09/04/95	10 11 12 13 14 15	318.6 357.3 3.8 351.4 341.9 338.5	8.7 8.0 7.6 8.8 10.0 7.7	75.28 77.05 78.95 80.92 81.73 80.19	17.2 21.0 22.2 25.5 24.2 19.1	249 224 238 283 309 211	12.1 12.2 15.6 20.4 23.2 18.5	161 165 165 193 197 161	18.5 31.5 32.8 29.5 31.0 33.3	249 248 216 219 198 217	11.6 24.8 26.3 26.3 28.3 33.8	202 157 174 185 192 161	292.4 399.6 429.2 497.1 529.1 436.1

TABLE A-6 (Continued)

		Folla	ansbee	<u>30 m</u>			a 4 4		01-	- 2	a / 1		
	<u>Hr</u>	Direc- tion (Deg)	Speed (MPH)	Temp (°F)	<u>Sit</u> Diff (F°)	Speed (FPM)	$\frac{Sit}{Diff}$	Speed (FPM)	Diff (F°)	e 3 Speed (FPM)	Diff (F°)	speed (FPM)	F' (m ⁴ /s ³)
09/04/95 09/04/95 09/04/95 09/04/95 09/04/95 09/04/95 09/04/95 09/04/95	16 17 18 19 20 21 22 23	352.9 346.1 354.8 12.0 4.9 11.9 46.6 97.6	8.8 8.3 7.5 6.6 5.6 4.2 3.5 3.0	80.47 78.79 73.57 65.87 62.24 60.58 57.82 55.81	19.0 16.8 24.9 27.1 36.4 37.8 34.9 36.2	228 231 188 173 257 308 276 201	12.8 10.2 14.9 19.2 24.1 28.0 33.1 29.1	176 164 146 102 132 182 204 89	34.1 26.2 22.7 29.8 37.4 26.2 24.7 23.6	286 260 302 145 121 150 155 184	21.9 17.6 15.7 25.5 25.6 16.6 16.8 15.0	194 183 143 105 102 188 193 199	434.1 335.4 346.4 304.4 429.8 516.4 523.1 406.0
09/05/95 09/05/95 09/05/95 09/05/95 09/05/95 09/05/95 09/05/95 09/05/95 09/05/95 09/05/95 09/05/95 09/05/95 09/05/95	8 9 10 11 12 13 14 15 16 17 18 20 21 22 23	289.0 348.7 12.6 11.6 4.2 21.6 18.5 16.2 22.3 42.8 136.1 136.2 137.6 141.0 122.9	3.0 7.4 9.6 11.5 9.7 9.7 3.6 8 7.9 3.6 8 3.6 8 3.6 8 3.6 8 3.6 8 3.6 8 3.6 8 3.6 8 3.6 8 3.6 8 3.6 8 3.6 8 3.6 8 3.6 8 3.6 8 3.6 8 3.6 8 3.6 8 3.6 9 9.6 5.1 7 9.6 5.1 7 9.6 5.1 7 9.6 5.1 7 9.6 5.1 7 9.6 5.1 7 9.6 5.1 7 9.6 5.1 7 9.6 5.1 7 9.6 5.1 7 9.6 5.1 7 9.3 5.3 8 7 .3 8 7 .3 8 7 .3 8 7 .3 8 7 .3 8 .5 8 7 .5 9.5 5.1 7 .5 8 .6 8 .5 9.6 5.1 7 .5 8 .5 9.5 5.1 7 .5 8 .5 8 .5 8 .5 8 .5 8 .5 8 .5 9.5 5.5 .5 8 .5 8	61.48 68.18 73.43 77.30 79.73 81.03 82.83 82.80 81.47 74.11 67.34 64.39 61.71 60.25 58.99	29.9 22.8 20.4 21.0 16.6 17.0 18.5 26.1 31.2 29.1 33.2 31.4 29.3 31.7	264 187 196 211 220 196 201 246 255 173 182 158 92 80 75	38.9 17.6 16.5 15.3 10.4 9.6 12.4 11.8 26.2 33.6 23.2 25.8 24.6 25.4 22.2 25.4 22.2 24.4	284 144 182 153 178 199 182 209 182 209 241 107 89 88 67 59 62	15.9 15.3 9.6 -3.0 1.7 12.8 12.9 17.7 17.5 19.8 29.4 23.3 14.7 10.2 -6.2 12.0 12.0	197 192 230 362 326 269 247 223 200 144 208 276 233 354 245	9.5 4.1 1.8 -5.6 1.8 7.3 7.0 10.3 7.8 12.2 20.7 16.0 11.4 8.2 6.3 12.0	183 173 182 251 176 168 160 153 141 161 112 220 229 222 214 236	504.5 241.1 220.0 156.4 157.8 232.0 233.8 262.3 355.6 461.3 308.5 391.6 355.1 265.3 215.2 288.9
09/06/95 09/06/95 09/06/95 09/06/95 09/06/95 09/06/95 09/06/95 09/06/95 09/06/95 09/06/95 09/06/95 09/06/95	9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	196.0 206.2 220.6 166.4 142.2 121.6 235.2 241.1 242.6 97.2 146.0 139.9 140.6 136.8 134.3	3.6 5.2 4.8 5.3 5.5 6.6 5.9 5.6 3.0 4.1 4.4 4.1 3.8 4.2	73.52 80.36 83.86 86.14 86.57 87.30 88.00 86.68 84.85 75.92 70.07 67.46 64.14 61.94 61.04	24.2 20.5 29.9 28.2 22.0 23.2 15.3 17.8 30.8 30.6 36.2 33.6 30.3 30.0	198 184 296 274 216 254 231 217 206 210 138 123 127 112 73	26.0 23.9 27.1 23.2 23.9 24.3 23.2 23.6 27.6 24.2 55.4 31.6 25.3 22.6	119 98 144 119 113 143 129 106 116 126 73 284 101 109 70	1.2 11.7 23.4 32.2 40.4 43.1 40.3 45.7 59.7 67.7 58.2 41.3 33.2 29.3 29.8	241 178 173 156 174 181 179 227 151 269 226 132 137 126 88	6.0 15.6 25.0 33.9 40.9 42.6 27.0 43.8 63.5 53.0 34.0 25.3 19.7 19.6	186 129 167 148 167 279 215 107 259 256 171 169 163 142	245.2 237.9 453.5 447.6 463.5 539.1 474.3 542.1 517.6 633.1 654.9 374.3 306.2 219.0
09/07/95 09/07/95 09/07/95 09/07/95 09/07/95 09/07/95 09/07/95 09/07/95 09/07/95 09/07/95 09/07/95 09/07/95 09/07/95 09/07/95	7 8 9 10 11 12 13 14 15 16 17 18 20 21 22	167.5 172.8 178.3 176.9 197.1 235.8 267.7 242.8 220.6 228.6 21.3 77.3 104.7 145.7 52.8	5.0 8.4 10.0 8.9 8.5 7.2 8.4 8.5 7.2 8.4 8.5 7.2 6.3 1 3.5 0 3.0 3.6 4.2	62.63 70.65 75.26 77.92 80.40 82.56 82.44 81.91 80.48 79.47 77.03 73.99 70.63 69.35 67.95 65.63	26.1 17.1 17.7 13.9 13.7 14.2 20.1 28.9 15.9 12.1 15.3 26.3 29.5 27.7 27.3 31.9	268 171 193 160 163 211 231 316 189 143 172 212 212 228 130 86 204	33.9 27.3 25.0 21.9 22.1 23.4 28.7 26.3 24.1 24.4 26.5 25.3 23.2 22.0 28.8	145 139 106 117 109 148 147 145 99 112 125 154 153 70 56 158	12.6 10.5 18.0 16.5 24.1 34.5 37.3 37.8 44.2 50.3 37.8 44.2 50.3 37.8 44.2 20.3 21.4 24.2 20.3 28.4	101 141 158 184 158 161 155 123 115 264 3214 210 160	13.7 12.4 12.0 2.7 17.6 39.5 41.6 50.9 57.9 57.9 54.3 36.6 -1.0 20.2 20.0 25.2	87 121 181 280 205 190 205 157 140 126 189 252 240 229 249 249 189	299.8 221.2 263.6 232.4 276.5 435.4 497.2 579.0 414.0 391.4 513.0 605.6 541.4 375.5 307.8 461.3

used as a guide for the other batteries. Temperature difference and exhaust flows were assumed to be one-half those of Battery 8 for Batteries 1, 2 and 3 because of the pusher side shed on Batteries 1, 2 and 3. Again, matched pairs of reduced temperature difference and reduced velocity scaled from Battery 8 coupled with a source length of 110.5 meters for the three batteries and a source width of 9.8 meters gave hourly plume rises listed in Table A-7. Average plume rise for Battery 1, 2 and 3 block was 123.8 m⁴/s³.

The estimated plume rise is 123.8 m^4/s^3 for Batteries 1, 2 and 3 and 449.7 m^4/s^3 for Battery 8. Batteries 1, 2 and 3 are 110.5 meters long or 7 percent longer than Battery 8. Reducing the measured temperature difference and velocity by one-half from Battery 8 to Batteries 1, 2 and 3 would yield a plume rise for Batteries 1, 2 and 3 of only one-quarter that for Battery 8, for the same length batteries. Adding the additional length for the old battery block increases the plume rise to approximately 28 percent of that for This value can also be checked against the battery Battery 8. stack firing rates in Appendix B.3, Page B.3-2. The combined underfire rate for Batteries 1, 2 and 3 is 63 percent of the rate for Battery 8. Based on this energy input comparison, one might expect plume rise from the old battery block to be 63 percent of that from Battery 8. The reduction to only 28 percent for the old battery block is probably attributable to the coke side shed on the old battery block.

The BLP input files for Batteries 1, 2, 3 and 8 are presented in Tables A-8, A-9, A-10 and A-11, respectively. An F' value of 123.8 m^4/s^3 reflects the combined plume rise of Batteries 1, 2 and 3. F' for each battery would be one-third of that value or 41.3 m^4/s^3 . Individual battery length would be 36.8 meters.

ω 3 AND ŝ LISTING OF HOURLY PLUME RISE FROM BATTERIES 1,

AT FOLLANSBEE COKE PLANT

$\frac{(m^4/s^3)}{1,263}$	114.5	141.9	167.0	148.6	102.9	84.3	127.0		123.8																											
- [-] 00	414.0	513.0	605.6	541.4	375.5	307.8	461.3		449.7																											
Date Hr	09/07/95 15 09/07/95 15	09/01/95 17	09/07/95 18	09/07/95 19	09/07/95 20	09/07/95 21	09/07/95 22		Mean																											
(m ⁴ /s ³) 1,2&3	42.6 62	63.4	71.3	97.0	126.4	84.7	107.4	97.1	72.4	58.4	78.9		66.6	64.9	124.5	123.2	127.8	148.8	130.2	149.6	143.9	248.2	176.2	182.3	103.3	84.1	60.1		82.0	60.2	71.9	63.1	75.5	119.7	137.0	160.2
Ē	157.8	233.8	262.3	355.6	461.3	308.5	391.6	355.1	265.3	215.2	288.9		245.2	237.9	453.5	447.6	463.5	539.1	474.3	542.1	517.4	887.6	633.I	654.9	374.3	306.2	219.0		299.8	221.2	263.6	232.4	276.5	435.4	497.2	579.0
Date Hr	09/05/95 12 09/05/95 12	09/05/95 14	09/05/95 15	09/05/95 16	09/05/95 17	09/05/95 18	09/05/95 19	09/05/95 20	09/05/95 21	09/05/95 22	09/05/95 23		09/06/95 9	09/06/95 10	09/06/95 11	09/06/95 12	09/06/95 13	09/06/95 14	09/06/95 15	09/06/95 16	09/06/95 I7	09/06/95 18	09/06/95 19	09/06/95 20	09/06/95 21	09/06/95 22	09/06/95 23		09/07/95 7	09/07/95 8	09/07/95 9	09/07/95 10	09/07/95 11	09/07/95 12	09/07/95 13	09/07/95 14
(m ⁴ /8 ³) 1.2&3	141.7	56.1	80.3	122.4	124.6	144.6	173.6	160.9	153.5	159.7	192.0	208.7	267.0	170.1	146.2	150.9		79.5	109.4	117.6	136.4	145.3	119.7	118.7	91.4	94.6	83.6	118.6	142.0	143.9	111.6		138.3	65.6	59.7	42.2
с н о	51.5.7	206.2	294.5	446.2	453.1	524.3	628.1	583.1	554.5	574.9	688.2	747.4	956.6	613.9	528.2	545.5		292.4	399.6	429.2	497.1	529.1	436.1	434.1	335.4	346.4	304.4	429.8	516.4	523.1	406.0		504.5	241.1	220.0	156.4
Date Hr	09/02/95 23	09/03/95 9	09/03/95 10	09/03/95 11	09/03/95 12	09/03/95 13	09/03/95 14	09/03/95 15	09/03/95 16	09/03/95 17	09/03/95 18	09/03/95 19	09/03/95 20	09/03/95 21	09/03/95 22	09/03/95 23		09/04/95 10	09/04/95 11	09/04/95 12	09/04/95 13	09/04/95 14	09/04/95 15	09/04/95 16	09/04/95 17	09/04/95 18	09/04/95 19	09/04/95 20	09/04/95 21	09/04/95 22	09/04/95 23		09/05/95 8	09/05/95 9	09/05/95 10	09/05/95 11
(m ¹ /8 ³) 1.2&3	119.4 150 5	184.3	144.8	201.5		60.7	72.2	89.0	116.8	132.8	144.5	120.1	124.1	92.2	103.9	116.9	155.5	162.4	138.0	205.2	194.1		96.9	96.6	112.3	120.4	125.0	136.2	163.1	167.5	130.3	135.3	208.6	205.8	146.1	166.5
	435.3 545 0	545.4 666.4	524.6	727.8		223.9	266.0	325.8	426.0	483.4	526.2	438.5	454.5	338.7	381.5	428.3	564.6	586.6	497.4	736.9	696.2		354.6	353.4	411.2	439.0	454.9	495.1	591.4	607.0	473.3	489.7	750.2	742.0	527.2	602.6
Date Hr	08/31/95 18 08/31/95 18	08/31/95 20	08/31/95 21	08/31/95 22		09/01/95 8	09/01/95 9	09/01/95 10	09/01/95 11	09/01/95 12	09/01/95 13	09/01/95 14	09/01/95 15	09/01/95 16	09/01/95 17	09/01/95 18	09/01/95 19	09/01/95 20	09/01/95 21	09/01/95 22	09/01/95 23		09/02/95 9	09/02/95 10	09/02/95 11	09/02/95 12	09/02/95 13	09/02/95 14	09/02/95 15	09/02/95 16	09/02/95 17	09/02/95 18	09/02/95 19	09/02/95 20	09/02/95 21	09/02/95 22

BLP INPUT FILE BATTERY NO. 1

```
WPSC FOLLANSBEE BATTERY 1 emissions at 1 q/s
&GEN
NLINES=3
NREC=10
LPART=.TRUE.
LCOMPR=.TRUE.
LINPUT=.TRUE.
LUTMS=.TRUE.
LTRANS=.FALSE.
/
&RISE
L=36.8
HB=7.0
WB=13.7
WM=1.0
DX=10.0
FPRIME=41.3
/
&METIN
LMETIN=.FALSE.
IDSURF=94823
IYSURF=89
IDUPER=94823
IYUPER=89
ZMEAS=30.0
IDELS=1
IRU=1
IDAYS=365*1,0
/
&CALC
/
&OUTPUT
IPCL=1,1,0,0,0,0,0,0,0,0,1
/
   533000.
            4466500.
                           196.
   533000.
            4466000.
                           196.
   533000.
            4466750.
                           196.
                           335.
   529000.
            4472000.
   532750.
            4467000.
                           201.
   532750.
            4466750.
                           201.
   533000.
            4466250.
                           196.
                           196.
   533000.
            4465750.
                           216.
   532750.
            4465500.
   532500.
            4465750.
                           280.
  533240.0 4465970.0 533259.0 4465942.0
                                                7.0
                                                           1.00
                                                                     205.7
```

BLP INPUT FILE BATTERY NO. 2

WPSC FOLLA	NSBEE	BATTEI	RY 2 en	nissions	at 1	g/s			
AGEN NI.INEC-3									
NDINES-J									
I.DADT- TDIT									
LCOMPR- TPI	י. תו								
I.TNDIIT- TDI	12. 17								
LUTMS - TRUE									
LTRANS= FAL	SE.								
/									
/ &RISE									
L=36 8									
HB=7 0									
WB=13 7									
WM = 1.0									
DX=10.0									
FPRIME=41.3									
/									
&METIN									
LMETIN=.FAL	SE.								
IDSURF=9482	3								
IYSURF=89									
IDUPER=9482	3								
IYUPER=89									
ZMEAS=30.0									
IDELS=1									
IRU=1									
IDAYS=365*1	,0								
/									
&CALC									
/									
&OUTPUT			0 1						
1PCL=1, 1, 0,	0,0,0,	0,0,0,	, U , I						
/ 522000	11665	:00	194						
533000.	44000)00.)00	196	· ·					
533000	44667	750. 750	196	5					
529000	44720	100	335	5.					
532750	44670	100	201						
532750	44667	750.	201						
533000	44662	250.	196	5.					
533000.	44657	750.	196	5.					
532750.	44655	500.	216	5.					
532500.	44657	750.	280).					
533285.0	446590	94.0 5	533305.	0 44658	76.0		7.0	1.00	205.7

BLP INPUT FILE BATTERY NO. 3

```
WPSC FOLLANSBEE BATTERY 3 emissions at 1 g/s
&GEN
NLINES=3
NREC=10
LPART=.TRUE.
LCOMPR=.TRUE.
LINPUT=.TRUE.
LUTMS=.TRUE.
LTRANS=.FALSE.
/
&RISE
L=36.8
HB=7.0
WB=13.7
WM=1.0
DX=10.0
FPRIME=41.3
/
&METIN
LMETIN=.FALSE.
IDSURF=94823
IYSURF=89
IDUPER=94823
IYUPER=89
ZMEAS=30.0
IDELS=1
IRU=1
IDAYS=365*1,0
/
&CALC
/
&OUTPUT
IPCL=1,1,0,0,0,0,0,0,0,0,1
/
                           196.
   533000.
            4466500.
   533000.
            4466000.
                           196.
   533000.
            4466750.
                            196.
   529000.
            4472000.
                           335.
   532750.
            4467000.
                           201.
   532750.
            4466750.
                            201.
   533000.
            4466250.
                           196.
   533000.
            4465750.
                           196.
            4465500.
                           216.
   532750.
            4465750.
                           280.
   532500.
                                                7.0
                                                           1.00
                                                                     205.7
                      533350.0 4465810.0
  533324.0 4465848.0
```
TABLE A-11

BLP INPUT FILE BATTERY NO. 8

WPSC FOLLANSBEE BATTERY 8 emissions at 1 g/s &GEN NLINES=1 NREC=10 LPART=.TRUE. LCOMPR=.TRUE. LINPUT=.TRUE. LUTMS=.TRUE. LTRANS=.FALSE. / &RISE L=103.0 HB=13.7 WB=17.0 WM=15.5 DX=100.0 FPRIME=449.7 / **&METIN** LMETIN=.FALSE. IDSURF=94823 IYSURF=89 IDUPER=94823 IYUPER=89 ZMEAS=30.0 IDELS=1 IRU=1 IDAYS=365*1,0 &CALC &OUTPUT IPCL=1,1,0,0,0,0,0,0,0,0,1 533000. 4466500. 196. 533000. 4466000. 196. 533000. 4466750. 196. 529000. 4472000. 335. 532750. 4467000. 201. 4466750. 532750. 201. 533000. 4466250. 196. 533000. 4465750. 196. 532750. 4465500. 216. 532500. 4465750. 280. 533560.0 4465480.0 533610.0 4465390.0 13.7 1.00 205.7

APPENDIX A, Page A-29

Ohio EPA 1-hour SO₂ Nonattainment SIP Excerpt (Pages 38-41 of Appendix E) manually selected sectors for both locations. The sectors were chosen based on manual inspection of the land use within 1 kilometer of the monitoring location. Precipitation data used to determine the dry, average, or wet classification for the specific month was obtained from the PRISM CoCoRaHS Climate Portal¹⁰ based on the Dam Site, since it is the primary site being used to supply the meteorological data and is the closest site to the Cardinal Plant. Wet surface values were used anytime the monthly precipitation values were greater than 20% of the 30 year average precipitation and dry values were used for months where the monthly precipitation values were less than 20% of the 30 year average precipitation. Table 12 shows the data used in making this determination.

Month	30 Yr Average	Monthly Precipitation	Classification
	, tronugo	corpration	
July 2013	4.22	5.86	Wet
Aug 2013	3.48	1.81	Dry
Sept 2013	3.34	2.07	Dry
Oct 2013	2.73	2.42	Avg
Nov 2013	3.30	3.46	Avg
Dec 2013	2.85	3.59	Wet
Jan 2014	2.81	2.08	Dry
Feb 2014	2.29	2.65	Avg
Mar 2014	3.02	2.01	Dry
Apr 2014	3.44	4.02	Avg
May 2014	4.17	4.70	Avg
June 2014	4.22	4.53	Avg

Table 12: Precipitation data used in determining monthly moisture classification for AERMET.

Background Concentrations

Ohio EPA considered background concentrations of SO2 in all modeling analyses performed for this submittal. U.S. EPA guidance suggests that a "first tier" approach to applying a background concentration should be considered by adding the overall highest hourly background value from a representative monitor to the modeled design value, but acknowledges that this approach may be overly conservative in many cases and could be prone to reflecting source-oriented impacts. While Ohio's SO2 monitoring network is extensive, there are few SO2 monitors not sited specifically to monitor

¹⁰ <u>http://cocorahs.nacse.org/index.php?&</u>, last checked April 1, 2015.

facility-specific impacts. This is especially true in the nonattainment areas modeled for this submittal.

As such, Ohio EPA considered other approaches to the determination of appropriate background concentrations. Section 8.2.2 of Appendix W provides an approach in which source specific impacts can be identified and eliminated from monitor data prior to determining a background concentration. This section of Appendix W (as paraphrased in the Nonattainment SIP Guidance) states:

Use air quality data collected in the vicinity of the source to determine the background concentration for the averaging times of concern. Determine the mean background concentration at each monitor by excluding values when the source in question is impacting the monitor. The mean annual background is the average of the annual concentrations so determined at each monitor. For shorter averaging periods, the meteorological conditions accompanying the concentrations of concern should be identified. Monitoring sites inside a 90° sector downwind of the source may be used to determine the area of impact.

Based on the guidance and the lack of "regional" ambient air quality monitors representative of the nonattainment area, Ohio EPA considered and applied multiple approaches, including the elimination of readily identifiable source-specific impacts, statistical analysis of available monitoring data to determine conservative and appropriate background concentrations. Ohio EPA did not consider the use of temporally varying backgrounds, but instead added background concentration directly to modeled design values.

Source-oriented impacts and the lack of a regional background monitor are major obstacles in determining a background concentration for the Steubenville, OH-WV nonattainment area. This is further complicated by the large number of facilities shutting down entirely, installing controls, or sharply curtailing operations. Ohio EPA estimates that between 2008 and 2013, actual emissions from sources not explicitly included in Ohio's modeling located the surrounding counties of Jefferson, Harrison, and Belmont Counties in Ohio and Marshall, Ohio, and Brooke Counties in West Virginia decreased by a factor of approximately 7 (152,824 TPY in 2008, 21,904 in 2013). This sharp decrease in emissions has undoubtedly reduced background concentrations contributing to the nonattainment area monitors and should be reflected in the background determination for the Steubenville, OH-WV nonattainment area.

Ohio EPA established a background concentration for the Steubenville, OH-WV nonattainment area using ambient air quality data collected at the four AQS monitors in the area. No regional monitors were available for this area, and data collected at each of these monitors demonstrate strong and readily identifiable source-oriented impacts. Following Appendix W and the Nonattainment SIP Guidance, Ohio EPA conducted a background analysis using the following methodology, for years 2007-2009 and 2010-2012.

1. Hourly monitoring data were collected for each monitor from AQS.

- 2. Representative meteorological data for the same time period was collected.
- 3. Using a 90° sector centered on each monitor and the closest facility, concentrations recorded during hours when wind directions originate from this sector were eliminated.
- 4. The average concentration at each monitor from these abbreviated datasets were determined.

The results of this analysis are shown in Table 13, below.

Monitor ID	2007-2009 Average SO2 (ppb)	2010-2012 Average SO2 (ppb)
54-009-0005	8.2	4.8
39-081-0017	3.4	3.5
54-009-0007	8.6	5.2
54-009-0011	8.4	5.1

Table 13: Average monitor values corrected for facility impacts, 2007-2009 and 2010-2012.

Ohio EPA conservatively chose to eliminate from further background analysis the results obtained for the 2010-2012 period to maintain conservatism in the background determination.

In addition to the four AQS monitors located in the northern portion of the nonattainment area, a network of four monitors is maintained by the Cardinal Power Plant. These monitors began collecting data in 2011 as part the Permit-to-Install process for the scrubber/cooling tower configuration at Cardinal Unit 3. These monitors are located in the southern portion of the nonattainment area, and should represent sources not explicitly modeled but potentially impacting the nonattainment area. In consultation with American Electric Power, Ohio EPA very conservatively represented the 95th percentile of maximum daily values at the Cardinal monitoring network as representative of periods when emissions from Cardinal are not impacting the monitors. Given that these monitors were sited specifically to monitor emissions from Cardinal, it is highly unlikely that the 95th percentile is reflective of periods when Cardinal is not impacting these monitors to some degree, and as such, this is considered by Ohio EPA to represent an additional measure of conservatism in the background determination. Table 14 below shows the 95th percentile for years 2011-2014 at each of the four Cardinal network monitors.

Monitor ID	2011 95 th Pctile	2012 95 th Pctile	2013 95 th Pctile	2014 95 th Pctile
	(ppb)	(ppb)	(ppb)	(ppb)
54-009-6000	9	5	3	6
39-081-0020	9	7	6	6
39-081-0018	11	10	9	9
Unit 3 Monitor	10	8	7	4

 Table 14: 95th percentile values, Cardinal monitoring network, 2011-2014.

To derive a final background concentration that is both conservative and reflective of the large decrease in emissions in the nonattainment area and surrounding Counties, Ohio

EPA averaged the 2007 to 2009 average SO2 concentrations (less facility specific impacts) for monitors 54-009-0005, 54-009-0007, and 54-009-0011 (excluding monitor 39-081-0017 to maintain conservatism), with the 2011 and 2012 95th percentile values from the Cardinal monitor network. Ohio EPA excluded the 2013 and 2014 data from the Cardinal network to maintain conservatism. The resultant background of 8.1 ppb is similar to those values observed in the 2007-2009 period at the AQS monitors, and well above those observed at these monitors for the 2010-2012 period. Further, this value is well in line with conservative 95th percentile values at the Cardinal monitors. Ohio EPA concludes that this background is both conservative with respect to observed monitor data and is reflective of the large decrease in emissions from the nonattainment area and surrounding Counties.

Determining Design Value Metrics

Refer to the General Modeling Protocol.

The Nonattainment SIP Guidance allows for the flexibility to perform separate AERMOD runs in situations where the simultaneous modeling of all explicitly modeled sources is not possible, as was the case in the Steubenville, OH-WV nonattainment area. With respect to these situations, the Nonattainment SIP Guidance states, "the use of hourly POSTFILES, which can be quite large, and external post-processing would be needed to calculate design values". Ohio EPA applied this recommendation for specific modeling analyses. In these situations, Ohio EPA includes those POSTFILES with the relevant modeling input and output files.

Documentation

Ohio EPA is providing as part of this SIP submittal all necessary information, including the following elements specifically enumerated in the Nonattainment SIP Guidance.

• Characterization of the nonattainment problem or characterization of the modeled area in absence of a violating monitor.

• An emissions analysis around the violating monitor or area under consideration for the attainment and maintenance demonstration in absence of a violating monitor.

• Description of any other supplemental analyses (in addition to the characterization and emissions analyses noted above) intended to strengthen the attainment demonstration.

• Methodology for preparing air quality and meteorology inputs including choice of meteorological data and representativeness of the data.

- Summary and analysis of modeling results.
- Modeling data inputs and outputs in electronic form.
- Results of any supplemental analyses.

Supplemental Analysis

The CD included with this appendix contains all input and output data files used to generate the results from the air quality analyses presented in this report. The following provides a description of the contents of each folder included on the attached CD.

<u>AERMAP</u>

> Contains the AERMAP input (.inp), output (.out), and receptor (.rec) files for the analysis modeling grids described in Section 4.5.

AERMET

- > AERMET Contains the AERMET input and output files that were used to create the model-ready meteorological files based on the onsite observations as well as surface and upper air observations from Pittsburgh, PA. This folder also includes the raw meteorological data and AERSURFACE processing.
- > Model-Ready FOL2007-2009– Contains the surface (.sfc) and profile (.pfl) meteorological data files that were utilized in this modeling analysis.

<u>BPIP</u>

> Contains the input, output, and summary files from the building downwash analysis. This analysis includes all modeled sources and buildings at the Follansbee plant as well as the Ohio EPA sources.

BLP Processing

- > BLP Model runs Contains the model input, plume rise file written as output, and all other supporting BLP documentation.
- > BLP Met Contains the meteorological data (in the format necessary) as used by BLP

<u>Hourly File</u>

> Contains the hourly emissions file utilized in the analysis.

SO2 Model

> Contains the model input and output files associated with operation of the Follansbee Plant when considering desulfurization plant outages and increased COG flare operation (See Section 5.1)

[This page intentionally left blank.]

Averaging Period Analysis

[This page intentionally left blank.]

8425 Pulsar Place | Suite 280 | Columbus, OH 43240 | P (614) 433-0733 | F (614) 433-0734

trinityconsultants.com

June 26, 2015

Mr. Russ Dudek Environmental Manager AK Steel Corporation 210 Pittsburgh Road Butler, PA 16001

RE: Averaging Period Analysis for SO₂ Emission Limitations Mountain State Carbon, LLC – Follansbee, WV

Dear Mr. Dudek:

Trinity Consultants (Trinity) has conducted a statistical analysis to support the development of appropriate emission limitations for sulfur dioxide (SO₂) generated by operations at Mountain State Carbon's (MSC's) metallurgical coke manufacturing facility in Follansbee, WV (Follansbee Facility). This letter describes the approach used to derive this adjustment factor, and supporting calculations are included as an attachment to this letter.

In summary, Trinity has used actual historic operating data for the Follansbee Facility to calculate a factor that could be used to adjust an emission limit established over an hourly averaging period to an equivalent emission limit established over a 24-hour block averaging period. As described in detail below, this analysis was conducted using data from the 2007-2009 operating period.

Because these short-term emission limits will apply only during periods of normal operation, Trinity believes that the data used to develop the adjustment factor should exclude any hydrogen sulfide (H₂S) concentrations or coke oven gas (COG) flow rates measured during startup, shutdown, or malfunction (SSM) events as well as any planned outages of the Follansbee Facility's desulfurization system. Trinity calculated the adjustment factors provided in the following table using historic data for normal operation and by applying methods suggested in the applicable U.S. EPA guidance.

Combustion Source	Adjustment Factor
Excess COG Flare	0.985
Battery 1 Underfiring System	0.935
Battery 2 Underfiring System	0.933
Battery 3 Pushing Side Underfiring System	0.951
Battery 3 Coke Side Underfiring System	0.957
Battery 8 Underfiring System	0.945

HEADQUARTERS > 12770 Merit Drive | Suite 900 | Dallas, TX 75251 | P (972) 661-8100 | F (972) 385-9203

Combustion Source	Adjustment Factor		
COG Boiler #6	0.968		
COG Boiler #7	0.968		
COG Boiler #9	0.947		
COG Boiler #10	0.928		

U.S. EPA GUIDANCE

Trinity derived this adjustment factor in accordance with U.S. EPA's April 23, 2014 Guidance for 1-Hour SO₂ Nonattainment Area State Implementation Plan (SIP) Submittals. This guidance recommends the following.

- Calculate the adjustment factor by dividing the 99th percentile of 24-hour average pound per hour (lb/hr) emission rates by the 99th percentile of 1-hour average emission rates; and
- > Hours without operation may be excluded from the 24-hour average.

Using U.S. EPA's recommended approach as a guide, Trinity calculated the adjustment factor for the Follansbee Facility as described in the following section.

ADJUSTMENT FACTOR DEVELOPMENT

Sources of Input Data

For the 2007-2009 operating period, Trinity calculated hourly emission rates for sulfur dioxide (SO₂) using the hourly hydrogen sulfide (H₂S) concentrations in the coke oven gas (COG) measured by MSC's existing analyzer, daily average COG flow rates for each of the following combustion sources, and an assumption of complete stoichiometric conversion of H₂S to SO₂ during combustion of the COG.

- > Excess COG Flare;
- > Underfiring System for Battery #1;
- > Underfiring System for Battery #2;
- > Push-side Underfiring System for Battery #3;
- > Coke-side Underfiring System for Battery #3;
- > COG Boiler #7;

>

> COG Boiler #9; and

COG Boiler #6:

> Underfiring System for Battery #8;

> COG Boiler #10.

Data Selection Criteria for Normal Operation

Trinity used the following data selection criteria to calculate a factor that would most accurately represent the degree of variability expected in hourly SO₂ emission rates during normal operation of the Follansbee Facility.

- > Trinity excluded from the analysis all hours during which the desulfurization system was out of service for a planned outage;
- > Trinity excluded from the analysis all hours during which malfunction events were occurring; and
- Trinity excluded from the analysis all hours during which the H₂S concentration was greater than 50 grains per 100 standard cubic feet (gr/100scf) given that MSC would not expect concentrations above this level during normal operation. This concentration is also the proposed value used to define the start and end of a planned or unplanned maintenance event.

Mr. Russ Dudek - Page 3 June 26, 2015

For every hour of data excluded according to the selection criteria described above, Trinity has provided annotations explaining the exclusion in column J of the attached spreadsheet (See Tables A-2 through A-11).

Note that Trinity calculates the 24-hr average emission rate once per day at the end of the 24th hour of the day (i.e., a block average) consistent with Step 3 in Appendix C to U.S. EPA's April 2014 guidance which generally suggests that facilities could calculate long-term averages at the end of each operating day. Also note that Trinity's calculated adjustment factors are nearly equivalent to the 24-hour adjustment factor provided for sources without add-on SO₂ control devices in Table 1 on Page D-2 of U.S. EPA's April 2014 guidance. A summary of the 1-hour average emission rates utilized in the modeling demonstration and the resultant 24-hour average emission limit during normal operation is included as Table A-1.

Consideration of Startup, Shutdown, and Malfunction Events

In recent discussions with MSC, the West Virginia Department of Environmental Protection (WVDEP) raised a question as to the appropriateness of not including emissions associated with startup, shutdown and malfunction (SSM) events in the statistical analysis. WVDEP's basis for this question was U.S. EPA's recent regulatory actions (i.e., the SSM SIP Call) regarding SSM events in State Implementation Plans (SIPs) and the court cases that required those regulatory actions. MSC has assessed this issue further and remains convinced that SSM events that otherwise would constitute noncompliance are properly excluded from the statistical analysis and the underlying modeling.

First, the guidance for conducting the statistical analysis does not contemplate including SSM emissions in the analysis. Pursuant to Appendix C of the April 2014 "Guidance for 1-Hour SO₂ Nonattainment Area SIP Submissions," the second step of the statistical analysis for setting longer term average emissions limits is to "compile emissions data reflecting the distribution of emission that is expected once the attainment plan is implemented." Noncompliant SSM emissions events are not "expected." A source expects to operate in compliance. Thus, the statistical analysis guidance itself argues against including SSM emissions.

Second, it is important to keep in mind that the statistical analysis is merely an extension of the underlying air dispersion modeling conducted to demonstrate compliance with the National Ambient Air Quality Standards (NAAQS). It provides a means to adjust the averaging time of an emissions limit developed through modeling. And applicable U.S. EPA modeling guidance expressly directs sources to not include malfunction events in NAAQS modeling. Specifically, 40 CFR Part 51, Appendix W (Guideline on Air Quality Models), Section 8.1.2.a states that "malfunctions which may result in excess emissions are not considered to be a normal operating condition. They generally should not be considered in determining allowable emissions. However, if the excess emissions are the result of poor maintenance, careless operation, or other preventable conditions, it may be necessary to consider them in determining source impact." Thus, U.S. EPA modeling guidance relevant to modeling SO₂ emissions does not allow inclusion of malfunction events in the model.

Furthermore, on March 1, 2011, U.S. EPA issued additional modeling guidance clarifying the application of Appendix W when developing air dispersion models for comparison to short-term ambient air-quality standards.¹ This memorandum clarifies that intermittent sources may be excluded from short-term modeling

¹ Tyler Fox, Leader, U.S. EPA Air Quality Modeling Group, "Additional Clarification Regarding Application of Appendix W Modeling Guidance for the 1-hour NO₂ National Ambient Air Quality Standard." March 1, 2011.

Mr. Russ Dudek - Page 4 June 26, 2015

analyses given that inclusion of such sources would involve the excessively conservative assumption that the intermittent source would operate during the same single hour as the worst-case meteorological conditions. Because SSM events are inherently intermittent, the March 1, 2011 guidance memo authorizes the exclusion of these events from modeling analyses which, by extension, suggests that SSM events should also be excluded from the averaging period analysis based on the modeling effort.

This notion of not including excess or noncompliant emissions in an emissions evaluation is not limited to NAAQS modeling, and is included elsewhere in Clean Air Act regulations. For example, in a New Source Review emissions analysis, in calculating baseline emissions, the emission rate "shall be adjusted downward to exclude any noncompliant emissions that occurred while the source was operating above any emissions limitation" pursuant to Title 45, West Virginia Code of State Rules (CSR) 19-2.9.a.2. Quite simply, since the SSM emissions associated with unplanned outages that WVDEP has questioned would be considered noncompliance, they are not appropriately part of the emissions evaluation to determine a statistical emissions rate.

Third, we have not identified anything in U.S. EPA's recent SSM actions that would undermine or alter the general approach of not including noncompliant SSM events in modeling or other emissions evaluations. Primarily, in U.S. EPA's recent final regulation on the SSM SIP Call, the agency stated that the purpose of the regulation was to remove provisions from SIPs that allowed for exemptions for noncompliant emissions during SSM events.² Thus, this purpose is no different than not including noncompliant emissions in an NSR analysis, or not including noncompliant emission in NAAQS modeling. This is likewise consistent with the court cases that preceded U.S. EPA's SSM SIP Call rulemaking, which generally held that certain emissions standards must be met "continuously," and that EPA did not have the authority to exempt sources from this continuous standard during SSM events.

In sum, the exclusion of SSM events from MSC's statistical analysis is consistent with relevant guidance, and is consistent with U.S. EPA's current regulatory approach to managing SSM events. Noncompliant emissions, whether from SSM events or otherwise, are handled as noncompliance, not by somehow including such noncompliant emissions in a modeling exercise or emissions evaluation.

CONCLUSION

Trinity believes that MSC should establish hourly emission limitations for SO₂ as 24-hour averages by adjusting the 1-hour average emission rates by the factors provided above. Trinity also believes that the data and techniques used to derive these factors are consistent with the criteria and procedures recommended in U.S. EPA's April 23, 2014 guidance.

² 80 Fed. Reg. 33843 – June 12, 2015

Mr. Russ Dudek - Page 5 June 26, 2015

Should you have any questions regarding this analysis, please contact me at (614) 433-0733.

Sincerely,

TRINITY CONSULTANTS

Jul

Daniel Wheeler Senior Consultant

Attachments

cc: Patrick Smith (MSC) Mike Remsberg (Trinity) Ian Donaldson (Trinity) [This page intentionally left blank.]

ATTACHMENT A

Averaging Period Analysis

Table A.1 - Averaging Period Analysis for SO₂ Emission Rates - MSC - Follansbee Plant

The following table outlines for normal plant operations the modeled emission rates and equivalent 24-hour limit for inclusion in the SO₂ SIP. The equivalent, proposed 24-hour limits were based on the adjustment factor computed in accordance with U.S. EPA's April 23, 2014 Guidance for 1-Hour SO₂ Nonattainment Area SIP Submittals (See Table A-1).

Source ^a	Modeled 1-hour Average SO ₂ Emission Rate during Normal Operation (lb/hr)	Proposed 24-hour Average SO ₂ Emission Limit during Normal Operation (lb/hr)
Battery 1 Combustion	22.9	21.4
Battery 2 Combustion	22.9	21.4
Battery 3 Combustion ^b	25.7	24.5
Battery 8 Combustion	122.1	115.4
Boilers 6 - 10 (merged stack) ^c	90.0	85.7
Excess COG Flare	139.8	137.7

^{*a.*} Other SO ₂ emissions sources included in the modeling demonstration (e.g., acid plant tail gas stack) do not rely on a CEM and emission limits are reflective of a 1-hour average.

^{b.} The adjustment factor for the Battery 3 Underfiring System Combustion Stack is calculated as the average of the adjustment factors for the Pushing Side and Coke Side underfiring systems.

^c The adjustment factor for COG Boilers #6 - 10 is calculated as the average of the adjustment factors for the individual COG Boilers.

Table A.2 - Averaging Period Analysis for SO₂ Emission Rates - MSC - Follansbee Plant - Excess COG Flare

MSC used the data provided below to calculate an adjustment factor for converting a 1-hr average emission limit to a 24-hour average emission limit in accordance with U.S. EPA's April 23, 2014 Guidance for 1-Hour SO 2 Nonattainment Area SIP Submittals.

STOICHIOMETRIC CONSTANTS

SO ₂ Molecular Weight	64.064	lb/lbmol
H ₂ S Molecular Weight	34.0809	lb/lbmol

AVERAGING PERIOD ADJUSTMENT FACTOR

99th Percentile 1-hr Average Emission Rate	88.81 lb/hr	Excludes planned outages, malfunction events, and concentrations >50 gr/100scf
99th Percentile 24-hr Average Emission Rate	87.46 lb/hr	Excludes planned outages, malfunction events, and concentrations >50 gr/100scf
Averaging Period Adjustment Factor	0.985	= 99th Percentile 24-hr Average Emission Rate (lb/hr) / 99th Percentile 1-hr Average Emission Rate (lb/hr)

HOURLY OPERATIONAL DATA

MSC obtained hourly H $_2$ S concentrations (gr/100scf) from the existing COG analyzer.

SO 2 Emission Rate (lb/hr) = Excess COG Flare Flow Rate (scf/day) / 24 (hr/day) / 100 (scf/100scf) * H 2 S Concentration (gr/100scf) / 7,000 (lb/ton) / H 2 S Molecular Weight (lb/lbmol) * SO 2 Molecular Weight (lb/lbmol)

Table A.3 - Averaging Period Analysis for SO₂ Emission Rates - MSC - Follansbee Plant - Battery 1 Underfiring System

MSC used the data provided below to calculate an adjustment factor for converting a 1-hr average emission limit to a 24-hour average emission limit in accordance with U.S. EPA's April 23, 2014 Guidance for 1-Hour SO 2 Nonattainment Area SIP Submittals.

STOICHIOMETRIC CONSTANTS

SO ₂ Molecular Weight	64.064	lb/lbmol
H ₂ S Molecular Weight	34.0809	lb/lbmol

AVERAGING PERIOD ADJUSTMENT FACTOR

99th Percentile 1-hr Average Emission Rate	12.69 lb/hr	Excludes planned outages, malfunction events, and concentrations >50 gr/100scf
99th Percentile 24-hr Average Emission Rate	11.86 lb/hr	Excludes planned outages, malfunction events, and concentrations >50 gr/100scf
Averaging Period Adjustment Factor	0.935	= 99th Percentile 24-hr Average Emission Rate (lb/hr) / 99th Percentile 1-hr Average Emission Rate (lb/hr)

HOURLY OPERATIONAL DATA

MSC obtained hourly H $_2$ S concentrations (gr/100scf) from the existing COG analyzer.

SO 2 Emission Rate (lb/hr) = Battery 1 COG Flow Rate (scf/day) / 24 (hr/day) / 100 (scf/100scf) * H 2 S Concentration (gr/100scf) / 7,000 (lb/ton) / H 2 S Molecular Weight (lb/lbmol) * SO 2 Molecular Weight (lb/lbmol)

Table A.4 - Averaging Period Analysis for SO₂ Emission Rates - MSC - Follansbee Plant - Battery 2 Underfiring System

MSC used the data provided below to calculate an adjustment factor for converting a 1-hr average emission limit to a 24-hour average emission limit in accordance with U.S. EPA's April 23, 2014 Guidance for 1-Hour SO 2 Nonattainment Area SIP Submittals.

STOICHIOMETRIC CONSTANTS

SO ₂ Molecular Weight	64.064	lb/lbmol
H ₂ S Molecular Weight	34.0809	lb/lbmol

AVERAGING PERIOD ADJUSTMENT FACTOR

99th Percentile 1-hr Average Emission Rate	15.83 lb/hr	Excludes planned outages, malfunction events, and concentrations >50 gr/100scf
99th Percentile 24-hr Average Emission Rate	14.77 lb/hr	Excludes planned outages, malfunction events, and concentrations >50 gr/100scf
Averaging Period Adjustment Factor	0.933	= 99th Percentile 24-hr Average Emission Rate (lb/hr) / 99th Percentile 1-hr Average Emission Rate (lb/hr)

HOURLY OPERATIONAL DATA

MSC obtained hourly H $_2$ S concentrations (gr/100scf) from the existing COG analyzer.

SO 2 Emission Rate (lb/hr) = Battery 2 COG Flow Rate (scf/day) / 24 (hr/day) / 100 (scf/100scf) * H 2 S Concentration (gr/100scf) / 7,000 (lb/ton) / H 2 S Molecular Weight (lb/lbmol) * SO 2 Molecular Weight (lb/lbmol)

Table A.5 - Averaging Period Analysis for SO₂ Emission Rates - MSC - Follansbee Plant - Battery 3 Pushing Side Underfiring System

MSC used the data provided below to calculate an adjustment factor for converting a 1-hr average emission limit to a 24-hour average emission limit in accordance with U.S. EPA's April 23, 2014 Guidance for 1-Hour SO 2 Nonattainment Area SIP Submittals.

STOICHIOMETRIC CONSTANTS

SO ₂ Molecular Weight	64.064	lb/lbmol
H ₂ S Molecular Weight	34.0809	lb/lbmol

AVERAGING PERIOD ADJUSTMENT FACTOR

99th Percentile 1-hr Average Emission Rate	8.07 lb/hr	Excludes planned outages, malfunction events, and concentrations >50 gr/100scf
99th Percentile 24-hr Average Emission Rate	7.68 lb/hr	Excludes planned outages, malfunction events, and concentrations >50 gr/100scf
Averaging Period Adjustment Factor	0.951	= 99th Percentile 24-hr Average Emission Rate (lb/hr) / 99th Percentile 1-hr Average Emission Rate (lb/hr)

HOURLY OPERATIONAL DATA

MSC obtained hourly H $_2$ S concentrations (gr/100scf) from the existing COG analyzer.

SO 2 Emission Rate (lb/hr) = Battery 3 Push Side COG Flow Rate (scf/day) / 24 (hr/day) / 100 (scf/100scf) * H 2 S Concentration (gr/100scf) / 7,000 (lb/ton) / H 2 S Molecular Weight (lb/lbmol) * SO 2 Molecular Weight (lb/lbmol)

Table A.6 - Averaging Period Analysis for SO₂ Emission Rates - MSC - Follansbee Plant - Battery 3 Coke Side Underfiring System

MSC used the data provided below to calculate an adjustment factor for converting a 1-hr average emission limit to a 24-hour average emission limit in accordance with U.S. EPA's April 23, 2014 Guidance for 1-Hour SO 2 Nonattainment Area SIP Submittals.

STOICHIOMETRIC CONSTANTS

SO ₂ Molecular Weight	64.064	lb/lbmol
H ₂ S Molecular Weight	34.0809	lb/lbmol

AVERAGING PERIOD ADJUSTMENT FACTOR

99th Percentile 1-hr Average Emission Rate	8.32 lb/hr	Excludes planned outages, malfunction events, and concentrations >50 gr/100scf
99th Percentile 24-hr Average Emission Rate	7.97 lb/hr	Excludes planned outages, malfunction events, and concentrations >50 gr/100scf
Averaging Period Adjustment Factor	0.957	= 99th Percentile 24-hr Average Emission Rate (lb/hr) / 99th Percentile 1-hr Average Emission Rate (lb/hr)

HOURLY OPERATIONAL DATA

MSC obtained hourly H $_2$ S concentrations (gr/100scf) from the existing COG analyzer.

SO 2 Emission Rate (lb/hr) = Battery 3 Coke Side COG Flow Rate (scf/day) / 24 (hr/day) / 100 (scf/100scf) * H 2 S Concentration (gr/100scf) / 7,000 (lb/ton) / H 2 S Molecular Weight (lb/lbmol) * SO 2 Molecular Weight (lb/lbmol)

Table A.7 - Averaging Period Analysis for SO₂ Emission Rates - MSC - Follansbee Plant - Battery 8 Underfiring System

MSC used the data provided below to calculate an adjustment factor for converting a 1-hr average emission limit to a 24-hour average emission limit in accordance with U.S. EPA's April 23, 2014 Guidance for 1-Hour SO 2 Nonattainment Area SIP Submittals.

STOICHIOMETRIC CONSTANTS

SO ₂ Molecular Weight	64.064	lb/lbmol
H ₂ S Molecular Weight	34.0809	lb/lbmol

AVERAGING PERIOD ADJUSTMENT FACTOR

99th Percentile 1-hr Average Emission Rate	84.35 lb/hr	Excludes planned outages, malfunction events, and concentrations >50 gr/100scf
99th Percentile 24-hr Average Emission Rate	79.73 lb/hr	Excludes planned outages, malfunction events, and concentrations >50 gr/100scf
Averaging Period Adjustment Factor	0.945	= 99th Percentile 24-hr Average Emission Rate (lb/hr) / 99th Percentile 1-hr Average Emission Rate (lb/hr)

HOURLY OPERATIONAL DATA

MSC obtained hourly H $_2$ S concentrations (gr/100scf) from the existing COG analyzer.

SO 2 Emission Rate (lb/hr) = Battery 8 COG Flow Rate (scf/day) / 24 (hr/day) / 100 (scf/100scf) * H 2 S Concentration (gr/100scf) / 7,000 (lb/ton) / H 2 S Molecular Weight (lb/lbmol) * SO 2 Molecular Weight (lb/lbmol)

Table A.8 - Averaging Period Analysis for SO₂ Emission Rates - MSC - Follansbee Plant - COG Boiler 6

MSC used the data provided below to calculate an adjustment factor for converting a 1-hr average emission limit to a 24-hour average emission limit in accordance with U.S. EPA's April 23, 2014 Guidance for 1-Hour SO 2 Nonattainment Area SIP Submittals.

STOICHIOMETRIC CONSTANTS

SO ₂ Molecular Weight	64.064	lb/lbmol
H ₂ S Molecular Weight	34.0809	lb/lbmol

AVERAGING PERIOD ADJUSTMENT FACTOR

99th Percentile 1-hr Average Emission Rate	19.49 lb/hr	Excludes planned outages, malfunction events, and concentrations >50 gr/100scf
99th Percentile 24-hr Average Emission Rate	18.86 lb/hr	Excludes planned outages, malfunction events, and concentrations >50 gr/100scf
Averaging Period Adjustment Factor	0.968	= 99th Percentile 24-hr Average Emission Rate (lb/hr) / 99th Percentile 1-hr Average Emission Rate (lb/hr)

HOURLY OPERATIONAL DATA

MSC obtained hourly H $_2$ S concentrations (gr/100scf) from the existing COG analyzer.

SO 2 Emission Rate (lb/hr) = COG Boiler 6 Flow Rate (scf/day) / 24 (hr/day) / 100 (scf/100scf) * H 2 S Concentration (gr/100scf) / 7,000 (lb/ton) / H 2 S Molecular Weight (lb/lbmol) * SO 2 Molecular Weight (lb/lbmol)

Table A.9 - Averaging Period Analysis for SO₂ Emission Rates - MSC - Follansbee Plant - COG Boiler 7

MSC used the data provided below to calculate an adjustment factor for converting a 1-hr average emission limit to a 24-hour average emission limit in accordance with U.S. EPA's April 23, 2014 Guidance for 1-Hour SO 2 Nonattainment Area SIP Submittals.

STOICHIOMETRIC CONSTANTS

SO ₂ Molecular Weight	64.064	lb/lbmol
H ₂ S Molecular Weight	34.0809	lb/lbmol

AVERAGING PERIOD ADJUSTMENT FACTOR

99th Percentile 1-hr Average Emission Rate	19.06 lb/hr	Excludes planned outages, malfunction events, and concentrations >50 gr/100scf
99th Percentile 24-hr Average Emission Rate	18.45 lb/hr	Excludes planned outages, malfunction events, and concentrations >50 gr/100scf
Averaging Period Adjustment Factor	0.968	= 99th Percentile 24-hr Average Emission Rate (lb/hr) / 99th Percentile 1-hr Average Emission Rate (lb/hr)

HOURLY OPERATIONAL DATA

MSC obtained hourly H $_2$ S concentrations (gr/100scf) from the existing COG analyzer.

SO 2 Emission Rate (lb/hr) = COG Boiler 7 Flow Rate (scf/day) / 24 (hr/day) / 100 (scf/100scf) * H 2 S Concentration (gr/100scf) / 7,000 (lb/ton) / H 2 S Molecular Weight (lb/lbmol) * SO 2 Molecular Weight (lb/lbmol)

Table A.10 - Averaging Period Analysis for SO₂ Emission Rates - MSC - Follansbee Plant - COG Boiler 9

MSC used the data provided below to calculate an adjustment factor for converting a 1-hr average emission limit to a 24-hour average emission limit in accordance with U.S. EPA's April 23, 2014 Guidance for 1-Hour SO 2 Nonattainment Area SIP Submittals.

STOICHIOMETRIC CONSTANTS

SO ₂ Molecular Weight	64.064	lb/lbmol
H ₂ S Molecular Weight	34.0809	lb/lbmol

AVERAGING PERIOD ADJUSTMENT FACTOR

99th Percentile 1-hr Average Emission Rate	17.35 lb/hr	Excludes planned outages, malfunction events, and concentrations >50 gr/100scf
99th Percentile 24-hr Average Emission Rate	16.43 lb/hr	Excludes planned outages, malfunction events, and concentrations >50 gr/100scf
Averaging Period Adjustment Factor	0.947	= 99th Percentile 24-hr Average Emission Rate (lb/hr) / 99th Percentile 1-hr Average Emission Rate (lb/hr)

HOURLY OPERATIONAL DATA

MSC obtained hourly H $_2$ S concentrations (gr/100scf) from the existing COG analyzer.

SO 2 Emission Rate (lb/hr) = COG Boiler 9 Flow Rate (scf/day) / 24 (hr/day) / 100 (scf/100scf) * H 2 S Concentration (gr/100scf) / 7,000 (lb/ton) / H 2 S Molecular Weight (lb/lbmol) * SO 2 Molecular Weight (lb/lbmol)

Table A.11 - Averaging Period Analysis for SO₂ Emission Rates - MSC - Follansbee Plant - COG Boiler 10

MSC used the data provided below to calculate an adjustment factor for converting a 1-hr average emission limit to a 24-hour average emission limit in accordance with U.S. EPA's April 23, 2014 Guidance for 1-Hour SO 2 Nonattainment Area SIP Submittals.

STOICHIOMETRIC CONSTANTS

SO ₂ Molecular Weight	64.064	lb/lbmol
H ₂ S Molecular Weight	34.0809	lb/lbmol

AVERAGING PERIOD ADJUSTMENT FACTOR

99th Percentile 1-hr Average Emission Rate	15.67 lb/hr	Excludes planned outages, malfunction events, and concentrations >50 gr/100scf
99th Percentile 24-hr Average Emission Rate	14.54 lb/hr	Excludes planned outages, malfunction events, and concentrations >50 gr/100scf
Averaging Period Adjustment Factor	0.928	= 99th Percentile 24-hr Average Emission Rate (lb/hr) / 99th Percentile 1-hr Average Emission Rate (lb/hr)

HOURLY OPERATIONAL DATA

MSC obtained hourly H $_2$ S concentrations (gr/100scf) from the existing COG analyzer.

SO 2 Emission Rate (lb/hr) = COG Boiler 10 Flow Rate (scf/day) / 24 (hr/day) / 100 (scf/100scf) * H 2 S Concentration (gr/100scf) / 7,000 (lb/ton) / H 2 S Molecular Weight (lb/lbmol) * SO 2 Molecular Weight (lb/lbmol)