

An Ecological Assessment of the Lower Guyandotte River Watershed

Watershed Assessment Section

An Ecological Assessment of the Lower Guyandotte River Watershed

Report number - 05070102 - May 2004

Prepared by:

Watershed Assessment Section Watershed Branch Division of Water and Waste Management West Virginia Department of Environmental Protection 414 Summers Street, Charleston, WV 25301

www.wvdep.org

Table Of Contents

Summary 5
Acknowledgements
Watersheds And Their Assessment7
General Watershed Assessment Strategy 8
Probabilistic (Random) Sampling 10
Watershed Assessment Methods 12
Biological Monitoring — Benthic Macroinvertebrates 12
West Virginia Stream Condition Index 16
Fecal Coliform Bacteria 18
Physicochemical Sampling 18
Habitat Assessment
Data Interpretation
The Lower Guyandotte River Watershed 25
Assessment Results
General Overview
Benthic Macroinvertebrates
Fecal Coliform Bacteria 35
Physicochemical Water Quality 35
Physical Habitat
Results And Discussions By Sub-watershed
Upper Mud River sites
Lower Mud River Sites
Middle Fork Of Mud River Sites 40
Trace Fork Of Mud River Sites 41
Upper Guyandotte River Direct Drains Sites 42
Middle Guyandotte River Direct Drains Sites 44
Lower Guyandotte River Direct Drains Sites 46
Big Creek Sites
Big Harts Creek Sites 48
Big Ugly Creek Sites 49
Fourmile Creek Sites 50
Implications
References
Glossary
Appendix A - Data Tables

List Of Figures

Figure 1. A Generalized Watershed	9
Figure 2. Common Benthic Macroinvertebrate Organisms	13
Figure 3. Benthos Collection Nets	14
Figure 4. Illustration of embeddedness	22
Figure 5. Stream with and without riparian buffer zone	22
Figure 6. Example Sub-watershed	
Figure 7. Example X-Y Graph.	24
Figure 8. Watershed Location	25
Figure 9. Watershed Ecoregions	26
Figure 10. Lower Guyandotte (excluding Mud R.) X-Y Graph	32
Figure 10-A. Mud River Sub-watershed X-Y Graph	32
Figure 11. Upper Mud River Sub-watershed X-Y Graph	33
Figure 12. Lower Mud River Sub-watershed X-Y Graph	33
Figure 13. Middle Fork Mud River Sub-watershed X-Y Graph	34
Figure 14. Upper Mud River Map	37
Figure 15. Lower Mud River Map	38
Figure 16. Middle Mud River Map	40
Figure 17. Trace Fork of Mud River Map	42
Figure 18. Upper Direct Drains Map	43
Figure 19. Middle Direct Drains Map	44
Figure 20. Lower Direct Drains Map	46
Figure 21. Big Creek Map	47
Figure 22. Big Harts Creek Map	49
Figure 23. Big Ugly Creek Map	50
Figure 24. Fourmile Creek Map	51
Figure 25. Coal Mining Influences Map	53
Figure 26. Land Use Comparison Maps	. 54

List Of Tables

Table 1. Water Quality Parameters	19
Table 2. Scoring For Rapid Habitat Assessment	21
Table 3. WV DNR High Quality Streams	30
Table 4. Special Waters	30
Table 5. Sampling Summary	31
Table 6. Upper Mud River	37
Table 7. Lower Mud River	39
Table 8. Middle Fork Of Mud River	41
Table 9. Trace Fork Of Mud River	42
Table 10. Upper Direct Drains	43
Table 11. Middle Direct Drains	45
Table 12. Lower Direct Drains	46
Table 13. Big Creek	47
Table 14. Big Harts Creek	49
Table 15. Big Ugly Creek	50
Table 16. Fourmile Creek	51
Table 17. Sites Impacted By Coal Mining	52
Table 18. Sites with uncertain reasons for low WVSCI scores	55
Table 19. Sites with unimpaired benthos and the highest RBP habitat scores	56
Table A-1. Sites Sampled.	66
Table A-2. Physical characteristics of 100 meter stream reach.	69
Table A-3. Observed Sediment Characteristics.	72
Table A-4. Substrate composition in benthic collection area.	75
Table A-5. Macrobenthic community metrics and WVSCI scores	78
Table A-6. Benthic macroinvertebrates identified.	81
Table A-7. Water quality parameters measured in the field, and fecal coliform	
bacteria1	01
Table A-8. Additional water quality parameters taken from a subset of all streams	
sampled1	04
Table A-9. Additional water quality parameters taken from a subset of all streams	
sampled1	06
Table A-10. Additional water quality parameters taken from a subset of all streams	
sampled	07
Table A-11. Rapid Habitat Assessment Scores. 1	08

Summary

In 1998, during the months of May and June, assessment teams of the West Virginia Watershed Assessment Section visited 129 sites within the Lower Guyandotte River watershed. Benthic macroinvertebrate samples were collected at 119 of these sites and water quality samples were collected at 128 sites. This assessment report is based upon the data generated from this effort.

The surface areas of a majority of the sub-watersheds sampled during this study were covered mostly by forest. All but 2 of the sampled sites drain areas that were more than 70 % forested during the sampling period. The bottomlands of the lowermost portion of the watershed had undergone extensive urban development since Interstate Highway 64 was developed along the bed of ancient Teays Lake between the communities of Nitro and Huntington. The southern third of the watershed is underlain with minable coals. There were mines operating during the sampling period, and there was evidence of numerous inactive mines in the region. One site produced evidence that current mining activity negatively impacted Mud River. Other sites gave evidence that older mine drainage negatively impacted benthic communities therein.

At some sites, poor habitat conditions were considered possible causes of impairment. Two sites with substrates covered heavily by sediment drained areas that had 47.21 % and 13.83 % coverage by urban land, the highest percentages in this land use category of all the sites sampled. These sub-watersheds had the lowest percentage area coverage by forest as well. These 2 sites also produced the lowest West Virginia Stream Condition Index (WVSCI) benthological scores in the Mud River sub-watershed. From this information, it appears that the poor showing of *Tanyard Branch* (OGM-1.5) and *Indian Fork* (OGM-12), may have been due in large part to poor habitat that may have resulted from urbanization.

In the portion of the Guyandotte River watershed that excludes the Mud River sub-watershed, the 2 sites with the poorest WVSCI scores were negatively impacted, at least in part, by mine drainage. *Perrys Branch* (OG-49-E-1) and an *unnamed tributary of Big Creek* (OG-49-C.1) also had poor water quality and other evidence indicating severe impairment by mine drainage. A few streams were added to sampling lists by team members suspecting mine drainage impacts. The evidence gathered at these sites indicates there were more streams impacted by mine drainage within the watershed than were previously known.

Several sites produced benthic samples indicating impairment, but few clues about the causes or sources of impairment. No fewer than 25 of the comparably sampled sites fell in this category and are therefore recommended for further study. Also recommended for further study are the Guyandotte River and Mud River main stems, because they were not adequately sampled during this effort to allow the Watershed Assessment Section to assess their overall condition.

Acknowledgements

Funding for this watershed assessment was provided by the U.S. Environmental Protection Agency's 319 and 104(b)(3) programs and by the West Virginia Department of Environmental Protection.

Jeffrey Bailey, Perry Casto, Alvan Gale, Karen Maes, Christina Moore, Mike Puckett, Charles Surbaugh (retired since), John Wirts, and Doug Wood collected samples and assessed sampling sites. Karen Maes and Christina Moore processed some of the benthic macroinvertebrate samples, but most were processed by Marshall University students under the supervision of Dr. Donald Tarter and Jeffrey Bailey. Jeffrey Bailey, Janice Smithson, and John Wirts identified the macroinvertebrates. Karen Maes, Christina Moore, and Charles Surbaugh entered the raw data into the database. John Wirts, Doug Wood, and Kim Smith created tables and figures. Michael Arcuri, Patrick Campbell, Judith Lyons, Steve Young, and John Wirts reviewed various drafts of this report. Doug Wood interpreted the results and is the primary author of this report.

Watersheds And Their Assessment

In 1959, the West Virginia Legislature created the State Water Commission, which was the predecessor of the Division of Water Resources, and later, the Division of Water and Waste Management (DWWM). The DWWM, like its predecessor agencies, is charged with balancing the state's needs of economic development and water consumption with the restoration and maintenance of water quality in the state's waters.

At the federal level, the U.S. Congress enacted the Clean Water Act of 1972 and subsequent amendments in order to restore the quality of our nation's waters. For more than 25 years, the Act's National Pollutant Discharge Elimination System (NPDES) has caused reductions in pollutants discharged from point sources to surface waters. There is broad agreement that implementation of the NPDES permit system has reduced the amount of contaminants in point source discharges, and this reduction has resulted in significant improvement in the water quality of many of our nation's streams.

Under the federal law, each state was given the option of managing NPDES permits within its borders or deferring that management role to the federal government. When West Virginia assumed primacy over NPDES permits in 1982, the state's Water Resources Board - renamed the Environmental Quality Board (EQB) in 1994 - began developing water quality criteria for each kind of use designated for the state's waters (see box on this page). In addition, the WV Department of Environmental Protection's (DEP) water protection activities are guided by the EQB's anti-degradation policy, which charges the DWWM with maintaining surface waters at sufficient quality to support existing uses, regardless of whether or not the uses are specifically designated by the EQB.

Even with significant progress, by the early 1990s many streams still did not support their designated uses. Consequently, environmental managers began to examine pollutants flushing off of the landscape from a broad array of sources. Recognition of the negative impacts of these nonpoint sources (NPS) of pollution, was a conceptual step that served as a catalyst for today's holistic watershed approach to improving water quality.

Several DEP units, including the Watershed Assessment Section, are currently implementing a variety of watershed projects. Located within the DWWM, the Section's scientists are charged with evaluating the health of West Virginia's watersheds. The WATER QUALITY CRITERIA - The concentrations of water quality parameters and the stream conditions that are required to be maintained by the Code of State Regulations, Title 46, Series 1 (Requirements Governing Water Quality Standards).

DESIGNATED USES - For each water body, those uses specified in the water quality standards, whether or not those uses are being attained. Unless otherwise designated by the rules, all waters of the state are designated for:

- the propagation and maintenance of fish and other aquatic life, and
- water contact recreation.

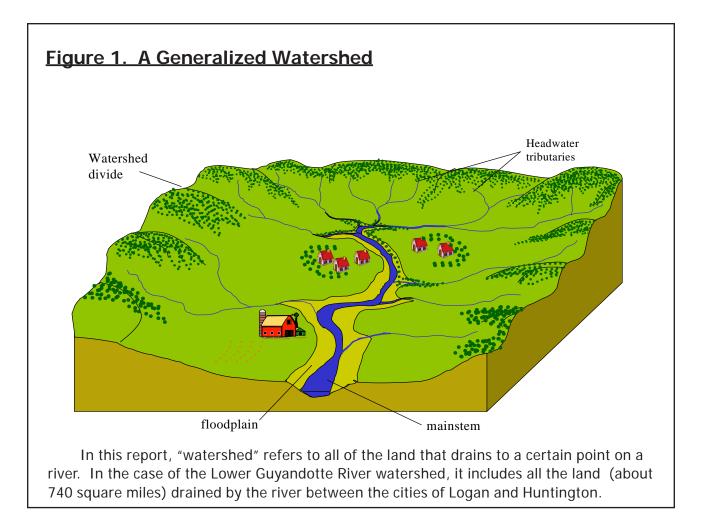
Other types of designated uses include:

- public water supply,
- agriculture and wildlife uses, and
- industrial uses.

Watershed Assessment Section is guided, in part, by the Interagency Watershed Management Steering Committee (see box on this page).

The Watershed Assessment Section uses the U.S. Geological Survey's (USGS) scheme of hydrologic units to divide the state into 32 watersheds. Some of these watersheds are entire stream basins with natural hydrologic divides (e.g., Gauley River watershed). Three other types of watershed units were devised for manageability: (1) clusters of small tributaries that drain directly into a larger mainstem stream (e.g., Potomac River Direct Drains watershed); (2) the West Virginia portions of interstate basins (e.g., Tug Fork watershed); and (3) divisions of large watersheds (e.g., Upper and Lower Kanawha River watersheds).

A goal of the Watershed Assessment Section is to assess each watershed unit every 5 years, an interval coinciding with the reissue of NPDES permits within each assessed watershed. THE INTERAGENCY WATERSHED MANAGEMENT STEERING COMMITTEE consists of representatives from each agency that participates in the Watershed Management Framework. Its function is to coordinate the operations of the existing water quality programs and activities within West Virginia to better achieve shared water resource management goals and objectives.


The Watershed Basin Coordinator serves as the day-to-day contact for the committee. The Coordinator's responsibilities are to organize and facilitate the steering committee meetings, to maintain the watershed management schedule, to assist with public outreach, and to be the primary contact for watershed management related issues.

General Watershed Assessment Strategy

A watershed may be envisioned as an aquatic tree, that is, a network of upwardly branching, successively smaller streams (See Figure 1). An ideal assessment of a watershed would be one that documented changes in the quantity and quality of water flowing down every stream, at all water levels, in all seasons, from headwater reaches to the downstream boundary of the watershed. Land uses throughout the watershed would also be quantified. However, this approach would require more time and resources than are available.

The Watershed Assessment Section assesses the health of a watershed by evaluating the aquatic integrity of as many streams as possible near their mouths. The general sampling strategy can be broken into several steps:

- The names of streams within the watershed are retrieved from the U.S. Environmental Protection Agency's (EPA) Waterbody System database.
- A list of streams is developed that consists of several sub-lists, including:
 1. Severely impaired streams,

- 2. Slightly or moderately impaired streams,
- 3. Unimpaired streams,
- 4. Unassessed streams, and
- 5. Streams of particular concern to citizens.
- Assessment teams visit as many listed streams as possible and sample as close to the streams' mouths as allowed by road access and sample site suitability.

Long streams may be sampled at additional sites further upstream. In general if a stream is 15 to 30 miles (25-50 km) long, 2 sites are sampled; 30-50 miles (50-89 km) long, 3 sites are sampled; 50-100 miles (80-160 km) long, 4 sites are sampled or; longer than 100 miles (160 km), 5 sites are sampled. If inaccessible or unsuitable sites are dropped from the list, they are replaced with previously determined alternate sites.

An exception to this general investigative strategy is the sampling methodology developed to produce statistically valid summaries that allow the comparison of watersheds to one another. This

methodology is detailed in the Watershed Assessment Section titled "Probabilistic or Random Sampling."

The Watershed Assessment Section has scheduled the assessment of each watershed during a specific year of a 5-year cycle. Advantages of this preset timetable include: (1) synchronizing study dates with permit cycles, (2) facilitating stakeholder input in the information gathering process, (3) insuring assessment of all watersheds, and (4) improving the DWWM's ability to plan.

In a broad sense, the DWWM's Watershed Assessment Section evaluates streams while the Interagency Watershed Management Steering Committee (see box on page 8) sets priorities in each watershed.

This document, which reports an ecological assessment of 1 watershed, has been prepared for a wide variety of users, including elected officials, environmental consultants, educators, watershed associations, and natural resources managers.

Probabilistic (Random) Sampling

The nonrandom sampling component of the watershed assessment process is very useful in targeting problem sites, potential reference sites, and little known streams. However, the data generated from nonrandom sampling have limited usefulness in making statistical comparisons between watersheds.

In 1997, in order to improve the evaluation process, the Watershed Assessment Section began to incorporate random sampling into the watershed assessment strategy. The sample sites are randomly selected by computer and may require an assessment at any point along the length of the stream. Random sampling allows researchers to make statistically valid inferences about stream conditions within each watershed. Randomization also improves comparisons between watersheds. EPA personnel provide computer-generated locations for about 40 random sites within each watershed. Because there are many more miles of first-order and second-order headwater streams than there are of higher ordered streams, stream miles are statistically weighted so that an adequate number of larger stream sites are selected by the computer.

Section field crews visit the sites and verify locations with Global Positioning System (GPS) units. If a site is wadeable and has riffle/run habitat, it is assessed using the same protocols as those used at nonrandom sites with the addition of extra water quality constituents to the analysis list.

The results of random sampling are reported herein mixed with nonrandom data. The DEP, with support from the EPA, will report the results of statewide random sampling at a later date.

TOTAL MAXIMUM DAILY LOAD AND THE 303(d) LIST - The term "total maximum daily load" (TMDL) originates in the federal Clean Water Act, which requires that degraded streams be restored to support their designated uses.

Every 2 years, a list of water quality limited streams, called the 303(d) list after the Clean Water Act section number wherein the list is described, is prepared. In a case of severe impairment, it is relatively easy to determine that a stream should be placed on the 303(d) list. However, the determination is more difficult to make for most streams due to a lack of data or data that are conflicting, of questionable quality, or too old. Any stream that would not support its designated uses, even after technology-based pollution controls were applied, would be considered for inclusion on the list. West Virginia's 303(d) list includes streams affected by a number of stressors including mine drainage, acid deposition, metals, and siltation.

Mathematically, a TMDL is the sum of the allocations of a particular pollutant (from point and nonpoint sources) into a particular stream, plus a margin of safety. Restoration of a 303(d) list stream begins by calculating a TMDL, which involves several steps:

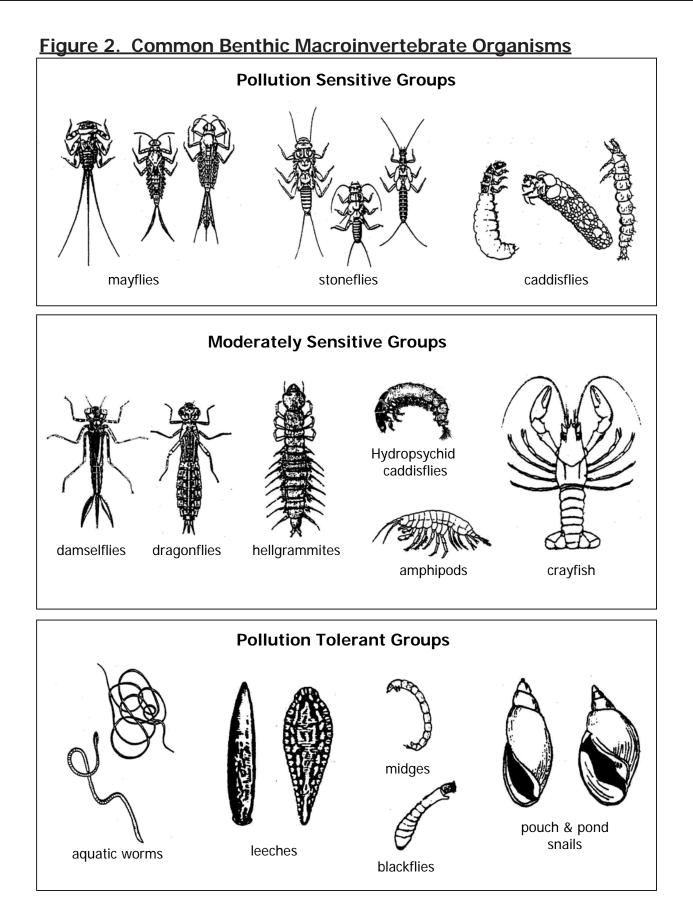
- Define when a water quality problem is occurring (e.g., at base flow, during the hottest part of the day, or throughout the winter ski season),
- Calculate how much of a particular contaminant must be reduced in a stream in order to meet the appropriate water quality criterion,
- Calculate the total maximum daily load from flow values during the problem period and the concentration allowed by the criterion,
- Divide the total load allocation between point and nonpoint sources (e.g., 70 % point and 30 % nonpoint), and
- Recommend pollution reduction controls to meet designated uses (e.g., install best management practices, reduce permit limits, or prohibit discharges during problem periods). A TMDL cannot be approved unless the proposed controls are reasonable and able to be implemented.

Watershed Assessment Methods

In 1989, the EPA published a document titled *Rapid Bioassessment Protocols for Use in Streams and Rivers - Benthic Macroinvertebrates and Fish* (Plafkin et al. 1989). This document was intended to provide water quality monitoring programs, such as the Section's Watershed Assessment Program, with a practical technical reference for conducting cost-effective biological assessments of flowing waters.

Originally, the Rapid Bioassessment Protocols (RBPs) were intended to be inexpensive screening tools to determine if a stream was supporting a designated aquatic life use. However, the current consensus is that the RBPs also can be applied to other program areas, such as:

- Characterizing the existence and severity of use impairment
- Helping to identify sources and causes of impairments in watershed studies
- Evaluating the effectiveness of control actions
- Supporting use-attainability studies
- Characterizing regional biological components.

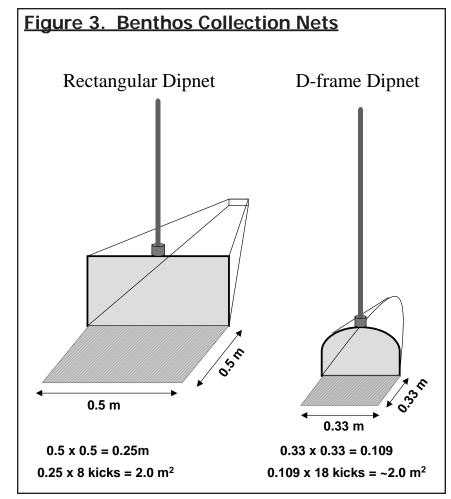

The diversity of applications provided by the RBPs was the primary reason they were adopted by the Watershed Assessment Section for use in assessing watersheds. In 1999, the EPA published a second edition of the RBP manual (Barbour, et. al.,1999). Before this publication date, a draft revision was circulated among the states and the Watershed Assessment Section was able to incorporate many of the recommended changes to protocol prior to the 1998 sampling season. Because the vast majority of stream miles in the state have riffle/run habitat, the "Single Habitat Approach" was the benthic collection method adopted by the Watershed Assessment Section.

The following sections summarize the procedures used to assess the streams in this watershed. A more detailed description of assessment procedures is found in the Watershed Assessment Section's *Standard Operating Procedures* manual.

Biological Monitoring — Benthic Macroinvertebrates

Benthic macroinvertebrates are small animals that live on the bottoms of streams, rivers, and lakes. Insects comprise the largest diversity of these animals and include mayflies, stoneflies, caddisflies, beetles, midges, crane flies, dragonflies, and others. Snails, mussels, aquatic worms, and crayfish also are members of the benthic macroinvertebrate community. Benthic macroinvertebrates are important in the processing and cycling of nutrients, and are major food sources for fish and other aquatic animals. In general, a clean stream has a diverse array of benthic organisms that occupy a variety of ecological niches. Polluted streams generally have a lower diversity and often are devoid of pollution sensitive species. Figure 2 shows several of the most common macroinvertebrate organisms found in West Virginia's streams.

Benthic macroinvertebrate data have been used for several decades as tools for conducting



ecological assessments of streams. Many federal, state, and private organizations use this group of animals as part of their biological monitoring programs and the advantages are myriad. The most recognized benefit is that benthic macroinvertebrate communities reflect overall ecological integrity (i.e., chemical, physical, and biological integrity). They provide a holistic measure of environmental conditions by integrating responses to stresses over time, and the public better understands them (as opposed to chemical conditions) as measures of environmental health (Plafkin et al. 1989).

Benthic macroinvertebrates can be collected using several techniques. The Watershed Assessment Section used the EPA's RBP II with some modifications. The 2-man kick net used in the original RBP was replaced with a kick net modified for use by 1 person. In streams having adequate riffle/run habitat, the Watershed Assessment Section used a rectangular dipnet to capture organisms dislodged by kicking the stream bottom substrate and by brushing large rocks and sticks. In streams too small to accommodate the rectangular dipnet, a smaller net called a D-frame was used to collect dislodged organisms (See Figure 3). Riffle/run streams with low flow that did not have enough water to sample with either net were sampled using a procedure called hand picking. This procedure involved picking and washing stream substrate (an area equal to 8 kicks with a rectangular net and 18 with a D-frame net) regardless of the device or technique employed.

The D-frame net was also used to collect macroinvertebrates in slow flowing (glide/pool dominated) streams that did not have sufficient riffle/run habitat. Macroinvertebrate sampling in glide/pool streams was accomplished using a procedure developed for use in Mid-Atlantic state coastal plain streams (the MACS technique) but applied to slowmoving streams in West Virginia.

Benthic samples were preserved and delivered to the Department of Biological Sciences at Marshall University for processing. Processing involved removing a 200-organism subsample from the composite sample following RBP II protocols. The subsample was returned to

Section biologists who counted and identified the specimens to the family level or the lowest possible level of classification. The samples were kept for future reference and for identification to lower taxonomic levels if necessary.

Fish specimens inadvertently collected during macroinvertebrate sampling were transferred to the West Virginia Department of Natural Resources (DNR) office in Elkins where they became part of the permanent fish collection. Salamanders inadvertently collected were donated to the Marshall University Biological Museum in care of Dr. Tom Pauley.

The Section's primary goal in collecting macroinvertebrate data was to determine the biological conditions of the selected stream assessment sites. Determining the biological condition of each site involved calculating and summarizing 6 community metrics based upon the benthic macroinvertebrate data. The following benthic community metrics were used for each assessment site:

Benthic Community Metrics

Metrics are calculations that numerically describe the benthic communities of streams. Some metrics are simple summations such as Taxa Richness; a measure of the total number of different kinds of organisms in a sample.

Other metrics are more complex such as Hilsenhoff's Biotic Index, which incorporates the pollution tolerance values of collected organisms to provide a number that assesses organic pollution in streams.

The Watershed Assessment Section currently uses 6 metrics to determine the integrity of benthic macroinvertebrate communities. The use of several metrics, instead of only 1 or 2, provides greater assurance that valid assessments of integrity are made.

Richness Metrics

1. Total Taxa - measures the total number of different macroinvertebrate taxa collected in the sample.

In general, the total number of taxa increases with improving water quality.

2. EPT Index - measures the total number of distinct taxa within the generally pollution sensitive orders *Ephemeroptera* (mayflies), *Plecoptera* (stoneflies), and *Trichoptera* (caddisflies). In general, this index increases with improving water quality.

Community Composition Metrics

3. Percent Contribution of 2 Dominant Taxa - measures the abundance of the 2 numerically dominant taxa relative to the total number of organisms in the sample. Generally, this index decreases with improving water quality.

4. Percent EPT - measures the relative abundance of mayfly, stonefly, and caddisfly individuals to the total number of organisms in the sample. In general, this index increases with improving water quality.

5. Percent *Chironomidae* - measures the abundance of chironomid (midge) individuals relative to the total number of individuals in the sample. Generally, chironomids are considered tolerant of

many pollutants. This metric generally decreases in value with improving water quality.

Tolerance/Intolerance Metric

6. HBI (Hilsenhoff's Biotic Index - modified) - summarizes tolerances of the benthic community to organic pollution. Tolerance values range from 0 to 10 and generally decrease with improving water quality.

Of the many metrics available, these 6 metrics were used because (1) they provide the best discrimination between impaired and unimpaired sites, (2) they represent different community attributes, and (3) they minimize redundancy.

West Virginia Stream Condition Index

The 6 benthic community metrics were combined into a single index, the West Virginia Stream Condition Index (WVSCI). The WVSCI was developed by Tetra Tech Inc. (Gerritsen et. al. 2000) using the DEP's watershed assessment data and the EPA's Environmental Monitoring and Assessment Program data collected from riffle/run habitats in wadeable streams.

The WVSCI score is determined by calculating the average of the standardized score of each metric. The standardized score for each metric is determined by comparing an individual metric value to the "best standard value." This value represents either the 95th or 5th percentile (depending on whether the metric registers high or low for healthy streams) of all sites sampled via comparable methods. In general terms, all metrics values are converted to a standard, 0 to 100 (worst to best) scale. An average of the 6 standardized metric scores is calculated for each benthic sample site resulting in a final index score that ranges from 0 to 100.

In order to interpret the WVSCI score, the Watershed Assessment Section needed to establish reference conditions (see box on page 17). In a few previous assessments, the Watershed Assessment Section used either a single least-impaired site or a set of sites categorized by both stream width and ecoregional location as the reference conditions. However, it soon became clear that it is difficult to identify a single reference site that has both (1) minimal impairment and (2) the type of biological community that provides defensible conclusions about the impairment of assessed sites.

As a result of this revelation, the Watershed Assessment Section began defining reference conditions by using a collection of sites that met predetermined minimum impairment criteria. A site's suitability as a reference site was established by comparing the site's habitat and physicochemical data to a list of minimum degradation criteria or "reference site" criteria. Assessment sites that met all of the minimum criteria were given reference site status. The Watershed Assessment Section developed the minimum degradation criteria with the assumption that sites meeting these criteria would provide a reasonable approximation of least disturbed conditions.

Originally, the Watershed Assessment Section was using a set of reference sites limited to the

watershed being studied. Subsequent research showed that a single reference set for wadeable streams is sufficient for statewide assessments (Tetra Tech, 2000). The researchers found that partitioning streams into ecoregions did not significantly improve the accuracy of assessments. The Watershed Assessment Section began using 107 reference sites to describe reference conditions. The reference conditions were then used to establish a threshold for biological impairment. These reference conditions can be used statewide, in all wadeable streams, and throughout the established sampling period of April through October.

The 5th percentile of the range of WVSCI scores for all the reference sites was selected as the impairment threshold. For the 107 reference sites used in this study, the 5th percentile score is 68. Initially, a site that received a WVSCI score equal to or less than 68 was considered impaired. However, because the final WVSCI score can be affected by a number of factors (collector, microhabitat variables, subsampling, etc.) the Watershed Assessment Section sampled 26 sites in duplicate to determine the precision of the scoring. Following an analysis of the duplicate data, the Watershed Assessment Section determined the precision estimate to be 7.4 WVSCI points. The Watershed Assessment Section then subtracted 7.4 points from the impaired threshold of 68 and generated what is termed the gray zone that ranges from >60.6 to 68.0. If a non-reference site has a WVSCI score within the "gray zone", a single kick sample is considered insufficient for classifying it as

Reference Conditions

Reference conditions describe the characteristics of waterbody segments least-impaired by human activities, and are used to define attainable biological and habitat conditions. Selection of reference sites depends on an evaluation of the physicochemical and habitat data collected during each site's assessment.

These data must meet minimum degradation criteria established by the Watershed Assessment Section before a site can be given reference site status. In general, the following parameters are examined: dissolved oxygen, pH, conductivity, fecal coliform bacteria, violations of water quality standards, nonpoint sources of pollution, benthic substrate, channel alteration, sediment deposition, streambank vegetation, riparian zone vegetation, overall habitat condition, human disturbances, point sources of pollution, and land use.

The information from sites that meet the defined criteria is used to establish reference conditions. Benthic macroinvertebrate data from each assessment site can then be compared to the reference conditions to produce a WVSCI score.

impaired. If a site produces a WVSCI score equal to or less than 60.6, the Watershed Assessment Section is confident that the site was truly biologically impaired during the assessment period based on the single benthic macroinvertebrate sample. Accordingly, sites receiving the lowest WVSCI scores are the most impaired.

The impairment categories developed within the WVSCI are important tools the Watershed Assessment Section uses in making management decisions and in allocating limited resources to the streams that need them most. For the purposes of this report, the Watershed Assessment Section considered impaired sites and sites with WVSCI scores in the gray zone to be in need of further investigation and/or corrective action.

The WVSCI has proven itself as a useful and cost effective tool for assessing the health of the streams of West Virginia. However, like all biological assessment tools, it has its relative strengths and weaknesses. In some situations it is less applicable than in others. For most categories of streams found within West Virginia it appears to be a very reliable mechanism for measuring relative benthic community condition.

One shortfall seems to be its weakness in distinguishing differences in benthic community conditions between streams impacted by acidic deposition (rain, snow, fog, etc.) and unimpaired streams. Many atmospherically acidified streams have produced high WVSCI scores as long as there were no other sources of pollution present. Aquatic entomologists can often readily distinguish between benthic communities from deposition-impacted streams and unimpaired, non-acidified streams. Such clues as taxa composition and total numbers of organisms reveal the differences to the trained eye. Although the WVSCI also depends upon these clues, a family-level index is not sensitive enough to distinguish between the communities in the 2 categories of streams. This weakness in the WVSCI may also be partially due to its relative insensitivity to differences in total numbers of organisms collected. Often, acid deposition impacted sample sites do not produce enough individuals to require subsampling in the laboratory. The limitations of the current WVSCI are expected to diminish as genus-level and species-level indices are developed. These refinements of the WVSCI are expected to diminish as genus-level and species-level indices are developed. These refinements of the WVSCI are expected to diminish as genus-level and species-level indices are developed.

The WVSCI is a helpful tool in assessing small watershed streams, but influences such as seasonal no-flow conditions and difficulty using consistent sampling methodologies, may result in low WVSCI scores that would indicate "impairment" in circumstances that are entirely natural. For this reason, it is imperative for assessment teams to record information adequate to determine the comparability of benthic collections.

Fecal Coliform Bacteria

Numerous disease-causing organisms may accompany fecal coliform bacteria, which is released to the environment in feces. Therefore, the presence of such bacteria in a water sample indicates the potential presence of human pathogens.

A fecal coliform bacteria sample was collected at each assessment site. EPA sampling guidelines limit the field holding time for such samples to 6 hours. Due to the distance to laboratories, personnel limitations, and time constraints, a 24-hour limit was utilized during this sampling effort. All bacteria samples were packed in wet ice until delivered to the laboratory for analysis.

Physicochemical Sampling

Physicochemical samples were collected at each site to help determine what types of stressors, if

Table 1. Water Quality Parameters

All numbered references to analytical methods are from *EPA: Methods for Chemical Analysis of Water and Wastes; March 1983*, unless otherwise noted.

Parameter	Minimum Detection Limit or Instrument Accuracy	Analytical Method	Maximum Holding Time
Acidity	1 mg/L	305.1	14 days
Alkalinity	1 mg/L	310.1	14 days
Sulfate	5 mg/L	375.4	28 days
Iron	50 μg/L	200.7	6 months
Aluminum	50 μg/L	200.7	6 months
Manganese	10 μg/L	200.7	6 months
Fecal Coliform Bacteria	Not Applicable	9222 D1	24 hours ²
Conductance	1% of range ³	Hydrolab™	Instant
рН	± 0.2 units ³	Hydrolab™	Instant
Temperature	± 0.15 C ³	Hydrolab™	Instant
Dissolved Oxygen	± 0.2 mg/L ³	Hydrolab™	Instant
Total Phosphorus	0.02 mg/L	4500-PE ¹	28 days
Nitrite+Nitrate-N	0.05 mg/L	353.2	28 days
Ammonia-N	0.5 mg/L	350.2	28 days
Unionized Amm-N	0.5 mg/L	350.2	28 days
Suspended Solids	5 mg/L	160.2	28 days
Chloride	1 mg/L	325.2	28 days

¹ Standard Methods For The Examination Of Water And Wastewater, 18th Edition, 1992.

² U. S. EPA guidelines limit the holding time for these samples to 6 hours. Due to laboratory location, personnel limitations and time constraints, 24 hours was the limit utilized during this sampling effort.

³ Explanations of and variations in these accuracy's are noted in Hydrolab Corporation's Reporter [™] Water Quality Multiprobe Operating Manual, May 1995, Application Note #109. any, were negatively impacting each benthic macroinvertebrate community. The physicochemical data were helpful in providing clues about the sources of stressors.

Field analyses for pH, temperature, dissolved oxygen, and conductivity were performed. The manufacturer's calibration guidelines for each measurement instrument were followed with minimal variation.

Samples were collected at many sites for analysis of specific water quality constituents. A list of these constituents, preservation procedures, and analytical methods is included in Table 1.

In areas where mine drainage was present, assessment teams collected water samples for the analyses of aluminum (Al), iron (Fe), and manganese (Mn). In a few cases, samples were analyzed for hot acidity (mg/L), alkalinity (mg/L), and sulfate (mg/L). If excess nutrients were suspected, total phosphorus, nitrate-nitrite nitrogen, and ammonia were included in the analyses.

Assessment teams measured stream flow in cubic feet per second (cfs) when field readings indicated there was mine drainage impacting the stream. A current meter was used across a stream transect and the discharge was calculated with the sum-of-partial-discharges method.

The collection, handling, and analysis of water samples generally followed procedures approved by the EPA. Field blanks for water sample constituents were prepared on a regular basis by each assessment team. The primary purpose of collecting field blanks was to check for contamination of preservatives, containers, and sample water during sampling and transportation. A secondary purpose was to check the precision of analytical procedures.

Habitat Assessment

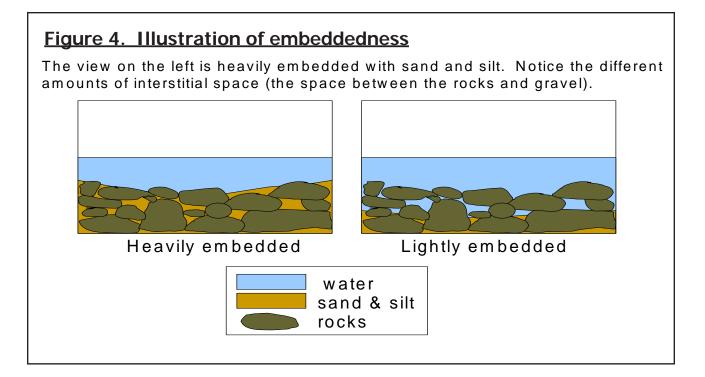
An 8-page Stream Assessment Form was completed at each site. A 100 meter section of stream and the land in its immediate vicinity were qualitatively evaluated for instream and streamside habitat conditions. Each assessment team recorded the location of each site, utilizing a GPS unit when possible, and recorded detailed travel directions so future researchers might return to the same site. The assessed stream section was sketched. The team recorded physical stream measurements, erosion potential, possible point and nonpoint sources of pollution, and any anthropogenic activities and disturbances. It also recorded observations about the substrate, water, and riparian zone.

An important part of each assessment was the completion of a 2-page Rapid Habitat Assessment form (from EPA's RBP manual by Barbour et. al. 1999), which produced a numerical score of the habitat conditions most likely to affect aquatic life. The information from this form provided insight into which macroinvertebrate taxa might be expected at the sample site. Information on physical impairments to the stream habitat encountered during the assessment also was provided on the form. The following 10 parameters were evaluated:

- Epifaunal substrate/fish cover
- Embeddedness
- Velocity/Depth regimes
- Channel alteration
- Sediment deposition

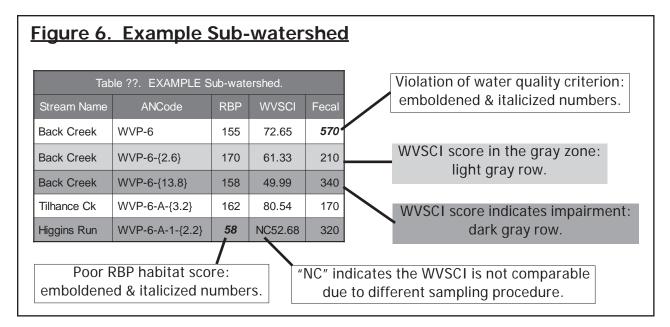
- Riffle frequency
- Channel flow status
- Bank stability
- Bank vegetative protection
- Width of undisturbed vegetation zone

A Rapid Habitat Assessment data set is valuable because it provides a means of comparing sites to one another. Each parameter on the assessment form was given a score ranging from 0 to 20. Table 2 describes the categories that are used to rate each parameter. The 10 individual scores for each parameter were added together and this sum was the final habitat condition score for each assessment site (maximum possible = 200).


Table 2. Scoring For Rapid Habitat Assessment		
Optimal (score 16-20)	Habitat quality meets natural expectations.	
Suboptimal (score 11-15)	Habitat quality less than desirable but satisfies ex- pectations in most areas.	
Marginal (score 6-10)	Habitat quality has a moderate level of degradation; se- vere degradation at frequent intervals.	
Poor (score 0-5)	Habitat is substantially altered; severe degradation.	

Although all the habitat parameters measure important aspects of stream habitat, some affect the benthic community more than others; *Embeddedness* and *sediment deposition* are 2 such parameters. Both of these parameters are measurements of the percentage of substrate affected by small particle deposits. Heavy deposits of small particles (silt and sand), especially in the spaces between cobbles and boulders in riffle/run habitats, restrict populations of benthic organisms. See Figure 4 for an illustration of substrate embeddedness.

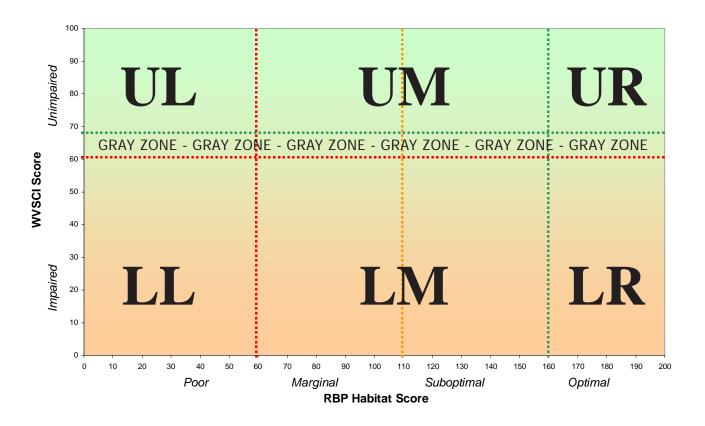
Another important habitat parameter is the *riparian buffer zone width*. The condition of the land next to a stream has a direct and important affect on the instream conditions (see Figure 5). An intact riparian zone, (i.e., one with a combination of mature trees, saplings, and ground cover), serves as a buffer to pollutants entering a stream from runoff, controls erosion, and provides habitat and appropriate nutrient input into the stream.


Data Interpretation

When all of the aforementioned sets of data (i.e., biological, habitat, and physicochemical) are

compiled, they must be interpreted by experienced scientists in order to make them useful for purposes set forth in various legislative rules regarding water quality. One of the interpretive tools, the WVSCI, has already been explained. Visual tools, such as graphs and tables, can aid the scientist-interpreter in the translation of these data to the interested citizen. In the following sections, 2 visual aids will be used often to help in understanding the general biological condition of the sampled sites; the sub-watershed general information table and the RBP habitat vs. WVSCI X-Y graph. The sub-watersheds are smaller units of the larger watershed considered in this study. All watersheds within the United

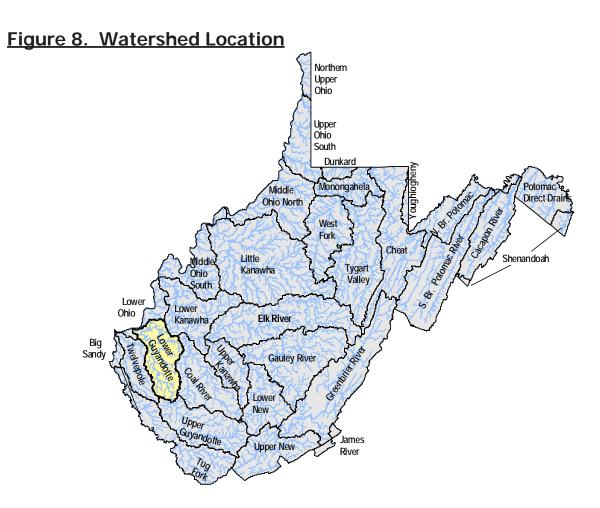
States and its territories have been categorized into a Hydrologic Unit Code System (HUCS) by the USGS. Each sub-watershed discussed herein is identified by an 8-digit numeric HUCS code.


Each sub-watershed table (see Figure 6) provides a quick reference to the stream sites sampled in a particular sub-watershed during the assessment survey. The stream name and the alpha-numeric code (AN code) for each site are given. Each AN code provides a little information about the sampling site location relative to the watershed mainstem stream. For instance, Higgins Run has been assigned the AN code WVP-6-A-1-{2.2}. The "WV" tells us the site has been designated by the state of West Virginia and the "P" indicates it is within the Potomac River Direct Drains watershed. The alternating series of numbers and letters that follow indicate the stream is a tributary of a tributary of a tributary of Potomac River. Each number and letter corresponds to another branching of the stream. Generally, these numbers and letters refer to the branching sequence as a person travels upstream. While traveling up *Potomac River*, the <u>6</u>th named tributary we encounter is *Back Creek*. If we turn up Back Creek, the first (the letter "A" is the first letter in the Roman alphabet) named tributary we encounter is *Tilhance Branch*. Up *Tilhance Branch*, the <u>1</u>st named tributary we encounter is *Higgins Run*. At milepoint <u>2.2</u> on *Higgins Run* we find the sampling site. The coding system is not exact, so occasionally strange code particles like ".1B" and "A.5" show up. Usually, the absence of a bracketed milepoint suffix indicates the sample site is at or very near the mouth of the stream. Within each table, the upstream sequence of tributaries is usually ordered from top to bottom.

Also included in each general information table are the WVSCI score, the RBP habitat score, and the fecal coliform concentration of each sample site. The example table (Figure 6) deciphers the information provided by various font and color schemes.

An example RBP habitat vs. WVSCI X-Y graph is shown in Figure 7. On the X-axis, the dividing lines between the RBP habitat score ranges are shown in colored, dotted lines. Poor total habitat scores fall below 60. Marginal scores include 60 through 109.9. Total RBP habitat scores from 110 through 159.9 are considered suboptimal, while those equal to or above 160 are optimal. On

Figure 7. Example X-Y Graph.


EXAMPLE GRAPH: WVSCI Scores vs. RBP Habitat Scores.

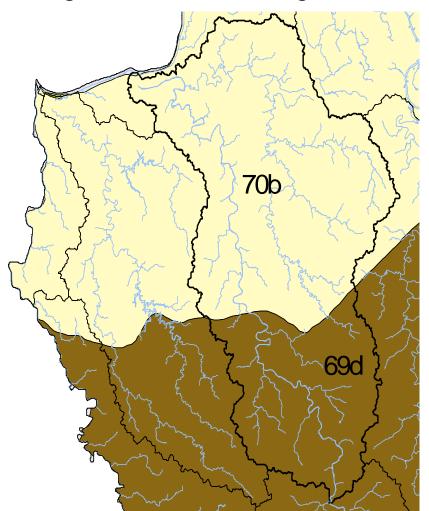
the Y-axis, the WVSCI score ranges are similarly delineated. Each sample site's paired score is represented by a mark on the graph, usually a large dot. Sites with dots in the upper right (UR) region of the graph generally have water quality and habitat conducive to producing diverse benthic macroinvertebrate communities. Dots that lie in the lower left (LL) portion of the graph represent sites with benthic communities that are almost certainly impaired by poor habitat along with other possible causes. Benthic communities at the sites represented by dots in the lower right (LR) sextant often are those that reside in high quality habitat, but are impaired by poor water quality. Sites that fall in all other sextants of the graph require more in-depth analysis to understand community condition and/or potential causes of impairment.

As mentioned previously, each site represented in the "gray zone" is one in which the benthic macroinvertebrate community may have been slightly impaired, but the single kick sample was considered insufficient evidence for classifying it as such.

The Lower Guyandotte River watershed consists of approximately the downstream (northern) half of the entire Guyandotte River watershed. All waters draining into Guyandotte River downstream of the mouth of Island Creek (in the community of Logan) are included in the Lower Guyandotte River watershed. The Island Creek sub-watershed (OG-65) is not included within this watershed. The section of the Guyandotte River mainstem that flows through this watershed extends from the mouth (at the Ohio floodplain village of Guyandotte) upstream to the community of Logan (nestled among the steep mountains of the Cumberland Plateau). The Lower Guyandotte Watershed is located within Logan, Lincoln, Putnam, Cabell and Mason Counties. The only significantly sized public lands within the watershed are Upper Mud River Wildlife Management Area/Flood Control Project, Big Ugly Wildlife Management Area, and Chief Logan State Park.

The watershed is located within 2 level III ecoregions as identified by the EPA classification system (Omernik, et. al. 1992). Approximately the northern two thirds are located within the Western

Allegheny Plateau level III ecoregion and, more particularly, within the Monongahela Transition Zone level IV sub-ecoregion (70b on Figure 9). Moving from downstream up, the surface rocks encountered are classified by geologists as belonging to the Monongahela Group, the Conemaugh Group and the Allegheny Formation. These consist of cyclical sequences of sandstones, siltstones, shales, thin limestones and thin coals.


The southern third of the watershed lies in the Cumberland Mountains level IV sub-ecoregion of the Central Appalachians level III ecoregion. The Cumberland Mountains sub-ecoregion (69d on Figure 9) is characterized by steep, razor-backed ridges with a preponderance of coarse-grained sandstones along with shales, siltstones and coal deposits. The strata underlying this portion of the watershed belong to the Kanawha formation. The streams are prone to flash-flooding and have numerous riffles. Streams generally have higher gradients than in the Monongahela Transition Zone. Substrates have significant quantities of sand eroded from the coarse-grained sandstones that predominate in the sub-ecoregion.

The Monongahela Transition Zone sub-ecoregion has less steep hillsides, broader ridge tops, fewer coal strata and coarse-grained

sandstone layers, and a preponderance of fine-grained sandstones, siltstones, and lightercolored shales. Third order and higher streams in this sub-ecoregion generally have lower gradients and lower riffle frequencies than those in the Cumberland Mountains subecoregion. Most of this sub-ecoregion's streams are well-buffered against acid inputs. However, the preponderance of shales have produced soils with high clay components that do not drain well. Erosion is a significant problem in this portion of the watershed. This is particularly noticeable in the Mud River subwatershed where farming is a predominant land use.

The watershed is subject to the effects of both

Figure 9. Watershed Ecoregions

continental polar air masses and maritime tropical air masses. The worst floods are those brought on by tropical storms, including hurricanes, that penetrate across the Allegheny and Cumberland Mountains and move in a northerly direction. Such storms dump rain upon the headwaters first and continue pouring as they move in the same direction that the mainstem Guyandotte River drains. The R. D. Bailey Reservoir in the Upper Guyandotte River watershed has alleviated much of the flooding associated with major storm systems. The watershed experiences relatively mild winters (compared to northeastern West Virginia), generally receiving more rain than snow. Prevailing wind in summer is from the southwest.

Compilers of 18th century maps and journals referred to the river as "Guiandot," "Kyandot," "Kiandot" and variant spellings. It was sometimes identified as "Great Guiandot River" to distinguish it from "Little Guiandot River," today's Guyandotte Creek. Many writers have attributed this name to a mispronunciation or misspelling of the Indian Nation known today as "Wyandotte." This is possible, but not likely. A map in the manuscript collection of General Thomas Gage (housed in the William Clements Library at the University of Michigan) and titled "A Draft of The Ohio from An Indian Account" (presumably drawn in 1755), identifies the river as "Kayendode" (Schwartz 1994:30). Other place names on the map appear to be in an Iroquoian language. The exact origin of the name may never be known.

John Hale wrote that the Delaware Indians called the stream "Seconee," signifying "Narrow Bottom." If true, the Delawares were speaking of the river some miles upstream of its mouth, for the lower 15 miles or so flow through the broad alluvial bed of the ancient Teays Lake making the bottoms quite wide.

This watershed, along with the Upper Guyandotte River, the Big Sandy River, the Tug Fork and the Levisa Fork watersheds, remained relatively undeveloped by expanding American industry and agriculture even into the first part of the 19th century. Before American General "Mad Anthony" Wayne's army defeated Shawnee Blue Jacket's combined Amerindian forces at Fallen Timbers in 1794, war parties continued hitting settlements in southwestern Virginia in a vain attempt to retake former territory. The ancient war trails up Kanawha Valley and through eastern Kentucky were too crowded with Virginians and Kentuckians to allow safe passage for aboriginal warriors, but the Guyandotte River, Tug Fork, and Levisa Fork valleys remained unsettled enough to allow war parties to pass relatively undetected. During the Napoleonic Wars in Europe, several nations' armies demanded bear skins for warm winter wear and decorative clothing, like the tall bear skin hats of British soldiers. In a 3 year period (1805-1807), some 8,000 bear hides were shipped from these watersheds to New York merchants, like John Jacob Astor for the European markets (Hale, 1931).

The first major negative impact to the watershed came in the late 1800s with the timber industry. Local entrepreneurs like Anderson "Devil Anse" Hatfield, as well as corporations based in Cincinnati, New York, Philadelphia, and Richmond, financed the felling of forests at a dizzying pace (Waller, 1988). Prone to flash floods due to the steepness of the watershed's slopes, Guyandotte River was scoured and choked with mud like never before in human history. It is likely that during this era mussel beds were obliterated under tons of sediment and fish populations plummeted.

Soon after the few decades of timbering severely degraded Guyandotte River, came the advent of

the modern era of coal mining. Construction of a branch line of the C&O railroad ensured that coal could be readily shipped to national and international markets from the watershed. In the early part of the 20th century, a large increase in human population occurred as immigrants from southern states and other countries poured into the region to find work in the mines. This had a dual negative impact on the water quality of the watershed's streams. Metal-laden mine water and untreated or improperly treated sewage from coal camps and towns degraded some streams severely. In the 1950s and 1960s, strip mining was instituted in the watershed as coal companies attempted to maximize earnings by decreasing the total number of payroll employees while increasing coal production per employee. Newer technologies (primarily improved explosives and larger earth-moving machines) made this transformation in the mining industry possible.

In the 1960s, West Virginia passed some of the most stringent regulations in the nation governing surface mining, but the environmental damage wrought by this technique was still great (Caudill 1962, Dix 1988, Lee 1969, Savage 1990, and Williams 1976). A desire nationwide to minimize this damage was the driving force behind passage of federal legislation to institute better surface mining practices. Today, the hotly-debated practice of mountain-top removal and valley fill mining has buried several headwater stream segments in the watershed under megatons of rock fill. Within West Virginia, in the 17 year period between 1985 and 2001, 214.01 miles of stream were buried under valley fills (U.S. Army Corps of Engineers et. al. 2003:IV.B-2). This number includes neither the many miles of intermittent and ephemeral water courses that were buried during the same period, nor the water courses buried previous to this period by surface mining practices. Water emanating from these fills is chemically different from that in unmined watersheds and it supports biological communities that score lower on the WVSCI than those from unmined watersheds (Green, et. al. 2000). Sediment and coal fines continue to wash into streams from abandoned mines, and spills of these waste materials from active mines still occur. In recent years, federal courts required the Office of Surface Mining and the state of West Virginia to regulate mountain-top removal mining more stringently. As a result of this federal action, the West Virginia legislature now requires mining companies to construct valley fills from the toe upwards, instead of allowing the usual practice of shoving spoil from the working face over the slope. However, the current rules still do not prevent the burial of certain types of watercourses.

The regrowth of steep mountain forests in the watershed allowed many streams to recover from the initial degradation of the timbering boom. However, some streams are now severely damaged by mine drainage and may take hundreds of years or longer to recover. Under current regulations, some headwater streams will be buried under mining waste. Proponents of the controversial mountain-top removal mining technique say it is the only economically feasible way to take the remaining coal from the steep mountains of southwestern West Virginia. Eastern coal mining companies are competing with western companies like those operating in the Powder River basin of Wyoming, where coal is removed from beneath level land surfaces and there are relatively few surface water quality impacts during or after mining. Proponents of earlier mining techniques say that coal can be mined in the east in a more economically sustainable and environmentally friendly manner. Environmental and cultural issues of mountain-top removal mining continue to be studied and debated, while the permits for such mining practices continue to be issued.

Natural gas extraction is a major industry in the Lower Guyandotte River watershed area.

Numerous gas wells, pipelines and the roads that serve them contribute sediment to streams already burdened with too much sediment from urbanization, coal mining, road maintenance, and farming. Timbering roads and skid trails also increase sediment loads in the watershed's streams. Best management practices utilized by both the gas and timbering industries are designed to minimize erosion, but renegade loggers and gas well developers can cause major sediment problems. Even the best managed sites contribute some sediment to local streams, so that areas of extensive logging or gas extraction sometimes have sediment-choked streams.

Huntington, Barboursville, Milton and Logan are the largest incorporated communities lying at least partly in the watershed. The portion of the watershed between Huntington, Barboursville and Milton is heavily urbanized and suburbanized. Extensive housing and industrial development on the poorly drained soils of the ancient Teays Lake bottom have led to major degradation of the streams draining this portion of the watershed. Some communities are treating sewage at new or upgraded treatment plants, thanks in large part to federally funded programs instituted in the 1970s. Consequently, water quality has improved in a few areas, but many of the watersheds' communities remain inadequately sewered.

Almost nothing is known about the Guyandotte River freshwater mussel assemblage. It is likely that these creatures have suffered the same fate as their kin in other streams in the region. Sediment and other pollution, caused primarily by expansion of the coal industry, impacted mussel assemblages in the Big Sandy River drainage basin, which is very similar to the Guyandotte River basin. In a U.S. Fish & Wildlife Service report on mussels of the Big Sandy basin it was noted that there was a lack of interest by the scientific community in the mussel fauna of the basin. This indifference was attributed to "the apparent poor water quality of these rivers (i.e., high turbidity and high suspended solids, siltation, domestic waste) and the general unattractive nature of the streams in the basin." (Tolin and Schettig, 1984:2). The same could be said about the Guyandotte River basin.

The Mud River mussel assemblage was surveyed in 1984 by the former Division of Water Resources. Thirty-four sites produced only 11 species of mussels native to North America. Mud River's close proximity to the Ohio River leads malacologists to expect 20+ species. Extensive agriculture over the past 2 centuries has introduced vast quantities of sediment into the Mud River mainstem. In recent decades, housing construction between the river's mouth and Milton has bled more sediment into the river. The mussel population in Mud River is probably a mere "shell" of its former self. The warmwater fishery of Mud River has suffered from the severe sedimentation also. Improved sewage treatment, stricter enforcement of mining regulations in the last 30 years, and the construction of R.D. Bailey Reservoir on upper Guyandotte River have contributed to an improvement in that river's recreation fishery, but it may never recover to its pre-mining condition.

The West Virginia Division of Natural Resources included several streams within the Lower Guyandotte River watershed on its 2001 list of high quality streams (WVDNR, 2001). These streams are listed in Table 3. Streams are placed on this list if they meet either of 2 criteria: (1) they contain native trout populations or are stocked with trout, and (2) they are warmwater streams over 5 miles long with desirable fish populations utilized by the public.

The state's presumptive list of waters of special concern includes those shown in Table 4 in the

Lower Guyandotte River watershed. Explicit anti-degradation protection is given waters of special concern, also known as Tier 2.5 waters. Tier 2.5 waters are those with naturally reproducing trout populations, those utilized by the DEP as reference streams, or those determined to have biological scores indicating high water quality. Such streams are protected from human activities that would reduce their pollutant assimilation capacities by more than 10 %.

Table 3. WVDNR High quality streams.			
Stream name	AN Code		
Guyandotte River	WVO-4		
Fourmile Creek	WVOG-27		
Tenmile Creek	WVOG-32		
Fourteenmile Creek	WVOG-34		
Big Ugly Creek	WVOG-38		
Harts Creek	WVOG-44		
Big Creek	WVOG-49		
Mud River	WVOG-2		
Trace Fork	WVOGM-20		
Middle Fork	WVOGM-25		

Table 4. Special waters.			
Stream name	AN Code		
Horseshoe Br	WVOG-29-C		
Plum Branch	WVOG-32-F		
Steer Fork	WVOG-34-E		
Little Ugly Ck	WVOG-37		
Big Ugly Creek	WVOG-38		
Pigeonroost Ck	WVOG-38-A		
Laurel Creek	WVOG-38-D		
Buffalo Creek	WVOG-61		
Left Fk/Mill Ck	WVOGM-8-B		

Assessment Results

General Overview

Of the 129 stream sites visited, 57 are located within the Mud River sub-watershed, the largest sub-watershed tributary to the Lower Guyandotte River watershed. Of the total sites visited, 111 were sampled for benthos using the riffle/run kick sampling technique, and thus are comparable to one another and to the set of reference streams. Only 8 were sampled using the noncomparable MACS technique and only 10 sites had no benthic sample collected at all. Therefore, approximately 86 % of the sites visited are benthologically compared in the following pages. Although the 8 MACS-sampled sites could not be compared with the others, the data generated from these samples are useful nonetheless. Of the 129 stream sites visited, 128 were sampled for water quality constituents and 122 had their habitats assessed using the 2-page rapid habitat assessment form. The graphic comparisons of the 111 riffle/run kick-sampled sites are shown in Figures 10-13.

Table 5: Sampling Summary	
Named streams	431
Sites visited	129
Habitat assessment sites	122
Water quality sampling sites	128
Comparable benthic collection sites	111
MACS-sampled sites	8

The Guyandotte River mainstem was included on the 1998 303(d) list of waterbodies with impaired water quality (see box on page 11) due to violations of certain water quality standards by aluminum and iron concentrations found in samples collected during sampling efforts other than the one reported on herein. The mainstem was sampled from only 1 location during the effort reported upon.

Six tributary streams in the Lower Guyandotte River watershed were placed on the 1998 303(d) list of

impaired streams. One of these, Pats Branch (OG-0.5), was included on the primary list. The reasons for listing were violations of the water quality standards for copper and fluoride. The remaining 5 of these tributaries were included on the sub-list of mine-drainage impaired streams. Pats Branch was not sampled during this study, although it was the subject of more intensive sampling during a separate sampling effort. The other 303(d) streams were sampled during the study effort reported herein.

Benthic Macroinvertebrates

Within the entire watershed, 69 of the 111 (~ 62 %) benthologically comparable sites scored above 68.00 on the WVSCI. These sites are considered benthically unimpaired. Sites scoring 60.60 or below, and therefore considered biologically impaired, numbered 31 (~ 28 %). Scoring within the "gray zone" on the WVSCI (i.e., between 68.00 and 60.61, inclusive), 11 sites produced samples that were potentially impaired, but these single samples were not enough to ascertain their actual statuses without additional information.

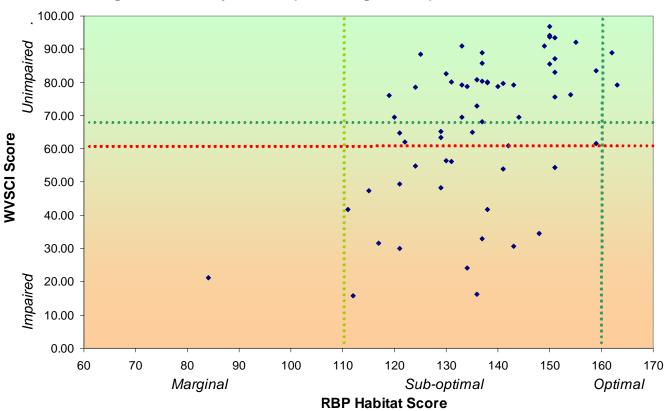
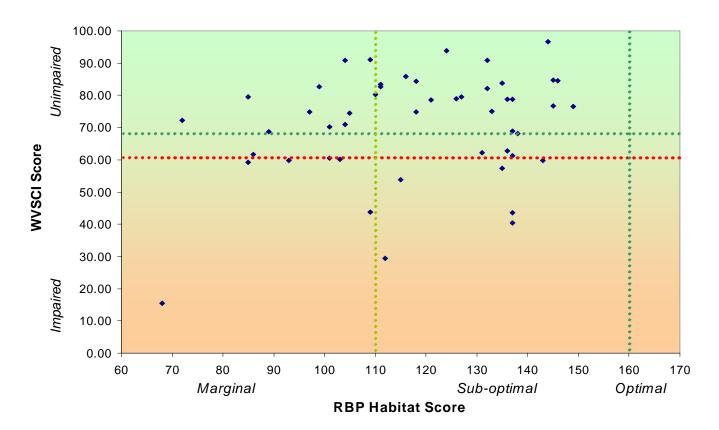
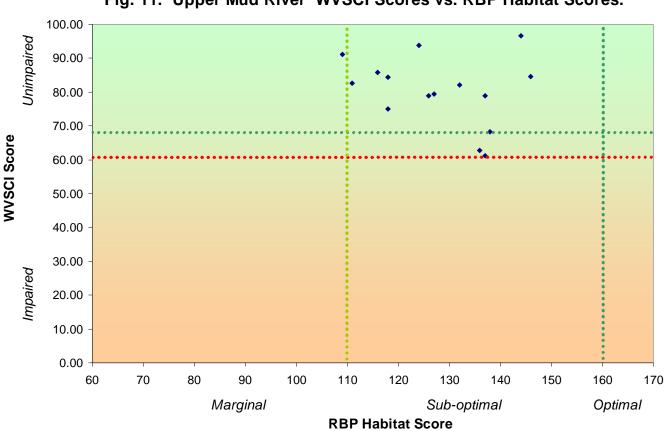
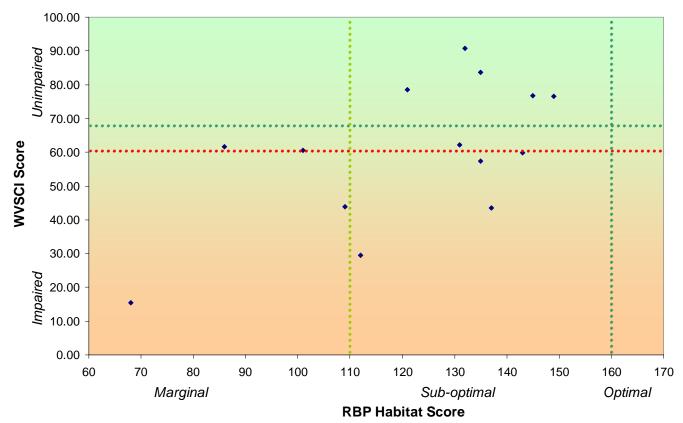
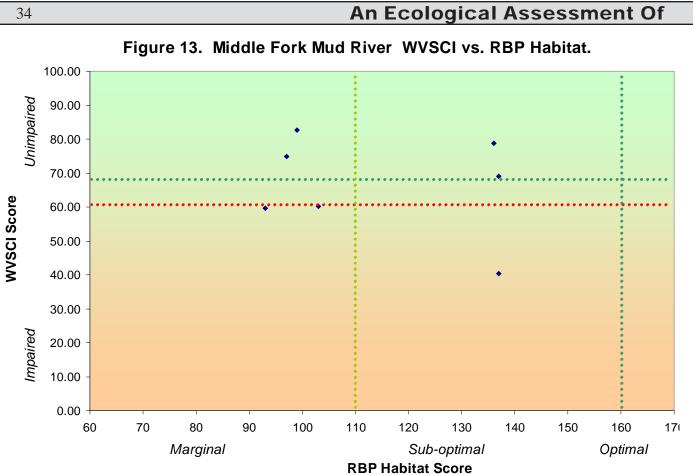




Fig. 10. Lwr. Guyandotte (Excluding Mud R.) WVSCI vs. RBP Habitat.





Fecal Coliform Bacteria

Bacteria results are presented in Table A-7 in Appendix A. A majority of samples (77 of 125 or ~ 62 %) produced bacteria values above the 400/100mL water quality standard for contact recreation. Only 48 of 125 (~ 38 %) samples met the standard. Of the 77 samples above 400/100mL, 51 produced values of 1,000/100mL or more, 38 were 2,000/100mL or higher, and 6 were 10,000/100mL or higher. These values indicate a preponderance of fecal coliform bacteria sources within the watershed.

Physicochemical Water Quality

Various water quality constituents were analyzed for at almost all of the sites visited. The results of these analyses are presented in Tables A-7, A-8, & A-9 in Appendix A. Only 6 samples had pH values below the standard of 6.0 for aquatic life support. However, at least 1 of these samples came from a stream not originally included on the site list, but suspected by the sampling team to have mine drainage. It is uncertain how many other streams within the watershed are negatively impacted by mine drainage. Since most of the sampling sites were located near the mouths of selected streams, it is likely that some headwater areas receiving mine discharges remain improperly assessed.

Only 5 samples had conductivities greater than 500 µmhos/cm. Metals water quality standards violations numbered 14 for aluminum and 1 for iron. No violations of manganese and copper standards were detected. A few of the sites that had aluminum violations scored quite well on the WVSCI. *Lukey Fork* (OGM-50) scored 96.57 on the WVSCI and yet was in violation of the aluminum standard. The sampling team noted the stream was slightly turbid, perhaps due to a vehicle traveling up the streambed/roadway just prior to the team's arrival there. The *Kelleys Creek* (OGM-20-I-1-{1.5}) sample also violated the aluminum standard, yet it scored 72.31 on the WVSCI. The total suspended solids concentration was 165 mg/L. These examples show that a single sample violation of a water quality standard should not be the sole criterion used for placing a stream segment on the 303(d) list. In both of these cases, it is likely that suspended solids contributed significantly to the total aluminum concentrations detected.

Physical Habitat

There was no clear correlation between habitat scores and WVSCI scores.

The mean scores for most RBP Habitat parameters were in the suboptimal category with the exceptions of sediment deposition (marginal) and width of undisturbed vegetation zone (marginal). Results of the RBP Habitat Assessment are shown in Table A-11 in Appendix A. Also found in the Appendix, are the results of other habitat notations listed in Tables A-2, A-3, & A-4.

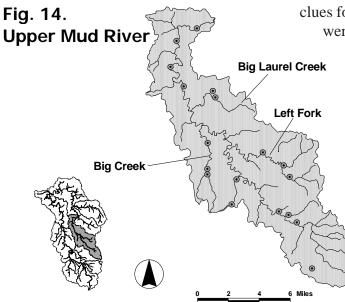
Only 2 total RBP habitat scores fell within the optimal range (≥ 160). No sites scored within the poor range (<60). The great majority of sites (78 %) scored within the suboptimal range (110-159).

Only 24 % scored within the marginal range (60-109). This relatively tight distribution of habitat scores within the Lower Guyandotte River watershed may have been due in part to the division of the entire Guyandotte River watershed into upper and lower portions, leaving the higher mountain streams within the upper portion and the slower, meandering streams of the lower elevations within the lower portion. When the Upper Guyandotte River watershed was sampled in A.D. 2000, 6 % of the sites produced RBP habitat scores within the optimal range.

The Mud River sub-watershed produced 83 % of the scores in the marginal range. No large tributary watershed with the same meandering, low-gradient, sediment-laden characteristics of Mud River exists within the Upper Guyandotte River watershed. Indeed, the larger tributary watersheds of the upper watershed consist primarily of swift, high-gradient, riffle-rich streams.

As stated previously, the average sediment deposition score over all the sites fell within the marginal category. The average embeddedness score was very low within the suboptimal range. A half a point lower and it would have fallen into the marginal category.

The Arcview land use database (1993 multi-resolution land characteristics coverage, or MRLC, in the watershed characterization modeling system, or WCMS) indicates that all but 3 of the sites sampled within the watershed had greater than 70 % of their surface drainage basins covered by forest. The 3 areas that had less than 70 % coverage by forest were those above *Tanyard Branch* (OGM-1.5, with 32.59 %), *Indian Fork* (OGM-12, with 49.07 %) and an *unnamed tributary of Trace Creek* (OG-14-D-{0.4}, with 61.35 %). The percentages of urban land coverage at all but 2 sites were below 4 %. Those 2 sites were *Tanyard Branch* (47.21 %) and *Indian Fork* (13.83 %).


Results And Discussions By Sub-watershed

The following discussions focus on the biologically impaired streams and those with scores that indicate further data collection is warranted to determine whether or not they should be considered impaired. Known causes and sources of impairment are presented, and probable causes and sources are discussed. A few non-benthically sampled sites are discussed also. The discussions are grouped into sub-watersheds. The maps show sample site locations. The tables present a few results from each of the sites within each sub-watershed. See the example table (Figure 6).

Upper Mud River sites

Approximately the northern two thirds of this sub-watershed lie within the Monongahela Transition Zone sub-ecoregion. The southern third is within the Cumberland Mountains sub-ecoregion.

All but 2 of the comparably sampled Upper Mud River benthic sites produced WVSCI scores above 68.00 (i.e., within the unimpaired zone). Only *Left Fork of Mud River* 10.2 miles upstream of its mouth (OGM-39-{10.2}) and *Mud River mainstem* (OG-2-{77.2}) fell within the "gray zone". No

clues for the relatively lower score at the Left Fork site were forthcoming in either the habitat assessment or the water quality analysis, but the mainstem site assessment produced clues. The field team recorded "Problems (1) Heavy sediment load (2) Conductivity high + pH high due to current mining activities upstream." Field readings were 8.27 for pH and 1,024 µmhos/cm for conductivity. Laboratory analyses further supported this statement, finding a sulfate concentration of 430 mg/L and a nitrate+nitrite concentration of 2.16 mg/L.

Two sites in this tributary subwatershed produced the highest WVSCI scores within the Mud River sub-

watershed. *Lukey Fork* and *Dry Fork* scored 96.57 and 93.77, respectively. Both of these sites had relatively high percentages of cobble in the sampled substrates (60 % & 50 %, respectively). One other site, *Upton Branch*, also scored above 90.00.

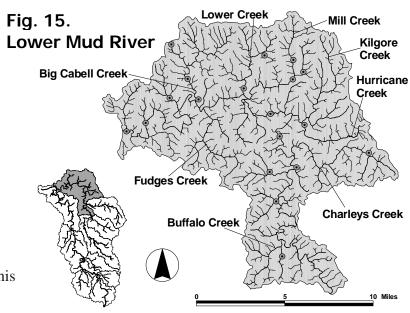
Lukey Fork was noted as being a potential reference site, but it was not selected in the final analysis, probably due to the dirt road that runs parallel to it or the aluminum water quality standard violation it produced. However, it was obviously one of the higher quality streams sampled during this study and it should be protected.

Two benthic sites were sampled using the MACS protocol, and therefore are not considered comparable to the other sites. One of these, *Mud River* (OG-2-{48.7}), produced a WVSCI score of 72.15 and was, therefore, likely to have had a relatively diverse, healthy benthic community within its glide/pool habitat. The other, *Mud River* (OG-2-{47.0}), scored only 63.53 on the WVSCI. Other

Table 6. Upper Mud River				
Stream Name	ANCode	WVSCI	RBP	Fecal
Mud River	WVOG-2-(47.0)	NC63.53	120	10000
Mud River	WVOG-2-(48.7)	NC72.15	126	600
Mud River	WVOG-2-(77.2)	63.36	136	50
Sandlick Br	WVOGM-31	78.93	126	1500
Dry Fork	WVOGM-33-B	93.77	124	610
Big Branch	WVOGM-33-C	85.83	116	400
Big Creek	WVOGM-35-(1.8)	74.93	118	380
Big Creek	WVOGM-35-(4.1)	82.65	111	66
Laurel Fork	WVOGM-35-E	79.52	127	3800
Left Fk/Mud R	WVOGM-39	84.39	118	5200
Left Fk/Mud R	WVOGM-39-(10.2)	61.58	137	2900
Sycamore Fk	WVOGM-39-G	68.18	138	5000
Upton Branch	WVOGM-40.3-(0.0)	84.54	146	930
Upton Branch	WVOGM-40.3-(2.2)	91.14	109	430
Stonecoal Br	WVOGM-43	78.81	137	1200
Berry Branch	WVOGM-44-(0.2)	82.15	132	55
Lukey Fork	WVOGM-50	96.57	144	72

than fecal coliform bacteria, no other pollutants were detected at these sites.

Fecal coliform bacteria standard violations were detected at 64 % of the sub-watershed sampling sites. Clearly identified sources were not found at any of the sites and only 3 sites had notations indicating potential sources of bacteria.


Although these data indicate that *Mud River's* DNR high quality status may have been adequately protected, the data from the Lower Mud River sub-watershed (see below) indicate that further investigation into the mainstem's status is warranted.

Lower Mud River Sites

The Monongahela Transition Zone sub-ecoregion covers the entire Lower Mud River subwatershed. As stated previously, this sub-ecoregion is distinctly different from the Cumberland Mountains sub-ecoregion that covers the southern third of the Lower Guyandotte River watershed. Soils with high clay components are prevalent and the larger streams have relatively low gradients and lower riffle frequencies. Stream substrates tend to have high percentages of silt. These generalizations are borne out in the Mud River sub-watershed.

The riffle/run-sampled Lower Mud River sites did not fare as well on the WVSCI as did the upper sites. Only 5 produced values within the unimpaired range, while 6 scored within the impaired range. Three sites produced scores within the "gray zone."

Tanyard Branch produced the lowest WVSCI score (15.50) of all comparably sampled sites within the entire Lower Guyandotte River watershed. One probable reason for this low score was the poor habitat quality found there. The bulk of the sampled substrate was silt (49 %) with sand comprising

most of the remainder (40 %). The epifaunal substrate habitat parameter scored only 3 as did the sediment deposition category. The embeddedness category also scored in the poor range. Indeed, the overall habitat score was only 68, the lowest of all riffle/run sites comparably sampled. The fecal coliform bacteria concentration was 12,000 colonies per 100 mL, indicating a problematic level of sewage or animal waste.

The MRLC database indicates that the surface drainage area of the *Tanyard Branch* site was 47.21 % urban and only 32.59 % forested. These are, respectively, the highest and lowest percentages in these categories for all of the sites sampled. Indeed, all but 3 sites had greater than 70 % of their watershed areas covered with forest. When consideration is given to the relatively high percentage of urban land above the *Tanyard Branch* sample site, it is no surprise that some habitat parameters scored poorly and that the bacteria concentration was high.

Indian Fork also scored quite low on the WVSCI. This site received a marginal and a poor score, respectively, on the embeddedness and sediment deposition habitat categories. Also noted were the presence of livestock access and the odor of sewage in the water, although the bacteria concentration was only 150 colonies/100 mL. Like *Tanyard Branch, Indian Fork* had a relatively low percentage of surface area covered by forest, 49.07 %. Urban land covered 13.83 % of the drainage basin, the second highest percentage of all the sites sampled.

Little Cabell Creek, Mud River at OG-2-{3.6}, Right Fork of Mill Creek, and Straight Fork, all

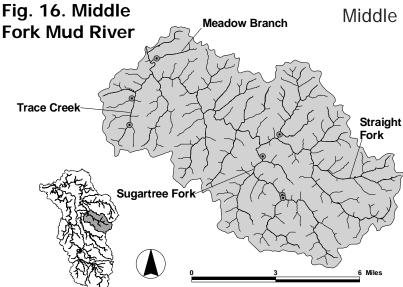
Table 7. Lower Mud River				
Stream Name	ANCode	WVSCI	RBP	Fecal
Mud River	WVOG-2-(3.6)	43.58	137	610
Mud River	WVOG-2-(18.8)		110	150
Mud River	WVOG-2-(25.5)		99	200
Tanyard Br	WVOGM-1.5	15.50	68	12000
Little Cabell Ck	WVOGM-3-(0.9)	43.84	109	1000
Big Cabell Ck	WVOGM-4-(0.2)	NC42.90	93	1000
Big Cabell Ck	WVOGM-4-(2.0)	NC75.05	110	610
Lower Creek	WVOGM-7-(0.4)	61.59	86	540
Tony Branch	WVOGM-7-B-1	83.75	135	460
Mill Creek	WVOGM-8-(4.0)	76.58	149	520
Left Fk/Mill Ck	WVOGM-8-B	76.78	145	84
Right Fk/Mill Ck	WVOGM-8-C	57.33	135	2800
Indian Fork	WVOGM-12	29.45	112	150
Brush Creek	WVOGM-13	62.19	131	1400
Charley Creek	WVOGM-14-(7.2)	60.52	101	880
Fallen Fork	WVOGM-16-A	90.84	132	140
Trace Creek	WVOGM-19	78.51	121	130
Straight Fork	WVOGM-22-A-(0.7)	59.86	143	350

produced impaired benthological samples. A local landowner advised the samplers that *Little Cabell Creek* flowed out of its bank 2 days prior to the sampling date due to violent thunderstorms. This flash flood could have negatively impacted the benthic community by scouring the substrate and disrupting the benthic community. The habitat assessment forms and the water quality analyses gave no clear clues for the impairment at the *Mud River*, *Right Fork of Mill Creek*, and *Straight Fork* sites.

The "gray zone" sites are *Charley Creek, Lower Creek*, and *Brush Creek*. *Charley Creek* scored poorly on the embeddedness and sediment deposition habitat categories. The total score (101) was within the marginal range.

Lower Creek scored even lower (86) than Charley Creek in the rapid habitat assessment. Notations included: "-banks (both) are completely riprapped left bank also has a lot of mud mixed in-reach is very much channelized -almost no habitat." Another notation about *Lower Creek* provides another clue to the possible reason for its WVSCI score: "Reach is affected by backwater from the Mud [River] - water was backed up till last night."

The *Brush Creek* site's habitat assessment form provided no clear clues about the sources of its impairment.


Only 1 site within the *Lower Mud River* sub-watershed produced a WVSCI score above 90.00; *Fallen Fork.* A high percentage of cobble (60 %) in the sampled substrate and habitat scores for embeddedness and sediment deposition above the poor range, probably helped to support the diverse benthic community found there.

The 2 *Big Cabell Creek* sites (OGM-4- $\{0.2\}$ & OGM-4- $\{2.0\}$) were sampled using the MACS protocol and are therefore, not comparable to the other sites in this tributary sub-watershed. No water quality data indicated pollution, other than fecal coliform bacteria, at these locations. Indeed, the site 2 miles upstream of the mouth scored within the unimpaired range of the WVSCI. It is likely this site supported a diverse benthic community in its glide/pool habitat.

Two *Mud River* sites, OG-2-{18.8} and OG-2-{25.5}, were not benthically-sampled. The water quality at these sites was minimally sampled for field parameters and bacteria. None of the water quality constituents provided evidence of impairment.

Of the total number of sub-watershed bacteria samples, 61 % were in violation of the bacteria water quality standard, but none of these had clearly identifiable sources indicated on the assessment forms. Only 4 had potential sources identified.

The relatively low WVSCI score of the only benthically-sampled *Mud River* mainstem site and the relatively poor showing of several tributary sites indicate that this portion of the mainstem should be further investigated to determine if its DNR high quality status is adequately protected.

Middle Fork Of Mud River Sites

This sub-watershed lies entirely within the Monongahela Transition

Zone sub-ecoregion. See pertinent notes on this sub-ecoregion in the section titled "The Lower Guyandotte River Watershed".

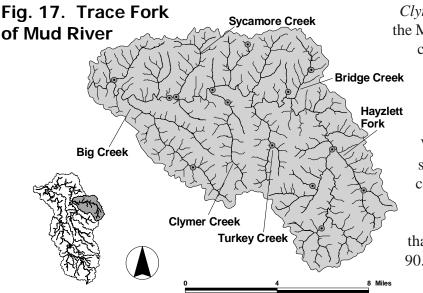
Of the 7 sites benthicallysampled in the *Middle Fork of Mud River* sub-watershed, 3 produced "impaired" WVSCI scores and the remainder harbored unimpaired

40

benthological communities. *Meadow Branch* scored only 40.41 on the WVSCI. *Valley Fork*, which scored only 59.73, experienced a "thunderstorm-& recent flooding," according to the sampling team. *Sugartree Fork* (OGM-25-I) near its mouth also experienced a thunderstorm. However, the site located 3 miles upstream (OGM-25-I-{3.0}) also experienced a thunderstorm and it produced a WVSCI score of 74.85. In conclusion, no clear evidence of the causes of impairment for these 3 sites is forthcoming from the current information.

Table 8. Middle Fork Of Mud River				
Stream Name	ANCode	WVSCI	RBP	Fecal
Meadow Br	WVOGM-25-A	40.41	137	520
Trace Creek	WVOGM-25-B-(2.3)	68.96	137	3800
Tincture Fork	WVOGM-25-B-1	78.70	136	160
Valley Fork	WVOGM-25-H-1	59.73	93	8000
Sugartree Fk	WVOGM-25-I	60.18	103	3200
Sugartree Fk	WVOGM-25-I-(3.0)	74.85	97	550
Sand Fork	WVOGM-25-I-4	82.71	99	3500

Of the 7 fecal coliform bacteria samples collected, 6 were in violation of the water quality standard. No sources were positively identified, but 3 sites had notes indicating potential sources, like residential drain pipes or pasture.


The *Middle Fork* mainstem was not sampled. Therefore, these data provide few clues whether or not current protection levels were maintaining the stream's DNR high quality status.

Trace Fork Of Mud River Sites

Like the Middle Fork of Mud River sub-watershed, the Trace Fork sub-watershed lies entirely within the Monongahela Transition Zone sub-ecoregion. Only 1 site, *Clymer Creek*, was sampled with the MACS technique, so the other 13 benthologically-sampled sites can be compared with one another. Of these 13 comparable sites, 11 produced WVSCI scores above 68.00 and were therefore, considered unimpaired. *Flint Hollow* scored above 90.00. As with other high-scoring sites in the Mud River sub-watershed, *Flint Hollow's* sampled substrate consisted of a relatively high percentage of larger particles, i.e. 15 % boulder and 40 % cobble. Also, the embeddedness and sediment deposition habitat assessment categories scored above the poor range.

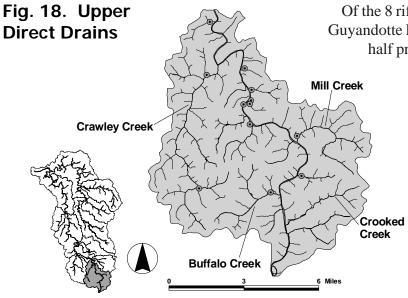
The 2 sites considered benthically impaired are *Coon Creek* and *Trace Fork* (OGM-20-{21.2}) 21.2 miles upstream of its mouth. Both sites appeared to have substrates with significant amounts of easily suspended sediments of small particle size. *Coon Creek's* sampled substrate consisted of 30 % gravel and 40 % sand with the 20 % silt component surpassing the percentages of both boulder and cobble (only 5 % each). The sampled habitat of the upper *Trace Fork* site consisted of no boulder and only 20 % cobble, with the bulk in gravel and sand (35 % & 30 % respectively). The upper *Trace Fork* site also scored poorly in the sediment deposition category of the rapid habitat assessment. No other clues about the causes of impairment for these sites is forthcoming from the assessment forms and the laboratory analyses.

An Ecological Assessment Of

Clymer Creek, the site sampled with the MACS protocol, had a fecal coliform bacteria concentration (909 colonies/100 mL) in violation of the water quality standard. Because this site scored within the unimpaired range of the WVSCI, it is likely the site supported a diverse benthic community in its glide/pool habitat

Flint Hollow was the only site that produced a WVSCI score above 90.00.

Sycamore Creek was sampled minimally. A bacteria sample was collected and field water quality parameters were determined, but no benthic sample was collected and no habitat assessment was performed. Only the fecal coliform bacteria concentration (940 colonies/ 100 mL) violated water quality standards.


In the Trace Fork watershed, 53 % of the fecal coliform bacteria samples were in violation of the water quality standard. No sources were positively identified and only 2 sites had potential sources (pasture) identified.

These results indicate that at least a few places within the sub-watershed had some problems contributing to degraded benthic communities. However, at least some portions of the mainstem appeared to be fitting of their status on the DNR's high quality streams list.

Table 9. Trace Fork Of Mud River				
Stream Name	ANCode	WVSCI	RBP	Fecal
Trace Fork	WVOGM-20-(21.2)	59.14	85	1100
Trace Fork	WVOGM-20-(6.4)	71.04	104	160
Coon Creek	WVOGM-20-A	53.85	115	220
Big Creek	WVOGM-20-D-(4.6)	68.79	89	4100
Sycamore Ck	WVOGM-20-F			940
Clymer Creek	WVOGM-20-H	NC73.60	72	909
Kelleys Creek	WVOGM-20-I-1-(1.5)	72.31	72	1100
Nelson Hollow	WVOGM-20-K-(0.1)	83.48	111	340
Lefthand Fork	WVOGM-20-K-1	84.77	145	1200
Martin Run	WVOGM-20-L	79.48	85	360
Bridge Creek	WVOGM-20-M-(1.8)	74.44	105	550
Flint Hollow	WVOGM-20-M-1	90.89	104	300
Donley Fk/Hayslett Fk	WVOGM-20-R-2	80.31	110	171
Joes Creek	WVOGM-20-T-(3.5)	70.17	101	6300
Rockhouse Branch	WVOGM-20-V	75.08	133	220

Upper Guyandotte River Direct Drains Sites

The Cumberland Mountains sub-ecoregion contains this sub-watershed entirely. As noted previously, this sub-ecoregion is characterized by steep, razor-backed ridges, predominated by coarse-grained sandstones. The streams, including even the larger ones, have numerous riffles.

Of the 8 riffle/run sampled sites in the Upper Guyandotte River Direct Drains sub-watershed, half produced benthic samples considered

impaired on the WVSCI and half were considered unimpaired. *South Fork of Crawley Creek* scored only 31.54 and at least some of the reasons for its poor score were revealed by the assessment. The conductivity was 1,195 µmhos/cm and this was likely due to the highway construction fill area and surface mine that formed the headwater immediately above this site. To quote the sampler, "The headwaters of this stream have a

large, 'reclaimed' contour strip mine and a huge valley fill from Corridor G construction."

Godby Branch scored 32.97. The assessment produced evidence to support this stream's inclusion on the 303(d) mine drainage list. The pH was only 4.6 and the conductivity was 527 μ mhos/cm. The aluminum concentration of 4.65 mg/L was a violation of the water quality standards. Coal fines, metal hydroxides and coal refuse were present.

Fowler Branch's total habitat score of 111 placed it high in the marginal range

Table 10. Upper Direct Drains				
Stream Name ANCode WVSCI RBP				Fecal
Guyandotte River	WVO-4-(76.3)			2100
Lily Branch	WVOG-50	76.37	154	52
Fowler Branch	WVOG-51.5	41.85	111	2000
Canoe Fork	WVOG-51-B	69.64	133	4200
South Fk/Crawley Ck	WVOG-51-G.5	31.54	117	150
Godby Branch	WVOG-53	32.97	137	20
Mill Creek WVOG-59		56.14	131	3800
Big Branch	WVOG-60	90.96	133	240
Buffalo Creek	WVOG-61	80.05	131	150

so it appears that mine drainage may have had a greater negative impact on the benthic community than did habitat. The WVSCI score was only 41.85. Conductivity was 527 µmhos/cm and notations regarding sampled substrate indicate; "Much of the material appears to be coal refuse & red-dog."

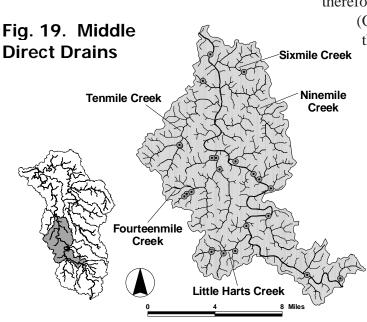
The *Mill Creek* site also was considered benthologically impaired, but no clear clues about potential causes are provided by the water quality analysis or the habitat assessment.

One site, *Big Branch*, scored higher than 90.00 on the WVSCI. The watershed assessment form is notated; "Bugs looked good. Maybe potential reference further up stream beyond last residence."

Although the Buffalo Creek mainstem site scored 80.05 on the WVSCI, the entire 3.14 mile

stream is included on the 1998 303(d) mine drainage sub-list. A few notes on the assessment form give clues that *Buffalo Creek* may have had mine drainage. Indeed, historically the stream was negatively impacted by old mines and refuse areas near its headwater in Chief Logan State Park. However, an abandoned mine land reclamation project seems to have improved the water quality in *Buffalo Creek* and, consequently, the benthic community may have improved. This stream should be further assessed to determine if all or part of it can be removed from the 303(d) list.

Three sites, *Guyandotte River* (O-4-{76.3}), *Chafin Branch*, and *Toney Branch* (called Bentley Branch locally), were not benthically-sampled. No water quality constituents from the *Guyandotte River* site indicated violations of water quality standards. The same was true of Toney Branch. However, *Chafin Branch* was definitely negatively impacted by mine drainage. It exhibited a pH of 4.0 and a conductivity of 538 µmhos/cm.


Nearly half (44 %) of the fecal coliform bacteria samples were in violation of the standard. No sampled sites had clearly identifiable sources and only 2 had potential sources noted on their assessment forms.

There are not enough data to determine whether or not *Guyandotte River* in this sub-watershed was meeting the expectations of the DNR's high quality streams list.

Middle Guyandotte River Direct Drains Sites

Approximately the southern half of this sub-watershed lies within the Cumberland Mountains subecoregion. The Monongahela Transition Zone sub-ecoregion covers the northern half.

Of the 18 benthically-sampled sites in the Middle Guyandotte River Direct Drains subwatershed, 5 scored below 60.60 on the WVSCI and

therefore, were considered impaired. *Dry Branch* (OG-41) scored only 24.12, but few clues for this poor rating were forthcoming from the assessment. One note mentioned "rocks covered w/ dead fil.[filamentous] algae & periphyton." The sampling team also noted that heavy precipitation had occurred within the past 24 hours. The dead algae may have been due to a dry spell just before heavy rainfall runoff covered the channel again.

> Laurel Fork, Aarons Creek, Short Bend, and Lick Branch scored within the 50's on the WVSCI. Short Bend's assessment form provides a few clues

about possible reasons for its poor benthic score. Gray water was noted as were sawdust and feed grain on the substrate. The fecal coliform bacteria concentration was quite high at 20,000 colonies/ 100 mL.

The sampled substrate at the *Laurel Fork* site consisted of 80 % gravel and only 10 % cobble. Only 15 % cobble covered the sampled substrate at the *Lick Branch* site. The bulk of the sampled area (45 %) was covered in gravel, with sand covering another 30 %. These relatively high percentages of small substrate materials at these sites reflect less than optimal conditions for most riffle-dwelling benthic macroinvertebrates. No other clear clues for the poor WVSCI scores at *Laurel Fork* and *Lick Branch* were provided by either the water quality data or the assessment form.

The *Aarons Creek* site's assessment form provided no indisputable evidence of potential causes of benthic impairment. Neither did the water quality constituents provide any clues.

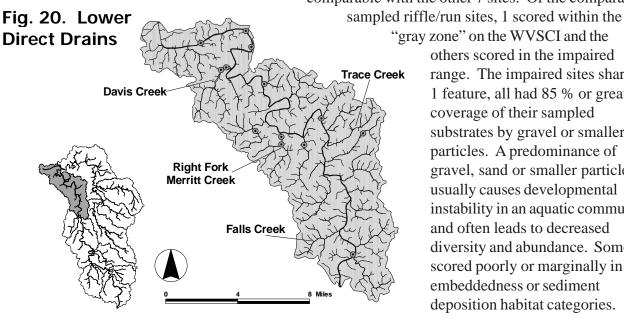
The 3 "gray zone" sites, *Hamilton Creek*, *Sand Creek*, and *East Fork of Fourteenmile Creek*, produced no certain clues about the potential causes of impairment.

Limestone Branch is on the 1998 303(d) mine drainage sub-list and indeed, the pH of 5.6 and the aluminum concentration of 0.903 mg/L were in violation of water quality standards. However, the WVSCI score was 69.56. Notes on the assessment form indicate that the source of poor water quality is a mine discharge only 0.2 mile upstream of the sampling site, which is approximately 0.2 mile

upstream of the mouth. By performing a preliminary kick sample and making water quality field tests immediately above this discharge, the sampling team determined there was no negative impact upstream of the discharge. The team's conclusion is that only the lowest 0.4 mile of *Limestone Branch* should be retained on the 303(d) list. The upper 1.38 miles should be removed from the list.

Plum Branch was selected as a reference site now included in the statewide reference site database. Another site, *Horseshoe Branch*, scored 93.59 on the WVSCI, but trash in the stream and other considerations kept it from being considered as a reference stream. However, it appears possible that above the sampled reach, *Horseshoe Branch* may support a potential reference site.

There were 11 samples (61 %) collected that were in violation of the water quality standard for fecal coliform bacteria. Three of


Table 11. Middle Direct Drains				
Stream Name	ANCode	WVSCI	RBP	Fecal
Horseshoe Branch	WVOG-29-C	93.59	150	30
Stout Creek	WVOG-30-(1.2)	79.34	143	3300
Plum Branch	WVOG-32-F	87.20	151	32
Fourteenmile Creek	WVOG-34	72.96	136	2000
Lick Branch	WVOG-34-A	56.39	130	1300
East Fk/Fourteenmile Ck	WVOG-34-B	65.00	135	2200
Nelson Fork	WVOG-34-E-1	88.88	137	6000
Nelson Fork	WVOG-34-E-1-(0.8)	79.27	163	6
Aarons Creek	WVOG-35	54.43	151	5600
Hamilton Creek	WVOG-36	61.51	159	1200
Little Ugly Creek	WVOG-37	89.01	162	28
Sand Creek	WVOG-40	64.69	121	380
Dry Branch	WVOG-41	24.12	134	4200
Short Bend	WVOG-42-A	54.79	124	20000
Laurel Fork	WVOG-42-C-(0.2)	54.03	141	6400
Mudlick Branch	WVOG-42-D	80.84	136	3200
Gartin Fork	WVOG-42-E	80.21	138	230
Limestone Branch	WVOG-48	69.56	144	44

these had potential sources noted on their assessment forms; for example, dog pen, chicken yard, pasture, livestock access and drainage pipes near residences. Only the Short Bend site had an obvious source identified, a gray water discharge from a trailer within the reach.

These data do not include information on the Guyandotte River mainstem. Therefore, it is difficult to assess the river's actual status in relation to its status on the DNR high quality streams list.

Lower Guyandotte River Direct Drains Sites

This sub-watershed lies entirely within the Monongahela Transition Zone sub-ecoregion. Of the 9 sites benthologically-sampled, 2 were sampled by the MACS procedure, and consequently are not comparable with the other 7 sites. Of the comparably

"gray zone" on the WVSCI and the others scored in the impaired range. The impaired sites shared 1 feature, all had 85 % or greater coverage of their sampled substrates by gravel or smaller particles. A predominance of gravel, sand or smaller particles usually causes developmental instability in an aquatic community and often leads to decreased diversity and abundance. Some scored poorly or marginally in the embeddedness or sediment deposition habitat categories. There were few other clues indicating potential causes of

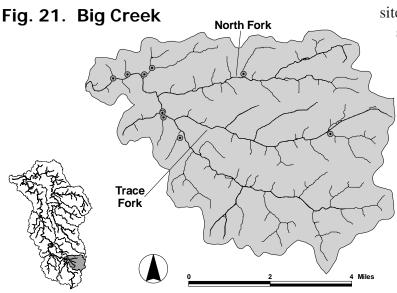
benthological impairment at these sites.

Upper Heath Creek scored within the "gray zone" and it had a slightly higher percentage of its sampled substrate covered with particles the size of cobbles or larger (20 % cobble & 5 % bedrock).

Other than bacteria, no water quality constituents indicated pollution problems on either Mill Creek or the unnamed tributary of Trace Creek, the 2 MACS-sampled sites.

Approximately 77 % of fecal coliform bacteria

Table 12. Lower Direct Drains					
Stream Name	ne ANCode WVSCI RBP Fec				
Davis Creek	WVOG-3	21.13	84	330	
Edens Branch	WVOG-3-0.5A	48.23	129	210	
Mill Creek	WVOG-6-(0.1)	NC27.02	100	1900	
Upper Heath Creek	WVOG-9-A-(0.3)	60.96	142	3300	
Merritt Creek	WVOG-10	30.79	143	3000	
Right Fk/Merritt Ck	WVOG-10-A	34.54	148	900	
Smith Creek	WVOG-11	41.75	138	2000	
UNT/Trace Creek	WVOG-14-D-(0.4)	NC43.46	99	6400	
Staley Branch	WVOG-23.5	30.07	121	5000	


46

samples collected from this watershed violated the water quality standard. Only 1 assessment form gave clues to potential sources of bacteria.

These data do not include information on the *Guyandotte River* mainstem. Therefore, it is difficult to assess the river's actual status in relation to its status on the DNR high quality streams list.

Big Creek Sites

The Cumberland Mountains sub-ecoregion contains the entire Big Creek sub-watershed. For pertinent notes on this sub-ecoregion, see the section titled "The Lower Guyandotte River Watershed".

Within the Big Creek sub-watershed, 8 sites were sampled for benthos. Of the 8 sites, only 2 produced samples with WVSCI scores above 68.00. *Dog Fork* and *Chapman Branch* were considered unimpaired.

> Two sites, North Branch of Ed Stone Branch and Big Creek, scored in the WVSCI "gray zone." The remaining 4 sites produced samples that fell within the "impaired" range. An unnamed tributary of Big Creek and Perrys Branch were severely impaired by mine drainage. Both had pH values that violated the water quality standard, both had aluminum standard violations and

both produced net acidities. Notes on the watershed assessment form indicated that both of these streams were probably impacted by mine drainage.

The other 2 sites impaired benthically produced samples with aluminum standard violations, but no other clearly mining-related water quality problems. The WVSCI scores of the *Ed Stone Branch* and *Vickers Branch* sites were 47.50 and 49.35, respectively. Local residents advised the sampling team that the old Banco mine was the cause of problems on Ed Stone Branch. According to notes penned by the sampling team, only the lower 0.1 mile

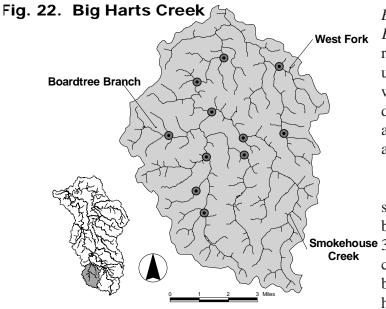
Table 13. Big Creek				
Stream Name ANCode WVSCI RBP				Fecal
Thomas Hollow	WVOG-49-0.3A			4
Big Creek	WVOG-49-(3.3)	63.36	129	860
Ed Stone Branch	WVOG-49-A	47.50	115	420
North Br/Ed Stone Br	WVOG-49-A-1	62.17	122	3000
Chapman Branch	WVOG-49-B-1	78.89	140	3200
Vickers Branch	WVOG-49-C	49.35	121	800
UNT/Big Creek	WVOG-49-C.1	15.79	112	16
Dog Fork	WVOG-49-D-2	83.14	151	900
Perrys Branch	WVOG-49-E-1	16.17	136	20

of *Vickers Branch* was negatively impacted by mine drainage. The source was a mountainside mine that only discharges in spring to the first south side hollow upstream of the mouth of *Vickers Branch*. A local resident advised, "when old mines dry up in summer, stream becomes normal color - orange color dissipates & fish come up into the stream."

As stated earlier, the sites on *North Branch of Ed Stone Branch* and *Big Creek* scored in the "gray zone." At the *North Branch* site, violations of the aluminum and iron standards indicated there was probably a mining source further up. Indeed, the sampling team noted "Old, abandoned mine drains into stream ~ 0.1 mi. u.s. on East side" of *North Branch*. Other sources of pollution at this site include straight pipe residential gray water discharges and yard waste dumping. A note reads, "Significant amount (10 %) of substrate in kicked area was grass."

The *Big Creek* site's assessment form gave few clues about the causes of biological impairment, although 80 % of the sampled substrate area consisted of gravel or smaller particle sizes.

Thomas Hollow (OG-49-0.3A) was selected for sampling by the field team because of suspected mine drainage impacts. The sample exhibited a net acidity and the pH was 5.0. It should be considered for addition to the 303(d) list. *Squirrel Hollow* (OG-49-.1A) was sampled because of the same suspicion, but its water quality proved that it was no longer receiving mine drainage from old mines shown on the topographic map. A local resident informed the team that the 4 old mines were sealed 6 years prior and most of the water from the mines was then draining into *Limestone Branch*.


Approximately 66 % of the fecal coliform bacteria samples violated the standard. Only 2 of the 6 sites with violations had clues about the sources of these violations. Only *North Branch of Ed Stone Branch* had a readily discernible source - gray water discharges from residences.

Although *Big Creek* was listed on the DNR high quality streams list, it and several tributaries were quite degraded during this study. As noted previously, the criteria for inclusion of warmwater streams, like *Big Creek*, on this list are that they be 5 miles or longer, and that they support a public fishery. No benthological data are utilized in determining high quality stream status on the DNR list. Further research could determine whether or not activities ongoing during the assessment period were contributing to the benthological community degradation or if the degradation was due primarily to abandoned mines.

Big Harts Creek Sites

Like the Big Creek sub-watershed, the Big Harts Creek sub-watershed lies within the Cumberland Mountains sub-ecoregion. All 11 of the benthologically-sampled sites in the Big Harts Creek sub-watershed produced WVSCI scores above 68.00 and therefore, were considered unimpaired. Other than fecal coliform bacteria, no water quality constituents indicated problems at any of these sites. *Big Harts Creek* mainstem was not sampled.

Sites with WVSCI scores above 90.00 were Hoover Fork, Wolfpen Branch, and Henderson

Branch. Of these streams, *Wolfpen Branch* appeared to have potential reference sites just a short way upstream of the sample site. The site was located at the dead end of a driveway and just above the yard was a cattle pen, but above the cattle pen appeared to be only forest.

Approximately 81 % of the samples violated the fecal coliform bacteria water quality standard. Only **Smokehouse** 3 of the 11 sample sites provided clear clues about potential sources of bacteria contamination and only 1 site had at least 1 source positively

identified. The Hugh Dingess Elementary School sewage treatment plant was located approximately 50 meters upstream of the upper terminus of the assessed reach. A sludge bank was seen hugging the right bank 25-30 meters below the plant. This problem was reported to the DEP's Environmental Enforcement Program.

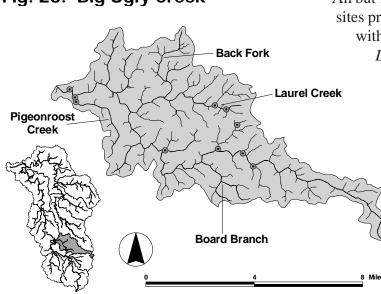

Although *Big Harts Creek* mainstem was not sampled benthically, the data generated from its tributaries indicate that it likely was of relatively high quality and, therefore deserving of the DNR's high quality stream status. However, further investigation is warranted before making this determination.

Table 14. Big Harts Creek				
Stream Name	ANCode	WVSCI	RBP	Fecal
Workman Fork	WVOG-44-A.5	80.00	138	12000
Marsh Fork	WVOG-44-A-2-(2.8)	69.52	120	5300
Caney Branch	WVOG-44-C.3	78.82	134	3300
Thompson Br	WVOG-44-C.7	88.56	125	38000
Smokehouse Fk	WVOG-44-E	68.20	137	60000
Wolfpen Branch	WVOG-44-E-0.5	92.18	155	36
Adams Branch	WVOG-44-F-1	85.55	150	82
Buck Fork	WVOG-44-G-(1.9)	78.56	124	830
Hoover Fork	WVOG-44-H	94.17	150	1400
Henderson Br	WVOG-44-I	90.99	149	420
Bulwork Branch	WVOG-44-K	83.58	159	1200

Big Ugly Creek Sites

Almost all of the Big Ugly Creek sub-watershed lies within the Cumberland Mountains subecoregion. Of the 9 benthically-sampled sites within the Big Ugly Creek tributary sub-watershed, only *Big Ugly Creek* near its mouth was considered not comparable because it was sampled via the MACS protocol. No water quality parameters indicated pollution problems at this site. Even though it was sampled with the MACS procedure, the site produced a WVSCI score considered in the unimpaired range. Although only 11 total taxa were found in the subsample, more than half of these were EPT taxa.

An Ecological Assessment Of

Fig. 23. Big Ugly Creek

All but 1 of the remaining benthically-sampled sites produced samples with WVSCI scores within the unimpaired range. However, *Little Deadening Creek's* WVSCI score (65.18) placed it at the upper end of the "gray zone." No clear clues about this site's potential impairment were forthcoming from the assessment process.

> The 2 *Laurel Creek* sites, OG-38-D-{3.9} and OG-38-D-{4.5}, were selected as reference sites. They both scored over 90.00 on the WVSCI.

Only 2 of the 9 fecal coliform bacteria samples violated the water quality standard. One of the sites, *Lefthand Creek*, provided clues about potential sources - pipes draining a school building.

These data indicate that *Big Ugly Creek's* DNR high quality stream status was being adequately protected at the time of this study.

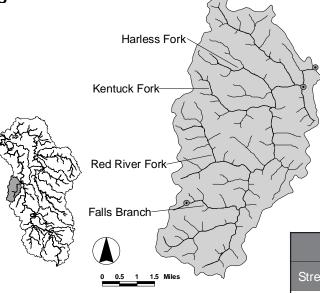

Fourmile Creek Sites

Table 15. Big Ugly Creek ANCode Stream Name WVSCI RBP Fecal **Big Ugly Creek** WVOG-38-(0.8) NC66.82 117 110 Big Ugly Creek WVOG-38-(11.6) 79.59 141 160 Pigeonroost Creek 83 WVOG-38-A 75.55 151 Laurel Creek WVOG-38-D-(3.9) 96.94 150 44 Laurel Creek WVOG-38-D-(4.5) 93.39 151 33 82.58 Sulphur Creek WVOG-38-G 130 50 Lefthand Creek WVOG-38-K 79.31 133 800 129 500 Little Deadening Ck WVOG-38-K.7 65.18 Pigeonroost Fork WVOG-38-K-5 85.84 137 160

The Monongahela Transition Zone sub-ecoregion contains the entire Fourmile Creek subwatershed. Only 2 sites were sampled benthically in this tributary sub-watershed. Both of these, *Falls Branch* and *Lowgap Branch*, scored within the unimpaired range of the WVSCI. The *Fourmile Creek mainstem* (OG-27) was not sampled for benthos. Although a site near the mouth was visited and found to be too deep and silted to sample, no attempt was made to find a suitable sampling site further upstream. Very few water quality constituents were sampled for, and those constituents that were analyzed gave no evidence of degradation.

Two of the 3 sites had bacteria samples in violation of the water quality standards and only 1 of these provided clues about a potential source, a pasture upstream of the sampled reach.

Fig. 24. Fourmile Creek

These few data are not enough to make conclusive statements about the validity of *Fourmile Creek's* inclusion on the DNR high quality streams list.

Table 16. Fourmile Creek				
Stream Name	ANCode	WVSCI	RBP	Fecal
Fourmile Ck	WVOG-27		104	70
Lowgap Br	WVOG-27-A	76.04	119	740
Falls Branch	WVOG-27-H-(1.8)	80.38	137	420

Implications

Table 17 is a list of sites that had water quality or other indicators of coal mining impacts during the assessment. These sites were discussed in detail in the pertinent sub-watershed sections of this report. Highlights of those discussions are presented below.

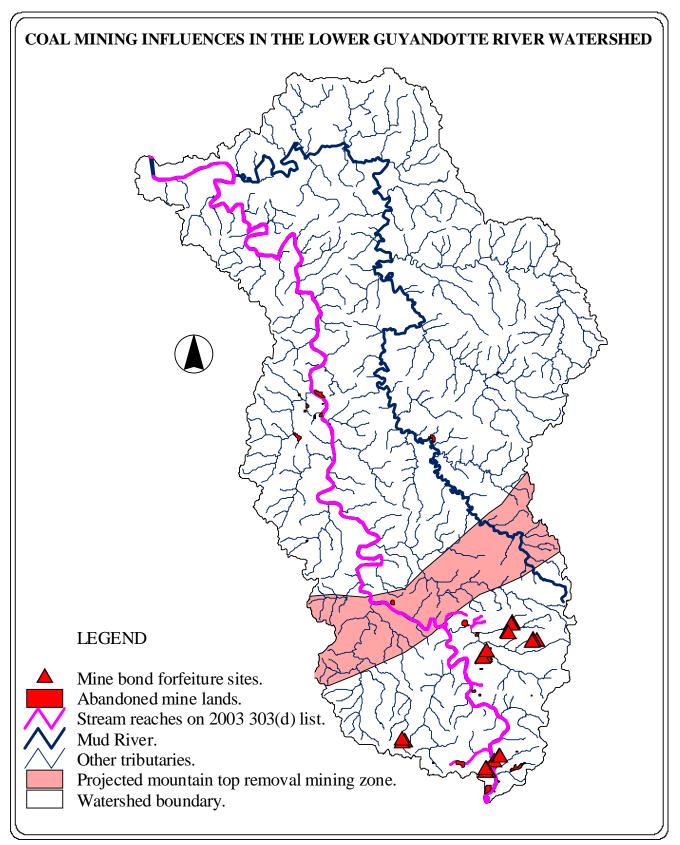
An abandoned mine land reclamation project may have improved *Buffalo Creek* (OG-61) significantly. The WVSCI score of 80.07 from the sample collected near the stream's mouth indicates improvement. Although the sample was in violation of the aluminum water quality standard, its other water quality constituents were not clearly indicative of mine drainage. The stream was included on the 1998 and 2002 303(d) lists for mine drainage, but it should be studied further to determine if the entire 3.14 miles should be retained on future lists. This study

should include sampling for dissolved metals as well as total metals. Perhaps all or part of *Buffalo Creek* can be removed from the list.

The other 4 tributary streams on the 1998 303(d) list (*Limestone Branch, Ed Stone Branch, North Branch of Ed Stone Branch,* and *Godby Branch*) should be retained, but only part of *Limestone Branch* needs to be kept on the list. The water quality of the lowermost 0.4 mile of *Limestone Branch* was found to be negatively impacted by mine drainage, but upstream of this point the stream appeared to be unimpacted. *Ed Stone Branch* and *Godby Branch* also are characterized by having very small surface drainage areas of 2 square miles or less each. Due to low or no surface flows in drought years, very small streams are difficult to sample utilizing the comparable RBP riffle/run methods.

Other mine drainage impacted streams included on the 2002 303(d) list are the *unnamed tributary of Big Creek*, *Perrys Branch*, *Fowler Branch*, and *Vickers Branch*. However, the reason given for

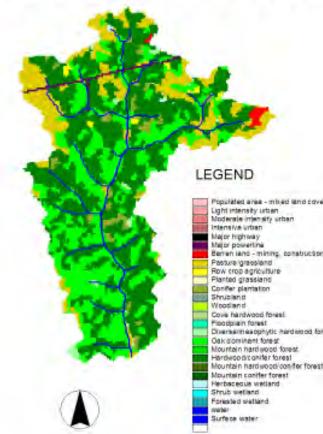
inclusion on the list was "unknown". It is likely that only the lowermost 0.1 mile of *Vickers Branch* suffers from mine drainage impacts. These streams also drain very small surface areas of 2 square miles or less each and therefore may be difficult to sample benthically during drought.


Chafin Branch and *Thomas Hollow* should be sampled further to determine if they should be included on future 303(d) lists due to mine drainage.

South Fork of Crawley Creek (OG-51-G.5) was included on the 2002 303(d) list because the WVSCI score was only 31.54. The cause of aquatic life impairment was identified as "unknown". However, the assessment reported herein indicated that the impairment may have been due to habitat and water quality degradation caused by highway construction and surface mining. TMDL sampling in the future should identify the cause(s) if aquatic life is still impaired during that sampling effort.

Table 17. Sites Impacted By Coal Mining				
Stream Name	ANCode			
Limestone Branch*+	WVOG-48			
Thomas Hollow*	WVOG-49-0.3A			
Ed Stone Branch*+	WVOG-49-A			
North Br/Ed Stone Br*+	WVOG-49-A-1			
Vickers Branch*	WVOG-49-C			
UNT/Big Creek*	WVOG-49-C.1			
Perrys Branch*	WVOG-49-E-1			
Fowler Branch*	WVOG-51.5			
Godby Branch*+	WVOG-53			
Chafin Branch	WVOG-53.4			
* Included on 2002 303(d) list.				

+ Included on 2002 303(d) list with mine drainage implicated.


Figure 25.

An Ecological Assessment Of

Figure 26.

Left Fork Mill Creek Land Uses

Moderate intensity urban Major powerline Berren land - mining, construction Diversem excentitic hardwood fores Mountain hard wood forest. Hardwood/coniter torest Mountain hardwood/coniter foreist

Indian Creek Land Uses

As indicated in the discussion of the Upper Mud River sub-watershed, active mining is suspected as the source of water quality impairments found at Mud River (OG-2-{77.2}). The Division of Mining and Reclamation was notified.

The greatest concentration of mining related impairments was in the uppermost portion of the watershed. At least 1 sampling team found mine-drainage impacted streams in the upper watershed that were not included on the team's sampling list. Some of the mining related problems seem to have been seasonal phenomena. A more thorough investigation of the upper watershed is warranted in spring, when groundwater and stream levels are elevated.

Tanyard Branch (OGM-1.5) should be investigated further to determine if more suitable riffle/run habitat exists for sampling purposes. If no suitable habitat is found, then further investigation should target the sources of sediment to the

> stream. If better habitat exists, it should be sampled to determine whether or not the very low WVSCI score obtained during this study was due primarily to poor habitat quality at the sampled site.

> Numerous studies have shown that urban lands produce negative impacts on stream water quality and biota (Schueler 1994, Basnyat et. al. 1999, and Dunne & Leopold 1978). Both Tanyard Branch and

Indian Fork (OGM-12) should be investigated to determine if the relatively high percentages of drainage basin surface coverage by urban and other non-forested lands contributed to their low WVSCI and habitat scores. *Indian Fork* was included on the 2002 303(d) list, while *Tanyard Branch* was not. A comparison of the maps shown in Figure 26 readily shows the differences in land use between *Indian Fork* and *Left Fork of Mill Creek*, 2 similar sized sub-watersheds within the Lower Mud River sub-watershed. As stated previously, the *Indian Fork* watershed had 13.60 % urban land coverage and 48.67 % forest land coverage. On the other hand, *Left Fork of Mill Creek* was largely forested with 88.37 % coverage and only 0.02 % urban coverage. The difference in the WVSCI scores is 47.33, with the *Indian Fork* site in the impaired range and the *Left Fork of Mill Creek* site in the unimpaired range. Indeed, *Left Fork* produced the fourth highest score in the Lower Mud River sub-watershed, while *Indian Fork* produced the second lowest score. It is likely that the lower RBP habitat score at the *Indian Creek* site resulted largely from the effects of urbanization above the site.

Three riffle/run-sampled sites that scored in the WVSCI "gray zone" and were probably being benthologically impaired, are; *North Branch of Ed Stone Branch* (OG-49-A-1) due to old mining,

Mud River (OG-2-{77.2}) due to active mining, and *Lower Creek* (OGM-7-{0.4}) due to habitat degradation. The first 2 streams were added to the 2002 303(d) list and will be sampled further to determine if their aquatic life uses are indeed impaired. *Lower Creek* was not included on the list, because habitat degradation is not a valid reason for including streams on such lists. The other 9 riffle/run-sampled "gray zone" sites (*East Fork of Fourteenmile Creek, Little Deadening Creek, Sand Creek, Big Creek, Hamilton Creek, Upper Heath Creek, Brush Creek, Left Fork of Mud River,* and *Charley Creek*) produced no clear clues about causes of degradation, so further investigation is warranted.

The stream sites listed in Table 18 showed benthological impairments, but the assessments provided few clues about reasons for those impairments. Portions of these streams were included on the proposed 2002 303(d) list of waterbodies with biological impairment. Note that 50 % of these streams drain very small watershed areas. Since 1998 was a year marked by continuing drought, low or zero flow conditions experienced previous to the time of sampling may have contributed to degradation of the benthic communities in some of these streams.

Two stream sites showing biological impairment during this assessment, while providing no clues to causes of impairment, were not included on the proposed 2002 303(d) list. These questionable streams are *Edens*

Table 18. Sites with uncertain reasons for low WVSCI scores.			
Stream name	AN Code	Drains <2 mi. ²	
Mill Creek	WVOG-59		
Lick Br/Fourteenmile Ck	WVOG-34-A	Х	
Short Bend Fork	WVOG-42-A	Х	
Aarons Creek	WVOG-35	Х	
Laurel Fk/Little Harts Ck	WVOG-42-C-(0.2)	Х	
Smith Creek	WVOG-11		
Right Fk/Merritt Ck	WVOG-10-A	Х	
South Fk/Crawley Ck	WVOG-51-G.5	Х	
Merritt Creek	WVOG-10		
Dry Run	WVOG-41	Х	
Davis Creek	WVOG-3		
Unnamed Trib/Big Ck	WVOG-49-C.1	Х	
Straight Fork	WVOGM-22-A-(0.7)	Х	
Sugartree Fork	WVOGM-25-I		
Valley Fork	WVOGM-25-H-1		
Trace Fork	WVOGM-20-(21.2)		
Right Fk/Mill Ck	WVOGM-8-C	Х	
Coon Creek	WVOGM-20-A		
Little Cabell Creek	WVOGM-		
Mud River	WVOGM-2-(3.6)		
Meadow Branch	WVOGM-25-A	Х	
Indian Fork	WVOGM-12		

An Ecological Assessment Of

Branch (OG-3-0.5A) and *Staley Branch* (OG-23.5). These streams drain very small watershed areas of 2 square miles or less.

Most of the streams draining very small watershed areas produced WVSCI scores indicating benthological impairment. Some of these streams had obvious causes potentially contributing to the low scores (e.g., habitat degradation in *Tanyard Branch* and mine drainage in *Godby Branch*). However, assessments performed at over half of these sampling sites provided no clues to causes of the impairments. Further investigation of this phenomenon is warranted to determine how drought affects benthological communities in small watershed area streams and how low flow conditions affect sampling proficiency.

Several benthically unimpaired sites (as determined by the WVSCI) had total RBP habitat scores in the suboptimal range. In the Lower Guyandotte River watershed, it appears that suboptimal may be the best that can be expected due to natural and anthropomorphic reasons. The unimpaired sites that scored in the upper half (135-159) of the suboptimal RBP habitat range (110-159) are listed in Table 19.

Three of the sites listed in Table 19 (*Laurel Creek* at mile point 4.5, *Limestone Branch*, and *Lukey Fork*) produced samples that violated the aluminum water quality standard. All of *Limestone Branch* was included on the 2002 303(d) list due to mine drainage, but only the lowest 0.4 mile appeared to be negatively impacted by mining. Portions of these 23 streams may represent the best in this watershed during the sampling period. If future investigation supports this hypothesis, then they are worthy of special consideration by agencies concerned with stream restoration. Further research should include sampling streams for dissolved metals as well as total metals to determine whether the more biologically harmful dissolved forms are present in concentrations considered damaging.

Stream Name	ANCode	WVSCI	RBP
Falls Branch	WVOG-27-H-(1.8)	80.38	137
Horseshoe Br	WVOG-29-C	93.59	150
Stout Creek	WVOG-30-(1.2)	79.34	143
Plum Branch	WVOG-32-F	87.20	151
Fourteenmile Ck	WVOG-34	72.96	136
Nelson Fork	WVOG-34-E-1	88.88	137
Big Ugly Creek	WVOG-38-(11.6)	79.59	141
Pigeonroost Ck	WVOG-38-A	75.55	151
Laurel Creek	WVOG-38-D-(3.9)	96.94	150
Laurel Creek	WVOG-38-D-(4.5)	93.39	151
Pigeonroost Fk	WVOG-38-K-5	85.84	137
Mudlick Branch	WVOG-42-D	80.84	136
Gartin Fork	WVOG-42-E	80.21	138
Workman Fork	WVOG-44-A.5	80.00	138
Smokehouse Fk	WVOG-44-E	68.20	137
Wolfpen Branch	WVOG-44-E-0.5	92.18	155
Adams Branch	WVOG-44-F-1	85.55	150
Hoover Fork	WVOG-44-H	94.17	150
Henderson Br	WVOG-44-I	90.99	149
Bulwork Branch	WVOG-44-K	83.58	159
Limestone Br	WVOG-48	69.56	144
Chapman Br	WVOG-49-B-1	78.89	140
Dog Fork	WVOG-49-D-2	83.14	151
Lily Branch	WVOG-50	76.37	154
Tony Branch	WVOGM-7-B-1	83.75	135
Mill Creek	WVOGM-8-(4.0)	76.58	149
Lefthand Fork	WVOGM-20-K-1	84.77	145
Trace Creek	WVOGM-25-B	68.96	137
Tincture Fork	WVOGM-25-B-1	78.70	136
Sycamore Fork	WVOGM-39-G	68.18	138
Upton Branch	WVOGM-40.3-(0.0)	84.54	146
Stonecoal Br	WVOGM-43	78.81	137
Lukey Fork	WVOGM-50	96.57	144

The *Guyandotte River* and *Mud River* mainstems were not sampled adequately to determine the condition of their benthological communities. Several riffle/run sites should be sampled in a future study in order to better understand the biological condition of the 2 rivers.

References

- Anonymous. 1986. *West Virginia high quality streams. Fifth edition.* West Virginia Department of Natural Resources, Wildlife Resources Division.
- Anonymous. 1996. *State of West Virginia 1993-1995 Report*. West Virginia Division of Environmental Protection, Office of Water Resources.
- Anonymous. September 1997. *Application of the rapid bioassessment protocol multimetric approach to Pennsylvania's water quality network sites (Draft)*. Pennsylvania Department of Environmental Protection, Bureau of Watershed Conservation.
- Anonymous. 1998. *Requirements Governing Water Quality Standards*. Title 46 Series 1, West Virginia Environmental Quality Board.
- Barbour, M.T., J. B. Stribling, J. Gerritsen and J. R. Karr. 1996. *Biological Criteria, technical guidance for streams and small rivers*. United States Environmental Protection Agency. EPA 822-B-96-001: pp 27-34.
- Barbour, M.T., J. Gerritson, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.
- Basnyat, P., L. D. Teeter, K. M. Flynn, and B. G. Lockaby. 1999. *Relationships between landuse characteristics and nonpoint source pollution inputs to coastal estuaries*. Environmental Management 23(4): pp 539-549.
- Caudill, Harry M. 1962. *Night Comes To The Cumberlands*. Little, Brown and Company. Boston, Massachusetts and Toronto, Canada.
- Dasher, George. 1998. The Karst of West Virginia. Unpublished Document.
- Dix, Keith. 1988. *What's a Coal Miner to Do?: The Mechanization of Coal Mining*. University of Pittsburgh Press, Pittsburgh, Pennsylvania.
- Dunne, T. and L. B. Leopold. 1978. *Water In Environmental Planning*. W. H. Freeman & Company. New York.
- Green, Jim, Maggie Passmore, and Hope Childers. 2000. A Survey of the Condition of Streams in the Primary Region of Mountaintop Mining/Valley Fill Coal Mining. U.S. Environmental Protection Agency, Region III, Aquatic Biology Group. Wheeling, West Virginia.
- Gerritsen, Jeroen, June Burton, and Michael T. Barbour. 2000. A stream condition index for West Virginia wadeable streams.

- Hale, John P. 1886. *Trans-Allegheny Pioneers*. The Graphic Press, Cincinnati, Ohio. Third edition printed in 1971 by Dereth Printing Company, Raleigh, North Carolina.
- Hilsenhoff, W.L. 1988. *Rapid field assessment of organic pollution with a family-level biotic index*. Journal of the North American Benthological Society 7(1): pp 65-68.
- Hughes, R. M., D. P. Larsen and J. M. Omernik. 1986. *Regional reference sites: a method for assessing stream potentials*. Environmental Management 10(5): pp 629-635.
- Jones, William K. 1997. *Karst Hydrology Atlas of West Virginia*. Karst Waters Institute, Special Publication Number 4. Charlestown, West Virginia.
- Klemm, D. J., and J. M. Lazorchak (eds.) 1994. Environmental Monitoring and Assessment Program, Surface Waters and Region III Regional Environmental Monitoring and Assessment Program: 1994 Pilot Field Operations and Methods Manual for Streams. U.S. EPA, Cincinnati, Ohio. EPA/620/R-94/004.
- Lee, Howard B. 1969 (Eleventh printing 1993). Bloodletting in Appalachia: The Story of West Virginia's Four Major Mine Wars and Other Thrilling Incidents of Its Coal Fields. West Virginia University, Morgantown, West Virginia.
- Maxted, J. R. 1993. *Macroinvertebrate collection and habitat assessment for low gradient, nontidal streams. Standard operating procedures and technical basis (Draft).* Delaware Division of Natural Resources. Dover, Delaware.
- Merritt, R.W. and K.W. Cummins, eds. 1984. *Introduction to the aquatic insects of North America*. Second edition. Kendall/Hunt Publishing Co., Dubuque, Iowa.
- Omernik, J. M., D. D. Brown, C. W. Kiilsgaard and S. M. Pierson. 1992. (Map) Draft ecoregions and subregions of the Blue Ridge Mountains, Central Appalachian Ridges and Valleys, and Central Appalachians of EPA Region 3. United States Environmental Protection Agency. ERL-C, 8/26/92.
- Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross and R. M. Hughes. 1989. Rapid bioassessment protocols for use in streams and rivers: Benthic macroinvertebrates and fish. United States Environmental Protection Agency. EPA/444/4-89-00.
- Resh, V. and D. Rosenberg. 1984. The Ecology Of Aquatic Insects. Praeger, New York.
- Ross, R. D. And G. E. Lewis, 1969. *Stream Survey of District II, West Virginia. D-J Project F-10-R-(1-11).* West Virginia Department of Natural Resources, Charleston, West Virginia.
- Savage, Lon. 1990. *Thunder in the Mountains: The West Virginia Mine War, 1920-21*. University of Pittsburgh Press, Pittsburgh, Pennsylvania.

- Schueler, T. 1994. *The importance of imperviousness*. Watershed Protection Techniques 1(3): pp 100-110.
- Schwartz, Seymour I. 1994. *The French And Indian War 1754-1763*. Simon & Schuster, New York, New York.
- Smithson, Janice. 2003. WAS 2003 SOP, Watershed Assessment Section's 2003 Standard Operating Procedures. West Virginia Department of Environmental Protection, Division of Water and Waste Management, Watershed Assessment Section.
- Stauffer, Jay R., Jr. Jeffery M. Boltz, and Laura R. White. 1995. *The Fishes of West Virginia*, Academy of Natural Sciences of Philadelphia.
- Tolin, William A. and Patricia A. Schettig. 1984. A Survey of the Freshwater Mussels (Unionidae) of the Lower Big Sandy River Basin. Department of the Interior, U.S. Fish and Wildlife Service. Elkins, West Virginia.
- U.S. Army Corps of Engineers, U.S. Environmental Protection Agency, U.S. Department of the Interior's Office of Surface Mining and Fish & Wildlife Service, and the West Virginia Department of Environmental Protection. 2003. *Mountain-top Mining/Valley Fill Draft Environmental Impact Study.*
- Waller, Altina L. 1988. Feud. University of North Carolina Press. Chapel Hill, North Carolina.
- Williams, John Alexander. 1976. West Virginia and the Captains of Industry. West Virginia University Library, Morgantown, West Virginia.
- WVDNR. 2001. West Virginia High Quality Streams. Sixth edition. West Virginia Division of Natural Resources.
- Zeto, Michael A. and John E. Schmidt. 1984. Naiad Distribution in the Mud River Drainage, Southwestern West Virginia. West Virginia Department of Natural Resources. A paper presented at the 1984 Ohio River Biology Symposium.

Glossary

- **303(d) list** -a list of streams that are water quality limited and not expected to meet water quality criteria even after applying technology-based controls. Required by the Clean Water Act and named for the section of the Act in which it appears.
- **acidity** -the capacity of water to donate protons. The abbreviation pH (see definition below) refers to degree of acidity. Higher acidities are more corrosive and harmful to aquatic life.
- acid mine drainage (AMD) -acidic water discharged from an active or abandoned mine.
- **alkalinity** -measures water's buffering capacity, or resistance to acidification; often expressed as the concentration of carbonate and bicarbonate.
- **aluminum** -a potentially toxic metallic element often found in mine drainage; when oxidized it forms a white precipitate called "white boy".
- ArcView a brand of Geographic Information System computer software.
- **benthic macroinvertebrates** small animals without backbones yet still visible to the naked eye, that live on the bottom (the substrate) of a water body and are large enough to be collected with a 595 micron mesh screen. Examples include insects, snails, and worms.
- **benthic organisms, or benthos** organisms that live on or near the substrate (bottom) of a water body (e.g., algae, mayfly larvae, darters).
- buffer -a dissolved substance that maintains a solution's original pH by neutralizing added acid.
- **canopy** -The layer of vegetation that is more than 5 meters from the ground; see understory and ground cover.
- cfs cubic feet per second, a measurement unit of stream discharge.
- citizens monitoring team -a group of people that periodically check the ecological health of their local streams.
- **conductivity** (**conductance**) the capacity of water to conduct an electrical current, higher conductivities indicate higher concentrations of ions.
- **CR** County Route.
- **DEP** Division of Environmental Protection. A unit of the executive branch of West Virginia's state government charged with enforcing environmental laws and monitoring environmental quality.

- **designated uses** -the uses specified in the state water quality standards for each water body or segment (e.g., fish propagation or industrial water supply).
- **discharge** -liquid flowing from a point source; or the volume of water flowing down a stream per unit of time, typically recorded as cfs (cubic feet per second).
- **discharge permit** -a legal document issued by a government regulatory agency specifying the kinds and amounts of pollutants a person or group may discharge into a water body; often called NPDES permit.
- **dissolved oxygen (DO)** the amount of molecular oxygen dissolved in water, normally expressed in mg/L.
- **DNR** Division of Natural Resources. A unit of the executive branch of West Virginia state government charged with protecting and regulating the use of wildlife, fish and their habitats.
- **DWWM** Division of Water and Waste Management. A unit within the DEP that manages a variety of regulatory and voluntary activities to enhance and protect West Virginia's surface and ground waters.
- ecoregion -a land area with relative homogeneity in ecosystems that, under unimpaired conditions, contain habitats which should support similar communities of animals (specifically macrobenthos).
- **ecosystem** -the complex of a community and its environment functioning as an ecological unit in nature. A not easily defined aggregation of biotic and abiotic components that are interconnected through various trophic pathways, and that interact systematically in the transfer of nutrients and energy.
- effluent -liquid flowing from a point source (e.g., pipe or collection pond).
- **Environmental Protection Agency (EPA)** -a unit in the executive branch of the federal government charged with enforcing environmental laws.
- **Environmental Quality Board (EQB)** -a standing group, whose members are appointed by the governor, that promulgates water quality criteria and judges appeals for relief from water quality regulations.
- EPA Environmental Protection Agency (see definition above).
- **ephemeral** -a stream that carries surface water during only part of the year; a stream that occasionally dries up.
- EQB Environmental Quality Board (see definition above).
- eutrophic -a condition of a lake or stream which has higher than normal levels of nutrients, contribut-

ing to excessive plant growth. Consequently more food and cover is provided to some macrobenthos than would be provided otherwise. Usually eutrophic waters are seasonally deficient in oxygen.

- **fecal coliform bacteria** -a group of single-celled organisms common in the alimentary tracts of some birds and all mammals, including man; indicates fecal pollution and the potential presence of human pathogens.
- **GIS** Geographic Information System. Computer programs that allow for the integration and manipulation of spatially anchored data.
- GPS Geographic Positioning System.
- **ground cover** -vegetation that forms the lowest layer in a plant community defined as less than 0.5 meters high for this assessment .
- **impaired** -as used in this assessment report, a benthic macroinvertebrate community with metric scores substantially worse than those of an appropriate reference site. The total WVSCI score is equal to or less than 60.6.
- **iron** -a metallic element, often found in mine drainage, that is potentially harmful to aquatic life. When oxidized, it forms an orange precipitate called "yellow boy" that can clog fish and macroinvertebrate gills.
- lacustrine of or having to do with a lake or lakes.
- MACS -Mid-Atlantic Coastal Streams -macrobenthic sampling methodology used in streams with very low gradient that lack riffle habitat suitable for The Section's preferred procedure.
- **manganese** -a metallic element, often found in mine drainage, that is potentially harmful to aquatic life.
- metrics -statistical tools used by ecologists to evaluate biological communities
- MRLC 1993 <u>Multi-R</u>esolution <u>L</u>and <u>C</u>haracteristics coverage in the WCMS.
- **National Pollutant Discharge Elimination System (NPDES)** -a government permitting activity created by section 402 of the federal Clean Water Act of 1972 to control all discharges of pollutants from point sources. In West Virginia this activity is conducted by the Division of Water Resources.
- N/C not comparable.
- **nonpoint source (NPS) pollution** -contaminants that run off a broad landscape area (e.g., plowed field, parking lot, dirt road) and enter a receiving water body.

oligotrophic - a stream, lake or pond which is poor in nutrients.

palustrine - of or having to do with a marsh, swamp or bog.

- **pH** -indicates the concentration of hydrogen ions; a measure of the intensity of acidity of a liquid. Represented on a scale of 0-14, a pH of 1 describes the strongest acid, 14 represents the strongest base, and 7 is neutral. Aquatic life cannot tolerate either extreme.
- **point source** -a specific, discernible site (e.g., pipe, ditch, container) locatable on a map as a point, from which pollution discharges into a water body.

RBP - Rapid Bioassessment Protocol. Relatively quick methods of comparatively assessing biological communities.

reference site -a stream reach that represents an area's (watershed or ecoregion) least impacted condition; used for comparison with other sites within that area. Site must meet the agency's minimum degradation criteria.

SCA -Soil Conservation Agency.

Section - The Watershed Assessment Section of the WV Division of Water Resources.

- **SPOT image** a geographic information system coverage layer that mimics black and white satellite imagery.
- **stakeholder** -a person or group with a vested interest in a watershed, e.g., landowner, business person, angler.
- **STORET -STO**rage and **RET**rieval of U.S. waterways parametric data -a system maintained by EPA and used by DWWM to store and analyze water quality data.

sub-watershed - a smaller drainage area within a watershed.

- **total maximum daily load (TMDL)** -the total amount of a particular pollutant that can enter a water body and not cause a water quality standards violation.
- **turbidity** -the extent to which light passes through water, indicating its clarity; indirect measure of suspended sediment.
- **understory** -the layer of vegetation that form a forest's middle layer (defined as 0.5 to 5 meters high for this assessment).
- **unimpaired** -as used in this assessment report, a benthic community with metric scores similar to those of an appropriate reference site. Total WVSCI score greater than 68.0.

UNT -unnamed tributary.

USGS -United States Geological Survey.

- **water-contact recreation** -the type of designated use in which a person (e.g., angler, swimmer, boater) comes in contact with the stream's water.
- watershed -a geographic area from which water drains to a particular point.
- **Watershed Approach Steering Committee** -a task force of federal (e.g., U.S. Environmental Protection Agency, U.S. Geological Survey) and state (e.g., Division of Environmental Protection, Soil Conservation Agency) officers that recommends streams for intense, detailed study.
- **Watershed Assessment Section** -a group of scientists within the DWWM charged with evaluating and reporting on the ecological health of West Virginia's watersheds.
- **watershed association** -a group of diverse stakeholders working via a consensus process to improve water quality in their local streams.
- **Watershed Network** -an informal coalition of federal, state, multi-state, and nongovernmental groups cooperating to support local watershed associations.
- WCMS <u>W</u>atershed <u>C</u>haracterization and <u>M</u>odeling <u>S</u>ystem, an ArcView-based GIS program developed by the Natural Resource Analysis Center of West Virginia University.

APPENDIX A - DATA TABLES

An Ecological Assessment Of

Table A-1. Sites Sampled.

Stream Name Guyandotte River Mud River Mud River Mud River Mud River Mud River	Stream Code WVO-4-{76.3} WVOG-2-{3.6} WVOG-2-{18.8} WVOG-2-{25.5}	Date 5/20/1998 5/29/1998	37	titu 56	de 52	Lon 82	gitu 1	11	County
Aud River Mud River Mud River Mud River Mud River Mud River	WVOG-2-{3.6} WVOG-2-{18.8}	5/29/1998		56	52	82	1	11	1
Mud River Mud River Mud River Mud River Mud River	WVOG-2-{18.8}		20					11	Logan
Mud River Mud River Mud River Mud River		E/4 4/4 000	38	25	21.48	82	16	15.56	Cabell
Mud River Mud River Mud River	WVOG-2-{25.5}	5/14/1998	38	25	52	82	8	27	Cabell
Mud River Mud River		5/14/1998	38	23	16	82	6	46.5	Cabell
Mud River	WVOG-2-{47}	5/28/1998	38	16	30.95	82	5	54.03	Lincoln
	WVOG-2-{48.7}	5/28/1998	38	15	48.4	82	7	21.1	Lincoln
	WVOG-2-{77.2}	5/18/1998	38	5	39	81	58	37	Lincoln
Tanyard Branch	WVOGM-1.5	5/18/1998	38	24	56	82	17	26	Cabell
Little Cabell Creek	WVOGM-3-{0.9}	5/26/1998	38	26	35.59	82	14	45.63	Cabell
Big Cabell Creek	WVOGM-4-{0.2}	5/29/1998	38	26	32.93	82	12	58.18	Cabell
Big Cabell Creek	WVOGM-4-{2}	5/26/1998	38	27	32.54	82	13	38.74	Cabell
_ower Creek	WVOGM-7-{0.4}	5/26/1998	38	27	6.69	82	10	8.79	Cabell
Tony Branch	WVOGM-7-B-1	5/3/1998	38	28	46	82	8	53	Cabell
Mill Creek	WVOGM-8-{4}	5/3/1998	38	27	36	82	7	5	Cabell
_eft Fork/Mill Creek	WVOGM-8-B	5/3/1998	38	28	34	82	7	3.5	Cabell
Right Fork/Mill Creek	WVOGM-8-C	5/26/1998	38	27	58	82	6	26	Cabell
ndian Fork	WVOGM-12	5/15/1998	38	25	21	82	6	19	Cabell
Brush Creek	WVOGM-13	5/15/1998	38	24	46	82	7	52	Cabell
Charley Creek	WVOGM-14-{7.2}	5/29/1998	38	24	1.12	82	2	15.93	Putnam
Fallen Fork	WVOGM-16-A	5/4/1998	38	23	1.33	82	8	27.1	Cabell
race Creek	WVOGM-19	5/4/1998	38	21	35	82	8	2	Cabell
race Fork	WVOGM-20-{6.4}	6/9/1998	38	20	10.66	82	2	45.14	Lincoln
race Fork	WVOGM-20-{21.2}	5/29/1998	38	18	17	81	54	53.68	Lincoln
coon Creek	WVOGM-20-A	5/4/1998	38	20	49.29	82	5	25.56	Lincoln
ig Creek	WVOGM-20-D-{4.6}	5/28/1998	38	17	32.8	82	1	35.43	Putnam
ycamore Creek	WVOGM-20-F	6/9/1998	38	20	13	82	2	26	Putnam
lymer Creek	WVOGM-20-H	5/27/1998	38	20	1.39	81	59	56.42	Putnam
elleys Creek/Trace Fork	WVOGM-20-I-1-{1.5}	5/28/1998	38	22	13.6	81	59	0.9	Putnam
lartin Run	WVOGM-20-L	5/6/1998	38	20	26.42	81	57	2.32	Putnam
lelson Hollow	WVOGM-20-K-{0.1}	5/4/1998	38	20	30.06	82	0	40.32	Putnam
efthand Fork	WVOGM-20-K-1	5/7/1998	38	18	24.81	81	57	47.08	Putnam
Bridge Creek	WVOGM-20-M-{1.8}	5/27/1998	38	21	18.01	81	55	59.07	Putnam
Flint Hollow	WVOGM-20-M-1	5/6/1998		21	18	81	55	56	Putnam
Oonley Fork/Hayslett Fork	WVOGM-20-R-2	5/27/1998	38	16	44.14	81		21.35	Lincoln
oes Creek	WVOGM-20-T-{3.5}	5/28/1998	38	15	16.96	81		21.35	Lincoln
lockhouse Branch	WVOGM-20-V	5/7/1998	38	16	53.18	81		49.04	Lincoln
Straight Fork	WVOGM-22-A-{0.7}	5/4/1998	38	18	51.78	82		37.45	Lincoln
leadow Branch	WVOGM-25-A	5/6/1998	38		42.69	82		12.52	Lincoln
race Creek	WVOGM-25-B-{2.3}	5/28/1998	38		37.52	82		14.99	Lincoln
incture Fork	WVOGM-25-B-1	5/6/1998	38	15	26.96	82	5	10	Lincoln
/alley Fork	WVOGM-25-H-1	5/26/1998	38	14	22.49	81	59	20.4	Lincoln
Sugartree Fork	WVOGM-25-I	5/26/1998	38	13	41	82	0	0	Lincoln
Sugartree Fork	WVOGM-25-I-{3}	5/26/1998	38	12	30.39	81		12.38	Lincoln
and Fork	WVOGM-25-I-4	5/26/1998	38	12	24.8	81		10.66	Lincoln
Sandlick Branch	WVOGM-31	5/21/1998	38	13	14.68	82		48.06	Lincoln
Dry Fork	WVOGM-33-B	5/21/1998	38	12		82		43.83	Lincoln
Big Branch		5/28/1998	38		37.77	82		32.19	Lincoln
Big Creek	WVOGM-35-{1.8}	5/21/1998		10	4.75	82	5	3.1	Lincoln

Stream Name	Stream Code	Date	Latitude		Longitude		County		
Big Creek	WVOGM-35-{4.1}	5/19/1998	38	8	35.79	82	5	2.54	Lincolr
Laurel Fork	WVOGM-35-E	5/28/1998	38	8	17.95	82	5	2.44	Lincolr
Left Fork/Mud River	WVOGM-39	5/27/1998	38	9	34.08	82	1	5.96	Lincolr
Left Fork/Mud River	WVOGM-39-{10.2}	5/27/1998	38	8	11.43	81	59	9.43	Lincolr
Sycamore Fork	WVOGM-39-G	5/27/1998	38	8	50.19	81	59	36.78	Lincolr
Upton Branch	WVOGM-40.3-{0}	5/19/1998	38	8	1.98	82	2	57.77	Lincolr
Upton Branch	WVOGM-40.3-{2.2}	5/19/1998	38	6	37.92	82	3	16.98	Lincolr
Stonecoal Branch	WVOGM-43	5/18/1998	38	6	15.7	81	59	55.34	Lincolr
Berry Branch	WVOGM-44-{0.2}	5/19/1998	38	6	4.75	81	59	13.99	Lincolı
Lukey Fork	WVOGM-50	5/18/1998	38	3	4.39	81	57	30.91	Boone
Davis Creek	WVOG-3	5/18/1998	38	23	46.5	82	19	21	Cabell
Edens Branch	WVOG-3-0.5A	5/18/1998	38	23	38.5	82	19	40	Cabell
Mill Creek	WVOG-6-{0.1}	5/18/1998	38	22	59.71	82	17	0.37	Cabell
Jpper Heath Creek	WVOG-9-A-{0.3}	5/21/1998	38	20	42.74	82	17	29.86	Cabell
Merritt Creek	WVOG-10	5/21/1998	38	20	26	82	15	54	Cabell
Right Fork/Merritt Creek	WVOG-10-A	5/21/1998	38	20	6	82	15	54	Cabell
Smith Creek	WVOG-11	5/12/1998	38	20	4	82	14	30	Cabell
UNT/Trace Creek	WVOG-14-D-{0.4}	5/12/1998	38	20	40	82	10	53	Cabell
Staley Branch	WVOG-23.5	5/22/1998	38	14	49	82	11	24	Lincolr
Fourmile Creek	WVOG-27	5/22/1998	38	13	12	82	12	10	Lincolr
Lowgap Branch	WVOG-27-A	5/22/1998	38	12	43	82	12	32.5	Lincolr
Falls Branch	WVOG-27-H-{1.8}	5/27/1998	38	9	47.66	82	16	10.9	Lincolr
Horseshoe Branch	WVOG-29-C	5/13/1998	38	11	15	82	9	8	Lincolr
Stout Creek	WVOG-30-{1.2}	5/13/1998	38	10	45.03	82	11	49.7	Lincolr
Plum Branch	WVOG-32-F	5/27/1998	38	7	22.73	82	13	15.89	Lincolr
Fourteenmile Creek	WVOG-34	5/6/1998	38	6	46	82	10	54	Lincolı
Lick Branch	WVOG-34-A	5/6/1998	38	6	45.1	82	11	9.72	Lincolı
East Fork/Fourteenmile Creek	WVOG-34-B	5/6/1998	38	6	11	82	10	39.5	Lincolr
Nelson Fork	WVOG-34-E-1	5/6/1998	38	4	58.97	82	12	28.97	Lincolr
Nelson Fork	WVOG-34-E-1-{0.8}	5/11/1998	38	4	45.5	82	12	56	Lincolr
Aarons Creek	WVOG-35	5/11/1998	38	6	37	82	9	37	Lincolı
Hamilton Creek	WVOG-36	5/11/1998	38	5	42	82	8	4	Lincolr
Little Ugly Creek	WVOG-37	5/11/1998	38	5	14	82	7	17	Lincolr
Big Ugly Creek	WVOG-38-{0.8}	5/19/1998	38	4	51.73	82	7	6.9	Lincolr
Big Ugly Creek	WVOG-38-{11.6}	5/19/1998	38	2	51.77	82	0	1.71	Lincolr
Pigeonroost Creek	WVOG-38-A	5/19/1998	38	4	36	82	6	54	Lincolr
Laurel Creek	WVOG-38-D-{3.9}	5/18/1998	38	4	24	82	1	12	Lincolr
Laurel Creek	WVOG-38-D-{4.5}	5/18/1998	38	4	15.76	82	0	43.24	Lincolr
Sulphur Creek	WVOG-38-G	5/19/1998	38	2	56	82	3	12	Lincolr
Lefthand Creek	WVOG-38-K	5/19/1998	38	3	0	82	1	3	Lincolr
Little Deadening Creek	WVOG-38-K.7	5/19/1998	38	2	27	81	59	36	Lincolı
Pigeonroost Fork	WVOG-38-K-5	5/19/1998	38	3	46.5	82	0	17	Lincolı
Sand Creek	WVOG-40	5/11/1998	38	3	47.79	82	7	25.08	Lincolı
Dry Branch	WVOG-41	5/11/1998	38	3	15.8	82	8	51.03	Lincolı
Short Bend	WVOG-42-A	5/11/1998	38	1	58	82	9	34	Lincolr
Laurel Fork	WVOG-42-C-{0.2}	5/11/1998	38	1	50.17	82	10	19.05	Lincolr
Mudlick Branch	WVOG-42-D	5/11/1998	38	2	0.9	82	11	5.3	Lincolr
Gartin Fork	WVOG-42-E	5/11/1998	38	1	53	82	11	6	Lincolr

 Table A-1.
 Sites Sampled (continued).

An Ecological Assessment Of

Table A-1. Sites Sampled (continued).						
Stream Name	Stream Code	Date	Latitude	Longitude	County	
Workman Fork	WVOG-44-A.5	5/20/1998	38 0 1.11	82 5 49.8	32 Logan	
Marsh Fork	WVOG-44-A-2-{2.8}	5/20/1998	37 58 1.2	82 5 37.1	7 Logan	
Caney Branch	WVOG-44-C.3	5/14/1998	38 0 15	82 7 5	55 Lincoln	
Thompson Branch	WVOG-44-C.7	5/14/1998	37 59 32	82 8 5	55 Lincoln	
Smokehouse Fork	WVOG-44-E	5/14/1998	37 58 39	82 8 2	22 Logan	
Wolfpen Branch	WVOG-44-E-0.5	5/4/1998	37 57 53	82 7	9 Logan	
Adams Branch	WVOG-44-F-1	5/4/1998	37 57 55.5	82 9 58.2	25 Logan	
Buck Fork	WVOG-44-G-{1.9}	5/14/1998	37 57 22.54	82 7 6.4	15 Logan	
Hoover Fork	WVOG-44-H	5/4/1998	37 57 17.4	82 8 31.6	S2 Logan	
Henderson Branch	WVOG-44-I	5/4/1998	37 56 16	82 8 5	54 Logan	
Bulwark Branch	WVOG-44-K	5/4/1998	37 55 37.23	82 8 35.8	36 Logan	
Limestone Branch	WVOG-48	5/6/1998	38 0 36.89	82 2 40.2	27 Logan	
Squirrel Branch	WVOG-49-0.1A	5/6/1998	38 0 27	82 1 4	14 Logan	
Thomas Hollow	WVOG-49-0.3A	5/6/1998	38 0 32.04	82 1 21.0)2 Logan	
Big Creek	WVOG-49-{3.3}	5/20/1998	37 59 45.34	82 0 23.5	54 Logan	
Ed Stone Branch	WVOG-49-A	5/5/1998	38 0 32.33	82 0 53.6	6 Logan	
North Branch/Ed Stone Branch	WVOG-49-A-1	5/5/1998	38 0 40.76	82 0 41.5	59 Logan	
Chapman Branch	WVOG-49-B-1	5/5/1998	38 0 34.5	81 58 ´	13 Logan	
Vickers Branch	WVOG-49-C	5/5/1998	37 59 43.58	82 0 23.7	7 Logan	
UNT/Big Creek	WVOG-49-C.1	5/6/1998	37 59 38	82 0 2	22 Logan	
Dog Fork	WVOG-49-D-2	5/5/1998	37 59 19	81 55 5	52 Boone	
Perrys Branch	WVOG-49-E-1	5/6/1998	37 59 12	81 59 5	55 Logan	
Lily Branch	WVOG-50	5/6/1998	37 59 44	82 2 4	12 Logan	
Fowler Branch	WVOG-51.5	5/13/1998	37 58 7.76	82 1 9.4	12 Logan	
Canoe Fork	WVOG-51-B	5/6/1998	37 57 52.97	82 2 49.1	6 Logan	
South Fork/Crawley Creek	WVOG-51-G.5	5/13/1998	37 53 55.5	82 3	6 Logan	
Godby Branch	WVOG-53	5/13/1998	37 57 23	82 0 5	51 Logan	
Chafin Branch	WVOG-53.4	5/13/1998	37 57 0	82 0 5	51 Logan	
Toney Branch	WVOG-53.5	5/13/1998	37 56 54	82 0 5	54 Logan	
Mill Creek	WVOG-59	5/13/1998	37 55 48	81 58 4	19 Logan	
Big Branch	WVOG-60	5/13/1998	37 54 24.5	81 58 3	36 Logan	
Buffalo Creek	WVOG-61	5/13/1998	37 53 49.61	81 59 57.2	21 Logan	

Table A-1. Sites Sampled (continued).

Stream Code	Stream Width (m)	Riffle Depth (m)	Run Depth (m)	Pool Depth (m)
		,	1.5	2
WVO-4-{76.3}		0.8		Z
WVOG-2-{3.6}	20	0.2	0.5	
WVOG-2-{18.8}	25			
WVOG-2-{25.5}	30			
WVOG-2-{47}	11.3		1	1
WVOG-2-{48.7}	12.3			1
WVOG-2-{77.2}	11.3	0.18	0.4	1
WVOGM-1.5	1	0.01	0.03	0.25
WVOGM-3-{0.9}	4.9	0.1	0.25	0.4
WVOGM-4-{0.2}	9.7			1
WVOGM-4-{2}	3.6	0.1	0.2	0.4
WVOGM-7-{0.4}	5.1	0.1	0.2	0.35
WVOGM-7-B-1	1.7	0.05	0.1	0.6
WVOGM-8-{4}	9.1	0.1	0.2	1
WVOGM-8-B	5.5	0.05	0.1	0.5
WVOGM-8-C	4.1	0.05	0.15	0.25
WVOGM-12	3.7	0.08	0.5	1
WVOGM-13	1.1	0.01	0.06	0.08
WVOGM-14-{7.2}	2.3	0.1	0.5	1
WVOGM-16-A	1.5	0.1	0.2	
WVOGM-19	3.8	0.1	0.35	0.4
WVOGM-20-{6.4}	12.3	0.1	0.3	0.6
WVOGM-20-{21.2}	4	0.15	0.5	1
WVOGM-20-A	3.6	0.18	0.48	
WVOGM-20-D-{4.6}	2.2	0.05	0.1	0.5
WVOGM-20-H	3	0.1	0.6	1
WVOGM-20-I-1-{1.5}	0.5	0.02	0.01	0.03
WVOGM-20-L	1.3	0.08	0.2	0.32
WVOGM-20-K-{0.1}	1.4	0.15	0.52	0.6
WVOGM-20-K-1	1.8	0.1	0.2	0.5
WVOGM-20-M-{1.8}	4.3	0.03	0.1	0.25
WVOGM-20-M-1	1.2	0.05	0.15	
WVOGM-20-R-2	1	0.05	0.1	0.4
WVOGM-20-T-{3.5}	6	0.04	0.2	0.5
WVOGM-20-V	2	0.08	0.15	0.4
WVOGM-22-A-{0.7}	1.8	0.1	0.14	0.4
WVOGM-25-A	2.4	0.1	0.15	0.2
WVOGM-25-B-{2.3}	2.3	0.05	0.1	0.4
WVOGM-25-B-1	1.3	0.05	0.2	0.4
WVOGM-25-H-1	2.7	0.09	0.25	0.3
WVOGM-25-I	5.9	0.15	0.3	0.5
WVOGM-25-I-{3}	4	0.15	0.3	0.4
WVOGM-25-I-4	- 1.9	0.08	0.15	0.3
WVOGM-25-1-4 WVOGM-31	1.5	0.08	0.13	0.3
WVOGM-31 WVOGM-33-B	2.1	0.04	0.08	0.1
WVOGM-33-C			0.06	0.2
	2.1	0.03	0.08	0.2
WVOGM-35-{1.8}	3.6	0.15		
WVOGM-35-{4.1}	1.6	0.05	0.1	0.4

Table A-2. Physical characteristics of 100 meter stream reach.

Table A-2.	able A-2. Physical characteristics of 100 M stream reach (cont.).							
Stream Code	Stream Width (m)	Riffle Depth (m)	Run Depth (m)	Pool Depth (m)				
WVOGM-35-E	2.4	0.05	0.1	0.15				
WVOGM-39	4.5	0.08	0.4	0.7				
WVOGM-39-{10.2}	2.6	0.08	0.15	0.5				
WVOGM-39-G	4	0.05	0.15	0.3				
WVOGM-40.3-{0}	1.5	0.1	0.1	0.6				
WVOGM-40.3-{2.2}	1.4	0.05	0.1	0.18				
WVOGM-43	1.4	0.05	0.1	0.42				
WVOGM-44-{0.2}	1.4	0.05	0.07	0.25				
WVOGM-50	1.1	0.05	0.1	0.29				
WVOG-3	3.2	0.01	0.08	0.6				
WVOG-3-0.5A	1.5	0.03	0.05	0.2				
WVOG-6-{0.1}	1.9	0.1	0.6					
WVOG-9-A-{0.3}	3	0.05	0.1					
WVOG-10	4.5	0.05	0.1	1				
WVOG-10-A	1.7	0.05	0.1	0.6				
WVOG-11	4.1	0.05	0.1	0.6				
WVOG-14-D-{0.4}	1.6		0.05	0.5				
WVOG-23.5	0.9	0.03	0.05	0.3				
WVOG-27	10			1				
WVOG-27-A	1.8	0.03	0.12	0.5				
WVOG-27-H-{1.8}	0.9	0.05		0.1				
WVOG-29-C	1.8	0.05	0.1	0.25				
WVOG-30-{1.2}	1.7	0.05	0.1	0.2				
WVOG-32-F	3.5	0.1	0.1	0.13				
WVOG-34	10	0.1	0.7	0.7				
WVOG-34-A	3.6	0.05	0.1					
WVOG-34-B	3.5	0.1	0.2	0.6				
WVOG-34-E-1	1.7	0.08	0.1					
WVOG-34-E-1-{0.8}	2.3	0.05	0.1	0.5				
WVOG-35	2.6	0.05	0.2	0.3				
WVOG-36	3.9	0.1	0.2	0.5				
WVOG-37	2.6	0.1	0.15					
WVOG-38-{0.8}	11.4	0.15	0.25	0.4				
WVOG-38-{11.6}	5.5	0.1	0.2	0.3				
WVOG-38-A	2.2	0.1	0.15	0.3				
WVOG-38-D-{3.9}	2.1	0.12	0.2	0.28				
WVOG-38-D-{4.5}	1.6	0.05	0.1	0.35				
WVOG-38-G	3.6	0.1	0.2	0.3				
WVOG-38-K	3.1	0.1	0.15	0.2				
WVOG-38-K.7	0.6	0.05		0.2				
WVOG-38-K-5	0.5	0.05		0.3				
WVOG-40	4.8	0.15	0.2					
WVOG-41	2.3	0.15	0.2					
WVOG-42-A	1.7	0.1	0.2	0.3				
WVOG-42-C-{0.2}	1.9	0.1	0.15	0.35				
WVOG-42-D	1.7	0.1	0.2	0.2				
WVOG-42-E	2.5	0.1	0.15	0.3				
WVOG-44-A.5	2	0.05	0.1					

Table A-2. Physical characteristics of 100 M stream reach (cont.).

	nysioar onaraou						
Stream Code	Stream Width (m)	Riffle Depth (m)	Run Depth (m)	Pool Depth (m)			
WVOG-44-A-2-{2.8}	1.7	0.05	0.1	0.2			
WVOG-44-C.3	1.7	0.05	0.15	0.2			
WVOG-44-C.7	1.3	0.05	0.15	0.2			
WVOG-44-E	5.7	0.1	0.25	0.4			
WVOG-44-E-0.5	2.7	0.2					
WVOG-44-F-1	1.5	0.15	0.2				
WVOG-44-G-{1.9}	2.7	0.1	0.15	0.2			
WVOG-44-H	2.7	0.3	0.4	0.5			
WVOG-44-I	2.7	0.25	0.3				
WVOG-44-K	3	0.25	0.4	0.6			
WVOG-48	2.5	0.2	0.4				
WVOG-49-{3.3}	7.3	0.1	0.2				
WVOG-49-A	3.5	0.2	0.3				
WVOG-49-A-1	1.5	0.2	0.2				
WVOG-49-B-1	2.6	0.2	0.2				
WVOG-49-C	1.7	0.2	0.2				
WVOG-49-C.1	1	0.15	0.2				
WVOG-49-D-2	3.1	0.15	0.3	0.7			
WVOG-49-E-1	1.7	0.1	0.2				
WVOG-50	3.3	0.1	0.2	0.3			
WVOG-51.5	1.2	0.07	0.1				
WVOG-51-B	1.4	0.1	0.25				
WVOG-51-G.5	2.4	0.1	0.25				
WVOG-53	2.5	0.1	0.2				
WVOG-59	7.5	0.1	0.2	0.2			
WVOG-60	2.2		0.1	0.15			
WVOG-61	5.9	0.15	0.2	0.25			
WVOG-61	5.9	0.15	0.2	0.25			

Table A-2. Physical characteristics of 100 M stream reach (cont.).

Stream Code	Sediment odors	Sediment oils	Sediment deposits
WVO-4-{76.3}	normal	absent	sand,silt
WVOG-2-{3.6}	normal	absent	sand,silt
WVOG-2-{18.8}	normal	absent	
WVOG-2-{25.5}	normal	absent	
WVOG-2-{47}	anaerobic	absent	sand,silt
WVOG-2-{48.7}	normal		sand,silt
WVOG-2-{77.2}	anaerobic	absent	sand,silt
WVOGM-1.5	none	absent	sand,silt
WVOGM-3-{0.9}	normal	absent	sand,silt
WVOGM-4-{0.2}	normal	absent	sand,silt,clay
WVOGM-4-{2}	normal	absent	sand,silt
WVOGM-7-{0.4}	normal	absent	sand,silt
WVOGM-7-B-1	normal	absent	sand,silt
WVOGM-8-{4}	normal	absent	sand,silt,clay
WVOGM-8-B	normal	absent	sand,silt,clay
WVOGM-8-C	normal	slight	sand,silt,metal hydroxides
WVOGM-12	sewage	absent	silt
WVOGM-13	none	absent	sand
WVOGM-14-{7.2}	normal	absent	sand,silt
WVOGM-16-A	normal	absent	sand,silt
WVOGM-19	normal	absent	sand,silt
WVOGM-20-{6.4}	normal	absent	sand,silt
WVOGM-20-{21.2}	normal	absent	sand,silt,clay
WVOGM-20-A	normal	absent	sand,silt
WVOGM-20-D-{4.6	normal	absent	sand,silt
WVOGM-20-H	normal	absent	sand,silt,clay
WVOGM-20-I-1-{1.	normal	absent	sand,silt
WVOGM-20-L	none	absent	sand,silt,clay
WVOGM-20-K-{0.1	normal	absent	sand,silt
WVOGM-20-K-1	none	absent	sand
WVOGM-20-M-{1.8	normal,anaerobic	absent	sand,silt
WVOGM-20-M-1	none	absent	sand,silt
WVOGM-20-R-2	normal	absent	sand,silt
WVOGM-20-T-{3.5	normal	absent	sand,silt
WVOGM-20-V	normal	absent	sand,silt
WVOGM-22-A-{0.7	normal	absent	sand,silt
WVOGM-25-A	normal	absent	sand,silt
WVOGM-25-B-{2.3	normal	absent	sand,silt
WVOGM-25-B-1	normal	absent	sand,silt
WVOGM-25-H-1	normal	absent	sand,silt
WVOGM-25-I	normal	absent	sand,silt
WVOGM-25-I-{3}	normal	absent	sand,silt
WVOGM-25-I-4	normal	absent	sand,silt
WVOGM-31	normal	absent	sand,silt
WVOGM-33-B	normal	absent	sand,silt
WVOGM-33-C	normal	absent	sand,silt
WVOGM-35-{1.8}	normal	absent	sand,silt

Table A-3. Observed Sediment Characteristics.

Stream Code	Sediment odors	Sediment oils	Sediment deposits
WVOGM-35-E	normal	absent	sand,silt
WVOGM-39	normal	absent	sand,silt
WVOGM-39-{10.2}	normal	absent	sand,silt
WVOGM-39-G	normal	absent	sand,silt
WVOGM-40.3-{0}	normal	absent	sand
WVOGM-40.3-{2.2}	normal	moderate	sand,silt
WVOGM-43	normal	absent	sand,silt
WVOGM-44-{0.2}	normal	absent	sand,silt
WVOGM-50	normal	absent	sand,silt
WVOG-3	none	absent	silt
WVOG-3-0.5A	normal	absent	sand,silt
WVOG-6-{0.1}	sewage	absent	sand,silt
WVOG-9-A-{0.3}	normal	absent	sand,silt
WVOG-10	normal	absent	sand,silt
WVOG-10-A	normal	absent	sand,silt
WVOG-11	normal	absent	sand,silt,metal hydroxides
WVOG-14-D-{0.4}	normal	absent	sand,silt
WVOG-23.5	anaerobic	absent	sand,silt
WVOG-27	anaerobic	absent	silt
WVOG-27-A	none	absent	silt
WVOG-27-H-{1.8}	normal	absent	sand,silt
WVOG-29-C	normal	absent	sand,silt
WVOG-30-{1.2}	normal	absent	sand,silt
WVOG-32-F	normal	absent	sand,silt
WVOG-34	normal	absent	sand,silt
WVOG-34-A	normal	absent	sand,silt
WVOG-34-B	normal	absent	sand,silt
WVOG-34-E-1	normal	absent	sand,silt
WVOG-34-E-1-{0.8	normal	absent	sand,silt
WVOG-35	normal	absent	sand,silt
WVOG-36	normal	absent	sand,silt
WVOG-37	normal	absent	sand,silt
WVOG-38-{0.8}	normal	absent	sand,silt,coal pieces
WVOG-38-{11.6}	normal	absent	sand,silt
WVOG-38-A	normal	absent	sand,silt
WVOG-38-D-{3.9}	normal	absent	sand
WVOG-38-D-{4.5}	normal	absent	sand,silt
WVOG-38-G	normal	absent	sand,silt
WVOG-38-K	normal	absent	sand,silt
WVOG-38-K.7	normal	absent	sand,silt
WVOG-38-K-5	normal	absent	sand,silt
WVOG-40	normal,anaerobic	absent	sand,silt
WVOG-40 WVOG-41	normal	absent	sand,silt,metal hydroxides
WVOG-42-A	normal	absent	sawdust,sand,silt
WVOG-42-C-{0.2}	normal	absent	sand,silt
WVOG-42-C-{0.2}			
WVOG-42-D WVOG-42-E	normal normal	absent absent	sand,silt sand,silt
WVOG-42-E WVOG-44-A.5			sand,silt
vv v OG-44-A.Ə	normal	absent	จสาน,จแ

Table A-3. Observed Sediment Characteristics (continued).

Table A-3.	Observed Sediment	Characteristics	(continued).
------------	--------------------------	-----------------	--------------

Stream Code	Sediment odors	Sediment oils	Sediment deposits
WVOG-44-A-2-{2.8}	normal	absent	sand,silt
WVOG-44-C.3	normal	absent	sand,silt
WVOG-44-C.7	normal	absent	sand,silt
WVOG-44-E	sewage	absent	sand,silt,metal hydroxides
WVOG-44-E-0.5	normal	absent	sand
WVOG-44-F-1	normal	slight	sand,silt
WVOG-44-G-{1.9}	normal	slight	sand,silt,metal hydroxides
WVOG-44-H	normal	absent	sand
WVOG-44-I	normal	absent	sand
WVOG-44-K	normal	absent	sand
WVOG-48	petroleum	moderate	sand,metal hydroxides
WVOG-49-{3.3}	normal	absent	sand,silt
WVOG-49-A	normal	absent	sand
WVOG-49-A-1	normal	absent	sand,silt,grass clippings
WVOG-49-B-1	none	absent	sand,silt
WVOG-49-C	normal	absent	sand, metal hydroxides
WVOG-49-C.1	normal	slight	sand,silt
WVOG-49-D-2	normal	absent	sand,silt
WVOG-49-E-1	normal	absent	sand,metal hydroxides
WVOG-50	normal	absent	sand,silt
WVOG-51.5	normal	absent	sand,silt
WVOG-51-B	normal	absent	sand,silt
WVOG-51-G.5	normal	absent	sand,silt
WVOG-53	metallic	absent	sand,silt,metal hydroxides
WVOG-59	b.g. alage	absent	sand,silt
WVOG-60	normal	absent	sand,silt
WVOG-61	metallic	absent	sand,silt,metal hydroxides

		<u>, , , , , , , , , , , , , , , , , , , </u>	¢	e >			
	010 00 010		No Code	er of the second	0/0 0/0	0/0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Stream Code	0/0	0/0	0/0	°/°	0/0	0/0	0/0
WVOG-2-{3.6}	0	0	20	65	15	0	0
WVOG-2-{77.2}	10	5	50	15	15	5	0
WVOGM-1.5	0	0	1	10	40	49	0
WVOGM-3-{0.9}	0	0	60	30	9	1	0
WVOGM-4-{0.2}	0	0	0	0	75	15	10
WVOGM-4-{2}	0	0	0	10	80	10	0
WVOGM-7-{0.4}	0	0	30	50	16	4	0
WVOGM-7-B-1	0	0	20	50	30	0	0
WVOGM-8-{4}	0	0	0	40	50	5	5
WVOGM-8-B	0	0	5	40	45	5	5
WVOGM-8-C	0	0	40	40	15	5	0
WVOGM-12	0	0	20	35	35	10	0
WVOGM-13	0	0	30	40	30	0	0
WVOGM-14-{7.2}	0	0	10	30	30	20	10
WVOGM-16-A	0	2	60	20	15	3	0
WVOGM-19	0	0	20	30	40	10	0
WVOGM-20-{6.4}	0	0	20	65	10	5	0
WVOGM-20-{21.2}	0	0	20	35	30	10	5
WVOGM-20-A	0	5	5	30	40	20	0
WVOGM-20-D-{4.6}	0	0	30	40	20	10	0
WVOGM-20-I-1-{1.5}	0	0	0	45	35	15	5
WVOGM-20-L	0	10	30	30	30	0	0
WVOGM-20-K-{0.1}	0	10	50	25	10	5	0
WVOGM-20-K-1	0	10	50	25	15	0	0
WVOGM-20-M-{1.8}	0	0	15	25	40	10	10
WVOGM-20-M-1	0	15	40	20	25	0	0
WVOGM-20-R-2	0	0	25	40	20	10	5
WVOGM-20-T-{3.5}	0	0	30	40	20	10	0
WVOGM-20-V	0	10	50	25	10	5	0
WVOGM-22-A-{0.7}	0	2	50	15	30	3	0
WVOGM-25-A	0	0	10	35	50	5	0
WVOGM-25-B-{2.3}	0	0	40	50	10	0	0
WVOGM-25-B-1	0	0	40	30	25	5	0
WVOGM-25-H-1	0	0	15	35	50	0	0
WVOGM-25-I	0	0	0	45	50	5	0
WVOGM-25-I-{3}	0	5	25	30	40	0	0
WVOGM-25-I-4	0	0	5	45	50	0	0
WVOGM-31	0	0	30	55	2	13	0
WVOGM-33-B	5	5	50	30	5	5	0
WVOGM-33-C	0	0	20	65	15	0	0
WVOGM-35-{1.8}	0	0	60	20	15	5	0
WVOGM-35-{4.1}	0	0	40	30	30	0	0
WVOGM-35-E	0	0	30	50	20	0	0
WVOGM-39	0	5	30	60	5	0	0
WVOGM-39-{10.2}	0	5	35	45	15	0	0
WVOGM-39-G	0	0	15	70	15	0	0

Table A-4. Substrate composition in benthic collection area.

	0% 0%	to opinio	or coor	2		•	
Stream Code	and the second s		.000	olo	0100 00 00 00 00 00 00 00 00 00 00 00 00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	% CIAN
	0/0	0/0	0/0	0/0	0/0	0/0	0/0
WVOGM-40.3-{0}	0	10	40	30	10	10	0
WVOGM-40.3-{2.2}	0	0	10	20	60	10	0
WVOGM-43	5	5	40	30	15	5	0
WVOGM-44-{0.2}	0	0	40	30	20	10	0
WVOGM-50	0	2	60	25	5	8	0
WVOG-3	0	0	5	40	30	15	0
WVOG-3-0.5A	0	0	15	30	45	10	0
WVOG-6-{0.1}	0	0	0	10	45	45	0
WVOG-9-A-{0.3}	5	0	20	50	20	5	0
WVOG-10	0	0	5	70	20	5	0
WVOG-10-A	0	0	15	65	15	5	0
WVOG-11	0	0	15	30	40	10	5
WVOG-23.5	0	0	5	40	40	15	0
WVOG-27	0	5	0	0	0	95	0
WVOG-27-A	0	0	50	25	20	5	0
WVOG-27-H-{1.8}	0	0	15	60	20	5	0
WVOG-29-C	0	5	30	40	20	5	0
WVOG-30-{1.2}	0	5	30	40	20	5	0
WVOG-32-F	0	0	45	40	15	0	0
WVOG-34	0	0	15	35	45	5	0
WVOG-34-A	0	0	15	45	30	10	0
WVOG-34-B	0	0	25	35	35	5	0
WVOG-34-E-1	0	5	55	20	15	5	0
WVOG-34-E-1-{0.8}	0	0	35	30	30	5	0
WVOG-35	0	0	35	45	20	0	0
WVOG-36	0	5	35	35	20	5	0
WVOG-37	0	10	45	30	15	0	0
WVOG-38-{0.8}	0	0	5	5	80	10	0
WVOG-38-{11.6}	0	5	30	35	25	5	0
WVOG-38-A	0	0	15	40	40	5	0
WVOG-38-D-{3.9}	0	25	60	10	3	2	0
WVOG-38-D-{4.5}	0	15	60	15	5	5	0
WVOG-38-G	0	0	40	30	25	5	0
WVOG-38-K	0	5	20	40	30	5	0
WVOG-38-K.7	0	0	25	45	25	5	0
WVOG-38-K-5	0	0	15	35	45	5	0
WVOG-40	0	0	40	40	20	0	0
WVOG-41	0	10	70	20	0	0	0
WVOG-42-A	0	5	20	75	0	0	0
WVOG-42-C-{0.2}	0	0	10	80	10	0	0
WVOG-42-D	0	0	70	30	0	0	0
WVOG-42-E	5	0	65	10	20	0	0
WVOG-44-A.5	0	0	40	25	25	10	0
WVOG-44-A-2-{2.8}	0	0	35	15	25	25	0
WVOG-44-C.3	0	0	30	55	15	0	0
WVOG-44-C.7	0	0	40	50	10	0	0
	0	0	υ	50	10	0	0

Table A-4. Substrate composition in benthic collection area (continued).

Stream Code	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	% %	00000000000000000000000000000000000000	ological and a second	Send Con	11 10 10	solo solo
	0/0	0/0	0/0	0/0	0/0	0/0	0/0
WVOG-44-E	0	0	30	45	25	0	0
WVOG-44-E-0.5	0	0	45	40	15	0	0
WVOG-44-F-1	0	0	40	49	10	1	0
WVOG-44-G-{1.9}	0	10	45	35	10	0	0
WVOG-44-H	0	0	10	65	25	0	0
WVOG-44-I	0	10	40	30	20	0	0
WVOG-44-K	0	0	30	45	25	0	0
WVOG-48	0	0	30	45	25	0	0
WVOG-49-{3.3}	0	0	20	30	30	20	0
WVOG-49-A	0	0	20	70	10	0	0
WVOG-49-A-1	0	0	45	45	10	0	0
WVOG-49-B-1	0	5	45	40	10	0	0
WVOG-49-C	0	0	35	55	10	0	0
WVOG-49-C.1	0	0	20	70	10	0	0
WVOG-49-D-2	0	0	35	50	15	0	0
WVOG-49-E-1	0	0	55	35	10	0	0
WVOG-50	0	10	50	30	10	0	0
WVOG-51.5	0	0	25	58	15	2	0
WVOG-51-B	0	10	20	50	20	0	0
WVOG-51-G.5	0	15	55	25	5	0	0
WVOG-53	0	0	50	40	10	0	0
WVOG-59	0	10	50	35	5	0	0
WVOG-60	0	0	50	45	5	0	0
WVOG-61	0	0	45	45	10	0	0

Table A-4. Substrate composition in benthic collection area (continued).

Table A-5.	Macrobenthic	community m	etrics and	WVSCI scores.
------------	--------------	-------------	------------	---------------

Table A-5. Macrobenthic community metrics and WVSCI scores.								
Stream Code	Total Taxa	EPT taxa	% EPT	% 2 dom	% chiros	HBI	WVSCI	
WVOG-2-{3.6}	10	5	19.46	71.35	46.49	5.89	43.58	
WVOG-2-{47}	11	6	54.69	56.25	20.31	4.61	63.53	
WVOG-2-{48.7}	17	9	49.08	47.24	26.38	4.65	72.15	
WVOG-2-{77.2}	16	8	41.80	63.52	32.38	4.91	62.81	
WVOGM-1.5	5	0	0.00	97.91	74.87	6.94	15.50	
WVOGM-3-{0.9}	10	5	25.62	71.88	60.00	5.21	43.84	
WVOGM-4-{0.2}	10	3	40.59	85.15	46.53	5.17	42.90	
WVOGM-4-{2}	18	8	70.19	57.69	16.67	4.38	75.05	
WVOGM-7-{0.4}	17	8	41.99	64.09	40.33	5.14	61.59	
WVOGM-7-B-1	20	11	70.05	50.76	14.21	3.89	83.75	
WVOGM-8-{4}	16	10	42.71	43.72	14.57	3.69	76.58	
WVOGM-8-B	12	8	69.41	50.00	3.53	3.42	76.78	
WVOGM-8-C	13	6	42.53	66.67	33.33	4.82	57.33	
WVOGM-12	7	3	4.76	88.10	57.14	6.02	29.45	
WVOGM-13	18	9	26.58	71.20	6.33	6.22	62.19	
WVOGM-14-{7.2}	10	5	36.93	51.70	21.59	4.01	60.52	
WVOGM-16-A	23	15	80.00	50.51	10.51	3.68	90.84	
WVOGM-19	16	10	66.50	54.19	10.34	3.89	78.51	
WVOGM-20-{6.4}	17	7	60.17	55.93	18.22	4.51	71.04	
WVOGM-20-{21.2}	13	6	38.86	56.57	37.71	4.57	59.14	
WVOGM-20-A	7	4	39.39	54.55	30.30	4.61	53.85	
WVOGM-20-D-{4.6}	15	7	44.12	59.66	11.76	3.55	68.79	
WVOGM-20-H	20	8	50.00	48.36	15.57	5.20	73.60	
WVOGM-20-I-1-{1.5}	17	8	44.00	47.43	8.57	4.91	72.31	
WVOGM-20-L	15	9	88.56	63.18	5.97	3.65	79.48	
WVOGM-20-K-{0.1}	12	9	81.76	40.00	10.59	2.69	83.48	
WVOGM-20-K-1	17	10	88.15	57.49	3.48	3.37	84.77	
WVOGM-20-M-{1.8}	17	8	50.24	56.10	4.88	3.74	74.44	
WVOGM-20-M-1	18	12	97.38	52.43	0.37	2.96	90.89	
WVOGM-20-R-2	20	9	56.40	40.76	20.85	3.82	80.31	
WVOGM-20-T-{3.5}	13	7	50.00	42.68	19.51	4.18	70.17	
WVOGM-20-V	14	9	95.91	77.73	0.45	3.93	75.08	
WVOGM-22-A-{0.7}	18	9	31.47	62.55	54.18	5.08	59.86	
WVOGM-25-A	13	5	9.42	79.06	63.87	5.26	40.41	
WVOGM-25-B-{2.3}	16	7	35.53	45.18	23.68	3.92	68.96	
WVOGM-25-B-1	15	9	78.61	53.48	13.90	3.72	78.70	
WVOGM-25-H-1	15	10	15.90	78.97	16.41	4.32	59.73	
WVOGM-25-I	9	5	62.50	78.75	5.00	4.00	60.18	
WVOGM-25-I-{3}	17	9	51.44	57.69	9.13	3.71	74.85	
WVOGM-25-I-4	16	10	70.29	47.83	4.35	3.54	82.71	
WVOGM-31	17	10	51.50	51.07	8.58	3.30	78.93	
WVOGM-33-B	20	11	87.64	40.45	2.81	2.97	93.77	
WVOGM-33-C	21	11	62.43	39.31	16.76	3.83	85.83	
WVOGM-35-{1.8}	14	8	68.72	57.95	7.18	3.65	74.93	
WVOGM-35-{4.1}	16	8	79.75	50.21	0.84	3.13	82.65	
WVOGM-35-E	19	12	40.98	52.20	13.17	3.50	79.52	
WVOGM-39	20	10	59.72	38.86	12.32	3.73	84.39	
WVOGM-39-{10.2}	11	6	39.81	60.80	15.12	4.27	61.19	

Stream Code	Total Taxa	EPT taxa	% EPT	% 2 dom	% chiros	HBI	WVSCI
WVOGM-39-G	15	9	48.95	55.26	31.58	4.39	68.18
WVOGM-40.3-{0}	21	10	71.65	53.09	6.19	3.76	84.54
WVOGM-40.3-{2.2}	24	11	66.67	40.40	7.58	2.72	91.14
WVOGM-43	14	8	91.44	63.81	2.72	3.27	78.81
WVOGM-44-{0.2}	17	9	78.64	54.85	4.37	3.42	82.15
WVOGM-50	23	14	84.15	45.90	2.73	2.61	96.57
WVOG-3	5	2	7.84	93.14	87.25	5.86	21.13
WVOG-3-0.5A	10	5	35.34	86.75	7.23	6.28	48.23
WVOG-6-{0.1}	6	2	10.20	85.71	73.47	5.69	27.02
WVOG-9-A-{0.3}	14	8	44.53	61.13	38.06	5.15	60.96
WVOG-10	8	4	10.59	86.47	74.71	5.68	30.79
WVOG-10-A	13	7	11.06	92.68	87.38	5.76	34.54
WVOG-11	11	4	13.89	69.84	57.14	5.38	41.75
WVOG-14-D-{0.4}	15	1	26.29	66.86	40.57	6.89	43.46
WVOG-23.5	8	3	5.12	82.79	63.26	6.27	30.07
WVOG-23.5 WVOG-27-A	20	9	55.34	47.57	26.70	4.39	76.04
WVOG-27-H-{1.8}	13	8	92.65	57.84	3.43	2.89	80.38
WVOG-29-C	24	13	83.82	50.21	4.56	3.26	93.59
WVOG-30-{1.2}	16	8	87.37	64.14	3.03	3.49	79.34
WVOG-32-F	18	12	74.01	52.42	7.49	2.89	87.20
WVOG-34	13	7	74.01	53.33	12.22	4.58	72.96
WVOG-34-A	7	3	82.74	84.26	14.72	4.58	56.39
WVOG-34-A WVOG-34-B	19	9	31.11	59.44	33.89	5.00	65.00
WVOG-34-B WVOG-34-E-1			76.50				
	20	12		50.50	5.50	3.40	88.88
WVOG-34-E-1-{0.8}	15	9	48.00	33.71	5.71	3.46	79.27
WVOG-35	10	5	44.00	65.14	34.86	4.71	54.43
WVOG-36	8	4	94.05	86.90	3.57	3.87	61.51
WVOG-37	19	13	88.83	62.01	3.91	3.36	89.01
WVOG-38-{0.8}	11	6	47.67	52.33	9.30	3.86	66.82
WVOG-38-{11.6}	19	10	79.08	69.39	6.12	3.98	79.59
WVOG-38-A	13	8	79.78	62.36	3.93	3.67	75.55
WVOG-38-D-{3.9}	24	15	80.00	38.57	1.43	3.05	96.94
WVOG-38-D-{4.5}	21	13	70.59	34.31	6.86	3.27	93.39
WVOG-38-G	16	11	91.71	69.43	2.59	3.33	82.58
WVOG-38-K	16	10	87.96	71.20	4.19	3.77	79.31
WVOG-38-K.7	11	7	81.50	80.00	17.00	4.12	65.18
WVOG-38-K-5	19	8	66.67	34.55	1.21	3.16	85.84
WVOG-40	10	7	77.42	76.34	15.05	4.24	64.69
WVOG-41	8	3	6.59	92.81	89.82	5.86	24.12
WVOG-42-A	8	4	62.71	68.36	34.46	4.51	54.79
WVOG-42-C-{0.2}	13	7	43.39	69.84	49.74	5.31	54.03
WVOG-42-D	19	10	59.30	47.72	12.63	3.86	80.84
WVOG-42-E	16	11	60.00	40.00	16.36	4.39	80.21
WVOG-44-A.5	16	10	74.14	52.30	13.22	3.87	80.00
WVOG-44-A-2-{2.8}	13	8	77.88	73.73	14.29	4.07	69.52
WVOG-44-C.3	20	9	68.32	55.45	16.34	4.08	78.82
					a /=		
WVOG-44-C.7	18	11	84.65	48.02	3.47	3.42	88.56

Table A-5. Macrobenthic community metrics and WVSCI scores(cont.)

Stream Code	Total Taxa	EPT taxa	% EPT	% 2 dom	% chiros	HBI	WVSCI
WVOG-44-E-0.5	18	13	87.43	49.71	1.14	3.11	92.18
WVOG-44-F-1	19	10	91.21	65.57	4.03	2.80	85.55
WVOG-44-G-{1.9}	16	10	53.80	41.14	15.82	3.94	78.56
WVOG-44-H	24	15	73.86	35.23	8.52	3.40	94.17
WVOG-44-I	20	12	72.96	32.08	8.81	3.48	90.99
WVOG-44-K	18	10	82.35	57.52	7.19	3.47	83.58
WVOG-48	13	5	41.67	31.25	14.58	3.62	69.56
WVOG-49-{3.3}	15	8	30.46	62.44	19.29	4.51	63.36
WVOG-49-A	6	2	21.43	57.14	28.57	4.29	47.50
NVOG-49-A-1	9	4	66.67	64.29	4.76	4.62	62.17
NVOG-49-B-1	12	7	84.71	43.95	8.28	3.54	78.89
NVOG-49-C	6	2	46.67	76.67	13.33	4.40	49.35
NVOG-49-C.1	4	2	1.83	98.78	97.56	5.96	15.79
WVOG-49-D-2	17	9	82.67	47.52	11.39	3.65	83.14
WVOG-49-E-1	6	1	1.04	97.93	96.89	5.98	16.17
WVOG-50	13	8	84.73	63.05	3.45	3.67	76.37
WVOG-51.5	8	1	38.81	82.09	43.28	4.28	41.85
WVOG-51-B	13	8	65.84	55.90	30.43	3.91	69.64
WVOG-51-G.5	7	2	4.52	93.79	42.94	4.90	31.54
NVOG-53	12	4	11.28	87.22	81.95	5.48	32.97
NVOG-59	18	7	28.30	64.15	49.06	5.53	56.14
WVOG-60	17	11	88.44	37.69	5.53	3.40	90.96
NVOG-61	13	7	90.68	57.76	0.62	2.52	80.05

AN Code	Taxon	Count	AN Code	Taxon	Count
WVOG-2-{3.6}	Simuliidae	46	WVOG-2-{77.2}	Baetidae	12
VVOG-2-{3.6}	Sphaeriidae	8	WVOG-2-{77.2}	Ephemerellidae	2
VVOG-2-{3.6}	Perlidae	1	WVOG-2-{77.2}	Philopotamidae	1
VVOG-2-{3.6}	Oligochaeta	5	WVOG-2-{77.2}	Elmidae	49
VVOG-2-{3.6}	Hydropsychidae	29	WVOG-2-{77.2}	Perlidae	2
VVOG-2-{3.6}	Heptageniidae	4	WVOG-2-{77.2}	Peltoperlidae	1
VVOG-2-{3.6}	Elmidae	4	WVOG-2-{77.2}	Nemouridae	6
VVOG-2-{3.6}	Chloroperlidae	1	WVOG-2-{77.2}	Hydropsychidae	76
VVOG-2-{3.6}	Chironomidae	86	WVOG-2-{77.2}	Corydalidae	3
VVOG-2-{3.6}	Baetidae	1			
			WVOGM-1.5	Planorbidae	1
VVOG-2-{47}	Chironomidae	13	WVOGM-1.5	Oligochaeta	44
VVOG-2-{47}	Simuliidae	5	WVOGM-1.5	Chironomidae	143
VVOG-2-{47}	Perlidae	3	WVOGM-1.5	Sphaeriidae	2
VVOG-2-{47}	Hydropsychidae	3	WVOGM-1.5	Helophoridae	1
VVOG-2-{47}	Heptageniidae	1			
VVOG-2-{47}	Ephemerellidae	1	WVOGM-3-{0.9}	Chironomidae	96
VVOG-2-{47}	Aeshnidae	3	WVOGM-3-{0.9}	Tipulidae	1
VVOG-2-{47}	Corduliidae	1	WVOGM-3-{0.9}	Capniidae/Leuctri	2
VVOG-2-{47}	Caenidae	4	WVOGM-3-{0.9}	Baetidae	10
VVOG-2-{47}	Baetidae	23	WVOGM-3-{0.9}	Cambaridae	1
VVOG-2-{47}	Elmidae	7	WVOGM-3-{0.9}	Perlidae	2
			WVOGM-3-{0.9}	Hydropsychidae	13
VVOG-2-{48.7}	Gomphidae	2	WVOGM-3-{0.9}	Heptageniidae	14
VVOG-2-{48.7}	Aeshnidae	5	WVOGM-3-{0.9}	Psephenidae	2
VVOG-2-{48.7}	Baetidae	34	WVOGM-3-{0.9}	Elmidae	19
VVOG-2-{48.7}	Caenidae	14			
VVOG-2-{48.7}	Cambaridae	2	WVOGM-4-{0.2}	Ephemerellidae	1
VVOG-2-{48.7}	Capniidae/Leuctri	1	WVOGM-4-{0.2}	Gyrinidae	1
VVOG-2-{48.7}	Chironomidae	43	WVOGM-4-{0.2}	Caenidae	3
VVOG-2-{48.7}	Elmidae	15	WVOGM-4-{0.2}	Cambaridae	2
VVOG-2-{48.7}	Ephemerellidae	6	WVOGM-4-{0.2}	Chironomidae	94
VVOG-2-{48.7}	Heptageniidae	4	WVOGM-4-{0.2}	Corduliidae	1
VVOG-2-{48.7}	Hydropsychidae	4	WVOGM-4-{0.2}	Culicidae	9
VVOG-2-{48.7}	Leptophlebiidae	2	WVOGM-4-{0.2}	Dytiscidae	2
VVOG-2-{48.7}	Oligochaeta	1	WVOGM-4-{0.2}	Elmidae	11
VVOG-2-{48.7}	Perlidae	14	WVOGM-4-{0.2}	Baetidae	78
VVOG-2-{48.7}	Polycentropodidae	1			
VVOG-2-{48.7}	Sialidae	2	WVOGM-4-{2}	Heptageniidae	7
VVOG-2-{48.7}	Simuliidae	13	WVOGM-4-{2}	Leptophlebiidae	14
			WVOGM-4-{2}	Nemertea	1
VVOG-2-{77.2}	Gomphidae	1	WVOGM-4-{2}	Nemouridae	1
VVOG-2-{77.2}	Simuliidae	7	WVOGM-4-{2}	Perlidae	28
VVOG-2-{77.2}	Chironomidae	79	WVOGM-4-{2}	Chironomidae	52
VVOG-2-{77.2}	Capniidae/Leuctri	2	WVOGM-4-{2}	Aeshnidae	9
VVOG-2-{77.2}	Aeshnidae	- 1	WVOGM-4-{2}	Asellidae	9
VVOG-2-{77.2}	Cambaridae	1	WVOGM-4-{2}	Baetidae	128
VVOG-2-{77.2}	Empididae	1	WVOGM-4-{2}	Simuliidae	1

Table A-6. Benthic macroinvertebrates identified.

AN Code	Taxon	Count	AN Code	Taxon	Count
VVOGM-4-{2}	Cambaridae	6	WVOGM-8-{4}	Elmidae	22
/VOGM-4-{2}	Hydropsychidae	12	WVOGM-8-{4}	Chloroperlidae	11
/VOGM-4-{2}	Corydalidae	1	WVOGM-8-{4}	Baetidae	25
/VOGM-4-{2}	Lampyridae	1	WVOGM-8-{4}	Caenidae	5
/VOGM-4-{2}	Dryopidae	2	WVOGM-8-{4}	Cambaridae	1
/VOGM-4-{2}	Elmidae	11	WVOGM-8-{4}	Capniidae/Leuctri	3
/VOGM-4-{2}	Ephemerellidae	3	WVOGM-8-{4}	Ceratopogonidae	3
/VOGM-4-{2}	Caenidae	26	WVOGM-8-{4}	Heptageniidae	19
			WVOGM-8-{4}	Chironomidae	29
/VOGM-7-{0.4}	Tipulidae	8	WVOGM-8-{4}	Tipulidae	58
VOGM-7-{0.4}	Elmidae	12	WVOGM-8-{4}	Ephemerellidae	4
VOGM-7-{0.4}	Perlodidae	2	WVOGM-8-{4}	Hydropsychidae	1
VOGM-7-{0.4}	Corbiculidae	1	WVOGM-8-{4}	Isonychiidae	2
/VOGM-7-{0.4}	Sialidae	1	WVOGM-8-{4}	Nemouridae	5
VOGM-7-{0.4}	Perlidae	8	WVOGM-8-{4}	Oligochaeta	1
VOGM-7-{0.4}	Asellidae	2	WVOGM-8-{4}	Perlidae	10
VOGM-7-{0.4}	Baetidae	4			
/VOGM-7-{0.4}	Caenidae	5	WVOGM-8-B	Nemouridae	2
/VOGM-7-{0.4}	Cambaridae	3	WVOGM-8-B	Baetidae	58
/VOGM-7-{0.4}	Chironomidae	73	WVOGM-8-B	Capniidae/Leuctri	6
VOGM-7-{0.4}	Culicidae	1	WVOGM-8-B	Chironomidae	6
VOGM-7-{0.4}	Ephemerellidae	1	WVOGM-8-B	Chloroperlidae	10
VOGM-7-{0.4}	Heptageniidae	12	WVOGM-8-B	Elmidae	19
VOGM-7-{0.4}	Hydropsychidae	43	WVOGM-8-B	Ephemerellidae	3
VOGM-7-{0.4}	Oligochaeta	4	WVOGM-8-B	Heptageniidae	27
VOGM-7-{0.4}	Capniidae/Leuctri	1	WVOGM-8-B	Perlidae	5
			WVOGM-8-B	Psephenidae	1
VOGM-7-B-1	Asellidae	14	WVOGM-8-B	Tipulidae	26
VOGM-7-B-1	Gomphidae	1	WVOGM-8-B	Perlodidae	7
VOGM-7-B-1	Capniidae/Leuctri	7			
VOGM-7-B-1	Baetidae	7	WVOGM-8-C	Capniidae/Leuctri	1
VOGM-7-B-1	Caenidae	1	WVOGM-8-C	Tipulidae	6
VOGM-7-B-1	Cambaridae	1	WVOGM-8-C	Asellidae	1
VOGM-7-B-1	Chironomidae	28	WVOGM-8-C	Cambaridae	2
VOGM-7-B-1	Chloroperlidae	1	WVOGM-8-C	Psephenidae	3
VOGM-7-B-1	Ephydridae	1	WVOGM-8-C	Baetidae	3
VOGM-7-B-1	Heptageniidae	72	WVOGM-8-C	Tabanidae	2
VOGM-7-B-1	Hydropsychidae	1	WVOGM-8-C	Perlidae	10
VOGM-7-B-1	Leptophlebiidae	2	WVOGM-8-C	Hydropsychidae	58
VOGM-7-B-1	Nemouridae	16	WVOGM-8-C	Heptageniidae	1
VOGM-7-B-1	Oligochaeta	2	WVOGM-8-C	Elmidae	28
VOGM-7-B-1	Perlidae	27	WVOGM-8-C	Chloroperlidae	1
VOGM-7-B-1	Perlodidae	3	WVOGM-8-C	Chironomidae	58
VOGM-7-B-1	Philopotamidae	1			
VOGM-7-B-1	Psephenidae	2	WVOGM-12	Simuliidae	52
VOGM-7-B-1	Tipulidae	5	WVOGM-12	Baetidae	2
VOGM-7-B-1	Elmidae	5	WVOGM-12	Capniidae/Leuctri	5
			WVOGM-12	Chironomidae	96

N Code	Taxon	Count	AN Code	Taxon	Count
VVOGM-12	Elmidae	2	WVOGM-16-A	Heptageniidae	16
VVOGM-12	Leptophlebiidae	1	WVOGM-16-A	Chloroperlidae	6
VVOGM-12	Oligochaeta	10	WVOGM-16-A	Perlodidae	16
			WVOGM-16-A	Gomphidae	2
VVOGM-13	Psephenidae	2	WVOGM-16-A	Hydropsychidae	7
/VOGM-13	Leptophlebiidae	9	WVOGM-16-A	Hydroptilidae	4
/VOGM-13	Asellidae	194	WVOGM-16-A	Leptophlebiidae	13
/VOGM-13	Baetidae	7	WVOGM-16-A	Nemouridae	39
/VOGM-13	Cambaridae	1	WVOGM-16-A	Perlidae	2
/VOGM-13	Capniidae/Leuctri	18			
/VOGM-13	Chironomidae	20	WVOGM-19	Perlidae	16
/VOGM-13	Ephemerellidae	1	WVOGM-19	Tipulidae	28
/VOGM-13	Gammaridae	5	WVOGM-19	Perlodidae	2
VOGM-13	Gomphidae	1	WVOGM-19	Ameletidae	1
VOGM-13	Hydropsychidae	1	WVOGM-19	Caenidae	1
VOGM-13	Nemouridae	10	WVOGM-19	Baetidae	82
VOGM-13	Perlidae	6	WVOGM-19	Oligochaeta	8
VOGM-13	Tipulidae	1	WVOGM-19	Asellidae	3
VOGM-13	Chloroperlidae	1	WVOGM-19	Capniidae/Leuctri	5
VOGM-13	Elmidae	7	WVOGM-19	Chironomidae	21
VOGM-13	Heptageniidae	31	WVOGM-19	Chloroperlidae	1
VOGM-13	Corydalidae	1	WVOGM-19	Elmidae	7
			WVOGM-19	Ephemerellidae	14
/VOGM-14-{7.2}	Elmidae	53	WVOGM-19	Gomphidae	1
/VOGM-14-{7.2}	Tipulidae	16	WVOGM-19	Heptageniidae	8
/VOGM-14-{7.2}	Baetidae	25	WVOGM-19	Nemouridae	5
/VOGM-14-{7.2}	Gomphidae	1			
/VOGM-14-{7.2}	Caenidae	1	WVOGM-20-{6.4}	Tipulidae	2
/VOGM-14-{7.2}	Simuliidae	3	WVOGM-20-{6.4}	Corbiculidae	1
/VOGM-14-{7.2}	Perlidae	26	WVOGM-20-{6.4}	Macroveliidae	2
/VOGM-14-{7.2}	Hydropsychidae	12	WVOGM-20-{6.4}	Isonychiidae	13
/VOGM-14-{7.2}	Heptageniidae	1	WVOGM-20-{6.4}	Hydroptilidae	1
/VOGM-14-{7.2}	Chironomidae	38	WVOGM-20-{6.4}	Hydropsychidae	89
			WVOGM-20-{6.4}	Heptageniidae	8
/VOGM-16-A	Ephemerellidae	15	WVOGM-20-{6.4}	Elmidae	27
/VOGM-16-A	Philopotamidae	1	WVOGM-20-{6.4}	Oligochaeta	3
/VOGM-16-A	Cambaridae	4	WVOGM-20-{6.4}	Chloroperlidae	1
/VOGM-16-A	Veliidae	1	WVOGM-20-{6.4}	Chironomidae	43
/VOGM-16-A	Tipulidae	2	WVOGM-20-{6.4}	Cambaridae	2
VOGM-16-A	Taeniopterygidae	1	WVOGM-20-{6.4}	Baetidae	1
VOGM-16-A	Rhyacophilidae	1	WVOGM-20-{6.4}	Simuliidae	12
/VOGM-16-A	Psephenidae	1	WVOGM-20-{6.4}	Veliidae	1
/VOGM-16-A	Elmidae	13	WVOGM-20-{6.4}	Perlidae	29
/VOGM-16-A	Caenidae	2	WVOGM-20-{6.4}	Asellidae	29
/VOGM-16-A	Baetidae	110			1
/VOGM-16-A	Asellidae	5	WVOGM-20-{21.2}	Elmidae	28
/VOGM-16-A	Capniidae/Leuctri	3	WVOGM-20-{21.2} WVOGM-20-{21.2}	Asellidae	28 3
		0		ADEMUDE	

AN Code	Taxon	Count	AN Code	Taxon	Count
NVOGM-20-{21.2}	Psephenidae	3	WVOGM-20-H	Coenagrionidae	2
NVOGM-20-{21.2}	Gomphidae	1	WVOGM-20-H	Culicidae	16
NVOGM-20-{21.2}	Chironomidae	66	WVOGM-20-H	Dixidae	1
VVOGM-20-{21.2}	Ceratopogonidae	1	WVOGM-20-H	Elmidae	2
VVOGM-20-{21.2}	Capniidae/Leuctri	2	WVOGM-20-H	Ephemerellidae	2
VVOGM-20-{21.2}	Cambaridae	5	WVOGM-20-H	Heptageniidae	1
VVOGM-20-{21.2}	Baetidae	33	WVOGM-20-H	Hydrophilidae	2
VVOGM-20-{21.2}	Hydropsychidae	7			
VVOGM-20-{21.2}	Perlidae	19	WVOGM-20-I-1-{1.5}	Ephemerellidae	1
VVOGM-20-{21.2}	Caenidae	2	WVOGM-20-I-1-{1.5}	Veliidae	3
			WVOGM-20-I-1-{1.5}	Tipulidae	4
/VOGM-20-A	Tipulidae	8	WVOGM-20-I-1-{1.5}	Tabanidae	3
/VOGM-20-A	Ephemerellidae	2	WVOGM-20-I-1-{1.5}	Leptophlebiidae	8
/VOGM-20-A	Chironomidae	10	WVOGM-20-I-1-{1.5}	Asellidae	36
/VOGM-20-A	Caenidae	2	WVOGM-20-I-1-{1.5}	Baetidae	13
/VOGM-20-A	Baetidae	8	WVOGM-20-I-1-{1.5}	Cambaridae	5
/VOGM-20-A	Asellidae	2	WVOGM-20-I-1-{1.5}	Capniidae/Leuctri	5
/VOGM-20-A	Ameletidae	1	WVOGM-20-I-1-{1.5}	Chironomidae	15
			WVOGM-20-I-1-{1.5}	Dryopidae	1
/VOGM-20-D-{4.6}	Hydropsychidae	26	WVOGM-20-I-1-{1.5}	Elmidae	30
/VOGM-20-D-{4.6}	Tabanidae	1	WVOGM-20-I-1-{1.5}	Heptageniidae	47
VOGM-20-D-{4.6}	Tipulidae	6	WVOGM-20-I-1-{1.5}	Nemouridae	1
/VOGM-20-D-{4.6}	Chironomidae	28	WVOGM-20-I-1-{1.5}	Oligochaeta	1
VOGM-20-D-{4.6}	Asellidae	2	WVOGM-20-I-1-{1.5}	Perlidae	1
/VOGM-20-D-{4.6}	Baetidae	12	WVOGM-20-I-1-{1.5}	Polycentropodidae	1
/VOGM-20-D-{4.6}	Perlidae	61			
/VOGM-20-D-{4.6}	Ceratopogonidae	1	WVOGM-20-L	Oligochaeta	2
/VOGM-20-D-{4.6}	Psephenidae	13	WVOGM-20-L	Psephenidae	3
/VOGM-20-D-{4.6}	Dryopidae	1	WVOGM-20-L	Tipulidae	1
VOGM-20-D-{4.6}	Elmidae	81	WVOGM-20-L	Perlidae	11
/VOGM-20-D-{4.6}	Ephemerellidae	1	WVOGM-20-L	Nemouridae	10
/VOGM-20-D-{4.6}	Heptageniidae	1	WVOGM-20-L	Leptophlebiidae	9
/VOGM-20-D-{4.6}	Leptophlebiidae	1	WVOGM-20-L	Heptageniidae	97
/VOGM-20-D-{4.6}	Capniidae/Leuctri	3	WVOGM-20-L	Ephemerellidae	4
	Caaridaa	10	WVOGM-20-L	Elmidae	3
VOGM-20-H	Caenidae	12	WVOGM-20-L	Chironomidae	12
/VOGM-20-H /VOGM-20-H	Leptophlebiidae Sialidae	3 2	WVOGM-20-L	Capniidae/Leuctri	14
	Perlidae		WVOGM-20-L	Caenidae	2
/VOGM-20-H		1	WVOGM-20-L	Baetidae	30
/VOGM-20-H /VOGM-20-H	Nemouridae Libellulidae	1 3	WVOGM-20-L	Asellidae	2
/VOGM-20-H	Chironomidae	3 19	WVOGM-20-L	Perlodidae	1
/VOGM-20-H /VOGM-20-H	Aeshnidae	19			
	Aesinidae Asellidae		WVOGM-20-K-{0.1}	Perlodidae	3
/VOGM-20-H		1	WVOGM-20-K-{0.1}	Dytiscidae	1
VOGM-20-H	Baetidae	40	WVOGM-20-K-{0.1}	Elmidae	12
/VOGM-20-H /VOGM-20-H	Cambaridae	2	WVOGM-20-K-{0.1}	Baetidae	28
	Calopterygidae	1	WVOGM-20-K-{0.1}	Caenidae	1
VVOGM-20-H	Hydropsychidae	1	WVOGM-20-K-{0.1}	Ephemerellidae	2

AN Code	Taxon	Count	AN Code	Taxon	Count
VVOGM-20-K-{0.1}	Chironomidae	18	WVOGM-20-M-1	Psephenidae	2
VVOGM-20-K-{0.1}	Perlidae	35	WVOGM-20-M-1	Tipulidae	1
VVOGM-20-K-{0.1}	Heptageniidae	8	WVOGM-20-M-1	Glossosomatidae	1
VVOGM-20-K-{0.1}	Leptophlebiidae	4	WVOGM-20-M-1	Rhyacophilidae	1
/VOGM-20-K-{0.1}	Nemouridae	33	WVOGM-20-M-1	Ameletidae	4
/VOGM-20-K-{0.1}	Capniidae/Leuctri	25	WVOGM-20-M-1	Empididae	1
			WVOGM-20-M-1	Chloroperlidae	13
/VOGM-20-K-1	Oligochaeta	1	WVOGM-20-M-1	Chironomidae	1
/VOGM-20-K-1	Perlidae	16	WVOGM-20-M-1	Capniidae/Leuctri	24
/VOGM-20-K-1	Psephenidae	13	WVOGM-20-M-1	Cambaridae	1
VOGM-20-K-1	Heptageniidae	23	WVOGM-20-M-1	Baetidae	93
/VOGM-20-K-1	Nemouridae	20	WVOGM-20-M-1	Ephemerellidae	21
VOGM-20-K-1	Leptophlebiidae	22	WVOGM-20-M-1	Asellidae	1
/VOGM-20-K-1	Isonychiidae	1			
/VOGM-20-K-1	Hydroptilidae	1	WVOGM-20-R-2	Heptageniidae	27
VOGM-20-K-1	Tipulidae	2	WVOGM-20-R-2	Hydrophilidae	1
/VOGM-20-K-1	Cambaridae	1	WVOGM-20-R-2	Hydropsychidae	4
VOGM-20-K-1	Ephemerellidae	5	WVOGM-20-R-2	Isonychiidae	1
/VOGM-20-K-1	Capniidae/Leuctri	18	WVOGM-20-R-2	Leptophlebiidae	11
/VOGM-20-K-1	Chironomidae	10	WVOGM-20-R-2	Tipulidae	5
/VOGM-20-K-1	Chloroperlidae	5	WVOGM-20-R-2	Oligochaeta	1
/VOGM-20-K-1	Elmidae	6	WVOGM-20-R-2	Nemouridae	3
/VOGM-20-K-1	Empididae	1	WVOGM-20-R-2	Gomphidae	1
/OGM-20-K-1 Empididae /OGM-20-K-1 Baetidae	Baetidae	142	WVOGM-20-R-2	Psephenidae	2
			WVOGM-20-R-2	Baetidae	23
VOGM-20-M-{1.8}	Dryopidae	1	WVOGM-20-R-2	Perlidae	42
/VOGM-20-M-{1.8}	Heptageniidae	17	WVOGM-20-R-2	Asellidae	10
/VOGM-20-M-{1.8}	Psephenidae	2	WVOGM-20-R-2	Cambaridae	5
/VOGM-20-M-{1.8}	Perlidae	19	WVOGM-20-R-2	Capniidae/Leuctri	7
/VOGM-20-M-{1.8}	Oligochaeta	1	WVOGM-20-R-2	Chironomidae	44
/VOGM-20-M-{1.8}	Leptophlebiidae	2	WVOGM-20-R-2	Corydalidae	1
/VOGM-20-M-{1.8}	Isonychiidae	11	WVOGM-20-R-2	Dryopidae	2
/VOGM-20-M-{1.8}	Hydropsychidae	11	WVOGM-20-R-2	Elmidae	20
/VOGM-20-M-{1.8}	Baetidae	39	WVOGM-20-R-2	Ephemerellidae	1
/VOGM-20-M-{1.8}	Tipulidae	6			
/VOGM-20-M-{1.8}	Chironomidae	10	WVOGM-20-T-{3.5}	Chironomidae	32
/VOGM-20-M-{1.8}	Ceratopogonidae	1	WVOGM-20-T-{3.5}	Heptageniidae	5
/VOGM-20-M-{1.8}	Capniidae/Leuctri	3	WVOGM-20-T-{3.5}	Tipulidae	3
/VOGM-20-M-{1.8}	Cambaridae	3	WVOGM-20-T-{3.5}	Rhyacophilidae	1
/VOGM-20-M-{1.8}	Caenidae	1	WVOGM-20-T-{3.5}	Psephenidae	6
/VOGM-20-M-{1.8}	Elmidae	76	WVOGM-20-T-{3.5}	Perlidae	15
/VOGM-20-M-{1.8}	Gomphidae	2	WVOGM-20-T-{3.5}	Hydropsychidae	27
			WVOGM-20-T-{3.5}	Gomphidae	2
/VOGM-20-M-1	Heptageniidae	39	WVOGM-20-T-{3.5}	Chloroperlidae	1
/VOGM-20-M-1	Leptophlebiidae	13	WVOGM-20-T-{3.5}	Capniidae/Leuctri	3
/VOGM-20-M-1	Nemouridae	47	WVOGM-20-T-{3.5}	Baetidae	30
/VOGM-20-M-1	Perlidae	3	WVOGM-20-T-{3.5}	Asellidae	1
/VOGM-20-M-1	Perlodidae	1	WVOGM-20-T-{3.5}	Elmidae	38

An Ecological Assessment Of

AN Code	Taxon	Count	AN Code	Taxon	Count
WVOGM-20-V	Hydropsychidae	8	WVOGM-25-B-{2.3}	Hirudinidae	1
WVOGM-20-V	Capniidae/Leuctri	1	WVOGM-25-B-{2.3}	Leptophlebiidae	4
VVOGM-20-V	Perlodidae	3	WVOGM-25-B-{2.3}	Tipulidae	9
VVOGM-20-V	Perlidae	1	WVOGM-25-B-{2.3}	Psephenidae	26
VVOGM-20-V	Simuliidae	1	WVOGM-25-B-{2.3}	Perlidae	30
VVOGM-20-V	Oligochaeta	3	WVOGM-25-B-{2.3}	Nemouridae	1
VVOGM-20-V	Nemouridae	11	WVOGM-25-B-{2.3}	Hydropsychidae	15
/VOGM-20-V	Elmidae	3	WVOGM-25-B-{2.3}	Baetidae	5
/VOGM-20-V	Chironomidae	1	WVOGM-25-B-{2.3}	Heptageniidae	10
VOGM-20-V	Heptageniidae	49	WVOGM-25-B-{2.3}	Gomphidae	1
/VOGM-20-V	Cambaridae	1	WVOGM-25-B-{2.3}	Elmidae	49
VOGM-20-V	Caenidae	1	WVOGM-25-B-{2.3}	Corydalidae	1
/VOGM-20-V	Baetidae	122	WVOGM-25-B-{2.3}	Chironomidae	54
/VOGM-20-V	Ephemerellidae	15	WVOGM-25-B-{2.3}	Capniidae/Leuctri	16
			WVOGM-25-B-{2.3}	Cambaridae	5
/VOGM-22-A-{0.7}	Heptageniidae	19	WVOGM-25-B-{2.3}	Oligochaeta	1
/VOGM-22-A-{0.7}	Gomphidae	1		Ũ	
/VOGM-22-A-{0.7}	Ephemerellidae	5	WVOGM-25-B-1	Leptophlebiidae	2
/VOGM-22-A-{0.7}	Empididae	1	WVOGM-25-B-1	Heptageniidae	74
/VOGM-22-A-{0.7}	Hydropsychidae	1	WVOGM-25-B-1	Tipulidae	3
/VOGM-22-A-{0.7}	Chloroperlidae	2	WVOGM-25-B-1	Rhyacophilidae	1
/VOGM-22-A-{0.7}	Tipulidae	5	WVOGM-25-B-1	Perlodidae	2
/VOGM-22-A-{0.7}	Chironomidae	136	WVOGM-25-B-1	Perlidae	12
VOGM-22-A-{0.7}	Elmidae	21	WVOGM-25-B-1	Nemouridae	3
VOGM-22-A-{0.7}	Leptophlebiidae	5	WVOGM-25-B-1	Calopterygidae	1
/VOGM-22-A-{0.7}	Nemouridae	15	WVOGM-25-B-1	Ephemerellidae	23
/VOGM-22-A-{0.7}	Psephenidae	3	WVOGM-25-B-1	Oligochaeta	6
/VOGM-22-A-{0.7}	Ceratopogonidae	1	WVOGM-25-B-1	Baetidae	9
/VOGM-22-A-{0.7}	Capniidae/Leuctri	5	WVOGM-25-B-1	Cambaridae	2
/VOGM-22-A-{0.7}	Caenidae	15	WVOGM-25-B-1	Capniidae/Leuctri	21
/VOGM-22-A-{0.7}	Baetidae	12	WVOGM-25-B-1	Chironomidae	26
/VOGM-22-A-{0.7}	Asellidae	1	WVOGM-25-B-1	Elmidae	2
/VOGM-22-A-{0.7}	Oligochaeta	3			
			WVOGM-25-H-1	Psephenidae	1
VOGM-25-A	Lymnaeidae	1	WVOGM-25-H-1	Chloroperlidae	1
VOGM-25-A	Asellidae	7	WVOGM-25-H-1	Tipulidae	7
/VOGM-25-A	Caenidae	1	WVOGM-25-H-1	Peltoperlidae	1
/VOGM-25-A	Capniidae/Leuctri	2	WVOGM-25-H-1	Oligochaeta	2
/VOGM-25-A	Ceratopogonidae	1	WVOGM-25-H-1	Nemouridae	2
VOGM-25-A	Chironomidae	122	WVOGM-25-H-1	Leptophlebiidae	1
VOGM-25-A	Dryopidae	1	WVOGM-25-H-1	Perlidae	1
VOGM-25-A	Ephemerellidae	12	WVOGM-25-H-1	Hydropsychidae	13
VOGM-25-A	Nemouridae	1	WVOGM-25-H-1	Elmidae	122
/VOGM-25-A	Physidae	2	WVOGM-25-H-1	Chironomidae	32
/VOGM-25-A	Tipulidae	29	WVOGM-25-H-1	Capniidae/Leuctri	3
/VOGM-25-A	Tricorythidae	2	WVOGM-25-H-1	Caenidae	1
VVOGM-25-A	Elmidae	10	WVOGM-25-H-1	Baetidae	6
			WVOGM-25-H-1	Heptageniidae	2

AN Code	Taxon	Count	AN Code	Taxon	Count
			WVOGM-31	Leptophlebiidae	7
NVOGM-25-I	Elmidae	24	WVOGM-31	Nemouridae	23
VVOGM-25-I	Baetidae	39	WVOGM-31	Oligochaeta	3
VVOGM-25-I	Psephenidae	1	WVOGM-31	Perlodidae	4
VVOGM-25-I	Perlidae	1	WVOGM-31	Heptageniidae	18
VVOGM-25-I	Heptageniidae	8	WVOGM-31	Tipulidae	2
VVOGM-25-I	Chloroperlidae	1	WVOGM-31	Gomphidae	2
VVOGM-25-I	Chironomidae	4	WVOGM-31	Baetidae	15
VVOGM-25-I	Capniidae/Leuctri	1	WVOGM-31	Cambaridae	2
VVOGM-25-I	Curculionidae	1	WVOGM-31	Psephenidae	4
			WVOGM-31	Capniidae/Leuctri	10
VVOGM-25-I-{3}	Heptageniidae	8	WVOGM-31	Chironomidae	20
VVOGM-25-I-{3}	Simuliidae	2	WVOGM-31	Chloroperlidae	1
VVOGM-25-I-{3}	Psephenidae	3	WVOGM-31	Elmidae	80
VVOGM-25-I-{3}	Perlidae	14	WVOGM-31	Ephemerellidae	2
VVOGM-25-I-{3}	Nemouridae	2			
VVOGM-25-I-{3}	Leptophlebiidae	3	WVOGM-33-B	Simuliidae	1
VVOGM-25-I-{3}	Hydropsychidae	9	WVOGM-33-B	Hydropsychidae	4
VVOGM-25-I-{3}	Tipulidae	2	WVOGM-33-B	Psephenidae	3
VVOGM-25-I-{3}	Baetidae	48	WVOGM-33-B	Perlodidae	1
VVOGM-25-I-{3}	Isonychiidae	6	WVOGM-33-B	Perlidae	40
VVOGM-25-I-{3}	Asellidae	1	WVOGM-33-B	Nemouridae	3
VVOGM-25-I-{3}	Gomphidae	1	WVOGM-33-B	Limnephilidae	1
VVOGM-25-I-{3}	Capniidae/Leuctri	16	WVOGM-33-B	Leptophlebiidae	3
VVOGM-25-I-{3}	Chironomidae	19	WVOGM-33-B	Isonychiidae	1
VVOGM-25-I-{3}	Corydalidae	1	WVOGM-33-B	Tipulidae	2
VVOGM-25-I-{3}	Elmidae	72	WVOGM-33-B	Baetidae	31
VVOGM-25-I-{3}	Ephemerellidae	1	WVOGM-33-B	Gomphidae	2
			WVOGM-33-B	Gerridae	1
VVOGM-25-I-4	Hydropsychidae	7	WVOGM-33-B	Ephemerellidae	26
VVOGM-25-I-4	Perlodidae	2	WVOGM-33-B	Elmidae	5
VVOGM-25-I-4	Tipulidae	10	WVOGM-33-B	Chironomidae	5
VVOGM-25-I-4	Perlidae	6	WVOGM-33-B	Ceratopogonidae	2
VVOGM-25-I-4	Oligochaeta	3	WVOGM-33-B	Capniidae/Leuctri	14
VVOGM-25-I-4	Nemouridae	5	WVOGM-33-B	Cambaridae	1
VVOGM-25-I-4	Isonychiidae	10	WVOGM-33-B	Heptageniidae	32
VVOGM-25-I-4	Psephenidae	1		1 0	
VVOGM-25-I-4	Elmidae	20	WVOGM-33-C	Limnephilidae	1
VVOGM-25-I-4	Dryopidae	1	WVOGM-33-C	Nemouridae	5
VVOGM-25-I-4	Chloroperlidae	2	WVOGM-33-C	Oligochaeta	1
VVOGM-25-I-4	Chironomidae	6	WVOGM-33-C	Oligoneuriidae	1
VVOGM-25-I-4	Capniidae/Leuctri	12	WVOGM-33-C	Perlidae	10
VVOGM-25-I-4	Baetidae	46	WVOGM-33-C	Psephenidae	6
VVOGM-25-I-4	Heptageniidae	6	WVOGM-33-C	Simuliidae	1
VVOGM-25-I-4	Caenidae	1	WVOGM-33-C	Leptophlebiidae	5
		•	WVOGM-33-C	Tipulidae	17
VVOGM-31	Perlidae	39	WVOGM-33-C	Elmidae	6
VVOGM-31	Hydropsychidae	1	WVOGM-33-C	Tabanidae	1

AN Code	Taxon	Count	AN Code	Taxon	Count
WVOGM-33-C	Cambaridae	1	WVOGM-35-E	Philopotamidae	4
VVOGM-33-C	Baetidae	35	WVOGM-35-E	Perlodidae	1
WVOGM-33-C	Ephemerellidae	8	WVOGM-35-E	Gomphidae	4
WVOGM-33-C	Corydalidae	2	WVOGM-35-E	Baetidae	19
NVOGM-33-C	Chloroperlidae	1	WVOGM-35-E	Perlidae	12
VVOGM-33-C	Chironomidae	29	WVOGM-35-E	Elmidae	80
VVOGM-33-C	Ceratopogonidae	1	WVOGM-35-E	Dryopidae	2
VVOGM-33-C	Capniidae/Leuctri	8	WVOGM-35-E	Corydalidae	1
VVOGM-33-C	Hydropsychidae	1	WVOGM-35-E	Chloroperlidae	1
VVOGM-33-C	Heptageniidae	33	WVOGM-35-E	Capniidae/Leuctri	20
			WVOGM-35-E	Ameletidae	10
VVOGM-35-{1.8}	Simuliidae	13	WVOGM-35-E	Aeshnidae	6
VVOGM-35-{1.8}	Hydropsychidae	1	WVOGM-35-E	Ephemerellidae	3
VVOGM-35-{1.8}	Psephenidae	1	WVOGM-35-E	Chironomidae	27
VVOGM-35-{1.8}	Isonychiidae	7			
VVOGM-35-{1.8}	Nemouridae	1	WVOGM-39	Heptageniidae	7
VVOGM-35-{1.8}	Perlidae	29	WVOGM-39	Hydropsychidae	17
VVOGM-35-{1.8}	Heptageniidae	3	WVOGM-39	Isonychiidae	11
VVOGM-35-{1.8}	Chironomidae	14	WVOGM-39	Tipulidae	2
/VOGM-35-{1.8}	Elmidae	29	WVOGM-39	Lepidostomatidae	1
/VOGM-35-{1.8}	Capniidae/Leuctri	5	WVOGM-39	Simuliidae	6
/VOGM-35-{1.8}	Cambaridae	1	WVOGM-39	Nemouridae	4
/VOGM-35-{1.8}	Baetidae	84	WVOGM-39	Oligochaeta	3
/VOGM-35-{1.8}	Ephemerellidae	4	WVOGM-39	Psephenidae	2
/VOGM-35-{1.8}	Gomphidae	3	WVOGM-39	Capniidae/Leuctri	16
			WVOGM-39	Perlidae	24
VVOGM-35-{4.1}	Isonychiidae	15	WVOGM-39	Ephemerellidae	4
VVOGM-35-{4.1}	Veliidae	1	WVOGM-39	Elmidae	41
VVOGM-35-{4.1}	Tipulidae	2	WVOGM-39	Chironomidae	26
/VOGM-35-{4.1}	Simuliidae	8	WVOGM-39	Cambaridae	1
/VOGM-35-{4.1}	Psephenidae	1	WVOGM-39	Caenidae	1
/VOGM-35-{4.1}	Perlodidae	5	WVOGM-39	Baetidae	41
/VOGM-35-{4.1}	Nemouridae	24	WVOGM-39	Aeshnidae	2
/VOGM-35-{4.1}	Heptageniidae	2	WVOGM-39	Gomphidae	1
/VOGM-35-{4.1}	Aeshnidae	1	WVOGM-39	Dryopidae	1
/VOGM-35-{4.1}	Ephemerellidae	13			
VVOGM-35-{4.1}	Elmidae	29	WVOGM-39-{10.2}	Capniidae/Leuctri	13
VVOGM-35-{4.1}	Chironomidae	2	WVOGM-39-{10.2}	Psephenidae	4
VVOGM-35-{4.1}	Capniidae/Leuctri	20	WVOGM-39-{10.2}	Perlidae	4
VVOGM-35-{4.1}	Baetidae	90	WVOGM-39-{10.2}	Isonychiidae	4
/VOGM-35-{4.1}	Gomphidae	4	WVOGM-39-{10.2}	Hydropsychidae	50
/VOGM-35-{4.1}	Perlidae	20	WVOGM-39-{10.2}	Elmidae	140
			WVOGM-39-{10.2}	Corydalidae	1
VVOGM-35-E	Heptageniidae	6	WVOGM-39-{10.2}	Chironomidae	49
VVOGM-35-E	Hydropsychidae	5	WVOGM-39-{10.2}	Cambaridae	1
VVOGM-35-E	Leptophlebiidae	1	WVOGM-39-{10.2}	Baetidae	57
VVOGM-35-E	Tipulidae	1	WVOGM-39-{10.2}	Chloroperlidae	1
VVOGM-35-E	Nemouridae	2		-	

AN Code	Taxon	Count	AN Code	Taxon	Count
WVOGM-39-G	Heptageniidae	5	WVOGM-40.3-{2.2}	Limnephilidae	1
WVOGM-39-G	Perlidae	4	WVOGM-40.3-{2.2}	Veliidae	1
WVOGM-39-G	Simuliidae	7	WVOGM-40.3-{2.2}	Perlidae	9
NVOGM-39-G	Oligochaeta	1	WVOGM-40.3-{2.2}	Aeshnidae	1
WVOGM-39-G	Leptophlebiidae	4	WVOGM-40.3-{2.2}	Baetidae	17
WVOGM-39-G	Isonychiidae	3	WVOGM-40.3-{2.2}	Capniidae/Leuctri	59
WVOGM-39-G	Hydropsychidae	13	WVOGM-40.3-{2.2}	Ephemerellidae	6
WVOGM-39-G	Elmidae	19	WVOGM-40.3-{2.2}	Chironomidae	15
WVOGM-39-G	Chironomidae	60	WVOGM-40.3-{2.2}	Corduliidae	3
WVOGM-39-G	Capniidae/Leuctri	15	WVOGM-40.3-{2.2}	Corydalidae	2
WVOGM-39-G	Cambaridae	1	WVOGM-40.3-{2.2}	Dryopidae	1
WVOGM-39-G	Caenidae	1	WVOGM-40.3-{2.2}	Elmidae	17
WVOGM-39-G	Baetidae	45	WVOGM-40.3-{2.2}	Empididae	1
NVOGM-39-G	Tipulidae	9	WVOGM-40.3-{2.2}	Cambaridae	4
NVOGM-39-G	Ephemerellidae	3			
			WVOGM-43	Tipulidae	2
NVOGM-40.3-{0}	Tabanidae	1	WVOGM-43	Ephemeridae	1
NVOGM-40.3-{0}	Isonychiidae	1	WVOGM-43	Rhyacophilidae	1
NVOGM-40.3-{0}	Nemouridae	6	WVOGM-43	Psephenidae	1
NVOGM-40.3-{0}	Oligochaeta	4	WVOGM-43	Nemouridae	16
NVOGM-40.3-{0}	Perlidae	3	WVOGM-43	Leptophlebiidae	4
VVOGM-40.3-{0}	Perlodidae	2	WVOGM-43	Heptageniidae	15
NVOGM-40.3-{0}	Simuliidae	2	WVOGM-43	Ephemerellidae	34
WVOGM-40.3-{0}	Hydropsychidae	1	WVOGM-43	Elmidae	7
VVOGM-40.3-{0}	Tipulidae	6	WVOGM-43	Chironomidae	7
VVOGM-40.3-{0}	Psephenidae	4	WVOGM-43	Simuliidae	3
WVOGM-40.3-{0}	Cambaridae	2	WVOGM-43	Cambaridae	2
WVOGM-40.3-{0}	Nematoda	1	WVOGM-43	Baetidae	121
VVOGM-40.3-{0}	Heptageniidae	4	WVOGM-43	Capniidae/Leuctri	43
VVOGM-40.3-{0}	Baetiscidae	3			
WVOGM-40.3-{0}	Capniidae/Leuctri	16	WVOGM-44-{0.2}	Psephenidae	3
VVOGM-40.3-{0}	Chironomidae	12	WVOGM-44-{0.2}	Nemouridae	13
VVOGM-40.3-{0}	Corydalidae	1	WVOGM-44-{0.2}	Dytiscidae	2
VVOGM-40.3-{0}	Dytiscidae	1	WVOGM-44-{0.2}	Hydropsychidae	1
VVOGM-40.3-{0}	Elmidae	21	WVOGM-44-{0.2}	Leptophlebiidae	2
VVOGM-40.3-{0}	Ephemerellidae	22	WVOGM-44-{0.2}	Heptageniidae	5
VVOGM-40.3-{0}	Baetidae	81	WVOGM-44-{0.2}	Gomphidae	3
			WVOGM-44-{0.2}	Perlidae	3
VVOGM-40.3-{2.2}	Ephemeridae	5	WVOGM-44-{0.2}	Elmidae	13
VVOGM-40.3-{2.2}	Leptophlebiidae	21	WVOGM-44-{0.2}	Chironomidae	9
VVOGM-40.3-{2.2}	Gomphidae	4	WVOGM-44-{0.2}	Capniidae/Leuctri	24
VVOGM-40.3-{2.2}	Heptageniidae	1	WVOGM-44-{0.2}	Cambaridae	5
VVOGM-40.3-{2.2}	Isonychiidae	1	WVOGM-44-{0.2}	Baetidae	86
VVOGM-40.3-{2.2}	Lepidostomatidae	1	WVOGM-44-{0.2}	Tipulidae	7
NVOGM-40.3-{2.2}	Nemouridae	11	WVOGM-44-{0.2}	Simuliidae	2
VVOGM-40.3-{2.2}	Psephenidae	1	WVOGM-44-{0.2}	Perlodidae	1
WVOGM-40.3-{2.2}	Simuliidae	1	WVOGM-44-{0.2}	Ephemerellidae	27
WVOGM-40.3-{2.2}	Tipulidae	15			

AN Code	Taxon	Count	AN Code	Taxon	Count
WVOGM-50	Leptophlebiidae	2	WVOG-9-A-{0.3}	Simuliidae	9
VVOGM-50	Veliidae	2	WVOG-9-A-{0.3}	Asellidae	7
VVOGM-50	Gomphidae	1	WVOG-9-A-{0.3}	Baetidae	10
VVOGM-50	Heptageniidae	5	WVOG-9-A-{0.3}	Caenidae	2
/VOGM-50	Hydropsychidae	4	WVOG-9-A-{0.3}	Capniidae/Leuctri	3
/VOGM-50	Lepidostomatidae	1	WVOG-9-A-{0.3}	Ceratopogonidae	2
/VOGM-50	Tipulidae	16	WVOG-9-A-{0.3}	Chironomidae	94
/VOGM-50	Ephemerellidae	11	WVOG-9-A-{0.3}	Elmidae	24
/VOGM-50	Nemouridae	36	WVOG-9-A-{0.3}	Heptageniidae	33
VOGM-50	Dryopidae	1	WVOG-9-A-{0.3}	Hydropsychidae	57
VOGM-50	Elmidae	1	WVOG-9-A-{0.3}	Leptophlebiidae	3
VOGM-50	Baetidae	35	WVOG-9-A-{0.3}	Perlidae	1
VOGM-50	Chloroperlidae	1	WVOG-9-A-{0.3}	Veliidae	1
VOGM-50	Corydalidae	1	WVOG-9-A-{0.3}	Nemouridae	1
VOGM-50	Capniidae/Leuctri	48			
VOGM-50	Empididae	1	WVOG-10	Baetidae	1
VOGM-50	Tabanidae	1	WVOG-10	Chironomidae	127
VOGM-50	Rhyacophilidae	1	WVOG-10	Caenidae	8
VOGM-50	Polycentropodidae	1	WVOG-10	Cambaridae	1
VOGM-50	Perlodidae	4	WVOG-10	Elmidae	20
VOGM-50	Perlidae	4	WVOG-10	Hydropsychidae	8
VOGM-50	Peltoperlidae	1	WVOG-10	Psephenidae	4
VOGM-50	Chironomidae	5	WVOG-10	Ephemerellidae	1
/VOG-3	Elmidae	4	WVOG-10-A	Leptophlebiidae	3
VOG-3	Caenidae	2	WVOG-10-A	Asellidae	2
VOG-3	Heptageniidae	6	WVOG-10-A	Baetidae	34
VOG-3	Chironomidae	89	WVOG-10-A	Capniidae/Leuctri	2
VOG-3	Oligochaeta	1	WVOG-10-A	Chironomidae	561
			WVOG-10-A	Elmidae	4
VOG-3-0.5A	Capniidae/Leuctri	5	WVOG-10-A	Ephemerellidae	1
VOG-3-0.5A	Leptophlebiidae	2	WVOG-10-A	Hydropsychidae	15
/VOG-3-0.5A	Gammaridae	1	WVOG-10-A	Nemouridae	4
/VOG-3-0.5A	Ephemeridae	78	WVOG-10-A	Psephenidae	1
VOG-3-0.5A	Veliidae	1	WVOG-10-A	Simuliidae	2
VOG-3-0.5A	Chironomidae	18	WVOG-10-A	Tipulidae	1
VOG-3-0.5A	Baetidae	1	WVOG-10-A	Heptageniidae	12
/VOG-3-0.5A	Asellidae	138			
VOG-3-0.5A	Nemouridae	2	WVOG-11	Chironomidae	144
/VOG-3-0.5A	Elmidae	3	WVOG-11	Tipulidae	5
			WVOG-11	Psephenidae	22
VOG-6-{0.1}	Chironomidae	36	WVOG-11	Oligochaeta	4
/VOG-6-{0.1}	Heptageniidae	2	WVOG-11	Isonychiidae	1
VOG-6-{0.1}	Elmidae	6	WVOG-11	Hydropsychidae	1
/VOG-6-{0.1}	Calopterygidae	1	WVOG-11	Elmidae	32
/VOG-6-{0.1}	Caenidae	3	WVOG-11	Simuliidae	3
/VOG-6-{0.1}	Helophoridae	1	WVOG-11	Caenidae	3
			WVOG-11	Asellidae	7
			WVOG-11	Heptageniidae	30

AN Code	Taxon	Count	AN Code	Taxon	Count
			WVOG-27-H-{1.8}	Perlidae	6
VVOG-14-D-{0.4}	Oligochaeta	3	WVOG-27-H-{1.8}	Nemouridae	5
VVOG-14-D-{0.4}	Caenidae	46	WVOG-27-H-{1.8}	Leptophlebiidae	65
VVOG-14-D-{0.4}	Veliidae	1	WVOG-27-H-{1.8}	Isonychiidae	1
VVOG-14-D-{0.4}	Tipulidae	2	WVOG-27-H-{1.8}	Hydropsychidae	4
/VOG-14-D-{0.4}	Tabanidae	2	WVOG-27-H-{1.8}	Elmidae	1
/VOG-14-D-{0.4}	Stratiomyidae	1	WVOG-27-H-{1.8}	Dixidae	1
/VOG-14-D-{0.4}	Sciomyzidae	1	WVOG-27-H-{1.8}	Chironomidae	7
/VOG-14-D-{0.4}	Dixidae	1	WVOG-27-H-{1.8}	Capniidae/Leuctri	25
/VOG-14-D-{0.4}	Coenagrionidae	35	WVOG-27-H-{1.8}	Aeshnidae	3
/VOG-14-D-{0.4}	Chironomidae	71	WVOG-27-H-{1.8}	Baetidae	30
/VOG-14-D-{0.4}	Ceratopogonidae	1	WVOG-27-H-{1.8}	Heptageniidae	53
/VOG-14-D-{0.4}	Cambaridae	1			
/VOG-14-D-{0.4}	Calopterygidae	3	WVOG-29-C	Simuliidae	1
/VOG-14-D-{0.4}	Asellidae	1	WVOG-29-C	Hydropsychidae	3
/VOG-14-D-{0.4}	Simuliidae	6	WVOG-29-C	Leptophlebiidae	8
			WVOG-29-C	Nemouridae	4
/VOG-23.5	Capniidae/Leuctri	2	WVOG-29-C	Oligochaeta	1
/VOG-23.5	Perlidae	2	WVOG-29-C	Perlodidae	3
/VOG-23.5	Tipulidae	1	WVOG-29-C	Philopotamidae	3
VOG-23.5	Simuliidae	42	WVOG-29-C	Psephenidae	3
VOG-23.5	Oligochaeta	23	WVOG-29-C	Heptageniidae	11
/VOG-23.5	Heptageniidae	7	WVOG-29-C	Tipulidae	5
/VOG-23.5	Chironomidae	136	WVOG-29-C	Veliidae	1
/VOG-23.5	Gerridae	2	WVOG-29-C	Polycentropodidae	3
			WVOG-29-C	Baetidae	79
/VOG-27-A	Hydropsychidae	11	WVOG-29-C	Lepidostomatidae	1
VOG-27-A	Baetidae	43	WVOG-29-C	Asellidae	1
/VOG-27-A	Tipulidae	1	WVOG-29-C	Gomphidae	2
/VOG-27-A	Simuliidae	1	WVOG-29-C	Cambaridae	1
/VOG-27-A	Psephenidae	2	WVOG-29-C	Capniidae/Leuctri	42
VOG-27-A	Perlodidae	1	WVOG-29-C	Ceratopogonidae	1
/VOG-27-A	Perlidae	9	WVOG-29-C	Chironomidae	11
/VOG-27-A	Oligochaeta	9	WVOG-29-C	Elmidae	12
/VOG-27-A	Nemouridae	7	WVOG-29-C	Ephemerellidae	41
/VOG-27-A	Leptophlebiidae	2	WVOG-29-C	Glossosomatidae	3
VOG-27-A	Caenidae	1	WVOG-29-C	Ameletidae	1
/VOG-27-A	Cambaridae	4			
/VOG-27-A	Veliidae	1	WVOG-30-{1.2}	Heptageniidae	18
/VOG-27-A	Heptageniidae	19	WVOG-30-{1.2}	Leptophlebiidae	5
/VOG-27-A	Capniidae/Leuctri	21	WVOG-30-{1.2}	Veliidae	1
/VOG-27-A	Ceratopogonidae	1	WVOG-30-{1.2}	Tipulidae	12
VOG-27-A	Chironomidae	55	WVOG-30-{1.2}	Simuliidae	1
/VOG-27-A	Dytiscidae	4	WVOG-30-{1.2}	Psephenidae	1
VOG-27-A	Elmidae	13	WVOG-30-{1.2}	Nemouridae	1
/VOG-27-A	Gomphidae	1	WVOG-30-{1.2}	Capniidae/Leuctri	20
			WVOG-30-{1.2}	Cambaridae	1
/VOG-27-H-{1.8}	Tipulidae	3	WVOG-30-{1.2}	Chironomidae	6

AN Code	Taxon	Count	AN Code	Taxon	Count
VVOG-30-{1.2}	Elmidae	1	WVOG-34-B	Heptageniidae	1
VVOG-30-{1.2}	Perlidae	1	WVOG-34-B	Baetidae	6
/VOG-30-{1.2}	Ephemerellidae	25	WVOG-34-B	Tipulidae	6
/VOG-30-{1.2}	Baetidae	102	WVOG-34-B	Simuliidae	1
/VOG-30-{1.2}	Glossosomatidae	1	WVOG-34-B	Psephenidae	5
/VOG-30-{1.2}	Gomphidae	2	WVOG-34-B	Physidae	1
			WVOG-34-B	Perlodidae	1
/VOG-32-F	Leptophlebiidae	3	WVOG-34-B	Nemouridae	3
/VOG-32-F	Hydropsychidae	14	WVOG-34-B	Ephemeridae	1
VOG-32-F	Tipulidae	9	WVOG-34-B	Caenidae	26
VOG-32-F	Psephenidae	9	WVOG-34-B	Oligochaeta	1
VOG-32-F	Polycentropodidae	1	WVOG-34-B	Baetiscidae	1
VOG-32-F	Perlodidae	5	WVOG-34-B	Ephemerellidae	15
/VOG-32-F	Nemouridae	2	WVOG-34-B	Capniidae/Leuctri	2
VOG-32-F	Isonychiidae	2	WVOG-34-B	Ceratopogonidae	1
/VOG-32-F	Chironomidae	17	WVOG-34-B	Chironomidae	61
/VOG-32-F	Perlidae	4	WVOG-34-B	Corydalidae	1
/VOG-32-F	Heptageniidae	3	WVOG-34-B	Dryopidae	1
VOG-32-F	Capniidae/Leuctri	79	WVOG-34-B	Elmidae	46
VOG-32-F	Chloroperlidae	1			
VOG-32-F	Elmidae	21	WVOG-34-E-1	Heptageniidae	15
VOG-32-F	Aeshnidae	1	WVOG-34-E-1	Cambaridae	1
VOG-32-F	Ephemerellidae	14	WVOG-34-E-1	Philopotamidae	1
VOG-32-F	Gomphidae	2	WVOG-34-E-1	Tipulidae	10
VOG-32-F	Baetidae	40	WVOG-34-E-1	Perlidae	1
			WVOG-34-E-1	Peltoperlidae	1
VOG-34	Tipulidae	9	WVOG-34-E-1	Nemouridae	4
VOG-34	Caenidae	38	WVOG-34-E-1	Leptophlebiidae	17
/VOG-34	Heptageniidae	1	WVOG-34-E-1	Hydropsychidae	6
VOG-34	Psephenidae	1	WVOG-34-E-1	Psephenidae	1
VOG-34	Oligochaeta	2	WVOG-34-E-1	Capniidae/Leuctri	3
VOG-34	Leptophlebiidae	1	WVOG-34-E-1	Chironomidae	11
VOG-34	Lampyridae	1	WVOG-34-E-1	Baetidae	28
VOG-34	Ephemerellidae	49	WVOG-34-E-1	Gomphidae	3
VOG-34	Elmidae	4	WVOG-34-E-1	Chloroperlidae	3
VOG-34	Capniidae/Leuctri	1	WVOG-34-E-1	Corydalidae	1
VOG-34	Baetiscidae	4	WVOG-34-E-1	Dryopidae	2
/VOG-34	Baetidae	47	WVOG-34-E-1	Elmidae	18
/VOG-34	Chironomidae	22	WVOG-34-E-1	Ephemerellidae	73
			WVOG-34-E-1	Ephemeridae	1
VOG-34-A	Gomphidae	1			
VOG-34-A	Psephenidae	1	WVOG-34-E-1-{0.8}	Nemouridae	1
VOG-34-A	Heptageniidae	2	WVOG-34-E-1-{0.8}	Tipulidae	30
VOG-34-A	Elmidae	3	WVOG-34-E-1-{0.8}	Psephenidae	18
VOG-34-A	Chironomidae	29	WVOG-34-E-1-{0.8}	Perlidae	3
/VOG-34-A	Baetidae	137	WVOG-34-E-1-{0.8}	Leptophlebiidae	25
/VOG-34-A	Ephemerellidae	24	WVOG-34-E-1-{0.8}	Hydropsychidae	9
			WVOG-34-E-1-{0.8}	Heptageniidae	2

AN Code	Taxon	Count	AN Code	Taxon	Count
WVOG-34-E-1-{0.8}	Elmidae	29			
WVOG-34-E-1-{0.8}	Chloroperlidae	3	WVOG-38-{0.8}	Ephemerellidae	10
NVOG-34-E-1-{0.8}	Baetidae	27	WVOG-38-{0.8}	Chironomidae	8
VVOG-34-E-1-{0.8}	Chironomidae	10	WVOG-38-{0.8}	Veliidae	1
VVOG-34-E-1-{0.8}	Polycentropodidae	4	WVOG-38-{0.8}	Perlidae	9
VVOG-34-E-1-{0.8}	Capniidae/Leuctri	10	WVOG-38-{0.8}	Heptageniidae	7
VVOG-34-E-1-{0.8}	Cambaridae	1	WVOG-38-{0.8}	Aeshnidae	1
VVOG-34-E-1-{0.8}	Gomphidae	3	WVOG-38-{0.8}	Elmidae	34
			WVOG-38-{0.8}	Caenidae	2
VVOG-35	Elmidae	16	WVOG-38-{0.8}	Baetiscidae	2
/VOG-35	Tipulidae	1	WVOG-38-{0.8}	Baetidae	11
/VOG-35	Simuliidae	4	WVOG-38-{0.8}	Corbiculidae	1
/VOG-35	Rhyacophilidae	1			
VVOG-35	Psephenidae	16	WVOG-38-{11.6}	Ephemerellidae	7
/VOG-35	Peltoperlidae	1	WVOG-38-{11.6}	Taeniopterygidae	1
/VOG-35	Ephemeridae	20	WVOG-38-{11.6}	Psephenidae	1
VVOG-35	Chironomidae	61	WVOG-38-{11.6}	Nemouridae	3
/VOG-35	Baetidae	53	WVOG-38-{11.6}	Nemertea	1
VVOG-35	Hydropsychidae	2	WVOG-38-{11.6}	Isonychiidae	2
			WVOG-38-{11.6}	Hydropsychidae	9
/VOG-36	Gomphidae	1	WVOG-38-{11.6}	Heptageniidae	7
/VOG-36	Nemouridae	11	WVOG-38-{11.6}	Ephemeridae	1
/VOG-36	Psephenidae	1	WVOG-38-{11.6}	Capniidae/Leuctri	7
/VOG-36	Heptageniidae	1	WVOG-38-{11.6}	Gomphidae	1
/VOG-36	Elmidae	2	WVOG-38-{11.6}	Baetiscidae	1
/VOG-36	Baetidae	135	WVOG-38-{11.6}	Tipulidae	3
VVOG-36	Chironomidae	6	WVOG-38-{11.6}	Ceratopogonidae	2
VVOG-36	Ephemerellidae	11	WVOG-38-{11.6}	Chironomidae	12
			WVOG-38-{11.6}	Corydalidae	1
/VOG-37	Isonychiidae	1	WVOG-38-{11.6}	Elmidae	19
/VOG-37	Tipulidae	2	WVOG-38-{11.6}	Empididae	1
/VOG-37	Simuliidae	1	WVOG-38-{11.6}	Baetidae	117
/VOG-37	Rhyacophilidae	3			
/VOG-37	Philopotamidae	8	WVOG-38-A	Isonychiidae	3
/VOG-37	Perlodidae	1	WVOG-38-A	Taeniopterygidae	2
/VOG-37	Perlidae	1	WVOG-38-A	Tipulidae	5
/VOG-37	Nemouridae	3	WVOG-38-A	Simuliidae	20
VVOG-37	Baetidae	65	WVOG-38-A	Perlodidae	1
/VOG-37	Leptophlebiidae	1	WVOG-38-A	Nemouridae	16
VVOG-37	Hydropsychidae	6	WVOG-38-A	Elmidae	2
/VOG-37	Heptageniidae	1	WVOG-38-A	Chloroperlidae	2
VVOG-37	Ephemerellidae	46	WVOG-38-A	Chironomidae	7
VVOG-37	Elmidae	7	WVOG-38-A	Capniidae/Leuctri	16
VVOG-37	Dryopidae	2	WVOG-38-A	Baetidae	91
VVOG-37	Chironomidae	7	WVOG-38-A	Ephemerellidae	11
VVOG-37	Capniidae/Leuctri	19	WVOG-38-A	Cambaridae	2
VVOG-37	Cambaridae	1			
VVOG-37	Limnephilidae	4	WVOG-38-D-{3.9}	Rhyacophilidae	2

AN Code	Taxon	Count	AN Code	Taxon	Count
WVOG-38-D-{3.9}	Leptophlebiidae	4	WVOG-38-G	Philopotamidae	4
NVOG-38-D-{3.9}	Nemouridae	12	WVOG-38-G	Isonychiidae	1
VVOG-38-D-{3.9}	Peltoperlidae	1	WVOG-38-G	Perlidae	1
VVOG-38-D-{3.9}	Tipulidae	6	WVOG-38-G	Tipulidae	5
VVOG-38-D-{3.9}	Perlidae	2	WVOG-38-G	Leptophlebiidae	5
VVOG-38-D-{3.9}	Lepidostomatidae	1	WVOG-38-G	Baetidae	103
VVOG-38-D-{3.9}	Perlodidae	4	WVOG-38-G	Heptageniidae	1
VVOG-38-D-{3.9}	Polycentropodidae	1	WVOG-38-G	Perlodidae	2
VVOG-38-D-{3.9}	Simuliidae	4	WVOG-38-G	Capniidae/Leuctri	26
VVOG-38-D-{3.9}	Chloroperlidae	1	WVOG-38-G	Ceratopogonidae	1
VVOG-38-D-{3.9}	Philopotamidae	5	WVOG-38-G	Chironomidae	5
VVOG-38-D-{3.9}	Aeshnidae	1	WVOG-38-G	Chloroperlidae	1
VVOG-38-D-{3.9}	Hydropsychidae	5	WVOG-38-G	Elmidae	4
VVOG-38-D-{3.9}	Baetidae	40	WVOG-38-G	Ephemerellidae	31
VVOG-38-D-{3.9}	Cambaridae	3			
VVOG-38-D-{3.9}	Capniidae/Leuctri	37	WVOG-38-K	Psephenidae	2
VVOG-38-D-{3.9}	Chironomidae	3	WVOG-38-K	Hydropsychidae	6
VVOG-38-D-{3.9}	Ephemerellidae	41	WVOG-38-K	Perlodidae	6
VVOG-38-D-{3.9}	Gerridae	1	WVOG-38-K	Perlidae	1
VVOG-38-D-{3.9}	Gomphidae	4	WVOG-38-K	Nemouridae	6
/VOG-38-D-{3.9}	Heptageniidae	12	WVOG-38-K	Leptophlebiidae	1
/VOG-38-D-{3.9}	Dryopidae	2	WVOG-38-K	Isonychiidae	1
VVOG-38-D-{3.9}	Elmidae	18	WVOG-38-K	Tipulidae	2
			WVOG-38-K	Gomphidae	1
/VOG-38-D-{4.5}	Tipulidae	18	WVOG-38-K	Ephemerellidae	22
VVOG-38-D-{4.5}	Hydropsychidae	14	WVOG-38-K	Empididae	1
VVOG-38-D-{4.5}	Lepidostomatidae	1	WVOG-38-K	Elmidae	9
VVOG-38-D-{4.5}	Leptophlebiidae	23	WVOG-38-K	Chironomidae	8
VVOG-38-D-{4.5}	Nemouridae	4	WVOG-38-K	Capniidae/Leuctri	4
VVOG-38-D-{4.5}	Perlidae	4	WVOG-38-K	Baetidae	114
VVOG-38-D-{4.5}	Perlodidae	4	WVOG-38-K	Heptageniidae	7
/VOG-38-D-{4.5}	Simuliidae	1			
VVOG-38-D-{4.5}	Heptageniidae	3	WVOG-38-K.7	Hydropsychidae	2
VVOG-38-D-{4.5}	Dryopidae	1	WVOG-38-K.7	Perlodidae	7
VVOG-38-D-{4.5}	Philopotamidae	6	WVOG-38-K.7	Baetidae	126
VVOG-38-D-{4.5}	Cambaridae	1	WVOG-38-K.7	Leptophlebiidae	2
VVOG-38-D-{4.5}	Aeshnidae	2	WVOG-38-K.7	Heptageniidae	4
VVOG-38-D-{4.5}	Ephemerellidae	13	WVOG-38-K.7	Ephemerellidae	14
VVOG-38-D-{4.5}	Brachycentridae	1	WVOG-38-K.7	Dytiscidae	1
VVOG-38-D-{4.5}	Ephemeridae	1	WVOG-38-K.7	Chironomidae	34
VVOG-38-D-{4.5}	Capniidae/Leuctri	26	WVOG-38-K.7	Cambaridae	1
VVOG-38-D-{4.5}	Ceratopogonidae	1	WVOG-38-K.7	Gomphidae	1
VVOG-38-D-{4.5}	Chironomidae	14	WVOG-38-K.7	Nemouridae	8
VVOG-38-D-{4.5}	Elmidae	22			
VVOG-38-D-{4.5}	Baetidae	44	WVOG-38-K-5	Cambaridae	5
			WVOG-38-K-5	Lepidostomatidae	1
VVOG-38-G	Nemouridae	2	WVOG-38-K-5	Hydropsychidae	20
WVOG-38-G	Simuliidae	1	WVOG-38-K-5	Gomphidae	2

AN Code	Taxon	Count	AN Code	Taxon	Count
WVOG-38-K-5	Ephemerellidae	14	WVOG-42-C-{0.2}	Hydropsychidae	1
NVOG-38-K-5	Elmidae	13	WVOG-42-C-{0.2}	Heptageniidae	2
VVOG-38-K-5	Dryopidae	5	WVOG-42-C-{0.2}	Ephemerellidae	11
VVOG-38-K-5	Corydalidae	1	WVOG-42-C-{0.2}	Chironomidae	94
VVOG-38-K-5	Capniidae/Leuctri	34	WVOG-42-C-{0.2}	Ceratopogonidae	2
VVOG-38-K-5	Baetidae	23	WVOG-42-C-{0.2}	Capniidae/Leuctri	1
VVOG-38-K-5	Aeshnidae	1	WVOG-42-C-{0.2}	Caenidae	26
VVOG-38-K-5	Leptophlebiidae	14	WVOG-42-C-{0.2}	Aeshnidae	1
VVOG-38-K-5	Dixidae	1	WVOG-42-C-{0.2}	Baetidae	38
VVOG-38-K-5	Perlodidae	2	WVOG-42-C-{0.2}	Tipulidae	2
VVOG-38-K-5	Simuliidae	2			
VVOG-38-K-5	Tabanidae	3	WVOG-42-D	Heptageniidae	7
VVOG-38-K-5	Tipulidae	20	WVOG-42-D	Hydropsychidae	2
VVOG-38-K-5	Chironomidae	2	WVOG-42-D	Leptophlebiidae	33
VVOG-38-K-5	Perlidae	2	WVOG-42-D	Nemouridae	7
			WVOG-42-D	Oligochaeta	1
VVOG-40	Elmidae	5	WVOG-42-D	Gomphidae	4
VVOG-40	Tipulidae	2	WVOG-42-D	Psephenidae	38
VVOG-40	Taeniopterygidae	1	WVOG-42-D	Philopotamidae	2
VVOG-40	Lepidostomatidae	1	WVOG-42-D	Perlidae	3
VVOG-40	Heptageniidae	1	WVOG-42-D	Baetidae	98
VVOG-40	Ephemerellidae	8	WVOG-42-D	Empididae	2
VVOG-40	Chironomidae	14	WVOG-42-D	Elmidae	13
VVOG-40	Caenidae	3	WVOG-42-D	Dryopidae	2
VOG-40	Baetidae	57	WVOG-42-D	Chironomidae	36
VVOG-40	Ephemeridae	1	WVOG-42-D	Capniidae/Leuctri	3
	_p	·	WVOG-42-D	Cambaridae	2
VVOG-41	Oligochaeta	2	WVOG-42-D	Caenidae	2
VVOG-41	Ephemerellidae	5	WVOG-42-D	Ephemerellidae	12
VVOG-41	Tipulidae	2	WVOG-42-D	Tipulidae	18
VVOG-41	Psychodidae	1			
/VOG-41	Ephydridae	1	WVOG-42-E	Hydropsychidae	5
VVOG-41	Baetidae	4	WVOG-42-E	Leptophlebiidae	2
VVOG-41	Chironomidae	150	WVOG-42-E	Nemouridae	3
/VOG-41	Nemouridae	2	WVOG-42-E	Perlidae	2
			WVOG-42-E	Perlodidae	2
VVOG-42-A	Oligochaeta	2	WVOG-42-E	Tipulidae	17
VVOG-42-A	Tricorythidae	1	WVOG-42-E	Ephemerellidae	11
VVOG-42-A	Psephenidae	1	WVOG-42-E	Psephenidae	8
VVOG-42-A	Nemouridae	5	WVOG-42-E	Heptageniidae	7
VVOG-42-A	Ephemerellidae	45	WVOG-42-E	Ephemeridae	2
VVOG-42-A	Chironomidae	61	WVOG-42-E	Elmidae	13
VVOG-42-A	Baetidae	60	WVOG-42-E	Chironomidae	27
VVOG-42-A	Psychodidae	2	WVOG-42-E	Capniidae/Leuctri	4
			WVOG-42-E	Caenidae	22
VVOG-42-C-{0.2}	Elmidae	4	WVOG-42-E	Baetidae	39
VVOG-42-C-{0.2}	Nemouridae	3	WVOG-42-E	Gomphidae	1
VVOG-42-C-{0.2}	Psephenidae	4	-		-

AN Code	Taxon	Count	AN Code	Taxon	Count
VVOG-44-A.5	Hydropsychidae	15	WVOG-44-C.3	Elmidae	1
/VOG-44-A.5	Perlodidae	1	WVOG-44-C.3	Ephemerellidae	30
VOG-44-A.5	Psephenidae	9	WVOG-44-C.3	Ephemeridae	8
VOG-44-A.5	Perlidae	3			
VOG-44-A.5	Nemouridae	5	WVOG-44-C.7	Ephemerellidae	35
VOG-44-A.5	Leptophlebiidae	3	WVOG-44-C.7	Peltoperlidae	3
VOG-44-A.5	Isonychiidae	3	WVOG-44-C.7	Oligochaeta	1
VOG-44-A.5	Gomphidae	3	WVOG-44-C.7	Nemouridae	5
/VOG-44-A.5	Ephemerellidae	27	WVOG-44-C.7	Leptophlebiidae	6
VOG-44-A.5	Elmidae	8	WVOG-44-C.7	Lepidostomatidae	1
VOG-44-A.5	Chironomidae	23	WVOG-44-C.7	Psephenidae	5
VOG-44-A.5	Capniidae/Leuctri	7	WVOG-44-C.7	Gomphidae	1
VOG-44-A.5	Baetidae	64	WVOG-44-C.7	Perlodidae	5
VOG-44-A.5	Cambaridae	1	WVOG-44-C.7	Aeshnidae	1
VOG-44-A.5	Tipulidae	1	WVOG-44-C.7	Heptageniidae	34
VOG-44-A.5	Heptageniidae	1	WVOG-44-C.7	Ameletidae	3
			WVOG-44-C.7	Baetidae	62
VOG-44-A-2-{2.8}	Hydropsychidae	2	WVOG-44-C.7	Cambaridae	4
VOG-44-A-2-{2.8}	Tipulidae	4	WVOG-44-C.7	Capniidae/Leuctri	16
VOG-44-A-2-{2.8}	Psephenidae	4	WVOG-44-C.7	Chironomidae	7
VOG-44-A-2-{2.8}	Perlodidae	1	WVOG-44-C.7	Chloroperlidae	1
VOG-44-A-2-{2.8}	Oligochaeta	2	WVOG-44-C.7	Elmidae	12
VOG-44-A-2-{2.8}	Leptophlebiidae	2			
VOG-44-A-2-{2.8}	Heptageniidae	10	WVOG-44-E	Ephemerellidae	2
VOG-44-A-2-{2.8}	Ephemerellidae	1	WVOG-44-E	Isonychiidae	2
VOG-44-A-2-{2.8}	Elmidae	7	WVOG-44-E	Tipulidae	6
VOG-44-A-2-{2.8}	Chironomidae	31	WVOG-44-E	Psephenidae	5
VOG-44-A-2-{2.8}	Capniidae/Leuctri	1	WVOG-44-E	Nemouridae	1
VOG-44-A-2-{2.8}	Nemouridae	23	WVOG-44-E	Leptophlebiidae	1
VOG-44-A-2-{2.8}	Baetidae	129	WVOG-44-E	Lampyridae	1
			WVOG-44-E	Caenidae	30
VOG-44-C.3	Veliidae	1	WVOG-44-E	Heptageniidae	7
VOG-44-C.3	Nemouridae	1	WVOG-44-E	Baetidae	43
VOG-44-C.3	Oligochaeta	1	WVOG-44-E	Gomphidae	1
VOG-44-C.3	Perlodidae	2	WVOG-44-E	Capniidae/Leuctri	1
VOG-44-C.3	Psephenidae	14	WVOG-44-E	Chironomidae	53
VOG-44-C.3	Rhyacophilidae	1	WVOG-44-E	Chloroperlidae	1
VOG-44-C.3	Tipulidae	5	WVOG-44-E	Elmidae	33
VOG-44-C.3	Cambaridae	5			
VOG-44-C.3	Leptophlebiidae	7	WVOG-44-E-0.5	Ameletidae	1
VOG-44-C.3	Sphaeriidae	1	WVOG-44-E-0.5	Lepidostomatidae	1
VOG-44-C.3	Baetidae	79	WVOG-44-E-0.5	Tipulidae	6
VOG-44-C.3	Chironomidae	33	WVOG-44-E-0.5	Philopotamidae	1
VOG-44-C.3	Aeshnidae	1	WVOG-44-E-0.5	Periodidae	5
VOG-44-C.3	Heptageniidae	7	WVOG-44-E-0.5	Peltoperlidae	1
VOG-44-C.3	Capniidae/Leuctri	3	WVOG-44-E-0.5	Nemouridae	10
VOG-44-C.3	Corydalidae	1	WVOG-44-E-0.5	Leptophlebiidae	7
VOG-44-C.3	Curculionidae	1	WVOG-44-E-0.5	Psephenidae	1

AN Code	Taxon	Count	AN Code	Taxon	Count
WVOG-44-E-0.5	Heptageniidae	3	WVOG-44-H	Nemouridae	13
VVOG-44-E-0.5	Gomphidae	1	WVOG-44-H	Oligochaeta	1
VVOG-44-E-0.5	Ephemerellidae	35	WVOG-44-H	Perlidae	4
VVOG-44-E-0.5	Elmidae	12	WVOG-44-H	Perlodidae	2
VVOG-44-E-0.5	Chloroperlidae	2	WVOG-44-H	Polycentropodidae	1
VVOG-44-E-0.5	Chironomidae	2	WVOG-44-H	Psephenidae	9
VVOG-44-E-0.5	Baetidae	52	WVOG-44-H	Tipulidae	9
VVOG-44-E-0.5	Hydropsychidae	12	WVOG-44-H	Psychodidae	1
VVOG-44-E-0.5	Capniidae/Leuctri	23	WVOG-44-H	Isonychiidae	2
			WVOG-44-H	Rhyacophilidae	1
VVOG-44-F-1	Gomphidae	2	WVOG-44-H	Caenidae	6
VVOG-44-F-1	Heptageniidae	3	WVOG-44-H	Heptageniidae	7
/VOG-44-F-1	Hydropsychidae	10	WVOG-44-H	Taeniopterygidae	1
VVOG-44-F-1	Tipulidae	3	WVOG-44-H	Baetiscidae	1
VVOG-44-F-1	Oligochaeta	1	WVOG-44-H	Baetidae	32
VVOG-44-F-1	Nemouridae	135	WVOG-44-H	Calopterygidae	1
VVOG-44-F-1	Perlodidae	2	WVOG-44-H	Capniidae/Leuctri	24
/VOG-44-F-1	Psephenidae	1	WVOG-44-H	Chironomidae	15
VVOG-44-F-1	Philopotamidae	19	WVOG-44-H	Coenagrionidae	1
/VOG-44-F-1	Baetidae	44	WVOG-44-H	Elmidae	8
/VOG-44-F-1	Peltoperlidae	1	WVOG-44-H	Ephemerellidae	30
/VOG-44-F-1	Calopterygidae	1	WVOG-44-H	Ephemeridae	2
/VOG-44-F-1	Cambaridae	2	WVOG-44-H	Gomphidae	1
VVOG-44-F-1	Capniidae/Leuctri	16			
/VOG-44-F-1	Chironomidae	11	WVOG-44-I	Nemouridae	19
/VOG-44-F-1	Chloroperlidae	2	WVOG-44-I	Heptageniidae	26
VVOG-44-F-1	Elmidae	2	WVOG-44-I	Tipulidae	1
/VOG-44-F-1	Empididae	1	WVOG-44-I	Psephenidae	18
VVOG-44-F-1	Ephemerellidae	17	WVOG-44-I	Perlidae	3
			WVOG-44-I	Leptophlebiidae	3
/VOG-44-G-{1.9}	Ephemerellidae	25	WVOG-44-I	Isonychiidae	2
/VOG-44-G-{1.9}	Gomphidae	4	WVOG-44-I	Hydropsychidae	16
/VOG-44-G-{1.9}	Tipulidae	5	WVOG-44-I	Veliidae	1
/VOG-44-G-{1.9}	Psephenidae	5	WVOG-44-I	Baetidae	3
/VOG-44-G-{1.9}	Perlodidae	3	WVOG-44-I	Ephemeridae	1
/VOG-44-G-{1.9}	Perlidae	1	WVOG-44-I	Ephemerellidae	25
/VOG-44-G-{1.9}	Peltoperlidae	4	WVOG-44-I	Empididae	1
VVOG-44-G-{1.9}	Nemouridae	1	WVOG-44-I	Elmidae	5
/VOG-44-G-{1.9}	Ameletidae	2	WVOG-44-I	Corydalidae	2
/VOG-44-G-{1.9}	Elmidae	32	WVOG-44-I	Chloroperlidae	1
/VOG-44-G-{1.9}	Corydalidae	2	WVOG-44-I	Chironomidae	14
/VOG-44-G-{1.9}	Chironomidae	25	WVOG-44-I	Capniidae/Leuctri	12
/VOG-44-G-{1.9}	Capniidae/Leuctri	4	WVOG-44-I	Perlodidae	5
VVOG-44-G-{1.9}	Caenidae	4	WVOG-44-I	Gomphidae	1
/VOG-44-G-{1.9}	Baetidae	33		,	
VVOG-44-G-{1.9}	Heptageniidae	8	WVOG-44-K	Hydropsychidae	8
			WVOG-44-K	Leptophlebiidae	1
VVOG-44-H	Leptophlebiidae	4	WVOG-44-K	Nemouridae	16

AN Code	Taxon	Count	AN Code	Taxon	Count
WVOG-44-K	Perlidae	1	WVOG-49-A	Chironomidae	4
VVOG-44-K	Perlodidae	1	WVOG-49-A	Dryopidae	1
NVOG-44-K	Heptageniidae	2	WVOG-49-A	Elmidae	4
NVOG-44-K	Tipulidae	5	WVOG-49-A	Baetidae	2
VVOG-44-K	Corydalidae	2			
VVOG-44-K	Psephenidae	1	WVOG-49-A-1	Oligochaeta	2
NVOG-44-K	Gomphidae	1	WVOG-49-A-1	Baetidae	1
VVOG-44-K	Ephemerellidae	43	WVOG-49-A-1	Capniidae/Leuctri	3
VVOG-44-K	Elmidae	5	WVOG-49-A-1	Elmidae	6
VVOG-44-K	Chironomidae	11	WVOG-49-A-1	Chironomidae	2
VVOG-44-K	Capniidae/Leuctri	8	WVOG-49-A-1	Tipulidae	3
VVOG-44-K	Cambaridae	1	WVOG-49-A-1	Ephemerellidae	3
VVOG-44-K	Baetidae	45	WVOG-49-A-1	Hydropsychidae	21
VVOG-44-K	Ameletidae	1	WVOG-49-A-1	Asellidae	1
VVOG-44-K	Empididae	1			
			WVOG-49-B-1	Tipulidae	4
VVOG-48	Hydrophilidae	1	WVOG-49-B-1	Nemouridae	30
VVOG-48	Sialidae	1	WVOG-49-B-1	Leptophlebiidae	4
VVOG-48	Rhyacophilidae	1	WVOG-49-B-1	Lepidostomatidae	1
VVOG-48	Psychodidae	1	WVOG-49-B-1	Hydropsychidae	3
VVOG-48	Oligochaeta	1	WVOG-49-B-1	Heptageniidae	29
VVOG-48	Nemouridae	7	WVOG-49-B-1	Ephemerellidae	27
VVOG-48	Elmidae	7	WVOG-49-B-1	Elmidae	5
VVOG-48	Corydalidae	2	WVOG-49-B-1	Chironomidae	13
VVOG-48	Chironomidae	7	WVOG-49-B-1	Baetidae	39
VVOG-48	Capniidae/Leuctri	6	WVOG-49-B-1	Psephenidae	1
VVOG-48	Baetidae	3	WVOG-49-B-1	Cambaridae	1
VVOG-48	Tipulidae	8			
VVOG-48	Ephemerellidae	3	WVOG-49-C	Tricorythidae	1
			WVOG-49-C	Tipulidae	10
VVOG-49-{3.3}	Oligochaeta	6	WVOG-49-C	Hydropsychidae	13
VVOG-49-{3.3}	Chironomidae	38	WVOG-49-C	Gammaridae	1
VVOG-49-{3.3}	Elmidae	85	WVOG-49-C	Corydalidae	1
VVOG-49-{3.3}	Ephemerellidae	10	WVOG-49-C	Chironomidae	4
VVOG-49-{3.3}	Gomphidae	1			
VVOG-49-{3.3}	Heptageniidae	12	WVOG-49-C.1	Chironomidae	160
VVOG-49-{3.3}	Hydropsychidae	1	WVOG-49-C.1	Ceratopogonidae	1
VVOG-49-{3.3}	Nemouridae	3	WVOG-49-C.1	Capniidae/Leuctri	1
VVOG-49-{3.3}	Caenidae	2	WVOG-49-C.1	Hydropsychidae	2
VVOG-49-{3.3}	Perlidae	1			
VVOG-49-{3.3}	Psephenidae	4	WVOG-49-D-2	Capniidae/Leuctri	3
VVOG-49-{3.3}	Simuliidae	2	WVOG-49-D-2	Elmidae	3
VVOG-49-{3.3}	Isonychiidae	2	WVOG-49-D-2	Cambaridae	1
VVOG-49-{3.3}	Corydalidae	1	WVOG-49-D-2	Ephemerellidae	54
VVOG-49-{3.3}	Baetidae	29	WVOG-49-D-2	Heptageniidae	29
· -			WVOG-49-D-2	Hydropsychidae	1
VVOG-49-A	Tipulidae	2	WVOG-49-D-2	Leptophlebiidae	4
VVOG-49-A	Capniidae/Leuctri	1	WVOG-49-D-2	Nemouridae	31

AN Code	Taxon	Count	AN Code	Taxon	Count
VVOG-49-D-2	Oligochaeta	3	WVOG-51-B	Ephemerellidae	12
VVOG-49-D-2	Perlidae	2	WVOG-51-B	Heptageniidae	15
/VOG-49-D-2	Perlodidae	1	WVOG-51-B	Leptophlebiidae	4
/VOG-49-D-2	Psephenidae	2	WVOG-51-B	Nemouridae	41
/VOG-49-D-2	Stratiomyidae	1	WVOG-51-B	Baetidae	28
VOG-49-D-2	Tipulidae	1			
/VOG-49-D-2	Chironomidae	23	WVOG-51-G.5	Aeshnidae	1
/VOG-49-D-2	Ceratopogonidae	1	WVOG-51-G.5	Stratiomyidae	1
VOG-49-D-2	Baetidae	42	WVOG-51-G.5	Psephenidae	1
			WVOG-51-G.5	Hydroptilidae	3
VOG-49-E-1	Chironomidae	187	WVOG-51-G.5	Hydropsychidae	5
VOG-49-E-1	Ceratopogonidae	1	WVOG-51-G.5	Chironomidae	76
VOG-49-E-1	Capniidae/Leuctri	2	WVOG-51-G.5	Elmidae	90
VOG-49-E-1	Asellidae	1			
/VOG-49-E-1	Oligochaeta	1	WVOG-53	Empididae	1
VOG-49-E-1	Empididae	1	WVOG-53	Aeshnidae	1
			WVOG-53	Tipulidae	2
VOG-50	Chironomidae	7	WVOG-53	Rhyacophilidae	1
VOG-50	Baetidae	91	WVOG-53	Psychodidae	2
VOG-50	Capniidae/Leuctri	7	WVOG-53	Nemouridae	7
VOG-50	Psephenidae	2	WVOG-53	Corydalidae	1
VOG-50	Perlodidae	1	WVOG-53	Chloroperlidae	1
VOG-50	Peltoperlidae	2	WVOG-53	Chironomidae	109
VOG-50	Oligochaeta	4	WVOG-53	Ceratopogonidae	1
VOG-50	Nemouridae	15	WVOG-53	Asellidae	1
VOG-50	Leptophlebiidae	6	WVOG-53	Capniidae/Leuctri	6
VOG-50	Heptageniidae	13			
VOG-50	Ephemerellidae	37	WVOG-59	Ephemerellidae	5
VOG-50	Elmidae	16	WVOG-59	Tipulidae	1
VOG-50	Cambaridae	2	WVOG-59	Psephenidae	1
			WVOG-59	Oligochaeta	1
VOG-51.5	Ephydridae	1	WVOG-59	Nemouridae	1
VOG-51.5	Nemouridae	26	WVOG-59	Hydropsychidae	2
VOG-51.5	Chironomidae	29	WVOG-59	Heptageniidae	3
VOG-51.5	Ceratopogonidae	1	WVOG-59	Gomphidae	1
VOG-51.5	Cambaridae	3	WVOG-59	Elmidae	12
VOG-51.5	Asellidae	1	WVOG-59	Corydalidae	2
/VOG-51.5	Tipulidae	5	WVOG-59	Coenagrionidae	1
/VOG-51.5	Oligochaeta	1	WVOG-59	Chironomidae	52
	-		WVOG-59	Capniidae/Leuctri	2
VOG-51-B	Rhyacophilidae	1	WVOG-59	Cambaridae	2
VOG-51-B	Perlodidae	4	WVOG-59	Caenidae	16
VOG-51-B	Capniidae/Leuctri	1	WVOG-59	Asellidae	2
VOG-51-B	Chironomidae	49	WVOG-59	Empididae	- 1
/VOG-51-B	Culicidae	1	WVOG-59	Leptophlebiidae	1
VOG-51-B	Dolichopodidae	1			
/VOG-51-B	Dytiscidae	1	WVOG-60	Heptageniidae	37
/VOG-51-B	Elmidae	3	WVOG-60	Tipulidae	4

Table A-6.	Benthic mac	roinvertebrates	identified	(continued).
------------	-------------	-----------------	------------	--------------

AN Code	Taxon	Count
WVOG-60	Simuliidae	1
WVOG-60	Rhyacophilidae	2
WVOG-60	Psephenidae	5
WVOG-60	Philopotamidae	28
WVOG-60	Nemouridae	19
WVOG-60	Limnephilidae	1
WVOG-60	Ephemeridae	1
WVOG-60	Ephemerellidae	26
WVOG-60	Empididae	1
WVOG-60	Corydalidae	1
WVOG-60	Chironomidae	11
WVOG-60	Capniidae/Leuctri	13
WVOG-60	Baetidae	38
WVOG-60	Hydropsychidae	6
WVOG-60	Leptophlebiidae	5
WVOG-61	Capniidae/Leuctri	59
WVOG-61	Psephenidae	5
WVOG-61	Perlodidae	1
WVOG-61	Nemouridae	34
WVOG-61	Hydropsychidae	9
WVOG-61	Heptageniidae	17
WVOG-61	Ephemerellidae	7
WVOG-61	Empididae	1
WVOG-61	Elmidae	6
WVOG-61	Chironomidae	1
WVOG-61	Cambaridae	1
WVOG-61	Baetidae	19
WVOG-61	Corydalidae	1

	Temp	рН	DO	Conductivity	Fecal Coliform
Stream Code	(°C)		(mg/L)	umhos	Bacteria colonies/ 100 ml
WVO-4-{76.3}	20.8	7.6	8.1	387	2100
WVOG-2-{3.6}	19.8	7.2	8.4	175	610
WVOG-2-{18.8}	17.2	7	8.4	189	150
WVOG-2-{25.5}	17.2	6.9	8.3	197	200
WVOG-2-{47}	19.6	7	7.6	257	10000
WVOG-2-{48.7}	17	6.9	7.7	247	600
WVOG-2-{77.2}	20.5	8.3	10.4	1024	50
WVOGM-1.5	17.3	7.4	5.9	487	12000
WVOGM-3-{0.9}	17.2	7.4	9.1	184	1000
WVOGM-4-{0.2}	19.4	7	6.2	200	1000
WVOGM-4-{2}	18	7.4	8.8	170	610
WVOGM-7-{0.4}	19.4	7.4	8.7	186	540
WVOGM-7-B-1	14.3	8.1	9.2	170	460
WVOGM-8-{4}	14.9	7.8	8.5	129	520
WVOGM-8-B	15.1	7.8	8.6	122	84
WVOGM-8-C	21.3	7.7	8.9	191	2800
WVOGM-12	19.9	7.3	7.1	271	150
WVOGM-13	17.9	7.3	9.4	260	1400
WVOGM-14-{7.2}	18.5	7.5	6.9	213	880
WVOGM-16-A	11	7.3	10.6	121	140
WVOGM-19	12.2	7.3	10.2	125	130
WVOGM-20-{6.4}	15.7	7.4	7	183	160
WVOGM-20-{21.2}	18.9	7.4	6.8	171	1100
WVOGM-20-A	15.2	7.2	10	92	220
WVOGM-20-D-{4.6}	20.1	7.6	8.3	182	4100
WVOGM-20-F	15.5	7.3	6.4	172	940
WVOGM-20-H	17.8	7.2	7.4	156	909
WVOGM-20-I-1-{1.5}	17.7	7.5	7.7	221	1100
WVOGM-20-L	11.3	7.2	10.5	100	360
WVOGM-20-K-{0.1}	16.7	7.4	9.7	96	340
WVOGM-20-K-1	12.6	7.1	9.8	91	1200
WVOGM-20-M-{1.8}	17.3	7.4	7.8	152	550
WVOGM-20-M-1	12.3	7.1	10.4	102	300
WVOGM-20-R-2	16.9	7.4	7.2	167	171
WVOGM-20-T-{3.5}	17.1	7.4	7.6	154	6300
WVOGM-20-V	13.1	7.2	9.9	94	220
WVOGM-22-A-{0.7}	14.3	7.3	10.2	116	350
WVOGM-25-A	15	7.3	10.3	103	520
WVOGM-25-B-{2.3}	21.3	7.4	8.5	170	3800
WVOGM-25-B-1	17.9	7.2	9.3	119	160
WVOGM-25-H-1	17.9	6.8	8.3	150	8000
WVOGM-25-I	19.6	6.5	8.1	108	3200
WVOGM-25-I-{3}	20.2	6.6	8.1	95	550
WVOGM-25-I-4	21.3	6.5	8.2	87	3500
WVOGM-31	18.3	7.6	8.5	180	1500
	10.0	7.0	0.0	100	1000

Table A-7. Water quality parameters measured in the field, andfecal coliform bacteria.

Stream Code					B - 4 - 1
	(°C)		(mg/L)	umhos	Bacteria colonies/ 100 ml
WVOGM-33-B	18.5	7.6	8.8	120	610
WVOGM-33-C	20.7	7.1	8.2	94	400
WVOGM-35-{1.8}	20.1	7.2	8.2	60	380
WVOGM-35-{4.1}	22.8	7.2	8.4	53	66
WVOGM-35-E	21.8	6.8	8.2	70	3800
WVOGM-39	18.3	6.7	8	91	5200
WVOGM-39-{10.2}	17.7	7.1	8.8	112	2900
WVOGM-39-G	17.4	6.8	8.9	74	5000
WVOGM-40.3-{0}	15.2	7.4	9.5	64	930
WVOGM-40.3-{2.2}	16.8	7.2	8.2	42	430
WVOGM-43	17.5	6.9	8.1	41	1200
WVOGM-44-{0.2}	15.1	7.5	9.5	77	55
WVOGM-50	17.2	7.1	8.8	47	72
WVOG-3	21.1	7.7	10.1	380	330
WVOG-3-0.5A	23.1	7.6	7.2	346	210
WVOG-9-A-{0.3}	21	7.6	8	312	3300
WVOG-10	20.4	7.4	6.8	270	3000
WVOG-10-A	21.8	7.6	7.9	251	900
WVOG-11	13.6	7	10.4	232	2000
WVOG-14-D-{0.4}	16.5	7	8.7	225	6400
WVOG-23.5	17.1	7	5.7	266	5000
WVOG-27	18.7	7	7.7	224	70
WVOG-27-A	17.4	7	7.8	146	740
WVOG-27-H-{1.8}	16.9	7.2	8.1	123	420
WVOG-29-C	16.7	6.9	8.8	80	30
WVOG-30-{1.2}	18.9	6.8	8.6	74	3300
WVOG-32-F	17.3	7.3	9	98	32
WVOG-34	16	7.4	8.6	83	2000
WVOG-34-A	16.1	7.4	8.5	71	1300
WVOG-34-B	14	7.4	8.9	92	2200
WVOG-34-E-1	12.4	7.4	9.4	71	6000
WVOG-34-E-1-{0.8}	12.8	7	9.6	69	6
WVOG-35	13	7.5	9.7	89	5600
WVOG-36	12.7	7.7	9.7	70	1200
WVOG-37	12.4	7.8	10	62	28
WVOG-38-{0.8}	21	7	7.9	82	110
WVOG-38-{11.6}	19.7	7	8.5	103	160
WVOG-38-A	17.9	6.9	8.5	42	83
WVOG-38-D-{3.9}	13.2	7.1	10	37	44
WVOG-38-D-{4.5}	14.3	7	9.9	38	33
WVOG-38-G	18.3	7	8.5	44	50
WVOG-38-K	17.3	6.9	8.9	63	800
WVOG-38-K.7	15.6	7.3	8.5	52	500
WVOG-38-K-5	18	7.5	7.8	45	160
WVOG-40	13.4	7.8	9.3	44	380

Table A-7.Water quality parameters measured in the field, and
fecal coliform bacteria (continued).

Stream Code	Temp (°C)	рН	DO (mg/L)	Conductivity umhos	Fecal Coliform Bacteria colonies/ 100 mL
WVOG-41	13.4	7.8	9.2	101	4200
WVOG-42-A	13.1	7.7	9.1	73	20000
WVOG-42-C-{0.2}	13.2	7.6	9.1	96	6400
WVOG-42-D	13.1	7.7	9.3	62	3200
WVOG-42-E	12.9	7.7	9	55	230
WVOG-44-A.5	19.5	7.1	8.7	148	12000
WVOG-44-A-2-{2.8}	17.8	7.3	8.3	151	5300
WVOG-44-C.3	14.8	8	8.6	61	3300
WVOG-44-C.7	16.9	7.6	8.7	88	38000
WVOG-44-E	19.6	7.8	8.6	139	60000
WVOG-44-E-0.5	11.6	6.6	10.5	54	36
WVOG-44-F-1	14.3	7.2	9.9	259	82
WVOG-44-G-{1.9}	19.6	7.7	8.7	121	830
WVOG-44-H	13.8	6.8	10	54	1400
WVOG-44-I	13.8	6.8	10.2	58	420
WVOG-44-K	13.2	6.8	10.2	55	1200
WVOG-48	14.8	5.6	9.6	118	44
WVOG-49-0.3A	13.7	5	9.4	74	4
WVOG-49-{3.3}	23.2	7	7.7	410	860
WVOG-49-A	13.3	6.5	10	114	420
WVOG-49-A-1	12.3	6.5	10.2	76	3000
WVOG-49-B-1	11.8	6.7	10.3	67	3200
WVOG-49-C	14.3	6.1	9.4	291	800
WVOG-49-C.1	11.6	4.6	10.1	270	16
WVOG-49-D-2	11.4	6.8	10.2	81	900
WVOG-49-E-1	11.9	4.9	9.8	302	20
WVOG-50	15.2	6.1	9.4	57	52
WVOG-51.5	13.4	7.3	9	527	2000
WVOG-51-B	14.8	6.4	9.6	81	4200
WVOG-51-G.5	21.5	8	8.3	1195	150
WVOG-53	16.2	4.6	8.3	527	20
WVOG-59	18.1	8.3	8.7	165	3800
WVOG-6-{0.1}	19.4	7.4	7.7	237	1900
WVOG-60	17.1	7.6	8.6	109	240
WVOG-61	17.6	7.7	8.4	395	150

Table A-7.Water quality parameters measured in the field, and
fecal coliform bacteria (continued).

Subset of all streams sampled. Hot acidity Alkalinity Sulfate Total Al Total Fe Total											
Stream Code	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Total Mn (mg/L)					
NVO-4-{76.3}	<1	72.7	100	0.239	0.535	0.0792					
WVOG-2-{3.6}	<1	41.2	33	0.355	1.16	0.094					
NVOG-2-{47}	<1	33.4	74	0.275	0.633	0.115					
NVOG-2-{48.7}	<1	31.2	66	0.21	0.526	0.116					
NVOG-2-{77.2}	<1	106	430	0.52	0.17	0.15					
NVOGM-3-{0.9}	<1	65.8	24	0.567	0.681	0.0345					
NVOGM-4-{0.2}	<1	77.0	17	0.237	1.13	0.372					
NVOGM-4-{2}	<1	67.9	18	0.374	0.761	0.113					
NVOGM-7-{0.4}	<1	74.6	17	0.302	0.661	0.103					
WVOGM-8-B	<1	40.0	14	0.318	0.549	0.0451					
NVOGM-14-{7.2}	<1	79.5	16	0.119	0.308	0.0753					
NVOGM-20-{6.4}	<1	71.8	12	0.0864	0.885	0.219					
NVOGM-20-{21.2}	<1	58.6	14	0.219	0.912	0.169					
VVOGM-20-D-{4.6}	<1	58	24	0.56	0.31	0.02					
WVOGM-20-I-1-{1.5}	<1	66	31	0.76	0.51	0.04					
VVOGM-20-K-{0.1}	<1	30	18	1	0.29	0.026					
WVOGM-20-M-{1.8}	<1	46	19	0.74	0.46	0.028					
WVOGM-20-T-{3.5}	<1	48	16	0.58	0.28	0.02					
VVOGM-22-A-{0.7}	<1	24	25	1.1	0.72	0.035					
WVOGM-25-B-{2.3}	<1	55.3	28	0.197	0.25	0.01					
WVOGM-25-I-{3}	<1	29.7	16	0.147	0.725	0.118					
WVOGM-35-{1.8}	<1	13	15	0.67	0.34	0.022					
VVOGM-35-{4.1}	<1	14.2	10	0.05	0.314	0.0323					
WVOGM-39-{10.2}	<1	36.7	10	0.112	0.332	0.0346					
WVOGM-40.3-{2.2}	<1	10.1	10	0.0899	0.386	0.066					
WVOGM-44-{0.2}	<1	15.5	10	0.05	0.233	0.0579					
WVOGM-44-{0.2}	<1	9	13	0.99	0.233	0.0379					
WVOG-6-{0.1}	<1	91.7	27	0.354	1.03	0.531					
	<1	97.0	47	0.0849	0.174	0.0512					
NVOG-9-A-{0.3} NVOG-14-D-{0.4}											
	<1	67.8	32 17	0.237	0.527	0.191					
WVOG-27-H-{1.8}	<1	43.1		0.248	0.54	0.0343					
NVOG-30-{1.2}	<1	14.5	13	0.139	0.26	0.0268					
NVOG-32-F	<1	15.4	11	0.05	0.11	0.01					
NVOG-34-E-1-{0.8}	1.79	11.7	14	0.116	0.192	0.01					
WVOG-38-{0.8}	<1	19.3	11	0.141	0.438	0.0338					
NVOG-38-{11.6}	<1	25.6	13	0.0701	0.184	0.0199					
WVOG-38-A	<1	9.90	8	0.0686	0.211	0.0288					
WVOG-38-D-{3.9}	<1	5	10	0.57	0.14	0.02					
VVOG-38-D-{4.5}	<1	6	11	0.81	0.14	0.02					
WVOG-42-C-{0.2}	<1	22.1	12	0.0667	0.252	0.0493					
WVOG-44-A-2-{2.8}	<1	50.7	15	0.707	1.44	0.0811					
WVOG-44-G-{1.9}	<1	21.3	16	0.0546	0.256	0.031					
NVOG-48	2.7	7.8	48	0.903	0.92	0.174					
WVOG-49-0.3A	9.7	4.4	27	0.583	0.296	0.128					
WVOG-49-{3.3}	<1	40.7	110	0.575	0.561	0.322					

Table A-8.Additional water quality parameters taken from a
subset of all streams sampled.

	subset o	f all stream	ns sample	d (continu	ued).	
Stream Code	Hot acidity (mg/L)	Alkalinity (mg/L)	Sulfate (mg/L)	Total AI (mg/L)	Total Fe (mg/L)	Total Mn (mg/L)
WVOG-49-A	2.2	9.7	40	0.868	0.761	0.112
WVOG-49-A-1	5.2	11.0	23	1.52	1.64	0.0975
WVOG-49-C	5.2	9.2	100	1.45	0.814	0.261
WVOG-49-C.1	30.2	3.4	98	3.755	0.32	0.5
WVOG-49-E-1	17.7	3.1	110	2.405	0.434	0.541
WVOG-51.5	<1	8.40	240	1.56	0.681	0.611
WVOG-51-G.5	<1	172	470	0.44	0.957	0.258
WVOG-53	37.4	3.60	180	4.65	0.636	0.726
WVOG-6-{0.1}	<1	91.7	27	0.354	1.03	0.531
WVOG-61	<1	15.1	160	0.821	1.21	0.375

Table A-8.Additional water quality parameters taken from a
subset of all streams sampled (continued).

	idset of all									
Total Phos NH3-N NO2-NO3-N TSS Chloride Ca-Tot Mg Stream Code (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)										
WVO-4-{76.3}	0.0267	<0.5	0.409				13.700			
VVOG-2-{3.6}	0.0806	<0.5	0.393		3.41	18.800	6.000			
VVOG-2-{47}	<0.02	<0.5	0.528		2.35	19.500	14.500			
VVOG-2-{48.7}	<0.02	<0.5	0.500		2.04	18.100	13.300			
VVOG-2-{77.2}	<0.02	<0.5	2.16		3.6	89	57			
VVOGM-3-{0.9}	0.0379	<0.5	0.325		2.69	23.900	5.190			
VVOGM-4-{0.2}	0.0492	<0.5	0.167		3.02	25.700	5.350			
NVOGM-4-{2}	<0.02	<0.5	0.203		2.52	22.300	4.680			
VVOGM-7-{0.4}	0.0290	<0.5	0.138		3.01	24.400	5.170			
VVOGM-8-{4}	0.029		0.123							
VVOGM-8-B	0.024	<0.5	0.081		1.98	13.100	3.180			
VVOGM-14-{7.2}	0.0290	<0.5	0.174	<5	4.70	25.100	6.240			
WVOGM-20-{6.4}	<0.02	<0.5	0.186		5.29	21.500	4.670			
NVOGM-20-{21.2}	0.0267	<0.5	0.246	<5	4.08	20.100	4.300			
NVOGM-20-D-{4.6}	0.08	<0.5	0.09		1	18	3.4			
VVOGM-20-I-1-{1.5}	0.14	<0.5	0.05		1	19	5.2			
VVOGM-20-L	0.04		<0.05							
VVOGM-20-K-{0.1}	0.04	<1	<0.05		4	13	3.4			
VVOGM-20-M-{1.8}	0.02	<0.5	0.08		3	14	3.1			
VVOGM-20-T-{3.5}	0.02	<0.5	0.09		3	15	2.9			
VVOGM-22-A-{0.7}	0.04	<1	0.13		3	15	3.3			
/VOGM-25-B-{2.3}	<0.02	<0.5	0.312		1.99	15.200	4.410			
VOGM-25-I-{3}	<0.02	<0.5	0.118		1.51	11.100	3.040			
VOGM-31	<0.02		0.09							
/VOGM-35-{1.8}	<0.02	<0.5	0.07		<1	6.5	1.8			
/VOGM-35-{4.1}	<0.02	<0.5	0.102		1.01	4.600	2.220			
/VOGM-39-{10.2}	<0.02	<0.5	0.286		4.52	10.100	3.750			
VVOGM-40.3-{2.2}	<0.02	<0.5	0.127		<1	3.160	2.020			
/VOGM-43	<0.02		<0.05							
/VOGM-44-{0.2}	<0.02	<0.5	0.121		1.31	4.930	2.720			
/VOGM-50	<0.02	<0.50	<0.05		2	5.6	2.4			
/VOG-6-{0.1}	0.060	<0.5	0.267		6.75	30.100	7.810			
/VOG-9-A-{0.3}	0.0672	<0.5	0.287				8.530			
/VOG-14-D-{0.4}	0.0806	<0.5	0.369		6.54	23.860	5.056			
VVOG-27-H-{1.8}	0.0379	<0.5	0.264		2.28	14.500	3.820			
VVOG-30-{1.2}	<0.02	<0.5	0.105		1.42	5.160	2.440			
VVOG-32-F	<0.02	<0.5	0.195		11.6	6.740	3.170			
VVOG-34-E-1-{0.8}	0.045	<0.5	0.103		1.25	4.370	2.280			
VVOG-38-{0.8}	<0.02	<0.5	0.101		3.61	6.230	3.040			
VVOG-38-{11.6}	<0.02	<0.5	0.140		4.86	8.040	3.630			
VVOG-38-A	<0.02	<0.5	0.083		<1	2.650	2.060			
VVOG-38-D-{3.9}	<0.02	<0.5	<0.05		2.6	3.9	1.7			
VVOG-38-D-{4.5}	<0.02	<0.5	0.19		2	4.3	1.9			
VVOG-42-C-{0.2}	0.0222	<0.5	0.191				3.027			
VVOG-44-A-2-{2.8}	0.103	<0.5	0.262				4.420			
VVOG-44-G-{1.9}	<0.02	<0.5	0.188		10.8	7.300	3.470			
		-				-				

Table A-9. Additional water quality parameters taken from asubset of all streams sampled.

Stream Code	Cr (mg/L)	Cu (mg/L)	Pb-Tot (mg/L)	Zn (mg/L)
WVO-4-{76.3}		<0.005	<0.0050	<0.020
WVOG-2-{3.6}		<0.0050	<0.0000	<0.020
WVOG-2-{47}		0.0059		0.0330
WVOG-2-{48.7}		0.0052		<0.020
WVOG-2-{77.2}		<0.01		0.027
WVOGM-3-{0.9}		0.0066		<0.020
WVOGM-4-{0.2}		<0.0050		<0.020
WVOGM-4-{2}		<0.0050		<0.020
WVOGM-7-{0.4}		<0.0050		<0.020
WVOGM-8-B		<0.0050		<0.020
WVOGM-14-{7.2}	<0.0050	<0.0050		<0.020
WVOGM-20-{6.4}		<0.005		<0.020
WVOGM-20-{21.2}	<0.0050	<0.0050		0.0345
WVOGM-20-D-{4.6	<0.002	<0.01		<0.01
WVOGM-20-I-1-{1.	<0.002	<0.01		<0.01
WVOGM-20-K-{0.1		<0.01		<0.01
WVOGM-20-M-{1.8	<0.002	<0.01		<0.01
WVOGM-20-T-{3.5	<0.002	<0.01		<0.01
WVOGM-22-A-{0.7		<0.01		<0.01
WVOGM-25-B-{2.3		0.0061		0.0493
WVOGM-25-I-{3}		<0.0050		0.0289
WVOGM-35-{1.8}		<0.01		0.026
WVOGM-35-{4.1}		<0.0050		<0.020
WVOGM-39-{10.2}		0.0052		0.0363
WVOGM-40.3-{2.2}		<0.0050		<0.020
WVOGM-44-{0.2}		<0.0050		<0.020
WVOGM-50		<0.01		0.057
WVOG-9-A-{0.3}		<0.005		<0.020
WVOG-14-D-{0.4}		<0.005		<0.020
WVOG-27-H-{1.8}		0.0083		0.0248
WVOG-30-{1.2}		<0.0050		<0.020
WVOG-32-F		0.0053		<0.020
WVOG-34-E-1-{0.8		<0.0050		<0.020
WVOG-38-{0.8}		<0.0050		0.0224
WVOG-38-{11.6}		<0.005		0.020
WVOG-38-A		<0.0050		<0.020
WVOG-38-D-{3.9}		<0.01		0.03
WVOG-38-D-{4.5}		<0.01		0.038
WVOG-42-C-{0.2}		<0.0050		<0.020
WVOG-44-A-2-{2.8		0.0053		<0.020
WVOG-44-G-{1.9}		<0.005		<0.020
WVOG-49-{3.3}		<0.0050	<0.0050	0.0251
WVOG-6-{0.1}		<0.0050	\$0.0000	<0.020

Table A-10.Additional water quality parameters taken from a
subset of all streams sampled.

	COVE	s on	ied Jek	citra ster	dilon sedi	ment	the hed.	4	NY Stap.	ant ved in	2 ¹⁰⁹ 1012
Stream Code	. ⁰	off	701	alle a	so So		the in	$\dot{D}_{A} = \dot{Q}_{A}$	8 8 9		2 2 0
WVOG-2-{3.6}	16	14	18	18	12	10	17	9	9	14	137
WVOG-2-{18.8}	15	16	14	12	17	7	15	3	5	6	110
WVOG-2-{25.5}	15	11	14	13	10	6	12	5	10	3	99
WVOG-2-{47}	16	13	13	18	10	7	18	11	10	4	120
WVOG-2-{48.7}	15	13	15	17	9	7	17	10	14	9	126
WVOG-2-{77.2}	18	7	16	15	7	15	16	16	13	13	136
WVOGM-1.5	3	5	8	17	3	2	4	5	5	16	68
WVOGM-3-{0.9}	11	11	12	13	7	16	14	11	12	2	109
WVOGM-4-{0.2}	12	7	11	17	2	7	19	8	7	3	93
WVOGM-4-{2}	10	12	16	18	7	11	15	8	7	6	110
WVOGM-7-{0.4}	2	7	8	3	7	16	18	16	7	2	86
WVOGM-7-B-1	14	13	14	13	12	16	16	13	13	11	135
WVOGM-8-{4}	16	12	15	16	13	14	16	12	18	17	149
WVOGM-8-B	11	11	12	20	12	15	16	14	16	18	145
WVOGM-8-C	12	12	10	18	13	18	16	16	18	2	135
WVOGM-12	11	6	17	12	5	10	16	11	14	10	112
WVOGM-13	16	13	10	13	15	16	18	14	16	0	131
WVOGM-14-{7.2}	6	5	13	18	5	8	13	8	14	11	101
WVOGM-16-A	17	15	10	14	14	17	19	13	8	5	132
WVOGM-19	12	10	11	14	8	14	16	15	11	10	121
WVOGM-20-{6.4}	9	8	12	15	5	8	17	9	10	11	104
WVOGM-20-{21.2}	8	8	16	7	5	7	15	8	7	4	85
WVOGM-20-A	10	9	12	13	8	13	17	14	10	9	115
WVOGM-20-D-{4.6}	6	7	11	11	5	16	8	8	13	4	89
WVOGM-20-H	7	7	11	11	6	5	12	4	5	4	72
WVOGM-20-I-1-{1.5}	8	8	8	6	8	16	7	4	4	3	72
WVOGM-20-L	9	9	7	9	9	14	16	4	6	2	85
WVOGM-20-K-{0.1}	16	9	16	11	9	17	18	9	4	2	111
WVOGM-20-K-1	18	13	18	15	11	16	16	17	17	4	145
WVOGM-20-M-{1.8}	6	8	8	14	7	16	8	17	11	10	105
WVOGM-20-M-1	13	11	9	7	9	16	13	13	9	4	104
WVOGM-20-R-2	10	10	9	14	9	12	8	14	14	10	110
WVOGM-20-T-{3.5}	10	8	11	15	6	11	10	12	8	10	101
WVOGM-20-V	17	11	10	15	11	18	18	16	10	7	133
WVOGM-22-A-{0.7}	18	14	10	16	13	17	19	14	12	10	143
WVOGM-25-A	13	8	10	16	9	17	17	16	16	15	137
WVOGM-25-B-{2.3}	17	12	10	16	13	18	15	16	14	6	137
WVOGM-25-B-1	17	11	10	12	11	18	17	16	13	11	136
WVOGM-25-H-1	7	9	10	15	5	9	13	10	12	3	93
WVOGM-25-I	9	7	16	18	7	13	11	8	7	7	103
WVOGM-25-I-{3}	7	7	16	16	4	7	14	11	12	3	97
WVOGM-25-I-4	6	7	10	17	7	, 17	11	10	11	3	99
WVOGM-23-1-4 WVOGM-31	15	, 10	10	14	9	17	12	13	14	12	126
WVOGM-33-B	15	10	10	14	9 11	18	12	16	8	4	120
WVOGM-33-C	10	10	9	12	7	17	10	17	o 13	4	124

Table A-11. Rapid Habitat Assessment Scores.

			sd velo	int shere	ion sedi	nerit	12		in stap.	100		
Stream Code	cover	enio	Jelo,	atteric	لكني	N. K	the Ho	n	fur bo	in in	R ^{VEQ} rotal	
WVOGM-35-{1.8}	10	9	13	17	6	8	12	16	16	11	118	
WVOGM-35-{4.1}	8	8	9	13	5	13	10	15	14	16	111	
WVOGM-35-E	14	15	10	16	10	17	16	13	13	3	127	
WVOGM-39	14	10	19	12	10	16	14	10	10	3	118	
WVOGM-39-{10.2}	15	11	14	18	8	17	16	9	11	18	137	
WVOGM-39-G	11	13	17	13	13	17	13	12	16	13	138	
WVOGM-40.3-{0}	15	10	13	19	10	16	10	17	18	18	146	
WVOGM-40.3-{2.2}	7	5	8	16	5	16	8	13	14	17	109	
WVOGM-43	15	12	10	14	11	18	12	18	15	12	137	
WVOGM-44-{0.2}	17	11	10	15	10	18	15	15	11	10	132	
WVOGM-50	17	11	10	17	10	17	15	14	17	16	144	
WVOG-3	6	3	15	13	9	8	12	4	10	4	84	
WVOG-3-0.5A	13	16	10	15	13	16	11	13	16	6	129	
WVOG-6-{0.1}	11	6	12	18	8	17	12	2	3	11	100	
WVOG-9-A-{0.3}	13	11	8	18	13	16	15	18	16	14	142	
WVOG-10	15	11	14	13	14	15	15	16	17	13	143	
WVOG-10-A	16	11	14	19	12	15	14	15	15	15	148	
WVOG-11	18	16	17	13	11	17	13	12	14	7	138	
WVOG-14-D-{0.4}	13	14	7	12	16	8	17	6	3	3	99	
WVOG-23.5	13	12	9	18	10	16	11	3	11	18	121	
WVOG-27	6	6	14	16	8	4	15	6	16	13	104	
WVOG-27-A	16	7	16	17	7	16	11	8	16	5	119	
WVOG-27-H-{1.8}	10	14	9	17	13	16	8	14	18	18	137	
WVOG-29-C	14	13	9	18	14	18	14	18	18	14	150	
WVOG-30-{1.2}	16	15	10	11	16	17	16	19	16	7	143	
WVOG-32-F	14	15	13	17	14	17	15	15	16	15	151	
WVOG-34	14	11	20	12	12	15	16	9	16	11	136	
WVOG-34-A	11	13	9	11	16	17	18	16	12	7	130	
WVOG-34-B	13	14	19	11	15	16	18	17	10	2	135	
WVOG-34-E-1	14	17	10	12	18	19	19	15	7	6	137	
WVOG-34-E-1-{0.8}	16	15	14	16	17	18	17	17	17	16	163	
WVOG-35	15	15	10	16	12	17	17	16	16	17	151	
WVOG-36	16	15	16	16	15	17	16	14	17	17	159	
WVOG-37	16	13	14	17	14	18	18	19	18	15	162	
WVOG-38-{0.8}	9	9	8	19	4	9	16	16	8	19	117	
WVOG-38-{11.6}	14	13	10	18	11	18	15	15	14	13	141	
WVOG-38-A	15	13	10	19	14	18	15	14	15	18	151	
WVOG-38-D-{3.9}	17	12	14	16	11	17	15	16	16	16	150	
WVOG-38-D-{4.5}	18	11	13	16	10	18	17	15	17	16	151	
WVOG-38-G	13	11	10	15	12	18	14	11	11	15	130	
WVOG-38-K	13	12	10	14	13	17	16	17	13	8	133	
WVOG-38-K.7	11	12	8	15	13	17	14	18	18	3	129	
WVOG-38-K-5	13	12	9	19	12	17	11	16	17	11	137	
WVOG-40	10	11	10	16	8	16	19	11	12	8	121	
WVOG-41	13	12	10	13	12	18	19	14	17	6	134	

Table A-11. Rapid Habitat Assessment Scores (continued).

					0	Ň	<u>~0;</u>		bart bart in the total				
Stream Code	COVE	enio	so reloc	int shero	io' _{se} di	netti	the Hedi	n 62	int stor be	rt vers in	2 40 ¹⁰ 10 ¹⁰		
WVOG-42-A	14	13	13	12	12	18	18	13	7	4	124		
WVOG-42-C-{0.2}	15	12	14	15	12	18	19	13	16	7	141		
WVOG-42-D	16	15	10	15	14	18	16	15	15	2	136		
WVOG-42-E	12	13	10	12	13	17	16	18	16	11	138		
WVOG-44-A.5	14	13	10	14	13	16	16	16	15	11	138		
WVOG-44-A-2-{2.8}	13	12	9	9	12	18	13	16	15	3	120		
WVOG-44-C.3	13	14	10	12	13	18	15	15	15	9	134		
WVOG-44-C.7	13	13	10	11	13	18	16	12	14	5	125		
WVOG-44-E	14	13	15	16	13	17	16	15	13	5	137		
WVOG-44-E-0.5	15	17	10	16	14	20	20	16	17	10	155		
WVOG-44-F-1	14	13	14	18	14	17	17	18	18	7	150		
WVOG-44-G-{1.9}	11	12	10	10	12	17	18	16	12	6	124		
WVOG-44-H	13	14	15	12	15	17	19	17	18	10	150		
WVOG-44-I	17	15	10	14	13	18	19	14	17	12	149		
WVOG-44-K	16	15	14	18	13	18	17	18	16	14	159		
WVOG-48	14	13	13	12	14	19	20	17	16	6	144		
WVOG-49-{3.3}	11	11	10	14	13	18	16	17	15	4	129		
WVOG-49-A	9	11	5	13	15	17	18	15	10	2	115		
WVOG-49-A-1	10	16	5	12	16	19	20	11	11	2	122		
WVOG-49-B-1	14	11	5	11	15	19	20	16	18	11	140		
WVOG-49-C	6	12	5	13	18	19	19	17	9	3	121		
WVOG-49-C.1	7	12	5	11	15	17	19	18	6	2	112		
WVOG-49-D-2	17	12	16	16	14	19	18	17	11	11	151		
WVOG-49-E-1	9	15	5	12	14	19	16	11	14	11	136		
WVOG-50	17	17	18	14	12	18	17	15	15	11	154		
WVOG-51.5	7	9	5	9	11	19	17	18	13	3	111		
WVOG-51-B	9	13	9	12	12	18	18	17	18	7	133		
WVOG-51-G.5	12	8	10	5	16	18	15	19	12	2	117		
WVOG-53	12	13	10	18	10	18	13	9	16	17	137		
WVOG-59	11	10	10	15	10	18	12	13	17	15	131		
WVOG-6-{0.1}	11	6	12	18	8	17	12	2	3	11	100		
WVOG-60	14	13	10	13	10	18	14	17	17	7	133		
WVOG-61	10	10	10	11	13	18	18	16	14	11	131		

Table A-11. Rapid Habitat Assessment Scores (continued).

Categories scored 0-20, total possible score = 200.

cover = epifaunal substrate & available fish cover.

embed = embeddedness.

velocity = # of velocity/depth regimes.

alteration = channel alteration (human-induced).

sediment = sediment deposition.

riffle freq. = riffle frequency.

flow = channel flow status.

bank stab. = bank stability.

bank veg = bank vegetative protection.

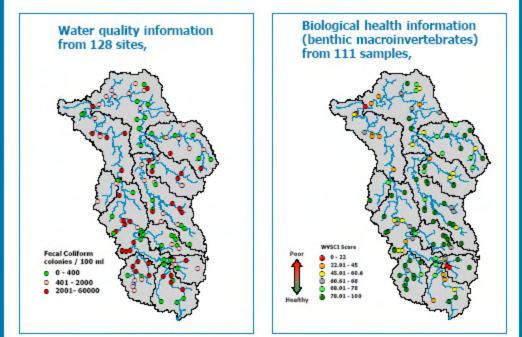
rip veg = width of undisturbed vegetative zone.

West Virginia Department of Environmental Protection, Division of Water and Waste Management

MISSION STATEMENT:

Promoting a healthy environment.

Statement of Policy Regarding the Equal opportunity to use and participate in programs:


It is the policy of the WV Department of Environmental Protection to provide its facilities, accommodations, services, and programs to all persons without regard to sex, race, color, age, religion, national origin or handicap. Proper licenses/registration and compliance with official rules and regulations are the only sources of restrictions for facility use or program participation. Complaints should be directed to:

Secretary WV Department of Environmental Protection 601 57th Street Charleston, WV 25304

The Department of Environmental Protection is an equal opportunity employer.

West Virginia Department of Environmental Protection, Division of Water and Waste Management

This report summarizes data collected in the Lower Guyandottte River Watershed by the Watershed Assessment Section in 1998. It includes:

And physical habitat and landuse pattern information that helps identify and explain impairments affecting the streams of West Virginia's Lower Guyandotte River Watershed.

Watershed Assessment Section